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CHAPTER 1

Introduction

Cancer is one of the leading causes of death worldwide, second only to cardiovascular
diseases. Globally, every one in six deaths is due to cancer (World Health Organiza-
tion, 2020). According to the Global Cancer Observatory, there were 19.3 million new
cancer cases in 2020 and almost 10 million deaths (Sung et al., 2021). In 2040, these
numbers are expected to increase to 30.2 million new cases and 16.3 million cancer
related deaths (Ferlay et al., 2020).

The three main pillars of cancer therapy1 are surgery, chemotherapy and radiation
therapy (RT, also called ‘radiotherapy’). RT is especially suitable for tumors that are
inaccessible by surgery. RT may also be applied in combination with surgery and/or
chemotherapy, and it can be used for both curative and palliative treatments. It has
been estimated that approximately half of cancer patients can benefit from RT (De-
laney et al., 2005), a number that is still generally accepted today.

RT uses ionizing radiation to kill cancerous cells, by damaging their DNA. The radi-
ation source may be positioned either inside or outside the patients’ body. The former
is known as brachytherapy, or internal RT. In brachytherapy, a radioactive source is
(temporarily) implanted in the tumor via an invasive procedure, and the tumor is irra-
diated from within the patient. External beam radiation therapy (EBRT), on the other
hand, uses a linear accelerator (linac) to pass beams of ionizing radiation through the
patient’s body. Energy is deposited in all tissues on the path of the beam. The absorbed
dose is the energy deposited per unit mass, and is measured in Gray (Gy, 1 Joule per
kilogram).

Inevitably, there is a trade-off between sufficiently damaging the tumor tissue, and
sparing the surrounding healthy tissues. The primary goal of treatment planning for
EBRT is to design a treatment plan that finds a good balance between these compet-

1Immunotherapy is likely to become the fourth pillar; the 2018 Nobel Prize in Physiology or Medicine
has been awarded to advances in this area (Nobel Media AB, 2018).
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2 Introduction

ing objectives, i.e., a treatment plan that administers a therapeutic amount of dose
to the tumor, while keeping dose to all surrounding healthy tissues within tolerable
limits. To achieve this, treatment planners can decide on beam angles, beam inten-
sities, treatment length and other degrees of freedom. Traditionally, this is done in
a forward (trial-and-error) manner. A treatment plan is designed, and subsequently
evaluated according to several clinically relevant performance measures. If deemed
necessary, the plan is adapted and re-evaluated, until an acceptable treatment plan
is found. However, contemporary treatment techniques such as intensity-modulated
radiation therapy (IMRT) allow for more advanced dose modulation, leading to more
complex treatment planning problems with many degrees of freedom. The forward
approach is no longer practical, and is replaced by an inverse approach which employs
mathematical optimization. In inverse treatment planning, the treatment goals are
set a priori, and mathematical optimization is employed to find the optimal treatment
plan.

This thesis deals with various topics in mathematical optimization for IMRT. The
focus is on biologically-based treatment planning and the role of (adjustable) robust
optimization. The remainder of this chapter deals with various preliminaries, and pro-
vides an outline of the thesis. Section 1.1 introduces the treatment planning workflow
for IMRT. Section 1.2 introduces biologically-based treatment planning. After that,
Section 1.3 discusses the uncertainties that play a role in treatment planning, and
introduces robust optimization. In Section 1.4 the contributions of this thesis are pre-
sented, and Section 1.5 provides a disclosure.

1.1 Treatment planning for IMRT

1.1.1 Medical physics preliminaries

Medical imaging plays an essential role in treating cancer patients with radiation ther-
apy. Without imaging, one cannot precisely locate the tumor and other relevant struc-
tures inside the patients anatomy, and designing an acceptable treatment plan is im-
possible. The most widely used imaging modality is computed tomography (CT), more
recently also magnetic resonance imaging (MRI) is employed. A CT scan provides in-
formation on the anatomical structure of the patient. A radiation oncologist uses CT
images to delineate all volumes of interest. The gross tumor volume (GTV) is the tu-
mor volume that can be visually identified on a CT scan. To account for microscopic
disease extensions that cannot be imaged, the GTV is extended by a margin to ob-
tain the clinical target volume (CTV). The CTV is the volume that must be adequately
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Treatment planning for IMRT 3

treated. Next to this, organs-at-risk (OARs) are delineated. OARs are critical normal
tissue structures in close proximity to the tumor that are taken into account during
the treatment planning. The resulting contours provide the geometrical information
required for treatment planning.

Figure 1.1: Illustration of a linac positioned in the head of a gantry. The gantry rotates around
the patient to treat a brain tumor. From Küfer et al. (2005), with permission.

The treatment is typically delivered using a linac mounted on a gantry, which can
rotate around the patient to direct beams at the target volume from different angles,
see Figure 1.1. Moreover, the treatment couch can be moved to yield an additional
degree of freedom. From a beam’s eye view, the target volume is a two-dimensional
shape, i.e., the three-dimensional target volume projected onto the plane orthogonal
to the beam. The 2D plane can be discretized in a 2D grid, where each element is
referred to as a beamlet (or bixel).

The linac aperture (in the gantry head) is equipped with a multileaf collimator
(MLC), a device that modulates the beam shape. An MLC consists of a number of
leaf-pairs, which can be controlled to block part of the beam, see the first part of
Figure 1.2. Using the MLC, the time during which particles pass through each beamlet
is modulated, and beam shapes conformal to the target volume can be created. Prior
to modulation, the accelerator produces a (constant) flux (particles per unit area per
unit time). By dynamically blocking beamlets with the MLC leaves during irradiation,
the exposure time can differ per beamlet, leading to a (potentially) different fluence
(number of crossing particles per unit area) per beamlet. The 2D grid with the fluence
at each beamlet is referred to as the fluence map, see the second part of Figure 1.2
for an illustration. A fluence map is sometimes also referred to as an intensity map
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or profile, although this is technically incorrect2. For further details on the physics of
radiation oncology we refer to Gotein (2008).

�

�

�

Figure 1.2: Schematic overview of dose delivery. Part 1: The multileaf collimator is dynam-
ically controlled to modulate the fluence. Part 2: The fluence modulation results in a fluence
map, which indicates the resulting fluence per beamlet. Part 3: The dose distribution, which
indicates for every tissue voxel the total dose it received, is obtained by summing the contribu-
tions of all fluencemaps per voxel. Image courtesy of Björn Hårdemark (Raysearch Laboratories
AB, Stockholm, Sweden).

It is crucial to have accurate information on how unit fluence of an individual beam-
let translates to dose deposited within the patient’s body. This problem is known as
dose calculation, and is typically solved using a pencil beam algorithm (Ahnesjö et al.,
1992), and sometimes using Monte Carlo simulation (Seco and Verhaegen, 2013). In
this way, the contribution of a single fluence map to the entire deposited dose can
be determined. By directing beams from different angles, multiple fluence maps are
created. To represent the total accumulated dose, all volumes of interest (the target
volume and the OARs) are discretized into small cubes, called voxels. The resulting
dose deposited in each voxel is referred to as the dose distribution (third part Fig-
ure 1.2).

A single non-uniform (i.e., non-constant) fluence map leads to a more heteroge-
neous dose distribution in the target volume distribution than a single uniform fluence

2The intensity at an area is the number of particles passing through that area per unit time (prior
to modulation). The observant reader may also note that, despite the naming, IMRT does in fact not
modulate intensity, but rather modulates fluence (Webb and Lomax, 2001).
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map, which is generally not desired. However, IMRT capitalizes on the fact that super-
imposing multiple non-uniform beams from different angles can lead to the desired
target dose distribution. Compared to 3D conformal radiation therapy (with uniform
fluence maps), IMRT can achieve better target dose conformality and/or OAR sparing.
There are some investigations into the required number of beams for IMRT (Bortfeld
et al., 1990; Bortfeld, 2010); clinically, often approximately ten beams are used. For
overviews of IMRT we refer to Bortfeld (2006) and Das et al. (2020).

Figure 1.3: Example Bragg curves for photon and proton beams. The photon dose decreases
as the beam passes through tissue. The proton beam has a pronounced peak (the Bragg peak),
of which the location and width can be controlled. Image courtesy of Thomas Bortfeld (Mas-
sachusetts General Hospital and Harvard Medical School, Boston, USA).

Themajority of treatment techniques, amongwhich IMRT, make use of high-energy
photons (X-rays or gamma rays). Particle therapy is an alternative, advanced form of
EBRT that makes use of heavy ions such as protons or carbon ions. Proton therapy is
the most common type of particle therapy. It generates proton beams, which lead to a
different dose deposition than photon beams. Figure 1.3 visualizes the Bragg curves
(depth-dose profiles) of a photon and a proton beam. The photon beam has a high
entrance dose, and dose deposition gradually decreases along the beam’s path. The
proton beam, on the other hand, has a lower entrance dose and has a pronounced peak,
called the Bragg peak. The Bragg peak is followed by a sharp dose falloff, thus leading
to a finite range of dose deposition. The Bragg peak and width can be controlled, by
changing amongst others the proton energy, which is an important advantage for OAR
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sparing. The practical benefits of this theoretical advantage are highly influenced by
uncertainties in treatment planning. This is discussed in more detail in Section 1.3.1.
Dose modulation in proton therapy is slightly different from IMRT. The first proton
therapy systems used passive scattering techniques, and more recent systems use pen-
cil beam scanning methods, also referred to as intensity modulated proton therapy
(IMPT). IMPT allows for dose modulation similar to IMRT in photon therapy, and typi-
cally uses not more than three beam angles. Further details on proton therapy physics
can be found in the book by Paganetti (2019).

