
On analysis of complex network dynamics  
– changes in local topology 

Krzysztof Juszczyszyn 
Institute of Computer Science, 

Wrocław University of Technology,  
27, Wyb. Wyspiańskiego Str. 

50-370 Wrocław, Poland 
+48 71 3202116 

krzysztof@pwr.wroc.pl 

 

Katarzyna Musiał 
School of Design,  

Engineering and Computing, 
Bournemouth University, UK 
Fern Barrow, Talbot Campus 

BH12 5BB, Poole, UK 
+44 12029 65795 

kmusial@bournemouth.ac.uk 

Marcin Budka 
School of Design,  

Engineering and Computing, 
Bournemouth University, UK 
Fern Barrow, Talbot Campus 

BH12 5BB, Poole, UK 
+44 12029 65795 

mbudka@bournemouth.ac.uk 

 

 

ABSTRACT 

Social networks created based on data gathered in various 

computer systems are structures that constantly evolve. The nodes 

and their connections change because they are influenced by the 

external to the network events.. In this work we present a new 

approach to the description and quantification of patterns of 

complex dynamic social networks illustrated with the data from 

the Wroclaw University of Technology email dataset. We propose 

an approach based on discovery of local network connection 

patterns (in this case triads of nodes) as well as we measure and 

analyse their transitions during network evolution. We define the 

Triad Transition Matrix (TTM) containing the probabilities of 

transitions between triads, after that we show how it can help to 

discover the dynamic patterns of network evolution. One of the 

main issues when investigating the dynamical process is the 

selection of the time window size. Thus, the goal of this paper is 

also to investigate how the size of time window influences the 

shape of TTM and how the dynamics of triad number change 

depending on the window size. We have shown that, however the 

link stability in the network is low, the dynamic network 

evolution pattern expressed by the TTMs is relatively stable, and 

thus forming a background for fine-grained classification of 

complex networks dynamics. Our results open also vast 

possibilities of link and structure prediction of dynamic networks.  

The future research and applications stemming from our approach 

are also proposed and discussed. 

Categories and Subject Descriptors 

E.1 [Data Structures]: Graphs and Networks; H.4 [Information 

Systems Applications]: Miscellaneous; J.4 [Social and 

Behavioral Sciences]: Sociology;  

General Terms 

Algorithms, Measurement, Experimentation, Theory, Verification. 

Keywords 

Complex social networks dynamics, local topology analysis, triad 

transition matrix. 
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1. INTRODUCTION 
Complex networked systems attract more and more researchers 

from different fields. Networked structures are present in our 

everyday life – power grids, transportation networks, social 

networks, biological and ecological networks. Changes in the 

structure of these systems can have a wide range of consequences 

for individuals, groups, whole companies or even countries. In 

this paper we focus on social networks but the presented 

methodology for investigation the changes in local topology can 

be applied to all types of complex networks. Of course the 

interpretation of the results will vary from one application to 

another but the technique remains unchanged. 

When investigating the topological properties and structure of 

complex networks we face a number of complexity–related 

problems. In large social networks, tasks like evaluating the 

centrality measures, finding cliques, etc. require significant 

computing overhead. However, the technology-based social 

networks add a new dimension to the known problems of network 

analysis [11]. The existence of link is a result of a series of 

discrete events (like email exchanges, phone calls, posting of blog 

entries) which have some distribution in time. As shown in [9] for 

various kinds of human activities related to communication and 

information technologies, the probability of inter-event times 

(periods between the events, like sending an email) may be 

expressed as: P(t)≈t-α where typical values of α are between 1.5 

and 2.5. This distribution inevitably results with series of 

consecutive events (“activity bursts”) divided by longer periods of 

inactivity.  

These phenomena have serious consequences when we try to 

apply the classical structural network analysis (SNA) to dynamic 

networks. The most popular approach to perform SNA on 

dynamic networks is to divide the time period under consideration 

into time windows, then run the structural analysis methods on the 

networks created for each time window separately. This should 

show how the measures like node centrality, average path length, 

group partitions etc. change over time, providing an insight into 

the evolutionary patterns of the network. 

