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Executive summary 
The Water Framework Directive (WFD) requires EU member states to assess, monitor 
and, where necessary, develop programmes of measures to improve the ecological 
quality status of all water bodies (lakes, rivers, coastal and transitional waters). These 
assessments should be based on standardised sampling or surveying methods for one 
or more biological quality elements (BQEs), including fish, macroinvertebrates, 
phytoplankton, diatoms and macrophytes, and habitats.  
 
Whatever methods, procedures and rules are used, the WFD requires estimates of the 
uncertainty associated with the estimate of status classification for any water body. 
 
The RIVPACS (River Invertebrate Prediction And Classification System) approach 
compares the observed (O) macroinvertebrate fauna and metric values with model-
derived site-specific predictions of expected (E) values (based on environmentally 
similar high quality reference sites). This approach has been used to assess the 
ecological condition of UK water bodies since the 1990s. RIVPACS pre-dates (and 
helped inform) the WFD.  
 
Implementing the WFD in the UK has required updating the RIVPACS methods with 
new models. This has included: adjustments for varying reference site quality; the 
introduction of new metrics; revision of the methods for monitoring overall quality in 
space and time and uncertainty implications; and incorporation of updates into the new 
software package RICT (River Invertebrate Classification Tool).  
 
The objective of this report is to describe, quantify and asses the effect of various 
sources of variation on the uncertainty in estimates of river quality based on 
macroinvertebrate sampling and RIVPACS. However, many of the topics discussed 
also apply to other types of water body and BQE. The report includes the best-
available estimates of the various variance components, based on a mixture of past 
and new datasets and statistical analyses.  
 
The following topics are covered. 
 
• The effect of uncertainty on the confidence of ecological status class and the 

probability of ‘moderate or worse’ status. 
• The RIVPACS approach and the simulation of uncertainty associated with each step. 
• Errors in determining the expected or reference condition values of metrics. 
• How the spatial and temporal scale being assessed and monitored (one site or 

whole water body; one point in time or one season or one year or three-year period) 
influences the sampling requirements and the uncertainty of estimates. 

• Deriving statistical estimates of components of variance. 
• Assessment and estimates of replicate sampling variability. 
• The effect of sample processing errors. 
• Temporal variability (short-term within season, seasonal, inter-year variation within 

three-year reporting periods) and its estimation. 
• Spatial variability between sampling sites within a WFD water body and its 

estimation. 
• Links to and comparison with the VISCOUS approach. 
• Comparing combined season sample observed/expected (O/E) values with average 

single season sample O/E values. 
• Uncertainty for multi-metric and minimum or worst case rules. 
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• Uncertainty results from the Europe-wide STAR (Standardisation of River 
classifications) project, including the relative precision of different metrics and 
sampling methods. 

 

The following recommendations come out of this study. 
 

• The new RICT software should include specific estimates and information on the 
confidence of failing to achieve good or better status in addition to the confidence 
of belonging to individual WFD status classes. 

• There is a need to collate and analyse a much larger dataset of spatial variability 
between sampling sites within the new WFD water bodies, ideally with temporal 
and replicate sampling information on at least a subset of the same sites. This 
should allow improved estimates of the scale of spatial heterogeneity within 
rivers. 

• Methods giving fixed RIVPACS predictions for each site should be developed. 
These should be based on either temporally-invariant Geographic Information 
System/map-based site and catchment environmental variables or long-term 
(five-year) average environmental variables. This would provide O/E values for 
every sample and allow direct assessment of O/E variance components.  

• Some environmental parameters can be affected by flow and so current 
predictions can miss the impact of abstraction. There is a need to develop 
predictions that are not influenced by flow or new rules for using such data for 
WFD predictions (because flow pressures are to be considered). 

• There should be further analyses of RIVPACS sample audit data to derive and 
incorporate direct estimates of sample processing errors and biases in other 
indices (in addition to NTAXA) into the RICT software for assessing confidence of 
class. 

• The merit of using the average of single season sample O/E values as a 
measure of water body quality over a period should be reconsidered, and 
contrasted with the current combined season sample approach. 

• Statistical methods to cope with any actual temporal and spatial mix of samples 
should be developed and these methods incorporated into either the RICT 
software or an extended version of the VISCOUS-type software tool. 

• A standardised sampling approach for assessing non-wadeable rivers (based on 
Environment Agency/North South Shared Aquatic Resource/Centre for Ecology 
& Hydrology ‘deep rivers’ research) should be developed and a Biological 
Assessment Methods-like study to quantify uncertainty conducted. 
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1 Introduction 

1.1 WFD and uncertainty 
The EU Water Framework Directive (WFD 2000) requires each member state to 
assess, monitor and, where necessary, improve the ecological quality of its water 
bodies (rivers, lakes, transitional and coastal waters). Assessing the quality of these 
water bodies involves the use of one or more Ecological Quality Ratios (EQRs). Each 
EQR represents the relationship between the value of a biological parameter (index or 
metric) observed for a water body and the expected value for that parameter if the 
water body were in reference condition The WFD requires each member state to use 
these EQRs to classify water bodies into one of five ecological status classes (see 
Figure 1.1). 
 

 

Figure 1.1 WFD requirement for the use of EQRs divided into five ecological 
status classes 

 
The WFD also requires member states to establish a monitoring network and to 
monitor any changes in the ecological status of water bodies. Ideally, all water bodies 
should be in ‘good’ or higher ecological status by 2015 (WFD, Article 4, 1(a)(ii)). Where 
water bodies are currently judged to be of insufficient quality, member states are 
required to develop ‘programmes of measures’ for that river basin or sub-catchment to 
help improve its ecological status. 
 
Any measures of ecological quality are of little value without some knowledge and 
quantitative estimates of the precision and confidence with which they assign sites and 
water bodies to ecological status classes. This is a requirement of the WFD, which 
states that ‘Estimates of the confidence and precision attained by the monitoring 
system used shall be stated in the river basin monitoring plan’ (WFD, Annex V, Section 
1.3). 
 
The WFD recommends (Annex V, Section 1.3.4) that monitoring based on macro-
invertebrate sampling should be based on intervals of no more than three years and 
that sampling ‘frequencies shall be chosen so as to achieve an acceptable level of 

 Ecological Quality Ratio  =    Observed value of metric 
            (EQR)                           Reference Condition value

Classification into ecological status 
‘Bad’                ‘Poor’         ‘Moderate’          ‘Good’               ‘High’ 

EQR 
10 

EU Water Framework Directive Annex V section 1.4.1 requires: 
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confidence and precision’. Thus, the concept that all estimates of ecological quality for 
water bodies are subject to a range of sources and levels of uncertainty is an integral 
part of the WFD. 

1.2 River assessment using macroinvertebrates and 
RIVPACS 

The WFD requires member states to assess the ecological status of its rivers based on 
appropriately informative aspects of the biota at the site. These biota (referred to as 
Biological Quality Elements (BQE) in the WFD) can be phytoplankton, macrophytes 
and phytobenthos, benthic invertebrate fauna and fish fauna (WFD, Annex V, Section 
1.2). River water body assessments can be based on either a single BQE or a 
combination of BQEs. The choice of BQEs and the metrics to be used within each BQE 
should depend upon their ability (statistical power and precision) and cost-effectiveness 
at quantifying the ecological quality of river sites, and detecting and quantifying 
changes in quality within monitoring programmes. 

1.2.1 RIVPACS 

In the UK, national biological monitoring of rivers has concentrated on the gradual 
collaborative development and use of RIVPACS (River Invertebrate Prediction And 
Classification System; Wright et al. 1984, Wright 2000, Wright, Sutcliffe and Furse 
2000). This has mainly involved research staff at the Freshwater Biological Association 
(FBA), the Institute of Freshwater Ecology (IFE) and the Centre for Ecology & 
Hydrology (CEH), and staff within the UK government environment agencies – the 
Environment Agency, the Scottish Environment Protection Agency (SEPA) and the 
Northern Ireland Environment Agency (NIEA). RIVPACS provides standardised 
macroinvertebrate sampling and bioassessment methods, which are applicable to all 
types of wadeable streams and rivers throughout the UK. 
 
RIVPACS works by comparing the observed fauna and observed values of derived 
biotic indices with the site- and season-specific expected fauna and expected values of 
those indices. The expected fauna are based on a previously-developed predictive 
statistical model that relates the observed fauna of high quality reference sites to their 
environmental characteristics (Figure 1.2). 
 
RIVPACS can be used to estimate the expected value of any macroinvertebrate-based 
biotic index for a monitoring site, as follows: 

Expected index value  = ∑
=

=
g

k
kkI IpE

1
  

where pk = RIVPACS probability of site belonging to RIVPACS site end-group k 
          Ik  = Average value of index for the RIVPACS reference sites in end-group k 
          g  =  number of end-groups. 
 
Separate predictions are made for samples from each of the three RIVPACS sampling 
seasons: spring (February–May); summer (June–August); and autumn (September–
November). It also makes predictions for combined season samples based on any 
combination of two or three seasons within one year. 
  
Since the mid-1990s, national assessments of river sites have been based on the use 
of RIVPACS O/E (observed/expected) values for two macroinvertebrate indices 
identified to BMWP (Biological Monitoring Working Party; see Armitage 1983) family 
taxonomic level. Under the BMWP system, each family is given a score (1–10) based 
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on its perceived tolerance to pollution, especially organic pollution; a score of 10 
indicates least tolerance and a high susceptibility to organic stress. The two indices 
are: (i) number of BMWP-scoring families present in a sample (denoted by the term 
NTAXA) and (ii) the average score per taxon present, calculated as the sum of scores 
of all taxa present (denoted the BMWP score) divided by NTAXA, and referred to by 
the term ASPT. 
  

Environmental data

Prediction of fauna expected
if site is unstressed using 

“model” based on Reference sites

Biological 
sample

Expected (E) 
fauna

Observed (O) 
fauna

Automated 
comparison

“Reference Condition”

Assessment of site’s biological condition  
(e.g. O/E ratios and Ecological Status (WFD)

The 
RIVPACS 
approach
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Figure 1.2 Schematic diagram of the RIVPACS bioassessment approach 

 
A site assessment includes the following steps: 
 

i. Calculate observed (O) sample values of each index. 

ii. Calculate site- and season- specific expected (E) value of each index. 

iii. Calculate O/E ratios for each index, denoted O/ENTAXA and O/EASPT for 
these indices. 

iv. Classify the site into a quality class based on pre-determined class limits for 
each O/E (this is done independently for each index). 

v. A site’s overall class is determined by the worst of its classes based on 
O/ENTAXA and O/EASPT. 

vi. Assess probability/confidence of class both for each index and overall using 
RIVPACS uncertainty simulation software, based on prior estimates of the 
various sampling variance and error terms. 

This is a form of the ‘worst-case’ or ‘one-out all-out’ rule. Since 1995, sites have been 
classified into one of six classes (a–f) based on the limits shown in Figure 1.3. 
However, this system of classification is currently being revised to comply with the 
WFD and its prescribed five class classification. Hence, new class limits and rules will 
be incorporated into the River Invertebrate Classification Tool (RICT) software currently 
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being developed within SNIFFER (Scotland and Northern Ireland Forum for 
Environmental Research)/SEPA projects. 
 
Very importantly from the point of view of standardisation and consistency, a detailed 
procedures manual (Environment Agency 1997) provides guidance on how to collect 
and analyse RIVPACS samples. This manual also provides detailed instructions on 
how to measure and obtain values for each of the environmental variables used in the 
RIVPACS software to derive predictions for the site-specific expected fauna and the 
expected values of biotic indices.  
 

Figure 1.3 General Quality Assessment ecological grades and limits used for UK 
river assessments based on RIVPACS O/E values for NTAXA and ASPT 

 
In addition, since RIVPACS was first used in national assessment surveys in 1990, the 
RIVPACS approach has pioneered the establishment and continued use of internal 
quality assurance and external quality auditing schemes. These assess and help to 
improve and maintain the quality of laboratory sample sorting and taxonomic 
identification skills. 
 
By the early 1990s, the RIVPACS development team had already grasped the 
importance of understanding and quantifying the sampling errors and uncertainty 
associated with the RIVPACS (or any other) method of deriving estimates for the 
biological quality of freshwaters. This led to the carefully-designed BAMS (Biological 
Assessment Methods) study, which explored RIVPACS field sampling variation, the 
consequences of sample processing and identification errors, and the effects of errors 
in measuring the RIVPACS environmental predictor variables (Furse et al. 1995, Clarke 
et al. 2002).  
 
The apparent success of RIVPACS and its professional approach to standardisation, 
consistency of methodology and attempts to measure uncertainty probably helped 
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contribute towards the overriding importance placed on biological/ecological 
assessments within the WFD. 
 
However, the various steps involved in RIVPACS bioassessments are, as with all 
methods, prone to considerable sources of natural spatial and temporal variation in 
biota, measurement and prediction error; all of which contribute to uncertainty in site 
and water body assessments of EQR values and ecological status. Each of these 
sources of uncertainty, together with how we have attempted to assess, quantify and 
incorporate them, are discussed in detail in subsequent sections of this report. 

1.2.2 Need for sampling and assessment methods for non-
wadeable rivers 

At present, RIVPACS only covers river sites that can be sampled by kick-sampling in a 
stream with a pond net. Non-wadeable (deep and/or fast flowing) rivers are not covered 
by the RIVPACS reference sites and kick-net sampling. Comparing an observed 
sample index value obtained using a deep-water sampling method such as air-lift with 
a RIVPACS expected value based on kick-net samples is not comparing like with like. 
Such a comparison is likely to give biased estimates of O/E according to whether a 
pond-net and kick-sampling provides a different number and range of taxa to an air-lift. 
There is still a need to develop a standardised sampling approach for assessing non-
wadeable rivers (based on Environment Agency/NS Share (North South Shared 
Aquatic Resource)/CEH ‘deep rivers’ research) and to undertake a BAMS-like study to 
quantify uncertainty. 

1.3 Need for estimates of confidence of class 

1.3.1 Reasons for assessing uncertainty 

We need to be able to generate statistical information on the uncertainty of any 
ecological quality classification scheme and the likely risk of misclassifying the status of 
sites and water bodies. EU member states are expected to maintain and, where 
necessary, help improve the overall condition of aquatic resources. This is so that, 
ideally by 2015, all water bodies are granted ‘good’ or higher ecological status, unless 
there are over-riding economic considerations. Given the importance, and implications, 
being placed on determining whether a water body is in ‘moderate’ or worse status 
class, we need to be able to estimate the probability that a water body could actually be 
of ‘good’ or better status. European environment agencies need to be confident that 
current river quality is inadequate in order to justify the costly measures that will be 
needed to get a water body to achieve ‘good’ or higher status. (We also need to 
provide evidence of how confident we are that any Programme of Measures (POMs) 
will actually improve the river ecology). 
 
In addition, when we assess the ecological quality of a site in two different years or 
monitoring periods, the observed estimates of site quality will usually differ and the 
estimated ecological status class may also have changed. We need to be able to place 
some confidence on the likelihood that a real change in quality or status class has 
occurred or whether the observed changes in biota and derived metrics and EQR 
values is just due to the errors and sampling variation inherent to the assessment 
process. How confident are we that a programme of measures within a catchment or 
sub-catchment has been effective in improving ecological status? 
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1.3.2 Illustrative example of misclassification rates 

It is very useful, at this stage, to have some quantitative understanding of the general 
effects that sampling variation and other errors can have on the confidence with which 
we assign a site or water body to an ecological status class.  
 
General formulae derived by Clarke et al. (1996) are summarised in Figure 1.4. These 
show the probability (PM) of misclassifying a site/water body of any particular true 
quality (true EQR – plotted along the X-axis) in relation to the size of the errors or 
uncertainty in the estimated EQR values. In this sense, the true class can be thought of 
as the class of the average of all possible sample EQR values that we could have 
obtained for this site/water body. 
 
The error/uncertainty standard deviation (SD) of the EQR values represents the SD of 
the set of all possible EQR values that we could have obtained for that water body for 
the monitoring period with that sampling scheme. In other words, the SD that arises 
from sampling at different places within the site or water body and at different times 
within the period being assessed.  
 
It is useful to express this uncertainty SD in EQR values (denoted ESD) as a 
percentage (denoted %ESD) of the width of an ecological status class (range of EQR 
values within a class). For example, if the lower limits in the EQR of a particular metric 
for the ‘poor’, ‘moderate’ and ‘good’ classes are 0.4, 0.6 and 0.8, then the width of each 
of these intermediate classes is 0.2. This means that if the uncertainty SD in EQR 
values for that metric is 0.05, then the %ESD is 25 per cent (0.05/0.2).  
 
For illustrative simplicity, the width of the middle status classes (‘poor’, ‘moderate’ and 
good’) are equal in Figure 1.4 and the errors/uncertainty are assumed to vary 
according to a normal distribution. However, in real situations, the status class widths 
may be unequal. In this case, for a given value of ESD, %ESD and the probability of 
misclassification will be higher for sites whose true class has a relatively narrower 
range of EQR values. 
 
From Figure 1.4, when the uncertainty SD in the EQR values is only 10 per cent of the 
width of a status class (shown in green), sites whose true quality lies in the middle of 
the class would never be misclassified (PM = 0). Sites whose true quality lies on (or 
almost on) the border of any two classes will always have at least a 50 per cent chance 
of being placed in the wrong status class. When error standard deviations are only 10 
per cent of class width, the overall average misclassification rate for sites in a middle 
class, such as ‘good’, ‘moderate’ or ‘poor’, is only 8 per cent (assuming an even spread 
of true qualities across the class) (Figure 1.4).  
 
If however, the uncertainty SD is 50 per cent of the class width (shown dotted in blue), 
even sites in the centre of a middle class have a 1 in 3 chance of being placed in the 
wrong class and 39 per cent of all sites in the class will be misplaced in either a higher 
or lower class.  
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Figure 1.4 Probability (PM) of misclassifying a site of any particular true quality 
(EQR) in relation to the uncertainty SD of the EQR expressed as a percentage 
(%ESD) of the width of a status class for that EQR  
Note: Mean and range of PM apply to the middle classes – good, poor and moderate – which are assumed 
to be of equal width. 
 
If the error SD is equal to the class width (100 per cent; shown in purple), as is likely if 
the metric is highly susceptible to sampling variation and other effects, then all sites 
whose true quality lies within a middle class are more likely than not to be placed in the 
wrong status class (either a class above or below the true class). For example, a site 
whose true average EQR lies in the ‘good’ class, but very near the high/good 
boundary, will have a 50 per cent chance of being misclassified as high, but it will also 
have an additional 16 per cent chance of being misclassified as moderate (or even 
poor/bad), leaving only a 34 per cent (one in three) chance of being classified as good. 
 
Obviously, sites of very ‘high’ or very ‘bad’ quality, which are well away from the 
boundaries of the best or worst status classes, are unlikely to be misclassified. The 
overall probability of misclassifying sites from the top or bottom classes (‘high’ or ‘bad’) 
is only half that for sites from middle classes. The probability is only one-quarter if the 
top or bottom class width in EQR values is twice that of the middle classes (assuming 
an even spread of true qualities across the class).  

%ESD     Mis-classification rate (PM)
                 Average     Range 
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  30%           24%        10–50% 
  50%           39%        32–52% 
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1.3.3 Confidence of ‘good or better’ or ‘moderate or worse’ 
status  

Although the WFD requires that water bodies are classified into one of five ecological 
status classes, the primary concern is whether a water body is of good or better status 
or whether it is of moderate or worse status and requires a programme of measures for 
improvement.  

If we are only interested in this dichotomy – ‘good or better’ versus ‘moderate or worse’ 
– then the confidence of class (probability of true class) merely depends on how far the 
water body’s sample EQR value (denoted EQRO) is from the critical good/moderate 
boundary EQR value (denoted EQRG/M ). This is relative to the size of the uncertainty 
SD (ESD) associated with the sample EQR value. 
 
In assessing confidence of class, we assume that the random uncertainty variation 
associated with any sample EQR value follows a normal statistical distribution (a 
symmetrical bell shape with 95 per cent of the sample values within two SD of the true 
EQR mean). The same normality assumption was used by Julian Ellis and others in the 
development of the CAVE (Combines Appropriate Variance Estimates) and VISCOUS 
(Variability In Spatial Component Objectivity Unified Statistically) software and methods 
for assessing the effects of EQR uncertainty on confidence of class (see Ellis 2007). 
 
If      EQRDiff  = EQRO – EQRG/M (amount sample EQR differs from the 

good/moderate boundary; sign (+/-) is crucial) 
and   
        EQRZ    = EQRDiff / ESD (difference as multiple of the EQR uncertainty SD) 
 
then  PG+       = probability of a water body being of ‘good or better’ status 
         = CDFNorm(EQRZ) 
 
where CDFNorm(X) is the cumulative probability of a standard normal deviate (with 
zero mean and variance of unity) being less than or equal to X. 
 
If a water body is not of good or better status, it must be of moderate or worse status, 
and therefore: 
 
           PM-       = 1 – PG+ (probability of the water body being of ‘moderate or 

worse’ status) 
 
This is summarised in Table 1.1. 
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Table 1.1 Probability of being ‘good or better’ (PG+) and its complement, the 
probability of being ‘moderate or worse’ (PM-), for a range of values of EQRZ  

EQRZ 
Probability  
‘good or better’  
(PG+) 

Probability  
‘moderate or worse’  
(PM-) 

-2.5 0.001 0.999 
-2.0 0.023 0.977 
-1.5 0.067 0.933 
-1.0 0.159 0.841 
-0.5 0.309 0.691 
0.0 0.500 0.500 
0.5 0.691 0.309 
1.0 0.841 0.159 
1.5 0.933 0.067 
2.0 0.977 0.023 
2.5 0.999 0.001 
Note: These figures represent the extent to which the observed EQR exceeds the good/moderate boundary 
EQR value, standardised by the EQR uncertainty SD. 

To have at least 95 per cent confidence that a water body is of ‘good or better’ status 
based on a single EQR, the sample EQR value needs to be at least 1.645 times the 
uncertainty SD above the critical good/moderate boundary value for that EQR.  

Conversely, to have at least 95 per cent confidence that a water body is of ‘moderate 
or worse’ status based on a single EQR, the sample EQR value needs to be at least 
1.645 times the uncertainty SD below the critical good/moderate boundary value. 

These probabilities are further illustrated in Figure 1.5. This shows the probability of 
being of ‘good or better’ status for the complete range of sample EQR values, when the 
good/moderate boundary is set at 0.7 and the uncertainty SD varies from small (0.05) 
to large (0.25). When the uncertainty SD is only 0.05, the sample EQR needs to be 
only 0.617 or less to be at least 95 per cent confident that the water body is truly of 
‘moderate or worse’ status (based solely on this EQR and its underlying metric(s)). 
However, when the uncertainty SD is larger, at 0.15 or 0.25, then the sample EQR 
needs to be no more than 0.453 and 0.288, respectively, to have 95 per cent 
confidence that the water body is not of good or better status. 
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Figure 1.5 Probability (PM-) that a given sample EQR value is from a water body 
whose true status class is ‘moderate or worse’ for the example situation where 
the good/moderate boundary value is set to 0.7 and the sample EQR uncertainty 
standard deviation (ESD) is 0.05 (blue), 0.15 (black) or 0.25 (red)  
Note: Arrows indicate EQR values required to give 95 per cent confidence of ‘moderate or worse’ status class. 

