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The Notion of Infinite Measuring Number
and Its Relevance in the Intuition of Infinity

David Tall

Mathematics Education Research Centre,
University of Warwick,
COVENTRY CV4 7AL, UK.

Abstract. In this paper a concept of infinity is described
which extrapolates themeasuring properties of number
rather tharcountingaspects (which lead to cardinaimber
theory).

Infinite measuring numbers are part of a coherent
numbersystem extending theeal numbers, including both
infinitely large and infinitely small quantities, Auitable
extension is the superreal number system described here; an
alternative extension is theyperreal number fieldised in
non-standard analysis which is also mentioned.

Various theorems are proved in careful detail to
illustrate that certain properties of infinity which might be
considered 'false' in a cardingenseare 'true' in a
measuring sense, Thus cardinal infinity is now only one of
a choice of possible extensions of the number concept to the
infinite case, It istherefore inappropriate to judge the
‘correctness' ofintuitions of infinity within a cardinal
framework alone, especially those intuitions which relate to
measurement rather than one-one correspondence.

The same comments apply general to theanalysis of
naive intuitions within an extrapolated formal framework.

1. Introduction

Numbers areusedfor at least threebasic purposes in everyday life —
counting, ordering and measuring. At the end of the last cetangor
extended the first two othese byintroducing infinite cardinals and
ordinals and suclinterpretations have become weltcepted by our
formal mathematical culture. However there aexasions when they
are not the most appropriate extension of the number concept; in
particular, where measurement is involved an infinite interpretation of
measuring number may be more suitable.

An example will make this more appareBuppose weonsider two
line segment®\B, CDwhere CD istwice as long a&B (Figure 1) and
ask if there are the same number of pointABandCD.
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Figure 1

The cardinal number solution is that there is a correspondetaeen
the two sets of points in which @oint P on AB distancex from A
corresponds to a poi@ on CD distance & from C, so they have the
samecardinal number (Figure 2).

x P

Figure 2

A perfectly reasonable alternative is tiidd has twice as mangoints as

CD. The cardinal response to this (see [5, p. 244]) is that if the set of
points iINAB has cardinality] then those if€D do have cardinality (2,

but this may only confuse the issdier it conflicts with the reasonable
intuition that twice some positive quantity must be stri¢dlgger than

that quantity.

The usual response to this conflict is a re-education of the individual
so that he or she learns to accept that such phenoma¢mally occur
with infinite cardinals, indeed it is theroperty of aset being put in
one-one correspondence with proper subset which precisely
characterises cardinal infinitieSuchlogical sleight of hand does not
always satisfy the cognitive psychological requirements of the learner.

The existence of various intuitions of infinity has been extensively
investigated by Fischbeiffor example in[l] and [2]). It wasthrough
reading his work and having informaliscussionswith him that this
paper came to be written. to provide kasis for an alternative
interpretation of children’s intuitions.

If we consider the intuitive notion of ‘point’ ariine’ we shall find
that an alternative interpretation of infinity sossible without the



conflicts that occur in this example. The reason that supposes that
there are twice as many points@D asAB is becauseneasuremenis
involved rather than counting.

Physical points have size when these marked with the stroke of a
pen on a picture. so that the longer the interval,ldhger the number
of points that can be fitted in. Children have many different intuitions as
to the nature of a point. One may not ‘see’ points on a line segment until
they are marked in, another may say that a line segmenbinapoints
(one at each corner), and so on. At some stage they are introduced to the
mathematical convention of marking a point on a line with a pen stroke
as in Figure 2. At thisstage'points' may be interpreted by non-
overlapping marks and whersked tomark as many points gmssible
in an interval a child may do so until he can fit no monarks
physically within the gaps left. Theame child, shown two points on a
piece of paper andsked tomark all the points on a straight line
between them, may then draw overlapping blobs in a line joining the
given points. The blobs can still lseen to be distinct entities, but the
overlaps are necessary to manufacture a connected line between the
points given at the outset.

