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Abstract—Texture mapping has been widely used in image 
processing and graphics to enhance the realism of CG scenes. 
However to perfectly match the feature points of a 3D model 
with the corresponding pixels in texture images, the 
parameterisation which maps a 3D mesh to the texture space 
must satisfy the positional constraints. Despite numerous 
research efforts, the construction of a mathematically robust 
foldover-free parameterisation subject to internal constraints 
is still a remaining issue. In this paper, we address this 
challenge by developing a two-step parameterisation method. 
First, we produce an initial parameterisation with a method 
traditionally used to solve structural engineering problems, 
called the bar-network. We then derive a mathematical 
foldover-free condition, which is incorporated into a Radial 
Basis Function based scheme. This method is therefore able to 
guarantee that the resulting parameterization meets the hard 
constraints without foldovers. 

Keywords-Foldover; constrained texture mapping; 
parameterization; 

I.  INTRODUCTION 
Texture mapping is an effective means in image 

processing and graphics to achieve improved visual realism. 
Existing research has largely concentrated on the production 
of planar parameterization [1-7] in order to map a 3D mesh 
to the planar domain. Most recent works are concerned with 
texture distortion reduction when mapping a planar image 
(texture) to a curved surface. Although this is an important 
issue, in practice the animator is also challenged with other 
problems in texture mapping. One of them is to register a 
texture map accurately with the features of a 3D model. For 
example, if one is to texture map a human face, in addition to 
reducing texture distortion, one has to ensure the important 
feature points and lines on the 3D model match those on the 
texture plane during the mapping process, such as the eyes, 
nose, eyebrows and lips. In another word, one needs to 
accurately register the 3D features with their 2D counterparts. 

With the current production practice, this registration 
operation is almost completely manual. Once a texture map 
is generated by animation software, the animator has to 
painstakingly tweak the unwrapped mesh on the texture 
plane to align the key feature points on the texture image 
with the 3D features. He/she has to manually move many 
vertices around each feature in order to avoid texture 
distortion being concentrated and visible. This is a time-
consuming task. 

Attempts have been made to formulate it as a constrained 
optimization problem [3-5,7] where the important features in 
the texture images are to be located correctly on the 3D 
surface. Despite varying degree of success, a key issue yet to 
be solved is there is currently no robust solution to 
controlling the spread of the mesh points such that the 
generated new mesh is mathematically predictable. For a 
texture point to be reliably mapped to the corresponding 
position on the 3D surface, one must ensure there exists a 
one-to-one mapping between the 2D and 3D domains. In 
other words, there must be no mesh foldovers during the 
unwrapping process. To the best of our knowledge, there is 
no robust solution exists, which mathematically guarantees 
the elimination of mesh foldovers during mesh manipulation. 

In this paper, we present a novel constrained texture 
mapping method by developing a foldover-free 
parameterisation. The user can interactively specify the 
feature points where constraints are set between the 
corresponding 3D vertices on the mesh and the 2D points on 
the texture image. We first generate an initial 
parameterisation by unwrapping the 3D mesh using a 
method from structural mechanics, called the bar-networks, 
without considering any internal constraints. We will 
demonstrate that this parameterisation is foldover-free. 

In order to satisfy the mesh constraints placed by the user, 
we then re-parameterise the initial mesh using Radial Basis 
Functions. By incorporating a novel foldover-free condition, 
our method will guarantee the resulting re-parameterization 
is free of foldovers. 

In comparison with the other methods, ours has the 
following advantages: 

• Foldover-free. Our work is primarily concerned with a 
robust foldover-free parameterisation. We first derive an 
explicit mathematical condition which guarantees no 
mesh foldover occurs during the parameterisation. This 
is called the foldover-free condition. By incorporating 
this condition, a RBF-based re-parameterization 
algorithm is then developed accordingly to produce 
foldover-free meshes satisfying constraints. 

• High efficiency. Our method is based on C2 continuous 
mapping functions, which avoids the discontinuity 
problem at some edges suffered by the Delaunay 
triangulation-based methods [3,8]. As a result, no extra 
Steiner points are needed in our algorithm. In addition, 
since our calculation is based on Radial Basis 
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Functions, only a small number of constraint points are 
involved. Updating the RBF coefficients is both cheap 
and relatively straightforward. There is no need to 
introduce extra optimization operation steps to improve 
the quality of parameterisation. 

• Little distortion. Our RBF-based scheme is globally 
supported. It can be decomposed into a global affine 
and a local smoothing component. The properties 
ensure the errors are naturally spread resulting in little 
mesh distortion. 

