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Abstract— In modern social networks built from the 

data collected in various computer systems we observe 

constant changes corresponding to external events or the 

evolution of underlying organizations. In this work we 

present a new approach to the description and 

quantifying evolutionary patterns of social networks 

illustrated with the data from the Enron email dataset. 

We propose the discovery of local network connection 

patterns (in this case: triads of nodes), measuring their 

transitions during network evolution and present the 

preliminary results of this approach. We define the Triad 

Transition Matrix (TTM) containing the probabilities of 

transitions between triads, then we show how it can help 

to discover the dynamic patterns of network evolution. 

Also, we analyse the roles performed by different triads 

in the network evolution by the creation of triad 

transition graph built from the TTM, which allows us to 

characterize the tendencies of structural changes in the 

investigated network. The future applications of our 

approach are also proposed and discussed. 

Social network, network evolution, triad transitions 

I. INTRODUCTION 

When investigating the topological properties and 

structure of complex networks we must face a number 

of complexity–related problems. In large social 

networks, tasks like evaluating the centrality measures, 

finding cliques, etc. require significant computing 

overhead. However, the technology-based social 

networks add a new dimension to the known problems 

of network analysis [11].  

This family of networks (web communities, email 

social networks, user networks and so on) have two 

properties which have a significant impact on the 

analysis. First, the existence of link is a result of a 

series of discrete events (like emails, phone calls, blog 

entries) which have some distribution in time. As 

shown in [9] for various kind of human activities 

related to communication and information 

technologies, the probability of inter-event times 

(periods between the events, like sending an email) 

may be expressed as: P(t)≈t
-α

 where typical values of α 

are from (1.5, 2.5). This distribution inevitably results 

with series of consecutive events (“activity bursts”) 

divided by longer periods of inactivity.  

These phenomena have serious consequences when 

we try to apply the classic structural network analysis 

(SNA) to the dynamic networks. The most popular 

approach is to divide the time period under 

consideration into time windows, then run SNA 

methods on the windows separately. This should show 

us how the measures like node centrality, average path 

length, group partitions etc. change in time, giving us 

an insight into the evolutionary patterns of the 

network. 

However, the bursty behavior of the users (long 

inactivity periods mixed with the bursts) causes 

dramatic changes of any measure when switching from 

one time window to another. There is a trade-off: short 

windows lead to chaotic changes of network measures, 

while long windows give us no chance of investigation 

of network dynamics [13][14]. 

In order to address this problem, a number of 

methods, designed to predict changes in the structure 

of dynamic networks. were proposed [15][16]. The 

special case is so-called link prediction problem – the 

estimation of probability that a link will 

emerge/disappear during the next time window [12]. 

In this work we propose a method of characterizing 

the dynamic evolutionary patterns of the network by 

the analysis of changes in local topology of 

connections. This approach stems from our previous 

experience [20] and will be introduced in Sec. 2. Sec. 3 

presents the results on the basis of the Enron e-mail 

network. 
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II. LOCAL TOPOLOGY OF ONLINE SOCIAL NETWORKS 

A. Triads and network motifs 

Standard approaches exploiting network analysis by 

means of listing several common properties, like the 

degree distribution, clustering, network diameter or 

average path lengths often fail when applied to 

complex networks. In many cases it is possible to 

construct networks with exactly the same (for example) 

degree distribution whose structure and function differ 

substantially. Huge network structures (like social, 

biological, gene networks) should be investigated with 

more precise and structure–sensitive methods [1]. 

During last years we experienced the development of a 

number of methods investigating complex networks by 

means of their local structure (especially – frequent 

patterns of connections between nodes). The simplest, 

and therefore popular, way to characterize the network 

in the context of local connections is to examine the 

links between the smallest non-trivial subgraphs, the 

triads, consisting of three nodes. If we additionally 

decide to distinguish between the nodes (which is our 

case, for in our network they are corporate email 

addresses) we get 64 patterns of possible connections 

between any three identifiable nodes (Fig.1). 

 
Fig.1. Three-node triads in a directed graph  

 

Please note the triad ID (the number inside the 

picture of the subgraph) in Fig. 1, as it will be used 

further on in this paper. Note that there is a 

correspondence between the IDs and the edit distance 

between triads – small difference in the ID value in 

most cases suggests small edit distance (the number of 

link removal/addition operations needed to transform 

one triad into another).   