1.3.4 Uncertainty for sites with O/E values greater than one  

For river bioassessments based on macroinvertebrates and RIVPACS, the EQR values 
are based on RIVPACS O/E ratios that can exceed one. Although WFD EQR ratios are 
supposed to be confined to the range 0–1, it is logical when assessing status class 
uncertainty to use the actual O/E values and derive or simulate estimates of confidence 
around these values in order to estimate confidence of class for the whole site. This is 
because if the O/E value is considerably above one then the site is definitely of high 
status. Whereas, if we re-set the O/E value to a maximum EQR value of one before 
simulating the uncertainty related to this value then we might under-estimate the 
confidence that the site was of high quality. If required for WFD reporting purposes, 
O/E values greater than one can be reset to one, but only after the confidence of class 
has been based on assessing uncertainty about the actual RIVPACS O/E value. 
 
More generally, outside of RIVPACS, the WFD requirement to constrain EQR values, 
based on comparing observed and expected/predicted index values derived from 
available reference sites, to not exceed one can cause practical problems. This means 
great care should be taken when assessing uncertainty and confidence of class for 
sites with WFD EQR values set, or reset, to one. 
 
In the CAVE approach for assessing uncertainty in EQR values, Ellis developed a 
method for fitting a curve to data of the relationship between the SD of sample EQR 
values and the mean of the sample EQR values. This forced the quadratic-like 
regression relationship to pass through SD=0 when the mean EQR was 0 and 1. This 
is done on the basis that for the (assumed true) mean EQR value to be a minimum of 
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zero and a maximum of one there cannot be any variation between the sample values 
at the site with such a mean value. However, in real situations, the mean EQR value for 
a site is often based on just a single, or maybe two or three, samples.  
 
In such cases, the observed sample EQR value(s) could by chance easily all be one, 
especially if O/E (EQI Environmental Quality Index) values (much) greater than one are 
all reset to one. But other samples from the site might give EQR values less than one 
and there is real uncertainty in the site assessments. Therefore, it is incorrect to 
assume there is no sampling uncertainty when the mean sample EQR is one. This 
highlights an advantage in the RIVPACS-type simulation of uncertainty in the ‘raw’ O/E 
values: the simulated values can then be converted to EQR values on the 0–1 scale 
using the same rules as applied to the actual sample O/E values. 
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2 Sources of uncertainty in 
estimates of biotic indices 
and ecological status class 

An estimate of any index, metric or measure of freshwater ecological quality (irrespective 
of whether a RIVPACS-type approach is involved) is of little value unless we have some 
idea of the sources and sizes of the sampling and other potential errors and uncertainty 
involved. 
 
Using a RIVPACS or related WFD approach to assess ecological quality, the observed 
(O) values of one or more biotic indices are compared with the expected (E) or reference 
condition (RC) values of those indices through the use of EQRs. These are most often 
calculated in the form of O/E ratios, as initially developed in RIVPACS. Thus the 
uncertainty in any such EQR values is potentially due to sampling and other errors in the 
observed metric value and estimation and/or modelling errors in setting the expected or 
RC value of the index. Each source of uncertainty is discussed below. 

2.1 Sources of variation in the observed fauna and 
observed index values 

Catchments and rivers must be sub-divided into mutually-exclusive WFD water bodies 
(sections) for monitoring purposes. Within each section, one or more sampling site(s) are 
taken to be representative of the prevailing ecological condition in the water body as a 
whole.  
 
For UK national monitoring of the ecological quality of rivers based on macroinvertebrates 
and RIVPACS, each river has been divided into sections, now referred to as water bodies. 
WFD water bodies were chosen (at least by the Environment Agency) according to 
simple typological criteria related to WFD System A criteria for stream types 
(catchment area, altitude, geology), without regard to the existing system of General 
Quality Assessment (GQA) monitoring reaches which were selected as relatively 
homogenous sections of river.  
 
Usually, a single sampling site is taken to be representative of the whole water body. 
However, in some situations, there are two or more existing monitoring sites within the 
same new water body, and this provides valuable information on spatial variability 
between sites within a water body (this is discussed in Chapter 6). Unfortunately, partly 
because of the way water bodies are formed, there are some newly-formed water bodies 
with no past or current monitoring sites. The condition of these water bodies must be 
inferred from ‘environmentally-similar’ water bodies.  
 
In the 1990s, when uncertainty issues were first considered within RIVPACS, the practical 
aim was to assess uncertainty in RIVPACS O/E estimates of ecological quality for a single 
site at a set point in time. Thus, only two sources of variation in observed index values 
were assessed and allowed for in the RIVPACS III+ software uncertainty simulation 
module. These were:  
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• replicate sampling variation (differences between replicate samples taken 
at the same site on the same day); 

• sample processing and taxonomic identification errors. 

 
However, with the advent of the WFD, the future strategy for national monitoring will now 
be based (at least by SEPA) on estimates of the ecological quality of each water body 
over a three-year period (see section 7.1). In particular, it is very likely to be based on an 
estimate of the ‘average’ quality across the water body as a whole over the three-year 
period. This estimate should be based on sampling at one or more sites within the water 
body at one or more times within the period. A consequence of this is that the uncertainty 
in such estimates of ‘average’ quality should now also involve a range of other sources of 
variation including: 
 

• Spatial variability between sampling sites within a water body (‘inter-site’). 

• Temporal variability between days within a RIVPACS season (‘within-
season’). 

• Temporal variability between years with the three-year period (‘between-
years’) 

• A spatio-temporal interaction if site differences within the water body vary 
over time.   

In the extreme, if some water bodies are assessed solely according to the quality of other 
water bodies considered to have similar risks, then any similarity or variation between 
these water bodies will also affect the uncertainty and potential errors in the assessments.  
 
In reality, spatial variability occurs at a continuity of scales within a water body, from 
centimetres to kilometres. But it is convenient and makes estimating spatial variability 
more practical if the spatial variation is sub-divided into two hierarchal levels: within-site 
replicate RIVPACS sampling variability and inter-site (within water body) variability.  
 
Each of these sources of variation in the observed fauna and observed values of biotic 
indices are discussed in the following chapters: 
 
Chapter 3 discusses estimating replicate sampling variability, notably through the 
Biological Assessment Methods (BAMS) study. 
  
Chapter 4 discusses the potential impact of, and the means for estimating and allowing 
for, bias due to sample processing and taxon identification errors (based on the BAMS 
study and RIVPACS quality audit results from CEH). 
 
Chapter 5 discusses estimating both within-season and between-year within period 
temporal variance in index values, based on a combination of Environment Agency, 
SEPA and NIEA datasets. 
 
Chapter 6 discusses estimating the spatial ‘inter-site’ variability within water bodies, based 
on an analysis of a new dataset comprising 2–3 sites within each of three water bodies 
within the Dove catchment. 
 
Real temporal variance implies real differences over time in the average sample biota and 
average index values at a site. It is measured by recording the variation in observed index 
values between samples taken at different times (days, weeks or years), over and above 
the normal expected variation between any replicate samples.  
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Real temporal and spatio-temporal variation and changes could be due to 'natural' effects, 
such as the weather (storms, droughts), or to environmental or anthropogenic stress or 
pollution. It may be difficult in practice to differentiate between natural temporal 
variation and anthropogenic causes of change in the biota at individual sites. For 
example, what about the biological effects of a reduction in river discharge? Reductions 
in flow due to weather patterns or changes in climate may be considered natural, but 
reductions in river flow as a result of abstraction could be considered to be a man-
induced stress. For, without abstraction, the river flows in dry years would not have led 
to any ecological stress on the biological communities. 
 
In general statistical modelling terminology, the natural temporal variability can be viewed 
as just adding to the uncertainty and being part of the background ‘noise’. While stress 
related to real changes can be considered the ‘signal’ we are trying to detect, quantify and 
distinguish from the noise.  

2.2 Sources of uncertainty in the expected fauna 
and expected index values 

RIVPACS estimates of the season-specific fauna and biotic index values expected for a 
monitoring site are based on a statistical model. This is developed from the relationships 
between the macroinvertebrate sample community composition at a large number of high 
quality RIVPACS reference sites and a suite of physical and environmental variables 
measuring key aspects of the environmental characteristics of these sites. 
 
The UK RIVPACS models are based on first combining the reference sites into site 
groups based on the similarity of their macroinvertebrate fauna using the statistical 
ordination and clustering technique known as TWINSPAN (Hill 1979). Then the 
multivariate statistical technique known as multiple discriminant analysis (MDA) is used to 
derive discriminant functions for estimating the probability of any site belonging to each of 
the RIVPACS site groups based on its values for key environmental predictor variables. 
These probabilities of group membership can be combined with the average values for 
taxa and indices within each site group to derive site-specific expected values for the taxa 
occurrences, abundances and biotic indices. 
 
The errors in estimating the expected fauna and WFD reference conditions for a site are 
potentially due to one or more of the following factors. 

2.2.1 Inadequate set of reference sites 

Having too few high quality reference sites for all or certain stream types will lead to 
imprecise or inadequate setting of the ‘target’ or reference condition fauna and index 
values. If the reference sites are of inadequate quality, then the expected values of 
BMWP indices will be too low and monitoring site quality will be over-estimated. A 
subtler but even more likely problem is that it may be difficult to find enough, or even 
any, high quality sites for particular types of river (such as rivers in intensively farmed, 
densely populated lowland Britain). This will mean that weaker targets (or reference 
conditions) will be set for such types of river and EQR values and status classes may 
be systematically over-estimated in these regions. 
 
Whatever method is used, if a prediction is based on a very small sample of reference 
sites, the estimated mean (or other percentile) index value used to set the expected or 
Reference Condition value is likely to be imprecise and subject to high standard errors 
– this was discussed in the EU REFCOND project (http://www-
nrciws.slu.se/REFCOND/index.html). Although RIVPACS nominally utilises a weighted 
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average of all reference sites in each prediction, in reality the prediction for some 
extreme sites (such as the Shetlands) could be based on the observed fauna in just a 
few environmentally-similar reference sites. 

2.2.2 Not involving all relevant environmental variables 

The WFD permits the determination of reference conditions for a site from some form 
of the average (such as mean, median) biota of the reference sites in the same stream 
type. For example, System A stream types are based on only three or four classes of 
altitude, catchment area and geology (WFD Annex II, Section 1.2). WFD System type 
B and site-specific predictive models like RIVPACS, which use more site factors, might 
be expected to give more precise targets. The suite of environmental variables used in 
RIVPACS predictions is given in Table 2.1. 
 
As the aim of the predictive models and methods is to define the index values 
expected in the absence of environmental stress, we try not to incorporate any 
variables whose values at the time of measurement may have already been altered by 
the stress that we are trying to assess. 
 
This encourages the use of time-invariant variables (such as site altitude, distance 
from source and underlying upstream catchment geology). There is some attraction to 
having a fixed prediction for each site based on just time-invariant ‘map-derived’ 
variables. As well as long-term (five years) historical average values of site 
characteristics measured in the field prior to the occurrence of current or unacceptable 
levels of stress at the site (as recommended previously by CEH). 
 
However, the macroinvertebrate community varies with the precise small-scale flow 
and plant habitat conditions within a site. For example, RIVPACS deliberately does not 
utilise any measure of macrophyte cover and composition, as this is ephemeral, 
seasonally-volatile and affected by recent flow regimes, but it does influence the 
macro-invertebrates present at a site. 

Table 2.1 Environmental variables used in RIVPACS predictions 

Time invariant (map-based variables) 
map location (National Grid Reference)  latitude, longitude 
                                                                 mean air temperature, air temperature 
range 
altitude at site (m) 
distance from source (km) 
slope (m km-1) 
 
discharge category (1–10)             (1 = ≤0.31, 2 = 0.31–0.62, 3 = 0.62–1.25, …,  
(long-term historical average)        9 = 40–80, 10 = 80–160m3s-1 mean daily flow) 
 
Estimated at site at time of sampling (averaged across the three RIVPACS seasons) 
stream width (m) 
stream depth (cm) 
Sub-stratum composition: %cover of clay/silt, sand, gravel/pebbles, cobbles/boulders 

                                                                         mean particle size (in phi units) 
 
water geo-chemistry:  alkalinity (mg l-1 CaCO3)  
                                    supplied as annual average by Environment Agency chemists  

Note:  denotes derived variable created internally within the RIVPACS software. 
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2.2.3 Choice of statistical prediction method or modelling 
technique 

RIVPACS-type predictive models are based on the biological classification of sites 
followed by the probabilistic environmental MDA of site groups. There are a range of 
alternative measures for estimating the similarity of biological composition between pairs 
of sites (Sorensen presence-absence or Bray-Curtis (relative) abundance-based 
measures) and a variety of potential site/sample clustering methods (nearest-neighbour, 
average-linkage, hierarchical divisive (splitting) or agglomerative (combining)) for subsets 
of reference sites. 
 
Alternatively, completely different statistical approaches, such as neural networks, 
Bayesian belief networks or direct predictive (perhaps non-linear) multiple regression 
models of index values for reference sites in relation to the values for the same set of 
RIVPACS environmental variables, could be used to derive estimates of expected values 
of biotic indices. For example, the EU FAME (Development, Evaluation and 
Implementation of a Standardised Fish-based Assessment Method for the Ecological 
Status of European Rivers) project developed by the European Fish Index (EFI; 
http://fame.boku.ac.at/downloads/manual_Version_Februar2005.pdf ) is based on an 
average of the probabilities associated with the residuals (observed minus predicted 
values) from multiple regression prediction equations for each of 10 fish community 
metrics derived from features of the best available reference sites.  
 
It should be possible to compare the relative accuracy of predictions of biotic indices 
amongst a set of reference sites produced by two or more prediction methods. For 
example, Walley and Fontama (1998, 2000) used neural network techniques on the 
RIVPACS III mainland Britain reference sites database to derive alternative predictors of 
the expected NTAXA and ASPT from the same set of environmental predictor variables 
as used on RIVPACS. The correlations (r) between observed and predicted index values 
produced by their best models were very similar to those based on RIVPACS III (r = 0.84–
0.85 for ASPT and r = 0.67 for NTAXA for both methods). 

2.2.4 Errors in measuring the environmental variables 

RIVPACS predictions for a site in a particular year should be based on the average values 
of the environmental variables measured during each of the three seasons' sampling 
visits. This means that the prediction of the expected fauna changes a little each year. For 
future versions of RIVPACS, the intention of the Environment Agency and CEH is to 
derive fixed predictions of the average fauna to be expected at a site that would apply for 
all years. These predictions would be based on estimates of the average values of the 
environmental variables for the site measured over a period of at least five years 
(excluding any known extreme climatic years). However, little progress has yet been 
made in making such predictions in a consistent prescribed manner. 
 
Errors made in measuring the values of the RIVPACS environmental variables will affect 
the RIVPACS MDA-based predicted probabilities of belonging to each site group and thus 
the expected biotic index values. This can apply both to the time-invariant variables from 
published maps and the variables measured in the field at the time of sampling. 
 
Clarke et al. (1996) assessed the implications of errors in any one predictor variable by 
simulating the addition of independent random normal errors with either a fixed absolute 
standard error (SE of 1,2,3), or a percentage SE (%SE) for log-transformed variables. 
They did this for the recorded value of the variables for each RIVPACS site and then 
assessed the change in expected and O/E index values. They adopted a range of 
potential values for SE (i.e. 1, 2, 3) or %SE (i.e. 5 per cent, 10 per cent, 15 per cent, up to 
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100 per cent), in each case recording the frequency distribution of changes in the O/E 
values. The maximum acceptable errors in O/E due to variable measurement error were 
set at 0.01 for O/EASPT and 0.02 for O/ETAXA. By requiring these error limits to be 
achievable by 95 per cent of the sites, it was possible to specify the minimum precision 
required for estimates of each environmental variable (Table 2.2). 
 
Alkalinity and mean substratum particle size are the two variables requiring the greatest 
precision, which is not surprising as they are two of the most influential variables in the 
MDA. Estimating the substratum size classes and their percentage cover is known to be 
difficult, and thus, may be a significant source of error in estimating expected fauna. A 
site’s discharge category, usually obtained from Environment Agency maps is based on 
long term historical discharge data for representative sites throughout each catchment. 
These maps must be read correctly, especially for small streams (categories 1–2). 
Discharge categories for sites are now usually obtained from Environment Agency 
hydrometric teams as a long-term average, based on modelling and spatial 
interpolation. 
 
RIVPACS predictions require estimates of the annual averages of the temporally-varying 
environmental variables measured in the field, yet most vary seasonally and, to a lesser 
extent, between years. Therefore, taking replicate alkalinity samples or site 
measurements at one point, or over a short period, will not be sufficient to achieve 
acceptable standard errors. Mean values should be based on data from each season, 
while data from years known to be highly abnormal should be excluded. In practice, the 
extent to which all field-based variables are re-measured in each season of each year 
varies within the different environment agencies. 
 

Table 2.2 Tolerable SE (or percentage SE) of estimates of the environmental 
variables used in RIVPACS, based on maximum acceptable errors of 0.02 for 
O/ETAXA and 0.01 for O/EASPT for at least 95 per cent of all sites (condensed from 
Clarke et al. 1996) 

Variable Range of 
site values

Taxa O/E 
≤0.02

ASPT O/E 
≤0.01 

Stream width (m) 0.3–2.0 20% SE 20% SE 
 2–4 25% SE 25% SE 
 4–120 30%SE 30% SE 
Stream depth (cm) 4–10 20% SE 25% SE 
 10–120 30% SE 35% SE 
Stream slope (m km-1 ) 0.2–5.0 30% SE 35% SE 
 5–75 25% SE 30% SE 
Distance from source (km) 0.2–40 20% SE 30% SE 
 40–203 30% SE 35% SE 
Alkalinity (mg l-1 CaCO3 ) 2–30 10% SE 20% SE 
 30–150 15% SE 15% SE 
 150–314 5% SE 5% SE 
Mean substratum -7.75:-6 SE=1.5 SE=1.5 
(MSUBST in phi units) -6:8 SE=1.5 SE=1 
Discharge category (1–10) 1–2 no error allowed 
 3–10 none ±1 
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These computer simulations of variable sensitivity determine what should be considered 
tolerable standard errors of predictor variables for acceptable contributions to uncertainty 
in O/E. To assess the actual typical errors that occur in measuring and estimating the 
RIVPACS predictor variables, several research groups need to make independent 
estimates of each variable for a range of sites. 
 
As part of the BAMS study (Furse et al. 1995), four researchers – two IFE (A and C) and 
two local National Rivers Authority (NRA) staff (B and D) – made completely independent 
estimates of each of the RIVPACS input predictor variables given in Table 2.1 for each of 
the 16 BAMS study sites. Prior to any site visits, each researcher was asked to read the 
relevant part of the RIVPACS procedures manual detailing how each of these variables 
should be measured and then any problems encountered on-site had to be resolved by 
each individual (as would be most realistic). Using appropriate 1:50000 Ordnance Survey 
maps of the National Grid reference, each researcher made independent measurements 
of altitude, slope and distance from source for each site. They also used 
NRA/Environment Agency discharge maps to estimate the long-term discharge category 
for each site. Each researcher also estimated the stream width, depth and substratum 
composition at each of the three RIVPACS seasons site sampling visits. All this was done 
as prescribed in the RIVPACS procedures manual, and interpreted and implemented 
within the researchers’ respective laboratories. 
 
A detailed summary and analysis of the differences between the four researchers in 
estimating the variables for each BAMS site is given in Chapter 4 of Furse et al. (1995), to 
which any interested reader is referred. Overall, they found that the standard deviation 
(SD) or coefficient of variation (%SD) was nearly always within acceptable limits, as 
determined by the previous simulation study summarised in Table 2.2. 
 
The median %SD of variation between the researchers was calculated for the following 
variables: altitude (9 per cent); distance from source (12 per cent); slope (37 per cent); 
width (8 per cent); and depth (8 per cent). The high %SD for slope estimates nearly all 
occurred at lowland sites with little or no slope (less than 1m km-1). Slope is used in its 
logarithmic form in RIVPACS predictions and such discrepancies at the extreme lowest 
possible slopes would not be expected to have any major impact on the RIVPACS 
predicted probabilities of site group membership. At one site where the recorded 
discharge category varied from one to five, the discrepancy was due to one person 
misplacing the true location of the site on the discharge map. Matching the field site to the 
correct map location and vice versa should be checked and verified by a second person 
as so much depends on it. 
 
For most of the 16 study sites, the standard deviation between the four recorders for 
three-season average mean substratum composition was less than one phi unit, and it 
was always less than 1.5 phi units. The largest discrepancies occurred at four sites with 
fine substrates, where the researchers varied considerably in their assessment of the 
relative cover of sand versus silt/clay sediments. 
 
To assess the typical overall combined effect of these real inter-personnel differences in 
estimating the RIVPACS environmental predictor variables for a site, the values of 
variables estimated by each researcher were input into RIVPACS. This generated four 
independent predictions of the expected values of the BMWP indices for each site. Furse 
et al. (1995) then calculated the SD of the four expected values for an index at each site. 
The SD in expected values for a site showed no consistent tendency to vary with the 
mean value. It was therefore assumed that the average of the SD across the 16 sites 
could validly be used as the estimate of uncertainty SD in RIVPACS expected values for 
the BMWP indices caused by errors in measuring the environmental variables.  
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Moreover, when these average standard deviations in expected values were determined 
for each of the seven possible season combinations for RIVPACS predictions, there was 
no relationship with the number of seasons. Therefore, Furse et al. (1995) concluded that 
it was appropriate to use the overall mean of the SD as the single estimate of the 
uncertainty SD in RIVPACS expected value for a site, regardless of the site type or 
number of seasons involved (Table 2.3).  
 

Table 2.3 Average within-site standard deviation (SDE) in expected values of 
NTAXA, ASPT and BMWP score, based on four researchers who independently 
derived estimates of the environmental variables used in RIVPACS predictions of 
expected values for 16 BAMS sites 

Seasons combined TAXA SDE ASPT SDE SCORE SDE 

Spring 0.60 0.083 4.7 

Summer 0.32 0.077 2.8 

Autumn 0.43 0.080 3.4 

Spring+Summer 0.56 0.079 4.7 

Spring+Autumn 0.65 0.086 5.0 

Summer+Autumn 0.50 0.075 4.1 

Three seasons 0.60 0.084 5.0 

Overall mean 0.53 0.081 4.3 
 

2.3 Simulating uncertainty in RIVPACS expected 
values of biotic indices 

Having defined a quality index using a particular approach (such as RIVPACS), then an 
inadequate set of reference sites, not involving all relevant environmental variables and 
the choice of statistical prediction method or modelling technique are part of the definition 
of what is expected at each site. Hence, they are also part of the definition of the quality 
index. If the resulting quality index does not give sensible results, then it can be deemed 
as being a poor method for defining site quality.  
 
It is not feasible to disentangle and determine the true quantitative errors in any estimates 
of expected values or reference conditions. Any such estimates of uncertainty are 
conditional on the availability of appropriate reference sites, their biological sample data, 
the choice and available estimates for environmental predictor variables, and our 
assumed model representation of the relationship between biota and environmental 
variables for reference sites. 
 
