
Constrained Texture Mapping And Foldover-free Condition

Hongchuan YU, Xiaosong Yang and Jian J. Zhang
National Centre For Computer Animation

Bournemouth University
UK

{hyu,xyang,jzhang}@bournemouth.ac.uk

Abstract—Texture mapping has been widely used in image
processing and graphics to enhance the realism of CG scenes.
However to perfectly match the feature points of a 3D model
with the corresponding pixels in texture images, the
parameterisation which maps a 3D mesh to the texture space
must satisfy the positional constraints. Despite numerous
research efforts, the construction of a mathematically robust
foldover-free parameterisation subject to internal constraints
is still a remaining issue. In this paper, we address this
challenge by developing a two-step parameterisation method.
First, we produce an initial parameterisation with a method
traditionally used to solve structural engineering problems,
called the bar-network. We then derive a mathematical
foldover-free condition, which is incorporated into a Radial
Basis Function based scheme. This method is therefore able to
guarantee that the resulting parameterization meets the hard
constraints without foldovers.

Keywords-Foldover; constrained texture mapping;
parameterization;

I. INTRODUCTION
Texture mapping is an effective means in image

processing and graphics to achieve improved visual realism.
Existing research has largely concentrated on the production
of planar parameterization [1-7] in order to map a 3D mesh
to the planar domain. Most recent works are concerned with
texture distortion reduction when mapping a planar image
(texture) to a curved surface. Although this is an important
issue, in practice the animator is also challenged with other
problems in texture mapping. One of them is to register a
texture map accurately with the features of a 3D model. For
example, if one is to texture map a human face, in addition to
reducing texture distortion, one has to ensure the important
feature points and lines on the 3D model match those on the
texture plane during the mapping process, such as the eyes,
nose, eyebrows and lips. In another word, one needs to
accurately register the 3D features with their 2D counterparts.

With the current production practice, this registration
operation is almost completely manual. Once a texture map
is generated by animation software, the animator has to
painstakingly tweak the unwrapped mesh on the texture
plane to align the key feature points on the texture image
with the 3D features. He/she has to manually move many
vertices around each feature in order to avoid texture
distortion being concentrated and visible. This is a time-
consuming task.

Attempts have been made to formulate it as a constrained
optimization problem [3-5,7] where the important features in
the texture images are to be located correctly on the 3D
surface. Despite varying degree of success, a key issue yet to
be solved is there is currently no robust solution to
controlling the spread of the mesh points such that the
generated new mesh is mathematically predictable. For a
texture point to be reliably mapped to the corresponding
position on the 3D surface, one must ensure there exists a
one-to-one mapping between the 2D and 3D domains. In
other words, there must be no mesh foldovers during the
unwrapping process. To the best of our knowledge, there is
no robust solution exists, which mathematically guarantees
the elimination of mesh foldovers during mesh manipulation.

In this paper, we present a novel constrained texture
mapping method by developing a foldover-free
parameterisation. The user can interactively specify the
feature points where constraints are set between the
corresponding 3D vertices on the mesh and the 2D points on
the texture image. We first generate an initial
parameterisation by unwrapping the 3D mesh using a
method from structural mechanics, called the bar-networks,
without considering any internal constraints. We will
demonstrate that this parameterisation is foldover-free.

In order to satisfy the mesh constraints placed by the user,
we then re-parameterise the initial mesh using Radial Basis
Functions. By incorporating a novel foldover-free condition,
our method will guarantee the resulting re-parameterization
is free of foldovers.

In comparison with the other methods, ours has the
following advantages:

• Foldover-free. Our work is primarily concerned with a
robust foldover-free parameterisation. We first derive an
explicit mathematical condition which guarantees no
mesh foldover occurs during the parameterisation. This
is called the foldover-free condition. By incorporating
this condition, a RBF-based re-parameterization
algorithm is then developed accordingly to produce
foldover-free meshes satisfying constraints.

