
Aligning Software Configuration
with Business and IT Context

Fabiano Dalpiaz1, Raian Ali2, and Paolo Giorgini1

1 University of Trento, Italy
{dalpiaz, paolo.giorgini}@disi.unitn.it

2 University of Bournemouth, United Kingdom
rali@bournemouth.ac.uk

Abstract. An important activity to maximize Business/IT alignment
is selecting a software configuration that fits a given context. Feature
models represent the space of software configurations in terms of distin-
guished characteristics (features). However, they fall short in represent-
ing the effect of context on the adoptability and operability of features
and, thus, of configurations. Capturing this effect helps to minimize the
dependency on analysts and domain experts when deriving a software for
a given business and IT environment. In this paper, we propose contex-
tual feature models as a means to explicitly represent and reason about
the interplay between the variability of both features and context. We
devise a formal framework and automated analyses which enable to sys-
tematically derive products aligned with an organizational context. We
also propose FM-Context, a support tool for modeling and analysis.

Keywords: Variability, Product Lines, Business/IT Alignment

1 Introduction

Business/IT (B/I) alignment concerns the effective usage of Information Tech-
nology (IT) in a business environment [9]. Homogenizing software with the busi-
ness and technical context of an organization is a major B/I alignment challenge
which requires a joint effort of business managers and IT administrators. This
task is particularly difficult due to cultural differences between the involved ac-
tors (the so-called B/I gap [14]) and the evident—though fuzzy—mutual impact
between IT and business aspects. A main challenge for information systems engi-
neering is to bridge this gap minimizing mismatches and maximizing alignment.

Software product lines [3] and feature models [10] are a development paradigm
and a modeling notation that support the configuration of software products
from reusable assets. A product is generated for each organization depending on
its business and IT profile. Existing configuration approaches, e.g., [11, 5], pro-
vide limited automated support to achieve B/I alignment. Thus, they heavily
rely on the skills of analysts and domain experts. This calls for the development
of systematic approaches and CASE tools to identify a configuration that fits an
organizational context both at the business and IT level.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/4900264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The contribution of this paper is a modeling and analysis framework which
enables the configuration of a software aligned with an organizational context.
We propose Contextual Feature Models (CFMs), which extend traditional fea-
ture models with the concept of context. This enables minimizing the efforts of
domain experts when configuring a product to a specific environment: CFMs
express how the organizational context affects the inclusion/exclusion and the
applicability of features. We distinguish between two types of context:

– Business context concerns the organizational characteristics of an enterprise
and helps to determine whether a feature is required or advisable. For in-
stance, a feature like “LDAP server” may be advisable in a business context
where “the company has multiple branches”;

– Technical context concerns the technical infrastructure required to opera-
tionalize a feature. For example, a feature “bug tracking system” may require
a technical contexts “MySql” and “PHP v≥5” to be successfully deployed.

We develop automated analysis techniques to examine the interplay between
features and context. Our techniques enable maximizing B/I alignment, as they
support the selection of a configuration that fits well with a given environment:

– Configurations: given an organizational environment, in terms of technical
and business contexts, we identify possible software configurations. Among
these configurations, the analyst can select the best-quality one;

– Business-to-IT alignment: we identify an IT infrastructure that supports
all software configurations fitting with a given business context, as well as
the minimal IT technical requirements to support the business context;

– IT-to-Business alignment: given an IT infrastructure, described in terms
of technical contexts, we identify the business contexts that support such
infrastructure. This analysis serves to compare candidate IT infrastructures
so to maximize the support of the business contexts the client cares about.

We also develop FM-Context, an Eclipse-based CASE tool which allows for
drawing CFMs and implements our analysis techniques on top of a Datalog
solver. We illustrate our framework using the following scenario.

Motivating scenario. Drupal3 is an open-source content management system
with wide industrial adoption. Several web development companies base their
products upon a Drupal-based product line (over 13.000 modules are available for
use). The challenge is about identifying a configuration of Drupal which is aligned
with the business and technical context of a client organization. We model Drupal
configurations in a CFM, and illustrate how our automated analyses support the
derivation of a configuration highly aligned with an organizational context. �

The paper is structured as follows. Sec. 2 introduces CFMs and applies them
to the Drupal scenario. Sec. 3 describes a formal framework for CFMs and
presents automated analysis techniques built on top of it. Sec. 4 details FM-
Context and reports on preliminary scalability results. Sec. 5 presents related
work, while Sec. 6 draws our conclusions and presents future directions.

