

AN ARCHITECTURE FOR CREATING HOSTING PLUG-
INS FOR USE IN DIGITAL AUDIO WORKSTATIONS

Darrell Gibson Dr Richard Polfreman
School of Design Engineering &

Computing,
Bournemouth University,

Talbot Campus,
Fern Barrow,
Poole, Dorset.

BH12 5BB
gibsond@bournemouth.ac.uk

Department of Music,
Faculty of Humanities,

University of Southampton,
University Road

Southampton
Hampshire
SO17 1BJ

r.polfreman@soton.ac.uk

ABSTRACT

Although modern software-based DAWs (Digital Audio
Workstations) offer the ability to interconnect with
plug-in effects, they can be restrictive due to their
architecture being largely based on hardware mixing
desks. This is especially true when complex multi-effect
sound design is required. This paper aims to
demonstrate how a plug-in that can host other effects
plug-ins can help improve the sound design possibilities
in a DAW. This hosting plug-in allows other effects to
be “inserted” at specific points in its internal signal
flow. Details are given of a “proof of concept” plug-in
that was created to demonstrate that it was possible to
create plug-ins that can host other plug-ins, using
Apple’s AU (Audio Unit) format. The proof of concept
is a delay effect that allows other effects plug-ins to be
inserted in either the “delay path”, “feedback path” or
both. This Audio Unit has been extensively tested using
different DAWs and has been found to work
successfully in a variety of situations. Finally, details
are given of how improvements can be made to the
plug-in hosting delay.

1. INTRODUCTION

The concept of the audio effect plug-in1 has been with us
for a number of years now and these have revolutionized
the audio recording industry. The DAW acts as a host
that will then allow audio plug-ins to be “plugged in” at
various points in the signal-chain to process the digital
audio. The plug-in software can then manipulate the
audio information from the host and feed the resulting
audio back to the host, in real-time. Although plug-in
technology is well established, most DAWs are created
to replicate the “traditional” infrastructure of a hardware-
based recording studio. This being the case, effects
plug-ins can usually only be used as “insert” or “aux
bus” effects, meaning they can only be applied at
specific points in the signal chain. This means if the
end-user wants to explore complex multi-effects sound
design in typical production environment, then the
routing provided by a DAW can be restrictive.

1Virtual instrument plug-ins are also available, and to which
similar principles apply, but are not the focus of this work.

Although some DAWs do support “free routing”, the
track infrastructure tends to get in the way and makes
sound design a cumbersome and overly complex
operation.

For example, consider a simple delay effect. This is
usually implemented as a delay line delaying the
incoming audio signal by a user definable number of
samples within pre-defined limits. Some of this delayed
signal is then fed back and added to (or mixed with) the
incoming signal. Generally the level of this fed back
signal can be adjusted between 0 and 100%. Now
consider that there is a desire to create an effect where
the fed back signal has a second process applied to it.
This could be achieved by “inserting” another effect into
the feedback path; commonly a (low-pass) filter to
modify the frequency content of the delayed repeats
(echoes) of the signal. However, more unusual effects
could be created, such as a modulation effect or
compressor in the feedback path. The structure of such
an effect is show in Figure 1.

Figure 1. Inserted Plug-in Feedback Effect Delay

Unfortunately existing delay plug-ins with an effect
in the feedback chain offer little or no flexibility in the
type of effect provided; it is a fixed process, although
usually with some control over parameters. If a more
general effect were to be created with a DAW it would
have to be implemented with one audio track and two
auxiliary busses. The required connections to achieve
this structure in a DAW are shown in Figure 2.

Although this connection system can be realized in
most DAWs, others are more restrictive on the routing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/4898858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

allowed and will not allow a feedback path to be
created2. As a result, to implement the same effect a
physical connection must be made on the audio interface
to create the feedback connection from an input to an
output. This means two audio tracks and one auxiliary
bus are required, plus typically the addition of digital to
analogue and analogue to digital conversions.