1.1.2 (Inverse) treatment planning for IMRT

The primary goal in treatment planning is to design a treatment plan that best sat-
isfies the criteria set by the radiation oncologist. Predominantly, these goals will be
related to the resulting dose distribution. A radiation oncologist can define hard goals
(constraints) and soft goals (objectives), both for the dose in the target volume(s) and
OARs. An important treatment plan evaluation tool for radiation oncologists is a (cu-
mulative) dose-volume histogram (DVH). For any target or OAR volume, the DVH
compresses the 3D dose distribution into a single line. For every dose value, the DVH
line indicates the volume percentage that receives at least this dose. Figure 1.4 pro-
vides an illustration. The solid and dashed lines visualize a typical target and OAR
dose distribution, respectively. The maximum point dose, the highest dose over all
voxels, is around 54 Gy for both volumes. Next to this, other dose-volume metrics can
be derived from the DVH. For example, the D30 is the minimum dose received by the
‘hottest’ 30% of the structure, which is approximately 30 Gy for the OAR in Figure 1.4.
Conversely, V20 is the volume that receives at least 20 Gy. In Figure 1.4, the V20 of the
OAR is approximately 53%. A DVH metric provides information on the dose distribu-
tion in a particular structure, and can be visualized by a single point in a DVH graph.
A DVH objective or constraint essentially aims to push the DVH line above (for targets)
or below (for OARs) a specific point in the DVH graph.

The types of dose criteria, i.e., objectives and constraints, that are specified will de-
pend on the type of tissue. For serial organs such as the spinal cord, excessive damage
to a small subvolume may lead to loss of functionality for the entire organ. For serial
organs often maximum point dose criteria are specified. Parallel organs, on the other
hand, are those where damage to small subvolumes does not restrict functionality.
They continue to function as long as the spared volume is sufficiently large. For par-
allel organs often mean dose criteria and DVH criteria are used. For target volumes,
minimum dose criteria and prescription criteria are typically used. For the latter, a
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Figure 1.4: Illustration of a (cumulative) DVH. The solid and dashed lines represents the dose
distribution in the target and OAR volume, respectively.

prescription dose is set for the entire volume, and underdose and/or overdose is pe-
nalized. The chosen set of objectives and constraints is for a large part based on a dose
protocol, which, in turn, is based on amongst others clinical trial results and expert
consensus.

Designing an IMRT treatment plan that best satisfies these criteria is the task of a
medical physicist and/or dosimetrist. The process is typically split up into three parts:
beam angle selection, fluence map optimization (FMO) and leaf sequencing. The first
step is selecting a set of beam angles to be used for treatment planning. Then, fluence
map optimization determines the optimal fluence maps for the given set of beams.
Lastly, leaf sequencing is the process of determining MLC controls to efficiently and
accurately replicate the desired fluence maps.

Selecting the appropriate beam angles is typically done manually (i.e., no opti-
mization). The reason is that the number of beams is typically limited, so the forward
problem is still manageable. Incorporating beam angle selection in FMO leads to the
beam angle optimization (BAO) problem, which is a difficult nonconvex problem. Most
BAO approaches in literature use heuristics, see, e.g., Bertsimas et al. (2013) and ref-
erences therein. There are also some approaches which skip the fluence map step,
and directly optimize machine parameters. This is called direct aperture optimization
(DAO). Leaf sequencing and DAO are not considered in this thesis; we refer to Ehrgott
et al. (2008) and Romeijn and Dempsey (2008) for reviews on these and other opti-
mization challenges in treatment planning. The FMO problem usually has the largest
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impact on the overall treatment quality (Aleman, 2018), and has received most atten-
tion from the optimization community.

When beam angles are selected and dose calculations have been performed, a dose
deposition matrix (or pencil beam matrix) is obtained. This matrix maps beamlet flu-
ences, often referred to as beamlet weights, to the deposited dose in all voxels. Con-
sider a total of n beamlets (aggregated over all fluence maps), and let x ∈ �n denote
the beamlet weights. Let m denote the total number of voxels (over all structures), and
let A ∈ �m×n denote the dose deposition matrix. Then the dose vector d ∈ �m is given
by d = Ax . That is, with ai the i-th row of matrix A (as a column vector), the dose di

in any particular voxel i is given by di = a�
i x . Vector ai gives for every beamlet the

deposited dose in voxel i at unit fluence.
Let fi : �m �→ �, i ∈ O, denote treatment plan objectives, and let f j : �m �→ �, j ∈ C ,

denote treatment plan constraints. With w ∈ �|O| the vector of objective weights, a
generic FMO problem can be formulated as

min
x ,d

∑
i∈O

wi fi(d),

s.t. f j(d)≤ 0, ∀ j ∈ C ,

d = Ax ,

x ≥ 0.

(1.1a)

(1.1b)
(1.1c)
(1.1d)

One can also add constraints on beamlet weights x to ensure that the resulting fluence
maps can actually be delivered using an MLC (i.e., can be replicated during the leaf-
sequencing phase). Such smoothing constraints prevent spiked fluence maps, see, e.g.,
Breedveld et al. (2006).

As noted before, there is an inevitable trade-off between eradicating the tumor and
sparing healthy tissues in close proximity to the tumor. Mathematically, this trade-
off is captured by the weight vector w , which quantifies the relative importance of
the various competing objectives. A priori, it is unknown what weight vectors give
desirable treatment plans, and this may differ from patient to patient. Multicriteria
optimization (MCO) has been used successfully to handle these trade-offs. It makes
use of the fact that only Pareto efficient (or Pareto optimal) solutions (i.e., treatment
plans) are clinically relevant. A Pareto efficient solution cannot be dominated. That is,
the performance in one treatment criteria can only be improved if the performance in
another treatment criteria deteriorates. The set of all such solutions is called the Pareto
surface, and this is the set of meaningful solutions that a physician could consider.
Research focuses on accurate approximation of the Pareto surface in a time efficient
manner; we refer to Breedveld et al. (2019) for a review. MCO has been implemented
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in amongst others the RayStation treatment planning system (Bokrantz and Forsgren,
2013; RaySearch Laboratories AB, 2020).

During conventional IMRT delivery, the FMO problem is solved for a set of pres-
elected beam angles, and the linac is switched off when the gantry moves from one
beam position to the next. Volumetric modulated arc therapy (VMAT) is a different
IMRT delivery approach that makes a single gantry arc rotation with continuous irra-
diation (Yu, 1995; Otto, 2008). Currently, VMAT is the most common IMRT delivery
technique. It has the potential to deliver higher quality treatment plans (due to an
increase in beam angles) with shorter treatment time. For adjacent beam angles the
MLC leaf positions have to be coupled. Therefore, the full VMAT optimization problem
is a large-scale nonconvex problem that cannot directly be decomposed in an FMO and
leaf-sequencing step. However, the two-step heuristic approaches commonly used in
practice do start with FMO (Craft et al., 2012).

In this section we have presented the FMO problem for IMRT treatments. The
FMOproblem of its proton counterpart (IMPT) has a similar mathematical formulation,
although underlying physics and clinical aspects may differ.

1.2 Biologically-based treatment planning
Next to treatment planning aspects pertaining to the medical physics side of the prob-
lem, radiobiology also plays an important role in treatment planning. In this section,
we discuss the use of biological information in treatment planning.

1.2.1 Fractionation

Radiation therapy treatments are typically not delivered on a single treatment day.
Instead, this is spread out over multiple treatment sessions or fractions, where in each
session part of the total dose is delivered. The underlying rationale is that healthy cells
can (partially) recover from absorbed dose inbetween fractions, whereas tumor cells,
which are primarily focused on reproduction, lack such repair mechanisms. Short
treatments (i.e., few fractions) may thus unnecessarily damage the healthy tissues
surrounding the target volume. On the other hand, a treatment spread out over a
large number of treatment fractions may not deliver sufficient damage to the target
volume, and increases the risk of tumor proliferation. The effect of fractionation differs
per healthy tissue type and per tumor site. This is an important topic in radiobiology;
further details can be found in the textbooks by Joiner and van der Kogel (2009) and
Hall and Giaccia (2012). Hyperfractionation refers to the use of a high number of
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low-dose fractions. The reverse, using a low number of high-dose fractions, is called
hypofractionation. These are not precise definitions; what is considered high and low
depends on amongst others the treatment site.

The linear-quadratic Poisson cell survival model, or simply LQ model, is probably
the most well-known biological model (for a review, see McMahon (2019)). It provides
a simple relationship between dose, fractionation and cell survival. According to the
LQ model, if a voxel is homogeneously administered dose d uniformly over N fractions
(i.e., with dose d/N per fraction) the surviving fraction of cells SF is given by

SF= e−d(α+β d
N ). (1.2)

The α parameter is the ‘intrinsic’ radiation sensitivity of the tissue and determines
the effect of the total dose d, and the β parameter represents the dose fractionation
effect. On a lower level, SF can be interpreted as the survival probability of a cell that
is administered dose d uniformly over N fractions.

The biologically effective dose (BED)model (Barendsen, 1982; Fowler, 1989, 2010)
is derived from the LQ model:

BED= − log(SF)/α= d +
d2

N(α/β)
. (1.3)

The α/β ratio is perhaps the most well-known dose-response parameter. It captures
the fractionation sensitivity of a tissue: a high α/β ratio indicates a low fractionation
sensitivity and vice versa. If this parameter is known, the BED model can be used to
compare the biological effect of different fractionation schemes. The BED model (1.3)
can be generalized to allow for a non-uniform dose per fraction. Finding the optimal
fractionation scheme is known as fractionation optimization.

