
SOCIAL ADAPTATION
When Software Gives Users a Voice

Raian Ali1, Carlos Solis2, Inah Omoronyia3, Mazeiar Salehie3 and Bashar Nuseibeh3,4

1 Bournemouth University, UK,2 FEXCO, Killorglin, Ireland.3 Lero - Limerick University, Ireland.4 Open University, UK

Keywords: Requirements Engineering, Requirements-Driven Adaptation, Social Adaptation

Abstract: Adaptive systems are characterized by the ability to monitor changes in their volatile world and react to
monitored changes when needed. The ultimate goal of adaptation is that users’ requirements are always
met correctly and efficiently. Adaptation is traditionallydriven by the changing state of the system internal
and its surrounding environment. Such state should be monitored and analyzed to decide upon a suitable
alternative behaviour to adopt. In this paper, we introduceanother driver for adaptation which is the users’
collective judgement on the alternative behaviors of a system. This judgmenet should be infered from the
individual users’ feedback given iteratviely during the lifetime of a system. Users’ feedback reflects their main
interest which is the validity and the quality of a system behaviour as a means to meet their requirements. We
proposesocial adaptationwhich is a specific kind of adaptation that treats users’ feedback, obtained during
the software lifetime, as a primary driver in planning and guiding adaptation. We propose a novel requirements
engineering modelling and analysis approach meant for systems adopting social adaptation. We evaluate our
approach by applying it in practice and report on the results.

1 INTRODUCTION

Self-adaptive systems are designed to autonomously
monitor and respond to changes in the operational
environment and the system’s own state (Laddaga,
1997). Each change can trigger a different response to
satisfy or maintain the satisfaction of certain require-
ments (Salehie and Tahvildari, 2009). Self-adaptive
systems have basic design properties (calledself-*).
Self-protection property means the ability to monitor
security breaches and act to prevent or recover from
their effects. Self-optimization means the ability to
monitor the resources availability and act to enhance
performance. Self-healing means the ability to mon-
itor faults that have occurred or could occur and cure
or prevent their effects. Finally, self-configuration
means the ability to monitor changes related to all of
the other properties and add, alter, or drop upon cer-
tain software entities (Murch, 2004).

Self-adaptivity is highly reliant on the system abil-
ity to autonomously monitor the drivers of adaptation
(security breaches, the available resources, faults and
errors, etc.). In (Ali et al., 2011c), we argued that
there are adaptation drivers which are unmonitorable
by relying on solely automated means. The judge-
ment of users on the validity and quality of each of
the alternative behaviours of a system, is an example
of that. Such judgement is an important driver for

adaptation which enables a system to know how the
validity and quality of its alternative behaviours are
socially evaluated. The feedback of individual users is
the main ingredient to obtain and process as a prelim-
inary step for a collective planing of adaptation. We
defineSocial Adaptationas the system autonomous
ability to analyse users’ feedback and choose upon an
alternative behaviour which is collectively shown to
be the best for meeting requirements in a context.

Obtaining and processing social feedback to sup-
port adaptation decision helps to accelerate adapta-
tion. This is particularly true for highly variable sys-
tems which incorporate a large number of alterna-
tives. For such systems, a large number of users will
be required to validate all of the system alternatives.
Establishing such validation as a design time activ-
ity which is directed by designers, as often done in
usability testing and user-centred design (Dumas and
Redish, 1999; Vredenberg et al., 2001) is highly ex-
pensive, time-consuming and hardly manageable. So-
cial adaptation allows the actual users to act as val-
idators and give feedback at runtime so that the sys-
tem can analyse the set of users’ feedback and vali-
date upon each system alternative by analysing how
it is collectively judged. This is particularly impor-
tant when there is a large space of system alternatives
already implemented and enacted and their quality
judgement is likely to change frequently over time.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/4900267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Social adaptation advocates the repetitive obtain-
ing and analysis of social feedback to keep adaptation
up-to-date. Due to the dynamic nature of the world,
which includes users trends and experience, compet-
itive technologies, and context of use, users’ judge-
ment on the system is sometimes dynamic. Thus, a
traditional one step design-time system validation and
customization might lead to judgements which are
correct but only temporarily. For example, users’ who
currently like interaction via touch screens, might dis-
like it in the future when a better interaction technol-
ogy is devised. Users’ evaluation of a system alter-
native is not static and what is shown to be valid at
certain stage of validation may become eventually in-
valid. Thus, the repetitive nature of social adaptation
allows to accommodate the volatile nature of users
judgement on a system which would not be easy to
accommodate in traditional usability testing sessions.

Requirements are the natural subject of social
feedback and, thus, social adaptation should be in the
first place a requirements-drivenadaptation. Upon the
execution of a system alternative, users will be pri-
marily concerned whether their requirements are met
correctly. Users would also care about the degree of
excellence of an execution against certain quality at-
tributes. Consequently, social feedback concerns the
validity and the quality of a system alternative as a
way to meet users’ requirement. This judgement is af-
fectable by context which, thus, has to be monitored.
The same system alternative could be judged differ-
ently when operating in different contexts. When a
contextC occurs, social adaptation analyses the feed-
back provided for each alternative when it was exe-
cuted inC and choose the alternative which is col-
lectively judged to suitC. However, as we proposed
in (Ali et al., 2010), some contexts have clear influ-
ence on the applicability and quality of systems be-
haviour regardless the users’ feedback.