• High efficiency. Our method is based on C2 continuous
mapping functions, which avoids the discontinuity
problem at some edges suffered by the Delaunay
triangulation-based methods [3,8]. As a result, no extra
Steiner points are needed in our algorithm. In addition,
since our calculation is based on Radial Basis

2010 The 3rd International Conference on Machine Vision (ICMV 2010)

136ISBN: C978-1-4244-8889-6 ICMV 2011

Functions, only a small number of constraint points are
involved. Updating the RBF coefficients is both cheap
and relatively straightforward. There is no need to
introduce extra optimization operation steps to improve
the quality of parameterisation.

• Little distortion. Our RBF-based scheme is globally
supported. It can be decomposed into a global affine
and a local smoothing component. The properties
ensure the errors are naturally spread resulting in little
mesh distortion.

• Robustness. In addition to a mathematically robust
solution, our experiments also demonstrate that the
developed method can handle a large number of user-
specified constraints, some of which are topologically
complex.

1.1 Related works

To map a texture image onto a 3D surface model, a
correspondence needs to be established between the 3D
mesh and its 2D parametric plane. This process is called
parameterisation. A lot of work has been carried out in the
past years. Some [2,6] targeted the validity of the resulting
parameterization, e.g. bijective mapping. Some tried to
minimize the distortion according to different distortion
metrics [6,9-12].

The above mentioned methods can be roughly classified
into two categories. One is to map a 3D mesh onto a 2D
region with a specified convex boundary [2,6,9,13]. The
others tried to solve the problem without considering the
boundary constraints [11,12,14] in order to achieve a lower
level of distortion. However little consideration was given
for satisfying internal positional constraints. In practice,
when an animator maps a texture image, such as a
photograph of a human face, onto a 3D head model, the
feature pixels (e.g. the corners of the lips, eyes and nose)
should be mapped exactly onto the correct locations on the
3D mesh. Some research was undertaken to meet the soft
constraints [15], i.e. to satisfy the inside positional
constraints approximately. Levy [5] proposed a “least-
squares” method to solve the constraints. However it did not
provide a valid parameterization for situations where there
are a large number of constraints. Hard constraints were
further studied in [4,16], since a perfect alignment of texture
is essential at certain delicate places of a mesh. Tang et al.
[17] proposed a RBF-based parameterisation method. But
the relationship between deformation and foldover was not
investigated. Kraevoy et al. [3] and Lee [8] applied Delaunay
triangulation to mesh parameterization for converting
internal constraints to convex boundaries’ ones. But post-
processing is usually necessary, which checks and corrects
foldover triangles, leading to additional computation costs
and instability.

Because meshes are being moved during optimisation, a
main problem encountered with constrained texture mapping
is mesh foldover. Unfortunately little success was made to
robustly remove this problem. With the possibility of mesh
foldovers, solving an optimisation problem subject to hard

constraints becomes computationally much more expensive
than otherwise. In addition, the overlapped parts of a mesh
will usually need manual tweaking, which further increases
the production cost.

The rest of this paper is organized as follows. Section 2
demonstrates the triangle foldover problem encountered with
various existing methods. Section 3 introduces our bar-net
based initial parameterisation method. In Section 4, we first
derive the foldover-free condition. A RBF-based re-
parameterization algorithm is then introduced by
incorporating the foldover-free condition. Experiment results
and discussions are given in Section 5. The conclusions and
future work are presented in Section 6.

II. FOLDOVER
Foldovers within a mesh can be observed when the

internal positional constraint points are added into the
parameterization of a polygonal mesh. Figure 1 shows some
examples of parameterization, which satisfy the given
constraints. The 3D mesh is mapped onto a fixed 2D region
whose boundary is given in advance. In order for us to have
a clear picture of the existing parameterisation methods with
regard to their ability to overcome the foldover problem, we
have implemented four methods as shown in Figure 1b-1e.
One can remove foldover triangles by either adding Steiner
vertices to subdivide the triangles or swapping the edges.
This both increases the computation burden and changes the
original topology. Further expenses arise when it is
necessary to detect and modify foldover meshes and
minimise the resulting distortion.