3 www.drupal.org

2 Contextual Feature Models (CFMs)

Feature models are a compact and intuitive modeling language to represent
variability—the existence of multiple configurations—in software product lines.
Many features, however, are not always applicable or advisable: they are context-
dependent. A feature may be advisable only in a business context: “semantic
search engine” could be advisable only in business context “the customer has a
vast catalog”. A feature may be applicable only in a technical context: “role-based
access control” could require technical context “mysql v≥5”. Such constraints
apply to configurations too, as a configuration is a set of features.

Existing feature modeling approaches pay no or limited attention (see Sec. 5)
to the interplay between features and context. Most approaches rely on the ana-
lyst’s expertise or on informal communication with stakeholders and, thus, make
B/I alignment hard to achieve. To address these shortcomings, we introduce
contextual feature models, which explicitly represent the effect of business and
technical contexts on features and configurations.

There is an active discussion concerning the structure of feature models (e.g.
graph vs. tree), and the semantics of a feature (e.g. is a feature user-visible?) [15].
Our focus in this paper is to demonstrate the importance of weaving context
together with features and, consequently, with configurations variability. There-
fore, we adopt a fairly simple structure of feature model and add context to it.
Our notation can, however, be extended to support more expressive relations
between features, e.g. cardinality constraints over features [6].

Fig. 1. Meta-model of contextual feature models

The meta-model of CFMs is shown in the class diagram of Fig. 1. A Feature is
an abstract class with two concrete manifestations: (i) a decomposed feature Dec
feature is further decomposed into sub-features, and is not directly implemented;
(ii) a Leaf feature is directly implemented and is a leaf in a feature tree.

Features are hierarchically structured via Decomposition relations. A decom-
posed feature f has exactly one decomposition, which has a type (Dec type): (i)
and : all sub-features shall be selected to select f; (ii) xor : exactly one sub-feature;
(iii) or : at least one sub-feature. In addition to their hierarchical decomposition,
features can be connected via two additional relationships. The requires relation
says that the inclusion of a feature mandates the inclusion of another feature.
The excludes relation is used to represent mutual exclusion between two features.

Unlike non-contextual feature models, each branch of a decomposition can
be constrained by a business context (Bus context). A business context refers
to social, business, or organizational characteristics of the deployment environ-
ment. Some examples are: “the company is a small enterprise”, “the company
has branches in different countries”, “customers speak different languages”, and

“the revenue trend is negative”. Business contexts define the information to be
acquired to decide if a certain sub-feature is advisable or required. Business con-
texts do not include technical prerequisites (those are technical contexts). The
effect of business context on a sub-feature depends on the decomposition type:

– and : the sub-feature is required when the context holds;
– or/xor : the sub-feature is selectable only when the context holds.

Business contexts could be communicated as high-level statements whose
validity is hard to judge objectively. For instance, the validity of bc1= “the
company has an international profile” cannot be judged in an objective way:
what exactly makes a company profile international? Thus, a business context
would need refinement to a formula of objectively observable facts that reifies it.
This is essential to avoid misleading judgments of business contexts. For example,
while two analysts might give two different answers about bc1, they would give
the same judgment if we refine bc1 to a formula of observable facts such as
fact1 ∨ fact2 where fact1= “the company has branches in different countries”
and fact2= “the company has employees from different countries“. We adapt our
previous work on context analysis [1] to analyze business contexts and ultimately
identify a formula of observable facts. Accordingly, we define context as a formula
of contextual predicates (Ctx predicate) of statements and facts: statements are
hierarchically refinable to formulae of facts which support their evidence:

– Statement: it is a contextual predicate which is not observable per se;
– Fact: it is a contextual predicate which is observable per se.

Leaf features are implemented features and can be associated with a technical
context (Tech context). Technical contexts specify technical prerequisites for an
implemented feature. If not met, they inhibit the operationalization of a leaf
feature. Unlike business ones, technical contexts need no context analysis, as the
development team of an implemented feature knows—and typically documents—
its technical prerequisites. For instance, a technical context for a web-based text
editor may be using the Internet Explorer browser. We characterize a technical
context by attributes min and max, which specify the range of admitted values.
For instance, given the Internet Explorer context, min and max may refer to its
version: (min = 6, max = ∞) indicates that the feature requires a version equal
to or greater than 6; (min = 6, max = 8) a version between 6 and 8; and (min
= 0, max = ∞) no version constraints.

Fig. 2 shows a partial CFM for the Drupal scenario presented in Sec. 1. We
focus on features related to content management, i.e. how users can create and
modify different types of web pages. To illustrate our approach using a small
model, we introduce some features which are not currently available in Drupal.

Fig. 2. Contextual feature model for the Drupal scenario

The root feature content management—a sub-feature in the complete CFM
for Drupal—is and-decomposed to three sub-features: content editor to create and
modify web pages, content search to search information, and cck (content con-
struction kit) to enable the creation of custom content. cck is context-dependent,
as it is required only when business context bc1 holds. The context analysis for
bc1 says that custom content is needed if the website has at least ten editors
(fact), or the customer has a large business (statement). In turn, large business
is and-supported if there are multiple branches and branches are autonomous
(there is no organizational policy on how each branch creates content).