It should always be remembered that there is no absolute truth. The uncertainty in any 
statistical or other approach can only be assessed using the limited information 
available. As such, Furse et al. (1995) and Clarke (2000) concluded that, at least at 
present, it was only feasible to include the estimated effects of errors in measuring the 
RIVPACS environmental predictor variables when estimating uncertainty in expected 
values for any monitoring site.  
 
Thus the findings of the BAMS study (Table 2.3) were incorporated into the RIVPACS III+ 
software uncertainty simulations. Specifically, the uncertainty in expected values for the 
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BMWP indices is represented by a statistical normal distribution with the following 
standard deviations (SDE): 
 
   SDE = 0.53    for expected NTAXA 
   SDE = 0.081  for expected ASPT 
   SDE = 4.3      for expected BMWP score. 

2.4 Deriving statistical estimates of sources of 
variance in observed index values 

The sources of variation involved in determining the precision of an EQR estimate 
depend on the spatial and temporal scale over which the estimate of EQR is to apply. 
For example, if the EQR is to be an estimate of the average quality of a single sampling 
site for a single season, then the sampling uncertainty in the average observed index 
value only depends on replicate sampling variation (on the same day), variations 
between sampling personnel and temporal (between-day) within-season variation. (At 
this stage we ignore the effect of any sample processing errors.) 
 
In contrast, if the estimate of EQR is intended to represent the average quality for the 
whole water body over a three-year monitoring period, then additional sources of 
variation need to be considered. These comprise of temporal variation between years 
(within the three-year period) and spatial variation between (potential sampling) sites 
within the water body. 
 
Here, we describe the general statistical approach and methods for estimating these 
various sources of variance. Chapters 3–7 describe how estimates of variance 
components have been derived using a combination of existing Environment Agency 
datasets. 
 
Analysis of variance (ANOVA) and hierarchical nested ANOVA techniques can be used 
to test for, and estimate, the various sources of variation and variance components 
contributing towards the total variance in the observed values of an index for each site 
or water body and time period. Unless the data is obtained from a well-designed 
balanced sampling programme, such as used in the BAMS replicate sampling study, 
the available datasets will usually only have replicate samples for a subset of sites on a 
subset of occasions. These datasets may also only have samples from more than one 
day per season for a subset of years and sites, and will not have samples for all years 
in a period for all sites. Such statistically unbalanced data make it more difficult to 
‘tease apart’ and derive accurate estimates of each source of variance. 
 
In our analyses, we used a combination of general unbalanced ANOVA procedure 
General Linear Model in the MINITAB statistics package (http://www.minitab.com) and 
General Mixed Model ANOVA and REML (Residual Maximum Likelihood) within the 
GenStat statistics package (www.vsn-intl.com/genstat/) 
 
Variation in the observed values of a biotic index for macroinvertebrate samples from 
the same water body is potentially dependent on the following sources of variation 
(discussed in section 2.1): 
 

• replicate samples; 

• sampling personnel; 

• short-term within-season temporal; 
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• inter-year temporal; 

• spatial variation between sampling sites within a water body; 

• spatio-temporal interactions. 

 
Specifically, if Xkijqr is the observed value of the index for replicate sample r taken by 
operator q on day j in year i at site k in the water body of interest, then Ykijqr can be 
expressed in terms of the sum of the components contributing towards the overall 
variation in its values. 
   kijqrkijqkijkikijikijqr eoswsyswyX +++++++= )()(μ  
 
where μ  = overall mean value of Y within the water body and (three-year) time 

period 
 yi = deviation of mean value for year i from the overall mean value μ  
 wij = deviation of mean value for day j within year i from the mean for year i 
 sk = deviation of mean value for site k from the overall mean value μ  
 (sy)ki = interaction deviation of site k in year i from expected based on site 

mean effect sk and year mean effect yi 
 (sw)ki = interaction deviation of site k on day j in year i from expected based on 

site mean effect sk and day-year mean effect wij 
 okijq = deviation of operator q at site k on day j in year i from the mean for site 

k on day j in year i 
 ekijqr = deviation of replicate r by operator q at site k on day j in year i from the 

mean for operator q at site k on day j in year i  
and where 
 2

Yσ  = variance of the yi = variance due to differences between years in mean 
value 

 2
Wσ  = variance of the wij = variance due to differences between days within a 

year 
 2

Sσ  = variance of the sk = variance due to differences between sites within a 
water body 

 2
SYσ  = variance of the (sy)ki  = variance due to spatio-temporal interaction 

between sites and years 
 2

SWσ  = variance of the (sw)kj  = variance due to interaction between sites and 
days 

 2
Oσ  = variance of the okijq = variance due to differences between operators 

within a site on the same day 
 2

Rσ  = variance of the eijkqr = variance due to differences between replicate 
samples taken by the same operator on the same day at the same site 

  = replicate sampling variance. 
 
Assumed minor interactions between operators and sites/days/years are ignored and 
treated as part of the replicate sampling variance. 
 
This approach correctly estimates that part of the overall variance of index values at a 
certain site on a specific day that is due to systematic differences in the ways in which 
researchers take the sample (namely 2

Oσ ) from that part due to pure replicate sampling 
variability arising from small-scale spatial heterogeneity in fauna at the sampling station 
(namely 2

Eσ ). 
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The overall variance ( 2
Rσ ) in observed index values at a site on any one day is the sum 

of the two components, namely: 
 222

EOR σσσ += . 
However, apart from the BAMS study, few RIVPACS sampling schemes yield any data 
on sampling differences between operators and so only their combined effect and 
variance ( 2

Eσ ) can be estimated from replicate sampling data (assuming long-term 
sample data at sites are based on more than researcher). 
 
The average total variance ( 2

Pσ ) in index values at one site over the period is: 
 2222

YWRP σσσσ ++=  
 
The average total variance ( 2

SPσ ) in index values across the whole water body over the 
period is: 
 2222222

SWSYSYWRSP σσσσσσσ +++++=  
 
By consciously and explicitly structuring the sample data in this way within 
spreadsheets in statistics software, it becomes possible to use ANOVA software 
routines to derive estimates of the component of variance involved in the dataset 
variation. Additional sources of variation in the dataset, such as differences between 
sites in different water bodies and long-term temporal differences between three-year 
monitoring periods, also have to be allowed for using additional ANOVA factors/terms. 
This is to derive correct estimates of the above components of variance, which we then 
need to combine appropriately to derive estimates of uncertainty in EQRs and 
ecological status class (discussed in detail in Chapter 7). 
 
The variance components are often reported and used in uncertainty simulation 
software in their SD form (for example, SDR = √ 2

Rσ  denotes the overall replicate 
sampling SD within a site; Table 2.4). 
 

Table 2,4 Definition of standard deviation (SD) form of each variance 
component 

SD term  Description 
SDR = 2

Rσ  Replicate sampling 

SDW = 2
Wσ  Within-season temporal  

SDY = 2
Yσ  Between-year temporal (within three-year period) 

SDS = 2
Sσ  Spatial between site within water body 

SDSY = 2
SYσ  Site by year interaction 

SDSW = 2
SWσ  Site by within-season interaction 

  
Chapters 3–6 summarise the process for estimating each of these variance 
components and standard deviations using a combination of UK government 
environment agency datasets and statistical analyses of variance.
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3 Assessment of replicate 
sampling variability 

Within each sampling site (of metres or tens or metres in length), there will still be natural 
spatial heterogeneity in river conditions and habitats for invertebrates. In particular, there 
will be local-scale variability in flows and the density and composition of macrophytes and 
other aquatic habitats. 

3.1 RIVPACS macroinvertebrate sampling 
procedure and uncertainty 

The RIVPACS prescribed sampling procedures require the field ecologist to make a visual 
assessment of the proportional cover of the different habitats available within the site, 
which must be a source of uncertainty. Having done this, the ecologist is required to 
sample the habitats in proportion to their relative abundance, spending a total of three 
minutes on active sampling. Sampling is usually done by kick-sampling the various 
sediments and disturbing the habitats and plants to catch the dislodged 
macroinvertebrates with a FBA pond-net of fixed mesh size – see RIVPACS procedure 
manual (Murray-Bligh 1997) for further details. 
 
As the RIVPACS sampling process is standardised to a fixed length of active sampling 
time, it is accepted that not all species or families present at the site will be captured. A 
single three-minute sample typically contains 50 per cent of the species and 60 per cent 
of the families found overall in six replicate samples (Furse et al. 1981). Thus, RIVPACS 
samples are not intended or expected to catch all of the taxa at a site. This applies both to 
samples from monitoring sites and to samples from the RIVPACS reference sites, upon 
which the RIVPACS predictive models, and thus predictions of site-specific expected 
values of biotic indices, are based.  
 
When comparing the observed fauna and observed biotic index values for monitoring 
sites with the site-specific expected or RC fauna and expected index values, it is crucial 
that ‘like is compared with like’. As such, exactly the same sampling procedures and 
sample processing methods should be used for the both monitoring and reference site 
samples.  
 
Most obviously, if one person samples for longer than prescribed (but at the normal 
efficiency), then they would tend to obtain and record more taxa and therefore over-
estimate the true quality of the site and water body. In contrast, if staff are not adequately 
trained they may be inefficient at estimating and/or sampling all of the habitats present at 
the site and/or catching the dislodged macroinvertebrates and end up with a sample 
containing fewer taxa (and maybe fewer individuals) than would typically be obtained by 
more experienced personnel. This would lead to under-estimating the ecological quality 
and maybe the status of the site. If the same person repeatedly ‘under-sampled’ this 
monitoring site, then it might be incorrectly concluded that this site was of inadequate 
quality and that management steps were needed to improve the river quality. This 
highlights the potential problem of systematic sampling differences between personnel. 
 
All of these issues concerning replicate sampling variability and inter-personnel effects 
were assessed within the Biological Assessment Methods (BAMS) study (Furse et al. 
1995). 
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3.2 BAMS study sites and replicate sampling design 
The BAMS study (Furse et al. 1995) was the first detailed attempt to quantify the 
effects of variation between replicate RIVPACS macroinvertebrate samples (variation 
between samples taken on the same day at the same river site). The size of the 
sampling variation in biotic index values for a river site can depend on the type of site 
and its ecological quality. As is common in many ecological studies, the more species 
(or individuals) present at a site, the greater the variation in number between replicate 
samples. 
 
Therefore, it is important when trying to quantify sampling variation for an index to 
obtain data on sampling variation at a wide range of qualities and types of site. It is not 
sufficient to only estimate sampling variability at high quality or reference sites. For 
poorer quality sites, these estimates may over-estimate sampling variability for indices 
related to taxon richness. They may also under-estimate typical sampling variability in 
an index like ASPT, which will be based on fewer taxa at poorer quality sites and hence 
potentially be more prone to sampling variability. 
 
The BAMS study therefore involved a carefully designed statistically-balanced 
sampling scheme (see Table 3.1). 
 
A total of 16 study sites were selected in a stratified random manner from the full list of 
over 5000 NRA 1990 River Quality Survey (RQS) sites. Four sites were chosen from 
each of four contrasting RIVPACS II TWINSPAN end-group types: for each type, one 
site was randomly chosen from each of the then four RQS quality classes (A–D). 
 
Each site was sampled once in the spring (March–May), summer (June–August) and 
autumn (September–November) of 1994, using standard RIVPACS three-minute 
sampling procedures (Environment Agency 1997). On each sampling occasion and at 
each site, four macroinvertebrate samples were collected. The first sample was taken by 
an IFE biologist (A), the second by a local NRA regional biologist (B), the third by biologist 
A again and the fourth sample by a second IFE researcher (C). Care was taken to 
minimise the possibility of re-sampling the same locations within the site in order to 
avoid progressive depletion of the fauna. Only the three samples from biologists A and B 
were sorted and identified; those from biologist C were kept in reserve. At any given site, 
the same biologists took the samples in each of the three seasons. For continuity of 
experience and efficiency, the same two IFE biologists sampled at each site but varied 
their roles as biologist A and C at successive sites. This scheme allowed the effects of 
between and within person sampling variation in both single and multiple season site 
assessments to be evaluated.  
 
The macroinvertebrate samples were sorted and identified by experienced IFE 
biologists to minimise the sample processing and identification errors, which were 
quantified by a separate research study (Furse et al. 1995; see Chapter 4). 
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Table 3.1 Characteristics of the stratified random selection of study sites in terms 
of (a) ecological quality grades (A–D) as defined by range of O/E values for BMWP 
indices, (b) RIVPACS site group and (c) location of the full list of the 16 sites 
selected for replicate sampling 

(a) quality grade: 
Range of O/E values 
based on: 

grade A 
‘best’ quality 

B 
 

C 
 

D 
‘worst’ quality 

BMWP score 0.91–1.09 0.52–0.62 0.29 –0.39 < 0.18 
NTAXA 0.94–1.06 0.64–0.72 0.41–0.53 < 0.30 
ASPT 0.97–1.03 0.80–0.85 0.68–0.74 < 0.60 
 
(b) RIVPACS site group - mean value of environmental  variable 
 group 3a 5b 8a 9b 
distance from source (km) 15.3 8.2 11.3 33.0 
width (m) 7.5 4.8 4.8 13.1 
depth (cm) 19.8 21.7 32.5 77.5 
altitude (m) 74 40 40 5 
alkalinity (mg l-1 CaCO3) 81 153 229 170 
predominant substratum cobbles/pebbles gravel gravel/sand silt 
regions of England and Wales SW, NE, Wales central south + 

midlands 
east Wales to 
East Anglia + 
southern chalk 
streams 

SE + East Anglia 

 
(c) Site 
group Grade River name  

Site name 
3a A River Okement South Dornaford 
3a B River Darracott Tantons Plain 
3a C River Croxdale Croxdale House 
3a D Twyzell Burn B6313 Bridge 
5b A Petworth Brook Haslingbourne Bridge 
5b B Sheppey River Woodford 
5b C Sheppey River Bowlish 
5b D Moss Brook PTC Bedford Brook 
8a A Summerham Brook Seend Bridge 
8a B Cuttle Brook Swarkestone 
8a C Poulshot Stream Jenny Mill 
8a D Spen Beck Dewsbury 
9b A Old River Ancholme Brigg 
9b B Broad Rife Ferry Sluice 
9b C Skellingthorpe Drain U/S Skellingthorpe 
9b D Keyingham Drain Cherry Cob 
 

3.3 Estimation of replicate sampling variance and 
SD 

The analysis, results and conclusions from the replicate sampling study of the BAMS sites 
are detailed in Clarke et al. (2002). The replicate sampling mean and SD of each BMWP 
index for each site in each season was estimated from the mean and SD of the three 
replicates. The sampling standard deviation of combined season samples at a site was 
determined from the variability in all n possible combinations of the appropriate single 
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season samples (n = 9 for each pair of seasons – spring-summer, spring-autumn and 
summer-autumn – and n = 27 for all three seasons combined).  

3.3.1 Replicate sampling variability of NTAXA 

The patterns of sampling variation within sites were very similar for each single season 
and for each pair of seasons, so results were combined to give overall estimates for any 
single season (S1) and for any two seasons combined (S2). The range and variance of 
replicate taxonomic richness (index NTAXA) tends to increase with the mean richness 
recorded for a site (Figure 3.1 a–c).  
 
Taylor’s Power Law regressions of log replicate variance against log replicate mean 
were used to estimate the best data transformation for equalising the replicate standard 
deviation for all sites (Taylor 1961, Elliott 1997). The regression slopes (standard errors 
in brackets) were 0.92 (± 0.26; r2 = 22 per cent) for single season samples, 1.21 (± 
0.19; r2 = 47 per cent) for two-season combined samples and 0.94 (± 0.24; r2= 52 per 
cent) for three-season combined samples (Figure 3.1 a–c). None of the slopes was 
significantly different from unity, which indicates that transforming to the square roots of 
the number of taxa (denoted by √NTAXA) should make the sampling variances 
independent of the number of taxa (Elliott 1977).  
 
After transforming to the square root of the number of taxa, the replicate residual 
variation about the site by season mean does appear to be roughly constant for all 
sites and independent of the mean number of taxa present (Figure 3.1 d–f). For single 
season samples, there was no detectable overall tendency for sampling variation to be 
greater in one season than another. This was also the case for the two-season 
combined samples, so only the number of seasons involved in the sample is relevant 
(Figure 3.1). 
 
Subsidiary influences of site quality and type 

Higher quality sites have already been shown to have higher sampling variability in the 
(untransformed) number of taxa, as a simple consequence of greater taxon richness. 
However, Kruskal-Wallis non-parametric ANOVA (Siegel 1956) of the SD of replicate 
values of √NTAXA showed no systematic subsidiary influences (p > 0.05) of site quality 
(grades A, B, C, D) on the variability of √NTAXA (Figure 3.2). Thus all the influence of 
site quality on sampling variability can be determined by the observed number of taxa 
at the site. Kruskal-Wallis ANOVA was used to test for differences in the sampling 
variance of √NTAXA between RIVPACS site groups. These analyses were done 
separately for single, two- and three-season combined samples, and there were no cases 
showing any significant differences (all p>0.05). 

 
Effects of sample order 

For narrow streams especially, one might expect each sample to remove a significant 
fraction of the fauna and thus for taxonomic richness to decrease for subsequent 
samples. However, a Friedman two-way ANOVA of ranks (Siegel 1956) on sampling 
order (1–3) and site by season found no statistically significant (p>0.05) overall trends 
or differences in the number of taxa caught according to the order in which the samples 
were taken. This is important because it increases the validity of comparing the 
variation between replicate BAMS samples taken by the same person (first and third 
samples at each site) with those taken by different biologists (first and second 
samples). 
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Figure 3.1 Plots of loge variance against loge mean of observed NTAXA in replicate 
samples from 16 BAMS sites for (a) single season samples (spring, summer or 
autumn), (b) two-season combined samples and (c) three-season combined 
samples, each with fitted log-log regression lines; corresponding plots (d)-(f) show 
residual variation of the square root of NTAXA for individual replicate samples in 
relation to the mean NTAXA for that site and seasonal combination 
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Figure 3.2 Replicate sampling SD of the square root (√) of NTAXA estimated for 
each of 16 BAMS sites based on (a) single season samples (ο=spring, ⊗=summer, • 
=autumn values), (b) two-season combined samples (ο=spring/summer, 
⊗=spring/autumn,• = summer/autumn) and (c) three-season combined samples 
Note: Sites are classified by ecological quality grade (A,B,C,D), and by RIVPACS II site group (3a, 5b, 8a or 
9b) using vertical dotted lines (and also using different symbols for (c)). 

3.3.2 Inter-operator effects 

The effect of using different biologists on the variability in the observed BMWP index 
values was assessed by comparing the sampling standard deviation SD13, where 
samples 1 and 3 are taken by the same person, with the sampling standard deviation 
SD12, where samples 1 and 2 are taken by different biologists. In particular, if Xijk is the 
value for sample k in season j at site i then 
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The percentage of the total sampling SD due to inter-operator differences was 
estimated by: 
 
          Fpers = 100(SD12 - SD13)/SD12. 
 
The results are given in Table 3.2. The overall SD of replicate values of √NTAXA for a 
single season, averaged across all seasons and sites, is estimated as SD13 = 0.217 
when based on replicate samples taken by the same researcher and as SD12 = 0.247 
when based on replicate samples taken by different biologists. As might be expected, 
SD12 is slightly higher than SD13, but the percentage difference Fpers suggests that only 
about 12 per cent of the overall sampling SD is due to differences between biologists. 
As Fpers is small, most of the sampling variation is due to intrinsic variability in the fauna 
within the site and therefore variation in observed values between sites (or between years 
at the same site) is not strongly dependent on whether the same person took all the 
samples. 
 

Table 3.2 Assessment of inter-operator effects on sampling variation of the 
square root of the number of taxa (√NTAXA), the square root of BMWP score 
(√SCORE) and ASPT  

 √T √S ASPT 
SDO 0.228 0.588 0.249 
SD13 0.217 0.559 0.249 
SD12 0.247 0.612 0.259 
Fpers 12% 9% 4% 
Nmore 20 25 20 
Nless 19 20 24 

 

Notes: SDO, SD13, SD12 denote respectively the average sampling standard deviation based on (i) all three 
replicate samples, (ii) samples 1 and 3 taken by the same person and (iii) samples 1 and 2 taken by different 
biologists. Fpers = percentage of overall sampling SD due to inter-operator variability. Nmore and Nless are as 
detailed in the main text. 

 
As a further check, out of 48 possible cases (16 sites by three seasons) the number of 
cases (Nmore) where Dij2 > Dij3 and the number of cases (Nless ) where Dij2 < Dij3 were 
counted. Where there are relatively large inter-operator effects, Nmore is expected to be 
much greater than Nless. The difference in √NTAXA between two samples taken by the 
same person was as likely as not to exceed the difference between two samples taken 
by different biologists for the same site and season (Nmore ≈ Nless in Table 3.2).  
 
Thus, inter-operator effect was negligible. So providing biologists are adequately 
trained in field sampling procedures, the same estimate of sampling variance can be 
used irrespective of who takes the sample(s). 
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3.3.3 Overall estimates of replicate sampling SD for NTAXA 

We conclude that by transforming sample values for the number of taxa to the square 
root scale, the amount of sampling variation is independent of both the quality and type 
of site. As such, the sampling SD can be assumed to be constant (SD√NTAXA in Table 
3.3). Similar patterns of results were obtained for the sampling variation of two- and 
three-season combined samples. However, as might be expected, a smaller but constant 
standard deviation (SD√NTAXA) applies for the square root of the number of taxa in either 
two- or three-season combined samples, because they are based on more information 
(Table 3.3). 

3.3.4 Replicate sampling variance of BMWP score 

Similar relationships between replicate variance and replicate mean were found for the 
BMWP score index (which is correlated with the NTAXA index). The same square root 
transformation made the replicate sample variance and SD of the square root of the 
BMWP score independent of its mean value, site type and site quality. Estimates of 
average replicate sampling variance obtained by ANOVA across all the site by season 
combinations are given in Table 3.3.  
 

Table 3.3 Overall mean replicate sample variances of the square root of the 
number of taxa (V√NTAXA), the square root of BMWP score (V√NTAXA) and ASPT (VASPT), 
with standard errors of mean variance estimate in brackets 

 mean replicate sampling variance mean replicate sampling SD 

Seasons V√NTAXA V√SCORE VASPT SD√NTAXA SD√SCORE SDASPT 

1 0.0519  
(0.0078) 

0.346  
(0.059) 

0.0618  
(0.0120) 

0.228 0.588 0.249 

2 0.0269  
(0.0030) 

0.175  
(0.021) 

0.0259  
(0.0043) 

0.164 0.418 0.161 

3 0.0211  
(0.0030) 

0.130  
(0.016) 

0.0194  
(0.0072) 

0.145 0.361 0.139 

Notes: The mean variance estimates are calculated separately for single and two- and three-season combined 
samples; SD√NTAXA, SD√SCORE, SDASPT are the corresponding estimates of replicate sampling SD. 