• Robustness. In addition to a mathematically robust 
solution, our experiments also demonstrate that the 
developed method can handle a large number of user-
specified constraints, some of which are topologically 
complex. 

1.1 Related works 

To map a texture image onto a 3D surface model, a 
correspondence needs to be established between the 3D 
mesh and its 2D parametric plane. This process is called 
parameterisation. A lot of work has been carried out in the 
past years. Some [2,6] targeted the validity of the resulting 
parameterization, e.g. bijective mapping. Some tried to 
minimize the distortion according to different distortion 
metrics [6,9-12]. 

The above mentioned methods can be roughly classified 
into two categories. One is to map a 3D mesh onto a 2D 
region with a specified convex boundary [2,6,9,13]. The 
others tried to solve the problem without considering the 
boundary constraints [11,12,14] in order to achieve a lower 
level of distortion. However little consideration was given 
for satisfying internal positional constraints. In practice, 
when an animator maps a texture image, such as a 
photograph of a human face, onto a 3D head model, the 
feature pixels (e.g. the corners of the lips, eyes and nose) 
should be mapped exactly onto the correct locations on the 
3D mesh. Some research was undertaken to meet the soft 
constraints [15], i.e. to satisfy the inside positional 
constraints approximately. Levy [5] proposed a “least-
squares” method to solve the constraints. However it did not 
provide a valid parameterization for situations where there 
are a large number of constraints. Hard constraints were 
further studied in [4,16], since a perfect alignment of texture 
is essential at certain delicate places of a mesh. Tang et al. 
[17] proposed a RBF-based parameterisation method. But 
the relationship between deformation and foldover was not 
investigated. Kraevoy et al. [3] and Lee [8] applied Delaunay 
triangulation to mesh parameterization for converting 
internal constraints to convex boundaries’ ones. But post-
processing is usually necessary, which checks and corrects 
foldover triangles, leading to additional computation costs 
and instability. 

Because meshes are being moved during optimisation, a 
main problem encountered with constrained texture mapping 
is mesh foldover. Unfortunately little success was made to 
robustly remove this problem. With the possibility of mesh 
foldovers, solving an optimisation problem subject to hard 

constraints becomes computationally much more expensive 
than otherwise. In addition, the overlapped parts of a mesh 
will usually need manual tweaking, which further increases 
the production cost. 

The rest of this paper is organized as follows. Section 2 
demonstrates the triangle foldover problem encountered with 
various existing methods. Section 3 introduces our bar-net 
based initial parameterisation method. In Section 4, we first 
derive the foldover-free condition. A RBF-based re-
parameterization algorithm is then introduced by 
incorporating the foldover-free condition. Experiment results 
and discussions are given in Section 5. The conclusions and 
future work are presented in Section 6. 

II. FOLDOVER 
Foldovers within a mesh can be observed when the 

internal positional constraint points are added into the 
parameterization of a polygonal mesh. Figure 1 shows some 
examples of parameterization, which satisfy the given 
constraints. The 3D mesh is mapped onto a fixed 2D region 
whose boundary is given in advance. In order for us to have 
a clear picture of the existing parameterisation methods with 
regard to their ability to overcome the foldover problem, we 
have implemented four methods as shown in Figure 1b-1e. 
One can remove foldover triangles by either adding Steiner 
vertices to subdivide the triangles or swapping the edges. 
This both increases the computation burden and changes the 
original topology. Further expenses arise when it is 
necessary to detect and modify foldover meshes and 
minimise the resulting distortion. 

Our experience from implementing the four methods 
suggests that none of them are able to robustly overcome the 
mesh foldover problem. It is still an unsolved issue in mesh 
parameterisation. In the following we present our solution to 
this issue. We will first develop an initial foldover-free 
parameterisation using a method from classic structural 
engineering, and then derive a mathematical foldover-free 
condition. After that, we will formulate a RBF-based 
algorithm by which the final parameterisation can be 
obtained from the initial one and will satisfy all the 
constraints set by the user. 

III. INITIAL PARAMETERIZATION 
In this section we discuss the first step of our foldover-

free algorithm, to develop an initial parameterization using a 
method from the classic structural engineering, called the 
bar-network (bar-net for short). This initial parameterization 
does not take consideration of the user-specified internal 
constraints within the mesh. But it is necessary for the 
subsequent refinement, which starts from a foldover-free 
parameterization and will eventually satisfy all the 
constraints. 