Our experience from implementing the four methods
suggests that none of them are able to robustly overcome the
mesh foldover problem. It is still an unsolved issue in mesh
parameterisation. In the following we present our solution to
this issue. We will first develop an initial foldover-free
parameterisation using a method from classic structural
engineering, and then derive a mathematical foldover-free
condition. After that, we will formulate a RBF-based
algorithm by which the final parameterisation can be
obtained from the initial one and will satisfy all the
constraints set by the user.

III. INITIAL PARAMETERIZATION
In this section we discuss the first step of our foldover-

free algorithm, to develop an initial parameterization using a
method from the classic structural engineering, called the
bar-network (bar-net for short). This initial parameterization
does not take consideration of the user-specified internal
constraints within the mesh. But it is necessary for the
subsequent refinement, which starts from a foldover-free
parameterization and will eventually satisfy all the
constraints.

A. Bar-net
A bar-net [18] is a structure commonly used in structural

engineering. Its shape depends on the structural and material
properties and the forces acting upon it. A bar-net connects
ns points, in three-dimensional space with straight-line
segments, called bars. These points on the net are known as

2010 The 3rd International Conference on Machine Vision (ICMV 2010)

137

the nodes. The nodes can be either fixed or free. Fixed nodes
do not change their positions whether subject to external
forces or not. Free nodes can be moved to balance the acting
forces on the net. Each bar connects two nodes. These bars
can be stretched and squashed resulting in the repositioning
of the end nodes, but they remain topologically constant. The
final shape represents the rest shape of the network and is the
result of the balance of all external and internal forces.

Assuming there are ns nodes (n free nodes and nf fixed
nodes) and m bars in the network. A matrix Cs(m*ns) called
the branch-node matrix can be formed, which represents in a
tabular form the graph of the network. For each row which
represents a bar, the elements on the column i and j which
are the two linked nodes indices, will be set 1 and -1, all
others will be set to 0. This branch-node matrix can be
further subdivided into two sub-matrices, C and Cf, by
grouping the free-node columns and fixed-node columns of
the original matrix respectively. These matrices are used in
computing the rest shape of a bar-net. The effect of stiffness
of a network can be approximated by the quantity of force-
length ratios of all the bars, called the force density. One
major advantage of this method is it is able to solve the form
finding problem with a set of sparse linear equations. A
detailed description is given in [18].

Equation (1) shows how to compute the coordinates of
the free nodes at the equilibrium state:

1

1

1

()

()

()

x f f

y f f

z f f

x D p D x

y D p D y

z D p D z

−

−

−

⎧ = −
⎪⎪ = −⎨
⎪

= −⎪⎩

G G G

G G G

GG G
 (1)

where and T T
f fD C QC D C QC= = , Q is the diagonal

matrix (qii), where qii is the force density of the bar i.
(, ,)x y zp p pG G G are the external force vectors. Therefore, with a
given interconnection, the force density vector, the external
forces and the coordinates of the fixed nodes, the positioning
of the free nodes are determined by the equilibrium of the
forces.

B. Bar-net based initial parameterization

Figure 2. Bar-net unwrapping with the outside boundary constraints only.

There are many different unwrapping methods to map a
3D mesh to a 2D plane to produce a parameterization
[2,6,11,19-22]. To a great extent, they all are able to produce
an initial parameterization. We use the bar-net method,
because, as can be seen below, the mechanical properties
allow it to produce a foldover-free parameterization naturally,

a prerequisite for our subsequent RBF-based operations.
Another advantage is it is computationally very efficient, as
it involves solving only one sparse matrix.

