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The Notion of Infinite Measuring Number
and Its Relevance in the Intuition of Infinity

David Tall

Mathematics Education Research Centre,
University of Warwick,

COVENTRY CV4 7AL, UK.

Abstract . In this paper a concept of infinity is described
which extrapolates the measuring properties of number
rather than counting aspects (which lead to cardinal number
theory).

Infinite measuring numbers are part of a coherent
number system extending the real numbers, including both
infinitely large and infinitely small quantities, A suitable
extension is the superreal number system described here; an
alternative extension is the hyperreal number field used in
non-standard analysis which is also mentioned.

Various theorems are proved in careful detail to
illustrate that certain properties of infinity which might be
considered 'false' in a cardinal sense are 'true' in a
measuring sense, Thus cardinal infinity is now only one of
a choice of possible extensions of the number concept to the
infinite case, It is therefore inappropriate to judge the
'correctness' of intuitions of infinity within a cardinal
framework alone, especially those intuitions which relate to
measurement rather than one-one correspondence.

The same comments apply in general to the analysis of
naive intuitions within an extrapolated formal framework.

1. Introduction

Numbers are used for at least three basic purposes in everyday life –
counting, ordering and measuring. At the end of the last century Cantor
extended the first two of these by introducing infinite cardinals and
ordinals and such interpretations have become well accepted by our
formal mathematical culture. However there are occasions when they
are not the most appropriate extension of the number concept; in
particular, where measurement is involved an infinite interpretation of
measuring number may be more suitable.

An example will make this more apparent. Suppose we consider two
line segments AB, CD where CD is twice as long as AB (Figure 1) and
ask if there are the same number of points in AB and CD.
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Figure 1

The cardinal number solution is that there is a correspondence between
the two sets of points in which a point P on AB distance x from A
corresponds to a point Q on CD distance 2x from C, so they have the
same cardinal number (Figure 2).         
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Figure 2

A perfectly reasonable alternative is that CD has twice as many points as
CD. The cardinal response to this (see [5, p. 244]) is that if the set of
points in AB has cardinality ℵ  then those in CD do have cardinality 2ℵ ,
but this may only confuse the issue, for it conflicts with the reasonable
intuition that twice some positive quantity must be strictly larger than
that quantity.

The usual response to this conflict is a re-education of the individual
so that he or she learns to accept that such phenomena naturally occur
with infinite cardinals, indeed it is the property of a set being put in
one-one correspondence with a proper subset which precisely
characterises cardinal infinities. Such logical sleight of hand does not
always satisfy the cognitive psychological requirements of the learner.

The existence of various intuitions of infinity has been extensively
investigated by Fischbein (for example in [I] and [2]). It was through
reading his work and having informal discussions with him that this
paper came to be written. to provide a basis for an alternative
interpretation of children’s intuitions.

If we consider the intuitive notion of ‘point’ and ‘line’ we shall find
that an alternative interpretation of infinity is possible without the
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conflicts that occur in this example. The reason that one supposes that
there are twice as many points in CD as AB is because measurement is
involved rather than counting.

Physical points have size when they are marked with the stroke of a
pen on a picture. so that the longer the interval, the larger the number
of points that can be fitted in. Children have many different intuitions as
to the nature of a point. One may not ‘see’ points on a line segment until
they are marked in, another may say that a line segment has four points
(one at each corner), and so on. At some stage they are introduced to the
mathematical convention of marking a point on a line with a pen stroke
as in Figure 2. At this stage 'points' may be interpreted by non-
overlapping marks and when asked to mark as many points as possible
in an interval a child may do so until he can fit no more marks
physically within the gaps left. The same child, shown two points on a
piece of paper and asked to mark all the points on a straight line
between them, may then draw overlapping blobs in a line joining the
given points. The blobs can still be seen to be distinct entities, but the
overlaps are necessary to manufacture a connected line between the
points given at the outset.

This may suggest that a child at this stage believes in a “finitistic”
line, made up of a finite number of indivisible points, but that is not
true. The same child (a boy of eight years) was asked “If we take a line
as long as the road outside and cut it in half, then take half of one of the
pieces, and then half of one of these, and on and on, can we go on for
ever, or do we eventually have to stop?” He replied “You can go on for
ever.” “But won't the pieces eventually get too small to cut in half?”
“No. not if you look through a microscope.”