In each treatment fraction, a scaled version of the dose distribution is administered.
Scaling the dose distribution influences the absolute dose delivered to each voxel, but
the relative dose remains unchanged. For each voxel we can define a dose sparing fac-
tor: the dose of this voxel as a fraction of the mean target dose. In Figure 1.5, the
target volume receives a uniform dose of 45 Gy over the entire treatment course. The
indicated OAR voxel receives 18 Gy and thus has a dose sparing factor of 0.4. Conse-
quently, if in a single treatment fraction a mean target dose of 3 Gy is administered,
the OAR voxel receives 1.2 Gy. Thus, with a fixed dose distribution, the sole decision
in treatment fraction t is dt , the mean tumor dose in that fraction. The corresponding
dose to any voxel i with dose sparing factor si is sidt . Altogether, with a fixed dose dis-
tribution, fractionation optimization problems can be described using a low number of
decision variables.
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Figure 1.5: Slice of a 3D dose distribution (illustration). Target is contoured in black, OAR is
contoured in red. The target volume has a mean dose of 45 Gy. The indicated OAR voxel with
dose 18 Gy has a dose sparing factor of 0.4.

There is a large body of research that optimizes the number of treatment fractions
for different model formulations (Mizuta et al., 2012; Unkelbach et al., 2013a; Bortfeld
et al., 2015; Saberian et al., 2015). These all separate the temporal component (i.e.,
fractionation optimization) from the spatial component (i.e., the FMO problem), and
benefit from the dimensionality reduction. Another line of research, spatiotemporal
optimization, aims to solve both problems simultaneously (Unkelbach et al., 2013b;
Unkelbach and Papp, 2015; Saberian et al., 2017; Gaddy, 2019).

Due to the fractionation of treatment plans, it is possible to use different treat-
ment modalities in different treatment fractions. Treatment modalities have different
physical (dosimetric) and biological advantages and disadvantages. It is thus possible
that the best balance is found by combining treatment modalities. In Chapter 6 the
fractionation optimization problem for combined proton-photon treatments is studied.
Although proton therapy has physical advantages (Section 1.1.1), these do not always
directly translate to clinical advantages over photon therapy. The price tag of proton
therapy remains high, so there is value in using the available proton therapy slots as
efficiently as possible.

Next to combining different radiation therapy modalities, there are also modeling
studies that analyze the influence of fractionation for treatment combining radiation
therapy with chemotherapy (Salari et al., 2015; Badri et al., 2018) and immunotherapy
(Serre et al., 2016; Sung et al., 2020).
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1.2.2 Biological response models

Despite what expressions such as ‘target dose’ suggest, the ultimate goal of radiation
therapy is not to deliver dose to the patient. This is only a surrogate for the true
goal: eradicating the tumor, with as little negative side effects as possible. Biological
response models (or dose-response models) aim to quantify to what extent these goals
have been achieved, by providing a relationship between delivered dose and (expected)
biological effect on cells or tissue. The LQ model and the BED model are two examples
of biological response models.

It is desirable to compress the biological effect of a heterogeneous spatial dose
distribution delivered to a certain volume into a single number. The (generalized)
equivalent uniform dose (gEUD) is the dose that, if delivered homogeneously to the
volume, leads to approximately the same biological effect as the heterogeneous dose
distribution. For a heterogeneous dose d ∈ �m delivered to m equal-sized voxels it is
defined by Mohan et al. (1992) and Niemierko (1999) as

gEUD(d) =
� 1

m

m∑
i=1

da
i

� 1
a
, (1.4)

where a is a parameter characterizing the volume effect. For parallel organs a is close
to one, and for serial organs a goes to infinity. Note that, except for the factor 1/m,
the gEUD is the �a-norm.
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Figure 1.6: Illustration of sigmoidal TCP and NTCP functions. The gap between TCP and
NTCP is referred to as the therapeutic window.
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The ultimate biological response of interest is whether or not the tumor has been
eradicated or controlled, and the associated normal tissue complications. The extent to
which these goals are (expected to be) achieved is often quantified as the tumor control
probability (TCP) and normal tissue complication probability (NTCP). One can broadly
distinguish mechanistic and phenomenological TCP and NTCP models. Mechanistic
models try to capture the true biological processes at play and are based on, e.g., the
LQ model. On the other hand, phenomenological models try to fit to available clinical
outcome data, and are often based on the gEUD model. TCP and NTCP models (and
other biological response models) are functions of both dose and parameters capturing
the underlying dose-response of the relevant tissue, such as the previously mentioned
α, β and a. Figure 1.6 gives a schematic illustration of a (gEUD-based) TCP and
NTCP curve, exhibiting a typical sigmoidal shape. The difference between TCP and
NTCP for a treatment plan is referred to as the therapeutic window. Li et al. (2012)
report on various considerations related to the use of biological response models in
treatment planning. In recent years, there is a growing interest in using machine
learning techniques for learning biological response models, we refer to Kang et al.
(2015) for a review.

1.2.3 Adaptive biologically-based treatment planning

A major limitation of TCP and NTCP models is that they are typically constructed
for a particular patient cohort, and not for an individual patient. Thus, they do not
capture the true biological dose-response of an individual patient. Consequently, in-
formation about individual patient response collected before, during and after treat-
ment may allow for a better assessment. Moreover, pre- and mid-treatment biological
dose-response information can be used to adapt the treatment for the remainder of its
course, i.e., to personalize the treatment. Baumann et al. (2016) states that “novel
biological concepts for personalized treatment, including biomarker-guided prescrip-
tion, combined treatment modalities and adaptation of treatment during its course” is
one of two major strategies for radiation oncology in the era of precision medicine, the
other being technology-driven improvement of treatment conformity.

A biomarker is a measurable indicator of the state of a particular biological pro-
cess. Mid-treatment biomarkers (or changes from pre- to mid-treatment biomarkers)
provide estimates of the patients’ early response to the treatment. Functional imag-
ing biomarkers, in particular positron emission tomography (PET), can provide spatial
patterns of activity. Various PET tracers are being investigated as potential biomarkers
for radioresistance, proliferation and hypoxia (reduced oxygen levels in tissue). Next
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to imaging, biomarkers may be based on molecular biology and genetics.
Biomarker information can be used to update biological response models, and sub-

sequently adapt the treatment plan accordingly. Depending on available biomarker
information, various treatment plan parameters may be adapted. For an overview of
adaptation strategies and associated optimization challenges we refer to Ajdari et al.
(2019).

Chapter 2 considers a stylized model where, based on mid-treatment response pa-
rameter estimates, the length (i.e., number of treatment fractions) of the remaining
treatment course is adapted. In Chapter 3, voxel-wise response parameter estimates
are obtained from pre- and mid-treatment functional imaging data. The dose dis-
tribution is adapted accordingly, either using uniform dose (de)-escalation or dose
redistribution via re-solving the FMO problem.

1.2.4 Conic optimization

Treatment planning with biologically-based criteria, either static or adaptive, may in-
volve solvingmore difficult FMO problems. A wide variety of solutionmethods exist for
solving FMO problems, both with and without biologically-based objectives and con-
straints. Section 4.1 provides an overview of commonly used optimization methods,
both in literature and in commercial treatment planning systems. Many of these meth-
ods rely heavily on the convexity of the underlying optimization problem. The main
advantage of convex FMO problems (and a convex optimization problems in general)
is that any local optimum is a global optimum. An optimization problem is convex
if the objective and all constraint functions are convex (for minimization objectives
and upper bound constraints; concave for maximization objectives and lower bound
constraints). Many biologically-based criteria are not convex in their natural form,
see, e.g., the TCP and NTCP functions in Figure 1.6. However, as shown by Romeijn
et al. (2004) and Hoffmann et al. (2008), all common biologically-based criteria can
be reformulated to convex functions.

Next to convexity, there is another important characteristic of an objective or con-
straint function: conic representability. More specifically, is the epigraph set (for min-
imization objectives and upper bound constraints) or the hypograph set (for maxi-
mization objectives and lower bound constraints) of the function conic representable?
If the answer is yes for each criteria, the optimization problem can be reformulated to
a conic optimization problem. Conic optimization is a subfield of convex optimization.
It allows for nonlinearity, thus being more general than linear optimization. Nonlin-
ear functions are not treated in their original functional form, but are formulated by
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restricting variables to belong to certain convex ‘cones’. Let c ∈ �n, A ∈ �m×n, b ∈ �m.
A conic optimization problem in standard form is of the following form:

min
x

c�x ,

s.t. Ax = b,

x ∈ C ,

(1.5a)

(1.5b)
(1.5c)

where C ⊆ �n is a cone, i.e., a set with particular properties. If for C we choose the
nonnegative orthant�n

+, we retain a linear optimization problem. By allowing for other
cones than only the nonnegative orthant, nonlinear convex relationships can be mod-
eled. In contrast, standard convex optimization directly uses the convex objectives and
constraints in their functional form and derivative (and possibly Hessian) information
is used to solve the problem.

Without restrictions on the types of cones that are allowed, conic optimization is
no more restrictive than general convex optimization. In practice, C is often restrict
to be (a combination of) the linear, quadratic, exponential and power cone3. These
cones offer great modeling power, and the resulting conic optimization problems can
be solved efficiently, both in theory and in practice, using interior-point methods. In
Chapter 4, further details on conic optimization are provided. We apply conic opti-
mization methodology to FMO problems, and provide conic representations of many
commonly used treatment plan evaluation criteria, with an emphasis on biological re-
sponse models. For a general introduction to conic optimization, we refer to Ben-Tal
and Nemirovski (2001) and Nemirovski (2007).

1.3 Uncertainty and robust optimization
Thus far, we have presented an idealized version of treatment planning, where all
relevant data is of perfect quality. This is not the case in practice; on the contrary,
Gotein (2008) states that in radiation oncology “(almost) everything is uncertain”.
Dealing with uncertainties is a central topic in treatment planning. In this section, we
discuss various sources of uncertainty, and introduce (adjustable) robust optimization
as a methodology for optimization under uncertainty.