3.3.5 Replicate sampling variance of ASPT 

The replicate sampling SD for observed sample ASPT appears to be independent of 
both the mean observed ASPT and the observed number of taxa at the site (Figure 
3.3). It might be thought that the ASPT value observed for a site would be more variable 
when the ASPT was based on few taxa. Figure 3.3 d–f shows scatter plots for the 
sampling SD of ASPT against the average number of taxa on which the ASPT values for 
that site and season were based. On average, the SD does not tend to decrease 
systematically as the number of taxa on which it is based increases. However, there is a 
tendency for the estimates of the SD for ASPT to be much more variable when based on 
fewer taxa (Figure 3.3 d–f) and when the mean ASPT is low (Figure 3.3 a–c). This is 
especially true for single season estimates of SD based on only three replicate values. 
For variation in ASPT, Taylor’s Power Law regression slopes (± SE) were 0.26 (± 0.88), 
0.28 (± 0.72) and -0.44 (± 1.01) for one, two and three seasons (all r2 < 2 per cent) 
respectively. 
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Thus, there is no consistent tendency for sampling variation in ASPT to depend on 
either the value of ASPT or the number of taxa. This is because samples with low 
ASPT values are generally of poor quality with only a few low-scoring taxa. Although 
ASPT values are more volatile when based on few taxa, this is counter-balanced by the 
reduced variability in the BMWP scores of those taxa present compared with those at 
high quality, taxon-rich sites. 
  
There were no detectable consistent differences in the sampling variance of ASPT 
according to site quality (A, B, C, D) or season(s). There was some evidence that the 
sampling variance of ASPT was greater for sites in groups 3a and 9b, but these 
differences were only significant for two-season combined samples. Such inconsistencies 
and the wide variation in estimates of sampling SD for sites within the same group 
suggest that the sampling variance of ASPT may be adequately represented by the same 
constants for all types and qualities of sites. The only variable being whether ASPT is 
based on single season samples or two- or three-season combined samples (Table 3.3). 
 

 

Figure 3.3 Replicate sampling SD of ASPT versus mean ASPT (a)–(c) and mean 
NTAXA (d)–(f) observed in replicate samples from each of 16 sites for (a) single 
season samples (spring, summer, or autumn), (b) two-season combined samples 
and (c) three-season combined samples 

765432

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
765432

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

765432

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
765432

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

765432

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
765432

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

302520151050

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

302520151050

0.7

0.6
0.5

0.4

0.3

0.2

0.1

0.0

302520151050

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(a)

St
an

da
rd

 d
ev

ia
tio

n

ASPT TAXA
Mean for site / season(s)

(f)

(e)

(d)

(c)

(b)

Replicate sampling SD of ASPT 

Single 
season 

samples

2 seasons
 combined

samples

3 seasons 
combined 

samples

ASPT                    NTAXA 
Mean for site/season(s) 



32  Science Report – Uncertainty in WFD assessments for rivers based on macroinvertebrates and RIVPACS  

 
The SD of ASPT based on replicate samples taken by different individuals (SD12 = 0.259) 
was only marginally higher than that based on replicate samples taken by the same 
biologist (SD13 = 0.249). The estimated percentage (Fpers) of overall sampling variation 
due to inter-operator sampling effects was only 4 per cent (Table 3.2). The difference in 
ASPT between samples one and three (taken by the same biologist) was actually greater 
than the difference between samples taken by different biologists in over half of cases 
(Table 3.2). This suggests that using different researchers to undertake the sampling in 
different seasons, years or at different sites has little influence on the value and precision 
of ASPT, providing that they have been properly trained. 

3.3.6 Summary of BAMS replicate sampling estimates 

In summary, on the basis of the BAMS dataset analysis, replicate sampling SD of the 
square root of the NTAXA index, the square root of the BMWP score and 
untransformed values of the ASPT index can each be estimated by a constant, 
regardless of the site type or quality. These values only decrease according to whether 
the indices are based on single season samples or two- or three-season combined 
samples.  
 
The estimates given in Table 3.3 can be used in uncertainty simulations (Chapter 7) to 
assess the effect of replicate variability on the uncertainty of EQR values and the 
confidence of status class based on one or more of these indices. Indeed, the 
estimates in Table 3.3 are currently used in the RIVPACS III+ (and RPBATCH) 
software as estimates of sampling variation in the observed values of the original 
BMWP indices (square root transformed where appropriate). 
 
The detailed statistical analyses of the BAMS replicate samples dataset described 
above was used to determine the appropriate transformation to be used for each of the 
original BMWP indices. These transformations were then used as the optimum scale 
on which to analyse and estimate the other temporal and spatial sources of variance in 
index values, which are discussed in Chapters 5 and 6. It seems logical that all the 
other variance components for an index are likely to be more consistent across stream 
types and periods when their index values are transformed in the same way as was 
optimal for estimating average replicate sampling variance. 
 
Recent re-analyses of the BAMS dataset in SNIFFER project WFD72C involved both 
the original BMWP indices and the newly-derived revised weighting Walley-Hawkes 
BMWP indices, both un-weighted and weighted for abundance forms. Because the 
original BMWP indices are highly correlated with their revised forms amongst the 
BAMS samples, the square root transformation was also found to be optimal for the 
revised BMWP forms of NTAXA and BMWP score. 
 
Replicate sampling variability in other indices, such as Lotic Invertebrate index for Flow 
Evaluation (LIFE) and Acid-Water Indicator Community (AWIC), were also assessed in 
the SNIFFER WFD72C project. The patterns were slightly more complex, highlighting 
the fact that the patterns and consequences of sampling variability in each new index 
used in bioassessments need to be understood and assessed (see Chapter 7 for 
further discussion). 
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4 Sample processing and 
identification errors, audit and 
biases 

When comparing the observed fauna and observed biotic index values for a monitoring 
site with the site-specific expected or RC fauna and expected index values, it is crucial 
that ‘like is compared with like’. As such, exactly the same sampling procedures and 
sample processing methods and efficiency should be used for both the monitoring and 
reference site samples. This was first highlighted in section 3.1 in the context of the 
importance of having standardised field sampling methods and as little variation as 
possible in field sampler efficiency. The field sampling must therefore be based on clear 
procedures manuals and be conducted by trained staff. 
 
Comparing like with like is also crucial in the context of RIVPACS sample processing back 
in the laboratory. This is especially the case for sub-sampling, sample sorting, finding and 
identifying the taxa present, and maybe counting or estimating their abundances. It is 
important that the same procedures are used to a similar level of efficiency. 

4.1 Sub-sampling 
Some macroinvertebrate and other bioassessment methods are based on analysing 
only a sub-sample of the original field sample. The general idea behind collecting more 
sample material than you can process in the laboratory is to increase the spatial 
coverage and hence the average of spatial heterogeneity within your field sample. This 
is done by mixing the sample up thoroughly and then processing only a manageable, 
more cost-effective sub-sample of all of the material and individuals. However, any 
such sub-sampling will lead to increased uncertainty.  
 
For RIVPACS samples, the whole sample is sorted and processed to try to find every 
taxon present. However, from the point of view of estimating family-level abundances, 
only a fraction of the whole sample may be processed to produce counts of the very 
common taxa (these counts are then multiplied up to give an estimated abundance for 
the whole sample). This is a potential source of uncertainty, although it will not affect 
any indices (such as the original BMWP indices) that are just based on the presence or 
absence of families within the whole sample.  
 
Other sample methods and sample processing protocols involve only sorting through a 
sub-sample of the whole sample collected in the field. For example, the STAR-AQEM 
(STAndardisation of River classifications-Assessment system for the ecological Quality 
of streams and rivers throughout Europe using benthic Macroinvertebrates) method 
used in Germany and some other European countries involves spreading a sample out 
onto a sorting tray comprising a grid of six by five cells and only processing a minimum 
of five of the 30 cells (Hering et al. 2004). Clarke et al. (2006b) showed that this 
laboratory sub-sampling method caused roughly as much variation in the observed 
values of the metrics for a site as the effects of replicate sampling variation in the field.  
 
In the USA and Australia, a common sample laboratory procedure is to count a fixed 
number of individuals (200–300), regardless of how many individuals exist in the whole 
field sample (Ostermiller and Hawkins 2004). 
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4.2 Sample sorting and identification errors 
In sorting the material in a sample from a test site and identifying the taxa, some taxa 
may be missed or misidentified by less experienced staff. What is crucial, however, is 
that, as always, ‘like is compared with like’. This means that the sorting and identifying 
of taxa in any observed sample for a monitoring site needs to be done to a comparable 
level of efficiency and accuracy as the samples from the reference sites used to 
develop the predictive model (RIVPACS or otherwise) upon which the predictions of 
the site-specific expected fauna and index values are based.  
 
If monitoring site samples are processed less accurately than the reference samples, 
then a greater proportion of taxa will be missed. As a result, the O/E ratio for indices 
involving any form of taxon richness (such as BMWP NTAXA and BMWP score) will be 
biased under-estimates of the true EQR and ecological quality of the site. This could 
lead to a systematic under-estimation of the ecological status of the site and water 
body. Missing or misidentifying an unknown and variable number of taxa also adds to 
the uncertainty (in addition to bias) in the estimates of EWR values and ecological 
status. 
 
In the development of UK RIVPACS, all of the reference samples used to develop the 
RIVPACS model predictions were sorted and the taxa identified by (the same core 
group of) very experienced FBA/IFE/CEH staff. These staff have, through long 
experience and testing, been shown to justify their status as experts in UK-wide 
macroinvertebrate taxonomy. Therefore, it is likely that very few families and species, 
especially BMWP families, were missed or misidentified in processing the samples for 
the RIVPACS reference sites. 

Whatever the accuracy of current IFE/CEH staff, it is important that the samples from 
any UK government environment agency monitoring sites are processed to the same 
level of accuracy, or that auditing procedures are used to assess and quantify the 
sample processing efficiency of environment agency staff relative to the IFE/CEH 
experts. 

To assess and control for these potential sample processing biases, in the early 1990s 
the then NRA (which was a forerunner of the Environment Agency) and the IFE set up 
a quality assurance procedure. This involved IFE/CEH staff re-examining randomly 
chosen RIVPACS samples from each agency laboratory after initial sorting and 
identification by agency staff. The UK environment agencies also run their own internal 
quality assurance scheme to help improve and maintain standards within each 
laboratory. 

Samples for audit by IFE/CEH were selected internally by each of the agencies being 
monitored. The biologists processing these samples had no prior knowledge of which 
samples were to be audited. The manner of sample selection, which biologists would 
be monitored and the number of audit samples from each season were left to the 
discretion of the agencies, within the limits of the total number of samples that IFE/CEH 
was contracted to audit.  

For each sample to be audited, the UK government environment agency concerned 
provided CEH with a list of the BMWP families recorded as being present in the 
sample, a vial containing representative individuals from each found family, and the 
whole remaining preserved sample. In the audit, the taxa in the supplied vial were re-
identified and all differences noted, including both missed and misidentified taxa. 
IFE/CEH audit staff then identified all the taxa in the supplied remaining sample. 
Families found by IFE/CEH staff but not recorded by the agency as present are 
referred to as ‘gains’, while ‘losses’ were families recorded as present by the agency 
but not found by IFE/CEH staff. The ‘gains’ minus ‘losses’ represents the net under-
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estimation of the number of BMWP families present in the sample, referred to as the 
sample bias. 

 
This auditing process by CEH has continued up to the present time. Each year for each 
region and laboratory of each agency (Environment Agency, SEPA and NIEA), CEH 
provides standard reports of the individual families missed and the families misidentified in 
each audited sample, together with the net under-estimation (bias) of the number of 
BMWP families present in the audited samples. The average bias for an agency 
laboratory, area or region is a measure of the how well it is maintaining or improving 
RIVPACS sample processing standards. The detailed information on which taxa tend to 
be most frequently missed or misidentified helps show where additional training is 
needed.  

4.3 Estimation of sample processing biases and 
implications for uncertainty 

Part of the BAMS project remit (Furse et al. 1995) was to try to develop procedures to 
quantify the effects of sample processing errors on biases in the observed values of the 
BMWP indices, O/E ratios and estimates of uncertainty in ecological quality. To do this, 
a stratified random subset of NRA samples was selected. These samples had either 
been audited in 1990 (the fist year of auditing) or 1992 (when efficiency had improved), 
ensuring that the samples covered a range of classes of recorded taxon richness (1–
10, 11–20, 21–30, >30) spread over the three RIVPACS seasons and across all 10 
NRA regions. 
 
Overall, this BAMS study found that the NRA staff missed 15.3 per cent of all family 
occurrences in 209 samples audited in 1990. But in 1992 only 8.3 per cent of all family 
occurrences were missed by NRA staff for 211 samples audited. 

In these early quality audit (QA) years, the families missed by the NRA in over 25 per 
cent of the samples in which they were present were Dendrocoelidae, Valvatidae, 
Physidae, Planorbidae, Hydrophilidae, Scirtidae, Psychomyiidae, Hydroptilidae, Goeridae, 
Lepidostomatidae and Brachycentridae. The most frequently missed taxa (over 20 times 
amongst 209 samples in 1990) were Hydrobiidae, Lymnaeidae, Planorbidae, 
Sphaeriidae, Hydrophilidae, Elmidae and Hydroptilidae, but this is partly because these 
taxa are widespread. 

The BAMS study concluded that the number of taxa incorrectly recorded as present in a 
sample (‘losses’ averaged 0.26 per sample in 1992, or one family per four samples) is 
negligible compared to the number of taxa missed (‘gains’). However, in all analyses of 
the impact on the BMWP indices, the net effect or bias (‘gains’ minus ‘losses’) was 
assessed. 

4.3.1 Bias in recorded number of taxa 

When auditing began with the 1990 samples, many regions were missing, on average, 
three or four taxa per sample. In the first spring season, up to eight or nine families were 
missed in three regions, with 15 taxa missed from one sample. 

After national improvements in the NRA's sample processing procedures, the average 
net under-estimation of the number of taxa in the 1992 samples was reduced to 2.0 or 
less in all regions. Except for the Thames region, where a lapse in the quality of sample 
processing in autumn 1992 led to an average of four taxa being missed per autumn 
sample.  
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Around the same period, the Water Research Centre (WRc) was commissioned to 
devise a statistical quality control scheme for sample processing and auditing for an 
agreed tolerable under-estimation rate of an average of two families per sample (van 
Dijk 1994). This scheme has continued to be used by the UK government environment 
agencies in their internal quality control for RIVPACS sample processing. 

In the BAMS study of biases, it was assumed that improvements made since the QA 
start-up year of 1990 would be maintained at around 1992 levels. As such, further 
analyses and procedures were based on analyses and relationships derived from the 
1992 audit data that broadly met the quality control scheme target. 

One might expect there to be a tendency for more taxa to be missed in samples 
containing more taxa. However, the UK environment agencies do not know how many 
taxa there really are in a sample, only having their own estimates. Therefore, to be of use 
to the agencies, analyses were undertaken to assess whether there is a relationship 
between under-estimates in the number of taxa and the agencies' own estimates of the 
number of taxa. 

The average under-estimation of the number of taxa in samples, grouped according to the 
NRA estimate of the number of taxa in each sample in 1992, is given in Table 4.1. For all 
classes of the NRA estimated number of taxa (except the class 21–25 taxa), the NRA 
under-estimated the number of taxa by no more than one taxa in at least 50 per cent of 
the samples (the median in Table 4.1 is one). This was encouraging, however, because 
several taxa are missed in a few samples, the statistical mean number missed is higher 
than one (range 1.0–1.9 in Table 4.1). 

Table 4.1 Under-estimation of NTAXA in a sample in relation to the NRA’s 
estimate of NTAXA for samples audited in 1992 

 
Samples

Under-estimation of number of taxa NRA estimate of 
number of taxa 
in sample  Mean SD Median Maximum 

1–5 4 1.0 1.2 1 2 
6–10 21 1.4 1.6 1 5 

11–15 32 1.2 2.1 1 7 

16–20 52 1.2 1.4 1 5 

21–25 62 1.9 2.0 1.5 8 

26–30 27 1.5 1.4 1 4 

31–38 13 1.5 1.8 1 5 
 
There was no firm evidence that the average under-estimation of the number of taxa was 
strongly correlated with the NRA's estimate of the total number present. Even where the 
NRA only recorded 1–5 taxa (n=4 samples), the average under-estimate was still 1.0, 
compared to 1.5 in samples where the NRA recorded over 25 taxa (n=40 samples). 

The under-estimate may be slightly higher than elsewhere in samples where the NRA 
recorded intermediate taxonomic richness (21–25 taxa). Where the NRA recorded over 
30 taxa, the number missed was never more than five taxa. This pattern has some logic to 
it, in that the NRA is likely to have recorded their very highest values for number of taxa in 
samples where they did not miss many. There was no statistically significant (p>0.05) 
linear or quadratic relationship between the extent of net under-estimation and the 
number of recorded taxa. 

From these analyses within the BAMS study project, it was concluded that the bias (net 
under-estimation of the number of taxa present) for an agency sample is not dependent 
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on the taxonomic richness of the sample. This means that the bias for any particular 
agency laboratory in any one year can be estimated by the average bias (mean ‘gains’ 
minus ‘losses’) of the externally-audited samples from that laboratory and year. The only 
exception is if the agency records five or less taxa in a sample, where the 
recommendation is to assume that the average bias is always 1.0 taxa. 

CEH now provides Environment Agency, SEPA and NIEA laboratories, areas and regions 
with annual QA reports summarising the processing errors for each audited sample and 
giving the average net gains. These estimates can be utilised as user-supplied input 
parameters for the sample processing biases provided for in the RIVPACS and RICT 
software packages assessments of uncertainty in EQRs and status class (see Chapter 7). 

The number of taxa missed per sample is not constant, but will vary from sample to 
sample in an unknown manner for the majority of (non-audited) samples. This represents 
another source of uncertainty in the observed index values, EQR and status class 
estimates. The WRc quality control scheme (van Dijk 1994) is based on an assumed 
statistical Poisson distribution for the number of missed taxa.  

Furse et al. (1995) assessed the fit of a Poisson distribution to the overall frequency 
distribution of sample processing biases for all 1992 audited samples, which combines 
regions with slightly different biases (Poisson mean values in this context). The 
researchers recommended that a Poisson distribution be assumed for assessing the 
effect of sample processing errors within any uncertainty simulation software, with the 
Poisson mean parameter set equal to the appropriate QA estimate of bias for that year 
and laboratory/area/region. 

4.3.2 Bias in ASPT and BMWP Score  

A tendency for UK government environment agency biologists to miss certain taxa in a 
sample will lead to some under-estimation of the observed NTAXA and observed 
BMWP score (which can only increase with the addition of the scores of missed taxa). 
However, such sample processing errors may not lead to any general bias in the 
estimates of the observed ASPT. A sample ASPT value could potentially increase or 
decrease after correction for the missed taxa, depending on whether the missed taxa 
have a higher or lower average BMWP score than the average score of the taxa found 
in the sample by the agency. 

To assess this effect, Furse et al. (1995) calculated the difference between the ASPT 
value for a sample based on the audit-corrected taxa list and the ASPT value derived 
from the taxa recorded as present in the sample by the NRA, for each of approximately 
200 audited samples from 1990 and 1992. The difference (audit-corrected ASPT minus 
original agency ASPT) is referred to as the ‘ASPT bias’ for a sample, but it could 
potentially be either positive or negative.  

The median ASPT bias was positive (or zero in one case) for every NRA region in 
1990, when the number of taxa missed was higher for most regions. In 1992, when the 
number of missed taxa was generally lower, the median ASPT bias was zero in six of 
the 10 regions. It only exceeded 0.02 in the Thames region, where there was a lapse in 
the accuracy of sample processing in the autumn of 1992.  

There appeared to be no obvious relationship between the size of the ASPT bias and 
either the agency’s recorded ASPT value or the number of BMWP-scoring taxa in the 
sample on which the ASPT value was based (Tables 4.2 and 4.3). The only exception 
might be when the recorded taxa list gives a value for observed ASPT of over 7.0, 
which is more likely to be an over-estimate of the true sample value (mean ASPT bias 
equals -0.17 in Table 4.2). 
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Table 4.2 Under-estimation bias of ASPT for samples audited in 1992 in relation 
to the NRA recorded value of ASPT for the sample 

Under-estimation of ASPT (bias) NRA estimate 
of ASPT Samples 

Mean SD Median Min. Max. 

≤ 3.0 4 0.07 0.17 0.00 0.00 0.29 

3.01–4.00 40 0.07 0.14 0.00 -0.10 0.58 

4.01–5.00 55 0.07 0.19 0.00 -0.51 0.48 

5.01–6.00 59 0.03 0.15 0.00 -0.37 0.46 

6.01–7.00 48 0.02 0.15 0.00 -0.58 0.33 

> 7.00 5 -0.17 0.19 -0.10 -0.59 0.00 

 

Table 4.3 Under-estimation bias of ASPT for samples audited in 1992 in relation 
to the NRA recorded number of BMWP-scoring taxa for the sample 

Under-estimation of ASPT (bias) NRA estimate 
of number of 
taxa in sample 

 

Samples Mean SD Median Min. Max. 

1–5 4 -0.05 0.33 0.00 -0.51 0.29 

6–10 21 0.05 0.16 0.00 -0.23 0.58 

11–15 32 0.00 0.14 0.06 -0.21 0.43 

16–20 52 0.04 0.18 0.00 -0.37 0.30 

21–25 62 0.06 0.13 0.00 -0.58 0.48 

26–30 27 0.07 0.11 0.05 -0.12 0.46 

31–38 13 0.04 0.11 0.01 -0.16 0.28 

 

4.4 Procedures to adjust for sample processing 
errors in observed values of BMWP indices  

4.4.1 Single season sample adjustments 

A very complicated way to correct for bias would be to take the site-specific RIVPACS 
expected probabilities for each taxa occurring and select the missing taxa using these 
probabilities. However, this would only be appropriate for reference quality sites. For 
poor quality sites, the taxa missed are much more likely to be low BMWP scoring taxa, 
rather than simply the taxa that were most expected to be present at the site (if it was 
unstressed). Furse et al. (1995) recommended the following practical solution, which 
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has been incorporated into the RIVPACS and RICT uncertainty simulation software 
components. 

 

Based on an analysis of the 1992 audited samples, the under-estimation of the BMWP 
score (US) was on average about nine and the under-estimation of NTAXA (UT) was on 
average about 1.5. This implies that the overall average BMWP score of missed taxa is 
about six. However, if the ASPT value (UA) of the missed taxa (which equals US/UT) is 
plotted against the number of taxa (NT) recorded as being present by the NRA, then UA 
tends to be less when few taxa are recorded (Figure 4.1). Furse et al. (1995) also 
found that the variance in the ASPT of the missed taxa decreased with the number of 
missed taxa (UT) (variance = 2.0/UT). 

A simulated (UAr) of the ASPT of the missed taxa for any single season sample from a 
monitoring site is adequately generated using the best fit linear regression in Figure 
4.1. This is combined with a data-based error structure, as follows: 

 UAr  =     4.29   +    0.077  NT + Z 2/UTr 
 
where UTr is the simulated (Poisson deviate) number of missed taxa in simulation r (any 
simulated UAr values outside the BMWP range 1–10 are reset to the limits). 
 