In this paper, we propose social adaptation which
relies on the users’ collective judgement on the alter-
native behaviours of a system as a first-class driver for
adaptation. We discuss the foundations and motiva-
tions of social adaptation. We provide a conceptual-
ization of the main artefacts needed in a requirements
model for systems adopting social adaptation. We de-
velop analysis techniques to process social feedback
and choose upon the system alternative which is col-
lectively shown to be the most appropriate to meet a
requirement. We evaluate our approach by applying
it on a messenger system looking to convey messages
in a way collectively shown to fit a certain context.

The paper is structured as follows. In Section 2
we define and motivate and discuss main principles
of social adaptation. In Section 3 we present a set

of core modelling artefacts for social adaptation from
a requirements engineering perspective. In Section 4
we develop analysis algorithms to process social feed-
back and adapt the system at runtime. In Section 5
we evaluate our approach in practice. In Section 6 we
discuss related work and in Section 7 we present our
conclusions and future work.

2 SOCIAL ADAPTATION

Social adaptation is a specific kind of adaptation
which responds to the social collective judgement on
the correctness and efficiency of a system behaviour
in meeting users’ requirements. Social adaptation
treats social feedback as a primary driver for adap-
tation. Social feedback allows a runtime continuous
evaluation of each of the alternative behaviours of a
system. The alternative which is socially proved to
be correct and more efficient in a certain context will
be the one to apply when that context occurs. That
is, social adaptation allows for inferring the applica-
bility and the quality of each system behaviour over
a space of different contexts. In Figure 1, we outline
the loop of social adaptation where the system anal-
yses social feedback and decide upon which alterna-
tive behaviour to apply, applies it, and finally gets and
stores the feedback of the users of that operation.

Analyse and

choose alternative

Social

Feedback

Apply

alternative

Obtain and store

feedback

Figure 1: Social Adaptation Loop.

The key characteristic of social adaptation is the
incorporation of users’ perception and judgement as a
part of the system monitor. In self-adaptation, the sys-
tem has to monitor changes in its internal and opera-
tional environment autonomously. Monitored events
and states could indicate security breaches trigger-
ing a self-protecting action, or new settings of the
available resources triggering a self-optimizing ac-
tion, or faults triggering a self-healing action. In
social adaptation, the system has to monitor the so-
cial judgement about its role in meeting requirements.
Such judgements concern humans opinions and con-
clusions rather than events and states in the system
environment. In self-adaptation, the system enjoys an
autonomous ability to monitor all information which
is necessary for taking adaptation decisions which
means that the monitor is a fully automated com-
ponent. Social adaptation, on the other hand, re-
quires capturing its own kind of drivers, the users’
judgement, which is un-monitorable by relying on

solely automated means as we discussed in (Ali et al.,
2011c). Social adaptation requires a socio-technical
monitor which involves users’ perception as an inte-
gral part of the system monitor.

Social adaptation includes users in the activity of
shaping adaptation and evolving it continuously dur-
ing the lifetime of a software. Designers should plan
adaptation at design time and leave certain adaptation
decisions to be taken collaboratively by the commu-
nity of users at runtime. Users are enabled to pro-
vide their feedback and the system will analyse users
feedback and adapt accordingly. Self-adaptive sys-
tems follow an evolution rationale, which is planned
at design time, until the system apparently fails in
taking correct adaptation decisions where a mainte-
nance evolution has to take place. Social adaptation
enriches this evolution paradigm by allowing users-
driven runtime evolution. A socially-adaptive system
responds to the users feedback which is itself likely to
evolve over time, and thus the adaptation rationale it-
self evolves without the need to re-design the system.

As a running example to illustrate the rest of this
paper, we consider the case of a gallery-guide system
designed to support the visitors of an art gallery. The
system has two alternatives to convey information
about art pieces to the visitors.PDA-based system
alternative: by which the system will use the visitor’s
PDA (personal digital assistant) to explain, possibly
interactively, about an art piece.Staff-supported sys-
tem alternative: by which the system will try to find
a mentor to meet with the visitor and explain the art
piece and also facilitate the meeting. Each of the two
alternatives fits a set of different contexts. For certain
contexts, designers can not be fully certain of which
alternative (PDA-based, Staff-supported) is more ap-
propriate. As a solution, they leave this decision to
be taken by the users collectively. The system will try
these two alternatives in the different context where
designers are uncertain of their quality and validity
and get user feedback and infer the fitness between
each system alternative and a context variation. This
process should be iterative to cope with the aforemen-
tioned fact that users judgement is not static and likely
to change over time.

