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 Audio forensics is the application of science and scientific methods in han-

dling digital evidence in the form of audio. In this regard, the audio supports 

the disclosure of various criminal cases and reveals the necessary information 

needed in the trial process. So far, research related to audio forensics is more 

on human voices that are recorded directly, either by using a voice recorder 

or voice recordings on smartphones, which are available on Google Play ser-

vices or iOS Store. This study compares the analysis of live voices (human 

voices) with artificial voices on Google Voice and other artificial voices. This 

study implements the audio forensic analysis, which involves pitch, formant, 

and spectrogram as the parameters. Besides, it also analyses the data by using 

feature extraction using the Mel Frequency Cepstral Coefficient (MFCC) 

method, the Dynamic Time Warping (DTW) method, and applying the K-

Nearest Neighbor (KNN) algorithm. The previously made live voice record-

ing and artificial voice are then cut into words. Then, it tests the chunk from 

the voice recording. The testing of audio forensic techniques with the Praat 

application obtained similar words between live and artificial voices and pro-

vided 40,74% accuracy of information. While the testing by using the MFCC, 

DTW, KNN methods with the built systems by using Matlab, obtained simi-

lar word information between live voice and artificial voice with an accuracy 

of 33.33%. 
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1. INTRODUCTION 

The rapid development of the digital era results in an increasing number of smartphone users since it 

offers various facilities. In this regard, many multimedia applications on the smartphone available on the 

Google Play service or the iOS Store with their respective advantages can process images, sounds, and videos 

[1]. The large number of Android-based smartphone users enable5 both positive and negative impacts [2]. 

However, it is possible to misuse the sound recordings or other personal recordings on smartphones by 

irresponsible users for committing crimes. Therefore, many cases involve sound recording as the crucial 

evidence for the investigation and disclosure of those cases [3]. A trial involving digital proof requires an expert 

witness to assist a judge in making a verdict in a case. An expert staff supports the trial process by presenting 

the results of his analysis of evidence that is authentic, comprehensive, and following his scientific field through 

the appropriate stages and procedures [4]. The current technological advances allow the human voice to 

command on computer devices [5]. In this case, sound recording is metadata to get clues, such as the 

individual's identity, the incident location, and the time [6]. The use of sound for such evidence needs to record 

first, and this process goes through the scientific method to make it acceptable as evidence in a trial [7]. In this 

regard, the evidence used to investigate the case is analysed and read by the staging process of audio forensic 

[8]. 

Audio Forensics is a process to generate information such as features, crime scenes, and conversation 

transcripts [9]. According to Muhammad Nuh Al Azhar, as written in his book entitled Audio Forensics: 

Theory and Analysis, the parameters that can be measured and analysed include pitch, formant, and 
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spectrogram [10]. In this case, each person's voice varies due to many factors. It includes the differences in the 

vocal cords and larynx shape and size, body size, and how the articulation of a voice by a person [11]. However, 

so far, previous research related to audio or voice has mainly analysed the human voice. These studies include 

research that discusses the comparison of voice recording similarity signal [12], voice changer [13], voice 

verification [14] [15], voice identification [16] [17] [18], a comparison of methods, and improved sound 

accuracy [19] [20] to determine the characteristics of a sound. Meanwhile, this research focuses more on 

making comparisons between live voice (human voice) and artificial voice (google voice) to determine the 

similarities between the two using audio forensic techniques and several other methods. Additionally, other 

studies have also discussed the use of voice as a key to voice-based speech recognition [21] [22] [23] [24] [25] 

[26] or as a voice-based control [27] [28]. 

Meanwhile, the rapid development of technology leads to various recording devices for similar sound 

results to the actual human voice. From many studies related to sound, there is still little discussion on live 

voice and artificial voice. Therefore, research about live and artificial voices needs to conduct widely, and 

hence it can contribute positively to handling digital crimes in the future. 