From this equation, the mean ASPT of the missed taxa in a sample is estimated to 
range from around 4.5, when about five taxa are recorded as present, to over 6.5 when 
over 30 taxa are recorded.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The ASPT of the missed taxa plotted against the number of taxa 
recorded as present by the NRA for 1992 samples with missed taxa (n=154), with 
best fit regression line 

If OTr, OSr and OAr denote the values for the observed values of NTAXA, BMWP score 
and ASPT for the rth simulation (after allowing for sampling variation), then the rth 

simulated bias-corrected values (OTbr, OSbr, OAbr) of the three indices are  

 OTbr = OTr + UTr 

OSbr = OSr + Utr . UAr 

OAbr = OSbr / OTbr. 
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Thus, we simulate bias-correction terms for both the number of taxa missed and their 
ASPT, multiply these together to simulate the bias in BMWP score, determine the bias-
adjusted simulated values of the BWMP score and NTAXA, and finally use the ratio to 
obtain a simulated bias-corrected ASPT value. This maintains the internal consistency 
of simulated values for the three related indices, as the BMWP score should always 
equal NTAXA multiplied by ASPT. 

Combining these values across all regions for 1992 reveals that the missing of taxa in 
the sample processing appears to lead, on average, to ASPT being underestimated by 
0.00–0.04. But the actual effect varies considerably between samples, with a standard 
deviation of 0.16 (Figure 4.1).  

4.4.2 Combined season sample biases and adjustments 

Taxa missed or misidentified by UK government environment agency biologists in their 
laboratory when analysing a sample from a monitoring site in one season may be 
recorded as being present in a sample taken at the same site in a different season of 
the same year. Only taxa missed or misidentified in each season’s sample contribute to 
the bias in index values for the combined season sample. This means that the biases 
in index values estimated from appropriately audited single season samples cannot be 
simply added together to obtain estimates of combined season sample biases.  

The following types of missed taxa are least likely to be ‘recovered’ in combined season 
samples. 

• Taxa of low local abundance, which are unlikely to be captured in more 
than one season at a site. 

• Taxa that, by virtue of their life cycle, are seasonal in their availability for 
capture in pond-net samples and hence not likely to be caught in all 
seasons. 

• Taxa that the NRA has most trouble in identifying within a sample and 
hence tend to miss in every sample. 

For national surveys, the UK government environment agencies have always based 
estimates of site quality on O/E ratios derived from either two-season combined 
samples (typically spring+autumn) or three-season combined samples. However, 
because the samples selected for external QA are chosen in a random manner, there 
are very few occasions where samples from the same site were audited in more than 
one season of any one year. Therefore, a practical solution was needed.  

Based on a detailed analysis of the QA datasets, Furse et al. (1995) found that, overall, 
45 per cent of the taxa missed by the NRA in single season samples in 1990 were 
found and recorded as being present in a second season’s sample from the same site. 
The average proportion of taxa occurrences missed in a single season sample in 1990 
was 0.153. So if Q is the overall proportion of taxa missed in one season that were 
present (but not necessarily recorded) in a second season’s sample from the same 
site, then: 

 0.45 = (1 – 0.153) Q, and hence Q = 0.53. 

For more typical QA years, such as 1992, where the overall proportion of taxa 
occurrences missed was only 0.083, the probability of taxa missed in one season’s 
sample being recorded as present in a second season’s sample from the same site is 
estimated by: 

 (1 – 0.083) Q = (1 – 0.083) 0.53 = 0.49.  
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Therefore, Furse et al. (1995) recommended that for 1992 and subsequent years, only 
51 per cent of the taxa estimated, or simulated, as missing from any single season’s 
sample should be assumed not to have been recorded as being present in a second 
season’s sample. Hence, only this proportion of taxa influence errors in the two season 
combined sample values of the BMWP indices for that site. 

Overall, 63 per cent of all taxa occurrences in the single-season samples audited in 
1990 were found and recorded as being present by NRA staff in samples collected 
from the same site in at least one of the other two seasons. Therefore, only an 
estimated 37 per cent of taxa missed in the samples from the individual seasons 
contributed to the bias and the under-estimation of BMWP index values for the three-
season combined samples. 

Furse et al. (1995) recommended the following procedure to correct for bias in 
combined season sample BMWP index values. M1, M2 and M3 are the QA-based 
estimates of average under-estimation in the number of taxa (NTAXA) for spring, 
summer and autumn of the year and the laboratory/area/region appropriate for a 
monitoring site. Then the expected average (Poisson) under-estimation of NTAXA for 
corresponding spring-autumn combined samples is: 

 UTr = 0.51 (M1 + M3); 

while for three-season combined samples, the expected (Poisson) mean under-
estimation of NTAXA is estimated by: 

 UTr = 0.37 (M1 + M2 + M3). 

All of these recommended numerical procedures for trying to correct for sample 
processing errors and biases in monitoring site samples have been incorporated into 
the simulation algorithms within the RIVPACS and the replacement new RICT 
software. Chapter 7 of the RIVPACS III+ and RPBATCH User Manual contains precise 
details of all the equations used in the uncertainty simulation procedures. 

4.5 Effects of sample processing errors and biases 
on other biotic indices 

The effects of sample processing errors are complex and will depend on the type of 
index. Missing taxa will lead to an under-estimate of any index, which always increases 
if extra taxa are added to the sample on which the index value is based. Examples 
include measures of taxonomic richness (NTAXA), most (if not all) measures of 
taxonomic diversity (such as the Shannon-Wiener index) and indices based on the total 
score of all taxa present (where taxon scores may be based on their perceived 
tolerance to a particular stress, such as the BMWP score or the Walley-Hawkes 
revised BMWP score index). However, as seen for BMWP and ASPT, the effect of 
sample processing errors on biases in the values of other indices is more ambiguous, 
with errors able to cause such indices to decrease or increase in complex ways.  

Examples include any average-score-per-taxon type index where taxa are assigned 
scores according to their perceived ability to withstand particular stresses. The index is 
then the average score of the taxa found in the sample, perhaps with taxon scores 
either weighted (such as Walley-Hawkes weighted ASPT, denoted WHPT) or 
dependent on taxa abundances (such as LIFE; Extence et al.1999).  

No analyses have yet been conducted for any indices other than the original BMWP 
indices. The current SNIFFER WFD72C project (Work Element 5-6 report) assumes 
that it is reasonable to use exactly the same bias-adjustment procedures developed for 



42  Science Report – Uncertainty in WFD assessments for rivers based on macroinvertebrates and RIVPACS  

the original BMWP indices (described in section 4.4) for the un-weighted form of the 
Walley-Hawkes-revised BMWP score, TAXA and ASPT indices.  

At present, the general CEH QA scheme does not make any assessment of the extent 
of sample processing errors in counting or estimating the abundances of individual taxa 
in the sample. Therefore, there are currently no estimates of the effects of sample 
processing errors on biases and uncertainty in abundance-based biotic indices. 
Schemes auditing estimates of taxon abundances and the derived estimates of the 
impact of sample processing errors on abundance-based metrics are needed if new 
abundance-related indices, such as WHPT, LIFE or AWIC, are to be included in river 
WFD assessments. 

At present, the RICT software for non-BMWP indices and the STARBUGS (see Clarke 
and Hering 2006) software for all indices have been programmed to allow the user the 
option of including sample processing biases on any index. This is done through the 
addition of an extra stochastic term dictated by the user-supplied estimate of a simple 
mean and standard deviation of the bias of each index (assuming a normal 
distribution). 
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5 Temporal variability – within 
season and between years 

5.1 Requirement to assess temporal variances  
In the previous versions of the RIVPACS software (RIVPACS III+ and RPBATCH), all of 
which were developed prior to 2005, the assessment and simulation of uncertainty in 
estimates of the observed values of indices only allowed for variation due to replicate 
sampling variability and sample processing errors. This is discussed in detail in Chapters 
3 and 4 respectively.  
 
This limitation was acceptable when the aim was to quantify the uncertainty in the 
estimates of EQI and quality class for a single sampled site at one point in time. However, 
the ‘Compare’ procedure of these previous versions of the RIVPACS software was also 
used to try to assess whether a real change in quality had occurred at a site at two 
different points in time. In such cases, the uncertainty should have allowed for potential 
additional short-term temporal variability in EQI values arising from variability between 
days and weeks within a (RIVPACS) season. Both the observed and, to a lesser extent, 
expected values could change within a season, especially following some change in 
environmental conditions or stress. 
 
It is important to understand that the systematic between-season temporal variation in 
observed index values does not need to be included in the uncertainty in the observed 
values and thus the EQI values. This is because between-season variability is 
incorporated into RIVPACS EQI values by setting season-specific expected index values 
for each site, where the expected value is based on the single, two- or three-season 
combined samples corresponding to the observed ‘season’ index sample. 
 
With the introduction of the WFD, the UK government environment agencies are 
considering changing from the use of data from a single year to the use of 
macroinvertebrate data from multiple years for status assessment within monitoring 
programmes. Specifically, SEPA intends to base its site status classifications on up to 
three years’ worth of sample data, in order to reflect the longer term underlying 
condition of the biology. For each metric, SEPA will use the average of the EQR values 
for each of the individual years for which data are available over the three-year period 
of interest. Thus, class is defined for a three-year period, but does not necessarily 
require three separate years of data. If only one year’s spring and autumn combined 
sample data were used, it would still give an estimate of the three-year mean condition. 
Three years’ data would, however, give a more precise estimate. Measures of 
uncertainty and confidence of class are needed for these new measures of three-year 
average quality, based on an average EQI/EQR for a site. (Spatial variance between 
sites within a WFD water body also needs to be included, but this is assessed in 
Chapter 6.) 
 
Real temporal variance implies real differences over time in the average sample biota and 
the average index values at a site. Within-season temporal variance is measured by the 
variation in the observed index values between samples taken on different days and 
weeks within a season. This variance is over and above that expected from the fact that 
samples taken at different times will also vary, just because of variation between any 
replicate samples. Doing this necessitates having one or more datasets with biotic index 
values for a combination of replicate samples and with other samples taken on different 
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days within any one season for each of a range of sites. The estimation of the various 
variance components is made using the ANOVA techniques described in section 2.4. 
 
Estimating the variance in index values due to real differences between years within a 
three-year monitoring period requires some replicate sampling. As well as samples from 
different days within a season and, of course, samples from different years within any 
three-year period, all ideally at each of a range of sites. 

5.2 Datasets used to estimate temporal variances  
The first ever formal attempt to quantify these temporal within-season and between-
year variance components for RIVPACS macroinvertebrate sample indices was made 
by us as part of the recent SNIFFER WFD72C project. Robin Guthrie at SEPA supplied 
us with two datasets: the 28 sites TAY dataset and a 416 sites SEPA dataset. 

5.2.1 TAY dataset: 28 sites from Tay River Purification Board 
sampled 1988–1997  

This dataset was generated by biologists from the Tay River Purification Board (RPB), 
which is now part of SEPA. The then Tay RPB had a network of ‘primary sites’, mainly 
on larger rivers in the Tay catchment (including the River Earn) and various other rivers 
between the Tay and the North Esk catchment in Angus (Figure 5.1). The biological 
quality of the sites was generally high or good. However, four sites had some impacted 
invertebrate faunas and another site was intermittently hard to sample due nearby 
hydro-electric effects on water levels. In addition, several sites were affected by 
sporadic sheep dip problems in the mid-1990s. 
 
The sites were sampled between 1988 and 1997. Four replicate samples were taken at 
each site on each sampling occasion in spring and autumn, and identified to at least 
BMWP taxonomic level. Although not all sites were sampled in all years, many sites 
have concurrent runs of data, especially in the five-year period from 1990 to 1994. 
Using all possible combinations of the four spring and four autumn replicate samples 
for a site in any one year, 16 spring and autumn combined season samples were 
generated. These samples were used to derive estimates of the replicate variance in 
the two-season combined samples for each index and used to determine two-season 
combined sample inter-year variance components (Table 5.1). 
 

Table 5.1 Components of variability which can be estimated, or for which there is 
information, within each dataset (indicated by ticks) 

Variability component SD 
No. of 
seasons 
involved 

28 
TAY 
sites 

416 
SEPA 
sites 

16 
BAMS 
sites 

12 
NI 
sites 

Replicate sampling SDR 1 √  √  
  2 √  √  
  3   √  
Within-season temporal  SDW 1  √  √ 
  2     
  3     
Inter-year temporal SDY 1 √ √   
  2 √ √   
  3     
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Figure 5.1 Geographic distribution of the sites used to estimate one or more biotic 
index variance parameters: 28 Tay RPB sites (left), 416 SEPA sites in the East and 
NE of Scotland (right) 

5.2.2  SEPA dataset: 416 SEPA sites 

This dataset comprises 416 sites predominantly in the East and North-East of 
Scotland. These sites cover a wide range of Scottish river types, from very large, 
oligotrophic rivers such as the Spey through to small, lowland streams in arable areas 
and rivers in predominantly urban settings (Figure 5.1). 
 
The sites range in quality from the nearly pristine to the very severely degraded. The 
range of impacts includes organic pressures, hydro-morphological pressures, various 
toxic pressures, nutrient pressures and acidification. 
 
The dataset was compiled from a range of databases held by the former RPBs and 
from SEPA’s current corporate systems. Guthrie made extensive checks on sample 
index values and unusual patterns of variation over time, and, after checking with local 
biologists, he was satisfied with the data quality. 
 
The sites were sampled between 1990 and 2004 in spring, summer and autumn 
(although summer samples are fewer in number as monitoring over the later part of this 
period tended to be based primarily on spring and autumn samples alone). From 1990 
onwards, the samples were sampled and processed following the now standard SEPA 
methodology, with the same Analytical Quality Control/audit scheme as used in the 
1990 GQA survey. Should bias correction be required, Guthrie has estimated that a 
figure of 1.7 net gains per sample would be appropriate, as this is consistent with the 
current overall SEPA performance. 
 
Examining the 416-site dataset reveals that there are 181 occasions where the same 
site was sampled in the same year and in the same season but on different days. 
Typically, either two spring samples or two autumn samples were taken (replicate 
summer samples are much rarer). This data allowed us to derive estimates of the 
average within-season temporal variance in index values based on single season 
samples (Table 5.1). But a subset of only four of these 180 site-year combinations was 
insufficient for deriving reliable estimates of within-season temporal variance of two-
season combined sample index values. 
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Section 5.4.2 explains how within-season temporal variance estimates for two-season 
and three-season combined samples were derived by inference from the relative size 
of replicate sampling variance for single, two-season and three-season combined 
sample index variances. 

Only one sample was taken at each site on each sampling date, so this dataset had to 
be combined with the ‘TAY’ and/or the BAMS datasets in any ANOVA. This was done 
to eliminate replicate sampling variability from the observed variation in index values 
over time. 

5.3 Consistency of replicate variability across 
datasets 

5.3.1 Comparison of BAMS and TAY datasets 

Replicate sampling variability in the square root of NTAXA values and ASPT for single 
season samples was found to be broadly similar for the BAMS and TAY datasets. Even 
though the BAMS sites were selected to cover the full range of site qualities, while the 
TAY sites tended to be high quality and taxa rich (Figure 5.2). This suggests that it may 
be acceptable to combine datasets in order to combine various temporal and spatial 
scales of information on variability. This will allow all the variance components to be 
estimated simultaneously using statistical ANOVA techniques (Section 2.4). 

At present, national monitoring survey assessments of the quality of UK river sites for a 
year are usually based on RIVPACS EQI values for spring and autumn combined 
season samples. The WFD72C combined dataset analyses provided the first 
opportunity to check whether replicate sampling variability for such annual 
assessments was broadly similar across different types of site and region.  

Replicate sampling variability in the square root of NTAXA and ASPT for two-season 
combined samples was similar for the BAMS and TAY datasets. Although the 
estimates of variability in ASPT for poor quality sites with average sample ASPT values 
less than four are themselves imprecise, being dependent on the stochastic capture of 
relatively few taxa (Figure 5.3). 

Overall, we concluded that it was valid and appropriate to combine the two datasets 
and base estimates of replicate sampling standard deviations (SDR) on a weighted 
average of the two datasets (Table 5.2). The overall estimates were taken as an 
average of estimates for the two datasets weighted by the number of sites involved, 
namely 16 BAMS and 28 TAY sites.  

ANOVA estimates based on simply combining all the sample data from the two 
datasets would be overly-dominated by the TAY datasets, because the same sites 
were sampled over several years. As the aim was to derive estimates of variability that 
could be applied to any site, letting each site contribute equally to the overall estimate 
of typical replicate sampling variability was deemed the best approach. 
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Figure 5.2 Plot of the relationship between replicate sampling SD and mean of the 
replicate single season sample values for all available combinations of sites and 
seasons with replicate sampling for the 16 BAMS sites (■) and the 28 Tay sites (x) 
for the original BMWP  
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Figure 5.3 Plot of the relationship between replicate sampling SD and mean of the 
replicate two-season combined sample values for all available combinations of 
sites and seasons with replicate sampling for the 16 BAMS sites (■) and the 28 Tay 
sites (x) for the original BMWP  

5.3.2 Replicate sampling variability for revised BMWP indices 

Future UK river assessments based on macroinvertebrates and RIVPACS may involve 
using revised versions of the three BMWP indices, as developed by Walley and 
Hawkes (1997) and refined within the recently completed SNIFFER project WFD72A. 
The revised BMWP indices are in two forms: one involves an abundance-weighted 
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scoring system for families and one uses a non-weighted form that depends only on 
the presence or absence of families. 

Estimates of replicate sampling standard deviations in these new indices (square root 
transformed for the revised NTAXA and BMWP score indices) were derived in the 
same ways as for the three original BMWP indices, using a weighted average of the 
estimates for the BAMS and TAY datasets (Table 5.2). This was done to pre-empt the 
potential change in the use of indices in RIVPACS bioassessments and to prepare for 
assessing uncertainty using the new indices and the derived EQRs, 

The original NTAXA and BMWP score indices and their revised counterparts are highly 
correlated (within-site between-replicate correlations are all >0.92). This means that the 
same patterns of replicate variance increasing with replicate mean arise, and that the 
same square root transformations help to stabilise the variability across different types 
and quality of site. This allows us to use universally-applicable single estimates of 
replicate sampling SD (SDR) for different sites, with the SDR only decreasing according 
to whether index values are based on single season, or two- or three-season combined 
samples. 

Equivalent estimates of average replicate sampling standard deviations were also 
derived for the AWIC (Davy-Bowker et al. 2005) and LIFE (Extence et al. 1999), as part 
of the WFD72C project. The estimates are included here for information, but with a 
caveat that their susceptibility to sampling variation is more complex than for the 
BMWP indices, depending on both the index (replicate mean) value and hence the type 
and/or condition of the site.  

Table 5.2 Estimates of the replicated sampling standard deviation (SDR) of indices 
for either single season, or two- or three-season combined samples based on a 
weighted average of estimates for the 28 TAY sites dataset and 16 BAMS sites 
dataset 

Number of seasons involved Index Transform 
scale 1 2 3 

BMWP score √ 0.639 0.462 0.361 
NTAXA √ 0.238 0.173 0.145 Original BMWP 
ASPT  0.250 0.170 0.139 
BMWP score √ 0.645 0.474 0.357 
NTAXA √ 0.243 0.179 0.146 Revised BMWP 

non-weighted ASPT  0.235 0.161 0.115 
BMWP score √ 0.652 0.484 0.418 
NTAXA √ 0.243 0.179 0.146 Revised BMWP 

abundance-weighted ASPT  0.278 0.201 0.225 
AWIC (family level)   0.159 0.112 0.095 
LIFE (family level)   0.247 0.173 0.238 
Note: only the BAMS dataset has three-season combined replicate samples. 

5.3.3 Conclusion on validity of combining datasets 

In conclusion, for both the original and revised forms of the BMWP indices, replicate 
sampling variability is broadly similar across different datasets and types of site within 
the UK. Therefore, it is reasonable to combine those datasets with replicate sampling 
information with other datasets on temporal and spatial variability, in order to derive 
estimates of the full range of variance components.  
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5.4 Estimates of temporal variance components 
Estimating within-season temporal variability for each index requires cases where 
RIVPACS samples have been taken on different dates within the same RIVPACS 
season (spring, summer or autumn). Such cases are only available for the 416 site 
SEPA dataset, where there are 181 situations where two (and in three cases three) 
samples were taken on different days (and usually months) within the same season of 
the same year. 
 
Ideally, for these same sites and seasons, replicate samples would also be taken on 
the same day, so that we could easily ‘subtract’ away the variability caused by the fact 
that any two replicate samples will vary to some extent. However, the 416-site SEPA 
dataset does not have any same-day sample replication. Therefore, to estimate the 
variance due to real within-season temporal variability, we need to analyse the 416-site 
SEPA dataset in combination with the other datasets. We could just have combined the 
SEPA dataset with the TAY dataset, as both datasets comprise sites in Scotland that 
might be expected to make the sampling variability more similar. However, the 416 
SEPA sites cover a much wider geographical and environmental range than the 28 Tay 
sites (Figure 5.1). For this reason, it was considered best to combine the SEPA dataset 
with the 16 BAMS sites dataset. Even though, as mentioned before, the 28 Tay sites 
were sampled in more years and thus carry far greater weight in determining the 
overall estimate and replicate sampling standard deviation. 
 
In the future, the aim is make assessments of site ecological status based on the 
average quality over a three-year period. The uncertainty inherent in these estimates 
when all three years are not sampled will depend on the inter-year variance in index 
values due to the difference between years in the (unknown) average index values for 
each year. Therefore, we need to derive an estimate of inter-year variance parameters 
for three-year periods rather than over all years sampled at each site within the 
datasets. This was done by coding the years into three-year periods as follows: 1987–
89, 1990–92, 1993–95, 1996–98, 1999–2001, 2002–04. 
 
The statistical estimation of parameters was carried out using a hierarchical ANOVA 
model with the following variance components: 
 
 2

Rσ    = replicate sampling variance    

 2
Wσ   = within-season temporal variance  

 2
Yσ   = between-year (within three-year period) temporal variance 

          + 
 2

Kσ   = variance due to differences between sites and season combinations 

 2
Lσ   = long-term inter-period variance. 

 
The last two variance terms ( 2

Kσ  and 2
Lσ ) are of less interest, but they need to be 

included in the model analysing all data from all sites to adjust for and eliminate 
differences in average index values between all combinations of sites and seasons. For 
example, separate analyses were made for all single season samples together, while 
allowing for differences in average values for spring, summer and autumn at each 
individual site. Such between-season within-year variation needs to be removed in this 
way because RIVPACS predictions eliminate inter-seasonal differences in average 
index values by having separate predictions for each season of season combinations. 
Thus between-season variation is not part of the sampling uncertainty of observed 
index values or EQIs. 
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This hierarchical variance model was fitted using the REML directive in the GenStat 
statistical software package (Genstat Release 8.1, 2005), which treats all of the 
hierarchical sources of variation as random effects factors.  

5.4.1 Single season sample estimates of temporal variances 

The estimates for each variance parameter obtained from the fit of the REML to each 
index model are provided in Table 5.3a. The variance parameters are equal to the 
square of the equivalent SD parameter. 
 
To assess the relative size of the three variance components determining the total 
variance of index values in a typical three-year period at a site, the components for 
replicate variance ( 2

Rσ ), within-seasonal temporal ( 2
Wσ ) and inter-year variance ( 2

Yσ ) 
are expressed as a percentage of their sum in Table 5.3b.  
 