The basic method utilizing such subgraphs is the 

well-knows triad census, which is enumeration of all 

triads in the network and allows to reason about the 

functional connection patterns of the nodes [18].  

Last years have seen the development of more 

sophisticated approaches, among them motif analysis 

which aims to characterize the network by the 

difference between its structures and an ensemble of 

random networks of the same size and degree 

distribution. A biased distribution of local network 

structures (subgraphs), a.k.a. network motifs is widely 

observed in complex biological or technology–based 

networks. Motif analysis stems from bioinformatics 

and theoretical biology [1][3], where it was applied to 

the investigation of huge network structures like 

transcriptional regulatory networks, gene networks or 

food webs [4][5]. Although the global topological 

organization of metabolic networks is well understood, 

their local structural organization is still not clear. At 

the smallest scale, network motifs have been suggested 

to be the functional building blocks of network 

biology. So far several interesting properties of large 

biological network structures were reinterpreted or 

discovered with help of motif analysis [6][7][8].  

Motif analysis offers low computational overhead 

and opportunity to gain an insight into the local 

structure of huge networks which otherwise would 

require prohibitive computations to investigate. 

Moreover, the discovered motifs and their numbers 

enable to assess which patterns of communication 

appear often in the large social networks and which are 

rather rare.  

In our former research we have investigated the 

local structure of numerous technology-based 

networks, among them an e-mail social network of 

Wroclaw University of Technology (WUT), consisting 

of more than 5 800 nodes and 140 000 links [2][17]. 

Our aim was to check if the known properties of 

local topology in social networks (known on the basis 

of motif analysis conducted for small social networks 

[4]) are also present in large email–based social 

structures, and if there are some distinct features 

characteristic to the email communication. The most 

important conclusion from these experiments was that 

the general motif profile of the network (expressed by 

so-called triad significance profile – TSP – a vector of 

the Z-score measures of the motifs) is stable over long 

periods of time. This was confirmed even for periods 

like summer holidays when the number of links in the 

university network dropped by 50% [17]. Summing up 

– the investigated complex network show statistically 

stable pattern of connections as a whole, despite the 

fact that stability of a single link is quite low: 59% in 

our case (which means that 41% of the connections 

will not be present in the next time window).  

These observations led to the idea of characterizing 

the evolutionary patterns of the network by means of 

the changes in elementary subgraphs, in this particular 

case – directed triads.  



In the next section we introduce the Triad 

Transition Matrix (TTM) as a basic structure used in 

our experiments.  

2.2. Triad Transition Matrix 

The idea behind the Triad Transition Matrix is to 

use the data about the history of the network (recorded 

during past time windows) to derive the probabilities 

of transitions between triads (patterns of local 

connections). 

The TTM is a matrix of size g x g, where g is the 

number of considered subgraphs. For directed triads in 

our experiments g = 64 (see Fig.1). 

The values of TTM entries are defined as follows: 

 

TTMt (i,j) = P(gi[t] gj[ t+1]) 

 

(1) 

TTMt (i,j) is the probability (estimated on the basis 

of full subgraph enumeration for networks created 

from data gathered in [t] and [t+1] time windows), that 

a connection pattern gi detected during [t] will transit 

into gj during [t+1].  

The goal was to check if the stability of local 

network structures (discussed in the former subsection) 

is followed by the distinguishable evolutionary 

patterns. 

III. EXPERIMENTS ON THE ENRON EMAIL NETWORK 

For the experiments with the TTM we have chosen 

the Enron dataset (http://www.cs.cmu.edu/~enron/), 

one of the popular reference e-mail logs.  

3.1. The temporal networks of Enron dataset 

First, the data cleansing process was performed 

(external addresses were removed from the database in 

order to analyze only the corporate social network). 

Additionally, only emails from and to the Enron 

domain were left (we may call the resulting set of 

nodes and the links between them a corporate social 

network). 

The time period of our experiment was divided into 

12 time windows and for each of them a network was 

created.  

The main nodeset in our experiment consists of 150 

nodes and up to 1012 links (in a single time window). 

Fig.2 shows an example of the network derived from 

Enron email communication for time window no.10.  

 

 
 

Fig.2. E-mail network (with node groups) generated 

for time window no.10. 

 

It is also visible, that the values on the diagonal are 

usually bigger than the rest of the respective matrix 

row, which may be interpreted as stability of the 

already-established links.  