A. Bar-net 
A bar-net [18] is a structure commonly used in structural 

engineering. Its shape depends on the structural and material 
properties and the forces acting upon it. A bar-net connects 
ns points, in three-dimensional space with straight-line 
segments, called bars. These points on the net are known as 
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the nodes. The nodes can be either fixed or free. Fixed nodes 
do not change their positions whether subject to external 
forces or not. Free nodes can be moved to balance the acting 
forces on the net. Each bar connects two nodes. These bars 
can be stretched and squashed resulting in the repositioning 
of the end nodes, but they remain topologically constant. The 
final shape represents the rest shape of the network and is the 
result of the balance of all external and internal forces. 

Assuming there are ns nodes (n free nodes and nf fixed 
nodes) and m bars in the network. A matrix Cs(m*ns) called 
the branch-node matrix can be formed, which represents in a 
tabular form the graph of the network. For each row which 
represents a bar, the elements on the column i and j which 
are the two linked nodes indices, will be set 1 and -1, all 
others will be set to 0. This branch-node matrix can be 
further subdivided into two sub-matrices, C and Cf, by 
grouping the free-node columns and fixed-node columns of 
the original matrix respectively. These matrices are used in 
computing the rest shape of a bar-net. The effect of stiffness 
of a network can be approximated by the quantity of force-
length ratios of all the bars, called the force density. One 
major advantage of this method is it is able to solve the form 
finding problem with a set of sparse linear equations. A 
detailed description is given in [18]. 

Equation (1) shows how to compute the coordinates of 
the free nodes at the equilibrium state: 

1

1

1

( )

( )

( )

x f f

y f f

z f f

x D p D x

y D p D y

z D p D z

−

−

−

⎧ = −
⎪⎪ = −⎨
⎪

= −⎪⎩

G G G

G G G

GG G
                              (1) 

where  and T T
f fD C QC D C QC= = , Q is the diagonal 

matrix (qii), where qii is the force density of the bar i. 
( , , )x y zp p pG G G  are the external force vectors. Therefore, with a 
given interconnection, the force density vector, the external 
forces and the coordinates of the fixed nodes, the positioning 
of the free nodes are determined by the equilibrium of the 
forces. 

B. Bar-net based initial parameterization 

 
Figure 2. Bar-net unwrapping with the outside boundary constraints only. 

There are many different unwrapping methods to map a 
3D mesh to a 2D plane to produce a parameterization 
[2,6,11,19-22]. To a great extent, they all are able to produce 
an initial parameterization. We use the bar-net method, 
because, as can be seen below, the mechanical properties 
allow it to produce a foldover-free parameterization naturally, 

a prerequisite for our subsequent RBF-based operations. 
Another advantage is it is computationally very efficient, as 
it involves solving only one sparse matrix. 

The crucial part of this method is to find a mapping 
between a 3D mesh and the 2D square. Before we get into 
the detail of our unwrapping method, we need to build up the 
correspondence between these two meshes. First from the 
connectivity of the edges and vertices, we identify the 
boundary edge loop B of the 3D mesh. Boundary B will be 
mapped to the 2D square’s four edges. All other holes and 
internal boundaries are mapped to the inside area of the 2D 
square. On boundary B we can automatically choose four 
points which are evenly distributed along the edge loops. 
These four points vk (k=0…3) are mapped to the four corners 
of the 2D square. All other vertices on the boundary loop are 
mapped to the four edges of the square accordingly. The 
whole boundary edge loop can then be split into four 
sections from the original mesh’s vertex connection. In order 
to map the 3D patch to the 2D plane, we now define the new 
position of each vertex on the boundary edges to be aligned 
to the four edges of the square [0,1] [0,1]×  according to their 
original edge length in the 3D mesh and again all these 
points will be set as fix points. If the 3D mesh has more than 
one boundary loop, all the vertices on the other boundaries 
(except B) will be set as free ones at this first unwrapping 
step. The vertices on B are fixed during the bar-net 
embedding while leaving all inside vertices to freely settle 
inside the square. Matrices C and Cf can be defined from the 
connection relationships of the bars and the nodes within the 
network. In order to keep the connection topology of the 3D 
mesh unchanged, we define the force density qi of edge i 
according to its original length Len(ei). 

