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Abstract
We study Fano schemes Fk(X) for complete intersections X in a projective toric variety
Y ⊂ P

n . Our strategy is to decompose Fk(X) into closed subschemes based on the irreducible
decomposition of Fk(Y ) as studied by Ilten and Zotine. We define the “expected dimension”
for these subschemes, which always gives a lower bound on the actual dimension. Under
additional assumptions, we show that these subschemes are non-empty and smooth of the
expected dimension. Using tools from intersection theory, we can apply these results to count
the number of linear subspaces in X when the expected dimension of Fk(X) is zero.

1 Introduction

1.1 Background

Let X ⊂ P
n be a projective variety. The kth Fano scheme of X is the fine moduli space

Fk(X) parametrizing k-dimensional linear subspaces of Pn contained in X . The study of
Fk(X) is classical, going back to Cayley and Salmon [6], who showed that a smooth cubic
surface contains exactly 27 lines, and Schubert [25], who showed that a general quintic
threefold has 2875 lines on it. In the second half of the twentieth century, as a striking
application, Clemens and Griffiths used the Fano scheme of lines to prove the irrationality
of cubic threefolds [9]. Fano schemes were then studied extensively when X is a general
hypersurface or complete intersection, with key results determining dimension, smoothness,
and connectedness of Fk(X) [1,2,11,23]. Some of these results have been partially extended
to weaken the assumption of genericity of X to include smooth hypersurfaces, see [3–5,17].

More recently, Fano schemes Fk(X) have been studied for certain special varieties X , for
example, when X is cut out by them×m minors of a generic matrix [7]. An understanding of
the Fano schemes for special varieties often leads to interesting applications. Results on the
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Fano schemes of the hypersurface cut out by a sum of products of independent linear forms
lead to non-trivial lower bounds on product and tensor rank [20,21]. The Fano scheme for
complete intersections which are general with respect to the property of containing a fixed
linear space can be used to obtain identifiability results in machine learning [24]. Finally,
the study of linear subspaces of projective toric varieties leads to a better understanding of
A-discriminants [13,22].

1.2 Summary of results

In this article, we strike a balance between the general and special, and study Fano schemes
for general complete intersections X in a fixed projective toric variety Y . First we recall
the toric situation. Let A ⊂ Z

m be a finite collection of lattice points and Y = YA ⊂ P
n

be the toric variety parametrized by the monomials corresponding to elements of A; here
n = #A − 1. The main result of [22] states that irreducible components Zπ,k of Fk(YA) are
in bijection with maximal Cayley structures π of length at least k, see Sect. 2.1.

Consider X ⊂ YA a complete intersection cut out by Cartier divisors of classes
α1, . . . , αr ∈ Pic YA. Then Fk(X) is a subscheme of Fk(YA), so we may study it by split-
ting it up into the pieces Vπ,k contained in each irreducible component Zπ,k of Fk(YA). We
combinatorially associate an integer

φ = φ(A, π,α, k)

to the data (A, π,α, k) where:

• A is a finite collection of lattice points in Zm ,
• π is a maximal Cayley structure,
• α = (α1, . . . , αr ) is a collection of Cartier divisor classes, and
• k is a natural number which will be the dimension of the planes in our Fano scheme,

see (3). The integer φ is called the expected dimension of the Fano scheme associated to this
data. If Vπ,k is non-empty, φ gives a lower bound on its dimension, and if the divisors cutting
out X are basepoint free and sufficiently general, dim Vπ,k = φ, see Theorem 2.13.

Under more restrictive conditions, we are able to show that if φ ≥ 0, Vπ,k is non-empty,
see Theorem 3.8 and Corollary 3.10. Under these conditions, if X is chosen to be sufficiently
general, then Vπ,k will be smooth and of the expected dimension (Corollary 3.11). Along
the way, we show that if YA is a nonsingular toric variety, the Fano scheme Fk(YA) is also
nonsingular (Corollary 3.2).

In the special case that dim Vπ,k = 0, the smoothness of Vπ,k allows us to use intersection
theory to count the number of k-planes contained in X . Indeed, Vπ,k is the zero locus of a
section of a vector bundle V; this bundle V is a vector bundle on a relative Grassmannian,
which is itself defined over a toric variety. The number of k-planes is the integral of the top
Chern class of V (Theorem 4.5). This can be calculated explicitly using Schubert calculus
and intersection theory on toric varieties.

Example 1.1 (See Example 4.9 for details) We consider Y = P
2 × P

2 ⊂ P
8 in its Segre

embedding. The setA is just the product of two standard 2-dimensional simplices. There are
exactly two maximal Cayley structures π1 and π2, given by the two natural projections.

Consider a hypersurface X ⊂ Y cut out by a divisor of multidegree (3, 3) and its Fano
scheme of lines F1(X). Then the expected dimensions for Vπ1,1 and Vπ2,1 are both zero.
For general X these schemes are non-empty and smooth of the expected dimension, so X
contains a finite number of lines.
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Each Zπi ,1 is the Grassmann bundle Gr(2, E), where E = OP2(−1)3. The degree of Vπi ,1

is the integral of the top Chern class of Sym3 S∗, where S is the tautological subbundle on
Gr(2, E). A calculation with Schubert2 [14] shows that this number is 189; it follows that
the number of lines in X is 378 = 2 · 189. The variety X is a Calabi–Yau threefold; both
counts of 178 lines on X are examples of Gromov-Witten invariants for X .

1.3 Organization and acknowledgements

We being in Sect. 2 by fixing notation and recalling basics about toric varieties and Cayley
structures. After discussing how divisors on toric varieties restrict to linear subspaces, we
discuss expected dimension. Similar to the case of complete intersections in projective space,
our approach here is based on viewing the pieces Vπ,k of the Fano scheme as fibers in a
projection from a certain incidence scheme.

The hardest work is done in Sect. 3 where we prove that under certain hypotheses, our
Fano schemes are non-empty and smooth. We prove this by analyzing the normal bundle of
a particular linear space L as we vary the equations of the complete intersection X . To that
end, we describe the normal bundle of L in the ambient toric variety YA, and discuss the map
taking its sections to sections of the restriction to L of the normal bundle of X in YA.

Finally, in Sect. 4. we use intersection theory to count the number of k-planes contained
in X . We first describe the universal bundles on irreducible components of the Fano schemes
of YA. We then show how to realize Vπ,k as a section of a vector bundle, enabling us to use
intersection theory to count k-planes.

The first author was partially supported by an NSERC discovery grant. The second author
was supported by the Engineering and Physical Sciences Research Council under grants
EP/N004922/1 and EP/S03062X/1. This project began during the Fields Institute’s Thematic
Program on Combinatorial Algebraic Geometry, from which both authors received partial
support.

2 Preliminaries and expected dimension

2.1 Toric varieties and Cayley structures

We will always be working over an algebraically closed field K of characteristic zero. The
assumption on the characteristic is necessary since we will occasionally be applying Bertini-
type results. Fix a lattice M ∼= Z

m ; we denote its dual lattice Hom(M,Z) by N . To a finite
subset A ⊂ M , we associate the projective toric variety

YA = ProjK[SA] ⊂ P
#A−1

where SA is the semigroup generated by elements (u, 1) ∈ M × Z for u ∈ A, and K[SA] is
the corresponding semigroup algebra.

Given v ∈ A, we denote the associated homogeneous coordinate of YA by xv . Likewise,
given u ∈ M , the associated rational function on YA is denoted by χu . The variety YA comes
equipped with an action of the torus T = SpecK[M]; the action on the projective coordinate
xv has weight v. We will always assume that M is generated by differences of elements of
A, which guarantees that this action is faithful.
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We denote the inner normal fan of convA by�; this is a fan in NR = N ⊗R. The abstract
toric variety Y� associated to this fan as in [10, Sect. 3.1] is the normalization of YA. For
more details on toric varieties see [10].

A face τ of A is the intersection of A with a face of convA, and we write τ ≺ A. Note
that we consider A to be a face of itself. There is a natural closed embedding Yτ ⊂ YA
determined by the homomorphism K[SA] → K[Sτ ] which for any v ∈ A sends

xv 
→
{
xv v ∈ τ

0 v /∈ τ
. (1)

We recall the main result of [22, §3].

Definition 2.1 (Definition 3.1 of [22]) A Cayley structure of length � on A is a surjective
map π : τ → 	� preserving affine relations, where τ ≺ A and 	� is the set of standard
basis vectors e0, . . . , e� in Z

�+1.

Wewill identify any two Cayley structures differing only by a permutation of the elements
of 	�.

Remark 2.2 We emphasize that sets such as A and τ , as well as 	� are always finite sets of
lattice points and should not be confused with their convex hulls.

Any Cayley structure π : τ → 	� determines an �-dimensional linear subspace Lπ ⊂
Yτ ⊂ YA via the surjective ring homomorphism K[Sτ ] → K[y0, . . . , y�] sending

xv 
→ yπ(v). (2)

Given a k-dimensional linear space L ⊂ P
n , we denote by [L] the corresponding point of

Gr(k + 1, n + 1).
There is a natural partial order on the set of Cayley structures on A [22, §3]. For Cayley

structures π : τ → 	� and π ′ : τ ′ → 	�′ , we say π ≥ π ′ if and only if τ ′ ⊆ τ , and there is a
map η : 	� → 	�′ such thatπ ′ = (η◦π)|τ ′ . Of special importance are Cayley structures that
are maximal with respect to this partial order. These maximal Cayley structures correspond
to irreducible components of toric Fano schemes.