The crucial part of this method is to find a mapping
between a 3D mesh and the 2D square. Before we get into
the detail of our unwrapping method, we need to build up the
correspondence between these two meshes. First from the
connectivity of the edges and vertices, we identify the
boundary edge loop B of the 3D mesh. Boundary B will be
mapped to the 2D square’s four edges. All other holes and
internal boundaries are mapped to the inside area of the 2D
square. On boundary B we can automatically choose four
points which are evenly distributed along the edge loops.
These four points vk (k=0…3) are mapped to the four corners
of the 2D square. All other vertices on the boundary loop are
mapped to the four edges of the square accordingly. The
whole boundary edge loop can then be split into four
sections from the original mesh’s vertex connection. In order
to map the 3D patch to the 2D plane, we now define the new
position of each vertex on the boundary edges to be aligned
to the four edges of the square [0,1] [0,1]× according to their
original edge length in the 3D mesh and again all these
points will be set as fix points. If the 3D mesh has more than
one boundary loop, all the vertices on the other boundaries
(except B) will be set as free ones at this first unwrapping
step. The vertices on B are fixed during the bar-net
embedding while leaving all inside vertices to freely settle
inside the square. Matrices C and Cf can be defined from the
connection relationships of the bars and the nodes within the
network. In order to keep the connection topology of the 3D
mesh unchanged, we define the force density qi of edge i
according to its original length Len(ei).

()
1

((), 1..)
i

i
j

Len e
q

Max Len e j m
ε= − +

=
 (2)

where ε is a very small value to prevent q become zero, m
is the number of edges involved in this patch. The external
force vectors, px = py = pz = 0, so all the free nodes will stay
on the 2D plane and remain inside the 2D square. The final
equilibrium state of this bar-net will be the 2D mapping of
the 3D mesh. Figure 2 shows an example of the unwrapping
of the front part of a human face model (Figure 1a).

From the mechanics point of view, the rest state of such a
network, i.e. an equilibrium state, requires the resulting
internal force to be 0 at every internal node. Any foldover
can only occur when there are extra external forces applied
to some of the internal nodes, i.e. away from equilibrium, as
seen in Figure 3. As a result, once a bar-net has reached its
equilibrium, it naturally rules out the possibility of foldover.
Since our above method is equivalent to finding a rest shape
of a bar-net, there is no room for foldovers.

2010 The 3rd International Conference on Machine Vision (ICMV 2010)

138

Figure 3. Foldover is naturally avoided at the state of equilibrium
of a bar-net

IV. 2D RBF-BASED RE-PARAMETERIZATION
Based on the initial foldover-free parameterisation

produced above, let us now discuss how a new foldover-free
parameterisation can be formulated, which satisfies a set of
given internal constraints. From a mathematic point of view,
a “foldover-free” parameterisation gives a “one-to-one”
mapping between the corresponding 2D and 3D meshes.

Many researchers have attempted to produce a foldover-
free parameterisation. We believe that to find a robust
answer one needs to define a criterion which is able to
provide a definitive check. In the following we first derive a
mathematical condition, which will guarantee a one-to-one
mapping. Guarded by this condition, we further develop a
RBF-based algorithm to re-parameterise the meshes leading
to a new parameterisation where all the constraints are
satisfied.

A. Foldover-free Condition
For a given 2D mesh S of 2R , a transformation T is a

one-to-one mapping which maps the points X S∈ into
another 2D subdomain U ∈Ω of 2R with arbitrary m
constraint point pairs ()* *

i iX U↔ , i.e.

* *

(,) () ((), ())
:

subject to () , 1,...,

T T

i i

X x y S U X u X v X
T

U X U i m
⎧ = ∈ → = ∈ Ω⎪
⎨ = =⎪⎩

.