The feature content editor is xor-decomposed: only one content editor can
be in a configuration. The drupal content editor has no technical contexts, while
other editors have prerequisites. For example, word online editor requires internet
explorer v≥7; ckeditor requires firefox (v≥3), internet explorer (v≥6), and the
ckeditor binaries. In the sub-tree rooted by content search, the features google
search and semantic search are mutually exclusive (excludes relation). The fea-
ture semantic search needs technical contexts php (v≥5) and arcdfstore, as well
as the selection of feature cck (requires relation). Due to space limitations, busi-
ness contexts bc3, bc4, and bc5 are not analyzed in Fig. 2. Context bc3 stands
for “basic visual editing is needed”, bc4 indicates “advanced visual editing is
needed”, and bc5 means “customer has a large products catalog”.

3 Reasoning about B/I Alignment with CFMs

We devise the formal framework to represent CFMs (Sec. 3.1) and then we detail
and illustrate the proposed techniques that help maximizing B/I alignment in
feature-oriented software configuration (Sec. 3.2).

3.1 Formal framework

We rely upon the following assumptions: (i) every feature decomposition is con-
textual, and such context may be trivially true; (ii) we refer to a single contextual
feature modelM: in the following, all features, contexts, and relations are part of
M; (iii) a business context BC is defined as a set of facts {fact1, . . . , factm} that
hold; (iv) a technical context TC={tc1, . . . , tcq} is a set of technical contexts
〈tcname, min, max〉; and (v) excludes is a symmetric relation.

A configuration CFG forM is a set of features that are aligned with the busi-
ness context (they are adequate to the deployment business environment), with
the technical context (the technical infrastructure enables their deployment),
and, together, support the root feature of M.

Definition 1 (Configuration). Given BC and TC, a set of features {f1, . . . ,fn}
is a configuration CFG for M with respect to BC and TC, formally CFG `BC,TC
M, if and only if root(M)∈ CFG and (1-4) hold ∀f’∈ CFG:

1. dec(f’, D={〈f1, bc1〉, . . . , 〈fn, bcn〉}, type) →
@ 〈fj , bcj〉 ∈ D : ¬support(BC, bcj) ∧ fj ∈ CFG, and

– type=and: (∃ 1≤k≤n : fk ∈ CFG) ∧ (∀ 〈fi, bci〉 ∈ D : support(BC, bci) →
fi ∈ CFG)

– type=or: ∃ 〈fi, bci〉 ∈ D : support(BC, bci) ∧ fi ∈ CFG

– type=xor: ∃ !〈fi, bci〉 ∈ D : support(BC, bci) ∧ fi ∈ CFG

2. ∀f” : requires(f’, f”) → f”∈ CFG

3. ∀f” : excludes(f’, f”) → f”/∈ CFG

4. is-leaf(f’) → ∀ 〈tcname, min, max〉 ∈ techctx(f’)
∃ 〈tcname, min’, max’〉 ∈ TC : min’≥min ∧ max’≤max �

In other words, CFG is a configuration if it includes the root feature and:
(1) if a feature is decomposed, no sub-feature whose business context is not
supported is in CFG and, depending on the decomposition type and on the
contexts supported by BC, one or more sub-features are in CFG; (2) for any
feature f’ in CFG, all its required features are in CFG too; (3) if f’ is in CFG,
all mutually exclusive features are not in CFG; and (4) the technical contexts
of leaf features are compatible with TC. The predicate support is defined in our
previous work [1] and, roughly, returns true if the formula (fact1 ∧ . . .∧ factn)
gives enough evidence to the truth of bc (as specified via context analysis).

Table 1. Disjunctive datalog rules to enable configurations generation

Id Rule definition

1 active(F) :- anddecomposed(F), 0=]count{Fi: dec(F,Fi,Ca), holds(Ca), -active(Fi)},
not noExtraAct(F), dec(F,Fj,Cb), active(Fj), holds(Cb).

2 noExtraAct(F) :- dec(F,Fi,Ca), active(Fi), not holds(Ca).

3 active(F) :- ordecomposed(F), dec(F,Fi,Ca), active(Fi), holds(Ca), not noExtraAct(F).

4 active(F) :- xordecomposed(F), dec(F,Fi,Ca), holds(Ca), active(Fi), not actdiff(F,Fi).
5 actdiff(F,Fi) :- xordecomposed(F), active(Fi), dec(F,Fi,), dec(F,Fj,), active(Fj),

Fi!=Fj.