( )
1

( ( ), 1.. )
i

i
j

Len e
q

Max Len e j m
ε= − +

=
         (2) 

where ε is a very small value to prevent q become zero, m 
is the number of edges involved in this patch. The external 
force vectors, px = py = pz = 0, so all the free nodes will stay 
on the 2D plane and remain inside the 2D square. The final 
equilibrium state of this bar-net will be the 2D mapping of 
the 3D mesh. Figure 2 shows an example of the unwrapping 
of the front part of a human face model (Figure 1a). 

From the mechanics point of view, the rest state of such a 
network, i.e. an equilibrium state, requires the resulting 
internal force to be 0 at every internal node. Any foldover 
can only occur when there are extra external forces applied 
to some of the internal nodes, i.e. away from equilibrium, as 
seen in Figure 3. As a result, once a bar-net has reached its 
equilibrium, it naturally rules out the possibility of foldover. 
Since our above method is equivalent to finding a rest shape 
of a bar-net, there is no room for foldovers. 
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Figure 3. Foldover is naturally avoided at the state of equilibrium 
of a bar-net 

IV. 2D RBF-BASED RE-PARAMETERIZATION 
Based on the initial foldover-free parameterisation 

produced above, let us now discuss how a new foldover-free 
parameterisation can be formulated, which satisfies a set of 
given internal constraints. From a mathematic point of view, 
a “foldover-free” parameterisation gives a “one-to-one” 
mapping between the corresponding 2D and 3D meshes. 

Many researchers have attempted to produce a foldover-
free parameterisation. We believe that to find a robust 
answer one needs to define a criterion which is able to 
provide a definitive check. In the following we first derive a 
mathematical condition, which will guarantee a one-to-one 
mapping. Guarded by this condition, we further develop a 
RBF-based algorithm to re-parameterise the meshes leading 
to a new parameterisation where all the constraints are 
satisfied. 

A. Foldover-free Condition 
For a given 2D mesh S of 2R , a transformation T is a 

one-to-one mapping which maps the points X S∈  into 
another 2D subdomain U ∈Ω  of 2R  with arbitrary m 
constraint point pairs ( )* *

i iX U↔ , i.e. 

* *

( , ) ( ) ( ( ), ( ))
:

subject to ( ) , 1,...,

T T

i i

X x y S U X u X v X
T

U X U i m
⎧ = ∈ → = ∈ Ω⎪
⎨ = =⎪⎩

. 

In a 2D re-parameterization, starting from an initial one 
which satisfies the one-to-one mapping property, if this 
property is to be preserved, the mesh topology and their 
connection relationship should also be preserved. This 
requires that the mapping T is globally univalent or “globally 
one-to-one”, i.e. the topology or the relationship between any 
pair of vertices in the mesh should stay unchanged before 
and after the parameterisation. A more accurate description 
is that the determinant of the Jacobian matrix must be 
positive everywhere, i.e. 

det( ) 0U∇ > .                             (3) 

It is well known that the determinant of the Jacobian 
matrix ∇U is equal to the product of its two eigenvalues. We 
bound the spectrum of ∇U according to the Gerschgorin 
circle theorem as follows, 

u u
x y

σ ∂ ∂− <
∂ ∂

 or v v
y x

σ ∂ ∂− <
∂ ∂

. 

The real and imagery parts of the eigenvalues are limited 
respectively within, 

Re{ } , ,

Im{ } , ,

u u u u v v v v
x y x y y x y x

u u v v
y y x x

σ

σ

⎧ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∈ − + − +⎪ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎪ ⎣ ⎦
⎨

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎪ ∈ − −⎢ ⎥ ⎢ ⎥⎪ ∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦⎩

∪

∪

. (4) 

In terms of Equation (4), a sufficient condition of 
satisfying Equation (3) can be described as, 

u u
x y

v v
y x

⎧∂ ∂>⎪ ∂ ∂⎪
⎨

∂ ∂⎪ >⎪∂ ∂⎩

.                                  (5) 

The geometric meaning is simply saying that the two 
vectors ( , ) , ( , )u x y v x y∂ ∂ ∂ ∂  are linearly independent of 
each other, and their included angle is less than π. The 
former is easy to understand. The latter implies that the right-
hand rule is satisfied all over the domain. If det(∇U)<0 at 
some point, this would result in the left-handedness instead 
of the right-handedness. It can be imagined that the change 
of the right-handedness to left-handedness at some point 
would cause the foldover of mesh. 

This is called the foldover-free condition. In the 
following, we incorporate this condition into our RBF-based 
re-parameterisation scheme, which will then preserve the 
one-to-one mapping property. 