 

Table 1. Network size for consecutive time windows 
Time: 1 2 3 4 5 6 7 8 9 10 11 12 

Edges: 189 207 281 312 334 398 430 462 626 1012 921 480 

 

From Table.1 we see that – despite the equal 

number of nodes in each time window – the number of 

edges differs significantly. It is obvious that in terms of 

the number of links, node centrality, etc. the structure 

of the network is changing. However, there is some 

pattern behind this change. 

3.2. TTM – the results 

In Fig. 4 the TTM derived on the basis of 12 time 

windows is presented. Despite the changes in network 

size, all TTMs computed for neighbouring time 

windows showed similar values, very similar to those 

in Fig. 3, which contains the mean values of transition 

probabilities.  

We may notice that the distribution of transition 

probabilities is not flat, and there are distinctive 



patterns (the coordinates of TTM correspond to the 

triad numbers from the Fig.1). 

 
Fig.4. TTM containing the transition probabilities 

averaged for all 12 time windows. 

 

First of all, the value of TTM(1,1) reflects the fact 

that the network is sparse (link density below 1%) 

which means that most of the possible triads contain no 

edges (in fact this value does not change between time 

windows). As the result most of the “empty” triads 

always remain in this state, which gives us a relatively 

high value of TTM(1,1). 

We should also note the high values in the first 

column of the TTM. This means that when it comes to 

disappearing of the links, the probability of resetting 

the entire triad to zero-connection state is relatively 

high.  

From the other hand, it is also visible, that the 

values on the diagonal of TTM are bigger than most 

values in their neighborhood, which shows that the 

already-formed triads tend (in general) to stay in their 

current state.   

The last important observation is that some triads 

are special, they show clearly bigger values in their 

columns of TTM, which means that they are “sinks” of 

the evolution patterns of connections. 

All the above observations will be used in the future 

research on the TTM with an aim to propose a novel 

approach to link prediction and, consequently 

disappearing.   

 

3.3. TTM - analysis 

On the basis of the TTM discussed in the last 

section we made an attempt to characterize the roles 

and behavior of each triad. In order to do this we have 

proposed an original approach utilizing the classical 

structural network analysis.  

The first step was to treat the TTM as an adjacency 

matrix, and the transition probabilities as weighted, 

directed relations between triads. Thus, we got a 

structure which may be called a Triad Transition Graph 

(TTG). From Fig.4 we may guess that the TTG was 

relatively dense. Indeed, there are 2538 (out of 4096) 

non-zero values in the TTM.  

In the second step we have checked the in- and out-

degrees of the network nodes (measured as the sum of 

weights of the incoming/outgoing links). The results 

are presented in Table 2. In-degrees correspond to the 

sums of TTM’s column values, while the out-degrees – 

to the sums of rows, with the diagonal values excluded 

in both cases.  

 

Table 2. Degrees and roles of the triads. 

Triad In-Deg. 
Out-
Deg. 

Node 
Type 
(links>0.1) Triad In-Deg. 

Out-
Deg. 

Node 
Type 
(links>0.1) 