Theorem 2.3 ([22, Theorem 3.4]) There is a bijection between irreducible components of
Fk(YA) andmaximal Cayley structuresπ of length � ≥ k. Considered with reduced structure,
the irreducible component Zπ,k corresponding to π consists of the T -orbits of [L] ∈ Gr(k +
1, n + 1), where L is any k-dimensional linear space contained in Lπ ′ , and π ′ ranges over
all Cayley structures of length at least k with π ′ ≤ π .

Example 2.4 (BlP2 P
5) Consider the set A ⊂ Z

5 consisting of elements (u1, . . . , u5) satis-
fying u1, u2, u3 ≥ 1, u4, u5 ≥ 0, and

∑
ui ≤ 2. In other words, the elements of A are the

columns of the following matrix:⎛
⎜⎜⎜⎜⎝
2 0 0 1 1 0 1 0 0 1 0 0 1 0 0
0 2 0 1 0 1 0 1 0 0 1 0 0 1 0
0 0 2 0 1 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎠ .

The corresponding toric variety YA is the blowup of P5 in a plane, with embedding in P
14

given by the full linear system of 2H − E ; here H is the hyperplane class on P5 and E is the
exceptional divisor of the blowup.
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Fig. 1 The set A for Bl
P2 P

5

There are exactly two maximal Cayley structures onA. The first is the map π1 : A → 	3

induced by identifying the image of the map u 
→ (u1 + u2 + u3, u4, u5) with a standard
simplex. The second Cayley structure is the map π2 : τ → 	2, where τ is the facet of A
with u1 + u2 + u3 = 1, and π2 is the projection onto the first three coordinates. In particular,
we see that F1(YA) has two irreducible components: Zπ1,1 and Zπ2,1.

A projection of the setA is pictured in Fig. 1, with vertices and edges drawn. Each vertex
of τ is shaded black. The fibers of π1 consist of the four triangles with solid gray edges; the
fibers of π2 consist of the red, green, and blue triangles. The remaining edges are dashed
lines.

Warning 2.5 The irreducible components Zπ,k described in Theorem 2.3 are always consid-
ered as subvarieties of Fk(YA), that is, they are taken to be reduced. In general, however,
the irreducible components of Fk(YA) might be non-reduced; we will denote them by Ẑπ,k .
We will see later in Corollary 3.2 that if YA is smooth, Fk(YA) must also be smooth, so
Ẑπ,k = Zπ,k .

Remark 2.6 In [8], families of so-called minimal rational curves on a complete toric manifold
are shown to be in bijectionwith certain primitive collections of rays of the corresponding fan.
Since lines are minimal rational curves, this provides an alternate approach to understanding
the lines contained in a smooth projective toric variety.

2.2 Restricting divisors

We now fix the set A ⊂ M , along with a Cayley structure π : τ → 	�. Given a T -invariant
Cartier divisor D on YA, we are interested in understanding how D (and its sections) restrict
to linear subspaces of Lπ . In order to obtain a well-defined Cartier divisor on Lπ , we need
that Lπ is not contained in the support1 of D [16, 21.4].

This is satisfied if the following assumption is met:

Yτ is not contained in the support of D. (†)

Indeed, since D is T -invariant and by construction Lπ is not contained in the toric boundary
of Yτ , (†) implies that Lπ is not contained in the support of D. Assumption (†) can always

1 Recall that the support of D consists of the union of those codimension-one subvarieties Z ⊂ YA for which
the local equation of D is not a unit in OYA,Z .

123



N. Ilten, T. L. Kelly

be achieved by replacing D with another T -invariant divisor that is linearly equivalent to it.
We remark that the divisor D (nor its replacement) need not be effective.

Let Mτ be the sublattice of M spanned by differences of elements of τ . Likewise, let M�

be the sublattice of Z� consisting of elements whose coordinate sum is zero. Then π induces
a surjection of lattices π ′ : Mτ → M� which sends

(v − v′) 
→ π(v) − π(v′), v, v′ ∈ τ.

If τ = A, then under our assumptions Mτ is just all of M .
Each vertex v of A corresponds to a torus fixed point of YA. The T -invariant Cartier

divisor D is given by a rational function of the form χ−u(v) on a T -invariant neighborhood
of this fixed point for some u(v) ∈ M .2 The assumption (†) is equivalent to requiring that for
all vertices v of τ , u(v) ∈ Mτ . Indeed, local equations for D at T -invariant points are always
T -eigenfunctions, and the units in the local ring of YA at the generic point of Yτ which are
simultaneously T -eigenfunctions are exactly elements of the form c · χu for c ∈ K

∗ and
u ∈ Mτ .

Proposition 2.7 Assume that the T -invariant Cartier divisor D on YA above satisfies (†).

(1) The restriction of D to Lπ is given as follows: for any ei ∈ 	�, the local equation of
D|Lπ at the corresponding torus fixed point is χ−π ′(u(v)) for any v ∈ π−1(ei ).

(2) Given a T -invariant section χu of O(D) for u ∈ M, its restriction in OLπ (D) is χπ ′(u)

if u ∈ Mτ , and 0 if u /∈ Mτ .

Proof The embedding of Lπ in YA is given on the level of homogeneous coordinate rings
by the composition

K[SA] → K[Sτ ] → K[y0, . . . , y�]
where the first map is as in (1) and the second is as in (2). On the other hand, local equations
for D|Lπ are obtained by pulling back local equations for D via the structure map ι# :
OYA → ι∗(OLπ ), where ι : Lπ → YA is the inclusion. The first claim now follows by
dehomogenizing the above map of homogeneous coordinate rings. The second claim follows
similarly. ��

Recall that the divisor D is basepoint free if and only if, for each vertex w of A, the set

{u(v) | v ∈ A a vertex} ⊂ M

is contained in w + pos(A− w). Here pos denotes the positive hull. In particular, the divisor
D can be recovered from the polytope

PD := conv{u(v) | v ∈ A a vertex},
as eachu(v) is the unique vertexw of PD forwhich pos(PD−w) is contained in pos(convA−
v). We say then that D is the divisor associated to PD . See [10, Sect. 6.1] for details.3

Corollary 2.8 Assume that D is basepoint free and satisfies (†). Then D|Lπ is the divisor
associated to the polytope

convπ ′(PD ∩ Mτ ).

2 Equivalently, the sheaf O(D) is locally generated by χu(v).
3 Loc. cit. only covers the normal case, but it is straightforward to check that the necessary claims also apply
in our setting.
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In particular, the degree of D|Lπ is the unique integer δ such that convπ ′(PD ∩Mτ ) is lattice
equivalent to δ · conv	�.

Proof The restriction of a basepoint free divisor is basepoint free, so the first claim follows
by applying Proposition 2.7 at the vertices of τ . The claim regarding the degree follows by
noticing that the divisor on Lπ associated to δ · 	� has degree δ. ��

We say that a Cartier divisor class α ∈ Pic YA restricts surjectivelywith respect to π if the
associated map O(α) → OLπ (α) of sheaves is surjective on global sections. Analogously,
we say α ∈ Pic YA restricts surjectively with respect to τ if the associated map O(α) →
OYτ (α) of sheaves is surjective on global sections. We may combinatorially check if α

restricts surjectively using Proposition 2.7, since α can be represented by a T -invariant
divisor class D satisfying (†) and T -invariant sections provide bases for H0(YA,O(D)) and
H0(Lπ ,OLπ (D)). In particular, we have the following:

Lemma 2.9 Let α ∈ Pic YA be basepoint free. Then α restricts surjectively with respect to
π .

Proof There is a face σ of τ for which π|σ is bijective; this follows from e.g. [22, Proposi-
tion 4.3]. For any ei ∈ 	�, let vi ∈ σ be the unique element with π(vi ) = ei . Let D be a
T -invariant divisor representing α which satisfies (†). As above, for each vertex v of A, let
u(v) ∈ M be such that χ−u(v) is a local equation for D. Then in particular, the lattice points
u(vi ) correspond to global sections of O(D). Using Proposition 2.7 and the fact that D is
basepoint free, we obtain that the images of u(vi ) under π ′ are the vertices of the δth dilate
of a standard simplex for some δ ≥ 0. In particular, D|Lπ corresponds to a simplex 	′ which
is a lattice translate of δ · conv	�.

Lifting back to the polytope PD corresponding to D, we obtain that u(vi ) = δ · (vi −
v0) + u(v0) for any i . The convex hull of these u(vi ) is again a dilated simplex P ′ ⊂ PD ;
it contains the lattice points u(v0) + ∑

j λ j (vi − v0) for λ j ∈ Z≥0 and
∑

λ j ≤ δ. These
all correspond to global sections of O(D). We again use Proposition 2.7 to understand the
image of H0(YA,OYA(D)) in H0(Lπ ,OLπ (D)). The lattice points 	′ ∩ M� are surjected
under π ′ to the lattice points P ′ ∩ Mτ from above, that is, the u(v0) + ∑

j λ j (vi − v0). This
shows that the map of global sections is surjective. ��

Example 2.10 (BlP2 P5) We continue the example of YA = BlP2 P
5 from Example 2.4. A

divisor D of class 2H − E is very ample, and a corresponding polytope PD is just the convex
hull of A itself. By Corollary 2.8, we obtain that

deg D|Lπ1
= 1; deg D|Lπ2

= 1.

A divisor of class H is basepoint free, and a corresponding polytope PH is the convex hull
of 0 with the standard basis vectors e1, . . . , e5. By Corollary 2.8, we now obtain that

deg H|Lπ1
= 1; deg H|Lπ2

= 0.