1.3.1 Sources of uncertainty

Many uncertainties are of geometric nature. They include, but are not limited to,
imperfect imaging, delineation errors, patient positioning errors, uncertainty due to

3The semidefinite matrix cone is a fifth often-used cone, but it is not considered in this thesis.
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breathing motion and inter-fractional anatomical changes. The traditional approach to
ensure proper CTV coverage in the face of these uncertainties is to add a safety margin
to the CTV, to obtain the planning target volume (PTV). By treating the PTV with a
sufficiently high dose, it is ensured that the CTV is treated adequately. There is a large
body of research on defining appropriate margin recipes (Van Herk, 2004). Similar
safety margins may also be added to OARs. As an alternative to the PTV approach,
robust and stochastic optimization methods have been proposed, see Section 1.3.2 for
further details. Next to the aforementioned geometric uncertainties, these methods
can also handle uncertainties in the delivered dose distribution. The latter may occur
due to dose calculation uncertainty, and, in proton therapy, range uncertainty. Range
uncertainty in proton therapy leads to uncertainty in the precise location of the Bragg
peak (see Figure 1.3 in Section 1.1.1), which may diminish part of the theoretical
benefits of proton therapy over photon therapy.

Next to designing a baseline treatment plan that ensures robustness against all
uncertainties, adaptive treatment planning can be used to mitigate some of these un-
certainties (Yan et al., 1997). For example, mid-treatment CT scans can be used to
detect inter-fractional anatomical changes, and the treatment plan can be adapted
accordingly. Mitigating and accounting for geometric and dosimetric uncertainties is
beyond the scope of this thesis.

The use of biological response models gives rise to another set of uncertainties.
First and foremost, biological response models are always approximations, and never
describe the complex radiobiological processes perfectly. Under an assumed biological
response model, the model parameters that give the best fit for an individual patient
are typically unknown prior to treatment. Mid-treatment biomarker information can
be used to update the biological response model (see Section 1.2.3), i.e., obtain more
accurate parameter estimates. Nevertheless, uncertainty in model parameters persists,
due to uncertainty in biomarker data and/or translation from biomarker data to model
parameters. The adaptive treatment planning approaches in Chapters 2 and 3 account
for the inexactness of parameter estimates obtained mid-treatment. Chapter 2 also dis-
cusses the fact that biomarker information quality may vary over time, and addresses
the question of ‘when to adapt?’.

1.3.2 Robust optimization

Robust optimization (RO) is a methodology for modeling decision-making problems
under uncertainty. It gained attention in the 1990s due to the work of Ben-Tal and
Nemirovski (1998, 1999) and El Ghaoui and Lebret (1997). RO was developed as a
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practical alternative to stochastic programming (SP, see, e.g., the textbook by Shapiro
et al. (2014)). SP assumes to have full information on the probability distribution of the
uncertain parameters, and optimizes expressions involving expectations or probabili-
ties. In contrast, RO solely assumes that a so-called uncertainty set can be described,
and its solutions ensure feasibility for any realization in this uncertainty set. In many
applications, full probability distribution information is not available, and deriving an
uncertainty set is more manageable. Moreover, the uncertainty set approach of RO of-
ten leads to computationally tractable models, whereas SP models are generally hard
to solve4.

Let x ∈ �n be the decision variable, and let z ∈ �L denote the uncertain parameter.
Let U ⊆ �L denote the uncertainty set, i.e., the set of realizations of z that we want to
be protected against. Then a generic robust optimization problem reads

min
x

max
z∈U

f (x , z),

s.t. g j(x , z)≤ 0, ∀z ∈ U , ∀ j = 1, . . . , m.

(1.6a)

(1.6b)

In the context of (biologically-based) RT, the objective and constraints can be treatment
plan evaluation criteria that depend on uncertain parameters z. Any solution x ∗ to
(1.6) is feasible for any realization z in uncertainty set U , and is optimal for the worst-
case realization of z in U . Problem (1.6) is sometimes also referred to as a minimax
optimization problem, as opposed to expectation optimization.

The computational tractability of (1.6) depends on the form of the objective and
constraint functions. In the easiest forms, these are linear or convex in x and lin-
ear or concave in z. The tractability depends additionally on the uncertainty set U .
Ben-Tal and Nemirovski (1999) assume an ellipsoidal uncertainty set (for a linear RO
problem). Bertsimas and Sim (2004) note that for linear RO problems, the linearity is
preserved if the uncertainty set is assumed to be polyhedral (specifically, they intro-
duce the budget uncertainty set). Additionally, they introduce the price of robustness,
the trade-off between probability of constraint violation and the objective value of the
nominal problem.

Solution approaches to (1.6) also highly depend on the functional form of objec-
tives and constraints and the choice of uncertainty set. If U is a finite set, the scenarios
for z can be enumerated and (1.6b) is tractable (if g j is convex for all j). In RT, this
approach is often taken when accounting for positioning errors (i.e., six possible shift

4Inbetween SP and RO is distributionally robust optimization (DRO, see, e.g., Wiesemann et al.
(2014)). DRO is a methodology that attempts to use any available partial distributional information,
such as the support, mean and dispersion information of the true probability distribution.
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directions). If U is not a finite set, (1.6b) is a semi-infinite constraint, and a standard
approach is to reformulate (1.6b) to a so-called tractable robust counterpart (Ben-Tal
et al., 2015). We refer to Bertsimas et al. (2011), Gabrel et al. (2014) and Gorissen
et al. (2015) for reviews of RO theory and applications. For an overview of RO (and
SP) approaches in RT treatment planning, we refer to Unkelbach et al. (2018a).

In the standard paradigm, RO focuses solely on the performance in the worst-case
scenario of the uncertain parameters in (1.6). For linear problems it is often the case in
practice that multiple worst-case optimal solutions exist. Iancu and Trichakis (2014)
note that the standard RO paradigm does not properly discriminate between these,
and may select solutions that are suboptimal for non-worst case scenarios. They in-
troduce the concept of Pareto Robustly Optimal (PRO) solutions for robust linear opti-
mization: worst-case optimal solutions whose performance cannot be improved in one
scenario, without leading to a deterioration in other scenarios. This concept closely
resembles that of Pareto optimal solutions in MCO (see Section 1.1.2). Essentially, the
performance in every uncertainty scenario is considered as a separate objective, and
a PRO solution is a (worst-case optimal) solution that lies on the resulting (infinite
dimensional) Pareto surface.

1.3.3 Adjustable robust optimization

A solution to an RO problem is feasible for any realization of the uncertain parameters
in the uncertainty set, and this restriction is sometimes considered overly conservative,
i.e., the price of robustness can be high. Part of this conservativeness can sometimes be
alleviated by adaptation. In many decision-making settings, not all decisions need to
be made upfront. Decisions whose implementation is only required at a later moment
in time can be postponed. In particular, some decisions can be made once the values
of (a part of) the uncertain parameters have been observed or measured, and it is
possible to make a more informed decision.

One way to account for this temporal ordering of decision moments and flow of
information is to use a folding horizon (FH, also known as a receding horizon) ap-
proach. In an FH approach, robust model (1.6) is solved for all decision variables
simultaneously. However, the only decisions that are implemented are those whose
implementation is required before new information (concerning uncertain parame-
ters) is revealed. Values assigned to other decision variables (those corresponding to
decisions at later moments in time) are discarded. Once (part of) the uncertainty is
revealed, the model is updated and re-solved for the remaining decision horizon. The
benefit of an FH approach is that the multi-stage model has the same complexity as
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the static model. Section 2.1 discusses several FH approaches in adaptive RT, for both
geometric and biologically-based uncertainties.

In any stage of an FH approach, the decisions are optimized as if they have to be
implemented for the entire remaining decision horizon. That is, adaptability is not
taken into account. Adjustable robust optimization (ARO)5 was introduced by Ben-Tal
et al. (2004) as an extension of RO to multi-stage decision-making problems under
uncertainty. In a two-stage setting, it distinguishes between here-and-now (stage 1)
decision variables and wait-and-see (stage 2) decision variables. In an ARO problem
it is a priori taken into account that the stage-2 decision variables can depend on the
uncertain parameters. Thus, they are functions of the uncertain parameters.

Similar to Section 1.3.2, let z ∈ �L denote the uncertain parameter and U ⊆ �L the
uncertainty set. Let x ∈ �nx denote the stage-1 decision variables, and let y ∈ RL,ny

denote the stage-2 decision variables, where RL,ny denotes the space of all measurable
functions from �L to �ny that are bounded on compact sets. A generic two-stage
adjustable robust optimization model reads

min
x ,y(·) max

z∈U
f (x , y(z), z),

s.t. g j(x , y(z), z)≤ 0, ∀z ∈ U , ∀ j = 1, . . . , m.

(1.7a)

(1.7b)

Problem (1.7) requires optimizing over functions y . For that reason, ARO problems
are in general NP-hard (Guslitser, 2002). A practical heuristic approach, introduced by
Ben-Tal et al. (2004) is to restrict to adjustable variables y that depend affinely on the
uncertain parameters; commonly referred to as linear decision rules (LDRs). Cutting
plane methods are another popular solution approach, see (Zeng and Zhao, 2013).
For a review of ARO we refer to Yanıkoğlu et al. (2019).

The standard ARO paradigm assumes that information obtained after the first stage
yields the ‘true’ parameter values. In many applications, including biologically-based
based radiation therapy, this assumption is not satisfied. As indicated in Section 1.3.1,
biomarker information will never fully eliminate uncertainty. De Ruiter et al. (2016)
provide an extension of ARO that accounts for inexact data. This methodology is used
in Chapter 2.

Similar to (static) RO, ARO problems may allow for multiple worst-case optimal
solutions, and the standard ARO methodology does not consider their performance in
non-worst-case scenarios. In Chapters 2 and 5, the PRO concept of Iancu and Trichakis
(2014) for static RO is extended to Pareto Adjustable Robust Optimality (PARO) for

5In recent work, the methodology is sometimes called ‘adaptive robust optimization’. To distinguish
from other adaptation approaches in RT treatment planning, we use ‘adjustable robust optimization’.
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two-stage ARO problems. Chapter 2 introduces the concept for a particular model in
an RT context. Chapter 5 discusses the concept more generally, for ARO problems that
are linear in both decision variables and uncertain parameters.