 

2. METHOD 

2.1 Research Tools and Materials  

This study uses some tools and materials for testing and implementing the research that supports the 

acquisition of the required information. The devices used in this study consisted of hardware and software. The 

hardware used in this study is a computer with the specifications presented in Table 1.  
Table 1. Hardware 

No. Name Specification 

1. Processor Intel® Core™ i7-5500U CPU @ 2.40GHz 

2. Memory 8192 MB RAM 

3. Hard Disk Drive 1000 GB 

4. VGA 1 dan VGA 2 Intel HD Graphics 5500 and AMD Radeon R5 M230 

5. Smartphone Android  

.  

Meanwhile, Table 2 presents the software used in this study. 

 
Table 2. Software 

No. Name Specification 

1. Operating System Windows 10 Pro 64-bit 

2. Computation Software  MATLAB R2015b 

3. Spreadsheet Gnumeric 

4. Audio Analysis PRAAT 

5. Recording Software  Audacity 

 

The voice material used in this study is a live voice (voice recorded by humans) and an artificial voice 

taken from Google Voice via Google Translate with predefined words. Live voice recording uses a recording 

device on a Smartphone, in which the speaker pronounces the predetermined words. In this process, the voice 

recording is the voice of a woman. Whereas artificial voice recording uses the set words written on Google 

Translate, then are played for sound playback, and are recorded using an internal recording installed previously 

on the laptop. 

This chapter explains the research process so that the details of the sequence and steps were made 

systematically and could be used to model and adjust the problem. Besides, they can also analyse the research 

results and the difficulties faced. The steps in this research are the development and integration of the methods 

described by Muhammad Nur Al-Azhar following the Standard Operating Procedure for forensic analysis from 

the Digital Forensic Analyst Team (DFAT) [29] and using the National Institute of Standards and Technology 

(NIST) [30]. Figure 1 describes the procedure. 

http://u.lipi.go.id/1466480524
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 Figure 1. Research Procedure 

 

2.2. Problem Identification 
As the initial stage in this study, problem identification obtains and finds research topics to investigate 

further. This stage observes various phenomena, events, and information obtained from the research object in 

ways related to the research. Currently, problems related to voice or audio in digital crime have often occurred. 

However, digital crimes that use artificial voices rarely emerge. Thus,  this study tries to conduct a comparative 

analysis of live and artificial sound. It expects to facilitate the projection of an investigation of the digital crimes 

that involve artificial voices as evidence.   

 

2.3. Literature Review 

The literature review collects reference materials from books, articles, papers, journals, and several 

sites on the internet related to the topics of this research. It includes the theory of Audio Forensic Techniques, 

Extraction Method with MFCC, Distance Measurement with DTW, Classification using KNN, and Analysis 

using Pitch, Formant, Spectrogram, and other methods to complete and present the ultimate goal of this 

research. The literature review is necessary to find out various discussions to make the researcher understand 

the extent of the investigation in this study. 

 

2.4. Voice Sampling 

This stage involves three female voices and three artificial voices (Google Voice, Responsive Voice, and 

Oddcast Voice) available for free. Before analysing the data, the researcher also conducts an enhancement 

process and noise filters to improve the quality of each voice and clean the voice from noise to get a clear 

voice. These processes intend to make the artificial voice taken from Google Voice and the live voice recorded 

by using a Smartphone have good quality and are clear from noise, so results of the analysis will not be affected. 

 

2.5. Testing and Analysis Methods with Audio Forensic Techniques using the PRAAT Application 

Figure 2 displays the manual statistical test and analysis methods using pitch, formant, and 

spectrogram for sound files in the form of a flowchart.  
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Figure 2. Testing and Analysis Flowchart using PRAAT 

Muhammad Nuh Al Azhar (2011), in his book entitled Audio Forensics: Theory and Analysis, states 

that researcher can take several steps for identifying and obtaining audio information that needs some analysis 

techniques [10] as follow: 

 

2.5.1 Pitch Statistical Analysis 

This analysis derives from the statistical calculations of the pitch value of each unknown and known 

voice. The pitch characteristic of each voice compares to the minimum pitch, maximum pitch, median pitch 
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(quantile), mean pitch, and standard deviation pitch.  If the pitch characteristics of each voice show a significant 

difference, then it concludes that the tone of the unknown and known voices are different.  