For the computation of deg H|Lπ2
, we note that PH ∩ Mτ consists only of 0. By linearity, we

then have that

deg E|Lπ1
= 1; deg E|Lπ2

= −1.
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2.3 Expected dimension

Fix A as above with a maximal Cayley structure π : τ → 	�. Let α = (α1, . . . , αr ) ∈
Pic(YA)r be an r -tuple of effective non-trivial Cartier divisor classes. For each i , we define
the restriction degree of αi as

δi = deg(αi |Lπ
).

By choosing T -invariant representatives D1, . . . , Dr of the αi whose support does not con-
tain Yτ , we may compute the δi combinatorially. In the basepoint free case, we may use
Corollary 2.8. In general, we apply Proposition 2.7. Indeed, for v ∈ τ , let u(v) be as in
Sect. 2.2 for the divisor Di . The images of these u(v) under π ′ form the vertices of a simplex
	 in M�. The restriction degree δi is the unique integer such that 	 is lattice equivalent to
δi · conv	�.

Remark 2.11 Let Di be a torus invariant divisor of class αi whose support is disjoint from Yτ ,
that is, satisfies (†). For any [L] in Zπ,�, we have a canonical isomorphism OL((Di )|L) →
OL(δi ). For L = Lπ , this is obtained by mapping χu as in Proposition 2.7 to 0 or χπ ′(u). For
L in the torus orbit of Lπ , this is obtained by acting on this map by the torus. For L outside
of this orbit, we may proceed by replacing π by an appropriate Cayley structure defined on a
proper face of τ . More precisely, let τ̂ be the minimal face of τ with L contained in Yτ̂ , and
π̂ : ˆτ →	� the restriction of π to τ̂ . Then L is in the torus orbit of L π̂ , and we may proceed
as above.

In a similar fashion, one obtains a canonical isomorphism for any L ′ in Zπ,k (k ≤ �)
by first considering the isomorphism above for some L containing L ′, and then restricting
further.

Fix k ≤ �. We say that α satisfies †† if:

For all Cayley structures π ′ ≤ π of length at least k and for all
i = 1, . . . , r , the class αi restricts surjectively with respect to π ′. (††)

We may check combinatorially using Proposition 2.7 if (††) is satisfied; by Lemma 2.9 it is
always satisfied if all αi are basepoint free.

Definition 2.12 For X ⊂ YA a complete intersection of type α, let Vπ,k be the intersection
of Fk(X) with Zπ,k . Likewise, let V̂π,k be the intersection of Fk(X) with Ẑπ,k as defined in
Warning 2.5.

Then Fk(X) is the union of all V̂π,k as π ranges over all maximal Cayley structures.
Furthermore, Vπ,k and V̂π,k agree when one ignores the non-reduced structure. In particular,
they have the same dimension.

For k ∈ N, we define the expected dimension of the configuration consisting ofA, π,α, k
to be

φ(A, π,α, k) := dim τ − � + (k + 1)(� − k) −
r∑

i=1

(
k + δi

k

)
. (3)

Here we use the convention that
(a
b

) = 0 if a < b; this occurs above if and only if δi < 0.

Theorem 2.13 Let X ⊂ YA be a complete intersection of type α, and set φ = φ(A, π,α, k).

(1) If Vπ,k is non-empty, then its dimension is at least φ.
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(2) If Vπ,k is non-empty, X is sufficiently general, (††) is satisfied, and φ ≥ 0, then

dim Vπ,k = φ.

(3) If X is sufficiently general, (††) is satisfied, and φ < 0, then Vπ,k empty.

Before the proof of this theorem, we introduce notation which will be useful later. Let
� = �(A, π,α, k) be the incidence scheme of all tuples

(D1, . . . , Dr , [L]) ∈ |α1| × · · · × |αr | × Zπ,k

such that L ⊂ D1 ∩ · · · ∩ Dr ⊆ YA. Here, |αi | denotes the linear system of all effective
divisors of class αi . The incidence scheme � comes with projections

�

p1
��

p2
�� Zπ,k

|α1| × · · · × |αr |

. (4)

Lemma 2.14 The incidence scheme � has dimension at least

dim τ − � + (k + 1)(� − k) +
r∑

i=1

dim |αi | −
(
k + δi

k

)
.

If (††) is satisfied, it is an irreducible variety of exactly this dimension. If furthermore (††)
is satisfied and Zπ,k is smooth, then so is �.

Proof We adapt the argument of [12, Proposition 6.1] to this setting. Fix a Cayley structure
π ′ ≤ π of length at least k. For a fixed linear space L contained in Lπ ′ , consider the restriction
maps

r⊕
i=1

H0(YA,O(αi )) →
r⊕

i=1

H0(YA,OLπ ′ (δi )) →
r⊕

i=1

H0(YA,OL (δi )).

The kernel K of this composition has dimension at least
r∑

i=1

dim H0(YA,O(αi )) − dim H0(YA,OL(δi ))) =
r∑

i=1

1 + |αi | −
(
k + δi

k

)
.

Equality holds if (††) is satisfied, since then first map is surjective, and the second is always
surjective, so the composition is as well.

On the other hand, the fiber p−1
2 ([L]) may be identified with the image of the kernel K in

|α1| × · · · × |αr |, so the fiber has dimension at least
r∑

i=1

|αi | −
(
k + δi

k

)

with equality if (††) holds. For an arbitrary k-dimensional linear space L with [L] ∈ Zπ,k , L
is obtained from a subspace of some Lπ ′ as above after acting by T , so the same dimension
estimate for p−1

2 ([L]) holds.
The dimension of Zπ,k is dim τ − � + (k + 1)(� − k) [22, Proposition 6.1]. We have seen

above that every fiber of p2 has dimension at least
r∑

i=1

|αi | −
(
k + δi

k

)
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Fig. 2 The setA for BlP P
2 ×P

1

so the dimension of � is at least the sum of these two quantities, proving the first claim.
If (††) holds, then all fibers have dimension equal to the above bound; all fibers are also
irreducible, since they are products of projective spaces. Since Zπ,k is projective, so is �,
so the morphism p2 is proper. The irreducibility of � then follows from the irreduciblity of
Zπ,k . Furthermore, � is smooth if the base Zπ,k is smooth. ��
Proof of Theorem 2.13 For a fixed X ⊂ YA cut out by divisors D1, . . . , Dr , Di ∈ |αi |, the
scheme Vπ,k is the fiber p

−1
1 ((D1, . . . , Dr )). Since Lemma 2.14 states that � has dimension

at least φ + dim |α1| × · · · × |αr |, a general fiber of p1 has dimension at least φ. The first
claim of the theorem follows.

For the remaining two claims, assume that X is sufficiently general and (††) is satisfied.
By the second part of Lemma 2.14, a general fiber of p1 has dimension exactly φ+dim |α1|×
· · · × |αr | − dim p1(�). If Vπ,k is non-empty, p1 is dominant (and thus surjective), and the
dimension of Vπ,k is thus φ. We likewise see that if φ < 0, p1 is not surjective. ��
Example 2.15 (BlP2 P

5) We continue the example of YA = BlP2 P
5 from Examples 2.4 and

2.10. Take α = (α1) = (8H − 3E); this class is basepoint free since H − E and H are
both basepoint free. For the Cayley structure π1, we have δ1 = 5, and obtain the expected
dimension

φ(A, π1,α, 1) = 5 − 3 + 2(3 − 1) −
(
1 + 5

1

)
= 0.

Likewise, for the Cayley structure π2, we have δ1 = 3, and obtain the expected dimension

φ(A, π2,α, 1) = 4 − 2 + 2(2 − 1) −
(
1 + 3

1

)
= 0.

Since α1 is basepoint free, we can apply Lemma 2.9 to see that (††) is satisfied. By Theo-
rem 2.13, we conclude that, for a general hypersurface X of class 8H −3E in YA = BlP2 P

5,
there are only finitely many lines on X .

Example 2.16 (††) is necessary) Let Y1 = BlP P
2 be the blowup of P2 in a point, with E

the exceptional class and H the pullback of the hyperplane class. Let Y2 = P
q , q ≥ 1, with

F the hyperplane class. We consider YA = Y1 × Y2 embedded in projective space via the
full linear system of 2H − E + F . Here we are abusing notation and using H , E, F to also
denote the pullbacks of the respective classes to Y1 × Y2.

The set A ⊂ Z
2 × Z

q+1 can be taken to be the product of the set

{(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} ⊂ Z
2
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with 	q . A maximal Cayley structure π of length one is given by projecting the facet
τ = {(1, 0), (2, 0)} × 	q to the first Z2-component. The set A is pictured in Fig. 2 in the
case q = 1, with the facet τ shaded gray.

Take r = 1. The class α1 of D = E + F restricts to Lπ with degree 1, as follows from
e.g. Proposition 2.7. This can also be seen easily using Theorem 3.1 below since both E and
F are prime T -invariant divisors. However, α1 does not restrict surjectively with respect to π ,
since the image of the space of global sections ofO(D) under restriction is one-dimensional.
In particular, (††) is not satisfied. We will see that item 2 of Theorem 2.13 fails for q = 2
and item 3 fails for q = 1. Indeed, we first calculate the expected dimension to be

φ = 1 + q − 1 − 2 = q − 2.

Next, we notice that Vπ,1 is always non-empty. Indeed, since X will be the union of E with
the product of BlP P

2 and a hyperplane in P
q , the latter will always contain a line of Zπ,1.