6 -active(Fi) :- requires(Fi,Fj), -active(Fj).
7 -active(Fj) v -active(Fi) :- excludes(Fi,Fj).

8 -active(X) :- anddecomposed(X), not active(X).
9 -active(X) :- ordecomposed(X), not active(X).
10 -active(X) :- xordecomposed(X), not active(X).
11 -active(Y) :- dec(X,Y,C), -active(X).

12 holds(TC) :- tc(,TC), not noPartInactive(TC).
13 noPartInactive(TC) :- tcpart(TC,P,Vmin,Vmax), not istrue(P,Vmin,Vmax).

14 holds(BC) :- anddec(BC), not subUnsat(BC).
15 subUnsat(BC) :- fdec(BC,SUB), not holds(SUB).
16 holds(BC) :- ordec(BC), fdec(BC,SUB), holds(SUB).

17 active(X) v -active(X) :- f(X), tc(X,C), holds(C).
18 active(X) v -active(X) :- f(X), 0=]count{C: tc(X,C)}.
19 -active(X) :- f(X), tc(X,C), not holds(C).

20 f(X) :- dec(,X,), 0=]count{Z: dec(X,Z,)}.
21 act(X) :- active(X), f(X).
22 bc(X) :- dec(, ,X).
23 tch(X) :- tc(,X), holds(X).
24 bch(X) :- dec(, ,X), holds(X), X!=true.
25 holds(true).

Based on Definition 1, Table 1 lists a set of rules4 in disjunctive datalog [7]
that form the basis of the analysis techniques which we propose in Sec. 3.2. These
rules are a generic framework that, given a set of constraints about technical and
business contexts, supports configurations generation.

Rules 1-2 say that an and-decomposed feature is in a configuration (is active)
if (i) all its sub-features with a holding business context on the respective de-
composition branch are active; (ii) no sub-feature whose business context does
not hold is active; and (iii) at least one sub-feature is active. Rule 3 handles
or-decomposition (at least one sub-feature is active), while rules 4-5 manage
xor-decomposition (exactly one sub-feature is active).

Rules 6-7 handle the effect of the requires and excludes relations, respectively:
(i) if the required feature is inactive, then the requiring feature has to be inactive
too; (ii) one of the mutually exclusive features has to be inactive. Rules 8-10 are
technicalities to deal with true negation in disjunctive datalog: if a decomposed
feature is not active, then it is inactive. If a decomposed feature is inactive (rule
11), its sub-features has to be inactive too (we support feature trees).

The preconditions of a leaf feature are met (rules 12-13) if all its techni-
cal contexts hold. Rules 14-16 deal with business contexts. A business context
(or a statement) is and-supported if all statements/facts supporting it hold. A
statement is or-supported if at least one statement/fact supporting it holds.

Rules 17-18 say that a leaf feature, in the context of configurations generation,
can be either active or inactive if its technical contexts hold (rule 18 handles the
case of a leaf feature having no technical context). Rule 19 says that a feature
whose technical contexts do not hold has to be inactive.

Rules 20-24 define utility predicates: (i) f for leaf features; (ii) act for active
leaf features; (iii) bc for business contexts; (iv) tch for a holding technical context;
and (v) bch for a holding business context. A true context always holds (rule 25).

3.2 Reasoning techniques

We present and illustrate reasoning techniques that use the formal framework
of Sec. 3.1. These techniques analyze CFMs to answer questions which support
the B/I alignment decisions. In the rest of this section, f is the root feature of
M, and we list only leaf features in configurations to maximize readability.

Configurations generation

Problem 1 (conf-gen) Given TC and BC, return all the configurations CFGi

such that CFGi `BC,TC M.

This is an essential query an analyst would make: given information concern-
ing a prospective deployment environment—the important business contexts to
support and the available technical contexts—, which are the candidate con-
figurations of M that are aligned with such environment? We solve conf-gen

4 We adopt the syntax of DLV [13]: http://www.science.at/proj/dlv/

by extending the datalog formalization of Table 1. For each technical context
tc=〈tcname, min, max〉 ∈ TC, we add rule istrue(tcname,min,max). For each fact
∈ BC, we add rule holds(fact). The query is active(f)?.