1.4 Contributions and outline

The remainder of this thesis consists of five self-contained chapters. The research that
this thesis is based on started out with a focus on fractionation optimization problems.
From there, the scope shifted to other aspects of biologically-based treatment plan
optimization, particularly uncertainty and adaptive treatment planning. This led to
research in both adjustable robust optimization and conic optimization. Figure 1.7
gives a high-level schematic overview of the topics covered in each chapter and their
connections. Below we summarize the contributions per chapter.

Adaptive treatment planning

FMO

ARO Fractionation

Chapter 2

Chapter 3

Chapter 4

Chapter 5 Chapter 6

Figure 1.7: Overview of thesis chapters.

In Chapter 2, we present a two-stage ARO model for adaptive treatment-length
optimization in RT based on inexact mid-treatment biomarker information. We de-
rive optimal decision rules for the stage-2 decisions. Moreover, we note the existence
of multiple worst-case optimal solutions, and introduce the PARO concept to choose
among these. In numerical experiments using lung cancer data, the ARO method is
benchmarked to several other static and adaptive methods, for both exact and inexact
biomarker information. In the latter case, accounting for adaptability and inexactness
of biomarker information is particularly beneficial when robustness (with respect to
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OAR constraint violations) is of high importance. If minor OAR violations are allowed,
a nominal FH approach is a good performing alternative.

Whereas Chapter 2 considers a stylized model, Chapter 3 takes a more practical
approach to adaptive biologically-based treatment planning. We consider treatment
plan adaptation for a data set of canine head-and-neck patients, with pre- and mid-
treatment functional imaging data. Voxel-wise response parameters are estimated
from imaging data, and a TCP-NTCP based model is re-optimized. Uncertainty in
response parameters is accounted for, and two adaptation strategies are investigated:
uniform dose (de)-escalation and continuous dose adaptation (i.e., dose painting). We
find that, despite uncertainties, improvements in TCP and/or NTCP can be expected
for a substantial number of patients. The chapter outlines the required components
for a biologically-based treatment plan adaptation strategy, and helps to emphasize
the importance of accounting for uncertainties both in the optimization process itself
and in reporting results.

In Chapter 4, we take a conic optimization approach to FMO. Biologically-based
approaches to RT planning, such as that of Chapter 3, can lead to challenging FMO
problems with biologically-based treatment plan evaluation criteria. In this chapter,
we show that for many commonly used treatment plan evaluation criteria the FMO
problem can be reformulated to a conic optimization problem, using recent advances
in exponential and power cone optimization. This gives theoretical efficiency and op-
timality guarantees, and good performance in practice. The latter is demonstrated on
an open-source data set of challenging clinically-based FMO problems.

In Chapter 5, we present a theoretical investigation of the PARO concept of Chap-
ter 2. We show that direct application of the PRO concept to ARO problems can lead
to suboptimal performance in practice, and formalize PARO for two-stage linear ARO
problems. We prove existence of PARO solutions, derive properties and present ap-
proaches to finding and approximating PARO solutions. Moreover, we present numer-
ical results that demonstrate the practical value of PARO solutions. Our analysis relies
on the use of Fourier-Motzkin elimination (FME) as proof technique. We also show
how FME can be useful in the analysis of the (worst-case) optimality of decision rules
in ARO.

In Chapter 6 we consider fractionation optimization problems, similar to Chap-
ter 2. In particular, we investigate the potential of combined proton-photon therapy in
fractionated RT. We discuss several stylized models and find conditions under which
combined modality treatments can outperform single modality photon or proton treat-
ments. Subsequently, we present a combined modality optimal fractionation model
with multiple normal tissues, and test this on real patient data (n= 17). Results indi-
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cate that for five patients combined modality treatments can outperform single modal-
ity proton treatments in terms of BED. For three other patients, combined modality
treatments can yield comparable treatment quality (in terms of BED), whilst using
fewer (expensive) proton fractions.

1.5 Disclosure
This thesis is based on the following five research papers:

Chapter 2 S.C.M. ten Eikelder, A. Ajdari, T. Bortfeld, D. den Hertog. Adjustable
robust treatment-length optimization in radiation therapy. 2021.
Submitted to Optimization and Engineering.

Chapter 3 S.C.M. ten Eikelder, P. Ferjančič, A. Ajdari, T. Bortfeld, D. den
Hertog, and R. Jeraj. Optimal treatment plan adaptation using
mid-treatment imaging biomarkers. Physics in Medicine & Biology.
65:245011, 2020.

Chapter 4 S.C.M. ten Eikelder, A. Ajdari, T. Bortfeld, D. den Hertog. Conic for-
mulation of fluence map optimization problems. 2021. Submitted to
Physics in Medicine & Biology.

Chapter 5 D. Bertsimas, S.C.M. ten Eikelder, D. den Hertog and N. Trichakis.
Pareto adaptive robust optimality via a Fourier-Motzkin elimination
lens. 2021. Submitted to Mathematical Programming.

Chapter 6 S.C.M. ten Eikelder, D. den Hertog, T. Bortfeld and Z. Perkó. Op-
timal combined proton-photon therapy schemes based on the stan-
dard BED model. Physics in Medicine & Biology. 64:065011, 2019.

The chapters cover distinct problems, and the notation may differ per chapter. Each
chapter contains ideas and contributions from all its respective authors. Chapter 2
is written by me. Chapter 3 is written by me, except the introduction, parts of Sec-
tion 3.2.1 and parts of the discussion (Section 3.4.2). Chapter 4 is written by me.
Chapter 5 is written by me, except parts of the introduction. Chapter 6 is written by
me, except parts of Sections 6.2.1, 6.4.4 and 6.4.5. All numerical experiments in all
chapters are done by me. All chapters closely match their respective research papers.
Figure 1.5 and its accompanying text in Chapter 1 are taken from the research paper
corresponding to Chapter 2.
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CHAPTER 2

Adjustable robust treatment-length optimization

2.1 Introduction

In radiation therapy (RT), the goal is to deliver a curative amount of radiation dose
to the target volume(s), while keeping the dose to all organs-at-risk (OARs) within
tolerable limits. As the radiation beam delivers energy to all tissues that are on its
path, the OARs will (often) inevitably receive some dose as well. Treatment planning
has a spatial component, where the optimal dose distribution is determined, and a
temporal component, where the optimal number of treatment sessions, or fractions,
is determined. Whereas the former is predominantly a geometric problem, the latter
involves radiobiological effects.

Technological advances in treatment monitoring through imaging and other forms
of data acquisition allow for a more accurate assessment of an individual’s radiation
response (Baumann et al., 2016). Biologically-based adaptive treatments aim to mon-
itor the treatment, acquire mid-treatment biomarker information, and adapt the re-
mainder of the treatment course accordingly. Many approaches to adaptive treatment
planning have been studied in the literature. To the best of our knowledge, all exist-
ing approaches assume that all information acquired mid-treatment is exact, i.e., gives
a perfect representation of the current state of treatment response. Unfortunately,
the limited availability and accuracy of required biomarkers pose a primary challenge
for adaptive treatments (Baumann et al., 2016). Any information from biomarker
data acquired during treatment remains subject to uncertainties, stemming from both
measurement errors and the inexactness in the translation of measured data to usable
model parameters. Therefore, it is crucial that any adaptive treatment planning ap-
proach takes this into account. Ajdari et al. (2019) provide an overview of relevant
mathematical (optimization) tools. We present an approach to optimally adapt the
treatment length of RT using inexact mid-treatment biomarker information.
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Specifically, we take an adjustable robust optimization (ARO, Ben-Tal et al., 2004;
Yanıkoğlu et al., 2019) approach that accounts for the inexactness of biomarker in-
formation. ARO is an extension of robust optimization (RO) that takes into account
the flow of information over time and exploits the fact that some decisions need to
be taken only after the data has (partially) revealed itself. By using ARO, we ensure
that the treatment plan delivered in the initial treatment stage (prior to obtaining
biomarker information) is ‘adaptation aware’. That is, it is designed with adaptation
in mind, which may yield more flexibility at the time of treatment adaptation. In the
standard paradigm, ARO assumes that the revealed information is exact; we employ
the ARO methodology developed in De Ruiter et al. (2017) for the case when revealed
information is not exact, but provides only an estimate of the true parameters.

Contributions
We consider a stylized two-stage ARO model to optimally adapt the treatment-length
based on inexact biomarker information acquired mid-treatment. Although the styl-
ized model makes several simplifying assumptions to aid the analysis, we believe it
captures several important characteristics of realistic adaptive treatment planning, and
it enables a precise analysis of the influence of uncertainty in biomarker information.
Our main contributions are:

• We develop mathematical tools based on ARO that enable us to (i) optimally
adapt the dose per fraction and treatment length after acquiring mid-treatment
biomarker information, (ii) analyze the influence of biomarker information un-
certainty.

• We present explicit optimal decision rules for a difficult (nonconvex, mixed-
integer) yet practically relevant ARO problem.

• We show that there are multiple optimal solutions for the worst-case scenario,
and that these differ in performance in non-worst-case scenarios. To handle this,
we introduce the concept of Pareto Adjustable Robustly Optimal (PARO) solu-
tions, a generalization of Pareto Robustly Optimal (PRO) solutions (Iancu and
Trichakis, 2014) to two-stage robust optimization problems. In case the acquired
biomarker information is exact, PARO solutions are obtained.

• We perform a computational study using real lung cancer patient data to deter-
mine the optimal timing of acquiring biomarker information in case biomarker
quality improves over time. Later biomarker acquisition also limits adaptation
possibilities, and the optimal balance depends on the improvement rate.
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Literature review

There is a large body of adaptive treatment planning research in RT, the majority of
which focuses not on biologically-based uncertainties but on geometric uncertainties
and anatomical changes. Chan and Mišić (2013), Mar and Chan (2015), Böck et al.
(2017), Böck et al. (2019) and Lim et al. (2020) present adaptive treatment planning
approaches that start with delivery of the original treatment plan, often derived using
RO methods. At given adaptation moments, the ‘state’ of the patient (e.g., anatomical
changes, tumor shrinkage, breathing motion pattern) is observed, and the treatment
is re-optimized for the remainder of the treatment plan. In RO terminology, these
approaches are known as folding horizon (FH) methods. They disregard adaptation
possibilities initially, and re-optimize the updated model once mid-treatment informa-
tion is acquired.