One may postulate that such a child is in some kind of Piagetian
transition stage between finite and infinite divisibility of a line. An
alternative hypothesis is that the child has come up against the genuine
conflict between finite divisibility in practical drawing and infinite
divisibility in theoretical imagination. What is absolutely clear is that the
child does not conceive the notion of number in a cardinal sense. He sees
it as a crude kind of measurement. "How many points can you imagine
on that line?” “About fifty.” “And …” (pointing to a line twice the
length) “how many on that line?” “A hundred.” The number of points
on a line is proportional to the length of the line for him. He has no
conception of the difference between the rational continuum and the real
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continuum which have different cardinal numbers, nor the fact that real
intervals of different length have the same cardinal number. It is
therefore totally inappropriate to interpret his thinking processes within
a formal cardinal paradigm.

There is a genuine problem here. If we do not use a cardinal
interpretation, what can we use, for surely any formal interpretation is
not a true description of the intuition of the child. A partial answer to
this problem is to provide an alternative formal interpretation that is
logically complete and yet is consonant with the child’s intuition in
places which prove conflicting with a cardinal interpretation. By this
process we can at least realise the relative nature of our interpretation.
The cardinal paradigm is then seen as only one of several possible
infinite extensions of the number concept rather than an absolute logical
reality against which everything must be judged.

3. Theoretical ‘points’ with size

Points marked with a pen in a physical picture have a finite size and
only a finite number of them are required to cover an interval of finite
length. To uniformize the theory, let us suppose that the pen strokes
have thickness d, then we shall need (approximately) l/d of them to
cover an interval of length l . Here we are using number in a measuring
sense. By analogy, let us consider the answer to the question "how many
inches in a metre?" The answer is a real number which is not an integer.
More generally, if we ask how many intervals length d are required to
cover an interval length l , the answer may be interpreted as the real
number l/d. We now suppose that a ‘point’ is a (closed) interval of
length d. Of course, only a finite number are required to cover a finite
interval. However, if we take d to be an infinitesimal, then l/d will then
be an infinite number, not an infinite cardinal, but an infinite measuring
number. If we take an interval of twice the length, 2l, then the number
of "points" in the interval is 2l/d, which is precisely twice as many.

To explain such a theory requires a formal interpretation of the
notion of an infinitesimal. This may be done using non-standard analysis
[4] but may be performed in a much simpler way by introducing a
single infinitesimal. We shall explain the latter in §3 by describing the
superreal numbers of [6] which are the real numbers expanded to
include power series in an infinitesimal ε. If a ‘point’ has infinitesimal
size, say ε, we discover a theory which allows both indivisibility of
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'points' and also infinite divisibility of a line (in sharp contrast to the
classical Greek dichotomy which only envisaged one or the other).
These factors are considered in §4 before computing the cardinal
number of such ‘points’ in an interval in §5. The main thrust of the
paper is reached with infinite measuring numbers in §6 and a brief
reference to a non-standard interpretation in §7. Having laid the
groundwork, we close by looking at the intuition of infinity and see how
our perception is distorted by a mathematical culture which accepts
infinite cardinals but has little acquaintance with infinitesimals and the
infinite measuring number concept.

3. The superreals

In modern mathematics the number line is usually interpreted in terms
of the real number system where each number has a decimal expansion

      a–m10m + …+ a–110 + a0 + a110–1 +…+an10–n +…
with the coefficients ai being digits between 0 and 9. In such a system
there may seem no room to introduce infinitesimals. But prior to the
nineteenth century the number line was often visualised as including
infinitesimally small quantities. A modern description of such a system
can be given by considering power series expansions analogous to
decimals. The superreal numbers ℜ are defined to be power series in an
indeterminate ε of the form

      a–mε–m + …+ a–1ε–1 + a0 + a1ε +…+ anεn +…
where each coefficient ar can be any real number whatsoever. The
superreals can be thought of as ‘epsimal’ expansions where addition and
multiplication are performed according to the usual rules for power
series. They include the real numbers as elements where ar = 0 for r  ≠ 0
and can be given the structure of an ordered field by defining a non-
zero element