 

2.5.2 Formant and Bandwith Statistical Analysis 

a. Anova Analysis 

ANOVA analysis shows the level of difference between 2 (two) groups of data on each formant of 

both unknown and known voices. It indicates the F-ratio, F-critical ratios, and P-probability. If the value of the 

F ratio is less than F-critical and P-value probability is more than 0.5 then the two data groups of the formant 

values, analysed from unknown and known voices, have no significant differences (accepted) at the 0.05 level. 

This conclusion has a 95% confidence rate. In concluding the Anova Formant Analysis, it requires at least 

formants 1, 2, and 3 to be analysed. If there are two acceptable formants within Formants 1, 2, and 3,  then it 

is adequate to draw IDENTIC conclusions based on Anova. Nevertheless, this conclusion is also usually 

supported by Formant 4 or 5. 

Meanwhile, some casuistic cases use bandwidth, where the subject tries to give a known voice that is 

significantly different aurally from the original sound, which in this case, usually uses the Pitch Shift 

application. Therefore in an ordinary instance, bandwidth is rarely used for voice recognition purposes. 

 

b. Likehood Ratio Analysis (LR) 

While Anova Analysis has ben explained earlier, the following is the LR formula :   

 

𝐿𝑅 =
𝑝(𝐸 ∨ 𝐻𝑝)

𝑝(𝐸 ∨ 𝐻𝑑)
 

where: 

𝑝(𝐸 ∨ 𝐻𝑝) is the prosecution hypothesis derived from the known and unknown samples coming from the same 

person. 

𝑝(𝐸 ∨ 𝐻𝑑) is the defense hypothesis derived from known and unknown samples coming from different people. 

𝑝(𝐸|𝐻𝑝) comes from the Anova p-value, while  𝑝(𝐸 ∨ 𝐻𝑑) = 1 - 𝑝(𝐸|𝐻𝑝) 

If  LR > 1, then it supports 𝑝(𝐸|𝐻𝑝). On the contrary, if  LR < 1, then  𝑝(𝐸 ∨ 𝐻𝑑) which is supported. Thus, 

it is a must that the value of 𝑝(𝐸|𝐻𝑝) > 0.5 to conlude that the unknown voice evidence and the known 

comparative voice come from the same person (IDENTIC). The following is the prosecution hypothesis as 

presented in Table 3.   

 

Table 3. Verbal Statement of the Prosecution Hypothesis 𝑝(𝐸|𝐻𝑝) 

LR LR (log) Verbal Statement Explanation 

> 10,000 > 4 Very strong evidence to support 

Supports the Prosecution 

Hypothesis 𝑝(𝐸|𝐻𝑝) 

1,000 – 10,000 3 – 4 Strong evidence to support 

100 – 1,000 2 – 3 Moderately strong evidence to support 

10 – 100 1 – 2 Moderate evidence to support 

1 – 10 0 – 1 Limited evidence to support 

 

Meanwhile, the following is the defense hypothesis as presented in Table 4.  

 
 Table 4. Verbal Statement of the Defense Hypothesis 𝑝(𝐸 ∨ 𝐻𝑑) 

LR LR (log) Verbal Statement Explanation 

1 – 0.1 0 – -1 Limited evidence against 

Supports the defense 

Hypothesis  𝑝(𝐸 ∨ 𝐻𝑑) 

0.1 – 0.01 -1 – -2 Moderate evidence against 

0.01 – 0.001 -2 – -3 Moderately strong evidence against 
0.001 – 0.0001 -3 – -4 Strong evidence against 

< 0.0001 > -4 Very strong evidence against 

 

From Table 3. and  Table 4., it is discovered that to support the prosecution hypothesis (known and 

unknown voices coming from the same voice), it must be LR> 1, where the more the LR value, the better and 

stronger the verbal statement is. This LR analysis can strengthen the Anova analysis results obtained previously 

because this LR explains how much the LR level supports the prosecution and the defense hypothesis. 