Example 1 (conf-gen). Consider company α that supports browser internet ex-
plorer v≥8, php v5, and arcdfstore. α needs advanced visual editing (bc4), has
a large catalog (bc5), and more than 10 editors. There are three configurations
aligned with the business and technical context of such a company:

– CFG1={cck, drupal search, word online editor, semantic search}
– CFG2={cck, drupal search, faceted search, word online editor, semantic search}
– CFG3={cck, drupal search, faceted search, word online editor}

These configurations share features cck, drupal search, and word online editor,
while they differ in the type of search features: faceted, semantic, or both. The
analyst can suggest either the configuration with minimal cost (associating a
cost with features), the one that maximizes a set of qualities, or the one com-
pany α prefers. Previous work by Benavides [2]—which enriches feature models
with attributes related to cost and quality and reasons about such models us-
ing constraint programming—can be used in conjunction with our framework to
rank the derived configurations based on cost and qualities. �

Business-to-IT alignment

Configurations generation is useful to explore the space of configurations that
match the business and technical context of an enterprise. We present now tech-
niques to identify an IT infrastructure which accommodates configurations that
are aligned with a given business context. Specifically, we address the problems
of determining alternative IT infrastructures (Problem 2), choosing a minimal
infrastructure that enables all software configurations which are aligned with
a certain business context (Problem 3), and identifying the core infrastructure
elements supporting at least one configuration (Problem 4). These techniques
can be complemented by cost analysis to rank alternative infrastructures.

Problem 2 (bus-to-it) Given BC, return all the configurations and technical
contexts 〈CFGi, TCi〉 such that CFGi `BC,TCi

M.

This problem presumes that the analyst has information about the business
context that a customer wants to support. The analyst aims to identify the
possible configurations for such business context and to compare the technical
prerequisites, so to recommend a configuration to the customer which could be
based on what infrastructure is already available in the customer’s organization.
We solve bus-to-it by adding the following rules. Each technical context can be
selected or not: istrue(X,Min,Max) v -istrue(X,Min,Max) :- tcpart(Y,X,Min,Max),
tc(Z,Y), act(Z); for each fact ∈ BC, add rule holds(fact). The query is active(f)?.

Example 2 (bus-to-it). Through context analysis, company β has identified facts
that support business contexts bc4 (advanced editing features) and bc5 (vast
product catalog). Given this input, six solutions exist (S1-S6 in Table 2):

Table 2. Solutions to the bus-to-it problem of Example 2
Feature / Tech context S1 S2 S3 S4 S5 S6

f1 = drupal search X X X X X X
f2 = google search X × X × X X
f3 = faceted search X X X X × ×
f4 = word online editor X X × × X ×
f5 = ckeditor × × X X × X
tc1 = firefox ≥3 × ≥3 ≥3 ≥3 ≥3
tc2 = ckeditor × × X X × X
tc1 = ie ≥7 ≥7 × ≥6 ≥7 ≥6

The analyst can now compare the technical contexts to determine the most
adequate configuration. He may conduct cost analysis that takes into account
the existing IT infrastructure as well as the cost of buying, upgrading, and
deploying the infrastructure to satisfy missing technical prerequisites. �

We describe two techniques that provide insights about Business-to-IT align-
ment, especially when many solutions are identified by solving Problem 2.

Problem 3 (high-variability) Given BC, which is the minimal set of technical
contexts that enables the deployment of a high-variability product including all
configurations for BC?

The problem is to determine the requirements for a high-variability product,
that includes all possible configurations for the business context BC. The deploy-
ment of high-variability products is useful either to create adaptive systems—
which are able to switch to an alternative configuration when the current one
fails or is ineffective—or to support customization to different users, preferences,
and profiles. We solve Problem 3 by post-processing the output of Problem 2:
all technical contexts are returned, and the minimum-maximum values should
satisfy all solutions. If a technical context appears with value range [3,∞] in
a solution, and with range [2,5] in another, the minimal range to solve Prob-
lem 3 will be [3,5]. In case such set is inconsistent (e.g. a same technical context
appears with ranges [0,2] and [3,4]), manual analysis is required.

Example 3 (high-variability). Take the solution of Example 2. The minimum
set of technical contexts for a high-variability product is {ckeditor [0,∞], firefox
[3,∞], ie [7,∞]} �

Problem 4 (core-tech-ctx) Given BC, identify the core sets of technical con-
texts. Each core set CS enables at least one configuration CFG for M (CFG
`BC,CS M), and is such that, removing any technical context tc from CS, there
exists no configuration CFG’ such that CFG’ `BC,CS\{tc}M.

Each core set of technical contexts defines the minimal requirements for an IT
infrastructure supporting business context BC. Notice that many of these sets
may exist, each defining a candidate technical environment to support BC. Due
to space limitations, we do not describe the algorithm, which is implemented in
our CASE tool FM-Context (see Sec. 4).