However, the bursty behaviour of the users (long inactivity 

periods mixed with the bursts of communication activities) causes 

dramatic changes of any measure when switching from one time 

window to another. There is a trade-off: short windows lead to 

chaotic and noisy dynamics of network measures, while long 

windows give us no chance to investigate time evolution of the 

network [13][14]. 

In order to address this problem, a number of approaches designed 

to predict changes in the structure of dynamic networks were 
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proposed [15][16]. The special case of this family of methods is a 

so-called link prediction problem – the estimation of probability 

that a link will emerge/disappear during the next time window 

[12]. 

In this work we propose a method of characterizing the dynamic 

evolutionary patterns of the network by the analysis of changes in 

the local topology of connections. This approach stems from our 

previous experience [17] and will be introduced in Sec. 2. Sec. 3 

presents the results, showing the possibility of the characterization 

of network evolutionary schemes with our approach. These 

concepts are illustrated by the experiments carried on the large e-

mail based social networks build from the mail logs of the 

Wroclaw University of Technology e-mail social network. 

2. LOCAL TOPOLOGY OF ONLINE 

SOCIAL NETWORKS 

2.1 Triads and network motifs 
For the abovementioned reasons, standard approaches exploiting 

network analysis by means of listing several common properties, 

like the degree distribution, clustering coefficient, network 

diameter or average path lengths often fail when applied to 

dynamic complex networks [18]. In many cases it is possible to 

use random algorithms (like standard preferential attachment) to 

construct networks with for example exactly the same degree 

distribution whose structure and function differ substantially 

(we’ll comment on this issue in the next section). Huge network 

structures (like social, biological, gene networks) should be 

investigated with more precise and structure–sensitive methods 

[1][4].  

For complex networks, we experience a general rule that the 

global properties like network clusters, diameter, node degree 

distribution emerge from the local interactions, which constitute 

the local topology of the network (direct neighbourhood of a node 

in simplest case). Even simple local rules may lead to the 

emergence of dense groups, phase transitions or non-trivial 

network topologies [20]. 

 

 

Figure 1 Three-node triads in directed graphs for undistinguishable 

nodes (picture from [21]) 

During last years we have experienced the development of a 

number of methods investigating complex networks by means of 

their local structure (especially – frequent patterns of connections 

between nodes). The simplest, and therefore most popular, way to 

characterize the network in the context of local connections is to 

examine the links between the smallest non-trivial subgraphs 

consisting of three nodes – the triads..  

A set of 16 triads that do not distinguish between nodes is 

presented in Figure 1 (Please note that numbers 1, 2, etc will be 

used further on in this paper when referencing a set of 16 directed 

triads). 

If we want to distinguish between node positions in a triad, there 

are 64 different triads in a directed graph (Figure 2). In our 

experiments we distinguish between the nodes, for in our network 

they are corporate email addresses and, when analysing the 

connection changes two topologically equivalent subgraphs may 

in fact represent different behaviour of the users.  

Please note the triad ID (the numbers inside the picture of the 

subgraphs) in Figure 2, as it will be used further on in this paper 

for identifying the connection patterns. Note also, that there is a 

correspondence between the IDs and the edit distance between 

triads – small difference in the ID value in most cases suggests 

small edit distance (the number of link removal/addition 

operations needed to transform one triad into another). 

 