In a 2D re-parameterization, starting from an initial one
which satisfies the one-to-one mapping property, if this
property is to be preserved, the mesh topology and their
connection relationship should also be preserved. This
requires that the mapping T is globally univalent or “globally
one-to-one”, i.e. the topology or the relationship between any
pair of vertices in the mesh should stay unchanged before
and after the parameterisation. A more accurate description
is that the determinant of the Jacobian matrix must be
positive everywhere, i.e.

det() 0U∇ > . (3)

It is well known that the determinant of the Jacobian
matrix ∇U is equal to the product of its two eigenvalues. We
bound the spectrum of ∇U according to the Gerschgorin
circle theorem as follows,

u u
x y

σ ∂ ∂− <
∂ ∂

 or v v
y x

σ ∂ ∂− <
∂ ∂

.

The real and imagery parts of the eigenvalues are limited
respectively within,

Re{ } , ,

Im{ } , ,

u u u u v v v v
x y x y y x y x

u u v v
y y x x

σ

σ

⎧ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∈ − + − +⎪ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎪ ⎣ ⎦
⎨

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎪ ∈ − −⎢ ⎥ ⎢ ⎥⎪ ∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦⎩

∪

∪

. (4)

In terms of Equation (4), a sufficient condition of
satisfying Equation (3) can be described as,

u u
x y

v v
y x

⎧∂ ∂>⎪ ∂ ∂⎪
⎨

∂ ∂⎪ >⎪∂ ∂⎩

. (5)

The geometric meaning is simply saying that the two
vectors (,) , (,)u x y v x y∂ ∂ ∂ ∂ are linearly independent of
each other, and their included angle is less than π. The
former is easy to understand. The latter implies that the right-
hand rule is satisfied all over the domain. If det(∇U)<0 at
some point, this would result in the left-handedness instead
of the right-handedness. It can be imagined that the change
of the right-handedness to left-handedness at some point
would cause the foldover of mesh.

This is called the foldover-free condition. In the
following, we incorporate this condition into our RBF-based
re-parameterisation scheme, which will then preserve the
one-to-one mapping property.

B. RBF-based re-parameterization scheme
The RBF scheme is a mesh-free approach, and is C2

continuous. This is suited for applying Equation (5) to it.
What needs noting is unlike the previous applications of
RBFs [16,17], in our case the RBF scheme is used to
compute the displacement of the point’s coordinates,

() ()
m

i i
i

X P X X Cλ φΔ = + −∑ (6)

where the coefficient (),
Ti i

i x yλ λ λ= is a vector,

(),
Ti i

i x yC c c= denotes the constraint points, (), TX x yΔ = Δ Δ
and P(X) is a affine transformation

() x

y

ea b
P X X

ec d
⎛ ⎞⎛ ⎞

= + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. Although there are various radial

basis functions, we adopt the thin plate spline (i.e.
2() lnr r rφ =) as φ here for simplicity. The deformed U is

obtained by updating ()U X X X= + Δ .

Consider the condition of Equation (5). Substituting
Equation (6) to it yields,

1

1

iim m
yi ii x i

x x
i ii i i i

i im m
yi ii i x

y y
i ii i i i

y cd x c da b
dr r dr r

y cd d x cd c
dr r dr r

φ φλ λ

φ φλ λ

⎧ −−+ + > +⎪
⎪
⎨

− −⎪ + + > +⎪
⎩

∑ ∑

∑ ∑
. (7)

Equation (7) is the concrete representation of our RBF
scheme incorporating the foldover-free condition. Now let us
summarise our RBF-based re-parameterization scheme as
follows,

2010 The 3rd International Conference on Machine Vision (ICMV 2010)

139

(1) Initial mesh (0)S and a set of user-specified constraint
points * , 1,...,iC i m= ,

(2) Loop: Updating the current constraint points by
(0) * (0) (0)(1) ,i i i iC tC t C C S= + − ∈ ,

(3) Checking if the foldover-free condition of Equation (7)
is satisfied,

(4) If yes, computing the displacements of points on S by
Equation (6) and updating S,

(5) Otherwise reducing t and go to step 2,

(6) End Loop until *
i iC C= .

Because the RBF scheme can be decomposed into a
global affine and a local smoothing components, only the
local smoothing component may result in foldovers. In
practice, large deformation often occurs around the
constraint points. If they can satisfy the condition of
Equation (7), their neighbours must be able to satisfy it. To
save time, we only check the constraint points at each
iteration in our implementation.