Example 4 (core-tech-ctx). Take the solution of Example 2. Two core sets that
support business contexts bc4 and bc5 are identified: CS1 = {ie≥7} and CS2 =
{ie≥6, ckeditor, firefox≥3}. If the analyst aims at supporting all business contexts,
he will select one or more configurations that support either CS1 or CS2, upon
obtaining feedback from the customer about the feasibility and cost of each core
set of technical contexts. �

IT-to-Business alignment

We propose techniques that, given an IT infrastructure, provide insights about
the business contexts supported by such infrastructure. These analyses are use-
ful if a customer is not willing to change its infrastructure, as well as to conduct
what-if studies about the business efficacy of alternative infrastructures. To im-
prove readability, the output of these techniques is shown in terms of holding
business contexts (bc1, bc2, . . .) rather than of facts.

Problem 5 (it-to-bus) Given TC, return all the configurations and business
contexts 〈CFGi, BCi〉 such that CFGi `BCi,TC M.

The analyst knows the technical infrastructure of the customer, and aims to
understand which are the configurations and business contexts that such infras-
tructure supports. We solve it-to-bus by extending the formalization of Table 1.
For each technical context, we add a rule istrue(name,min,max). Then, we add
a rule stating that every business context has to either hold or not: holds(Y) v
-holds(Y) :- bc(Y), and one saying that if the sub-feature on a contextual decom-
position branch is not active, then the business context is not active: -holds(Y)
:- bc(Y), 0=]count{X: dec(,X,Y), active(X)}. The query is active(f)?.

Example 5 (it-to-bus). Company γ has many customers with legacy web browsers.
As a consequence, γ wants to make as few assumptions as possible about the
browser customers use: its technical infrastructure includes only php v5 and
arcdfstore. Given this technical context, six solutions exist (see Table 3):

Table 3. Solutions to the it-to-bus problem of Example 5

Feature / Business context S1 S2 S3 S4 S5 S6

f1 = drupal search X X X X X X
f2 = drupal content editor X X X X X X
f3 = faceted search × X X × X ×
f4 = cck × × X X X X
f5 = semantic search × × X X × ×
bc1 = custom content needed × × X X X X
bc2 = no visual editing needed X X X X X X
bc5 = large product catalog × X X X X ×

The solutions are quite different one from another. For example, S1 supports only
business context bc2, while solutions S3-S5 support bc1, bc2, and bc5. Notice
that, given the technical contexts in input, business contexts bc3 and bc4 are
never supported. If those contexts are important to the management of γ, the
analysis could be repeated by extending the technical infrastructure. That will,
however, require γ to impose more technical prerequisites to its customers. �

Problem 6 (bus-support) Given TC and a ranking R=bci>bcj>bck>. . . that
defines the relative priority of the business contexts in M, which are all the sup-
ported maximal sets of business contexts? Which is the relative order of these
maximal sets according to R?

The problem is to identify the maximal sets of business contexts supported by
the technical infrastructure. Since there may be many of these sets, the analyst
is asked to rank the relative priority of all the business contexts in BC. This
problem is solved by post-processing the output of Problem 5 and returning all
maximal sets of business contexts (those not included in any other set). These
sets are ranked according to R: for any constraint bc>bc’, a set including bc and
not including bc’ is ranked before any set including bc’ and not including bc.

Example 6 (bus-support). Company θ supports only technical context ie v≥7; let
R=bc1>bc4>bc3>bc5>bc2. There are two maximal sets: {bc1, bc5, bc4} and
{bc1, bc2, bc5}. These maximal sets allow for supporting either bc2 (no visual
editing needed) or bc4 (advanced editing needed), but not both. Given that R
states that bc4 is preferred to bc2, the former maximal set is recommended. �

Our reasoning techniques are a basic toolset to address problems about B/I
alignment in software configuration, and can be complemented with cost analy-
sis, elaborated quality-based reasoning, and what-if analysis.

4 FM-Context: a support tool for CFMs

FM-Context is our developed CASE tool for CFMs. The tool enables the graph-
ical creation of CFMs, and implements algorithms to solve the Problems 1-6
of Sec. 3. FM-Context is an Eclipse Rich Client Platform application—built on
Eclipse Galileo 3.5.2—implemented according to the meta-model driven devel-
opment framework provided by the Eclipse Graphical Modeling Project5. Its

5 http://www.eclipse.org/modeling/gmp/

reasoning engine is based on the disjunctive datalog solver DLV. FM-Context
currently supports Windows and Linux machines both 32 and 64 bits. FM-
Context is freely available from the web at http://goo.gl/wx3Vl.

Figure 3 shows a screen-shot of FM-Context while prompting the user for
input to solve the bus-to-it problem. FM-Context allows for a more flexible in-
put than that described in Problem 2: the analyst can choose also non-analyzed
business contexts. In the foreground window, the analyst has selected not only
active facts, but also non-analyzed contexts bc3 and bc4. These selectable lists
are populated automatically by analyzing the CFM at hand (in the background
window). The central part of the background window is occupied by the con-
textual feature model of Fig. 2. On the right side is the drawing palette that
allows for adding elements and relations to the diagram canvas. At the bottom
are details about the output obtained by a previously ran automated analysis.