Thus, although φ < 0 for q = 1, Vπ,k is non-empty, showing that (††) is necessary for item 3.
When q = 2, we have that φ = 0. However, it is easily confirmed that Vπ,1 is always

one-dimensional, showing that (††) is necessary for item 2.

3 Non-emptyness

3.1 Normal bundles for L in YA

For a fixed Cayley structure π : τ → 	�, we call a face σ of τ a π-face if π is injective on
σ . By [22, Proposition 4.3], π -faces σ of dimension k are in bijection with the torus fixed
points [Lσ ] of Zπ,k . The linear space Lσ is the orbit closure of YA corresponding to σ . With
the notation from Sect. 2.1, this is just the subvariety Yσ of YA.

We will now assume that YA is nonsingular. This is equivalent to assuming that for each
vertex v of A, a subset of A − v forms a basis for M ∼= Z

m [22, Remark 7.2]. Consider any
face σ of A. We denote the set of facets in A containing σ by Fσ . Since YA is nonsingular,
the set Fσ consists of exactly m − dim σ elements. Each such facet F corresponds to a ray
of � and hence to a torus invariant prime divisor DF , see [10, Sect. 4.1]. Note that if σ ≺ σ ′
then it is clear that Fσ ′ ⊂ Fσ . Given a divisor D on YA, we denote its class in Pic(YA) by
[D].
Theorem 3.1 Assume that YA is smooth, and fix a maximal Cayley structure π : τ → 	�.
Fix any �-dimensional π -face σ ′ of τ , along with a k-dimensional face σ ≺ σ ′.

(1) Lσ is the complete intersection in YA of divisors DF for F ∈ Fσ .
(2) For F ∈ Fσ , the restriction of O(DF ) to Lσ satisfies OLσ (DF ) = OLσ (s) where

s < 0 if F ∈ Fτ ,

s = 0 if F ∈ Fσ ′ \ Fτ , or

s = 1 if F ∈ Fσ \ Fσ ′ .

Proof Claim 1 follows from standard facts about intersections on toric varieties, see e.g. [10,
Sect. 12.5]. Indeed, the elements of Fσ correspond to the rays ρ of � that are in the inner
normal cone C of conv(A) at conv(σ ). By [10, Lemma 12.5.2] and the discussion following
it, the intersection of the Cartier divisors corresponding to rays in C is exactly the closure
of the torus orbit corresponding to the cone C under the orbit-cone correspondence. But
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this orbit closure is exactly Lσ , and the divisors we are intersecting are exactly the DF for
F ∈ Fσ .

For Claim 2, we will fix some coordinates. The following assumptions are possible since
YA is smooth. We assume that σ has vertices e0 := 0 and e1, . . . , ek , and σ ′ has additionally
the vertices ek+1, . . . , e�. The primitive generators of the edges ofA starting at 0 are e1, . . . , e�

(for edges in σ ′), a1, . . . , ap (for edges in τ \ σ ′), and b1, . . . , bq (for edges in A \ τ ).
Furthermore, we can assume that

e1, . . . , e�, a1, . . . , ap, b1, . . . , bq

is a basis for M .
We first suppose that F ∈ Fσ \Fσ ′ . Then there is a vertex of σ ′, say e�, not contained in F .

We consider the edge E = {0, e�} of A; this corresponds to a torus invariant line LE ⊂ Lσ ′ .
The intersection number of LE with DF is one, since YA is smooth, and F ∩ E = {0}. But
LE is rationally equivalent to any line in Lσ , so we conclude that the degree of OLσ (DF ) is
also one.

For the remaining two cases, we fix the edge E = {0, e1} ⊂ σ and consider the intersection
number DF .LE , where LE is the torus invariant line corresponding to E . This intersection
number will again be the degree of OLσ (DF ).

We have already recorded what the primitive generators of edges ofA from 0 are. We now
do the same for edges from e1. Clearly, −e1, e2 − e1, . . . , e� − e1 are primitive generators
for the edges in σ ′. By considering the face of convA containing 0, e1, ai or 0, e1, bi we see
that the remaining edges from e1 have primitive generators

a′
i = ai + λi e1 i = 1, . . . , p

b′
i = bi + μi e1 i = 1, . . . , q

for integers λi , μi ≥ −1. The inner normal vectors for the facets of A intersecting E are
exactly

e∗
i (i �= 1), a∗

i , b∗
i

for the facets containing E , and

e∗
1,

∑
λi a

∗
i +

∑
μi b

∗
i −

∑
e∗
i

for the two facets intersecting E properly. Here, e∗
i , a

∗
i , b

∗
i are elements of the dual basis.

If F ∈ Fσ ′ \ Fτ , the inner normal of F is v = a∗
i for some i . Likewise, if F ∈ Fτ , then

its inner normal is v = b∗
i for some i . In both cases, to calculate DF .LE , we shift DF by the

principal divisor − divχv∗
. Using [10, Proposition 4.1.2] we have that

divχv∗ =
{
DF + λi DF ′ + R v = a∗

i

DF + μi DF ′ + R v = b∗
i

where F ′ is a facet intersecting E properly, and R is a sum of prime invariant divisors
corresponding to facets that do not intersect E . The divisor DF − divχv∗

intersects LE

properly, and we obtain

DF .LE = (DF − divχv∗
).LE =

{
−λi v = a∗

i

−μi v = b∗
i

.

Hence, it remains to show that λi = 0 and μi > 0 for all i .
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For this, we use the Cayley structure π . We identify the vertices of 	� with those of
σ ′. Suppose that π(ai ) �= e0. Then since π is affine linear, conv τ ∩ [a∗

i = 1] = ai . But
then π can be extended to a Cayley structure of length � + 1 by w 
→ (π(w), a∗

i (w)) and
identifying the image with 	�+1. This contradicts the maximality of π , so we may assume
thatπ(ai ) = e0 for all i . Thereforeπ may be interpreted as the projection of τ to the subspace
spanned by e1, . . . , e�.

Again by affine linearity of π , we then have that λi ≤ 0. Note that every element w of τ

satisfies ∑
λi a

∗
i (w) −

∑
e∗
i (w) ≥ −1

along with a∗
i (w), e∗

i (w) ≥ 0. If λi = −1, then we could project τ onto e0, . . . , e�, ai , but
then π could be extended to a Cayley structure of length � + 1, violating maximality. We
conclude that λi = 0 for all i .

To show that μi > 0, consider A′ = A ∩ 〈τ, bi 〉. Using that all λ j = 0, every element w
of A′ must satisfy ∑

e∗
j (w) ≤ 1 + μi b

∗
i (w).

If μi ≤ 0, we can projectA′ onto e0, . . . , e�, and π is not maximal. Hence, we conclude that
μi > 0 as desired. ��

Continuingwith notation as in the above theorem,we see that the normal bundle of L = Lσ

in YA is given by

NL/YA
∼=

⊕
F∈Fσ

OL(DF ) ∼= OL(1)⊕(�−k) ⊕ OL(0)⊕(dim τ−�) ⊕ R, (5)

where R is a direct sum of m − dim τ line bundles of negative degree. Indeed, this follows
from [12, Proposition–Definition 6.15] and the above theorem, since the number of facets
containing σ but not σ ′ is �−k, and the number of facets containing σ ′ but not τ is dim τ −�.

In [22, Corollary 7.4] it is shown that if the singular locus of YA has dimension less
than k, then each component Zπ,k of Fk(YA), taken in its reduced structure, is nonsingular.
This result does not rule out these components being non-reduced, or possibly intersecting.
However, the above theorem allows us to say more if we assume that YA is nonsingular:

Corollary 3.2 Let YA be nonsingular. Then the Fano scheme Fk(YA) is also nonsingular. In
particular, Zπ,k = Ẑπ,k for any maximal Cayley structure π : τ → 	� and any k ≤ �.

Proof Wewill show that Fk(YA) is nonsingular at its torus fixed points; it follows that Fk(YA)

is nonsingular everywhere. As noted above, every fixed point of Fk(YA) is of the form [Lσ ]
for σ a k-dimensional π -face of some Cayley structure π . The dimension of Fk(YA) at [Lπ ]
is at least

dim Zπ,k = dim τ − � + (k + 1)(� − k)

by [22, Proposition 6.1].
On the other hand, the tangent space of Fk(YA) at [Lσ ] may be identified with

H0(Lσ , NLσ /YA), see e.g. [12, Theorem 6.13]. By (5), its dimension is also

dim τ − � + (k + 1)(� − k).

Thus, Fk(YA) is smooth at [Lσ ]. ��
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Remark 3.3 For k ≥ 2, a slightlymore straightforward proof of the non-singularity of Fk(YA)

is possible. As noted above, the normal bundle NL/YA for L at any torus fixed point is a
direct sum of line bundles. But then H1(L,NL/YA) = 0, since L ∼= P

k , k ≥ 2. It follows
that Fk(YA) is nonsingular at each torus fixed point, hence is nonsingular.

3.2 Normal bundles and Cox coordinates

We continue under the assumption that YA is nonsingular. Let X ⊂ YA be a complete
intersection of type α = (α1, . . . , αr ) as in Sect. 2.3 and L ⊂ X be a k-plane. Then there is
an exact sequence

0 → NL/X → NL/YA → NX/YA|L (6)

of (restrictions of) normal bundles, see e.g. [12, Proposition–Definition 6.15]. The space of
global sections ofNL/X maybe identifiedwith the tangent space of the point [L] of Fk(X) [12,
Theorem 6.13]. We wish to show that, in favorable situations, the dimension of this tangent
space agrees with the expected dimension. To that end, we need a better understanding of
the normal bundles appearing in this exact sequence.