1 15.756 0.170 Receiver 33 2.322 0.812 Ordinary 

2 1.499 0.794 Ordinary 34 0.292 0.972 Transmitter 

3 1.497 0.789 Ordinary 35 0.159 0.974 Transmitter 

4 0.552 0.876 Transmitter 36 0.083 0.968 Transmitter 

5 2.163 0.759 Ordinary 37 0.237 0.969 Transmitter 

6 2.960 0.640 Ordinary 38 0.515 0.949 Transmitter 

7 0.361 0.966 Ordinary 39 0.008 1.000 Transmitter 

8 0.497 0.891 Transmitter 40 0.033 1.000 Transmitter 

9 1.801 0.799 Ordinary 41 3.194 0.659 Ordinary 

10 0.172 0.954 Transmitter 42 0.256 0.959 Transmitter 

11 0.228 0.958 Transmitter 43 0.202 0.922 Transmitter 

12 0.103 0.940 Transmitter 44 0.213 0.868 Transmitter 

13 0.827 0.925 Transmitter 45 0.738 0.900 Transmitter 

14 0.552 0.890 Transmitter 46 0.933 0.890 Transmitter 

15 0.122 1.000 Transmitter 47 0.067 0.974 Transmitter 

16 0.230 0.887 Transmitter 48 0.441 0.923 Transmitter 

17 2.176 0.792 Ordinary 49 0.925 0.936 Carrier 

18 0.195 0.943 Transmitter 50 0.124 0.983 Transmitter 

19 3.228 0.649 Ordinary 51 0.743 0.887 Ordinary 

20 0.476 0.890 Transmitter 52 0.344 0.928 Transmitter 

21 0.537 0.931 Transmitter 53 0.217 0.980 Transmitter 

22 0.443 0.927 Transmitter 54 0.341 0.979 Transmitter 

23 0.488 0.935 Transmitter 55 0.099 1.000 Transmitter 

24 1.073 0.859 Ordinary 56 0.408 0.919 Transmitter 

25 0.301 0.964 Ordinary 57 0.710 0.896 Ordinary 

26 0.003 1.000 Transmitter 58 0.076 0.974 Transmitter 

27 0.318 0.933 Transmitter 59 1.020 0.871 Transmitter 

28 0.044 0.974 Transmitter 60 0.264 0.962 Transmitter 

29 0.166 0.964 Transmitter 61 0.480 0.874 Transmitter 

30 0.076 0.981 Transmitter 62 0.354 0.852 Isolate 

31 0.264 0.906 Transmitter 63 0.475 0.922 Isolate 

32 0.321 0.926 Transmitter 64 1.490 0.678 Receiver 

 

The in-degree may be interpreted as “attraction 

strength” of the triad, in the case of a high value, the 

other triads will evolve into it more frequently. Out 

degree corresponds to individual triad “instability”, the 

values close to 1 suggest that it is improbable that this 



triad will remain unchanged during the next time 

window. 

The in- and out-degrees are the simple structural 

properties of network nodes – in our approach we have 

also checked the structural properties of the TTG.  

Due to the density of TTG, in our first experiment 

we have assumed a cut-off relation strength equal to 

0.1 (i.e. in further steps we treated any transition 

probability less than 0.1 as equal to 0). 

For such a reduced TTG, we were able to assess the 

roles of the triads, also presented in Table 2. We used a 

standard set of simple node network roles defined in 

[18]: isolate nodes do not have any links. Transmitter  

has only out links and no in links. Receiver node has 

only in links, while carrier node has exactly one 

incoming and one outgoing link. Ordinary node does 

not fall in any of the above categories. The roles allow 

to classify the triads in the context of dynamic 

structural patterns of the investigated network. 

The last step of our analysis was to deal with the 

network of transition probabilities (relations between 

triads). The network is shown on the Fig. 5 (black links 

have weight close to 1, while fading color corresponds 

to decreasing link weight value).  

From Fig.5 we may see that triad 0 is clearly a 

network hub, which was already suggested in Table 2.  

 
Fig.5. The reduced (only links > 0.1) Triad 

Transition Graph.  

 

There are also groups of triads (detected with 

eigenvector community algorithm) in which the inter-

group connections are denser. During further research 

on our method we will use the groups in the TTG to 

define transition classes composed of the triads which 

tend to evolve inside limited sets (this phenomenon 

corresponds to the existence of structural groups in 

TTG). 

Summing up, we have shown that in dynamic 

complex networks there are distinctive patterns which 

drive the evolution of connections between nodes. Our 

approach allows to build evolutionary patterns of 

complex networks, which may form the basis for link 

and structure (group stability, network connectivity) 

prediction. In fact it should also allow for classification 

of evolutionary patterns of complex networks, because 

there may be different TTMs in the case of networks of 

different nature and origin. The method will undergo 

further development in directions briefly listed in the 

following section. 

4. CONCLUSIONS AND FUTURE WORK 

The concept of TTM will be further researched in 

the following directions: 

- Software development in order to deal with large 

networks. 

- The application of TTM concept to the link 

prediction problem. 

- Developing the methods for the analysis and 

prediction of triad trajectories (sequences of 

triads evolving one into the other). If effective, 

this approach may result in developing long time 

prediction methods for dynamic networks. 

- Reducing the complexity of the method by using 

effective algorithms for triad enumeration, for 

example applying the approach presented in [19], 

which should allow to analyze large networks.  

- The adoption and checking the effectiveness of 

network sampling algorithms used in motif 

discovery for the speedup of TTM building 

process. 