Fig. 3. Screen-shot of FM-Context: the user is prompted for the input to Problem 2

In Table 4 we outline preliminary results about the scalability of the auto-
mated reasoning in FM-Context. Specifically, we ran the configurations genera-
tion technique (to solve Problem 1) on CFMs of growing size. Starting from the
Drupal CFM, we constructed five CFMs of different sizes (in terms of features
Feat, statements Stat, facts Fact, and technical contexts Tech) and hypothesized
that all contexts (business and technical) hold; for each CFM, we executed four
tests: (i) 1-var : all decompositions are of type “and” (a single variant); (ii) Low-
var : prevalence of xor-decompositions; (iii) Mid-var : a balanced number of xor-
and or-decompositions; and (iv) High-var : all or-decompositions.

Table 4. Preliminary performance evaluation of the configurations generation reason-
ing with FM-Context. Time in milliseconds

1-var Low-var Mid-var High-var
Feat Stat Fact Tech Nodes Time Vars Time time

var
Vars Time time

var
Vars Time time

var

7 4 5 2 18 16 7 22 3.14 9 24 2.67 31 31 1.00
16 10 13 6 45 20 127 59 0.47 319 101 0.31 2047 487 0.24
24 15 17 8 64 25 251 96 0.38 1799 508 0.28 18431 6712 0.36
32 20 26 12 90 33 1023 648 0.63 8191 3400 0.42 32767 19968 0.61
64 40 52 24 180 51 3615 2954 0.81 14415 12518 0.86 54960 66048 1.21

For each experiment we report the number of variants (Vars), overall time
(Time), and time per variant (time/var). Since experiment 1-var includes only
one variant, we show only overall time. We repeated each test three times and
present the average time in Table 4. The results of our evaluation are promising:
the main criteria to increase reasoning time is the number of variants, and not

the number of nodes. In a realistic environment, moreover, the analyst would not
typically obtain so many variants as in our example, given that the deployment
environment would constrain the possible configurations. A CFM with much
non-contextual variability would make the configuration task very difficult.

5 Related work

The relation between context and features has been studied in literature. Lee and
Kang [12] propose to analyze usage contexts to derive the factors—qualities and
technical constraints—that drive feature selection. They rely on a set of feature
diagrams that represent the product line, usage context, qualities, and technical
constraints. Similarly, Hartmann and Trew [8] complement feature diagrams
with a context variability model, so to support multiple product lines. The two
models are linked via constraints (the context constrains applicable features).
These models are merged into a feature model for a specific context. We share
the same motivation and vision. However, we rely upon richer conceptual models
to represent context: business contexts are specified via context analysis, while
technical contexts are expressed as prerequisites to leaf features. Moreover, our
reasoning helps maximizing B/I alignment during product configuration.

Tun et al. [16] address the configuration problem based on a refinement ap-
proach that consists of multiple feature models, which analyze requirements,
problem world contexts, specifications, and expression of quantitative constraints.
We do not focus on the refinement process here: our purpose is to identify and
reason about the relationships between features, business, and technical contexts.

The original feature modeling notation of FODA [10] does not explicitly
support context modeling. However, it documents decision points with “issues”,
specific questions that an analyst should answer in order to choose the most ade-
quate configuration. Thurimella et al. [17] extend FODA by adopting a rationale
management framework to express issues associated with decision points. Our
approach goes one step further and uses a formal—as opposed to a textual—
language to document such rationale; moreover, we focus on B/I alignment.

Czarnecki et al. [5] propose a method—called staged configuration—wherein
the best configuration is achieved via stepwise specialization of feature models,
with multiple people involved in such process. This approach could be used in
conjunction with CFMs to guide the selection process.

Our approach is in the spirit of supporting automated reasoning on feature
models (Benavides et al. [2]). They propose a framework that supports attribute-
extended feature models to express technical constraints. Unlike them, we con-
sider the business context and propose a different set of reasoning mechanisms.

In their empirical study, Chan et al. [4] provide valuable insights about the re-
lationship between planning (among which, information systems configuration),
and B/I alignment. In particular, their field study evidences that planning so-
phistication does not directly improve B/I alignment, while it improves shared
domain knowledge. Such knowledge, in turn, improves B/I alignment. There
exist s, thus, an indirect relationship between planning and alignment. While

CFMs provide directions about the B/I alignment problem, their output still
necessitates interpretation by analysts and domain experts.

In previous work [1], we have proposed contextual goal models to represent
and reason about the interplay between requirements at the intentional level and
context. That modeling framework helps to detect whether there exists a set of
system requirements that satisfies the goals of stakeholders in a specific context.
Differently, CFMs apply when a software product family already exists, and help
to derive a configuration that fits well in a prospective deployment environment.