In the situation that L = Lσ for some π -face σ ≺ A, Theorem 3.1 gives us good control
over NL/YA . On the other hand since X is a complete intersection in YA, we have

NX/YA|L ∼=
r⊕

i=1

OL(αi ) ∼=
r⊕

i=1

OL(δi ). (7)

The Cox ring of YA is the polynomial ring

R(YA) = K[yF | F a facet of A],
see [10, Chapter 5] for details. This ring comes with a grading by the Picard group of YA.
For any torus invariant divisor D, the degree [D] graded piece of R(YA) may be canonically
identified with the space of global sections of OYA(D). The ring of Laurent polynomials of
degree zero (under the grading byPic(YA)) is canonically identifiedwithK[M]. Furthermore,
any subscheme of YA may be described via a homogeneous ideal of YA. In particular, for a
π-face σ , Lσ is described by the ideal Iσ generated by the yF for F ∈ Fσ . Likewise, each
divisor Di of class αi cutting out X corresponds to an element gi ∈ K[yF ] of degree αi . The
condition that Lσ is contained in each Di implies that gi is contained in the saturation of Iσ
by a certain monomial ideal (the so-called irrelevant ideal), see e.g. [10, Proposition 6.A.7].
But Iσ is already saturated with respect to the maximal ideal generated by all the variables
yF , so it is in particular saturated with respect to the irrelevant ideal. We conclude that in fact
gi is contained in Iσ . Hence, we may write

gi =
∑
F∈Fσ

yF · gFi (8)

for some gFi ∈ R(YA).
The variety Yσ

∼= P
k is also toric, hence it also has a Cox ring

R(Yσ ) = K[yF | F a facet of σ ],
which may be identified with the homogeneous coordinate ring of Pk .
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Lemma 3.4 The natural map ρ : R(YA) → R(Yσ ) induced by restricting sections of line
bundles from YA to Yσ is defined by

yF 
→ ρ(yF ) =

⎧⎪⎨
⎪⎩
0 σ ⊆ F

1 σ ∩ F = ∅
yF∩σ else

.

Proof Themonomial yF corresponds canonically to the global section 1of the bundleO(DF ).
As long as σ does not intersect F , DF restricts to the trivial divisor on Lσ , so we obtain the
global section 1 of the bundle OLσ . This corresponds to the element 1 of R(Yσ ). If instead
σ intersects F but is not contained in it, Lσ is not contained in the support of DF , and we
may consider (DF )|Lσ . It follows from Proposition 2.7 that this restriction is DF∩σ , and so
in this case yF maps to yF∩σ .

Finally, if σ is contained in F , we instead identify yF with the section χu of the bundle
O(DF + divχ−u) for an appropriate choice of u such that DF + divχ−u doesn’t contain
Lσ in its support. Taking ν ∈ N to be the primitive generator of the inward normal of F , the
requirement is exactly that ν(u) = 1. But since σ ⊂ F , for any w ∈ Mσ we have ν(w) = 0.
In particular, u /∈ Mσ , so by Proposition 2.7, χu restricts to 0. It follows that yF does
as well. ��
Lemma 3.5 Written using Cox coordinates, the map

⊕
F∈Fσ

OL([DF ]) →
r⊕

i=1

OL(δi )

induced by (6) and the above identifications of normal bundles sends a section f ofOL ([DF ])
to the section ( f · ρ(gFi ))ri=1 of

⊕r
i=1 OL(δi ).

Proof We work locally. Fix any open affine torus invariant U ⊂ YA containing a torus fixed
point. For any class β ∈ Pic YA, there is a unique torus invariant divisor D = ∑

aF DF of
class β which is trivial on U . We write qβ = ∏

F yaFF .
For each F ∈ Fσ , DF restricted toU is the principal divisor of zF := yF/q[DF ]. Likewise,

each Di restricted to U is the principal divisor of hi := gi/qαi . Setting hF
i = gFi /qαi−[D f ],

we then have

hi =
∑
F∈Fσ

zF · hF
i ,

and that the zF , hF
i are regular functions on U .

Denote by S the coordinate ring ofU . Let I be the ideal of S generated by the zF . Likewise,
let J be the ideal of S generated by the hi . Then I is the ideal of L in U , J is the ideal of
X in U , and J ⊆ I . The map NL/YA → NX/Y |L is locally given by the natural module
homomorphism Hom(I , S/I ) → Hom(J , S/I ) obtained by restricting from I to J . Viewed
as an S/I -module, Hom(I , S/I ) is free with generators ψF for F ∈ Fσ defined via

ψF (zF ′) =
{
1 F = F ′,
0 else.

Likewise, Hom(J , S/I ) is free with generators ψi defined by

ψi (h j ) =
{
1 i = j,

0 else.
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By S/I -linearity, we see thatψF maps to
∑

i h
F
i ψi , where h

F
i the residue class of hF

i in S/I .
Since

ρ(gFi )/q(αi−[DF ])|L = gFi /qαi−[DF ] = h
F
i ,

we see that after globalizing and passing back to Cox coordinates, the map of (6) agrees with
the description in the lemma. ��
Proposition 3.6 Assume that YA is nonsingular, and let L = Lσ , X , and gFi be as above in
Eq. (8). Then the induced map

H0(L,NL/YA) → H0(L,NX/YA|L) (9)

is surjective if and only if the R(L)-submodule of
⊕

j≥0 H
0(L,OL ( j))r generated by

(ρ(gFi ))ri=1 for F ∈ Fσ \ Fτ contains H0(L,OL(δ1)) ⊕ · · · ⊕ H0(L,OL(δr )).
Furthermore, in this case, dim H0(L,NL/X ) = φ, the expected dimension.

Proof We’ve identified the codomain of the map (9) with H0(L,OL (δ1)) ⊕ · · · ⊕
H0(L,OL(δr )). The summands of NL/YA

∼= ⊕
F∈Fσ

OL([DF ]) with global sections are
exactly those with F /∈ Fτ by Theorem 3.1. The first claim now follows from the description
of the map (9) from Lemma 3.5.

For the second claim, we use the exactness sequence of sheaves in (6) to obtain the exact
sequence of cohomology groups

0 → H0(L,NL/X ) → H0(L,NL/YA) → H0(L,NX/YA|L) → 0

along with (5) and (7) to count

dim H0(L,NL/X ) = dim H0(L,NL/YA) − dim H0(L,NX/YA|L)

= (dim τ − � + (k + 1)(� − k)) −
(

r∑
i=1

(
k + δi

k

))

= φ(A, π,α, k).

��

3.3 Criterion for surjectivity

When can we find X ⊂ YA such that the map of Proposition 3.6 is surjective? To find such
X , we will choose gFi ∈ R(YA)[Di−DF ] to obtain gi ∈ R(YA) as in (8), and hence divisors
Di . Note that, instead of choosing the gFi , we can focus on choosing their restrictions ρ(gFi ).
To do this, we need the following algebraic fact:

Lemma 3.7 Let a, b, δi ∈ Z≥0, i = 1, . . . r . Assume that

a + b − k − r ≥ 0; (10)

a(k + 1) + b −
r∑

i=1

(
δi + k

k

)
≥ 0 (11)

and furthermore that one of the following three conditions hold:

(1) δi ≥ 3 for some i;
(2) δi ≥ 2 for at least two indices i; or
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(3) a − k − #{i | δi = 1} ≥ 0.

Then the map

λ : H0(Pk,OPk (1))
⊕a ⊕ H0(Pk,OPk )

⊕b →
r⊕

i=1

H0(Pk,OPk (δi ))

((s j )
a
j=1, (s

′
j )
b
j=1) 
→

⎛
⎝ a∑

j=1

s j · hi j +
b∑
j=1

s′
j · h′

i j

⎞
⎠

r

i=1

is surjective for general choice of hi j ∈ H0(Pk,OPk (δi − 1)) and h′
i j ∈ H0(Pk,OPk (δi )).

The special case of this lemmawhen b = 0 is used classically for showing the non-emptyness
ofFano schemesof complete intersections in projective space, see [12, Proof ofTheorem6.28]
and [19] for the case of hypersurfaces (r = 1) and [11, Sect. 2] for complete intersections.
We adapt the argument of [11, Sect. 2] to include the case b > 0:

Proof of Lemma 3.7 For ease of notation, set V = ⊕r
i=1 H

0(Pk,OPk (δi − 1)) and W =⊕r
i=1 H

0(Pk,OPk (δi )). Likewise, set

H =
r⊕

i=1

H0(Pk,OPk (δi − 1))a ×
r⊕

i=1

H0(Pk,OPk (δi ))
b.

We are trying to show that there exist ((hi j ), (h′
i j )) ∈ H for which λ is surjective.

Let

μ : H0(Pk,OPk (1)) × V → W

be the natural multiplication map. For any hyperplane H ⊂ W , denote by μ−1(H) the set

μ−1(H) = {v ∈ V | v · H0(Pk,OPk (1)) ⊂ H}.
From its definition, it is apparent that the codimension of μ−1(H) is at most k + 1 =
dim H0(Pk,OPk (1)). For t = 1, . . . , k + 1, we define the set

Lt = {ψ ∈ W ∗ | codim(μ−1(kerψ), V ) = t}
and the subset Zt of H × P(Lt ) by

Zt =
{
((hi j ), (h

′
i j ), ψ) ∈ H × P(Lt )

∣∣∣∣∀ j = 1, . . . , a, (hi j ) ∈ μ−1(kerψ)

∀ j = 1, . . . , b, (h′
i j ) ∈ kerψ

}
.