B. RBF-based re-parameterization scheme 
The RBF scheme is a mesh-free approach, and is C2 

continuous. This is suited for applying Equation (5) to it. 
What needs noting is unlike the previous applications of 
RBFs [16,17], in our case the RBF scheme is used to 
compute the displacement of the point’s coordinates, 

( ) ( )
m

i i
i

X P X X Cλ φΔ = + −∑                (6) 

where the coefficient ( ),
Ti i

i x yλ λ λ=  is a vector, 

( ),
Ti i

i x yC c c=  denotes the constraint points, ( ), TX x yΔ = Δ Δ  
and P(X) is a affine transformation 

( ) x

y

ea b
P X X

ec d
⎛ ⎞⎛ ⎞

= + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. Although there are various radial 

basis functions, we adopt the thin plate spline (i.e. 
2( ) lnr r rφ = ) as φ here for simplicity. The deformed U is 

obtained by updating ( )U X X X= + Δ . 

Consider the condition of Equation (5). Substituting 
Equation (6) to it yields, 

1

1

iim m
yi ii x i

x x
i ii i i i

i im m
yi ii i x

y y
i ii i i i

y cd x c da b
dr r dr r

y cd d x cd c
dr r dr r

φ φλ λ

φ φλ λ

⎧ −−+ + > +⎪
⎪
⎨

− −⎪ + + > +⎪
⎩

∑ ∑

∑ ∑
.  (7) 

Equation (7) is the concrete representation of our RBF 
scheme incorporating the foldover-free condition. Now let us 
summarise our RBF-based re-parameterization scheme as 
follows, 
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(1) Initial mesh (0)S  and a set of user-specified constraint 
points * , 1,...,iC i m= , 

(2) Loop: Updating the current constraint points by 
(0) * (0) (0)(1 ) ,i i i iC tC t C C S= + − ∈ , 

(3) Checking if the foldover-free condition of Equation (7) 
is satisfied, 

(4) If yes, computing the displacements of points on S by 
Equation (6) and updating S, 

(5) Otherwise reducing t and go to step 2, 

(6) End Loop until *
i iC C= . 

Because the RBF scheme can be decomposed into a 
global affine and a local smoothing components, only the 
local smoothing component may result in foldovers. In 
practice, large deformation often occurs around the 
constraint points. If they can satisfy the condition of 
Equation (7), their neighbours must be able to satisfy it. To 
save time, we only check the constraint points at each 
iteration in our implementation. 

The core of our RBF-based re-parameterization is to 
update the RBF coefficients at each iteration. The main cost 
is therefore to compute the inverse of a real symmetric 
matrix, which costs 3( )O m , where m is the number of the 
constraint points. The time complexity can be estimated as 

3( )O km , where k denotes the iteration number. In texture 
mapping applications, the number of constraint points is far 
smaller than that of the vertices, around 10-100. And our 
algorithm usually converges with 3-5 iterations. 

V. EXPERIMENTS AND DISCUSSIONS 
In this section, we will apply the above-developed 

method to a number of examples in order to evaluate its 
validity, efficiency and robustness. 

A. Foldover 
Figure 1 shows the results created with the recently 

published methods, which, as can be seen from the figure, 
are not able to avoid foldovers completely during the 
parameterisation process. In order to make a comparison 
with them, our first example is to test the above-developed 
method on the same head model shown in Figure 1a. We 
first produce an initial mesh by the bar-net parameterisation 
and the result is given in Figure 2. The result of each 
iteration with the RBF-based re-parameterisation is shown in 
Figure 4. In Figure 4a, the points marked with the red stars 
denote the constraint points, which need to move to the 
points with white circles. The results confirm that by 
satisfying the foldover-free condition at each iteration, no 
foldover triangles appear during the iteration. 

B. Distortion 
To study the distortion of our algorithm, we use the 

stretch metrics defined in [6]. The L-2 norm is used to 
measure the overall stretch of the parameterization, while the 

L-Inf is used to measure the greatest stretch. A good 
parameterization is expected to have very small L-2 and L-
Inf. We use these two metrics to measure the distortion of 
our three experiments (see Table 1). Here we also use an 
extreme example similar to the Figure 12 in [8]. We use a 
spherical patch as an example for the test. The patch is first 
flattened with our bar-net based initial parameterisation, and 
then followed by the RBF-based re-parameterization scheme 
with some specified constraint points. To highlight the issue 
of distortion, in Figure 5a we request only one constraint 
point to move to a new location (white circle). The 
orientation of the corresponding constraint points is changed. 
It can be seen that our approach does not result in large 
deformation. Compared with the result (Figure 5c) from [8], 
in terms of deformation, ours is more desirable. 