Replicate sampling variance generally contributes just under half of the total variance 
within a three-year period. The exact figure ranges from 38 per cent for the square root 
of the revised abundance-weighted BMWP score to 45 per cent for the square root of 
the original BMWP score and NTAXA. Put another way, this means that 55–62 per cent 
of the total variation in the BMWP index values over a three-year period at any one site 
is, on average, due to variation over time. 
  
It is useful to express the within-season temporal variability as a percentage (%WT) of 
the total within-period temporal variance (Table 5.3). This highlights the finding that the 
variance estimates for short-term, within-season temporal variability are, rather 
surprisingly, about the same or higher than the longer-term inter-year temporal 
variance estimates for all BMWP indices.  
 
This raises the issue that any additional samples taken on a later date within the same 
season may be more likely to have been taken from a site if it was suspected, or 
known, that there was either some recent problem at the site or the previous sample 
taken in that season was suspect. Thus, the available data to estimate within-season 
temporal variance may not completely typical. Moreover, it may tend to over-estimate 
the typical/average within-season variance, which in turn would lead to some under-
estimation of the true inter-year variance components. 
 
Fortunately, later in the WFD72C project we received a new Community Change study 
dataset from Tommy McDermott at the Environment and Heritage Service (which was 
replaced by the NIEA in July 2008) containing monthly samples over a period of one 
year (Feb–Jan) at each of 12 sites in Northern Ireland (NI). From this NI dataset, we 
extracted a sample from each of the three months in each of the three RIVPACS 
seasons – spring (Feb–May), summer (June–Aug) and autumn (Sep–Nov) – at each of 
the 12 sites. Only one sample was taken at each site on each month. It was therefore 
not possible to separate replicate variance from within-season temporal variability, but 
only to estimate their combined variance ( 22

WR σσ + ), representing total variance within 
a season at a site.  
 
We found that the estimates of total within-season variance were actually similar or 
higher for the NI dataset than for the combined TAY/SEPA/BAMS dataset estimates. 
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Table 5.3 Estimates of single season sample values (a) variance ( 2σ ) and (c) SD 
(=√ 2σ ) for replicate sampling ( 2

Rσ ), within-season temporal variability ( 2
Wσ ), inter-

year variability ( 2
Yσ ), and other variance components (inter-period ( 2

Lσ ), site by 
season ( 2

Kσ )) based on all data from the BAMS, TAY and SEPA datasets combined; 
(b) variance components as percentage of total variance ( 222

YWR σσσ ++ ) within 
three-year periods 
 

 (a) Variance Index 2
Rσ  2

Wσ  2
Yσ  2

Lσ  2
Kσ  

√ Score 0.4320 0.2957 0.2746 0.2615 2.5196 
√ NTAXA 0.0578 0.0350 0.0365 0.0291 0.2154 Original BMWP 
ASPT 0.0654 0.0596 0.0209 0.0359 0.7859 
√ Score 0.4510 0.3682 0.3074 0.3516 2.8809 
√ NTAXA 0.0608 0.0446 0.0390 0.0391 0.2295 Revised BMWP 

non-weighted ASPT 0.0617 0.0658 0.0171 0.0396 0.9748 
√ Score 0.4490 0.4273 0.3091 0.3916 3.2213 
√ NTAXA 0.0608 0.0446 0.0390 0.0391 0.2295 

Revised BMWP 
abundance-
weighted ASPT 0.0722 0.0780 0.0304 0.0589 1.2042 
AWIC  0.0269 0.0262 0.0027 0.0078 0.2035 
LIFE  0.0446 0.0139 0.0222 0.0132 0.2462 
       
(b) % Variance  % 2

Rσ  % 2
Wσ  % 2

Yσ  %WT  
√ Score 43 30 27 52  
√ NTAXA 45 27 28 49  Original BMWP 
ASPT 45 41 14 74  
√ Score 40 33 27 54  
√ NTAXA 42 31 27 53  Revised BMWP 

non-weighted ASPT 43 45 12 79  
√ Score 38 36 26 58  
√ NTAXA 42 31 27 53  

Revised BMWP 
abundance-
weighted ASPT 40 43 17 72  
AWIC  48 47 5 91  
LIFE  55 17 28 39  
       
(c) SD  SDR SDW SDY SDL SDK 

√ Score 0.657 0.544 0.524 0.511 1.587 
√ NTAXA 0.240 0.187 0.191 0.171 0.464 Original BMWP 
ASPT 0.256 0.244 0.144 0.189 0.886 
√ Score 0.672 0.607 0.554 0.593 1.697 
√ NTAXA 0.247 0.211 0.198 0.198 0.479 Revised BMWP 

non-weighted ASPT 0.248 0.257 0.131 0.199 0.987 
√ Score 0.670 0.654 0.556 0.626 1.795 
√ NTAXA 0.247 0.211 0.198 0.198 0.479 

Revised BMWP 
abundance-
weighted ASPT 0.269 0.279 0.174 0.243 1.097 
AWIC  0.164 0.162 0.052 0.088 0.451 
LIFE  0.211 0.118 0.149 0.115 0.496 

Note: %WT = )/(100 222
YWW σσσ +  = % period temporal variance due to within-season. 

 
If it is assumed that replicate sampling SD is about the same for these 12 NI stream 
sites as for the average BAMS and TAY sites, then we can conclude that our estimates 
of within-season temporal SD based on the TAY/SEPA/BAMS combined datasets 
(Table 5.3c) are probably not biased. They therefore represent the best estimates for 
use in the new RICT software for assessing uncertainty in average site quality over a 
three-year monitoring period (see Chapter 7). 
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5.4.2 Combined season sample estimates of temporal variances 

The above analysis can only be conducted properly for all single season samples. This 
is because sampling on more than one day within a season was only available for more 
than one season within the same year on four occasions, which is not enough to derive 
meaningful estimates of 2

Wσ  for two-season combined samples. 
 
Therefore, the estimates of the two temporal variance components, 2

Wσ and 2
Yσ , must 

be derived indirectly. This is done by analysing all of the two-season combined 
samples from all three datasets combined, and using the REML directive in the 
GenStat statistical package to fit a hierarchical model with the following variance 
components. 
 
 2

Rσ    =  replicate sampling variance    

 2
Tσ   =   total temporal variance (within three-year period) {= 2

Wσ + 2
Yσ } 

        + 
 2

Kσ   =  variance due to differences between sites and season combinations 

 2
Lσ   =  long-term inter-period variance. 

 
In this case, the available data does not permit direct estimation of the two variance 
components, 2

Wσ  and 2
Yσ }, but only their sum, 2

Tσ . 
 
Therefore, we decided it was best to derive values for the two separate components by 
assuming that, for any particular index, the relative size of these two variances was the 
same for two-season combined samples as estimated for single season samples 
(%WT in Table 5.3).  
 
Specifically, from the estimate of 2

Tσ  for two-season combined samples for each index, 
we estimate: 
  2

Wσ  = %WT 2
Tσ  / 100    

  2
Yσ   = 22

WT σσ − . 
 
For the three forms of BMWP score and NTAXA, about half (49–58 per cent) of the 
total temporal variability within three-year periods is, on average, within-season 
variability. For original and revised forms of ASPT, the equivalents percentages are 
72–79 per cent (Table 5.3).  
 
The estimates of 2

Wσ  and 2
Yσ , and thus SDW and SDY, derived using the above 

equations are given in Table 5.4.  
 
The same logic, assumptions and procedures that were used to develop estimates of 
the two temporal variance components, 2

Wσ and 2
Yσ , for two-season combined sample 

index values were then used to derive variance estimates for three-season combined 
samples (Table 5.5). 
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Table 5.4 Estimates of two-season combined sample parameters for (a) variance 
( 2σ ) and (c) SD (=√ 2σ ) for replicate sampling ( 2

Rσ ), within-season temporal 
variability ( 2

Wσ ), inter-year variability ( 2
Yσ ), and other variance components (inter-

period ( 2
Lσ ), site by season ( 2

Kσ )) based on all data from the BAMS, TAY and SEPA 
datasets combined; (b) % 2

Rσ  = replicate variance as percentage of total variance 
( 222

YWR σσσ ++ ) within three-year periods 

(a) Variance Index 2
Rσ  2

Tσ  2
Lσ  2

Kσ  
√ Score 0.2260 0.3742 0.2275 3.0147 
√ NTAXA 0.0306 0.0421 0.0262 0.2538 Original BMWP 
ASPT 0.0299 0.0487 0.0209 0.7281 
√ Score 0.2430 0.3964 0.3096 3.4454 
√ NTAXA 0.0334 0.0476 0.0368 0.2693 Revised BMWP 

non-weighted ASPT 0.0286 0.0435 0.0247 0.9288 
√ Score 0.2450 0.4172 0.3552 4.0317 
√ NTAXA 0.0334 0.0476 0.0368 0.2693 

Revised BMWP 
abundance-
weighted ASPT 0.0369 0.0542 0.0437 1.2701 
       
(b) % Variance  % 2

Rσ  2
Wσ  2

Yσ  %WT – as in Table 13 
√ Score 38 0.1946 0.1796 52  
√ NTAXA 42 0.0206 0.0215 49  Original BMWP 
ASPT 38 0.0360 0.0127 74  
√ Score 38 0.2141 0.1823 54  
√ NTAXA 41 0.0252 0.0224 53  Revised BMWP 

non-weighted ASPT 40 0.0344 0.0091 79  
√ Score 37 0.2420 0.1752 58  
√ NTAXA 41 0.0252 0.0224 53  

Revised BMWP 
abundance-
weighted ASPT 41 0.0390 0.0152 72  
       
(c) SD  SDR SDW SDY SDL SDK 

√ Score 0.475 0.441 0.424 0.477 1.736 
√ NTAXA 0.175 0.144 0.147 0.162 0.504 Original BMWP 
ASPT 0.173 0.190 0.112 0.144 0.853 
√ Score 0.493 0.463 0.427 0.556 1.856 
√ NTAXA 0.183 0.159 0.150 0.192 0.519 Revised BMWP 

non-weighted ASPT 0.169 0.185 0.096 0.157 0.964 
√ Score 0.495 0.492 0.419 0.596 2.008 
√ NTAXA 0.183 0.159 0.150 0.192 0.519 

Revised BMWP 
abundance-
weighted ASPT 0.192 0.197 0.123 0.209 1.127 

 
The estimates of variance parameters for index values based on three-season 
combined samples were lower than their equivalent variance estimates based on two-
season combined samples (compare Tables 5.4 and 5.5).  
 
From the previous BAMS study and this study (see Chapter 3), the replicate sampling 
variance of index values was found to be highest for single season samples and lowest 
for three-season combined samples. This all might be expected, as three season 
combined samples are based on more information, with more opportunity for taxa not 
captured in one sample to be found in another. Nonetheless, it is encouraging that the 
uncertainty parameter estimates are sufficiently precise not to mask any expected 
trends as the number of samples (one, two or three) involved in determining an index 
value increases. 
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Table 5.5 Estimates of three-season combined sample parameters for (a) variance 
( 2σ ) and (c) SD (=√ 2σ ) for replicate sampling ( 2

Rσ ), within-season temporal 
variability ( 2

Wσ ), inter-year variability ( 2
Yσ ), and other variance components (inter-

period ( 2
Lσ ), site by season ( 2

Kσ )) based on all data from the BAMS, TAY and SEPA 
datasets combined; (b) % 2

Rσ  = replicate variance as percentage of total variance 
( 222

YWR σσσ ++ ) within three-year periods 

(a) Variance Index 2
Rσ  2

Tσ  2
Lσ  2

Kσ  
√ Score 0.1300 0.3437 0.1629 3.7391 
√ NTAXA 0.0209 0.0332 0.0194 0.3169 Original BMWP 
ASPT 0.0194 0.0436 0.0092 0.7578 
√ Score 0.1270 0.3898 0.2211 4.2867 
√ NTAXA 0.0210 0.0406 0.0296 0.3370 Revised BMWP 

non-weighted ASPT 0.0133 0.0456 0.0086 0.9695 
√ Score 0.1740 0.3562 0.2568 5.3482 
√ NTAXA 0.0210 0.0406 0.0296 0.3370 

Revised BMWP 
abundance-
weighted ASPT 0.0504 0.0214 0.0261 1.5496 
       
(b) % Variance  % 2

Rσ  2
Wσ  2

Yσ  %WT – as in Table 13 
√ Score 38 0.1787 0.1650 52  
√ NTAXA 42 0.0163 0.0169 49  Original BMWP 
ASPT 38 0.0322 0.0113 74  
√ Score 38 0.2105 0.1793 54  
√ NTAXA 41 0.0215 0.0191 53  Revised BMWP 

non-weighted ASPT 40 0.0360 0.0096 79  
√ Score 37 0.2066 0.1496 58  
√ NTAXA 41 0.0215 0.0191 53  

Revised BMWP 
abundance-
weighted ASPT 41 0.0154 0.0060 72  
       
(c) SD  SDR SDW SDY SDL SDK 

√ Score 0.361 0.423 0.406 0.404 1.934 
√ NTAXA 0.145 0.128 0.130 0.139 0.563 Original BMWP 
ASPT 0.139 0.180 0.106 0.096 0.871 
√ Score 0.356 0.459 0.423 0.470 2.070 
√ NTAXA 0.145 0.147 0.138 0.172 0.581 Revised BMWP 

non-weighted ASPT 0.115 0.190 0.098 0.093 0.985 
√ Score 0.417 0.455 0.387 0.507 2.313 
√ NTAXA 0.145 0.147 0.138 0.172 0.581 

Revised BMWP 
abundance-
weighted ASPT 0.224 0.124 0.077 0.161 1.245 
 

5.5 Recommended estimates of variance 
parameters 

It is recommended that the overall estimates of the standard deviation in index values 
due to replicate sampling variation (SDR) be obtained from the weighted average of the 
estimates for the 16-site BAMS dataset and the 28-site TAY dataset given in Table 5.2. 

It is also recommended that the overall estimates of the standard deviation in index 
values due to within-season temporal variation (SDW) and between-year temporal 
variation (SDY) be obtained from the estimates based on the combined 
TAY/SEPA/BAMS datasets for single season samples (Tables 5.3), two-season 
combined samples (Table 5.4) and three-season combined samples (Table 5.5). 
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All of these recommended estimates of standard deviation components have been 
collected together in Table 5.6. 

Table 5.6 Recommended estimates of SD parameters of each index for replicate 
sampling (SDR), within-season temporal variability (SDW) and inter-year variability 
(SDY) for (a) single season samples, (b) two-season combined samples and (c) 
three-season combined samples 

   Index SDR SDW SDY 
√ Score 0.639 0.544 0.524 
√ NTAXA 0.238 0.187 0.191 Original BMWP 
ASPT 0.250 0.244 0.144 
√ Score 0.645 0.607 0.554 
√ NTAXA 0.243 0.211 0.198 Revised BMWP 

non-weighted ASPT 0.235 0.257 0.131 
√ Score 0.652 0.654 0.556 
√ NTAXA 0.243 0.211 0.198 

 
(a) 
 
Single 
season  
samples 
 Revised BMWP 

abundance-
weighted ASPT 0.278 0.279 0.174 

      
√ Score 0.462 0.441 0.424 
√ NTAXA 0.173 0.144 0.147 Original BMWP 
ASPT 0.170 0.190 0.112 
√ Score 0.474 0.463 0.427 
√ NTAXA 0.179 0.159 0.150 Revised BMWP 

non-weighted ASPT 0.161 0.185 0.096 
√ Score 0.484 0.492 0.419 
√ NTAXA 0.179 0.159 0.150 

 
(b) 
 
Two-season 
combined 
samples 
 Revised BMWP 

abundance-
weighted ASPT 0.201 0.197 0.123 

      
√ Score 0.361 0.423 0.406 
√ NTAXA 0.145 0.128 0.130 Original BMWP 
ASPT 0.139 0.180 0.106 
√ Score 0.357 0.459 0.423 
√ NTAXA 0.146 0.147 0.138 Revised BMWP 

non-weighted ASPT 0.115 0.190 0.098 
√ Score 0.418 0.455 0.387 
√ NTAXA 0.146 0.147 0.138 

 
(c) 
 
Three-season 
combined 
samples 

Revised BMWP 
abundance-
weighted ASPT 0.225 0.124 0.077 

 
These estimates can be used as the corresponding uncertainty parameters in the new 
RICT software. This software has been coded to allow for the individual and combined 
effect of SDR, SDW and SDY in simulating estimated uncertainty in EQI and status class 
assessments based on one or more of these indices. These indices include the current 
GQA classification option of basing ecological status on the lowest status indicated by 
EQITAXA and EQIASPT. 



 

 Science Report – Uncertainty in WFD assessments for rivers based on macroinvertebrates and RIVPACS 57 

6 Spatial (and spatio-temporal) 
variability of sites within 
water bodies 

6.1 Background to sampling sites and lack of spatial 
replication 

In the past, most assessments of rivers by the UK environment agencies and others 
has been at the RIVPACS site level (metres or tens of metres), even though RIVPACS 
sampling sites were often selected to be representative of a stretch of river several 
kilometres long. In particular, since the 1990 NRA RQS and the subsequent national 
GQA surveys, increasing attention has been given to sub-dividing rivers and 
catchments as efficiently as possible into relatively homogenous stretches. This is to 
allow the sampling and monitoring of each and all defined stretches within the practical 
constraint of limited resources. 
 
Up to now, the ecological quality and status of most river monitoring stretches has 
been estimated and monitored using RIVPACS macroinvertebrate samples taken from 
a single, carefully selected site within the whole stretch. The estimated quality at this 
sampling site is assumed to represent the ecological quality and status throughout the 
entire stretch. 
 
The advent of the WFD has formalised the requirement to sub-divide catchments and 
rivers into clearly-defined WFD water bodies for monitoring, reporting and management 
purposes. In response, over the past few years, the UK environment agencies have 
developed procedures to sub-divide all catchment and rivers into WFD water bodies. 
The Environment Agency approach to forming water bodies (discussed at the start of 
Section 2.1) has meant that many water bodies are now quite large and may include 
two or more former GQA sampling sites. Meanwhile other water bodies, especially 
those in upper catchments, may no longer include any former monitoring sites. 
 
To some extent, natural spatial variability in the macroinvertebrate fauna present within 
a water body is allowed for in RIVPACS bioassessments based on O/E ratios of biotic 
indices. RIVPACS tries to allow for, and eliminate, the effects of natural variability 
between sites by standardising the observed fauna at a sampling site by the fauna 
expected at the site (if at reference site quality), based on its physical and 
environmental characteristics (as represented in the RIVPACS environmental predictor 
variables).  
 
However, the majority of these predictor variables are static and measured from maps. 
They are, of necessity, fairly simple. They are also limited by the need not to involve 
variables already affected by the environmental stress being assessed (pollution or 
flow regime), or its consequences. This is because such alterations could lead to mis-
setting the ‘target’ expected fauna and biotic index values for the site. In practice, 
RIVPACS expected values for biotic indices will usually be very similar for all sites 
within a single water body, partly because water bodies are usually chosen to be 
relatively environmentally homogeneous compared to the full range of UK river site 
types.  
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Because of the historical development of river monitoring based on single sites within 
river stretches, there has been little data available on, and no statistical analyses of, 
the typical extent of large-scale spatial variability in RIVPACS sample 
macroinvertebrate fauna, indices and RIVPACS O/E values between sites within water 
bodies.  
 
However, many of the newly-defined WFD water bodies are an amalgamation of old 
monitoring stretches and encompass two or more sites from the previous GQA and 
other monitoring networks. Thus, there should now be historical (and perhaps 
continuing) data on spatial variability between RIVPACS sampling sites within a water 
body. 
 
One such example is a dataset from the Dove catchment in the Environment Agency’s 
Midlands region, which has two or three sites in each of three WFD water bodies that 
have been sampled over a period of years. This dataset, described in section 6.2, has 
been analysed for this report to provide an example of how to analyse and estimate the 
extent of spatial inter-site variance within a water body (section 6.3). (Ideally, estimates 
of typical between-site within-water body spatial variability should be based on 
analyses of multi-site data from a much larger number and wider range of water bodies 
throughout the UK – this is a recommendation for future research.) 

6.2 Dove catchment dataset of spatio-temporal 
variability  

This Environment Agency dataset consists of RIVPACS sample data and derived biotic 
index values for 10 sites within the Dove catchment that have been sampled in all or 
most years since the early 1980s. Usually, one sample was taken in spring and one in 
autumn each year. But sometimes only one season was sampled, sometimes all three 
seasons were sampled in a year and on 16 occasions two samples were taken on 
different days at the same site in the same season. There is no information on replicate 
sample variation at these sites and so this will need to be inferred from the BAMS 
and/or TAY replicated sample datasets. These Dove catchment sites were assumed to 
be subject to minimal impact and to be of fairly consistent quality over time, such that 
variability over time and in space was expected to be mainly ‘natural’. 
 
Most importantly for this current research, the sites are from different WFD water 
bodies within the Dove catchment: three sites from the Upper Dove water body, two 
sites from the Dove water body and three sites from the tributary River Manifold water 
body (Figure 6.1). This will allow us to estimate variance in index values due to inter-
site differences within the same water body 

6.2.1 Site-specific expected values of indices 

As well as the sample biotic index values was a supplied dataset giving the RIVPACS 
environmental predictor variables for each site. In addition to the fixed value of the 
RIVPACS map-derived variables (national grid reference, altitude, slope, distance from 
source, discharge category), supplied alkalinity values were either constant or varied 
little and were averaged for each site.  
 
The RIVPACS field-derived variables (stream width and depth and substratum 
composition) should ideally be measured in each of the RIVPACS seasons (spring, 
summer and autumn) and then their average values used for any RIVPACS 
predictions.  
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Because these variables were not always recorded in each season and year, it was 
difficult to derive consistent year-specific mean values and, hence, year-specific 
RIVPACS predictions for each site.  
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Figure 6.1 Map showing the distribution of 10 study sites over five water bodies 
(1–5) within the Dove catchment 
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Table 6.1 RIVPACS expected values of BMWP, NTAXA and ASPT indices for 
each season (spring, summer, autumn) for each of 10 Dove catchment sites 

Expected NTAXA Expected ASPT Water Body Site Spr Sum Aut Spr Sum Aut 
1.1 GLUTTON BRIDGE 23.9 22.2 23.6 6.51 6.20 6.27
1.2 HARTINGTON 24.0 22.4 23.7 6.14 5.89 5.861.UPPER DOVE 
1.3 DOVEDALE 23.7 22.2 23.4 5.83 5.60 5.55
2.1 D/S ROCESTER 22.9 21.0 23.0 5.97 5.77 5.722. DOVE 2.2 CLAYMILLS VIADUCT 23.3 21.6 23.7 5.88 5.71 5.66
3.1 HULME END 24.1 22.4 23.8 6.50 6.20 6.26
3.2 WETTON MILL 23.6 22.1 23.4 6.41 6.10 6.143. MANIFOLD 
3.3 ILAM 23.0 21.6 22.9 6.05 5.79 5.75

4. HAMPS 4.1 WATERHOUSES 24.0 22.4 23.7 6.44 6.14 6.18
5.1 BENTLEY 5.1 MAYFIELD SK162461 23.4 22.7 23.2 5.64 5.42 5.35
 
However, visual assessments of within-site variation in the values for these variables 
and spot-checks with predictions of expected BMWP index values in the Environment 
Agency’s national 1995 GQA database for some of these Dove catchment sites, 
suggested it would be adequate for this study to average the values of these variables. 
These average values could then be used in the RIVPACS software to derive single 
site and season-specific predictions for the expected values of the BMWP indices for 
each of the 10 sites, irrespective of the year (Table 6.1). (Ironically, using such fixed 
predictions for each site, as done here, has been a long-term ambition for RIVPACS.) 