The subset Z ofH for which the map λ is not surjective is the union of the projections of
Zt to H. We thus obtain that

codim(Z ,H) ≥ min
t=1,...,k+1

codim(Zt ,H × P(Lt )) − dim P(Lt ).

On the one hand, the conditions in the definition of Zt are clearly independent, with the
condition (hi j ∈ μ−1(kerψ)) having codimension t , and (h′

i j ) ∈ kerψ having codimension
1. Hence,

codim(Zt ,H × P(Lt )) = t · a + b.
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On the other hand, [11, Lemma 2.8] states that for 1 ≤ t ≤ k + 1,

dim P(Lt ) ≤ t(k − t + 1) +
r∑

i=1

(
δi + t − 1

t − 1

)
− 1.

Combining, we obtain that

codim(Z ,H) ≥ min
t=1,...,k+1

γ (t)

where

γ (t) := b + 1 + t(a + t − k − 1) −
r∑

i=1

(
δi + t − 1

t − 1

)
.

The first forward difference of γ is

γ (t + 1) − γ (t) = 2t + a − k −
∑
i :δi≥1

(
δi + t − 1

t

)
.

Likewise, the second order forward difference is

γ (t + 2) − 2γ (t + 1) + γ (t) = 2 −
∑
i :δi≥2

(
δi + t − 1

t + 1

)
.

If at least two δi are greater than or equal to two, or one δi ≥ 3, then the second forward
difference is always non-positive for t = 1, . . . , k + 1, so γ is concave. If neither of these
conditions is met, but a − k − #{i | δi = 1} ≥ 0, then the first forward difference is always
non-negative, so γ is non-decreasing. In either case, we can compute mint=1,...,k+1 γ (t) by
only evaluating at t = 1 and t = k + 1 and taking the smaller value.

Using the inequalities (10) and (11), we then obtain that

codim(Z ,H) ≥ 1

implying that for general choice of (hi j ) and (h′
i j ), λ is surjective. ��

3.4 The non-emptyness theorem

We continue with notation established previously. Our main result of this section is the
following:

Theorem 3.8 Let X ⊂ YA be a complete intersection of type α, and fix a maximal Cayley
structure π : τ → 	�. Assume the following:

(1) YA is nonsingular;
(2) (††) is satisfied;
(3) There is an �-dimensional π -face σ ′ of τ with k-dimensional face σ ≺ σ ′ such that for

every i = 1, . . . , r and every F ∈ Fσ \Fσ ′ , αi −[DF ] restricts surjectively with respect
to σ ;

(4) φ(A, π,α, k) ≥ 0;
(5) δi ≥ 0 for i = 1, . . . , r;
(6) dim τ − 2k − r ≥ 0;
(7) Either δi ≥ 3 for some i, δi ≥ 2 for at least two indices i , or � − 2k − #{i | δi = 1} ≥ 0.
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Then the variety Vπ,k is non-empty. Furthermore, it is scheme-theoretically a union of irre-
ducible components of Fk(X).

Proof Taking a = � − k, b = dim τ − �, assumptions 4, 2, 5, and 6 allow us to apply
Lemma 3.7 to produce hi j ∈ H0(Pk,OPk (δi − 1)) and h′

i j ∈ H0(Pk,OPk (δi )) such that the
map λ of Lemma 3.7 is surjective.

Let σ and σ ′ be π-faces as in assumption 3. By assumption 1, Theorem 3.1 and the
following discussion imply that there are a = � − k faces F ∈ Fσ with O(DF ) restricting
to OLσ (1), and b = dim τ − � faces F ∈ Fσ with O(DF ) restricting to OLσ (1).

By assumption 3, the map R(YA)αi−[DF ] → H0(Lσ ,OLσ (1)) for F ∈ Fσ \ Fσ ′ is
surjective, so after ordering these faceswemay lift the (hi j ) to gFi ∈ R(YA)αi−[DF ]. Likewise,
by assumption 1, the map R(YA)αi−[DF ] → H0(Lσ ,OLσ (0)) for F ∈ Fσ ′ \Fτ is surjective,
so after ordering these faces we may lift the (h′

i j ) to gFi ∈ R(YA)αi−[DF ]. We now set

gi =
∑

F∈Fσ \Fτ

yF · gFi

and consider the corresponding divisors Di and complete intersection X .
Now, ρ(gFi ) is just hi j or h′

i j for appropriate choice of index j , and our construction of

the hi j , h′
i j guarantees by Proposition 3.6 that dim H0(L,NL/X ) = φ for L = Lσ .

The non-emptyness of Vπ,k for any complete intersection of type α now follows from
Lemma 3.9 below. For the second claim, V̂π,k is scheme-theoretically a union of irreducible
components of Fk(X), since Ẑπ,k is an irreducible component of Fk(YA), and Fk(X) ⊆
Fk(YA). However, Corollary 3.2 implies that Ẑπ,k = Zπ,k , so V̂π,k = Vπ,k . ��

Recall from Sect. 2.3 the incidence scheme � of all tuples (D1, . . . , Dr , [L]) in |α1| ×
· · · × |αr | × Zπ,k such that L ⊂ D1 ∩ · · · ∩ Dr ⊆ YA. The scheme � has projections to
each component of the product (|α1| × · · · × |αr |) × Zπ,k , as seen in (4). We now provide
sufficient criteria for the projection onto |α1| × · · · × |αr | to be surjective.

Lemma 3.9 Suppose that YA is nonsingular, (††) holds, and that there is some X ⊂ YA a
complete intersection of type α and a k-plane L ⊂ X, [L] ∈ Zπ,k such that

dim H0(L,NL/X ) ≤ φ = dim� −
r∑

i=1

dim |αi |.

Then the map p1 is surjective, that is, every complete intersection of type α contains a k-plane
from Zπ,k .

Proof Let B be the image of p1; it is a closed subscheme of |α1| × · · · × |αr |. Suppose that
p1 is not surjective, that is, dim B <

∑r
i=1 dim |αi |. We consider the relative cotangent sheaf

��/B ; let U ⊂ � consist of those points x for which ��/B,x is generated by fewer than
q = dim� − dim B elements. By e.g. [18, Exercise II.5.8(a)], the setU is an open subset of
�.

For b ∈ Y , set �b = p−1
1 (b). We claim that the closed points ofU may also be described

as the set those x ∈ � such that dim T�b,x < q , where b = p1(x) and T�b,x is the tangent
space of the scheme �b at the point x . Indeed, locally

T ∗
�b,x

∼= ��b,x ⊗ O�b,x/m�b,x
∼= ��/B,x ⊗ O�,x/m�,x ,

where m�b,x and m�,x denote the maximal ideal of �b and � at x . The first isomorphism
follows from e.g. [18, Proposition II.8.7], and the second from [18, Proposition II.8.2a]. The
claim regarding U now follows from Nakayama’s lemma.
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By the hypothesis of the lemma and the interpretation of H0(L,NL/X ) as the tangent
space of the Fano scheme at a point, the set U is thus non-empty. But since U is a non-
empty open set of �, it dominates B, and it follows from our above description of U that
a general fiber �b of p1 contains a point x such that the dimension of �b at x is less than
dim� − dim B. Furthermore, since YA is nonsingular, so is Fk(YA) (Corollary 3.2), and
hence also � (Lemma 2.14). By generic smoothness ( [18, Corollary III.10.7]) the fiber �b

is smooth (and equidimensional), so its dimension is less than dim� − dim B. But this is
impossible, since it would imply dim� < (dim� − dim B) + dim B = dim�.

We conclude that p1 must have been surjective. ��
We can simplify the hypotheses of Theorem 3.8 by making slightly stronger assumptions.

Corollary 3.10 Let X ⊂ YA be a complete intersection of type α, and fix a maximal Cayley
structure π : τ → 	�. Assume that YA is nonsingular, and for each torus invariant prime
divisor P and each i = 1, . . . , r , αi and αi − [P] are basepoint free. Assume further that
φ(A, π,α, k) ≥ 0 and dim τ − 2k − r ≥ 0. Finally, assume that either δi ≥ 3 for some
i, δi ≥ 2 for at least two indices i , or � − 2k − #{i | δi = 1} ≥ 0. Then the variety Vπ,k

is non-empty. Furthermore, it is scheme-theoretically a union of irreducible components of
Fk(X).

Proof Wemust show that the hypotheses for Theorem3.8 are satisfied. The basepoint freeness
of the αi implies assumptions 1 and 2 by Lemma 2.9. Similarly, the basepoint freeness of
αi − P implies assumption 3. The remaining hypotheses for the theorem are the same as in
the corollary. ��
Corollary 3.11 Assume that the hypotheses of Theorem 3.8 or Corollary 3.10 are satisfied. If
X ⊂ YA is sufficiently general, then Vπ,k is smooth of dimension φ.