 

2.5.3 Graphical Distribution Analysis 

The Graphical Distribution Analysis process obtained the data from the formant values extracted using 

PRAAT and stored in the Gnumeric application. Graphical Distribution Analysis describes the distribution 
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level of each formant value graphically to see the different distribution levels of formant values from unknown 

and known voices. In general, this analysis compares Formant 1 (F1) and Formant 2 (F2) and Formant 2 and 

Formant 3 (F3). 

The following is an example of a pronunciation comparison of the word "saya" between F1 vs F2 and 

F2 vs F3 based on the formant values shown in Figure 3. 

 

  
(a) (b) 

Figure 3. (a) Graphical Distribution Analysis of F1 vs F2, (b) Graphical Distribution Analysis of  F2 vs F3 

 

The two graphs in Figure 3 illustrate several values from SuaraSubyek1 (Subject1’sound) that come 

out of the group. If these values are eliminated, the graphical distribution values of F1, F2, and F3 

between SuaraBarangBukti (EvidenceSound) and SuaraSubyek1 (Subject1’sound) are still in the same group 

range (ANOVA similarity probability). In conclusion, F1, F2, and F3 between SuaraBarangBukti (Evidence 

Sound) and SuaraSubyek1 (Subject1’sound) are IDENTIC. 

 

2.5.4 Spectrogram Analysis 

This analysis shows a regular pattern of the spoken words and a specific pattern of each analysed syllable 

formant. These typical patterns are included in the examination of each formant’s energy level. In this case, if 

the typical patterns for the pronunciation of certain words from the unknown and known voice do not show a 

significant difference, then the two voices are IDENTIC (have the same spectrogram). 

 

2.6. Testing and Analysis Method with Combination Method by using MATLAB Application   
2.6.1 Mel Frequency Cepstrum Coefficients (MFCC) 

MFCC is a widely used method in speech technology, both in speaker and speech recognition. This 

method performs feature extraction, which is a process that converts a voice signal into several parameters. 

Meri Susanti et al, in 2018 write in their journal that there are several advantages of this method, such as [31]: 
a. Capturing voice characteristics that are very important for speech recognition, or in other words, it can 

capture crucial information contained in voice signals. 

b. Producing minimum data without losing crucial information it contains. 

c. Duplicating humans' hearing organs while they perceive voice signals. 

The method of testing and analysis using MFCC for sound files can be displayed in a flowchart as pre-

sented in Figure 4. 
 

2.6.2 Dynamic Time Warping (DTW) and  K-Nearest Neighbour (KNN) 

DTW and KNN are classification methods that function to classify the suitability of the test data with 

the collected data. DTW projects the matrix from the training data towards the test data with the euclidean 

distance equation, then adds the values diagonally by selecting the minimum value for each index shift of the 

matrix [18]. Meanwhile, KNN will sort or find the closest class and adjust it to the actual one.       

Figure 5 presents the testing and analysis methods using DTW – KNN for the sound files in a 

flowchart. 
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Figure 4. MFCC Testing Flowchart 

 
Figure 5. DTW-KNN Flowchart 

  

3. RESULTS AND DISCUSSION 

The process of analysing the implementation of existing methods requires an experimental case scenario 

involving the recording of the original voice (unknown) and the recording of the comparator voice (known). 