Figure 2 Three-node triads in a directed graph 

The basic method utilizing such subgraphs is the well-known triad 

census, which is enumeration of all triads in the network, allowing 

to reason about the functional connection patterns of the nodes 

[18]. Last years have seen the development of more sophisticated 

approaches, among them motif analysis which aims to 

characterize the network by the difference between its structures 

and an ensemble of random networks of the same size and degree 

distribution. A biased distribution of local network structures 

(subgraphs) is widely observed in complex biological or 

technology–based networks. Motif analysis stems from 

bioinformatics and theoretical biology [1][3], where it was applied 

to the investigation of huge network structures like transcriptional 

regulatory networks, gene networks or food webs [4][5]. Although 

the global topological organization of metabolic networks is well 

understood, their local organization is still not clear. At the 

smallest scale, network motifs have been suggested to be the 

functional building blocks of network biology. So far several 

interesting properties of large biological network structures were 

reinterpreted or discovered with the help of motif analysis. There 

was also one more conclusion: although the properties like node 

degree distribution, clustering or diameter of real-life networks 

and their randomly generated counterparts may agree, the local 



topology shows distinctive features which are quite different (like 

the general motif profile of the network expressed by so-called 

triad significance profile – TSP – a vector of the Z-score measures 

of the motifs) [6][7][8].  

Motif analysis offers low computational overhead and opportunity 

to gain an insight into the local structure of huge networks which 

otherwise would require prohibitive computations to investigate. 

Moreover, the discovered motifs and their numbers enable to 

assess which patterns of communication appear often in the large 

social networks and which are rather rare.  

In our former research we have investigated the local structure of 

numerous technology-based networks, among them an e-mail 

social network of Wroclaw University of Technology (WUT), 

consisting of more than 5 800 nodes and 140 000 links [2][17]. 

Our aim was to check if the known properties of local topology in 

social networks (known on the basis of motif analysis conducted 

for small non-technology social networks [4]) are also present in 

large email–based social structures, and if there are some distinct 

features characteristic to the email communication. The most 

important conclusion from these experiments was that the TSP of 

the network is stable over long periods of time. This was 

confirmed even for periods like summer holidays when the 

number of links in the university network dropped by 50% and for 

different link weight thresholds [17]. Summing up – the 

investigated complex network show statistically stable pattern of 

connections as a whole, despite the fact that average stability of a 

single link is quite low: 59% in our case (which means that 41% 

of the connections will not be present in the next time window). 

This statement is even more important when we consider that it 

generally holds regardless of the width of the time window (the 

link stability of 67% was measured for 30-day time windows). It 

may be explained by the cumulative effect of the users’ activity – 

for longer time windows the chance that the communication 

between users will be noticed obviously grows, but on the other 

hand  there are links which will appear only in one of the shorter 

time windows. Some of the users use their email accounts only 

occasionally, for example, in our dataset 16% of the users 

exchanged only one email during the analysed period.  

The above observations taken together with the former results 

cited led to the idea of characterizing the evolutionary patterns of 

the network by means of the changes in elementary subgraphs, in 

this particular case – directed triads.  

In the next section we introduce the Triad Transition Matrix 

(TTM) as a basic structure used in our experiments to measure the 

changes in local topology patterns of the network. 

2.2 Triad Transition Matrix 
The idea behind the Triad Transition Matrix is to use the data 

about the history of the network (recorded during past time 

windows) to derive the probabilities of transitions between triads 

(patterns of local connections). 

The TTM is a g x g matrix, where g is the number of 

considered subgraphs. For directed triads in our experiments g = 

64 (see Fig.1, however if we decide not to distinguish between the 

nodes, there will be only 16 possible triads). 

The values of TTM entries are defined as follows: 

TTMt (i,j) = P(gi[t] gj[t+1]) (1) 

TTMt (i,j) is the probability (estimated on the basis of the full 

subgraph enumeration for networks created from data gathered in 

time windows [t-1 , t] and [t , t+1]), that a connection pattern gi 

detected during [t-1 , t] will transit into gj during [t , t+1]. In large 

complex networks (like the one analysed in our experiments) we 

may expect the occurrence of huge numbers of the triads of all 

kinds – typically the network comprising of thousands of nodes 

contains at least million triads.  

Our goal was to check if the local network structures (the triads - 

discussed in the former subsection) show distinguishable 

evolutionary patterns. 

2.3 Size of the Time Window  
Selecting the right time window for analysis of network dynamics 

is a very challenging process, for the reasons briefly presented in 

the introductory section. There are two standard approaches to 

split data into time periods: 

a) Moving window – length of the time window (e.g. x) and the 

time interval that is used to move the window (e.g. y) are defined. 