This may suggest that a child at this stage believes in a “finitistic”
line, made up of a finite number of indivisible points, but that is not
true. The same child (a boy of eight yearss askedIf we take a line
as long as the road outside and cut it in half, then take half of one of the
pieces, and then half of one of these, and on and on, can we go on for
ever, or do we eventually have to stop?” He replied “You can go on for
ever.” “But won't thepieces eventually get too small to cut in half?”
“No. not if you look through a microscope.”

One may postulate that such a child is in some kind of Piagetian
transition stage between finite and infinite divisibility of a line. An
alternative hypothesis is that the child has come up against the genuine
conflict between finite divisibility in practical drawing and infinite
divisibility in theoretical imagination. What is absolutely clear is that the
child does not conceive the notion of number caainal sense. Hsees
it as a crude kind of measuremetidow many points cagou imagine
on that line?” “About fifty.” “And ...” (pointing to a line twice the
length) “how many on that line?” “A hundred.” The numberpoints
on a line is proportional to the length of the line for him.Hds no
conception of the difference between the rational continuum anct#he



continuum which have different cardinal numbers, nor the factrézt
intervals of different length have thgsame cardinal number. It is
therefore totally inappropriate to interpreis thinking processes within
a formal cardinal paradigm.

There is a genuine problem here. If we do mse acardinal
interpretation, what can we udey surely any formal interpretation is
not a true description of the intuition of the child. A partial answer to
this problem is to provide an alternative formal interpretation that is
logically complete and yet is consonant with the child’s intuition in
places whichprove conflicting with a cardinal interpretation. Blyis
process we can at least realise thlative nature of our interpretation.
The cardinal paradigm is theseen as only one ofeveral possible
infinite extensions of the number conceather than an absolute logical
reality against which everything must be judged.

3. Theoretical ‘points’ with size

Points marked with a pen in a physical picture have a fiside and
only a finite number of them are required to cover an interval of finite
length. To uniformize the theory, let sippose that the pen strokes
have thicknessl, then we shall need (approximatelyy of them to
cover an interval of length Here we are using number in a measuring
sense. By analogy, let us consider the answer to the question "how many
inches in a metre?" The answer is a real number which is niotteger.
More generally, if weask how many intervals lengthare required to
cover an interval length, the answer may be interpreted as thal
numberl/d. We now suppose that a ‘point’ is a (closed)erval of
lengthd. Of course, only a finite number are required to cover a finite
interval. However, if we takd to be aninfinitesimal, thenl/d will then
be aninfinite number, not an infiniteardinal, but an infinitemeasuring
number. If we take an interval of twice the length,tBen thenumber
of "points" in the interval isI&, which is precisely twice as many.

To explain such aheory requires a formal interpretation of the
notion of an infinitesimal. This may be done using non-standaadlysis
[4] but may be performed in a much simpleay by introducing a
single infinitesimal. We shall explain the latter in 83 by describing the
superreal numbersf [6] which are the real numbers expanded to
include power series in an infinitesimal If a ‘point’ has infinitesimal
size, saye, we discover a theory which allows both indivisibility of
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'‘points' and also infinite divisibility of a line (in sharp contrast to the
classical Greek dichotomy which only envisaged one or ttéer).
These factors are considered in 84 before computing the cardinal
number ofsuch ‘points’ in aninterval in 85. The main thrust of the
paper is reached with infinite measuring numbers in 86 arutief
reference to a non-standard interpretation in &laving laid the
groundwork, we close by looking at the intuition of infinity asek how

our perception is distorted by a mathematical culture wiaictepts
infinite cardinals but has little acquaintance with infinitesimals and the
infinite measuring number concept.