α = anε n

n=k

∞∑ , (ak ≠ 0)
to be ‘positive’ if ak > 0. For instance both ε and a–ε (for positive real a)
are ‘positive’. If we now write ‘α > β’ or ‘β > α’ instead of ‘α–β’ is
positive', then we find

0 < ε < a for every positive a ∈ R
so ε is a positive infinitesimal.
The system of superreal numbers is described in detail in [7]. In general,
superreals of the form α = anε n

n=k

∞∑  are infinitesimal when k > 0 and
infinite when k < 0. A finite element is of the form α = anε n

n=0

∞∑ .
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If we wish to visualize such expressions as points on a number line,
then infinite elements such as –1/ε or 1/ε are so far off to the left or
right that they cannot be drawn on a finite diagram. Meanwhile, all that
can be seen of a finite element anε n

n=0

∞∑  is its standard part st(α) = a0,
because the remainder of the expansion is infinitesimal. For instance,
st(ε)= 0 so the difference between ε and 0 cannot be represented in a
normal-scale diagram (Figure 3).

            

0 1 2–1–2

1/ε–1/ε ε

……

Figure 3

However, the map, µ: ℜ→ℜ  in which µ(x) = (x–α)/δ shifts α  to the
origin and divides by the scale factor δ. By judicious choice of α  and δ
(as infinite or infinitesimal elements), details can be revealed which are
not visible to normal scale. For instance, if α = a is real and δ = ε, then
points of the form a + λε (λ ∈ R) which are infinitesimally close to a
and to each other are mapped onto distinct points λ ∈ R. By such a
device we can ‘see’ infinitesimal detail. A full description of such
techniques is given in [7].

4. Indivisibles

Returning to ordinary pen drawings on paper for the moment, we note
that we cannot distinguish between points which are very close together.
A fine pen draws a line 0.1 millimetres thick, so if we take a unit length
to be, say, 10 centimetres, then a pen-stroke is 10–3 units wide, so we
certainly cannot distinguish between π and 3.1416 whose difference is
less than 10–4, or one tenth of a pen-stroke.

To model this we choose a positive number d and say that two
numbers a, b are d-indistinguishable if

–d  ≤ a–b ≤ d.
We then define a subset P of real (or superreal) numbers to be a d-
indivisible if all pairs of elements of P and d-indistinguishable. A d-
indivisible is, at its largest, a closed interval of length d. For finite d it
doesn’t really matter whether we regard the underlying system to be
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rational, real or superreal in the sense that if we ask how many d-
indivisibles are required to cover an interval length l, then the answer is
l/d. If l and d are rational, we get the same answer whichever
underlying continuum we consider. Notice also that the continuum
(whichever we use) is only finitely divisible in the sense that we can
break it down into a finite number of indivisibles which are then so
small that the points within them are indistinguishable.

Now suppose that d is infinitesimal, which means we require a
continuum with infinitesimals. One obvious choice is to work with the
superreal continuum and, for a, b ∈ ℜ   (a < b), consider the interval

[a,b]# = {x ∈ ℜ | a ≤ x ≤ b}.
This is very much a Leibnizian continuum in the sense that it includes all
points of the form a + δ, b – δ, and c ± δ where δ is a positive
infinitesimal and a < c < b. (We would do well to remember that prior
to the nineteenth century a line segment was considered to include
infinitesimals as well.) To obtain an analogy with the rational
continuum, instead of dealing with the whole field of superreals, we
could start with the rational numbers Q and adjoin only arithmetic
combinations of the infinitesimal ε. This means working in the field
Q(ε) of rational functions in ε. An element in this field is of the form

  
  

a0 + a1ε +K+anε n

b0 + b1ε +K+bmε m  (ai, bj ∈ Q).

Working only with elements of this form, we get a ‘rational
continuum with infinitesimals which has closed intervals of the form

[a,b]+ = {x ∈ Q(ε) | a ≤ x ≤ b}.
If we cover either of these continua with δ-indivisibles for

infinitesimal δ, then clearly we shall need an infinite number to cover a
finite interval. We may interpret this infinite number as a cardinal
number or a measuring number. In doing so we shall find that the
behaviour of the two types of infinity are quite distinct. We begin with
the cardinal infinity in the next section.