The core of our RBF-based re-parameterization is to
update the RBF coefficients at each iteration. The main cost
is therefore to compute the inverse of a real symmetric
matrix, which costs 3()O m , where m is the number of the
constraint points. The time complexity can be estimated as

3()O km , where k denotes the iteration number. In texture
mapping applications, the number of constraint points is far
smaller than that of the vertices, around 10-100. And our
algorithm usually converges with 3-5 iterations.

V. EXPERIMENTS AND DISCUSSIONS
In this section, we will apply the above-developed

method to a number of examples in order to evaluate its
validity, efficiency and robustness.

A. Foldover
Figure 1 shows the results created with the recently

published methods, which, as can be seen from the figure,
are not able to avoid foldovers completely during the
parameterisation process. In order to make a comparison
with them, our first example is to test the above-developed
method on the same head model shown in Figure 1a. We
first produce an initial mesh by the bar-net parameterisation
and the result is given in Figure 2. The result of each
iteration with the RBF-based re-parameterisation is shown in
Figure 4. In Figure 4a, the points marked with the red stars
denote the constraint points, which need to move to the
points with white circles. The results confirm that by
satisfying the foldover-free condition at each iteration, no
foldover triangles appear during the iteration.

B. Distortion
To study the distortion of our algorithm, we use the

stretch metrics defined in [6]. The L-2 norm is used to
measure the overall stretch of the parameterization, while the

L-Inf is used to measure the greatest stretch. A good
parameterization is expected to have very small L-2 and L-
Inf. We use these two metrics to measure the distortion of
our three experiments (see Table 1). Here we also use an
extreme example similar to the Figure 12 in [8]. We use a
spherical patch as an example for the test. The patch is first
flattened with our bar-net based initial parameterisation, and
then followed by the RBF-based re-parameterization scheme
with some specified constraint points. To highlight the issue
of distortion, in Figure 5a we request only one constraint
point to move to a new location (white circle). The
orientation of the corresponding constraint points is changed.
It can be seen that our approach does not result in large
deformation. Compared with the result (Figure 5c) from [8],
in terms of deformation, ours is more desirable.

C. Texture mapping
We texture mapped an orangutang’s photo onto a 3D

human head model with genus 0 and genus 2, respectively,
as shown in Figure 6 and 7. The zoomed-in detailed image
shows that our method produces a very smooth
parameterization. These two examples also demonstrate that
our method is very fast. It converged in only five iteration
steps, even when a large number of constraints are involved,
which are normally required in animation production in
order to achieve high-quality texture mapping results.

The experimental statistics of these examples are given in
Table 1. In addition to being foldover-free, the figures also
confirm that it also enjoys low unwanted distortion. The
experiments were undertaken using Matlab on an Intel
Pentium 4 3.2GHz PC with 1 Gbyte of RAM. Although the
code is far from optimised, because our method has a low
computation complexity as discussed earlier, it is very fast.

VI. CONCLUSIONS
Texture mapping requires a 3D surface to be optimally

parameterised in terms of its deformation and mesh topology.
Although mesh distortion has been extensively studied by
the computer graphics community, the problem of mesh
foldover has not seen a valid solution when there are hard
constraints to be satisfied.

In this paper, we have presented a two-step
parameterization method to solve this particular issue. The
first step is to produce an initial parameterisation without
considering the internal constraints. Although other methods
are applicable, our work is based on a method used in classic
structural engineering, call the bar-network. Its physical
properties naturally ensure a foldover-free structure. It is also
very cheap to compute, as there is only one sparse matrix to
be calculated. Once this initial parameterisation arrives, we
have formulated a mathematical condition, called the
foldover-free condition, which guarantees to maintain the
connection relationship of a mesh during the
parameterisation process. Guided by this condition, our
second step is to develop a RBF-based re-parameterisation
scheme. Basically, the meshes will be iteratively moved to
satisfy the constraints and at each iteration, the foldover-free
condition is used to check the validity of the movement. Our

2010 The 3rd International Conference on Machine Vision (ICMV 2010)

140

experiments suggest our method works very well even in
situations where there exist a many constraints.