3. The superreals

In modern mathematics the number line is usualtgrpreted in terms
of the real number system where each number has a decimal expansion

amlon+ ...+a 410 +ag+ a110-1 +...+a,10 +...
with the coefficientsy; being digits between 0 and 9. In suclsystem
there mayseem noroom to introduce infinitesimals. Budrior to the
nineteenth century the number limeas often visualised as including
infinitesimally small quantities. A modern descriptionsafch a system
can be given by considering power seri@gpansions analogous to
decimals. Thesuperreal numbersl are defined to be power series in an
indeterminatee of the form

AmEM+ .. ta e l+agt €+, aEn+...
where each coefficieng can be any real number whatsoever. The
superreals can be thought of ‘epsimal’ expansionsvhere addition and
multiplication are performed according to theual rulesfor power
series. They include the real numbers as elements wher@ forr # 0
and can be given the structure of @wlered field by defining a non-
zero element

a=% @&, (& #0)

to be ‘positive’ ifax > 0. For instance bothanda— (for positive reak)
are ‘positive’. If we nowwrite ‘a > 3’ or ‘B > a’ instead of a3’ is
positive', then we find

0 <g < afor every positivea [J R
so¢€ is a positive infinitesimal.
The system of superreal numbers is described in detail in [7]. In general,
superreals of the fornw =5~ ane” are infinitesimal wherk > 0 and
infinite whenk < 0. A finite element is of the forrr =5 ' ja.e”.
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If we wish to visualize such expressions as points omraber line,
then infinite elements such as eXr 1k are so far off to the left or
right that they cannot be drawn on a finite diagram. Meanwhile, all that
can be seen of a finite elemefit _ ane” is its standardpart st() = &,
because theemainder of theexpansion is infinitesimalFor instance,
ste)= 0 so the difference betweenand O cannot be represented in a
normal-scale diagram (Figure 3).

Figure 3

However, the mapp: - 0 in which pu(x) = (x-a)/d shiftsa to the
origin and divides by the scalactor 6. By judicious choice ot andd

(as infinite or infinitesimal elements), details can be revealed which are
not visible to normal scale. For instanceqif a is real an® = g, then
points of theform a + Ae (A O R) which are infinitesimallyclose toa

and to each other are mapped onto distinct poinisR. By such a
device we can'see’ infinitesimal detail. A full description ofsuch
techniques is given in [7].

4. Indivisibles

Returning to ordinary pen drawings on paper for the momentoe
that we cannot distinguish between points which are ckrsetogether.
A fine pen draws a line 0.1 millimetres thick, so if we take a unit length
to be, say, 10 centimetres, then a pen-stroke 18 Ufits wide, so we
certainly cannot distinguish betweenand 3.1416 whose difference is
less than 1€, or one tenth of a pen-stroke.

To model this we choose a positiveimber d and say that two
numbersa, b ared-indistinguishablef

—d <ab<d

We then define a subsEtof real (or superreal) numbers to beda
indivisible if all pairs of elements oP and d-indistinguishable. Ad-
indivisible is, at its largest, a closed interval of lendth~or finited it
doesn’treally matter whether we regard the underlyisygstem to be



rational, real or superreal in theensethat if we ask how manyl-
indivisibles are required to cover an interval lenigtthen the answer is
l/d. If | and d are rational, we get thesame answerwhichever
underlying continuum we consider. Notice also that the continuum
(whichever we use) is only finitely divisible in treensethat we can
break it down into a finite number of indivisibles which are then so
small that the points within them are indistinguishable.

Now suppose that is infinitesimal, which means weequire a
continuum with infinitesimals. One obvious choice is to work with the
superreal continuum and, fay b[I0 (a<b), consider the interval

[a,b]#={x O] a<x<b}.
This is very much a Leibnizian continuum in the sense that it includes all
points of theform a + 3, b — §, andc £ & where d is a positive
infinitesimal anda < ¢ < b. (We would do well to remember thptior
to the nineteenth century a line segmerds considered to include
infinitesimals as well.) To obtain an analogy with thational
continuum, instead of dealing with the whole field of superreals, we
could start with the rational numbef@ and adjoin only arithmetic
combinations of the infinitesima. This meansworking in the field
Q(¢) of rational functions irg. An element in this field is of the form

n

ao +a18+...+an8m (@, bj 0Q).

bo +ue+... +bme

Working only with elements of thidorm, we get a ‘rational
continuum with infinitesimals which has closed intervals of the form

[a,b]*={x 0 Q(g) |a< x< b}

If we cover either ofthese continua withd-indivisibles for
infinitesimal 3, then clearly we shall need an infinite number to cover a
finite interval. We may interprethis infinite number as a cardinal
number or a measuring number. In doing so we shall find that the
behaviour of the two types of infinity are quite distinct. We begin with
the cardinal infinity in the next section.