Proof Assuming the hypotheses of Theorem 3.8 or Corollary 3.10, we have in particular by
Corollary 3.2 that Zπ,k , hence � is smooth by Lemma 2.14. By Theorem 3.8 combined with
Theorem 2.13, a general fiber Vπ,k of p1 has dimension φ; by generic smoothness, it will
also be smooth. ��
Example 3.12 (BlP2 P

5) We continue the example of BlP2 P
5 from Examples 2.4, 2.10, and

2.15. The torus invariant prime divisors have classes H , E , and H −E . As mentioned before,
since H − E and H are both basepoint free, the divisor α1 = 8H − 3E is basepoint free,
and so are the divisors 7H − 3E , 8H − 4E , and 7H − 4E . For both π1 and π2 and k = 1,
the expected dimension is zero, and in both cases, dim τ − 2k − r ≥ 0. Since δ1 for the two
Cayley structures πi is equal to 5 and 3, respectively, Corollaries 3.10 and 3.11apply in both
cases. We conclude that for sufficiently general X ⊂ BlP2 P

3 of class 8H − 3E , F1(X) is
the disjoint union of Vπ1,1 and Vπ2,1, both of which are non-empty, zero-dimensional, and
smooth.

Remark 3.13 The now classical results on Fano schemes for sufficiently general hypersur-
faces and complete intersections X ⊂ P

n typically include the statement that if the expected
dimension is at least 1, and X is sufficiently general, then Fk(X) is connected, see e.g. [11,
Theorem 2.1.c]. The methods used to show this require understanding the locus of the inci-
dence variety�where the first projection p1 is smooth. In essence this is done by considering
the sequence (6) and subsequent analysis for all possible linear subspaces L ⊂ P

n . This is
possible since every linear subspace of Pn is a complete intersection. By contrast, we are
only able to carry out our analysis for the special L = Lσ , because general L ⊂ YA might
not be a complete intersection.
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4 Counting linear subspaces

In the classical setting of a degree d hypersurface X in P
n , X determines a section of the

bundle Symd S∗, whereS is the tautological subbundle on theGrassmannianGr(k+1, n+1).
The Fano scheme Fk(X) is the zero locus in Gr(k + 1, n + 1) of this section. In particular,
if Fk(X) has the expected dimension, then its class in the Chow ring of the Grassmannian is
just the top Chern class of Symd S∗. This allows one to count for example the 27 lines on
a cubic surface and 2875 lines on a quintic threefold using intersection theory. See e.g. [12,
Proposition 6.4] for details.

Here, we adapt this approach to our setting. As before, X will be a complete intersection
of type α in the toric variety YA. We fix a maximal Cayley structure π : τ → 	�. We will
be interested in Vπ,k ⊆ Fk(X).

Set

Aπ = {u0 + . . . + u� ∈ M | ui ∈ π−1(ei ) ∩ τ }.

The variety Zπ = Zπ,�, considered in its reduced structure, is the projective toric variety
YAπ [22, Theorem 6.2]. The natural torus acting on Zπ is the torus Tπ whose character lattice
Mπ is generated by differences of elements of Aπ .

In what follows, we will encode a number of globally generated line bundles Li on Zπ

by giving a subset Gi ⊂ Mπ such that as w ranges over the elements of Gi , χw are the local
generators of Li . Since the bundles Li are globally generated, they are already determined
by the set Gi : for any open U ⊂ Zπ ,

Li (U ) = OZπ (U ) · {χw | w ∈ Gi } ⊂ K(Zπ ). (12)

Remark 4.1 Given an arbitrary set Gi ⊂ Mπ , there is no a priori guarantee that the sheaf
defined in (12) is invertible. However, by starting with a globally generated line bundle and
taking Gi to be the characters corresponding to its global generators, we see a postiori that
the sheaves we describe in Proposition 4.2 below are indeed line bundles on Zπ .

Fix a π-face σ = {v0, . . . , v�} of τ , with π(vi ) = ei . Set

Gi = π−1(ei ) − vi ⊂ Mπ . (13)

Proposition 4.2 The universal bundle E of � + 1-planes in K
#A whose projectivization is

contained in YA is the direct sum of line bundles

E =
�⊕

i=0

L∗
i , (14)

where each Li is the line bundle on YAπ globally generated by the sections {χw | w ∈ Gi }
for Gi as defined in (13).

Proof Let n + 1 = #A. On the chart Uσ of Zπ containing the torus fixed point [Lσ ] cor-
responding to σ , the family of � + 1-planes in K

n+1 parametrized by Zπ is given by the
rowspan of
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π(u) = e0 π(u) = e1 · · · π(u) = e� u /∈ τ⎛
⎜⎜⎝

⎞
⎟⎟⎠

χu−v0 0 0 0
0 χu−v1 0 0
...

. . .
...

0 0 χu−v� 0

(see [22, Sect. 4]). From the structure of this matrix, it is apparent that on Uσ , the universal
bundle E decomposes as a direct sum of line bundles L∗

i , corresponding to the rows of the
matrix. By varying σ , we see that the above decomposition glues to give a global decompo-
sition of E as a direct sum of line bundles. Each row of the above matrix gives a subbundle
of On+1

Zπ
, so dually we obtain a surjection On+1

Zπ
→ Li , and Li is globally generated.

We have now seen that E splits as a direct sum of globally generated line bundles Li . It
remains to describe these bundlesLi . Fix an index i . Since for u ∈ π−1(ei ),χu−vi is a rational
function on Zπ , the i th row of the above matrix gives a rational section s of L∗

i (which is
regular onUσ ). This rational section identifiesL∗

i (and henceLi ) as a subsheaf ofK(Zπ ), the
sheaf of rational functions on Zπ . Restricting toUσ , we haveOUσ → (L∗

i )|Uσ → On+1
Uσ

, with
the first map given by the section s, and the second obtained by viewing L∗

i as a subbundle of
On+1

Uσ
. Taking the dual of OUσ → (L∗

i )|Uσ → On+1
Uσ

, we obtain On+1
Uσ

→ OUσ . Viewing Li

as a subsheaf of K(Zπ ), the generators of Li are exactly the coordinates of s, that is, χu−vi

for u ∈ π−1(ei ). ��
Remark 4.3 By choosing a different π -face, we will obtain isomorphic line bundlesLi , albeit
with a different Tπ -linearization.

Lemma 4.4 Assume that YA is nonsingular. Then the semigroup generated by the set {w −
v j | w ∈ π−1(e j )} is independent of j = 0, . . . , �.

Proof We adapt arguments from [22, Proof of Theorem 7.3]. Let q = dim τ . Consider-
ing the vertex v0 of A and using the smoothness of YA, we can conclude that there are
w1, . . . , wq−� ∈ τ such that

w1 − v0, . . . , wq−� − v0, v1 − v0, . . . , v� − v0

are a basis for the semigroup generated by τ − v0. We order the wi so that exactly
w1, . . . , wp ∈ π−1(e0). Here p is clearly the dimension of the convex hull of π−1(e0).

Our first claim is that p = q − �. Indeed, if not, we can extend the Cayley structure π to
π ′ : τ → 	�+1 by sending

u = v0 +
q−�∑
i=1

ai (wi − v0) +
�∑

i=1

bi (vi − v0) ∈ τ (15)

to

e0 + aq−�(e�+1 − e0) +
�∑

i=1

bi (ei − e0).

This is clearly affine, and the image certainly contains 	�+1. But by applying π to (15), we
see that

∑
i bi +

∑
i>p ai ≤ 1, hence the image equals exactly 	�+1. The construction of π ′

contradicts the maximality of π : τ → 	�, so henceforth we assume that all wi ∈ π−1(e0).
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We now consider u ∈ π−1(e j ). Then by writing u uniquely as in Equation (15) and
applying π again in this case, we see that bi = δi j . We can then conclude that every element
of π−1(e j )−v j is in the semigroup generated by π−1(e0)−v0. Reversing the roles of 0 and
j , we obtain the claim of the lemma. ��
Theorem 4.5 Assume that YA is nonsingular and all δi ≥ 0. Let S be the tautological
subbundle on GrZπ (k + 1, E), with E as in (14). Then Vπ,k may be identified with the zero
locus of a global section of the bundle

r⊕
j=1

Symδ j S∗.

In particular, if the hypotheses of Theorem 3.8 or Corollary 3.10 hold, then the class of Vπ,k

in the Chow ring of GrZπ (k + 1, E) is

r∏
i=1

c
(
k+δi
k )

(Symδi S∗). (16)

Proof Since YA is nonsingular, so is Fk(YA) (Theorem 3.2) and Zπ,k is scheme-theoretically
a smooth irreducible component of Fk(YA). We first claim that

Zπ,k ∼= GrZπ (k + 1, E).

Indeed, there is a natural morphism

GrZπ (k + 1, E) → Zπ,k

sending (x, [W ]) ∈ Zπ × Gr(k + 1, Ex ) to [P(W )] ∈ Fk(YA). Here Ex is the fiber of the
bundle E at x , and W is a k + 1-dimensional linear space contained in Ex . This morphism is
clearly surjective.

We claim that this morphism is also injective. Indeed, we need to show that for any k-
plane L corresponding to a point of Zπ,k , there is a unique �-plane L ′ with [L ′] ∈ Zπ and
L ⊂ L ′. Assume without loss of generality that L is contained in the Plücker chart of the
Grassmannian containing the torus fixed point corresponding to a π-face {v0, . . . , vk}, with
π(vi ) = ei . The local description of Zπ,k from [22, Sect. 4] (in particular Equations 1 and 2
of loc. cit.) shows that there is indeed a unique L ′ as long as for each fixed j , the semigroup
generated by {w − v j | w ∈ π−1(e j )} contains w − v j ′ for all j ′ and w ∈ π−1(e j ′). But this
criterion now follows from Lemma 4.4.

We know Zπ,k is normal, since it is nonsingular by Corollary 3.2. It thus follows from
Zariski’s Main Theorem that the map GrZπ (k + 1, E) → Zπ,k is an isomorphism. We will
henceforth identify Zπ,k with GrZπ (k + 1, E).