6.2.2 Observed and O/E index variation over time 

Although the Dove catchment sites were assumed to be of relatively consistent quality 
over time, there is considerable variation in the observed single season sample values 
for both ASPT and NTAXA over the 20+ years of monitoring data (Table 6.2). Part of 
this is due to pure inherent replicate sampling variation, which needs to be allowed for.  
 
Table 6.2 Mean and range of observed values of BMWP, NTAXA and ASPT 
across all single season samples for each of the 10 Dove catchment sites 
 

Observed NTAXA Observed ASPT Water Body Site Mean Min Max Mean Min Max 
1.1 GLUTTON BRIDGE 18.1 11 28 6.13 5.00 6.73 
1.2 HARTINGTON 18.9 10 28 5.57 3.50 6.95 1.UPPER DOVE 
1.3 DOVEDALE 21.7 16 27 6.41 5.71 7.17 
2.1 D/S ROCESTER 24.8 14 34 5.88 4.83 6.85 2. DOVE 2.2 CLAYMILLS VIADUCT 23.4 13 32 5.60 4.07 6.38 
3.1 HULME END 18.7 8 31 5.87 4.50 6.77 
3.2 WETTON MILL 19.3 11 27 6.25 5.69 6.84 3. MANIFOLD 
3.3 ILAM 19.1 13 26 5.95 5.17 6.59 

4. HAMPS 4.1 WATERHOUSES 18.7 8 27 5.65 3.75 6.86 
5.1 BENTLEY 5.1 MAYFIELD SK162461 20.2 10 33 5.32 4.07 6.41 

 
Having derived site-specific expected values for indices, we can now assess the extent 
of temporal variability in RIVPACS O/E values for NTAXA and ASPT for each of the 10 
sites (Table 6.3, and Figures 6.2 and 6.3). The Dove catchment sites have O/E values 
ranging from above one to below the GQA ‘b’/’c’ grades boundary of 0.70, indicating 
considerable variation over the two decades. 
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Table 6.3 Mean and range of O/E values of BMWP NTAXA and ASPT across all 
single season samples for each of 10 Dove catchment sites 
 

Observed NTAXA Observed ASPT Water Body Site Mean Min Max Mean Min Max 
1.1 GLUTTON BRIDGE 0.77 0.47 1.17 0.97 0.80 1.07 
1.2 HARTINGTON 0.80 0.42 1.17 0.93 0.60 1.13 1.UPPER DOVE 
1.3 DOVEDALE 0.93 0.68 1.14 1.13 1.02 1.24 
2.1 D/S ROCESTER 1.10 0.67 1.48 1.01 0.84 1.20 2. DOVE 2.2 CLAYMILLS VIADUCT 1.01 0.56 1.35 0.97 0.69 1.13 
3.1 HULME END 0.79 0.34 1.29 0.92 0.70 1.05 
3.2 WETTON MILL 0.83 0.50 1.15 1.00 0.93 1.10 3. MANIFOLD 
3.3 ILAM 0.84 0.57 1.13 1.01 0.85 1.12 

4. HAMPS 4.1 WATERHOUSES 0.79 0.34 1.14 0.90 0.61 1.07 
5.1 BENTLEY 5.1 MAYFIELD SK162461 0.87 0.44 1.42 0.98 0.76 1.18 
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Figure 6.2 Times series plots of variation in O/E TAXA since the 1980s for single 
season samples from 10 sites in five water bodies within the Dove catchment 
(name in brackets after site name) 
Note: Dashed orange line indicates O/ETAXA boundary between GQA grades ‘b’ and ‘c’. 
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3.2 WETTON MILL (MANIFOLD) 3.3 ILAM (MANIFOLD)

4.1 WATERHOUSES (HAMPS) 5.1 MAYFIELD SK162461 (BENTLEY)

Figure 6.3 Times series plots of variation in O/E ASPT since the 1980s for single 
season samples from 10 sites in five water bodies within the Dove catchment 
(name in brackets after site name) 
Note: Dashed orange line indicates O/EASPT boundary between GQA grades ‘b’ and ‘c’. 
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6.3 Estimation of variance components for Dove 
dataset 

6.3.1 Integrated simultaneous estimation of variance 
components 

The overall variability between samples depends on a range of factors and variance 
components. For example, variation between single observed values for different sites 
in the same water body within one season of one year is partly (and perhaps mostly) 
due to pure replicate sampling variance. There is also an additional within-season 
temporal variance if the sites were sampled on different days or months within the 
same season. Thus, the simple standard deviation of the values from different sites 
within the same water body, season and year does not tell us much about the amount 
of variation due to real differences between sites within a water body. 
 
Unfortunately, the Dove dataset only has one sample per season for each site. So 
analysing this dataset on its own does not allow us to distinguish inter-year variance 
effects from within-season temporal variability and pure replicate sampling variance. 
 
Therefore, the data on the Dove sites was initially combined with the BAMS dataset of 
replicate sample variability, the TAY dataset with information on replicate and inter-year 
variability and the SEPA dataset with information on within-season and inter-year 
temporal variability. This was done in order to estimate all of the potential sources of 
variance, simultaneously and in a consistent manner, thereby correctly allowing for the 
effect of each component on other aspects of variability.  
 
These integrated analyses of variance were attempted repeatedly using the ANOVA 
and REML techniques explained in section 2.4. However, because of the gross 
imbalance of factors in these combined datasets (not all sites sampled in each season 
or each year; BAMS sites were single sites per water body and sampled in only one 
year), the statistical fitting algorithms were unable to converge on a solution and 
identify the various variance components. 
 
There were also estimation problems when the whole Dove dataset was analysed on 
its own. However, estimates could be obtained using REML when the Dove dataset 
was restricted to: one season’s samples (spring or autumn); the three water bodies 
(Upper Dove (1), Dove (2) and Manifold (3)) with more than one site sampled; and the 
period 1990–2004.  
 
This model estimated the average variance between sites within a water body (allowing 
for water body differences), variance between years within three-year periods (allowing 
for period differences) and the remaining residual variation. By subtracting the prior 
estimates of replicate variance and within-season temporal variance (given in Table 
5.3) from this residual variance, estimates of the true site-by-year interaction variance 
were obtained (Table 6.4). Inter-site variance components differed between seasons.  
 
The site-year interaction variance estimates were always less than the inter-site 
variance estimates and were zero for ASPT in both spring and autumn. This suggests 
that different sites within the same water body tended to change in a similar way 
between years, at least within any (relatively short) three-year monitoring period. 
 
Other simpler approaches were also used to derive estimates of combinations of 
variances, as detailed in section 6.3.2. 
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Table 6.4 Estimates of average spatial variance between sites within a water body, 
temporal variance within a three-year period and their interaction variance, based 
on the single season samples from sites in the Upper Dove, Dove and Manifold 
water bodies within the Dove catchment over the period 1990–2004 

  From REML analysis of Dove 
sites data From Table 14 By 

subtraction

Season Index 

Sites 
within 
water 
body 

Years 
within 
3-year 
periods 

Residual Reps 
Within-
season 
temp 

Site by 
year 
interaction 

Spring √BMWP 0.4563 0.1546 0.8680 0.4320 0.2957 0.1403 
Spring √NTAXA 0.0389 0.0217 0.0987 0.0578 0.0350 0.0059 
Spring ASPT 0.0706 0.0099 0.1230 0.0654 0.0596 0.0000 
        
Autumn √BMWP 0.2950 0.1160 0.7500 0.4320 0.2957 0.0223 
Autumn √NTAXA 0.0143 0.0000 0.0822 0.0578 0.0350 0.0000 
Autumn ASPT 0.1040 0.0035 0.1150 0.0654 0.0596 0.0000 

Notes: Site-year interaction variance obtained by subtraction (residual variance minus reps variance minus 
within-season temp variance from Table 5.3); Negative estimates reset to zero. 

6.3.2 Variation between sites within a water body for individual 
years 

All Dove catchment samples were grouped by their combination of water body, year 
and season. One-way ANOVA on these groups was then used to estimate the average 
simple variance (VARSITES) between observed index values for samples from 
different sites in the same water body taken in the same season of the same year 
(Table 6.5). Estimates of the average true variance ( 2

Sσ ) due to differences between 
sites within the same water body were then obtained by subtracting estimates of the 
variances due to replicate samples and within-season temporal variance (obtained 
from Table 5.3) from the estimate of VARSITES (Table 6.5).  
 

Table 6.5 Average variance (VARSITES) between observed index values from 
different sites in the same water body taken in the same season of the same year  

Index VARSITES Reps 
Within-
season 
temp 

2
Sσ  

√BMWP 1.4185 0.4320 0.2957 0.6909 
√NTAXA 0.1388 0.0578 0.0350 0.0460 
ASPT 0.2637 0.0654 0.0596 0.1387 

Note: 2
Sσ  = estimate of true variance due to site differences (equals VARSITES minus reps variance minus 

within-season temp variance from Table 5.3), assuming sites were (generally) sampled on different days. 

The indirect estimates of between-site variance ( 2
Sσ ) in Table 6.5 were obtained by 

subtracting lower-order variance components. They are higher than the corresponding 
more direct estimates of variances between sites within a water body in Table 6.4 for 
both spring and autumn samples for each of the three indices √BMWP, √NTAXA and 
ASPT. Thus the choice or availability of samples, sites, years and water bodies in the 
data used in ANOVA components all influence the estimates and inter-dependence of 
estimates of the various variance terms involved in the overall uncertainty of sample 
EQR values. This choice or availability also influences the bio-assessment for either a 
site or a water body over a single season or year, or multi-year period. 
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More reliable estimates of the average or typical spatial variance between sites within a 
water body are needed. 
 
Therefore, it is recommended that further consideration and effort is made within the 
various UK government environment agencies to consider whether and how a single 
monitoring site can represent a whole water body. When only a single site is monitored, 
there is no direct information on spatial inter-site variability within that water body. This 
must therefore be inferred from inter-site variability in other water bodies for which 
there is such information, so that this source of uncertainty can be included in the 
overall uncertainty and confidence of class for water bodies with just a single sampling 
site.  
 
It is recommended that the UK government environment agencies examine their 
RIVPACS sample databases in the light of the recent re-alignment of sites within WFD 
water bodies, in order to assess and extract more information on spatial variability 
between sites within a water body. This information can then be analysed to derive 
better and more robust estimates of the typical inter-site variance components. 
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7 Uncertainty of EQRs and 
confidence of status class 

This section will illustrate how the uncertainty associated with any sample EQR value 
and derived estimate of ecological status class depends on the various sources of 
variance discussed and quantified in Chapters 3–6. But it also critically depends on the 
spatial and temporal scale over which the sample EQR value(s) is intended to 
represent the aquatic ecological condition. 

7.1 Effects of spatial and temporal scale of bio-
assessment 

In this section, we return to the problem of assessing confidence of class and 
misclassification rates, as highlighted in section 1.3 (Figures 1.4 and 1.5). In particular, 
consider the case where the assessment is based on the sample value of EQR 
determined by BMWP NTAXA, for which variation in the observed values of NTAXA 
was found to be roughly constant and best-assessed on the square root scale as 
√NTAXA. We used an expected NTAXA value of 22 (and ignored any error in the 
expected value, as discussed in section 2.3). 

From our variance component analyses, reasonable ‘best-available’ estimates of the 
various components for single season sample values of √NTAXA are: 

             2
Rσ  = replicate sampling variance                                    = 0.0578 

 2
Wσ  = temporal within-season variance                            = 0.0350  

 2
Yσ  = between-year (within three-year period) variance  = 0.0365 

 2
Sσ  = spatial between-site (within water body) variance  = 0.0266 

2
SYσ  = site-year interaction variance                                  = 0.0029 

 

where 2
Rσ , 2

Wσ  and 2
Yσ  estimates are from Table 5.2 and the 2

Sσ  and 2
SYσ  estimates 

are the average of the spring and autumn sample estimates in Table 6.4. 

If 2
Tσ  denotes the relevant total uncertainty variance in the observed value of √NTAXA, 

then we can simulate (or generate mathematically) the probability distribution of values 
of O/ETAXA that could be obtained for any particular true O/E value. From this, we can 
then calculate the probability of obtaining O/E values for each status class and hence 
the misclassification rates. 
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7.1.1 Assessing average quality for single site on day of 
sampling 

If the single sample O/E value is only intended to represent the ecological quality of the 
sampling site on the day of sampling, then the only uncertainty involved is pure 
replicate sampling variance: 

 22
RT σσ =  = 0.0578 

and the misclassification rate for sites in relation to their true O/ETAXA is shown by the 
purple line in Figure 7.1. 

7.1.2 Assessing average quality for single site over one season 
or year 

If the sample O/E is intended to represent the average quality at the sampling site 
within the same sampling season (or seasons, for example spring-autumn combined 
samples) for that year, then the uncertainty variance now includes the within-season 
temporal variance and increases to: 

 222
WRT σσσ +=  = 0.0578 + 0.0350 = 0.0928. 

The resultant higher misclassification rates are shown by the red line in Figure 7.1. 
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Figure 7.1 Probability of misclassifying a site based on a single season sample 
O/E for NTAXA in relation to its true O/E and the spatial and temporal scale over 
which the O/E is intended to represent the average ecological quality  

7.1.3 Assessing average quality for single site over a period of 
years 

If the single sample O/E is intended to represent the average quality at the site over a 
period of NYP years, then the uncertainty and confidence of class also depend on the 
inter-year (within-period) variance. This gives a total uncertainty variance of 

)/1(2222
YPYYWRT NN−++= σσσσ  

where the term (1-NY/NYP) represents, in statistical terms, the ‘finite population 
correction factor’ due to the fact that we have sampled NY (in this case one) of the NYP 
years in which we are interested. 

Thus, in the case of monitoring average quality over a NYP = three-year period, we 
have: 

One sample from one site in one year, representing :
Time   :   Today   Season/Year  3-years    3-years        
Space :    Site            Site              Site      WaterBody
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)3/11(2222 −++= YWRT σσσσ  = 0.0928 + 0.0365 (1-1/3) = 0.1171 

while the misclassification rates are shown by the green line in Figure 7.1. 

7.1.4 Assessing average quality across a whole water body over 
a period of years 

Finally, if the sample O/E obtained at a single sampling site is intended to represent the 
average quality over a three-year period across the whole water body in which it lies, 
then the total uncertainty variance should include an estimate of the spatial variability in 
index values between sites within a water body. This gives: 

222222 )3/11)(( SSYYWRT σσσσσσ +−+++=   

                                  = 0.1171 + 0.0029(1-1/3) + 0.0266 = 0.1456 

while the misclassification rates for the example in Figure 7.1 are shown by the blue 
line. 

7.2 Probability of ‘moderate or worse’ status class 
As mentioned in Chapter 1, the current most important concern for European countries 
trying to implement the WFD is whether each water body is of good or better ecological 
status. In terms of uncertainty, it is important to have some estimate of the likelihood 
that the true class of a water body is moderate or worse. Perhaps only if we are for 
example 95 per cent confident that a water body is of inadequate moderate or worse 
status would it be justifiable to carry out a costly programme of measures to improve 
ecological quality within the water body. 

Continuing with our illustrative example (with actual data-based variance component 
estimates), Figure 7.2 shows the probability of the true status being moderate or worse 
for each possible O/ETAXA value for each of the spatial and temporal scenarios 
discussed above. In order to have at least 95 per cent confidence that a site/water 
body is of ‘moderate or worse’ status, the O/ETAXA value that the sample must not 
exceed is 0.566 when the assessment is just for that site on the day of sampling. But 
this value decreases to 0.492 when the assessment is for the average quality of the 
whole water body over a three-year period (see Figure 7.2). 
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Figure 7.2 Probability of the true status being moderate or worse based on a single 
season sample O/E for NTAXA in relation to its true O/E and the spatial and 
temporal scale over which the O/E is intended to represent the average ecological 
quality  
Note: O/E 95% denotes the upper value of O/ETAXA needed to have 95% confidence that a site/water body is of 
‘moderate or worse’ status.   

7.3 Optimising sampling and monitoring effort 

7.3.1 Number and choice of samples 

Breaking down the overall variability in the observed (and O/E or EQR) values of 
biological metrics is crucial in helping to understand the spatial and temporal scale at 
which most macroinvertebrate variability occurs.  

From our analyses of variance components, we found that roughly half (38–55 per 
cent) of the total variation in the assessed macroinvertebrate indices occurring at a site 
over a typical three-year period is due purely to variation between replicate samples 
taken on the same day (Table 5.3). Thus taking one or more additional replicate 
samples on a site visit would help to reduce the effect of this portion of the total 
variance, without incurring any extra costs for additional sampling site visits. 

However, if the aim is purely to estimate average quality (average EQR) across a water 
body over a three-year period, and there were only sufficient resources to take and 
process three samples in total, then an efficient strategy could be to take one sample 
from a different sampling site in the water body in each of the three years. The variance 
of the average of the observed index values would be: 

  3/)( 2222
SWRT σσσσ ++=  
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This uncertainty variance no longer involves the inter-year variance components (see 
general formula in section 7.1.3). This is because we have taken a sample from all 
three years in which we are interested in averaging over. Thus, in sampling terms, we 
have sampled the whole ‘population’ of years in which we are interested for this 
particular assessment. The disadvantage of such a sampling scheme is that we have 
no direct information on temporal change within any one sampling site.  

Figure 7.3 shows the reduction in the probability of misclassification and thus the 
increased confidence of class of taking one sample from a different site in each of the 
three years, compared to basing average water body status on only one sample taken 
in one of the three years. In order to have 95 per cent confidence that the average 
quality of the water body for the period is of ‘moderate or worse’ status, the average 
O/ETAXA need only be 0.586. But a lower value of 0.492 is needed to allow for the 
uncertainty in EQR associated with a single sample (see Figure 7.2). 

In practice, estimates of average quality for a water body over a period may end up 
being based on a combination of a spring and autumn combined sample EQR in one 
year and a spring-only sample EQR in the next, because of practical problems in 
obtaining the autumn sample. This complicates the estimation of uncertainty in the 
average EQR, as two-season combined sample index values are more precise than 
their single season sample counterparts. So the overall precision is some average of 
the variances of the individual year EQRs. 
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Figure 7.3 Effect of basing average O/E for a water body over a three-year period 
on the average of a single sample from a different sampling site within the water 
body in each of the three years (black line) compared to using a single sample from 
one site in just one year (blue dashed line) 
Note: Other details as per Figure 7.1. 
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7.3.2 All methodological choices affect precision and accuracy 

There are usually financial pressures on any environmental monitoring agency to take 
as few biological samples as possible while still maintaining an adequate level of 
monitoring of any changes in the level of ecological quality throughout a river network. 

With the current practice of monitoring UK rivers using macroinvertebrate samples, 
time and costs occur at all stages of the assessment process. From getting to/from the 
sampling site and taking the macroinvertebrate sample, to subsequent laboratory 
sorting of the sample and taxonomic identification, and finally to processing the derived 
data through the RIVPACS/RICT analysis and assessment system. 

Generally, whatever sampling and sample processing methods are used, throughout 
the whole process, the overall aim is to maximise the precision and accuracy of any 
monitoring scheme within the practical constraint of limited resources. 

For example, at present taxa are usually only identified to family level for national 
monitoring purposes, and site assessments are consequently based on family-level 
metrics such as the BMWP and WHPT indices. This saves time (and involves less 
costly taxonomic expertise) than identifying to species level. However, it highlights the 
important potential difference between the precision of an assessment method and its 
accuracy.  

Precision is mostly measured by the amount of variation in biological indices and O/E 
values, and the uncertainty of status class due to sampling and sample processing 
variation. However, the accuracy of an assessment method depends not only on its 
precision (sampling repeatability), but also on how accurately it provides a measure of 
the true ecological quality of a site or water body. 

As a very silly extreme example of high precision but low accuracy, the assessment 
method could be ‘if a sample contains oligochaeta the site/water body should be 
classified as good or better status‘. This is a method with high precision, as the same 
result would be obtained for (almost) all samples. But it is not at all precise at 
measuring the underlying ecological quality and has no statistical power to detect sites 
of moderate or worse status.  

This simple example reminds us that our choice of macroinvertebrate indices, and how 
we combine them into multi-metric indices or worst case rules, affects both the 
precision and the accuracy of the overall bioassessment methodology. 

7.4 Links and comparison with VISCOUS approach 
Julian Ellis (before retirement from WRc) and Robin Wyatt from the Environment 
Agency recently developed an EXCEL spreadsheet software tool called VISCOUS. 
This provides a means for incorporating the effect of spatial variability within a water 
body into the estimates and uncertainty of estimates for either the mean EQR across 
the water body or the percentage of the water body below some critical EQR value. 

The software works by assuming that the water body can be divided into distinct parts, 
termed strata, each comprising a known proportion of the total water body area or 
length. Statistical formulae calculate an estimate for either the average water body 
EQR and its standard error or the estimated percentage below a critical EQR and SE, 
both between and within strata. These estimates and their SE are then used (together 
with the assumption of normal distributions) to estimate the probability that the water 
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body is below some user-set threshold mean EQR or that the percentage area is below 
the threshold EQR. 

In the VISCOUS spreadsheet tool, Ellis and Wyatt provide solutions for the following 
example situations of available data: 

 M = 3 strata and N = 2–4 sites per strata 

 M = 1 strata and N = 2–4 sites per strata 

 M = 3 strata and N = 1 site per strata 

 M = 1 strata and N = 1 site per strata 

These example spreadsheets provide a helpful explanation of how VISCOUS works. 
The software is structured so that the total variation within a water body is split between 
different sites within a stratum and between different strata. If the user provides input 
EQR data values for more than one site in at least one stratum, then the software can 
use the average within-stratum SD to estimate the overall SE for the water body. If only 
one site has been sampled per stratum, then the user must provide an estimate of the 
average within-stratum SD for individual EQR values, which is derived a priori from 
external sample datasets. In the RIVPACS III+ and the new RICT software, the 
estimates of EQI uncertainty for input sites are based on prior data-based estimates of 
the replicate sampling variance and (RICT only) temporal within-season and inter-year 
within-period variance components. 

However, one needs to use the VISCOUS software with care, because it only explicitly 
deals with spatial variability within the water body. It takes no account of whether the 
different sample EQR values have been obtained by sampling different sites on the 
same day or the same or different sites on different days, seasons or even years. The 
VISCOUS software has no explicit concept and makes no allowance for variations in 
time. 

VISCOUS can cope with situations where at least one site is sampled in each stratum. 
If only one stratum within a water body is being sampled, you have to assume it is the 
only stratum and the software uses a supplied estimate of within-stratum SD as the 
error term. You must be careful in this situation, however, because no account has 
been taken of the spatial variability between samples taken from different parts of the 
site. Consequently, the within-stratum estimate derived from the supplied EQR values, 
which were all taken from the same part of the water body or even from the same 
RIVPACS sampling site over time, would not include the unknown spatial variability 
and thus could under-estimate the uncertainty in the average EQR for the water body. 