5. Some cardinality considerations

First we compute the cardinal number of the setsaperreals.
Surprisingly, although we have added many infinitesimals and infinite
elements tdR to getl, the cardinal number is not actually increased:



THEOREM 1. The cardinality of the superreal numbeérsis [, the
same as that of the real numbBts

The proof of this result is given in an appendix. Asogollary, it is a
straightforward matter to deduce:

THEOREM 2. The cardinality of any superreal interval
[ab]#={x 1] a<x<h} (a<b)
is [J.

Suppose wesonsider an intervalalb]# of finite length (witha,b 0 R)
and consider how many intervals of infinitesimal lengtare needed to
cover it. For any reat in a< c < b and any integen the interval

len = [CH+NE, CH(N+1)g]
is of lengthe. Everya [ [a,b]# is of the form

a =aptaet...
wherea< ap< b andn < a; < n+1 (for some integen), so

ol i,

Thus the intervalsi,, (a < c< b, n O Z) cover Rb]* and the
cardinality of this set of intervals i8] o =[. Since each infinitesimal
interval can contain at most one real number, this is the minimum
cardinality that will be successful, giving:

THEOREM 3. The minimum cardinality of a s&tof intervals of length
€ required to coverdb]# (a,b 0 R,a<b) is.

A generalization of this result is:

THEOREM 4. Ifd is a positive infinitesimal and,b are real numbersa(
< b), the minimum cardinality of a s&of intervals lengthd required
to cover p,b]#is .

Similar computations can be mader the field Q(¢) of ‘rational
infinitesimals’ to obtain the following results:

THEOREM 5. The cardinality o®(g) is Oo.

THEOREM 6. For rational numbeeandb (a<b), the rationalinterval
with infinitesimals f,b]*= {x [0 Q(€) | a < b} has cardinalityly.



THEOREM 7. For any positive infinitesimad [0 Q(g), the minimum
cardinality of a sef of intervals lengtld required to coverd,b* (a,b [
Q,a<b)isUy.

The proofs of these resulesse thesame as thos®r Theorems 1-4,
with rational numbers replacing real numbers and every appearance of
[J replaced byly. The net result of all these cardinality computations is
that, if we consider the number of infinitesimal indivisibles needed to
cover a finite interval, then a superreal interval requires as many as
there are real numbers in that interval, whilst a ‘rational interval with
infinitesimals’ requires as many as there are rational numbers in that
interval. The length of the interval, or theze of the infinitesimal
indivisibles, on the other hand, is of no account.

6. Infinite measuring numbers

Now let us consider the number @indivisibles in an intervald,b]* or
[a,b]# from ameasuringviewpoint. If the interval is lengti=b—a, then
the (measuring) number @findivisibles required to cover it idefined
to be the superreal numbiéd.

Notice that this is independent of the underlying continuum
(provided thatl,d0 O Q(g)), just as is thecasewith finite measuring
numbers. We also havigr fixed 9§, that the (measuring) number &f
indivisibles in an interval is proportional to the lengthf the interval.

In this interpretation the cardinal number argument, that intervals of
different lengths have theamecardinal, as in Figure 2, igasily
rationalised. Over an interval with infinitesimals the map takirig 2x
doublesthe size of ad-indivisible to a 2-indivisible. In measuring
terms weseethat the number od-indivisibles in an interval lengthis
1/3, whilst the number of &indivisibles in an interval of lengthl ds
(21)/(20), which is the same. Ipoints’ haveinfinitesimal size, then the
only way that two intervals of differing length can have tamne
(measuring) number dpoints’ is if the size of the points is changed in
proportion to the length of the intervalvhich is precisely what one
would expect.

7. Non-standard integers

The main concept missing in the infinite extension of measumimgber
so far described is a notion of ‘infinite integer’. In the finikse we can



count the number ofclosed intervals lengtll required to cover an
interval lengthl. It is the integen where
-1 <l/d<n.