As the RBF scheme consists of two components, global
affine component and local smoothing component, the
resulting 2D parameterisation has very small distortion.

The foldover-free condition usually requires checking all
points. In practice, however, only the constraint points can
cause large deformation around them, because they are fixed
in the mesh. To speed up our approach, practically we only
need checking these constraint points. Our complexity
analysis suggests that the computation cost is low.

Due to various constraint configurations, we have found
that the final mesh may not always converge to the most
ideal positions, although it will produce a valid useable
parameterisation. Looking at Figure 8 for example, there are
two constraint points to be moved in opposite directions.
Occasionally their moving paths may intersect, e.g. moving
from a red point to the white point. Our approach can
converge at an intermediate state. This is because with our
RBF scheme, the moving paths of the constraint points are
straight lines during the whole iteration procedure. One
possible solution is to change the moving paths of the
constraint points to a polyline. In the future this issue will be
further investigated.

REFERENCES
[1] Desbrun M., Meyer M., and Alliez P., “Intrinsic Parameterizations of

Surface Meshes,” Proc. Eurographics ’02/Computer Graphics Forum,
vol. 21, no. 3, pp. 209-218, 2002.

[2] Floater M.S., “Parameterization and Smooth Approximation of
Surface Triangulations,” Computer Aided Geometric Design, vol. 14,
no. 3, pp. 231-250, 1997.

[3] Kraevoy V., Sheffer A., and Gotsman C., “Matchmaker: Constructing
Constrained Texture Maps,” ACM Trans. Graphics, vol. 22, no. 3, pp.
326-333, 2003.

[4] Eckstein I., Surazhsky V., and Gotsman C., “Texture Mapping with
Hard Constraints,” Proc. Eurographics ’01/Computer Graphics Forum,
vol. 20, no. 3, pp. 95-104, 2001.

[5] Le´vy B., “Constrained Texture Mapping for Polygonal Meshes,”
Proc. ACM SIGGRAPH ’01, pp. 417-424, 2001.

[6] Sander P.V., Snyder J., Gortler S.J., and Hoppe H., “Texture Mapping
Progressive Meshes,” Proc. ACM SIGGRAPH ’01, pp. 409-416,
2001.

[7] Zhou K., Wang X., Tong Y., Desbrun M., Guo B., and Shum H.-Y.,
“TextureMontage: Seamless Texturing of Arbitrary Surfaces from
Multiple Images,” ACM Trans. Graphics, vol. 24, no. 3, pp. 1148-
1155, 2005.

[8] Lee, T., Yen, S., and Yeh, I., “Texture Mapping with Hard
Constraints Using Warping Scheme”, IEEE Transactions on
Visualization and Computer Graphics 14(2), pp.382-395.

[9] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY,
M., AND STUETZLE, W., “Multiresolution Analysis of Arbitrary
Meshes”, In Proc. of ACM SIGGRAPH 1995, pp.173-182.

[10] HAKER, S., ANGENENT, S., TANNENBAUM, A., KIKINIS, R.,
SAPIRO, G., AND HALLE, M., “Conformal Surface
Parameterization for Texture Mapping”, IEEE Transactions on
Visualization and Computer Graphics, 6(2), pp.181-189.

[11] LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J., “Least
Squares Conformal Maps for Automatic Texture Atlas Generation”,
ACM Transactions on Graphics, 21(3), pp.362-371.

[12] DESBRUN, M., MEYER, M., AND ALLIEZ, P., “Intrinsic
Parametrizations of Surface Meshes”, In Proc. of Eurographics2002 /
Computer Graphics forum, 21(3), pp.210-218.