5. Some cardinality considerations

First we compute the cardinal number of the set of superreals.
Surprisingly, although we have added many infinitesimals and infinite
elements to R to get ℜ , the cardinal number is not actually increased:
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THEOREM 1. The cardinality of the superreal numbers ℜ  is ℵ , the
same as that of the real numbers R.

The proof of this result is given in an appendix. As a corollary, it is a
straightforward matter to deduce:

THEOREM 2. The cardinality of any superreal interval
[a,b]# ={x ∈ ℜ | a ≤ x ≤ b}  (a<b)

is ℵ .

Suppose we consider an interval [a,b]# of finite length (with a,b ∈ R)
and consider how many intervals of infinitesimal length δ are needed to
cover it. For any real c in a ≤ c ≤ b and any integer n the interval

Ic,n  = [c+nε, c+(n+1)ε]
is of length ε. Every α ∈  [a,b]# is of the form

α = a0+alε+…
where a ≤ a0 ≤ b and n ≤ a1 ≤ n+1 (for some integer n), so

α ∈  Ia0 ,n

Thus the intervals Ic,n  (a ≤ c≤ b, n ∈  Z) cover [a,b]# and the
cardinality of this set of intervals is ℵ×ℵ 0 = ℵ . Since each infinitesimal
interval can contain at most one real number, this is the minimum
cardinality that will be successful, giving:

THEOREM 3. The minimum cardinality of a set S of intervals of length
ε required to cover [a,b]# (a,b ∈  R, a < b) is ℵ .

A generalization of this result is:

THEOREM 4. If δ is a positive infinitesimal and a,b are real numbers (a
< b), the minimum cardinality of a set S of intervals length δ required
to cover [a,b]# is ℵ .

Similar computations can be made for the field Q(ε) of ‘rational
infinitesimals’ to obtain the following results:

THEOREM 5. The cardinality of Q(ε) is ℵ 0.

THEOREM 6. For rational numbers a and b (a<b), the rational interval
with infinitesimals [a,b]+= {x ∈  Q(ε) | a < b} has cardinality ℵ 0.



– 9 –

THEOREM 7. For any positive infinitesimal δ ∈  Q(ε), the minimum
cardinality of a set S of intervals length δ required to cover [a,b]+ (a,b ∈
Q, a < b) is ℵ 0.

The proofs of these results are the same as those for Theorems 1–4,
with rational numbers replacing real numbers and every appearance of
ℵ  replaced by ℵ 0. The net result of all these cardinality computations is
that, if we consider the number of infinitesimal indivisibles needed to
cover a finite interval, then a superreal interval requires as many as
there are real numbers in that interval, whilst a ‘rational interval with
infinitesimals’ requires as many as there are rational numbers in that
interval. The length of the interval, or the size of the infinitesimal
indivisibles, on the other hand, is of no account.

6. Infinite measuring numbers

Now let us consider the number of δ-indivisibles in an interval [a,b]+ or
[a,b]# from a measuring viewpoint. If the interval is length l=b–a, then
the (measuring) number of δ-indivisibles required to cover it is defined
to be the superreal number l/δ.

Notice that this is independent of the underlying continuum
(provided that l,δ ∈  Q(ε)), just as is the case with finite measuring
numbers. We also have, for fixed δ, that the (measuring) number of δ-
indivisibles in an interval is proportional to the length l of the interval.

In this interpretation the cardinal number argument, that intervals of
different lengths have the same cardinal, as in Figure 2, is easily
rationalised. Over an interval with infinitesimals the map taking x to 2x
doubles the size of a δ-indivisible to a 2δ-indivisible. In measuring
terms we see that the number of δ-indivisibles in an interval length l is
l/δ, whilst the number of 2δ-indivisibles in an interval of length 2l is
(2l)/(2δ), which is the same. If ‘points’ have infinitesimal size, then the
only way that two intervals of differing length can have the same
(measuring) number of ‘points’ is if the size of the points is changed in
proportion to the length of the interval, which is precisely what one
would expect.