We now adapt the argument from the proof of [12, Proposition 6.4]. Consider some point
y = (x, [W ]) of GrZπ (k + 1, E) as above. Fix sections g j ∈ H0(YA,O(Dj )) determining
X , where Dj is a torus invariant divisor of class α j whose support does not contain Yτ .
The fiber of Symδ j S∗ at y is H0(L,OL(δ j )) where L = P(W ). Sending (x, [W ]) to the
image of g j in H0(L,OL(δ j )) thus gives a section s j of Symδ j S∗; here we are using the
canonical isomorphisms of Remark 2.11 for the maps H0(YA,O(Dj )) → H0(L,OL (δ j )).
Combining these sections s j , we obtain the desired section s = (s j ) of

r⊕
j=1

Symδ j S∗.
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This may be seen more explicitly by working locally. First fix a torus invariant affine chart
U ′ of Zπ (corresponding to a π -face σ = {v0, . . . , v�}) and then fix a Plücker chart

U ∼= U ′ × A
(k+1)(�−k)

of the Grassmannian overU ′ (corresponding to selecting k+1 of the vi ). We assume without
loss of generality that we are on the chart obtained by choosing v0, . . . , vk , and π(vi ) = ei .
On the affine chart U ′, the bundle E trivializes, and the bundle Ok+1

U
∼= S|U ⊂ O#A

U is given
by the rows of the matrix

B =

π(u) = e0 π(u) = e1 π(u) = ek π(u) = e j , j > k u /∈ τ⎛
⎜⎜⎝

⎞
⎟⎟⎠

χu−v0 0 0 λ0 jχ
u−v j 0

0 χu−v1 0 λ1 jχ
u−v j 0

...
...

...

0 0 χu−vk λk jχ
u−v j 0

where λi j are coordinates for A(k+1)(�−k), see [22, Sect. 4]. Let b0, . . . , bk be the standard
generators of Ok+1

U ; under the isomorphism Ok+1
U

∼= S|U , they give generators for S|U .
For each j , let u j (vi ) ∈ M be such that in a neighborhood of the torus fixed point of YA

corresponding to vi , Dj = divχ−u j (vi ) as in Sect. 2.2. The Laurent polynomial g j can be
written as the product of χu j (v0) with a polynomial in χu−v0 as u ranges over the elements
of A. Substituting the uth column of (b0/b0, b1/b0, . . . , bk/b0) · B in for each χu−v0 in

b
δ j
0 · g j · χ−u j (v0) leads to a polynomial Hj (b0, . . . , bk) of degree δ j . This is the same as

substituting the uth column of (b0/bi , b1/bi , . . . , bk/bi ) · B in for χu−vi in b
δ j
i ·g j ·χ−u j (vi ).

We now come to the explicit description of s j . Viewed dually, s j is locally given as a map
Symδ j Ok+1

U → OU . This map is obtained by sending any degree δ j monomial in the bi to
its coefficient in Hj (b0, . . . , bk).

Via this description, we see that the zero locus of s is exactly the scheme Vπ,k . Indeed,
working locally on YA near the fixed point corresponding to v0, the divisor Dj + div g j is

locally cut out by f = χ−u j (v0)·g j . The condition that the above substitution ofb
δ j
0 g jχ

−u j (v0)

vanishes is exactly the condition that f vanishes on a given linear space.
Finally, if the hypotheses of Theorem3.8 orCorollary 3.10 hold, thenVπ,k has the expected

dimension, so its codimension in Zπ,k is just the rank of
⊕r

j=1 Sym
δ j S∗. Hence, the zero

locus of the section s has the correct codimension, and its class in the Chow ring is given by
the top Chern class of the bundle. This, in turn, is a product of the stated Chern classes by
the Whitney sum formula. ��
Remark 4.6 In the case that Corollary 3.11 holds and the expected dimension of Vπ,k is zero,
the number of k-planes contained in X of the type parametrized by Zπ,k is exactly equal to
the degree of (16).

Remark 4.7 Assume that YA is nonsingular. The Chow ring of GrZπ (k + 1, E), and the class
of Vπ,k , can be understood quite explicitly. Indeed, Zπ is a nonsingular toric variety; its Chow
ring is an explicit Stanley–Reisner ring, see e.g. [10, §12.5]. An explicit description of the
Chow ring of GrZπ (k + 1, E) follows from [27]. To compute the class of Vπ,k , one uses the
splitting principal andWhitney’s formula.All these computationsmaybe carried out using the
Macaulay2 [15] packages Schubert2 [14] coupled with NormalToricVarieties
[26].
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Fig. 3 Fibers of π1 for Example 4.8

Example 4.8 (BlP2 P
5) We conclude the example of BlP2 P

5 from Examples 2.4, 2.10, 2.15,
and 3.12. We first consider the Cayley structure π1. Then Zπ1,3 = P

2 with universal bundle
E1 = O(−2) ⊕ O(−1) ⊕ O(−1) ⊕ O(−1). Indeed, the fibers of π1 consist of the columns
of the following four matrices:⎛

⎜⎜⎜⎜⎝
0 0 2 0 1 1
0 2 0 1 0 1
2 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝
0 0 1
0 1 0
1 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝
0 0 1
0 1 0
1 0 0
1 1 1
0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝
0 0 1
0 1 0
1 0 0
0 0 0
1 1 1

⎞
⎟⎟⎟⎟⎠ .

After choosing vi from the first columns of the above matrices and taking (1, 0,−1, 0, 0)
and (0, 1,−1, 0, 0) as a basis of Mπ , we picture π−1(ei ) − vi in Fig. 3.

For S1 the tautological subbundle on Gr(2, E1), one computes using Schubert2 that∫
c6(Sym

5 S∗
1 ) = 77875.

i1 : loadPackage "Schubert2";
i2 : Z=projectiveBundle 2;
i3 : G=flagBundle({2},OO_Z(-1)+OO_Z(-1)+OO_Z(-1)+OO_Z(-2));
i4 : B=symmetricPower(5,dual (G.SubBundles)_1);
i5 : integral chern(rank B,B)

o5 = 77875

Thus, for sufficiently general X ⊂ BlP2 P
5, Vπ1,1 consists of 77875 isolated points.

We next consider the Cayley structure π2. Then Zπ2,2 = P
2 with universal bundle E2 =

O(−1) ⊕ O(−1) ⊕ O(−1). For S2 the tautological subbundle on Gr(2, E2), one similarly
computes that ∫

c4(Sym
3 S∗

2 ) = 189.

i1 : loadPackage "Schubert2";
i2 : Z=projectiveBundle 2;
i3 : G=flagBundle({1}, OO_Z(-1)+OO_Z(-1)+OO_Z(-1));
i4 : B=symmetricPower(3, dual (G. SubBundles)_1);
i5 : integral chern(rank B,B)

o5 = 189

Thus, for sufficiently general X ⊂ BlP2 P
5, Vπ2,1 consists of 189 isolated points. We

conclude that sufficiently general X contains precisely 78064 = 77875 + 189 lines.
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We conclude the paper with one final straightforward yet important example.

Example 4.9 (Products of projective space) We consider

YA = P
m1 × · · · × P

mq

in its Segre embedding. The corresponding set A consists of those

(u1, . . . , uq) ∈ Z
m1 ⊕ · · · ⊕ Z

mq = M

with each ui = (ui1, . . . , uimi ) satisfying ui j ≥ 0 for all j and
∑

j ui j ≤ 1. There are exactly
q maximal Cayley structures πi : A → 	�i , with �i = mi and πi the projection to the i th
factor Zmi of M (coupled with an identification of the image with 	�i ).

We consider a complete intersection X of type α = (α1, . . . , αr ). Each αi ∈ Pic(YA) is
a multidegree

αi = (αi1, . . . , αiq) ∈ Z
q

so we may view α as an r ×q matrix. For αi to be effective, all entries must be non-negative,
in which case it is already globally generated. We henceforth assume this is the case. For the
Cayley structure π j , the restriction degree of αi is δi = αi j .

For any k ≥ 1 and Cayley structure π j , the expected dimension is

φ = φ(A, π j ,α, k) =
∑
i �= j

mi + (k + 1)(m j − 1) −
r∑

i=1

(
k + αi j

k

)
.

As long as Vπ j ,k is non-empty, this gives a lower bound on its dimension. For Vπ j ,k non-empty
and X general, if φ ≥ 0 then dim Vπ j ,k = φ (Theorem 2.13).

Assume that all entries of α are greater than zero, φ ≥ 0, and r + 2k ≤ ∑
i mi . Assume

further that either some αi j ≥ 3, there are at least two αi j which are larger than one, or
r +2k ≤ m j . Then Corollaries 3.10 and 3.11apply, and we conclude that Vπ j ,k is non-empty
of the expected dimension, and is smooth if X is generic.

For the Cayley structure π j , Zπ j is just

Zπ j =
∏
i �= j

P
mi

and the universal bundle E (Proposition 4.2) is

E =
m j⊕
i=0

OZπ j
(−1, . . . ,−1).

Under our above assumptions, the class of Vπ j ,k in the Grassmann bundle Gr(k + 1, E) over
Zπ, j is

r∏
i=1

c
(
k+αi j

k )
(Symαi j S∗)

by Theorem 4.5.
Specializing to q = 2, m1 = m2 = 2, r = 1, α1 = (3, 3), and k = 1, we obtain

Example 1.1 from the introduction and all of the assumptions in this example hold. The degree
computation of 189 is exactly the same as the second degree computation in Example 4.8.
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