Several treatment plan adaptation approaches have been proposed for adapting to
biological information, differing in considered biomarker information, adapted treat-
ment plan decisions and used methodology. Ghate (2011) and Kim et al. (2012b)
propose a theoretical stochastic control framework to optimally adapt the dose dis-
tribution over a fixed number of fractions, based on hypothetically-observed tumor
states. Saberian et al. (2016b) concretize this theoretical framework, using simulated
hypoxia (insufficient oxygen supply at cellular level) status as biomarker. Long (2015)
consider amodel with a constraint on the probability of radiation-induced lung toxicity,
which depends on an a priori unknown model parameter. The problem is formulated
as a two-stage model (before and after parameter observation), and the optimal dose
distribution is determined for each stage. They consider a finite scenario set for the
parameter, and the lung toxicity constraint either has to hold in expectation or has to
hold for all considered scenarios.

Nohadani and Roy (2017) consider a two-stage model to adapt to hypoxia infor-
mation, where the uncertainty is time-dependent. As the hypoxia information ages
the uncertainty grows, until it resets at the observation moment. In each stage the
dose distribution is optimized; for the second stage a finite adaptability approach is
taken. It is shown that total information degradation is minimized if the observa-
tion moment is set mid-treatment. Dabadghao and Roy (2020) consider a similar
time-dependent uncertainty set, for adapting to hypoxia information in a multi-stage
setting. In each stage the mean tumor dose per fraction is optimized using an FH ap-
proach. It is shown that total information degradation is minimized if the observation
moments are set equidistant. They introduce a cost of observation (additional dose
due to mid-treatment positron emission tomography (PET) scans), and determine the
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optimal number of observations. Both papers assume that the hypoxia state varies over
time, and is exactly observed at the observation moment(s). In contrast, we assume
that uncertain parameters are constant in time, and consider inexact biomarker infor-
mation. Moreover, they solely adapt the dose, whereas we also adapt the total number
of treatment fractions itself.

Adapting the treatment length (i.e., the fractionation schedule) based on observed
radiation response has been studied before in the literature. Saka et al. (2014) con-
sider a two-stage model where after a fixed number of treatment fractions hypoxia
information is acquired. Based on this information both the remaining number of
treatment fractions and the dose distribution are re-optimized, in order to maximize
average hypoxia-corrected tumor dose. They focus on maintaining hypoxia-corrected
fraction size requirements. A similar approach is taken by Ajdari et al. (2018), where
after each treatment fraction the tumor cell density in each voxel is observed, and
adaptations are made after each treatment fractions instead of only once. The objec-
tive is to minimize the total number of tumor cells remaining (TNTCR) at the end of
the treatment course. Both approaches can be considered FH methods. In contrast to
our approach, it is assumed that any information acquired mid-treatment is exact.

Iancu et al. (2021) propose a conceptual robust monitoring and stopping model.
They consider a system with a state x(t), and after each observation moment the un-
certainty in the system state x(t) grows as t increases. At a new observation moment,
the uncertainty reduces to zero, i.e., an exact observation is made. They consider mul-
tiple observation moments, and the goal is to time these optimally. At each observation
moment, the (state-dependent) direct stopping reward is compared to the worst-case
continuation reward, and the according action is taken. Their model does not allow
for controls that influence state variables, i.e., applying their model to RT optimization
problems would not allow to adjust the dose distribution or the mean dose per fraction.

Notation and organization
All variables and constants are 1-dimensional (belong to � or �) unless indicated
otherwise. In functions, a semicolon (;) is used to separate variables and constant
arguments from uncertain parameters. Optimal solutions to optimization problems are
indicated with an asterisk (∗). Properties of optimal solutions to optimization problems
have calligraphic font (e.g., ARO) to distinguish them from methods with the same or
similar abbreviations.

The remainder of this chapter is organized as follows. Section 2.2 introduces the
used biological models, background information on biomarkers and states modeling
choices. Section 2.3 introduces the adjustable treatment-length optimization problem
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under the assumption of exact biomarker information and solves this using ARO tech-
niques. Section 2.4 generalizes this to inexact biomarker information. Section 2.5
presents and discusses results of numerical experiments on a lung cancer data set.
Finally, Section 2.6 concludes the chapter.

2.2 Adaptive fractionation

2.2.1 The fractionation problem

Spatial optimization exploits the fact that, by mounting the beam head on a gantry,
the tumor can be targeted from various angles. It aims to find the combination of
beam angles and weights that gives the best trade-off between tumor dose conformity
and healthy tissue sparing. There is a large body of literature on this topic, see for
example Shepard et al. (1999); Ehrgott et al. (2008) for reviews. The result of the
spatial optimization problem is a dose distribution that gives the dose to each voxel
(3-dimensional subvolume) of the tumor and OARs. We refer to Chapter 1 for details.

Typically, this dose is not delivered in a single treatment session, but spread out
over multiple treatment fractions (fx). The underlying idea is that compared to tumor
cells, healthy tissues often have better repair capabilities between fractions (Fowler,
1989; Withers, 1985). On the other hand, a treatment spread out over a large number
of treatment fractions may not deliver sufficient damage to the target volume, and
increases the risk of tumor proliferation. The effect of fractionation differs per healthy
tissue type and per tumor site, see, e.g., Hall and Giaccia (2012) for further details.
Determining the optimal number of treatment fractions is known as the fractionation
problem. Treatments with a higher number of fractions and a lower dose per fraction
than the conventional regimen are known as hyperfractionated treatments. Treatments
with a lower number of fractions and a higher dose per fraction than conventional are
known as hypofractionated treatments.

In each treatment fraction, a scaled version of the dose distribution is administered.
Using dose sparing factors, the dimensionality of the fractionation optimization prob-
lem can be greatly reduced, see Section 1.2.1 for details. Typically, the target dose is
homogeneous, so for simplicity we assume that each target voxel receives dose dt (i.e.,
has dose sparing factor 1). Nevertheless, we emphasize that this modeling approach
allows for both heterogeneous dose distributions in target and OAR volumes.

The biologically effective dose (BED)model (Fowler, 1989, 2010) states that the bi-
ological effect of an N -fraction dose sequence d = (d1, . . . , dN ) (in Gray (Gy)) delivered
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to a tumor volume is given by

BEDT =
N∑

t=1

dt +
1
α/β

N∑
t=1

d2
t ,

which is a model governed by a single parameter, the α/β ratio, which signifies the
fractionation sensitivity of the tumor tissue. The BED to the OAR can be described by

BEDOAR =
N∑

t=1

σdt +
1
α/β

N∑
t=1

σ2d2
t ,

where σ is the generalized dose-sparing factor. For the maximum BED in the OAR
volume,σ is themaximum of the individual dose sparing factors si. In order to describe
a mean BED constraint or dose-volume BED constraint other choices for σ can be used
(Saberian et al., 2016a; Perkó et al., 2018).

For notational convenience, let τ (for tumor) and ρ (for risk) denote the inverse
α/β ratio of the tumor and OAR volume, respectively. Mizuta et al. (2012) consider
the problem of minimizing OAR BED subject to a lower bound BEDpres

T on tumor BED.
The number of fractions N is restricted to be at most Nmax. The problem reads

min
d,N

σ

N∑
t=1

dt +ρσ
2

N∑
t=1

d2
t ,

s.t.
N∑

t=1

dt +τ
N∑

t=1

d2
t ≥ BEDpres

T ,

d1, . . . , dN ≥ 0, N ∈ {1, . . . , Nmax}.

(2.1a)

(2.1b)

(2.1c)

Let (d∗, N ∗) denote the optimal solution to (2.1). A simple analysis in Mizuta et al.
(2012) reveals the following important result:

N ∗ =
�

1 if τ≥ σρ
Nmax and d∗

1 = . . .= d∗
Nmax otherwise.

(2.2)

In both cases the optimal dose d∗ is such that (2.1b) is active. The same result holds
if we maximize tumor BED subject to an upper bound on OAR BED (Bortfeld et al.,
2015), and a similar result has been derived for the case with multiple OARs (Saberian
et al., 2016a). There is a large body of research that optimizes the number of treatment
fractions for different model formulations (see Saberian et al. (2017) and references
therein).
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In the current chapter, we restrict to one dose-limiting OAR. For many tumor sites,
there is a single OAR that restricts the doses that can be delivered, and other OARs are
much less restrictive. For example, for lung cancer the mean lung dose is an important
indicator of toxicity. On the other hand, for head and neck cancer many OARs must be
accounted for. We emphasize that other OARs are not completely disregarded. They
are taken into account implicitly, because the original dose distribution was planned
with all relevant OARs taken into consideration. Moreover, by restricting the minimum
and maximum (mean target) dose per fraction, extreme deviations from the standard
fractionation schedule are avoided, which is also designed whilst taking multiple OARs
into account.

2.2.2 Adaptive fractionation using biomarkers
Most fractionation optimization methods assume the tumor and OAR fractionation
sensitivity parameters τ and ρ are known exactly. There is much research on the α/β
ratios for different tumor sites (Van Leeuwen et al., 2018) and OAR sites (Kehwar,
2005), but they remain subject to considerable uncertainties. We assume box uncer-
tainty of the form:

Z :=
�
(ρ,τ) : ρL ≤ ρ ≤ ρU ,τL ≤ τ≤ τU

�
, (2.3)

with 0< ρL < ρU and 0< τL < τU . It is assumed that there is a nominal scenario, e.g.,
parameter values τ̄ and ρ̄ derived from literature. There are two reasons for assuming
a box uncertainty set. First, to the best of our knowledge there is little evidence for
any correlation between the α/β ratios of target volumes and normal tissues. Second,
box uncertainty leads to simpler models, which allow for a more detailed analysis of
optimal fractionation decisions.