7. Non-standard integers

The main concept missing in the infinite extension of measuring number
so far described is a notion of ‘infinite integer’. In the finite case we can
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count the number of closed intervals length d required to cover an
interval length l. It is the integer n where

n–1 < l/d ≤ n.
In the superreals there are no ‘infinite integers’ which extend this

idea. To get an infinite extension allowing us to blend measuring and
counting we need to work in the much more comprehensive system of
hyperreal numbers R* discovered by Robinson [4] in the 1960’s. The
hyperreals R* contain a subring of non-standard integers Z* such that
finite elements in Z* are the integers Z  in the usual sense. A
characteristic property of Z* is that given any x ∈ R* whatsoever, there
exists a unique N ∈ Z* such that

N–1 < x ≤ N.
If we wish to know how many δ-infinitesimals in an interval of

length 1, then we can take the measuring number l/δ ∈ R* and find N ∈
Z* such that

N–1 < l/δ ≤ N.
and then we can define the counting number of intervals (in a measuring
sense!) to be N. For finite l/δ, this gives the usual finite integer solution
N ∈  Z , so that the non-standard version is a natural extension of the
finite concept.

There is also a very natural version of the notion of the number of δ-
indivisibles necessary to cover an interval

[a,b]* = { x ∈ R*  | a ≤ x ≤ b}.
We need only take the non-standard integer N where

N–1 < (b–a)/δ ≤ N.
 and take

In = {x ∈ R*  | a+(n–1)δ ≤ x ≤ a+nδ}
for 1≤n≤ N. Then each In is a δ-indivisible and these indivisibles (for
1≤n≤ N) precisely cover the interval [a,b]*.

Once more the non-standard integer is a much more natural way of
counting the δ-indivisibles in a hyperreal interval than any cardinal
interpretation. If we were to double the length of the interval, then,
using

N–1 < (b–a)/δ ≤ N.
we get

2N–2 < 2(b–a)/δ ≤ 2N.
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so the number of δ-indivisibles in an interval of double length is either
2N or 2N–1, depending on the circumstances, again reflecting the
possibilities occurring in the finite case.

Were we to attempt to compute the cardinal number of δ-indivisibles
in a hyperreal interval, we would come up against an important
technicality; there is not one version R* of the hyperreals, but many,
and different versions may have different cardinals (see [3]). We omit
the computations in general, but note that the cardinal number of
infinitesimal indivisibles in an interval depends on the cardinal of the
underlying continuum but is independent of the length of the interval.

8. Points in the plane

Similar interesting deviations occur between cardinal and measuring
number interpretations of points in the plane. A cardinal interpretation
tells us that the number of points in a square is the same as the number
of points in an interval. The size of the square is immaterial, but we get
different infinities depending on whether the points have real or just
rational coordinates.

Suppose we regard a δ-indivisible in the plane to be a set D such that
the sets of coordinates

{ x ∈  ℜ |  (x,y) ∈ D}, { y ∈  ℜ |  (x,y) ∈ D}
are both δ-indivisibles in the sense of §4. Then a δ-indivisible in the
plane is at most a square of side-length δ. If we regard such a δ-
indivisible as a ‘point’ of infinitesimal non-zero size, we may consider
how many such ‘points’ are required to cover a square.

In cardinal terms we get the same sort of answers as in the theorems
of §5. A superreal square requires at least ℵ  ‘points’ to cover it, whilst
a square containing only points with coordinates in Q(ε) requires only
ℵ 0. In a cardinal sense, therefore, δ-indivisibles behave much the same
as ordinary points in the plane; just as many are required to cover a
square as there are ordinary points in the corresponding continuum, but
the size of the square is irrelevant.

In a measuring sense, however, the number of δ-indivisibles needed
to cover a square side-length l is l2/δ2. In this sense the number depends
on both l and δ. More interesting, if we compare the number of δ-
indivisibles in an interval length l or a square side-length l , the cardinal
answer is that they are the same, but the measuring number gives a ratio
of l/δ to l2/δ2. Thus, in a measuring number sense, there are infinitely
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more ‘points’ in a square than in an interval, to be precise the ratio is
the infinite number l/δ.

9. Closing remarks on intuition

In the previous four sections we have seen how the concept of infinite
measuring number yields a quite different interpretation of infinity
from that of an infinite cardinal. Such measuring numbers are elements
of a field and, as such, may be added, subtracted, multiplied and divided
in the usual way whilst the arithmetic of cardinals is restricted to
addition and multiplication. In a number of other ways they are more
intuitively satisfying (though only applicable where some form of
measurement is implied, such as ‘points’ of specific size).