In order to extract time periods, the time frame of the length x is 

moved by the factor y. In consequence the whole timeframe under 

consideration is divided into partially overlapping periods. Note 

that, the time window and time interval need to be specified in the 

way that the period from the start date to end date should be 

completely covered. 

b) Equal, separate periods – number of periods e.g. k is set and 

then the data are divided into k separate, equal periods according 

to the dates of activity occurrence. 

The concepts of both procedures are presented in the Figure 3. 
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Figure 3 The division of analysed data into time periods using a) the 

concept of moving window, b) the concept of equal, separate periods. 

The most challenging part of both procedures is to decide what 

should be the length of time window. In this paper, second 

approach with equal, separate periods has been used, because 

overlapping windows would make it difficult to uniformly assign 

the changes in the triad connections to the given time period. Four 

different time frames have been chosen (1, 3, 7, and 30 days long) 

and analyses were performed to investigate the influence of time 

window size on the discovered patterns. 

3. EXPERIMENTS 

3.1 Data Preparation 
The experiments were carried out on the logs from the Wroclaw 

University of Technology (WUT) mail server, which were pruned 

to contain only the emails originated from (or: sent to) the staff 



members registered at the mail server of the university. First, the 

data has to be cleansed by removal of spam and unification of 

duplicated email addresses. There are 5834 active email addresses 

on the server, which implied that even for the shortest time 

window of 1 day, there were on average ~2000 active network 

nodes. For our experiments we used data from a period of 100 

days, starting on the 5th of March 2010.  

3.2 Experiment Setup 
The dataset has been divided into time windows in the following 

way (note that the length of time windows not always sums to 100 

days, but we decided to maintain equal timespans of the windows 

in order to exclude the possible influence on the results): 

 Setup 1: 100 windows – each window 1 day long  

 Setup 2: 33 windows – each window 3 days long 

 Setup 3: 16 windows – each window 7 days long 

 Setup 4: 4 windows – each window 30 days long 

In Figure 4 the number of edges for each time window has been 

presented. The biggest variations in number of links can be 

observed in the case of time windows of size 1, which 

corresponds to the phenomena mentioned in Introduction. In 

particular, the visible drop in the number of links observed every 

seven days clearly corresponds with Sundays (or, in general, the 

weekends), when the activity at the university freezes. The 

situation stabilises when larger time windows are considered. 

However, the sudden drop of number of links that is visible in 

windows 25 and 30 (for window size of 3 days), and also for 

window 13 (for window size of 7 days) and finally window 3 (for 

window size of 30 days), cannot be properly identified when 

windows of length 1 day are considered (although it may be 

associated with student celebration days practically resulting in a 

few extra holidays in May). 

3.3 Frequency of Triad Occurrence  
First experiments were performed to check if and how the number 

of specific triads changes in different windows that are of 

different size (Figure 5). In this (and only this) analysis we were 

not distinguishing between the nodes in the triads, which implies 

that there are only 16 possible directed triads to be considered.  

Obviously, the most dynamic changes occur when the time 

window of size 1 day is investigated. However it can be noticed 

for 1 day window, that the changes have periodical character. 

Again, the changes repeat within the cycles which last 7 days 

each. 

This pattern is still visible when analysing three-day periods but is 

flatter that in the previous case, since normal communication 

overlaps with the free time. Analysis of the three-day periods 

revealed that the number of motifs drops significantly in windows 

25 and 30 in comparison to other windows. 

Looking at the time windows of the length of 7 days, further 

flattening of dynamics is clearly visible and it is even more clear 

for time window of size 1 month.  

Figure 5 suggests that in the analysed network one can observe 

the stability of triad connection pattern. The pattern that covers 7 

days and repeats periodically, reflects the changes that occur 

within the network structure although the rules of these changes 

can be perceived as stable. 

3.4 TTM for different windows size 
The number of triads enumerated in the networks derived from 

different time windows varies from 1.3 million (for 1 day 

windows) up to 2.2 million (for 30 day windows). The changes in 

the connections within these triads were used to compute the 

transition probabilities which constitute the entries of the TTMs. 