[13] LÉVY, B., AND MALLET, J. L., “Non-distorted Texture Mapping
for Sheared Triangulated Meshes”, In Proc. of ACM SIGGRAPH
1998, pp.343-352.

[14] SANDER, P., GORTLER, S., SNYDER, J., AND HOPPE, H.,
“Signalspecialized Parametrization”, In Proc. of Eurographics
Workshop on Rendering 2002.

[15] GUENTER, B., GRIM, C., WOOD, D., MALVAR, H., AND
PIGHIN, F., “Making Faces”, In Proc. of ACM SIGGRAPH 1998,
pp.55-66.

[16] Guo, Y., Wang, J., Sun, H., Cui, X., and Peng, Q., “A novel
constrained texture mapping method based on harmonic map”,
Comput. Graph. 29(6), pp.972-979.

[17] Tang, Y., Wang, J., Bao, H.J. and Peng, Q.S., “RBF-based
constrained texture mapping”, Computers & Graphics, 27(3), pp.415-
422.

[18] SCHEK H. J., “The force density method for form finding and
computation of general networks”, Computer Methods in Applied
Mechanics and Engineering, Vol.3, pp.115–134.

[19] YOSHIZAWA, S., BELYAEV, A. and SEIDEL, H.P., “A Fast and
Simple Stretch-Minimizing Mesh Parameterization”, Proc. of Intel’
Conf. on Shape Modeling and Applications 2004 (SMI'04).

[20] PIPONI, D., and BORSHUKOV, G., “Seamless texture mapping of
subdivision surfaces by model pelting and texture blending”, Proc. of
the 27th Annual Conference on Computer Graphics and interactive
Techniques / International Conference on Computer Graphics and
Interactive Techniques, pp.471-478.

[21] SHEFFER, A. and STURLER, E., “Parameterization of Faceted
Surfaces for Meshing Using Angle Based Flattening”, Engineering
with Computers, 17(3), pp.326-337.

[22] SHEFFER, A., LÉVY, B., MOGILNITSKY, M., and
BOGOMYAKOV, A., “ABF++: fast and robust angle based
flattening”, ACM Trans. on Graph, 24(2), pp.311-330.

[23] Sorkine, O. and Cohen-Or, D., “Least-squares Meshes”, in Proc. of
Shape Modeling International, 2004, pp.191-199.

 0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

00

(a) 3D mesh (b) (c)

2010 The 3rd International Conference on Machine Vision (ICMV 2010)

141

 0

10

20

30

40

50

60

70

80

90

00

 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

00

76 78 80 82 84 86

8

10

12

14

16

18

(d) (e) (f)

Figure 1. Illustration of the foldover results using four recent parameterization methods taking consideration of internal hard constraints
(Note: the mesh details can be seen more clearly by zooming in the document). (a) 3D mesh, (b) least squares meshes [23], (c) RBF-based
embedding [17], (d) harmonic mapping and (e) Delauney triangulation based mapping [3] (the red lines mark the boundaries of the triangle
patches within which there is no foldover. However, foldover triangles can be observed around the red lines), (f) further shows the details
of distortion around the red line.

a. b. 3 iterations. c. 5 iterations

Figure 4. Illustration of the iterative results of our method

a b c result from [8]

Figure 5. Distortion from re-parameterization.

2010 The 3rd International Conference on Machine Vision (ICMV 2010)

142

Figure 6. Illustration of texture mapping with genus 0.

Figure 7. Illustration of texture mapping with genus 2.

a b c

Figure 8. Illustration of convergence of an extreme case.

Table 1 Experiment statistics
Experiment Vertex Num Of

constraints (k)
Num Of

Iteration (m)
Distoration Total time (seconds)

L-2 L-Inf

Fig 6 1672 51 5 0.1019 0.4447 6
Fig 7 1672 62 5 0.1718 0.7714 6.8

2010 The 3rd International Conference on Machine Vision (ICMV 2010)

143