Users can judge and give feedback whether a sys-
tem alternative is a valid means to reach their require-
ments and its quality. We classify social feedback into
two kinds:

• System validitywhich concerns whether a certain
applied system alternative succeeds in meeting a
certain requirement in a certain context. Users are
able to give feedback using requirements-related
terms rather than software-related ones. For ex-
ample, upon executing the PDA-based system al-

ternative, a gallery visitor who is not really famil-
iar with the use of PDAs would give a feedback
as a Boolean answer saying “I could not ask for
and get information”. The visitors cannot gener-
ally explain how the complexity or simplicity of
the HCI design prevented or facilitated the role of
the system in the process of asking for and getting
information.

• System qualitywhich concerns the degree of ex-
cellence of a system alternative. For example,
a visitor who is familiar with the use of PDAs
but had to wait for a long time to meet a men-
tor, would admit the delivery of information upon
the execution of the PDA-based system alterna-
tive, i.e. the requirement is reached, but would
probably give a negative assessment of some qual-
ity attributes like “comfort” and “quick response”.

3 MODELLING REQUIREMENTS
FOR SOCIAL ADAPTATION

In the last section we discussed the definition and
motivations of social adaptation and its main charac-
teristics. It relies on users to give feedback about the
validity and the quality of each of the different sys-
tem alternatives. This feedback could be influenced
by certain contextual attributes. The ultimate goal of
social adaptation is to identify the best alternative to
adopt in each settings of contextual influencers. In
this section, we relay on our discussion in the last
section and propose a set of fundamental artefacts a
requirements models should include when designing
systems to enact social adaptation. Figure 2 shows
the metamodel of these artefacts and Figure 3 shows
an instance of it. It is worth pointing out that this
model is meant to operate on the top of established
requirements models which capture the relation be-
tween requirements, quality attributes and system al-
ternatives. It is meant to extend such requirements
models by the social feedback about this relation and
the context influence on it. We will show an example
of the application of our metamodel on a main-stream
requirements model, the goal model, in Section 5.

The central horizontal part of the metamodel of
Figure 2 captures the relation between the require-
ments and quality attributes on one side, and the space
of system alternatives one the other. Requirement
indicates an intention to reach a certain state of the
world. System Alternative is a synthesis between hu-
man and automated activities designed to meet a re-
quirement. A requirement could be reached via mul-
tiple system alternatives. Quality Attribute is a distin-

Requirement System Alternative Quality Attribute

m eant to m eet

1 1..*

quality refied by

0..*1..*

Validity I nfluencer

influences ability of

0..*

1..*
in m eeting of

1..*

0..*

Quality I nfluencer

influences excellence of

0..*

1..*
against

1..*

0..*

Context Attribute

Operation

execution of

1

0..*

Quality FeedbackValidity Feedback

evaluating

10..*

regarding

1

0..*

evaluating

1 0..*

regarding

1

0..*

Figure 2: Requirements modelling for Social Adaptation

Instance of the Model

Requirement R: visitor can ask for and get information about an art piece

System

Alternatives
S1: PDA-based (input handling, interactive presentation, video, etc.)

S2: Staff-supported (estimating time to meet, notifying staff, etc.)

Quality

Attributes
Q1: visitor is well-informed

Q2: visitor comfort

Validity

Influencers
C1: visitor’ age, C2: visitor’ technology expertise level, influence

the ability of S1 to meet R

C3: estimated time for a staff to meet visitor, C4: visitor has

companions? Influence the ability of S2 to meet R

Quality

Influencers
C1, C2, and C5: complexity of art piece information, influence the

quality of S1 with regards to Q1

C1, C2, and C6: user movement status (moving, standing, sitting),

influence the quality of S1 with regards to Q2

C7: staff expertise and C8: staff ability to speak the visitor’s native

language, influence the quality of S2 with regards to Q1

C3 and C9: existence of a free seat closed to the visitor’s location,

influence the quality of S2 with regards to Q2

Runtime Feedback Example

Operations Operation1: execution of S1. The values of its relevant context

attributes are C1= >65 years, C2=low, C5: low, C6= standing.

Operation2: execution of S2. The values of its relevant context

attributes are C3 = <5 min, C4= alone, C7= medium, C8= fair, C9= no

Validity

Feedback

Operation1.Validity_feedback= False (R is not reached)

Operation2.Validity _feedback= True (R is reached)

Quality

Feedback

Operation1. Quality_feedback is irrelevant (R was judged unreached)

Operation2.Quality_feedback(Q1)= medium

Operation2.Quality_feedback(Q2)= high

Figure 3: An instance of the model of requirements artifactsfor social adaptation shown in Figure 2

guished characteristic of the degree of excellence of a
system alternative. In our framework, these three arte-
facts and the relations between them are specified by
the designers at design time and are static and, thus,
are not subject of monitoring at runtime.

The lower part of the metamodel of Figure 2
stands for the context influence on the relation be-
tween the system alternatives on one side and the re-
quirements and quality attributes on the other. Con-
text Attribute is a distinguished characteristic of the
environment within which the system operates. Va-
lidity Influencer is a context attribute that influences
the ability of a system alternative to meet a require-
ment. Quality Influencer is a context attribute that
influences the degree of excellence of a system alter-
native with respect to a quality attribute. The context
attributes, of both categories, are specified by design-
ers at design time and monitored at runtime, i.e. the
real values are obtained and stored at runtime.