Figure 2. Connection Diagram to Implement a

Feedback Effect in a DAW

While more flexible alternatives to using a DAW do
exist, such as Max/MSP and Pure Data, they are less
frequently found in typical music production facilities
and require programming knowledge to build the effects.

Although here only delay-based multi-effects have
been considered, the same principles can be applied to
many other categories of audio effect, particularly where
“feedback” is a natural component of the process.

1.1. Hosting Audio Plug-ins

Rather than a track-based solution, an alternative is to
use audio plug-ins that allow other plug-ins to be
“inserted” at specific points within their signal flow. In
this way, the hosting plug-in must be able to perform its
given operation, but must also be able to host other plug-
ins. To do this the effects plug-in must also have a host
built within it. For example, if a delay plug-in were built
with a plug-in “insert slot” in the feedback path, the
same multi-effect as described above could be created
without additional DAW resources and in a much more
convenient manner for the user.

With such an effect, if no plug-in is used in the
available insert slot then it will just operate as an
ordinary delay effect. However, complex multi-effects
can be created if the insert slot is used to modify the fed
back audio signal.

2For example, Steinberg’s Cubase does not allow a feedback
path to be created.

2. AN ARCHITECTURE FOR CREATING A
HOSTING PLUG-IN

The integration of an insert slot within an effect requires
that a plug-in host be built within the effect plug-in. To
clarify how this is being created and to establish
consistent terminology the architecture shown in Figure
3 was defined.

Figure 3. Architecture of a Hosting Plug-in

First, there is the “Master Host” which in this case is
a DAW in which the “Hosting Plug-in” will be used. It
is possible to place the Hosting Plug-in into any
available plug-in slot (insert or aux bus) within the
Master Host, as if it were any ordinary effect plug-in.
Then within the Hosting Plug-in a local host is created
that is known as the “Client Host”. The Client Host then
hosts the inserted “FX Plug-in”, which can be “inserted”
at a point in the Hosting Plug-in’s signal flow. Audio
content is passed from the Master Host to the Hosting
Plug-in, which performs the required processing on the
audio, before it is then passed to the FX Plug-in, via the
Client Host. When the FX Plug-in has performed its
given operation the audio is passed back to the Hosting
Plug-in, again, via the Client Host. The Hosting Plug-in
can then perform any further necessary processing.
Finally, the processed audio is then passed back to the
Master Host for any further manipulation and output.

2.1. AU Hosting Plug-in

The Core Audio framework under Mac OS X that
contains AUs has extensive Application Programming
Interfaces (APIs) for creating both hosts and plug-ins
[1], [2]. The hosting plug-in architecture is based on the
Core Audio “pull” model, which allows audio supplied
to the Hosting Plug-in to be “pulled” through the FX
Plug-in, via the Client Host [1]. This was achieved by
creating an AUGraph (a signal chain of connected
AUs) that connects the required FX Plug-in AU to a
GenericOutput AU. An input render callback
function was then written, which is called whenever the
AUGraph needs input data. The callback simply copies
data to be passed to the FX Plug-in into the designated
buffer. The audio “pull” is then initiated by iteratively
calling the AudioUnitRender function of the
GenericOutput. This render is called through the
graph’s units until the input render callback is reached.
The data is then processed by the AudioUnitRender
of the FX Plug-in AU, and in turn passed on to the

AudioUnitRender of the GenericOutput AU.
When this is completed, the data is ready for any
subsequent processing required in the Hosting Plug-in.
This system is shown diagrammatically in Figure 4.

Figure 4. AU FX Plug-in’s Audio Render Mechanism

To reduce the processing overhead of the AU
Hosting Plug-in to a minimum, pointers to the data are
supplied rather than copying data to or from the
AUGraph. This takes the processing overhead of the
AU Hosting system to virtually nothing.