In Figure 6 the TTM derived on the basis of 4 time windows of 

size 30 days each are presented (from this point, all results are for 

Figure 4 Number of edges for specific time windows 



the triads in which the nodes are distinguished from each other, 

which results in 64 connection schemes between 3 nodes 

connected by directed links). We may notice that the triad 

transition probabilities have distinctive form (the distribution of 

transition probabilities is not flat and looks stable) which reveals 

some variation but holds the general shape which may be called 

the evolutionary pattern of the network under consideration –the 

TTM’s entries computed for neighbouring time windows have 

similar values.  

First of all, the value of TTM(1,1) reflects the fact that the 

network is sparse (the link density is below 1%) which means that 

most of the possible triads contain no edges. As the result most of 

the “empty” triads always remain in this state, which gives us a 

relatively high value of TTM(1,1) for all TTM matrices. 

We should also note the high values in the first column of the 

TTM. This means that when it comes to disappearing of the links, 

the probability of resetting the entire triad to zero-connection state 

is relatively high.  

On the other hand, it is also visible, that the values on the diagonal 

of TTM are bigger than most values in their neighbourhood, 

which shows that the already-formed triads tend (in general) to 

stay in their current state.  

The last important observation is that some triads are special as 

they show clearly bigger values in their columns of TTM, which 

means that they are “sinks” of the evolution patterns of 

connections. 

High probability of the fact that triads number 4, 13, and 49 

(Figure 1) will not change shows that they may be called stable 

triads in the analysed network. It reveals the specific 

characteristic of email networks where many departments exist 

and there is a lot of broadcast communication (which is not 

answered) from one person (e.g. secretary) to the large number of 

recipients. 

Interesting situation can be observed in the case of windows of 

size 1 day. Although most of TTMs are similar to those presented 

above there is an interesting outlier that reoccur every 7 windows 

(Figure 7). These Triad Transition Matrices show that almost all 

network triads disappear as it was pointed out previously. It can 

reflect the day-off where almost nobody sends emails. The rest of 

the triads, which do not disappear totally, degenerate to weakly 

connected triads, e.g. triad number 62 changes into triad 

number 33. 

Figure 5 Number of specific motifs (from Figure 1) in successive windows 



 

Figure 6 TTM between windows of size 30 days 

Figure 7 TTM between windows 3 and 4 (1 day time windows) 



3.5 Similarity between the TTMs  
The analysis of each of the TTM separately is very complex. Thus 

one of the methods that can be applied to compare TTMs was to 

calculate the degree to which two Triad Transition Matrices are 

similar to each other. First step of this approach is to subtract one 

matrix from another. Then all absolute values of elements from 

the resulting matrix are summed up. The obtained value is 

normalised by dividing by the largest possible value – 128 (when 

two matrices are completely different – the result will be denoted 

by inv_sim(TTM1, TTM2). Finally, the similarity between the 

matrices, sim(TTM1, TTM2), is calculated as: 

sim(TTM1, TTM2) = 1 – inv_sim(TTM1, TTM2) (2) 

The calculated similarities between 99 TTMs created for time 

windows of size 1 day are presented in the top-right corner of 

Figure 8. It can be seen that a repeating pattern can be found. 

Starting from TTM number 3 and then every 7 days the TTMs are 

similar to each other. These TTMs (3rd, 10th, 17th, etc.) although 

very similar to each other are less similar to the rest of the Triad 

Transition Matrices. 

Similarities between TTMs for 3 days’ time windows also feature 

some patterns but they are not as visible as in the case of TTMs 

for 1 day window. Interesting situation can be observed in the 

case of time windows of size 3, where the TTMs between window 

24 and 25 as well as between 29 and 30 are not similar to other 

TTMs. It shows that in these TTMs the sudden change of local 

structure has occurred. 

Finally the similarity matrix for TTMs for 7 days time window 

shows that they are very similar, so the fluctuations in triad profile 

can be hardly observed.   