The upper part of the metamodel of Figure 2
stands for the social feedback that expresses users’
judgements about each operation of a system alter-
native. Operation is a single execution of a system al-
ternative. Validity Feedback is a Boolean judgement
given by a user concerning his evaluation whether an
operation has led to meet his requirement. Quality
Feedback is an assessment, reified by a numeric value,
given by a user concerning his evaluation of an op-
eration against a quality attribute. The social feed-
back, of both categories, is specified at design time
by designers. The value of the feedback relevant to a
specific system alternative is obtained from users and
stored at runtime after an operation of that alternative
is executed.

In this work, and to enable the analysis which we
propose in Section 4, we restrict the values of each
context attribute to belong to an enumeration speci-
fied by the analyst. For example, the visitor age could
be specified to be in{“<18”, “between 18 and 25”,
“between 25 and 65”, “>65”}. The validity feedback
is already restricted to be a Boolean value. We also re-
strict the quality feedback value to be within a range
of integers [0..n] where 0 stands for “the alternative
has very bad quality against the quality attribute q”
and n stands for “the alternative is excellent against
the quality attribute q”.

4 SOCIAL ADAPTATION
ANALYSIS

The main goal of obtaining social feedback is to sup-
port the system decision about the best alternative
to apply for reaching users’ requirements and over-

come the designers’ uncertainty about this decision
and cope with the changing trends of users and the
world over time. When the system has to meet a re-
quirement, it has to choose an alternative to apply.
The system has to assess the collective judgement of
each alternative of being a valid and a good-quality
means to meet requirements. We propose to take into
consideration basic factors that together help for in-
ferring the collective judgement on the validity and
quality of a system alternative. We emphasize here
that this set is not restricted and more research would
lead to discover yet other factors. In what follows,
we discuss our proposed factors taking examples from
Figure 3.

• Feedback value. This factor stands for the val-
ues given by the users when evaluating the va-
lidity and quality of each operation of a system
alternative. Users provide the validity feedback
by giving a Boolean answer reflecting their judge-
ment whether the operation led to reach their re-
quirements. Users evaluate the quality of each op-
eration of a system alternative against each qual-
ity attribute by giving a value within a designated
rank [0..n] where 0 means the lowest quality and
n means the highest. These values are the basic
factor in assessing the validity and the quality of a
system alternative.

• Feedback relevance. This factor stands for the
meaningfulness of each of the users’ validity and
quality feedback when assessing a system alter-
native. This relevance will be interpreted as a
weight for the feedback value which reifies the
user’ judgement of the validity and quality of a
system alternative. We consider two sub-factors
which influence the relevance:

– Feedback context. This factor stands for the
match between the context of a particular oper-
ation of a system alternative for which the feed-
back was given, and the current context where
a decision about that alternative has to be taken.
The validity of a system alternative and its qual-
ity against each quality attribute are affected by
a set of context influencers as we explained ear-
lier. The more the match between the values
of these context influencers when the feedback
was given and their values at the assessment
time, the more relevant the feedback is. For
example, suppose the system is assessing the
validity of the PDA-based system alternative
and that the current values for its validity influ-
encers are (C1: visitor’ age) = “> 65”, (C2: vis-
itor’s technology expertise level) = “low”. Sup-
pose we have two validity feedbackF1= “valid”
and F2= “invalid” and the values of contexts

for F1 andF2 areC1= “>65”, C2= “medium”,
andC1= “>65”, C2= “low”, respectively. Then
the relevance ofF2 is higher than the relevance
of F1 because more context influencers match
in F2 than in F1. Thus, and according to the
feedback context factor, the alternative will be
judged closer to “invalid” than “valid”.

– Feedback freshness. This factor stands for the
recentness of the feedback. Feedback relevance
is proportional to its freshness. That is, the
more recent the feedback is, the more mean-
ingful. There could be several ways to compute
feedback freshness. One design decision could
compute it by dividing its sequential number
by the overall number of feedback of its kind.
For example, suppose that PDA-based system
alternative got two validity feedback, the ear-
lier (with a sequential number 1)F1= “invalid”
and the later (with a sequential number 2)F2=
“valid”. Thus, and according to the feedback
freshness factor, the alternative will be judged
closer to “valid” than “invalid”.

• User’s preferences. This factor stands for the pref-
erences of a user while assessing the overall qual-
ity of a system alternative. The analysis of the
social feedback results in giving an overall assess-
ment of each system alternative against each qual-
ity attribute. However, the assessment of the over-
all quality, i.e., the aggregated quality, of a system
alternative may consider how the user appreciates
each of these quality attributes. Similarly to the
work in (Hui et al., 2003), we allow users to ex-
press their preferences by ranking the degree of
importance of each of the quality attributes. For
example, suppose that by analysing the histori-
cal quality feedback, the PDA-based alternative
quality againstQ1= “visitor is well-informed” was
assessed to 3 and againstQ2 = “visitor’s com-
fort” was assessed to 2. Suppose that the Staff-
supported alternative quality againstQ1 was as-
sessed to 2 and againstQ2 to 3. If a user appreci-
atesQ1 more thanQ2 then PDA-based alternative
overall quality will be assessed higher than that
of the Staff-supported system alternative, and vice
versa.