This case scenario experiment analysed Sound recording evidence. The decoding stage obtained a complete 

transcript of the recorded conversation voice as a suspect. Furthermore, the recording transcript is analysed to 

determine whether the suspect voice is identical to the comparator voice. It requires getting a minimum of 20 

(twenty) words that have different meanings and can be accepted because they have very similar patterns and 

analysis to conclude that the voice evidence is Identic with a comparator voice. It refers to “Speaker Voice 

Identification: A Forensic Survey” written by Koenig, B.E. from the Federal Bureau of Investigation (FBI) 

[10] [32]. The following is the voice recording used in this study, in which its sentences have been broken 

down into words namely, “silahkan”, “kamu”, “transfer”, “dulu”, “ke”, “rekening”, “aku”, “sebesar”, 

“dua”, “juta”, “rupiah”, “nanti”, “nomor”, “kamar”, “dan”, “nama”, “hotelnya”, “aku”, “kirim”, 

“lewat”, “whatsapp”, “setelah”, “transfer”, “aku”, “cinta”, “kamu”, “mas”. The sentence is broken down 

into 27 words dan 22 words that have different meanings. 

 

3.1. Test and Analysis Results with Audio Forensic Techniques by using the PRAAT Application 

Table 5, Table 6, and Table 7 present the summary of the analysis towards the tested data using PRAAT 

as follow:   
Table 5. Testing Results of Google Artificial Voice (GAV) and Live Voice Recording (LVR)  

Methods 
Training Data 

(SUM) 

Test Data 

(SUM) 

Results Detected  

(SUM) Accuracy 

GAV LVR 

Pitch Analysis 27 words (gav) 27 words (lvr) 6 words 21 words 77,78 % 

Anova Analysis 27 words (gav) 27 words (lvr) 3 words 24 words 88, 89 % 

Likehood Ratio (LR) Analysis 27 words (gav) 27 words (lvr) 21 words 6 words 22,22 % 

Graphical Distribution Analysis 27 words (gav) 27 words (lvr) 3 words 24 words 88,89 % 

Spectogram Analysis 27 words (gav) 27 words (lvr) 6 words 21 words 77,78 % 

Accuracy Total 71,11 % 

Table 6. Testing Results of Google Artifical Voice (GAV) and Artificial Voice of Responsive Voice (AVR) 
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Methods 
Training Data 

(SUM) 
Test Data (SUM) 

Results Detected  

(SUM) Accuracy 

GAV AVR 

Pitch Analysis 27 words (gav) 27 words (avr) 22  5 words 18,52 % 

Anova Analysis 27 words (gav) 27 words (avr) 20  7 words 25,93 % 

Likehood Ratio (LR) Analysis 27 words (gav) 27 words (avr) 26  1 words  3,70 % 

Graphical Distribution Analysis 27 words (gav) 27 words (avr) 26  1 words 3,70 % 

Spectogram Analysis 27 words (gav) 27 words (avr) 27  0 words 0,0 % 

Accuracy Total 10,37 % 

 
Table 7. Testing Results of Artificial Voice and Live Voice by using Audio Forensic Technique  

Methods Training Data  (sum) Tested Data (sum) Accuracy 

Result of Accuracy in Table 3. 27 words (gav) 27 words (lvr) 71,11 % 

Result of Accuracy in Table 4. 27 words (gav) 27 words (avr) 10,37 % 

Accuracy Total 40,74 % 

 

The testings results show that the level of similarity between Google artificial voice recordings (gav) 

and live voice recordings (lvr) as presented in Table 3.,  are different, seen from all forensic audio analyses that 

have been carried out. Table 3. shows that the level of accuracy is 71.11%. Meanwhile, the similarity level test 

was carried out between the artificial voice recording by Google Voice (gav) and the artificial voice recording 

by responsive voice (avr ), which its results are presented in Table 4. In Table 4. It can be seen that an accuracy 

rate is 10.37%, while the accumulation of test and analysis results by using audio forensic techniques obtained 

an accuracy of 40,74%. 

In this case, the Pitch value is very influential on a voice, as written in a study [13], since the perfor-

mance of a voice conversion system is affected by alpha scale (α) factors, and beta (β) scale factors. During 

the Time Domain Pitch Synchronous Overlap Add (TD-PSOLA) process,  the scale factors of alpha (α) and 

beta (β) were used for time stretching and pitch shifting parameters. In this regard, the more alpha (α) and beta 

(β) pause approach 1 (one), the voice conversion result will sound more similar to the original / input voice, 

and vice versa. 