C. Texture mapping 
We texture mapped an orangutang’s photo onto a 3D 

human head model with genus 0 and genus 2, respectively, 
as shown in Figure 6 and 7. The zoomed-in detailed image 
shows that our method produces a very smooth 
parameterization. These two examples also demonstrate that 
our method is very fast. It converged in only five iteration 
steps, even when a large number of constraints are involved, 
which are normally required in animation production in 
order to achieve high-quality texture mapping results. 

The experimental statistics of these examples are given in 
Table 1. In addition to being foldover-free, the figures also 
confirm that it also enjoys low unwanted distortion. The 
experiments were undertaken using Matlab on an Intel 
Pentium 4 3.2GHz PC with 1 Gbyte of RAM. Although the 
code is far from optimised, because our method has a low 
computation complexity as discussed earlier, it is very fast. 

VI. CONCLUSIONS 
Texture mapping requires a 3D surface to be optimally 

parameterised in terms of its deformation and mesh topology. 
Although mesh distortion has been extensively studied by 
the computer graphics community, the problem of mesh 
foldover has not seen a valid solution when there are hard 
constraints to be satisfied. 

In this paper, we have presented a two-step 
parameterization method to solve this particular issue. The 
first step is to produce an initial parameterisation without 
considering the internal constraints. Although other methods 
are applicable, our work is based on a method used in classic 
structural engineering, call the bar-network. Its physical 
properties naturally ensure a foldover-free structure. It is also 
very cheap to compute, as there is only one sparse matrix to 
be calculated. Once this initial parameterisation arrives, we 
have formulated a mathematical condition, called the 
foldover-free condition, which guarantees to maintain the 
connection relationship of a mesh during the 
parameterisation process. Guided by this condition, our 
second step is to develop a RBF-based re-parameterisation 
scheme. Basically, the meshes will be iteratively moved to 
satisfy the constraints and at each iteration, the foldover-free 
condition is used to check the validity of the movement. Our 
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experiments suggest our method works very well even in 
situations where there exist a many constraints. 

As the RBF scheme consists of two components, global 
affine component and local smoothing component, the 
resulting 2D parameterisation has very small distortion. 

The foldover-free condition usually requires checking all 
points. In practice, however, only the constraint points can 
cause large deformation around them, because they are fixed 
in the mesh. To speed up our approach, practically we only 
need checking these constraint points. Our complexity 
analysis suggests that the computation cost is low. 

Due to various constraint configurations, we have found 
that the final mesh may not always converge to the most 
ideal positions, although it will produce a valid useable 
parameterisation. Looking at Figure 8 for example, there are 
two constraint points to be moved in opposite directions. 
Occasionally their moving paths may intersect, e.g. moving 
from a red point to the white point. Our approach can 
converge at an intermediate state. This is because with our 
RBF scheme, the moving paths of the constraint points are 
straight lines during the whole iteration procedure. One 
possible solution is to change the moving paths of the 
constraint points to a polyline. In the future this issue will be 
further investigated. 
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Figure 1.  Illustration of the foldover results using four recent parameterization methods taking consideration of internal hard constraints 
(Note: the mesh details can be seen more clearly by zooming in the document). (a) 3D mesh, (b) least squares meshes [23], (c) RBF-based 
embedding [17], (d) harmonic mapping and (e) Delauney triangulation based mapping [3] (the red lines mark the boundaries of the triangle 
patches within which there is no foldover. However, foldover triangles can be observed around the red lines), (f) further shows the details 
of distortion around the red line. 

 
a.                                                                   b. 3 iterations.                                          c. 5 iterations 

Figure 4.  Illustration of the iterative results of our method 
 

   
a                                                                                b                                                                       c  result from [8] 

Figure 5.  Distortion from re-parameterization. 
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Figure 6.  Illustration of texture mapping with genus 0. 
 

   
Figure 7.  Illustration of texture mapping with genus 2. 

 

     
a                                                                       b                                                                     c 

Figure 8.  Illustration of convergence of an extreme case. 
 

Table 1 Experiment statistics 
Experiment Vertex Num Of 

constraints (k) 
Num Of 

Iteration (m) 
Distoration Total time (seconds) 

L-2 L-Inf 

Fig 6 1672 51 5 0.1019 0.4447 6 
Fig 7 1672 62 5 0.1718 0.7714 6.8 
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