The algorithm Assessing Validity shown in Fig-
ure 4 computes the collective validity judgement of
a system alternative based on the validity feedback
users have provided in the past. It takes as input a
system alternatives, the set of validity influencersC
which affect the ability ofs to meet the requirement it
is designed to reach and the actual values of these in-
fluencers at the time of assessmentC.Values. It gives
as output an assessment of the validity of the state-

ment “s is a valid means to meet the requirement it
is designed for”. First, the algorithm identifies the
operationsOP of the system alternatives which got
validity feedback from users (Line 1). If the system
alternative has no validity influencers then thecon-
text matchfactor is irrelevant and the algorithm re-
turns simply the proportion of valid operations over
the overall number of operations| OP | multiplied
(weighted) by the average freshness of the operations
setOP (Lines 2-3).

When the system alternative has validity influ-
encers, the algorithm iterates for each possible par-
tial or complete match of the context validity influ-
encers at the feedback time and the assessment time
(Lines 7-17). For each combination of validity in-
fluencersCi with a cardinalityi, the algorithm iden-
tifies the set of operationsOP Ci whose validity in-
fluencers values (o.Ci .Values) match with the validity
influencers values at the assessment time (C.Values)
(Lines 9-11). The algorithm then computes the va-
lidity probability concerning the context matches of
the cardinalityi by dividing the number of valid op-
eration ofOp.Ci by | Op.Ci | (Line 12). The rele-
vance of this probability is decided by both the car-
dinality of context match (i/| C |) and the value of
the freshness factor (AvgFreshness(Op.Ci)), com-
puted as we explained earlier (Line 13). The al-
gorithm then multiplies the relevance with the com-
puted validity to get the relevant (i.e., the weighted)
validity (Line14). The algorithm then (Lines 15-
16) accumulates the relevance and the relevant va-
lidity into the variablesrelevantvalidty sum and
relevancesum(initiated at Lines 5-6). After the it-
eration goes through all partial and complete con-
text matches, the algorithm gives the overall assess-
ment by dividing therelevantvalidty sum by the
relevancesum(Line 18).

Similarly to this algorithm, we have developed the
algorithm Assessing Quality to calculate the collec-
tive judgement of the quality of a system alternative
against a quality attribute. The main difference with
regards to Assessing Validity algorithm is the consid-
eration of quality feedback of only the operations with
positive validity feedback as negative validity feed-
back makes any quality feedback irrelevant. More-
over, Assessing Quality deals with the average value
of the quality feedback provided for an alternative
against a quality attribute. Assessing the overall qual-
ity of an alternative considers also the users’ prefer-
ences expressed via ranking the importance of each
quality attributes. For the limitation of space, we have
not included neither this algorithm nor the examples
which explains both algorithms. For details, please
see our technical report (Ali et al., 2011b).

��������	��������	��������	��������	
��������������������
��������������������
������������
�����	�����������
�������������������������
������������������������������������
�������������������������������
������ ���������������!��"��	���������������
#�����#�����#�����#�����
������������������������������ �
1. #$
!����%���#�����������������������������&��'��
2. ���(�(�!�)������
3. *+,-*.����/0��������#$ �1���(������#$������������/��&��'!�2�����"�(�3�(#$(�
4. +���
5. ������/��������/��	
!�)�
6. ������/��	
!�)�
7. 0�����!�4����(�(�5���
8. ����#$/���
!�6�
9. ����0�����������%��7������(��(!���
10. �������#$/���!�#$/���-�������#�8�+9���:������������������������ ��
11. ����+��0���
12. ������������/��
!�(������#$/��8�����������/��&��'!�2�����"�(�3�(�#$���(�
13. ����������/�����
!����3�(�(�;����/0�������#$��� 37�
14. ����������/��������/���
!�������/������1���������/���
15. ����������/�������/��	
!�������/��������/��	�;�������/��������/���
16. ����������/��	
!�������/��	�;�������/����
17. +��0���
18. *+,-*.�������/��������/��	3������/��	�
19. +�����

Figure 4: Assessing Validity Algorithm

5 EVALUATION

To evaluate our framework, we have organized
a lab session and invited 5 researchers specialized
in requirements engineering and their research is in
the area of requirements-driven adaptive systems en-
gineering. We have explained our design principles
of modelling requirements for socially-adaptive sys-
tems. We then explained the scenario of an adaptive
messenger system which is able to deliver messages
in different ways and asked the participants to draw
a goal model, namely Tropos goal model (Bresciani
et al., 2004), presenting its requirements together with
the validity influencers (on the decompositions and
means-end) and the quality influencers on the contri-
bution links between any goal/task and a set of soft-
goals which evaluates all alternatives (please refer to
our report in (Ali et al., 2011b) for more details). The
left part of Figure 5 shows a goal model built during
the session; in the other part we extract one alternative
and show its validity and quality influencers.