In the superreals there are no ‘infinite integers’ which extinl
idea. To get an infinite extension allowing us to blend measuring and
counting we need to work in the much more comprehensrgeem of
hyperreal numberdR* discovered by Robinsof#] in the 1960’s. The
hyperrealsR* contain a subring ohon-standard integerZ* such that
finite elements inZ* are the integersZ in the usual sense. A
characteristic property af* is that given any [0 R* whatsoeverthere
exists a uniqué\ [0 Z* such that

N-1 <x < N.

If we wish to know how many-infinitesimals in an interval of

length 1, then we can take the measuring nurtibér R* and find N [
Z* such that

N-1 <I/d <N.
and then we can define the counting number of intervals (in a measuring
sense!) to b&\. For finitel/d, this gives the usual finite integer solution
N OO Z, sothat the non-standard version is a natural extension of the
finite concept.

There is also a very natural version of the notion of the numbeér of
indivisibles necessary to cover an interval

[a,b]* ={xOR* |Jasx< b}
We need only take the non-standard integerhere
N-1 < (-a)/d <N.
and take
In = {x O R* |at(n—-1)d < X < a+nd}
for 1<n< N. Then each, is ad-indivisible and these indivisible§or
1<n< N) precisely cover the intervah,p]*.

Once more the non-standard integer is a much more natural way of
counting thed-indivisibles in a hyperreal interval than any cardinal
interpretation. If we were to double the length of the interval, then,
using

N-1 < p-a)/d <N.
we get
2N-2 < 2(—a)/d < 2N.

—-10 -



so the number od-indivisibles in an interval of double lengthegher
2N or 2N-1, depending on the circumstances, again reflecting the
possibilities occurring in the finite case.

Were we to attempt to compute tbardinal number ofd-indivisibles
in a hyperreal interval, we would come uggainst animportant
technicality; there is not one versidr of the hyperreals, but many,
and different versions may have different cardinals (see [3]). We omit
the computations in general, but note that the cardinal number of
infinitesimal indivisibles in an intervallepends on the cardinal of the
underlying continuum but is independent of the length of the interval.

8. Points in the plane

Similar interesting deviations occur between cardinal and measuring
number interpretations of points in the plane. A cardin&trpretation
tells us that the number of points in a square issme as thaumber
of points in an interval. The size of the square is immaterial, but we get
different infinities depending on whether the points have reajusir
rational coordinates.

Suppose we regarddaindivisible in the plane to be a detsuch that
the sets of coordinates

{xOO| xky) 0D} {yOo| y)tD}

are bothoé-indivisibles in thesense of§4. Then ad-indivisible in the
plane is at most a square of side-lengthlf we regard such aoé-
indivisible as a ‘point’ of infinitesimahon-zero size, we may consider
how many such ‘points’ are required to cover a square.

In cardinal terms we get the sais@t of answers as in the theorems
of 85. A superreal square requireslesstl] ‘points’ to cover it, whilst
a square containing only points with coordinate€Q{g) requires only
Oo. In a cardinal senséherefore,d-indivisibles behave much treame
as ordinarypoints in the plane; just as many are required to cover a
square as there are ordinary points in the corresponding continuum, but
the size of the square is irrelevant.

In a measuring senskopwever, the number d¥-indivisibles needed
to cover a square side-lendtis 12/82. In this senseéhe numberdepends
on bothl and d. More interesting, if we compare the number dof
indivisibles in an interval lengthor a square side-lengththe cardinal
answer is that they are the same, but the measuring number gats a
of 1/d to 12/82. Thus, in a measuring numbsensethere are infinitely
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more ‘points’ in asquare than in an interval, to be precise the ratio is
the infinite numbet/d.

9. Closing remarks on intuition

In the previous foursections we have seen how the concepinbhite
measuring number yields a quite different interpretation of infinity
from that of an infinite cardinalSuchmeasuring numbers astements

of a field and, as such, may be added, subtracted, multiplied and divided
in the usual way whilst the arithmetic of cardinals is restricted to
addition and multiplication. In a number of othemys theyare more
intuitively satisfying (though only applicable where sormem of
measurement is implied, such as ‘points’ of specific size).