Additionally the behavior of the TTMs will be 

checked for a number of test social networks created 

from the data gathered in various information systems 

(social portals, mail servers, blogosphere) in order to 

check for their distinctive features and tune the 

method. 

5. ACKNOWLEDGEMENTS 

This work was supported by the Polish Ministry of 

Science and Higher Education, grant no. N N516 

518339. 

The research leading to these results has received 

funding from the European Union Seventh Framework 

Programme (FP7/2007-2013) under grant agreement 

no. 251617. 

 



REFERENCES 

 
[1]  Itzkovitz S., Milo R., Kashtan N., Ziv G., Alon U. (2003) 

Subgraphs in random networks. Physical Review E., 68, 
026127.  

[2]  Juszczyszyn K., Musiał K., Kazienko P. (2008), Local 
Topology of Social Network Based on Motif Analysis, 11th 
International Conference on Knowledge-Based Intelligent 
Information & Engineering Systems, KES 2008, Croatia, 
Springer, LNAI. 

[3]  Kashtan N., S. Itzkovitz S., Milo R., Alon U. (2004) Efficient 
sampling algorithm for estimating subgraph concentrations and 
detecting network motifs. Bioinformatics, 20 (11), 1746–1758.  

[4]  Milo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklovskii D., 
Alon U. (2002) Network motifs: simple building blocks of 
complex networks. Science, 298, 824–827.   

[5]  Mangan S. Alon U. (2003) Structure and function of the 
feedforward loop network motif. Proc. of the National 
Academy of Science, USA, 100 (21), 11980–11985. 

[6]  Mangan S., Zaslaver A. Alon U. (2003) The coherent 
feedforward loop serves as a sign-sensitive delay element in 
transcription networks. J. Molecular Biology, 334, 197–204. 

[7]  Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J.-P., Oltvai, 
Z.N., Barabasi, A., 2004. The topological relationship between 
the large-scale attributes and local interaction patterns of 
complex networks. Proc. Natl Acad. Sci. USA 101, 17 940. 

[8]  Young-Ho E., Soojin L., Hawoong J., (2006) Exploring local 
structural organization of metabolic networks using subgraph 
patterns, Journal of Theoretical Biology 241, 823–829. 

[9]  A.-L. Barabási, The origin of bursts and heavy tails in humans 
dynamics, Nature 435, 207 (2005). 

[10] T. Gross, H. Sayama (Eds.): Adaptive networks: Theory, 
models and applications, Springer: Complexity, Springer-
Verlag, Berlin-Heidelberg, 2009. 

[11]  J. Kleinberg, J. The convergence of social and technological 
networks. Communications of the  ACM Vol. 51, No.11, 66-
72, 2008. 

[12]  D. Lieben-Nowell, J.M. Kleinberg: The link-prediction 
problem for social networks. JASIST (JASIS) 58(7), pp.1019-
1031, 2007. 

[13]  D.Braha, Y. Bar-Yam, From Centrality to Temporary Fame: 
Dynamic Centrality in Complex Networks, Complexity, Vol. 
12 (2), pp. 59-63, 2006. 

[14]  D. Kempe, J. Kleinberg, A. Kumar, Connectivity and inference 
problems for temporal networks. Journal of Computational 
System Science, 64(4):820–842, 2002. 

[15]  M. Lahiri, Tanya Y. Berger-Wolf: Mining Periodic Behavior in 
Dynamic Social Networks. ICDM pp.373-382, 2008. 

[16]  Lisa Singh, Lise Getoor: Increasing the Predictive Power of 
Affiliation Networks. IEEE Data Eng. Bull. (DEBU) Vol. 30 
No. 2, pp. 41-50, 2007. 

[17]  K. Juszczyszyn, K. Musial, P. Kazienko, B. Gabrys: Temporal 
Changes in Local Topology of an Email-Based Social 
Network. Computing and Informatics 28(6): 763-779 (2009). 

[18] S. Wasserman, K. Faust, Social network analysis: Methods and 
applications, Cambridge University Press, New York, 1994. 

[19]  Batagelj, V., Mrvar, A., A subquadratic triad census algorithm 
for large sparse networks with small maximum degree. Social 
Netw. 23, 237-243, 2001. 

[20]  K.Juszczyszyn, K.Musial, P.Kazienko, B.Gabrys: Temporal 
Changes in Local Topology of an Email-Based Social 
Network. Computing and Informatics 28(6): 763-779 (2009). 

 

 

 