The main issues which were raised by the partici-
pants concerned the following.Context monitorabil-
ity: besides the validity and quality judgement, the
values of certain context attributes might not be mon-
itorable by relying solely on automated means and
may require users to act as monitors.Quality and con-
text attributes identification: users should be given the
chance to define extra quality and context attributes
which were not considered by the designers.Context

influence (un)certainty: the design should also con-
sider that some context influences are already known
and our approach should accommodate both certain
and uncertain context influences.Runtime evolu-
tion of the requirements model: the analysis should
be enriched to also decide parts of the model which
should be removed when collectively proved to be in-
valid or having very low quality and also help the an-
alyst by indicating loci in the model where an evolu-
tion should take place.Feedback relevance: we need
mechanisms to exclude feedback which are not signif-
icant or inconsistent taking into consideration several
factors like the user’ history and pattern of use. We
need to handle these limitations of our approach to
maximize its applicability and operations and broaden
and optimize its automated analysis.

To evaluate the social adaptation analysis pro-
posed in Section 4, we have asked 15 users to pro-
vide validity and quality feedback about 6 alternatives
of a prototype messenger in 3 different contexts. For
the quality feedback we have considered 2 quality at-
tributes (Q1: less distraction,Q2: less effort). Then
we have run the validity and the quality assessment
analysis for the different alternatives in the different
contexts taking as input the set of obtained users’
feedback. Then, we have surveyed a set of 3 other
users (testing users) and compared their feedback to
the collective judgements obtained by running the va-
lidity and quality analysis algorithms.

Handle incoming
messages

Instant
messaging

Offline
messaging

OR

Notify about
newmessage Displaymessage

AND

Reply to
message

Popup alert +
sound alert

Sound
alert only

Popup
alert only

C1
C2

C1
C2

C3
C4 C3

C4

Less distraction

C3
C4 C3

C4

Automati
c Interactive

OR

Visual
window

Translate
text to sound User clicks

onmessages
box

User presses
shortcut
bottons

Voice
message

Typed
message

Message
readability

Less
distraction

C3
C5

C3
C5

C4
C5

C4

Less effort
C4C4

Less effort

C4C4

Forward
to email

C4 C3

Handle incoming
messages

Instant
messaging

Notify about
newmessage

Display
message

AND
Reply to
message

Sound
alert only

C1
C2

C3

Less
distraction

C3

Automatic

Visual
window

Voice
message

Message
readability

Less
distraction

C4
C5 C4

Less
effort

C4

C4

C1= Involved in other communication?

C2= Urgent message?

C3= Listening to audio?

C4= Currently editing?

C5= Long message?

Validity influencers: C1, C2, C3, C4

Quality influencers on

Less distraction: {C3, C4, C5}

Message readability: {C4}

Less effort: {C4}

Figure 5: A goal model (left) and an alternative of it with quality and validity influencers (right)

To evaluate the validity assessment analysis, we
have considered 3 alternatives and 3 different contexts
where the validity assessment algorithm has given
high probability for validity (>85 %). We have asked
the 3 users to provide their validity feedback (thus 27
feedback were provided in total) and out of which 23
feedback had the value “valid” and 4 had the value
“invalid”. This shows a good match between the col-
lective validity judgement of the 15 initial users, com-
puted by the validity assessment algorithm, and the
judgement of each of the testing users. It is worth
pointing out that the consensus of users about the va-
lidity is more likely to be achieved than the quality
due to the nature of the decision about validity which
has a clear-cut criteria to be judged upon.

To evaluate the quality assessment analysis, we
have considered 3 other alternatives and 3 different
contexts and asked the 3 testing users to provide the
quality feedback of each alternative in each of the
contexts againstQ1 andQ2. Table 1, show the ranking
of the automated analysis assessment and the testing
users assessment of the 3 different messenger system
alternatives (A1, A2, A3) against the quality attribute
Q1: “Less Distraction” (LD), in 3 different contexts
(C1, C2, C3). The acronym “Sys” stands for the as-
sessment given by the algorithm Assess Quality and
Ui stand for each testing user. For example, and tak-
ing the first data column, the automated analysis of
the users’ feedback to obtain the quality assessment
of A1, A2, andA3 alternatives against the quality at-
tribute “Less Distraction” (LD) within the contextC1
indicated thatA2 has the best quality, andA1 has the
second andA3 has the lowest quality. The ranking
the automated analysis gave in this case, matched the
ranking made based on the quality assessment each
testing user gave. In the contextC2, the userU2

gave a ranking different from the one given by the
automated analysis and we highlight the mismatch-
ing results. The same forU2 andU3 for the context
C3. As shown in the table, the matching between the
collective quality judgement computed by the quality
assessment algorithm and the testing users feedback
was good enough (21 out of 27). For the quality at-
tributeQ2= “Less Effort”, the number of matches be-
tween the automated collective judgement and testing
users was also good (18 matches out of 27 compar-
isons).