One reason why measuring numbers may seem more appealing to the
intuition in some cases is that a child’s first intimation of the notion of a
‘point’ is usually that of amark in a physical drawing whergoints’
have finite (but indeterminate) size. It is natural therefore to extend our
schemas byaking smaller and smaller points leading plausibly to the
notion of a point of infinitesimal size.

Formal mathematicians, howevesee such a phenomendmough
the distorting lens of the predominating mathematical paradigm. By
posing an alternativechema of infiniteneasuring numbers, we may at
least see¢hat our interpretation of infinity iselative to our schema of
interpretation rather than absoluteform of truth.

In judging the intuitive thought of children this articularly
important, for they do not hawccess tdhe formalschemas omature
mathematicians. The ‘truth’ ofalsehood’ of children’s intuitions must
be seen in their own context rather than through a superimposedl
schema which maynisrepresent them. Different formachemas may
interpret the results quite differently, faxample the notion that a
longer line segment has more points in it is true in a measscimgna
but false in a cardinal schema.

Apparent contradictions in intuitions may also be due to a faulty
schema of interpretation. For instanceetms inconsistethat two sets
can have the same number of elements and yet at the same time one has
more than the other. But Cantor’s set theory demonstrates that this can
happen precisely when theetsare infinite. The contradiction arises
from attempting toimpose aframework of interpretationbased on
experience with finite sets.
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This illustrates a common occurrence in the development of
mathematical ideas, both in the history of mathematics and the
development of the individual. Working in a given context certaicts’
arise which hold in the given context but break down when the theory is
broadened. The ‘fact’ that a proper subset of a set has a smathdrer
of elements is true for finite sets but can break down in the infuaise.
Other examples include the ‘fact’ that the operation of subtrastems
always to lead to a smalleesult, which fails when negative numbers
are subtracted, or th&act’ that multiplication produces a larger value,
until the introduction of proper fractions falsifies that rule also.

Suchintuitions based on impliedruths in a restricted context can
causeserious conflicts when the context is broadened. These conflicts
are all the more serious when they are subliminal, unspoken and, as a
consequence, unnotice8uppose weegard brain activity in terms of
electrical resonance in a complex circsytstem whoseonfiguration is
altered by a chemical action over a period of time. Sensory icpute
the formation of configurations which become the foundation for
resonance responses for later inputs. Intuitions may thus be firmly fixed
by the chemical action within the bracaused by avariety of sensory
input, though they are not delineated by specifionsciously noted,
sensory information.

Many researchers have commented on tiald’s conception of
various mathematical ideas. It may be that the lasting intuitions of a
child can give additional insight into the initial foundations. kwtance
the consonance of intuitions offinity with infinite measuringnumber
rather than cardinal number in some children requires an anbwear
those psychologists wheeethe child’s interpretation of number only
within a cardinal paradigm. Likewise the psychological investigation of
the child’'s view of the infinitelylarge and the infinitely small is
distorted by viewing it through the blinkers of a purely cardinal
interpretation. As we haveseen in this article, an alternative
interpretation ispossible which is consistent with certain intuitions
which are rejected by a cardinal viewpoint.

It is a salutary experience to learn that sophisticakesbry can
actually be an impediment in the understanding of intuitive notions.
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APPENDIX

Proof of Theorem 1Denoting the cardinal number of a set A |3y,
clearly
U]z R| =L
Given
o =bp/em+ ... + +by/e + X a,en
then forN = {1, 2, 3, . . . }, define

_ [on (nsm)
¢a(2n-1)= ﬁo (n>m)
@ (2N) = An

This gives a bijective correspondence betwgeand a subset of the set
of maps fromN to R, hence
|0] <O o,
whereldy = |N|.
But it is a well-known result (e.g. [5, Chapter 12]) that
ZF 2°
and by cardinal arithmetic,
DDO — (ZDO )Do — 2|I|o‘ — 2|10 =0
SO
0] < 0
Taking this together with Equation (I) proves the theorem.
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