Ajdari and Ghate (2016) also consider a box uncertainty set, and determine a
robustly optimal fractionation scheme, i.e., one that is that is feasible for all possible
realizations and that is optimal for the worst-case realization. If biomarker information
acquired during treatment provides more accurate information on fractionation sensi-
tivity than what was available at the start of the treatment, such a static RO approach
may be overly conservative.

Somaiah et al. (2015) give an overview of various mechanisms for determining
fractionation sensitivity. Using blood samples, one can quantify the involvement of
non-homologous end-joining and homologous recombination in cells. For details on
how to measure these, we refer to Bindra et al. (2013) and Barker and Powell (2010),
respectively. Change in the expression of epidermal growth factor receptor genes can
also give some hints regarding the fractionation sensitivity (Somaiah et al., 2015),
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which can also be measured mid-treatment. Lastly, Somaiah et al. (2015) mention
that there is a close link between proliferation index and hypoxia, both of which can
be measured during RT using different PET tracers. We note that there is evidence
that some of these mechanisms could be subject to change during RT, depending on,
amongst others, the delivered dose, hypoxia, and immune system interaction. How-
ever, as a first study to adapting to inexact biomarker information, we make the as-
sumption that fractionation sensitivity is static throughout treatment, i.e., there is a
static ‘true’ (ρ,τ). In Section 2.3 we assume to observe (measure) the true (ρ,τ)
exactly, and in Section 2.4 we assume to observe only an estimation/approximation
(ρ̂, τ̂).

The quality of the observed parameter estimates depends amongst others on the
suitability of the biomarker itself, the measurement accuracy and when the biomarker
measurement is taken during the treatment course. The relationship between the data
quality and the moment of biomarker observation is complex, and it is impossible to
exactly quantify this. For some biomarkers the data quality may greatly improve in
the first few fractions, with a diminishing improvement in later fractions1. For others
(e.g., functional imaging such as PET and magnetic resonance imaging (MRI)), the
data quality is poor at the first couple of fractions and only increases substantially
in later fractions2. In practice, some biomarkers, e.g., radiographic information, may
also exhibit a decreasing data quality for very late observation moments (due to, for
instance, interference from acute inflammation in the lung). Such behavior is rare, and
as such not considered here. We impose a minimum dose per fraction, and make the
assumption that biomarker data quality increases in the number of treatment fractions.
In this way, the change in biomarker quality is influenced by both the dose delivered
and the time passed. We will investigate several functional forms for this relationship
in the numerical experiments.

2.2.3 Modeling choices
In order to establish a meaningful model for the adjustable robust optimization ap-
proach, we restrict the dose sequence d = (d1, . . . , dNmax) in several ways. In addition
to a maximum number of fractions, we also set a minimum Nmin. Furthermore, we

1This is especially true in the case of certain blood biomarkers of innate immune status (such as
interleukin-6 or tumor necrosis factor-α) which are also the markers of inflammation. In these biomark-
ers, as the biomarker acquisition is shifted towards later in the RT course, the information regarding the
immune status gets mixed with the RT-induced inflammation and loses its specificity to immune system
condition.

2This is because the effect of RT on tissue is cumulative and is morphologically manifested only after
a certain amount of dose (which depends on the underlying tissue threshold) is delivered.
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0 fx N1 fx N1 + N2 fx

Stage 1 Stage 2

d1 Gy/fx
Observe (ρ,τ) or (ρ̂, τ̂)

d2 Gy/fx

Figure 2.1: Schematic overview of the considered model. There are 3 variables: d1, d2 and
N2. First, we deliver N1 fractions of dose d1 per fraction. After this, we observe (ρ,τ) or (ρ̂, τ̂).
Subsequently, we deliver N2 fractions of dose d2 per fraction.

assume there is a single moment N1 where we can adapt the treatment. Under the
assumption that the uncertain parameters remain constant over time, more than one
observation moment is not useful if the parameter is observed exactly. With inexact
observations, there can be value in multiple observations, but given the patient burden
(logistically and the delivery of additional dose) and financial cost (of for example PET
scans) this is not considered here.

The dose per fraction in the first N1 fractions is assumed to be the same, denote this
by d1. Variable N2 denotes the number of fractions after adaptation; also these frac-
tions have equal dose, denoted by d2. In current clinical practice, uniform fractionated
treatments are the standard. By restricting to only two different dose levels, extreme
deviations from standard protocols are prevented. The above implies

N2 ∈ �Nmin
2 , . . . , Nmax

2

�
,

with Nmin
2 = max{1, Nmin − N1} and Nmax

2 = Nmax − N1. We additionally set the con-
straint that d1, d2 ≥ dmin, for some predetermined value dmin. Aside of preventing an
unrealistically low dose per fraction, the minimum dose serves a modeling purpose for
stage 1. As noted in Section 2.2.2, the biomarker quality can depend on both dose
and time. The current model implicitly makes the assumption that an early response
can only be observed via biomarkers once N1 fractions of dose at least dmin have been
delivered. Thus, in our models, this can be interpreted as a threshold. In the numerical
experiments we investigate several temporal relationships between N1 and biomarker
quality. Lastly, we set a maximum dose per fraction dmax

1 in stage 1, to avoid delivering
dose levels in stage 1 that severely restrict adaptation possibilities in stage 2. We will
later impose some restrictions on the allowed combinations of dmin, dmax

1 and Nmax
2 .

Figure 2.1 provides a schematic overview of the situation. We wish to maximize the
tumor BED, subject to the constraint that the BED to the OAR is below the generalized
tolerance level BEDtol, given by

BEDtol(ρ) = ϕD
�
1+
ϕD
T
ρ
�
,
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i.e., the OAR is known to tolerate a total dose of D Gy if delivered in T fractions under
dose shape factor ϕ. The dose shape factor is a parameter characterizing the spatial
heterogeneity of a dose distribution, for more details see Saberian et al. (2016a) and
Perkó et al. (2018). Note that BEDtol(ρ) is a function of uncertain parameter ρ, the
inverse α/β ratio of the OAR.

We emphasize that the model resulting from our modeling choices and assumptions
does not directly represent a realistic decision-making problem in radiation therapy
treatment planning. Nevertheless, it captures several important aspects of fractiona-
tion optimization. Moreover, using ARO on this stylized model, we gain insight into
optimal decision rules and the role of uncertainty in adaptive fractionation optimiza-
tion.

2.3 ARO: Biomarkers provide exact information
We present an adjustable robust optimization approach that optimally adjusts the re-
mainder of the treatment once biomarker information has provided the true value of
parameters τ and ρ. This serves as a stepping stone to the inexact data model.

2.3.1 Problem formulation

The Exact Data Problem (EDP) reads:

max
d1,d2(ρ,τ),N2(ρ,τ)

min
(ρ,τ)∈Z

N1d1 + N2(ρ,τ)d2(ρ,τ) +τ(N1d2
1 + N2(ρ,τ)d2(ρ,τ)2),

s.t. σ(N1d1 + N2(ρ,τ)d2(ρ,τ)) +ρσ2(N1d2
1 + N2(ρ,τ)d2(ρ,τ)2)

≤ BEDtol(ρ), ∀(ρ,τ) ∈ Z ,

N2(ρ,τ) ∈ {Nmin
2 , . . . , Nmax

2 }, ∀(ρ,τ) ∈ Z ,

d2(ρ,τ)≥ dmin, ∀(ρ,τ) ∈ Z ,

dmin ≤ d1 ≤ dmax
1 .

(2.4a)

(2.4b)

(2.4c)
(2.4d)
(2.4e)

The value for the stage-1 dose d1 has to be decided before the value of (ρ,τ) is revealed;
in ARO this is also commonly referred to as a here-and-now variable or decision. The
values for the stage-2 dose d2 and stage-2 number of fractions N2 need to be decided
only after (ρ,τ) is revealed as they may depend on the values of these parameters.
Hence, they are written as functions d2(ρ,τ) and N2(ρ,τ) of the uncertain parameters
(ρ,τ). In ARO such variables are also commonly referred to as wait-and-see variables
or decisions. In this chapter, we will adhere to the terms stage 1 and stage 2, however.
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Before we solve (2.4), we need some definitions and assumptions. The remaining
BED tolerance level of the OAR, if N ′ fractions with dose d ′ have been administered,
is given by

B(d ′, N ′;ρ) = BEDtol(ρ)−σd ′N ′ −ρσ2(d ′)2N ′. (2.5)

Subsequently, define the function

g(d ′, N ′, N ′′;ρ) :=
−1+
�

1+ 4ρ
N ′′ B(d ′, N ′;ρ)

2σρ
. (2.6)

The value of g can be interpreted as the maximum dose that can be delivered in N ′′
fractions if already N ′ fractions of dose d ′ are (scheduled to be) delivered. It is obtained
by solving the equality version of (2.4b) for d1 or d2. Functions of this form will be
used frequently throughout the remainder of this chapter.

The following assumption on the relation between dmin, dmax
1 and the bounds on

N2 makes sure that for a given optimal number of fractions, it is feasible to deliver that
number of fractions with minimum dose.

Assumption 2.1. It holds that

dmin ≤ dmax
1 ≤ min

	
g(dmin, Nmin

2 , N1;ρL), g(dmin, Nmax
2 , N1;

τL

σ
), g(dmin, Nmax

2 , N1;ρU)



.

The particular form of the upper bound on dmax
1 will become clear later. Numerical

experiments indicate that results are not very sensitive to the choices of dmin and dmax
1 .

We continue by formally defining several properties of solutions. Let X (ρ,τ) denote
the feasible region defined by constraints (2.4b)-(2.4e) for fixed (ρ,τ).