6 Conclusion and future directions

In this paper, we introduced contextual feature models, which enrich traditional
feature models with information about contextual constraints—both at the busi-
ness and at the technical level. Importantly, we formally represent the interplay
between contexts and features. Our automated reasoning techniques can be ex-
ploited to configure the product line while maximizing B/I alignment. Both
modeling and reasoning are supported by our CASE tool FM-Context.

Our approach is a means to support analysts in selecting a configuration that
fits well with a prospective deployment environment. CFMs can be used as a so-
phisticated planning tool that increases shared domain knowledge [4]. However,
they do not replace the role of designers. The suggestions about configurations
and contexts of our analyses are used by analysts and domain experts, who will
take the final decision about which configuration to deploy.

This paper opens the doors to several research directions that will be part of
our future work: (i) devise a methodology analysts can use to fully benefit from
CFMs; (ii) refine and extend the modeling notation (e.g. support cardinality
and more complex technical contexts); (iii) develop and implement new algo-
rithms to support analysts; and (iv) evaluate the applicability of the approach
by conducting experimentation on industrial case studies.

Acknowledgment

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grants no 257930
(Aniketos), 256980 (Nessos), and 258109 (FastFix), and by the Science Founda-
tion Ireland under grant 10/CE/I1855.

References

1. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal-based Framework for
Contextual Requirements Modeling and Analysis. Requirements Engineering,
15(4):439–458, 2010.

2. David Benavides, Pablo Trinidad, and Antonio Ruiz-Corts. Automated Reasoning
on Feature Models. In Oscar Pastor and Joo Falco e Cunha, editors, Proceedings of
the 17th International Conference on Advanced Information Systems Engineering
(CAiSE’05), volume 3520 of Lecture Notes in Computer Science, pages 381–390.
Springer Berlin / Heidelberg, 2005.

3. Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley Professional, 2000.

4. Yolande E. Chan, Rajiv Sabherwal, and Jason B. Bennet Thatcher. Antecedents
and outcomes of strategic IS alignment: an empirical investigation. IEEE Trans-
actions on Engineering Management, 53(1):27–47, 2006.

5. Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Configuration
Using Feature Models. In Robert Nord, editor, Software Product Lines, volume
3154 of Lecture Notes in Computer Science, pages 162–164. Springer Berlin / Hei-
delberg, 2004.

6. Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing
Cardinality-based Feature Models and their Specialization. Software Process: Im-
provement and Practice, 10(1):7–29, 2005.

7. Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM
Transactions on Database Systems, 22(3):364–418, 1997.

8. Herman Hartmann and Tim Trew. Using Feature Diagrams with Context Variabil-
ity to Model Multiple Product Lines for Software Supply Chains. In Proceedings of
the 12th International Software Product Line Conference (SPLC’08), pages 12–21,
2008.

9. John C. Henderson and N. Venkatraman. Strategic alignment: Leveraging informa-
tion technology for transforming organizations. IBM Systems Journal, 32(1):4–16,
1993.

10. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Carnegie Mellon University, 1990.

11. Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. FORM: A Feature-oriented Reuse Method with Domain-specific Reference
Architectures. Annals of Software Engineering, 5:143–168, 1998.

12. Kwanwoo Lee and Kyo Kang. Usage Context as Key Driver for Feature Selec-
tion. In Jan Bosch and Jaejoon Lee, editors, Proceedings of the 14th International
Software Product Lines Conference (SPLC’10), volume 6287 of Lecture Notes in
Computer Science, pages 32–46. Springer Berlin / Heidelberg, 2010.

13. Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The DLV System for Knowledge Represen-
tation and Reasoning. ACM Trans. Comput. Log., 7(3):499–562, 2006.

14. Joe Peppard and John L. Ward. “Mind the Gap”: Diagnosing the Relationship
between the IT Organisation and the Rest of the Business. The Journal of Strategic
Information Systems, 8(1):29–60, 1999.

15. Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature
Diagrams: A Survey and a Formal Semantics. In Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE’06), pages 136–145, 2006.

16. Thein Than Tun, Quentin Boucher, Andreas Classen, Arnaud Hubaux, and Patrick
Heymans. Relating Requirements and Feature Configurations: a Systematic Ap-
proach. In Proceedings of the 13th International Software Product Line Conference
(SPLC’09), pages 201–210, 2009.

17. Anil Kumar Thurimella, Bernd Bruegge, and Oliver Creighton. Identifying and Ex-
ploiting the Similarities between Rationale Management and Variability Manage-
ment. In Proceedings of the 12th International Software Product Line Conference
(SPLC’08), pages 99–108, 2008.