There are several threats to validity concerning
our evaluation. The first threat concerns the small size
scenario which we used (the messenger system) and
the relatively small number of participants who gave
feedback. Larger scale experiment would maximize
the credibility of our results. The second is the kind of
practitioners who modelled the scenario who already
had a good expertise in requirements modelling and
self-adaptive systems. Communicating our princi-
ples and guidelines to novice practitioners might raise
other concerns related to the practitioners understand-
ability and acceptability of our framework. The third
is the relatively short period of time for getting feed-
back which makes it hard to evaluate certain things
such as the evolution of social trends. The fourth is
that our users committed to provide feedback which
might not be the case with real users. Thus, we still
need to study users’ acceptance of our approach.

6 RELATED WORK

There are several research areas highly related to So-
cial Adaptation. We are mainly concerned about
addressing challenges in the research in software-

Q1 : C1 C2 C3
LD Sys U1 U2 U3 Sys U1 U2 U3 Sys U1 U2 U3

A1 2 2 2 2 2 2 1 2 2 2 2 2
A2 1 1 1 1 1 1 2 1 1 1 3 3
A3 3 3 3 3 3 3 3 3 3 3 1 1

Table 1: For each context, the rank of the different alternatives (mismatches are in bold font)

engineering for adaptive systems and, particularly,
requirements-driven adaptation. Our proposed ap-
proach enriches requirement-driven adaptation re-
search by a systematic approach to incorporate users’
collective judgement of systems behaviours, per-
ceived as means to meet requirements, as a primary
adaptation driver. This helps for a more holistic adap-
tation which overcomes the limitation of automated
means to judge if requirements (functional and non-
functional) are being met (Ali et al., 2011c). It also al-
lows for reflecting the collective voice of users’ rather
than relying on designers’ judgements which could
be, or eventually become, invalid (Ali et al., 2011a).
This systematic approach is inline with an increasing
trend to involve users in the adaptation loop (Cheng
et al., 2008). We concretely position users as feed-
back providers and specify their feedback structure
and provide mechanisms to process it and assess the
collective judgement of system behaviours.

The seminal work of (Fickas and Feather, 1995)
highlights the importance of requirements monitoring
at runtime as a basic and essential step for planning
and enacting adaptation. This is a fundamental prin-
ciple of our approach. Cheng et al. note that in re-
quirement models uncertainty have not been explic-
itly addressed in traditional requirements engineer-
ing (Cheng et al., 2008). We address uncertainty by
involving users in evaluating the system alternatives
against their capability to meet requirements so that
certainty is achieved based on the perception of users
regarding the actual operation. In (Silva Souza et al.,
2011) the authors note that the (partial) un-fulfilment
of requirements triggers adaptation. They introduce
awareness requirements to refer to success, failure,
performance and other properties of software require-
ments (i.e. meta-requirements) and propose that the
system should monitor changes in these properties
and decide upon when and what adaptation should
take place. We argued that certain information can
not be monitored by the system and require an ex-
plicit users’ intervention via feedback and provided a
systematic way to realize that.

The work in (Baresi et al., 2010) proposes FLAGS
(Fuzzy Live Adaptive Goals for Self-adaptive sys-
tems) for requirements-driven adaptation at runtime.
FLAGS extends goal models mainly with adaptive
goals which incorporate countermeasures for adap-

tation. When goals are not achieved by the current
course of execution, adaptation countermeasures are
triggered. This approach can be potentially integrated
with ours so that when social collective judgement
indicates some failures, a certain adaptation goals
should be activated. The work in (Qureshi and Perini,
2010) emphasizes on flexibility of requirements re-
finement and provide a method that supports the run-
time refinement of requirements artifacts as a repet-
itive activity performed collaboratively between the
users and the application itself. We plan to benefit
from this approach to incorporate users in the mod-
elling process at runtime and not only the judgement
of the system different behaviours.

7 CONCLUSIONS

Adaptation is a demand to maintain the valid-
ity and quality of software over time. Adaptation is
driven by certain categories of changes in the system
internal state and its operational environment (secu-
rity breaches, faults and errors, available resources,
context, etc.). We advocated another driver for adap-
tation; the collective judgement of users on the al-
ternative behaviours of a system. We proposed so-
cial adaptation to refer to the repetitive process of
analysing it to choose upon the behaviour which is
collectively judged to best fit a certain context. The
main ingredient to get the collective judgement is the
feedback of individual users. Feedback reflects users’
main interest which is the validity and quality of a be-
haviour in meeting requirements. Feedback is influ-
enced by certain contextual attributes which should
be monitored when obtaining the users feedback. We
have proposed and tested analysis mechanisms to in-
fer the collective judgement on the validity and qual-
ity of different alternatives of a messenger system and
discussed the results. We have also reported sev-
eral observations on modelling requirements for so-
cial adaptation and presented them as research chal-
lenges to face.