In the context of macroinvertebrate samples based on the RIVPACS concept of a 
sampling site (and for assessments based on any other BQE), it is vital to take account 
of both temporal and spatial variance components. These should be included in the 
assessment of the uncertainty associated with some measure of the average (or lower 
percentile) EQR values and status class for a water body over a defined assessment 
time period (one season, one year or three years). 

This explains why we have tried to derive estimates for each of the separate variance 
components involved in water body assessments, namely replicate (non-spatial, non-
temporal), temporal (short-term within season, longer term inter-year) and spatial 
(between sampling sites), as described in Chapters 3–6 of this report. 

However, the VISCOUS tool can still be valid and very useful in its current form, 
provided the sampling criteria are understood. Specifically, if the user-supplied sample 
data within a stratum are spread over the whole stratum and time period being 
assessed, then the overall SD of these sample values will encompass all of the 
sources of variance. Hence, the simple within-stratum SD will be a valid estimate for 



 

 Science Report – Uncertainty in WFD assessments for rivers based on macroinvertebrates and RIVPACS 75 

that stratum mean, even though we do not know what is pure replicate variance and 
what is temporal variance. 

Care must be taken when EQR values are only available from one part of the water 
body or aren’t available for all the major years of the assessment period. The new 
RICT tool includes formulae to cope with situations where sample values may not be 
available in all the years of a three-year assessment period (see section 7.1.3) 

RIVPACS uncertainty assessments are currently based on deriving and using separate 
estimates of the sampling and other errors for the RIVPACS observed and expected 
values of individual metrics. It is recommended that additional analyses be conducted 
to assess the replicate, temporal and spatial variance in O/E (EQI) values directly, as 
this will make it easier to incorporate these values into EQI/EQR uncertainty 
assessments. The disadvantage of this approach is that it requires us to have 
RIVPACS expected values for each metric of each sample, which are used in statistical 
analyses for estimating variance components. Historical agency datasets often do not 
have the appropriate environmental predictor variables or expected values data readily 
available, but adequate estimates can be derived for use in assessing variance 
components of O/E (EQI) values. 

7.5 Combined season or average single season 
sample O/E 

If a RIVPACS macroinvertebrate sample is taken at a site in each of two or three 
RIVPACS seasons within a year, then an assessment of site quality for the year can be 
based on either the average or the minimum of single season sample O/E values. 
Alternatively, the O/E can be obtained by combining the single season samples into a 
combined season sample, computing the observed metric value and then dividing this 
by the RIVPACS predictive model site-specific expected value, based on the RIVPACS 
reference sites sample index values for the same season combination.  

The minimum of the single season sample O/E could potentially be used as the 
measure for the year, but it isn’t recommended due to the high uncertainty associated 
with the minimum of three single season O/E values. The problems and uncertainty 
implications of using worst case-type rules, such as the minimum of single season O/E 
values, are highlighted in section 7.6.  

So which, therefore, is the best measure to use to represent year quality for a site: 
average single season O/E or combined season sample O/E? 

We first considered this problem back in the mid-1990s within the BAMS project, 
although we were initially only interested in single year site assessments. In both 
approaches, the observed value is being compared with the appropriate season or 
season-combination expected value, so they are both valid ways for estimating quality. 

However, they represent different ways of defining and measuring site quality over a 
period of one year. For the combined season sample O/E will be less sensitive to 
having much poorer quality in one season (for example the season following some 
incident). 

The Clarke et al. (2002) paper summarising the BAMS study on sampling variability 
includes a section called ‘Sampling variation in the average of single season samples’. 
Clarke et al. (2002) showed that two- and three-season combined sample O/E values 
have slightly lower sampling standard deviations than the average of the two or three 
individual season O/E values. This is the analysis that led the UK government 
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environment agencies to continue to use combined season sample O/E rather than 
switch to the average of the single season O/E values. 

That was fine and appropriate for single year assessments. However, with the move to 
making assessments of average quality over a period of three years, it is probably 
worth re-considering using the average of all available single season sample O/E 
values.  

Some samples might be missed in some seasons or years, meaning we might be 
combining a spring-autumn sample O/E in one year with an autumn-only sample O/E in 
another year. This is not necessarily a major problem for estimating the average O/E, 
as RIVPACS O/E values do not vary systematically up or down with the number of 
seasons involved. But obviously the variation in O/E varies with the number of seasons 
involved and this would complicate the estimate of uncertainty in average O/E. 

We need further analyses and consideration of this problem, including comparing the 
effect of each choice and the relationship between the two choices for O/E estimator. 

7.6 Experiences from the European STAR project  
The largest ever European research project on macroinvertebrate sampling and 
methods, and their use in WFD bioassessments, was the EU Fifth Framework STAR 
project, led by Mike Furse of CEH Dorset over the period 2002–2006 (Furse et al. 
2006). The main results and findings of the STAR project were published in special 
issue 566 of the journal Hydrobiologia in 2006.  

As a major component of the STAR project, Clarke et al. (2006a, 2006b) used a 
carefully designed sampling study to assess the relative susceptibility to sampling 
variability of a wide range of commonly used European macroinvertebrate biotic 
metrics and sampling methods. Replicate samples were taken using both a ‘national’ 
method and an STAR-AQEM standard method at each of a range of sites covering a 
range of qualities from high/good to poor/moderate within one to three stream types in 
each participating partner country (Table 7.1). 

In addition to CEH in the UK, the Austrian, German and Greek STAR partners also 
used the RIVPACS sampling procedures as their ‘national’ method in order to compare 
their results with those generated by STAR-AQEM sampling method used by all 
partners (Table 7.1).  

Within the STAR project, the relative precision of metrics and sampling methods was 
measured by calculating the percentage (Psamp) of total variance in the metric values 
obtained using each method for each WFD system A stream type that could be 
attributed to replicate sampling variance. High values of Psamp indicate that the 
particular combination of metric and sampling method is highly variable between 
replicate samples relative to the total variability in metric values between sites for a 
range of qualities within the same stream type. These specific combinations of metric 
and sampling method will therefore have little power to detect differences in site quality 
and status class. 
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Table 7.1 STAR project: number of sites in each stream type and country with 
replicate samples obtained using either the RIVPACS or ‘national’ sampling 
method (and the STAR-AQEM) in at least one season (from Clarke et al. 2006b) 

Country Sampling 
method 

Stream 
type Stream type description Sites Sites x 

seasons 
Austria RIVPACS A05 small-sized, shallow mountain streams 4 6 

  A06 small-sized crystalline streams of the 
ridges of the Central Alps 4 7 

Czech 
Republic PERLA C04 small-sized, shallow mountain streams 3 6 

  C05 small-sized streams in the Central sub-
alpine mountains 3 6 

Germany RIVPACS D03 medium-sized lowland streams 2 4 
D04 small-sized, shallow mountain streams 2 4   D06 small-sized Buntsandstein-streams 2 4 

France IBGN F08 small-sized, shallow headwater streams in 
Eastern France 6 12 

Greece RIVPACS H04 small-sized calcareous mountain streams 
in Western, Central and Southern Greece 6 12 

Italy IBE  I06 small-sized calcareous streams in the 
Central Apennines 6 11 

Denmark DSFI K02 medium-sized lowland streams 6 12 

Latvia LVS 
240:1999 L02 medium-sized lowland streams 6 12 

Poland National O02 medium-sized lowland streams 7 13 

Portugal PMP P04 medium-sized streams in lower 
mountainous areas of S. Portugal 6 12 

Sweden National S05 medium-sized lowland streams 3 6 
  S06 medium-sized streams on calcareous soils 3 6 
UK RIVPACS U15 small-sized, shallow lowland streams 3 6 
  U23 medium-sized lowland streams 3 6 

Notes: Small-sized = 10–100km2, medium sized = 100–1000km2, lowland = <200m above sea 
level. 
 
Table 7.2 gives the average percentage replicate sampling variance (Psamp) for each 
metric averaged across all stream types in the UK, Germany, Austria and Greece, 
where the RIVPACS (and STAR-AQEM) sampling methods were used.  

The Saprobic abundance-based metrics appear to be least susceptible to replicate 
sampling variability, while replicate sampling variability was higher (Psamp = 15–17 per 
cent) for both ‘Number of families’ and ASPT in the RIVPACS and STAR-AQEM 
methods. However, as with all statistics, these average values can be misleading. For 
the ASPT metric based on the RIVPACS method, Psamp was only 5 per cent for the UK 
STAR stream types and 9 per cent for Austrian stream types. However, it was 19 per 
cent for Greek stream types and 27 per cent for the sampled German stream types, 
where the main environmental stress was degradation of stream morphology rather 
than organic pollution. Thus the total variation in ASPT was relatively small. However, 
the Saprobic metrics did tend to perform better than ASPT. 
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Table 7.2 Ordered median values of the average percentage sampling variance 
(Psamp) for each metric across all stream types and countries for the RIVPACS 
method and for the STAR-AQEM method (from Clarke et al. 2006b) 

Metric 
national/ 
RIVPACS 

STAR-
AQEM 

Saprobic Index 3 3 
German Saprobic new 4 5 
Czech Saprobic 4 6 
Trait m12 : preferred current<25cm/s 6 12 
% Littoral 7 15.5 
% EPT (abundance-classes) 7 9 
% Rheophilic (abundance-classes) 8 12 
Number of EPT taxa 9 15.5 
% Shredders 10 10 
% EPT taxa 10 18 
% Grazers/Scrapers 10.5 16 
% Rheophilic 11 12 
Trait m2 : >1 cycle per annum 12 10 
Trait m1:max size ≤1cm 14 27.5 
% Gatherers/Collectors 15 14 
% EPT individuals 15 15 
RETI 15 12 
Diversity SW 16 14 
Number of taxa 16.5 15.5 
ASPT 16.5 17 
Number of families 17.5 15.5 
1 –GOLD 17.5 16.5 
% Oligochaeta 19 16 
Abundance [ind/m²] 21 21.5 
IBE 25.5 16.5 
Trait m7 : crawler locomotion 26 17.5 
 
In the STAR project, we also tried to compare the relative precision of different 
‘national’ sampling methods by calculating the average percentage replicate sampling 
variance (Psamp) for a method average across all metrics and stream types. As 
mentioned earlier, the value of Psamp can partly depend on the type and range of stress 
levels operating within the sampled streams. So we also compared the average Psamp 
values for the national and cross-project STAR-AQEM sampling methods, separately 
for each country (Figure 7.4). 

Using this best-available information, we found that the highest average sampling 
precision was obtained by the Czechs, using both the STAR-AQEM and their own 
adapted PERLA ‘national’ sampling and sample processing protocols. (However, in a 
STAR evening workshop meeting, we did subsequently discover that the various 
researchers sampling a site first agreed on the relative cover of the different habitats to 
be sampled, thus eliminating one potential source of variability between replicate 
samples). 
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Figure 7.4 Average percentage replicate sampling variance (Psamp) over all 26 
metrics for the ‘national’/RIVPACS and STAR-AQEM methods for each country 
involved in the STAR project (from Clarke et al. 2006b) 

The RIVPACS sampling protocol, as used in the UK and Austria, appeared to have one 
of the lowest average percentage replicate sampling variances (Figure 7.4). This 
suggests it is at least as precise, in terms of derived biological metrics, as other 
European national macroinvertebrate sampling (and, equally important, sample 
processing) methods 

The STAR-AQEM multi-habitat sampling protocol, or a variant of it, is commonly used 
in Germany and the Czech Republic as the standard macroinvertebrate assessment 
procedure. Clarke et al. (2006a) found that the sub-sampling procedures in the STAR-
AQEM procedures (whereby a minimum of 700 individuals must be identified and 
counted) typically accounted for around half of the total variance in metric values 
between replicate samples. In other words, how a macroinvertebrate sample is 
processed once it has been collected from the river can be as important a source of 
variability, error and uncertainty as the natural small-scale spatial variability in 
macroinvertebrate distribution within a site.  

7.7 Uncertainty for multiple metric and worst-case 
rules 

Most of this report and the data analyses have concentrated on the uncertainty 
associated with a range of individual metrics and the derived EQRs and status classes. 
Individual metrics are the ‘building blocks’ of any overall site/water body assessment. In 
practice, many site and water body assessments are based on a combination of 
macroinvertebrate metrics and, more generally, on a combination of metrics and 
indices from more than one WFD biological quality element (BQE), including fish, 
macroinvertebrates, diatoms, macrophytes and habitat. 
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When the results of estimating status class based on each of several different metrics 
(and/or BQEs) are combined, the procedure for defining overall class is often to take 
the worst class from each of the individual metrics (and/or BQEs). This is known as the 
‘one-out all-out’ or ‘worst case’ rule.  

7.7.1 Worst case rule – implications for uncertainty 

A form of worst case rule is also involved when the status class of a water body is set 
as the worst of the classes estimated at each of several sampling sites within the water 
body. There is a current discussion within the Environment Agency as to whether to 
use worst EQR (and class) or average EQR, or maybe to use the class of the worst 15 
per cent length of river within the water body (although this is equivalent to worst case 
if, as is usual, there are less than seven sampling sites within a water body). 

However, using any type of worst case rule (either across metrics or space) has 
implications for the uncertainty and confidence of class associated with the estimate of 
overall status class for a site or water body. 

Ellis (2007) considers two different approaches for defining worst class based on the 
EQR values and confidence of class probabilities for two or more metrics for a site. 
One approach (referred to by Ellis 2007 as ‘Interpretation II’) is equivalent to the 
approach used in RIVPACS III+ and the new RICT tool. It is based on simulating 
uncertainty in each metric’s EQR and then applying the worst case rule to the status 
class of the metrics for each simulation in turn. This is equivalent to the RIVPACS/RICT 
MINTA rule of using the worst of the classes based on O/ETAXA and O/EASPT, which is 
currently used for UK river assessments. 

The general problem with using worst case rules is best illustrated by an example in 
which the overall assessment for a site is based on the lowest status class of the EQR 
values of M metrics, where M could be one, two, three or four. For simplicity, assume 
that the critical good/moderate boundary of each metric’s EQR is set to 0.7. Then 
taking the worst class of each metric is the same as taking the class of the lowest EQR. 
It is assumed that the overall sampling variance for each metric is the same, and 
equivalent to that described in section 7.1 for NTAXA of single season samples 
intended to represent the average for a water body over a three-year period. This gives 
each EQR and sampling SD of 0.135. Furthermore, the sampling variability of metrics 
is assumed, for illustrative purposes, to be independent. 

Figure 7.5 shows the distribution of potential values for the minimum of M metric EQR 
values for a site where the true average value of each metric is on the good/moderate 
boundary at 0.7. With a single (M=1) metric, half the sample values will be greater than 
0.7 and half will be less than 0.7, so the probability of being classed as ‘moderate or 
worse’ is 50 per cent. 
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Note: M = 1 (purple line), 2 (red), 3 (green) or 4 (blue). 

As the overall assessment is based on an increasing number of metrics, the minimum 
of their EQR values for a sample and site/water body tends to decrease. In particular, 
when M equals one, two, three or four metrics, the mean value of the minimum EQR 
for a sample is 0.70, 0.63, 0.59 and 0.57 respectively (Figure 7.5) 

This idea can be extended to derive the distribution of the minimum of M metric EQRs 
when each EQR has the same true mean value Q, where Q varies between 0 and 1. 
For each value of Q, RIVPACS or STARBUGS software stochastic uncertainty 
simulations (or otherwise, for example MINITAB) can be used to calculate the 
probability that the worst class based on M metrics would be ‘moderate or worse’ given 
a good/moderate boundary EQR value of 0.7 for each metric (Figure 7.6).  

When the true average EQR for a single metric is around the good/moderate boundary, 
then, as expected, the probability of ‘moderate or worse’ is 50 per cent. However, as 
the overall assessment is based on the worst class of two, three or four metrics, the 
probability of being classed as ‘moderate or worse’ when each metric’s EQR is on 
average on the good/moderate boundary increases to 75 per cent, 87.5 per cent and 
93.75 per cent respectively (Figure 7.6). This is because the probability of all M metrics 
(M=1–4) being above the good/moderate boundary is 0.5 raised to the power M, 
namely 0.5, 0.25, 0.125 and 0.0625. 
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Figure 7.6 Probability of being classed as ‘moderate or worse’ status when using 
the worst class rule, where each metric EQR has a SD of 0.135 and the same true 
average value 
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Thus, as more metrics are involved in a worst case rule, the risk of type 1 errors of 
status misclassification increases (where a type 1 error means concluding that a 
site/water body is impacted when it is not). 

One possible solution would be to try to apply a correction factor to the status class 
limits in a way that is analogous to the Bonferroni correction used when there are 
multiple statistics tests for differences in ANOVA. The status class limits for each metric 
could be set higher to allow for the effects of sampling variability (of prior estimated 
size) on the worst case rule. In the example given above and shown in Figure 7.6, the 
site assessment can be taken as the worst EQR (and class) of M=3 metrics, each of 
which has the good/moderate boundary set to 0.70. To maintain the individual metric’s 
50 per cent type 1 error for sites with EQR values on the good/moderate boundary, the 
boundary would need to be set higher, at around 0.82, in order to have a 50 per cent 
sampling chance that the three-metric worst case rule would assign such ‘borderline’ 
sites to the lower ‘moderate or worse’ class. 

In practice, each metric will tend to have different EQR class limits, but this example 
demonstrates the general principle. What would seem strange, even though logical, 
would be to have different class limits for a metric depending on how many other 
metrics it was combined within in a worst case rule. 

The UK government environment agencies cannot afford to designate incorrectly too 
many water bodies as of ‘moderate or worse’ status. Such status requires costly 
measures to be put in place by the agencies or businesses to rectify the apparent 
problems. 

This discussion highlights the problems associated with multi-metric and multi-BQE 
worst case rules due to sampling variability. It also suggests why other forms of multi-
metric index that involve the weighted-averaging of individual metric EQR values for a 
site, or spatial averaging across sample sites within a water body, may avoid some of 
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these problems. This is partly why we have concentrated this study on estimating the 
average water quality over a period of time across a water body. 

7.7.2 Multi-metric averages  

The variance and correlations between metrics – across replicates, space and time, 
and between sites – will influence the effectiveness, precision and accuracy of any 
multi-metric index. If two indices are very highly correlated (such as NTAXA and 
BMWP score), then they will always tend to give the same estimate of class for any 
sample (assuming class limits have been set equivalently). As a result, their single 
response to stress will count double in the overall metric. If the overall rule was to use 
the median EQR of three metrics, two of which are very highly correlated, the result 
would be the class of these two metrics. 

Clarke and Hering (2006) point out that adding an extra metric to a multi-metric index 
(MMI) could increase the MMI variance and reduce its precision if the extra metric is 
relatively more susceptible to sampling variation. Equally importantly, from an 
ecological rather than a purely statistical viewpoint, every change of metric and/or the 
class limits in an MMI changes the biological requirements for each status class. 
Obviously, care should be taken in adding new metrics, especially in terms of what 
stresses they are expected to respond to, the strength and form of their response, and 
their relative sampling variability and precision. 

In the UK, the development of the new RICT software aims to generalise the existing 
RIVPACS III+ software by making it easier to update the overall classification system to 
include new metrics. It already includes the ability to utilise expected values of the 
Walley-Hawkes revised BMWP indices (denoted WPPT), and the family-level LIFE and 
AWIC indices.  
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7.8 Recommendations 
In conducting this review of past studies and new analyses of temporal and spatial 
datasets to assess uncertainty of river ecological quality across a whole water body, we 
have tried to cover all of the factors and sources of uncertainty that can be involved 
and may need to be considered and quantified. This has led to the discovery of gaps in 
our knowledge and highlighted potential improvements to the assessment methodology 
that still need to be addressed. These are summarised in the following 
recommendations (in no particular order) for further work. 
 

1. The new RICT software should include specific estimates and information on 
the confidence of failing to achieve good or better status in addition to the 
confidence of belonging to individual WFD status classes. 

2. There is a need to collate and analyse a much larger dataset of spatial 
variability between sampling sites within the new WFD water bodies, ideally 
with temporal and replicate sampling information on at least a subset of the 
same sites. This should allow improved estimates of the scale of spatial 
heterogeneity within rivers. 

3. Methods giving fixed RIVPACS predictions for each site should be developed. 
These should be based on either temporally-invariant Geographic Information 
System/map-based site and catchment environmental variables or long-term 
(five-year) average environmental variables. This would provide O/E values for 
every sample and allow direct assessment of O/E variance components.  

4. Some environmental parameters can be affected by flow and so current 
predictions can miss the impact of abstraction. There is a need to develop 
predictions that are not influenced by flow or new rules for using such data for 
WFD predictions (because flow pressures are to be considered). 

5. There should be further analyses of RIVPACS sample audit data to derive and 
incorporate direct estimates of sample processing errors and biases in other 
indices (in addition to NTAXA) into the RICT software for assessing confidence 
of class. 

6. The merit of using the average of single season sample O/E values as a 
measure of water body quality over a period should be reconsidered, and 
contrasted with the current combined season sample approach. 

7. Statistical methods to cope with any actual temporal and spatial mix of samples 
should be developed and these methods incorporated into either the RICT 
software or an extended version of the VISCOUS-type software tool. 

8. A standardised sampling approach for assessing non-wadeable rivers (based 
on Environment Agency/NS-share/CEH ‘deep rivers’ research) should be 
developed and a BAMS-like study to quantify uncertainty conducted.
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Abbreviations 
 
 
ANOVA  Analysis of Variance 
AQC  Analytical Quality Control 
AQEM  Assessment system for the ecological Quality of streams and 

rivers throughout Europe using menthic Macroinvertebrates 
ASPT  Average Score Per Taxon 
AWIC  Acid Water Indicator Community 
BAMS  Biological Assessment Methods 
BQEs  Biological Quality Elements 
BMWP  Biological Monitoring Working Party 
CAVE  Combines Appropriate Variance Estimates 
CEH  Centre for Ecology & Hydrology 
EQI  Environmental Quality Index 
EQR  Ecological Quality Ratio 
FAME  Development, Evaluation and Implementation of a Standardised 

Fish-based Assessment Method for the Ecological Status of 
European Rivers 

GQA  General Quality Assessment 
IFE  Institute of Freshwater Ecology 
LIFE  Lotic Invertebrate index for Flow Evaluation 
MDA  Multiple Discriminant Analysis 
MINTA  Minimum of status classes based on O/E for TAXA and ASPT 
MMI  Multi-metric index 
NI  Northern Ireland 
NIEA  Northern Ireland Environment Agency 
NRA  National Rivers Authority 
NS Share  North South Shared Aquatic Resource 
O/E  Observed/Expected 
QA  Quality Audit 
RC  Reference Condition 
REML  Residual/Restricted Maximum Likelihood 
RHS   
RICT  River Invertebrate Classification Tool 
RIVPACS  River Invertebrate Prediction And Classification System 
RPB  River Purification Board 
RQS  River Quality Survey 
SD  Standard Deviation 
SE  Standard Error 
SEPA  Scottish Environment Protection Agency 
SNIFFER  Scotland and Northern Ireland Forum for Environmental 

Research 
STAR  STAndardisation of River classifications European project 
VISCOUS  Variability In Spatial Component Objectivity Unified Statistically 
WFD  EU Water Framework Directive 
WHPT  Walley-Hawkes weighted ASPT 
WRc  Water Research Centre 