 

3.2. The Test and Analysis Results with Audio Forensic Techniques by using the MATLAB Application 

This research used 27 training voices in the database to process the test of the input test voice. Each 

class was tested 27 times using 54 sounds precluded from the training voice. Those voices split into two, 

namely one different artificial voice recording and one different live recording, in which each voice recording 

consists of 27 words. 

In addition, this process introduced a new input voice. The following is the process for the test voice: 

a. Sounds from the artificial voice recordings or live voice recordings used as test sounds obtained from the 

recording process or the voices selected from the live directory. The sounds are in the form of  (.wav) with 

a sampling frequency of 16000 Hz. 

b. The next step is importing the voice into the system. 

c. Then, MFCC is used in the feature extraction stage of the tested data. 

d. The MFCC process on the test voice obtains several parameters to analyse in the form of a feature vector 

paired with the feature extraction results of the training voice. 

e. The characteristic vector of the input voice paired with the database that has been stored previously in the 

training voice database. The matching process uses DTW, in which the test voice vector is matched with 

the training voice vector to obtain the minimum value, indicating the kind of sound. 

 

The KNN process is conducted based on the result of the DTW process. The obtained results after the 

test are in the form of class recognition result (word prediction) and the value of similarity measurement values 

in the form of proportions for the KNN method and for the DTW method, at which the smaller the number, the 

more similar it will be. Then each recognition result will be recapitulated and the accuracy value measured 

based on the respective classification method.  

Meanwhile, the summary results of testing the artificial voice and the live voice is shown in Table 6. 
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Table 8. Test Results of Google Artificial Voice (GAV) and Live Voice Recording (LVR)  

Methods Training Data (SUM) Test Data (SUM) 

Detected Results 

(SUM) 
Accuracy 

GAV LVR  

MFCC, DTW and KNN 
27 words (gav) 27 words (lvr) 27 word 0 words 00,00% 

27 words (gav) 27 words (rav) 9 words 18 words 66,67% 

Accuracy Total 33,33% 

 

In conclusion, based on the test results in Table 6, the tested words include 54 words of artificial voice 

recordings and new live voice recordings, in which those words are different from the words in the training 

data.  

The test data, words from other artificial sound recordings, indicate that some are  IDENTICAL to the 

artificial voice recordings. Unlike the case with live voice recordings, the results were NOT IDENTICAL to 

the artificial sound in the training data. Therefore, the similarity level trials conducted between Google artificial 

voice recordings (GAV) with live voice recordings (LVR) and Google artificial voice recordings (GAV) with 

Responsive artificial voice recordings (AVR) as presented in Table 5 show an accuracy of 33.33%. 

 

4. CONCLUSION 

The identification results of voice comparisons using audio forensic techniques are obtained from 

predetermined stages and procedures.  In this regard, the audio forensic analysis technique is more effective 

since it shows the level of similarity between artificial voice recordings and live voice recordings with a 40.74% 

accuracy value. However, the audio forensic technique is less efficient. In this case,  the process of audio 

forensic analysis takes a long time. It is affected by the length of time and the quality of the two voice 

recordings. Contrarily, comparing the similarity level between Live Voice and Artificial Voice identification 

using a built system employing the MFCC extraction method, matching with DTW, and classification with 

KNN is quite efficient in analysing voice recordings. The analysis results are less effective because it is affected 

by the accuracy of determining parameters used as a measurement in the built system, of which the obtained 

accuracy is 33.33%. The analysis of artificial and live voices are more effective using audio forensic technique 

than the built system. Nonetheless, in terms of completion time, it is more efficient to use a built system for an 

investigation process that requires the results of an evidence item to be delivered faster at the initial trial. To 

sum up, the results show that the two voices have very different characteristics from their pitch values. 
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