2.2. AU Hosting Plug-in Channels

Core Audio uses a kernel system to manage operations
that are performed across multiple channels in Audio
Units [2]. However, in order to “pull” the audio data
through the Hosting Plug-in’s AUGraph, as explained in
Section 2.1, it was necessary to remove the kernel
system and override the ProcessBufferList
method in the underlying AUEffectBase class [2].
This is because the AUGraph renders all the channels at
once and there is no way to separate these out within the
kernel. Using the ProcessBufferList method, all
the “pulled” data can then be copied (using pointers) into
the appropriate AudioBufferList. The
disadvantage of removing the kernel system is that it
then means the plug-ins channels must be managed
manually.

It was decided that in the first instance the AU
Hosting Plug-in architecture would be created to operate
in three different channel modes. The three supported
channel configurations are the most widely used in
music production and are: mono->mono, mono->stereo
and stereo->stereo. This can be easily expanded in
future if required.

2.3. Selecting FX Plug-ins

To let the user choose which FX Plug-in will be placed
into the insert slot it is necessary to build a list of all the
available plug-ins. This must be done dynamically when
the Hosting Plug-in is initialized as new plug-ins may be
installed on the system at any time. Also, as discussed in
Section 2.2, the Hosting Plug-in will be able to operate
in three different channel configurations. Therefore,
when the list of available AUs is built it is important to
determine that all the FX Plug-ins in the list can operate
in the current channel configuration.

2.4. AU Hosting Plug-in Factory Presets

A mechanism for managing Factory Presets was also
incorporated. At this stage only two presets were added,
but can be easily expanded in the future.

3. PLUG-IN HOSTING DELAY EFFECT

In order to test the validity of the architecture a “proof of
concept” was performed to verify the approach to
hosting other plug-ins within an effects plug-in. A delay
effect was chosen here as it offered the possibility of
incorporating multiple FX Plug-ins.

3.1. Delay Structure

The chosen implementation for the delay is based on a
single delay tap [3], [4]. This is constructed from a
single digital delay line with a level controllable
feedback path. The output of the delay tap is then mixed
with the input signal using a feed forward network to
give a wet/dry mix. Although in the first instance the
Plug-In Hosting Delay Effect was created with just a
single delay tap, the code has been written such that
additional taps can be added easily.

The implementation of the digital delay line used in
the delay tap is based on a circular buffer, where a
separate “read” and “write” pointer are used so that the
data in the buffer does not actually need to be moved [3].
Although this gives a very efficient implementation for
the delay line it can result in “zipper noise” when the
delay time is continually changed in real-time. This is
because the “read” pointer will move to a new location.
One way to resolve this is to use a fractional delay line,
where it is possible to obtain fractional-length delays [4].
This is achieved by using an interpolator to calculate the
output sample that lies between two samples. Several
interpolation algorithms have been proposed for audio
applications with different computational intensities and
performance characteristics [5]. Computationally a
linear interpolator will have the lowest impact, and so is
used here, but it does produce a low-pass filtering effect
that will remove some of the high frequencies from the
audio content [4].

Although the interpolator removes “zipper noise” it
does not stop an audible jump when the read pointer’s
position is step changed. Others have previously used a
“crossfade” system [3], where two delay buffers are
used. When the delay time is changed the read pointer
for one of the buffers is moved to the new location and
the other is left at the original location. A crossfade is
then performed between the outputs of the two delay
buffers. This results in a smooth transition from the
“original” delay audio to the “new” delay audio.
However, there is a cost, as it requires an additional
delay buffer the same size as the original.

3.2. Plug-In Delay Effect

The plug-in delay effect was then created so that two
plug-in slots were available. One in series with the delay
line and other in the feedback path. In this way, other
effects can be added to the delayed signal, just the fed
back signal or both signals. The structure of the plug-in
delay effect is shown in Figure 5. The two plug-in slots
have been created by generating a separate AUGraph

for each. The first plug-in slot, in the delay path, was
fairly straightforward to achieve and uses exactly the
same principle as defined in Section 2.1. That is, when
the render method for the Hosting Plug-in is called, the
same amount of data as defined for the Hosting Plug-in’s
render is “pulled” through the FX Plug-ins AUGraph.