Social adaptation is meant to enrich self-
adaptation by accommodating users perception as a
part of the system computation and their collective
judgement as an adaptation driver. Our inspiring prin-

ciple is the wisdom-of-crowds (Surowiecki, 2005)
which keeps the door open for decisions formulated
collectively by users. The power of the crowd is not
easy to manage and social adaptation would work
when users are wiling to collaborate with the system
and moreover when the system already has imple-
mented different alternatives and is running them. So-
cial adaptation helps the system to tune the distribu-
tion of its alternative behaviours over the space of the
different contexts of use. Social adaptation does not
replace personalization; it only helps to know the col-
lective judgement of users which is specifically use-
ful for novice users as a recommendation system. It
also helps developers to know what improvement and
maintenance to do during the software lifetime.

As a future work, we are going to address the
research challenges which we listed in Section 5.
Mainly, we plan to enrich our modelling framework
to capture constructs supporting a better judgement
of the relevance of a feedback like the pattern of use
and the learning history of a user. We also need to
devise techniques to involve users in collectively tak-
ing harder decisions at runtime such as altering the
requirements model itself by adding (removing) re-
quirements, context and quality attributes. However,
our main challenge is to find ways for balancing be-
tween users effort and computing transparency which
is the essence of adaptive systems. We also need to
work on incentives such as rewarding active users as
a part of the social adaptation engineering. We need
to further validate our approach on more complex sys-
tems and settings and develop a CASE tool to better
facilitate social adaptation modelling and analysis.

ACKNOWLEDGEMENTS

This work was supported, in part, by Science Foun-
dation Ireland grant 10/CE/I1855 to Lero - the Irish
Software Engineering Research Centre (www.lero.ie)
and by the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grants no 258109
(FastFix).

REFERENCES

Ali, R., Dalpiaz, F., and Giorgini, P. (2010). A goal-based
framework for contextual requirements modeling and
analysis.Requir. Eng., 15:439–458.

Ali, R., Dalpiaz, F., Giorgini, P., and Souza, V. E. S.
(2011a). Requirements evolution: from assumptions
to reality. In the 16th International Conference on
Exploring Modeling Methods in Systems Analysis and
Design (EMMSAD 11).

Ali, R., Solis, C., Omoronyia, I., Salehie, M., and Nuseibeh,
B. (2011b). Social adaptation: When software gives
users a voice. Technical Report Lero-TR-2011-05,
Lero. University of Limerick. Ireland.

Ali, R., Solis, C., Salehie, M., Omoronyia, I., Nuseibeh,
B., and Maalej, W. (2011c). Social sensing: when
users become monitors. InProceedings of the Euro-
pean Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE ’11, pages 476–479. ACM.

Baresi, L., Pasquale, L., and Spoletini, P. (2010). Fuzzy
goals for requirements-driven adaptation. InProceed-
ings of the 2010 18th IEEE International Require-
ments Engineering Conference, RE ’10, pages 125–
134.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and
Mylopoulos, J. (2004). Tropos: An agent-oriented
software development methodology.Autonomous
Agents and Multi-Agent Systems, 8(3):203–236.

Cheng, B. H. C., Giese, H., Inverardi, P., Magee, J., and
de Lemos, R. (2008). Software engineering for self-
adaptive systems: A research road map. InSoftware
Engineering for Self-Adaptive Systems, pages 1–26.

Dumas, J. S. and Redish, J. C. (1999).A Practical Guide
to Usability Testing. Intellect Books, Exeter, UK, UK,
1st edition.

Fickas, S. and Feather, M. S. (1995). Requirements moni-
toring in dynamic environments. InProceedings of the
Second IEEE International Symposium on Require-
ments Engineering, RE’95.

Hui, B., Liaskos, S., and Mylopoulos, J. (2003). Require-
ments analysis for customizable software goals-skills-
preferences framework. InProceedings of the 11th
IEEE International Conference on Requirements En-
gineering, pages 117–126.

Laddaga, R. (1997). Self-adaptive software. Technical Re-
port 98-12, DARPA BAA.

Murch, R. (2004).Autonomic computing. IBM Press.
Qureshi, N. A. and Perini, A. (2010). Requirements en-

gineering for adaptive service based applications. In
Proceedings of the 2010 18th IEEE International Re-
quirements Engineering Conference, RE ’10, pages
108–111.

Salehie, M. and Tahvildari, L. (2009). Self-adaptive soft-
ware: Landscape and research challenges.ACM
Transactions on Autonomous and Adaptive Systems,
4:14:1–14:42.

Silva Souza, V. E., Lapouchnian, A., Robinson, W. N., and
Mylopoulos, J. (2011). Awareness requirements for
adaptive systems. InProceeding of the 6th interna-
tional symposium on Software engineering for adap-
tive and self-managing systems, SEAMS’11, pages
60–69. ACM.

Surowiecki, J. (2005).The Wisdom of Crowds. Anchor.
Vredenberg, K., Isensee, S., and Righi, C. (2001).User-

Centered Design: An Integrated Approach. Prentice
Hall PTR.