Next step of the TTMs analysis focused on investigation of the 

mean and variance of the TTM entries for different sizes of time 

windows. 

The mean values for all experimental setups look very similar 

(Figure 9). The highest mean values occur in the diagonal and also 

in the case of loosely connected triads (triads’ number 1, 2, 3, 4) 

of each matrix presented in Figure 9. 

Figure 8 Similarity matrices between TTMs for different sizes of time window 



 

Figure 9 TTMs containing the transition probabilities averaged for number of time windows in a specific setup. 

Figure 10 Variance calculated for TTMs containing the transition probabilities averaged for number of time windows in a specific 

setup. 



The variance informs how far the set of numbers lie from the 

mean (expected value). In Figure 10 a specific variances for 

corresponding matrices in Figure 9 are presented. As it can be 

seen the variance is the biggest in the case of TTMs created for 

windows of size 1 day. However please note that the variance is 

from the range (0; 0.11) so it is small in general. The variance for 

TTMs where time windows were either 7 days long or 30 days 

long is 0 for most of the matrices cells. The variations from mean 

value exist only in the case of loosely connected triads. 

The last fact clearly shows, that for longer time windows the 

network is still dynamic, there are constant transitions between the 

connection patterns, however the dynamic changes follow a well-

defined pattern.  

It is worth to note that although the evolutionary pattern of the 

network is stable, the links are not, as mentioned in the preceding 

sections. Thus our approach offers a way to statistically describe 

the evolutionary patterns in the network and to show that these 

patterns are relatively stable, even while the links and (in 

consequence) traditional structural measures of the network are 

not. 

4. CONCLUSIONS AND FUTURE WORK 
The approach presented in this paper allows the statistical 

description of evolutionary patters of complex networks and 

shows that, for the complex and dynamic social network based on 

everyday communication in a large company these patterns show 

stability in spite of link instability. From the other hand, the 

periodical fluctuations resulting from external events (like 

weekends, holidays etc.) are also detectable and may be used to 

quantitatively describe the life of the network. 

The results shown in this work open also vast possibilities for 

future research and building more sophisticated models, allowing 

also interesting applications. The most interesting and prospective 

possibilities are: 

1. Link and structure prediction: knowing the evolutionary 

patterns of the network one can predict its future 

topology, on the level of single link (link prediction) or 

even global connectivity and cluster structure. Our next 

step will be the application of the TTMs to link and 

structure prediction. Our approach seems to be 

especially promising in the second case, while the triads 

– topologically - lie between links and network groups. 

In consequence the TTMs embrace part of group 

behaviour patterns and may be used to characterize 

group dynamics as well. 

2. Including link weight issues in the analysis. The 

network analysed in this work was unweighted, but, 

obviously, not all triads consist of the links of the same 

intensity.  The information about weights may be used 

as complementary and may help to estimate the triad 

transition probabilities  

3. Reducing the complexity of our method in order to be 

used to analyse huge networks (like telecom graphs 

coming from logs of mobile phone operators, who may 

use the predictions to evaluate the marketing strategies, 

make customer churn predictions, learn about user 

behaviour patterns and so on).  In practice, for the 

network of the size used in our experiments the 

computations were not prohibitive and were made on a 

state-of-the-art PC (it should be also noted that the 

method may be easily parallelized, which is not a 

challenge for algorithms involving triad counting).  

4. Network classification according to evolutionary 

patterns. It will be checked if the complex networks 

emerging in different areas show stable TTMs and if 

they can be classified according to them. We have 

obtained preliminary results showing that the similar 

patterns (expressed by the stable values of TTMs) exist 

in other dynamic complex networks – like in 

communication graphs formed by source-to-destination 

communication by the computers in distributed systems. 

We are planning to test the applicability of our approach 

for the detection of traffic anomalies and network 

attacks. 

5. Tuning of the method by including the periodicity of the 

changes in TTM entries for consecutive time windows 

(visible in 1-day windows in our experiments). 
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