Figure 5. Plug-In Hosting Delay Effect

However, when the feedback plug-in slot was added
this system had to be changed. The reason for this is that
it is perfectly feasible that the delay time in samples
(fDelay) could be less than the render block size
(iFrames). In which case, all the required data would
not be available in the delay line. This would result in
incorrect audio being produced. To resolve this issue it
was necessary to derive a mechanism where the render
block size (iFrames) is compared to the current delay
size (fDelay). If the delay size is less than the render
block size then only a block of data equal to the delay
size is rendered and the remaining block size is
calculated. This process is iteratively repeated until
there is no more data to be rendered. Using this
technique there is always enough audio in the digital
delay line to be rendered. However, it does result in the
processing of the AUGraphs being executed in smaller
blocks, which slightly increases the CPU load.
Nonetheless the residual CPU load for the Hosting Plug-
in, hosting no plug-ins, is less than 2%3.

4. CONCLUSIONS

The development of the Plug-in Hosting Delay effect
clearly demonstrates how audio plug-ins can be
“inserted” within the developed effect. This opens up
sound design avenues that although possible with
existing DAWs and plug-ins, they are somewhat
cumbersome and outside of most users’ comfort zone.
By integrating the Plug-in Hosting architecture into other
plug-ins it then makes these accessible and easy for all
users. This Plug-in Hosting Delay effect has been
realized using the Apple Core Audio frameworks,
resulting in an AU plug-in that has been successfully
tested with a variety of DAWs using different
configurations and was found to perform as expected.
However, there are still a number of improvements that
can be made to the plug-in. Possibly most importantly, it
was originally hoped that the Plug-in Hosting Delay

3When run on a MacBook Pro with 2.6 GHz Intel Core 2 Duo
and 4GB 667MHz DDR2 SDRAM.

effect would be able to implement a “dynamic delay”
effect where a compressor is placed in the feedback path
of a delay. Although the designed Plug-in Hosting
Delay effect does allow a compressor plug-in to be
inserted into the feedback path, this then needs to be
side-chained to the input audio. Core Audio does not
supply a specific mechanism for implementing side-
chain inputs, which means they have to be implemented
as separate buses and then managed manually inside the
Audio Unit. Implementing this is planned as further
work.

Although “factory presets” have been created for the
Plug-in Hosting Delay effect, these only allow the
parameters in the Hosting Plug-in, and not the FX Plug-
in, to be configured. This is because, to the Hosting
Plug-in, the FX Plug-in is just a “black box” and it
knows nothing about what this plug-in does or how it
operates. Also for the same reason it will not be possible
to automate FX Plug-in parameters in the Master Host.
To resolve both of these problems “dummy” parameters
could be created that are normally ignored by the Master
Host. Then when an FX Plug-in is selected, its
parameters are mapped to the available “dummy”
parameters and these are then “published” so they
become visible to the Master Host. If this is done then
the parameter values can be included into “factory
presets” and they can also be used in the Master Host’s
automation system.

“User presets” for the Hosting Plug-in are managed
by the Master Host and can be saved and loaded as
expected. However, there is currently no such system
for the Client Host, which means that there is no way to
have “user presets” for the FX Plug-ins. This means any
work that the user does with an inserted plug-in cannot
currently be saved. This procedure for “user presets”
needs to be modified so that the presets are saved as part
of the Hosting Plug-in presets and then integrated into
the Client Host.

5. REFERENCES

[1] Apple Inc, Core Audio Overview, 2007.

[2] Apple Inc, Audio Unit Programming Guide,
2007.

[3] Smith, J. O. Physical Audio Signal Processing:
For Virtual Musical Instruments and Audio
Effects, 2010.

[4] Zölzer, U. (Editor), DAFX:Digital Audio
Effects, 2002.

[5] Rocchesso, D. “Fractionally!Addressed Delay
Lines”, IEEE Transactions on Speech and
Audio Processing, Vol. 8, No. 6, November
2000, pp. 717–727.