One reason why measuring numbers may seem more appealing to the
intuition in some cases is that a child’s first intimation of the notion of a
‘point’ is usually that of a mark in a physical drawing where ‘points’
have finite (but indeterminate) size. It is natural therefore to extend our
schemas by taking smaller and smaller points leading plausibly to the
notion of a point of infinitesimal size.

Formal mathematicians, however, see such a phenomenon through
the distorting lens of the predominating mathematical paradigm. By
posing an alternative schema of infinite measuring numbers, we may at
least see that our interpretation of infinity is relative to our schema of
interpretation rather than an absolute form of truth.

In judging the intuitive thought of children this is particularly
important, for they do not have access to the formal schemas of mature
mathematicians. The ‘truth’ or ‘falsehood’ of children’s intuitions must
be seen in their own context rather than through a superimposed formal
schema which may misrepresent them. Different formal schemas may
interpret the results quite differently, for example the notion that a
longer line segment has more points in it is true in a measuring schema
but false in a cardinal schema.

Apparent contradictions in intuitions may also be due to a faulty
schema of interpretation. For instance it seems inconsistent that two sets
can have the same number of elements and yet at the same time one has
more than the other. But Cantor’s set theory demonstrates that this can
happen precisely when the sets are infinite. The contradiction arises
from attempting to impose a framework of interpretation based on
experience with finite sets.
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This illustrates a common occurrence in the development of
mathematical ideas, both in the history of mathematics and the
development of the individual. Working in a given context certain ‘facts’
arise which hold in the given context but break down when the theory is
broadened. The ‘fact’ that a proper subset of a set has a smaller number
of elements is true for finite sets but can break down in the infinite case.
Other examples include the ‘fact’ that the operation of subtraction seems
always to lead to a smaller result, which fails when negative numbers
are subtracted, or the ‘fact’ that multiplication produces a larger value,
until the introduction of proper fractions falsifies that rule also.

Such intuitions based on implied truths in a restricted context can
cause serious conflicts when the context is broadened. These conflicts
are all the more serious when they are subliminal, unspoken and, as a
consequence, unnoticed. Suppose we regard brain activity in terms of
electrical resonance in a complex circuit system whose configuration is
altered by a chemical action over a period of time. Sensory inputs cause
the formation of configurations which become the foundation for
resonance responses for later inputs. Intuitions may thus be firmly fixed
by the chemical action within the brain caused by a variety of sensory
input, though they are not delineated by specific, consciously noted,
sensory information.

Many researchers have commented on the child’s conception of
various mathematical ideas. It may be that the lasting intuitions of a
child can give additional insight into the initial foundations. For instance
the consonance of intuitions of infinity with infinite measuring number
rather than cardinal number in some children requires an answer from
those psychologists who see the child’s interpretation of number only
within a cardinal paradigm. Likewise the psychological investigation of
the child’s view of the infinitely large and the infinitely small is
distorted by viewing it through the blinkers of a purely cardinal
interpretation. As we have seen in this article, an alternative
interpretation is possible which is consistent with certain intuitions
which are rejected by a cardinal viewpoint.

It is a salutary experience to learn that sophisticated theory can
actually be an impediment in the understanding of intuitive notions.
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APPENDIX

Proof of Theorem 1. Denoting the cardinal number of a set A by |A|,
clearly

|ℜ | ≥ |R| = ℵ.
Given

α = bm/εm + … + + b1/ε + Σ anεn

then for N = {1, 2, 3, . . . }, define

        
φα (2n −1) = bn (n ≤ m)

0 (n > m)


φα (2n) = α n−1

This gives a bijective correspondence between ℜ  and a subset of the set
of maps from N to R, hence

 |ℜ | ≤ℵ ℵ 0.
where ℵ 0 = |N|.

But it is a well-known result (e.g. [5, Chapter 12]) that
ℵ= 2ℵ 0

and by cardinal arithmetic,
ℵ ℵ 0 = (2ℵ 0 )ℵ 0 = 2ℵ 0

2

= 2ℵ 0 =ℵ
so

|ℜ | ≤ ℵ.
Taking this together with Equation (I) proves the theorem.
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