Definition 2.2 (Adjustable robustly feasible). A tuple (d1, d2(·), N2(·)) is adjustable ro-
bustly feasible (ARF) to (2.4) if (d1, d2(ρ,τ), N2(ρ,τ)) ∈ X (ρ,τ) for all (ρ,τ) ∈ Z . �

Definition 2.3 (Adjustable robustly optimal). A tuple (d1, d2(·), N2(·)) is adjustable ro-
bustly optimal (ARO) to (2.4) if it is ARF and there does not exist an ARF tuple
(d̄1, d̄2(·), N̄2) such that

min
(ρ,τ)∈Z

N1d1 + N2(ρ,τ)d2(ρ,τ) +τ(N1d2
1 + N2(ρ,τ)d2(ρ,τ)2)

< min
(ρ,τ)∈Z

N1d̄1 + N̄2(ρ,τ)d̄2(ρ,τ) +τ(N1d̄1
2
+ N̄2(ρ,τ)d̄2(ρ,τ)2). �

We also define the ARO property for the stage-1 decisions d1 individually.
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Definition 2.4 (Adjustable robustly optimal d1). A stage-1 decision d1 isARO to (2.4)
if there exist decision rules d2(·) and N2(·) such that (d1, d2(·), N2(·)) isARO to (2.4).�
Lastly, we define optimality of a decision rule.

Definition 2.5 (Optimal decision rule). For a given d1, a decision rule pair (d2(·), N2(·))
is optimal to (2.4) if (d1, d2(·), N2(·)) is ARF and for any (ρ,τ) ∈ Z it holds that

N1d1 + N2(ρ,τ)d2(ρ,τ) +τ(N1d2
1 + N2(ρ,τ)d2(ρ,τ)2)

≥ N1d1 + N̄2(ρ,τ)d̄2(ρ,τ) +τ(N1d2
1 + N̄2(ρ,τ)d̄2(ρ,τ)2),

for every (d̄2(·), N̄2(·)) such that (d1, d̄2(·), N̄2(·)) is ARF. �
The first observation we make in (2.4) is that if ε > 0, any fixed solution (d1, d2, N2)

feasible for scenario (ρ,τ) ∈ Z is also feasible for (ρ,τ + ε) with a higher objective
value. Therefore, in any worst-case realization it will hold that τ = τL (see (2.3)).
This observation has consequences for what uncertainty sets Z need to be considered.
Due to the result (2.2), one can in general distinguish three cases for uncertainty set
Z and parameter σ:

Case 1) σρU ≤ τL: According to (2.2), for any realization (with τ = τL) it is opti-
mal to deliver the minimum number of fractions in stage 2.

Case 2) σρL ≥ τL: According to (2.2), for any realization (with τ= τL) it is optimal
to deliver the maximum number of fractions in stage 2.

Case 3) σρL < τL < σρU : In the scenario (ρL,τL), it is optimal to deliver the
maximum number of fractions in stage 2 according to (2.2). In the scenario
(ρU ,τL), it is optimal to deliver the minimum number of fractions in stage
2 according to (2.2).

In Cases 1 and 2, (2.4) is easily solved by plugging in the (worst-case) optimal value for
N2, and solving the resulting 2-variable optimization problem. Therefore, only Case 3
is of interest and in the remainder of this chapter we make the following assumption.

Assumption 2.6. It holds that σρL < τL < σρU .

In our numerical experiments, we use a lung cancer data set. Recent evidence
suggests that for lung cancer Assumption 2.6 can indeed hold, i.e., the optimal number
of treatment fractions is not always known prior to treatment. Further details are
provided in Section 2.5.2. For other tumor sites, such as liver cancer, the tumor α/β
is generally assumed to be 10 or higher, whereas the α/β of normal liver tissue is
typically assumed to be 3 or 4. Thus, for such tumor sites Assumption 2.6 generally
does not hold, and hyperfractionation is optimal.
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2.3.2 Optimal decision rules and worst-case solution

Problem (2.4) is a 2-stage nonconvex mixed-integer ARO problem, which are generally
hard to solve. Nevertheless, due to the small number of variables the problem can be
solved to optimality. In order to solve (2.4), we take two steps:

Step 1) Determine optimal decision rules d2(·) and N2(·) for fixed d1.

Step 2) Plug in optimal decision rules and solve for d1.

In what follows, we give a detailed explanation of both steps. Let (d∗
1, d∗

2(ρ,τ), N ∗
2 (ρ,τ))

denote an ARO solution to (2.4).

Step 1: Determine optimal decision rules d2(·) and N2(·) for fixed d1

Fix stage-1 variable d1. Similar to the result (2.2), we will show that it is optimal to
deliver either the minimum or the maximum number of fractions in stage-2. Moreover,
(2.4b) is the only OAR dose-limiting constraint, so it will hold with equality if this does
not violate variable bounds (2.4d) and (2.4e). We will show that the latter is not the
case. The theorem below summarizes the result.

Theorem 2.7. Let d1 be the stage-1 decision of (2.4). The decision rules

N ∗
2 (ρ,τ) =

�
Nmin

2 if τ≥ σρ
Nmax

2 otherwise,
(2.7)

and

d∗
2(d1;ρ,τ) =

�
g(d1, N1, Nmin

2 ;ρ) if τ≥ σρ
g(d1, N1, Nmax

2 ;ρ) otherwise,
(2.8)

are optimal to (2.4) for the given d1. These provide the unique optimal decisions unless
τ= σρ.

Proof. See Appendix 2.B.1.

Clearly, these decision rules are nonlinear, and in fact split the uncertainty region
in two parts: one where it is optimal to deliver the minimum number of fractions Nmin

2

in stage 2, and one where it is optimal to deliver the maximum number of fractions
Nmax

2 in stage 2. This suggests splitting the uncertainty set as follows:

Zmin := Z ∩ {τ≥ σρ},

Zmax := Z ∩ {τ < σρ}.

(2.9a)
(2.9b)
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ρL ρU

τL

τU

τ= σρ

Zmin

Zmax

ρ

τ

Figure 2.2: Split of uncertainty set Z according to (2.9). The circles indicate the locations of
the candidate worst-case scenarios for (2.11).

An illustration is provided in Figure 2.2.

Step 2: Plug in optimal decision rules and solve for d1

In order to find an ARO d1, we introduce the following objective function for given
(ρ,τ):

f (d1, N2;ρ,τ) :=

⎧⎨⎩
N1d1 + N2 g(d1, N1, N2;ρ)
+τ
�
N1d2

1 + N2 g(d1, N1, N2;ρ)2
� if d1 ∈ [0, g(0,0, N1;ρ)]

−∞ otherwise,
(2.10)

where, for given ρ, the value g(0, 0, N1;ρ) is the maximum dose that can be delivered
in stage 1 due to the nonnegativity restriction on the stage-2 dose. From Assump-
tion 2.1 it follows that g(0,0, N1;ρ) ≥ dmax

1 for all (ρ,τ) ∈ Z , so f is finite for all
feasible d1. According to Lemma 2.15 in Appendix 2.C, function f is either convex,
concave or constant in d1.

Plugging in (2.7) and (2.8) and using definition (2.10) allows us to rewrite (2.4)
to a problem of only variable d1:

max
d1

min
(ρ,τ)∈Z

f (d1, N ∗
2 (ρ,τ),ρ,τ),

s.t. dmin ≤ d1 ≤ dmax
1 .

(2.11a)

(2.11b)

As noted in Section 2.3.1, in any worst-case realization it will hold that τ = τL, so it
is sufficient to consider only those observations with τ= τL.

In order to reformulate (2.11), we make use of the properties of g and f in Lemma
2.17 in Appendix 2.C. In particular, Lemma 2.17b states that function f is either in-
creasing or decreasing in ρ for fixed d1. Hence, if we move (2.11a) to a constraint and
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split according to (2.9), for both Zmin and Zmax it is sufficient to consider the constraint
for the highest and lowest value of ρ in the uncertainty set. With τ = τL, this results
in the scenarios (ρL,τL) and (

τL
σ ,τL) for Zmin and (τL

σ ,τL) and (ρU ,τL) for Zmax.
Therefore, the three candidate worst-case scenarios are (ρL,τL), (ρU ,τL) and

(τL
σ ,τL); their locations are indicated in Figure 2.2. By Lemma 2.15, the objective value

in the third scenario is equal to

K =
1
σ

B
�
0, 0,

τL

σ

�
. (2.12)

This is the maximum target BED that can be attained if radiation sensitivity parameters
are exactly such that fractionation has no influence on the optimal objective value. It
is equal to the maximum tolerable OAR BED for these radiation sensitivity parameters,
divided by the generalized OAR dose sparing factor σ.

Putting everything together, we conclude that if (d∗
1, d∗

2(·), N ∗
2 (·)) isARO to the EDP

(2.4) then there exists a q∗ ∈ �+ such that (d∗
1,q∗) is an optimal solution to

max
d1,q

q,

s.t. q ≤ f (d1, Nmin
2 ;ρL,τL),

q ≤ f (d1, Nmax
2 ;ρU ,τL),

q ≤ K ,

dmin ≤ d1 ≤ dmax
1 .

(2.13a)

(2.13b)
(2.13c)
(2.13d)
(2.13e)

Conversely, if (d∗
1,q∗) is an optimal solution to (2.13) and N ∗

2 (·) and d∗
2(·) are given by

(2.7) and (2.8), respectively, then (d∗
1, d∗

2(·), N ∗
2 (·)) isARO to (2.4). Hence, (2.13) and

EDP (2.4) are equivalent.
According to Lemma 2.15, the RHS of (2.13b) and (2.13c) is convex and concave

in d1, respectively. Hence, (2.13) asks to find the value of d1 that maximizes the min-
imum of a univariate convex (2.13b), concave (2.13c) and constant (2.13d) function
on a closed interval (2.13e). Lemma 2.16 in Appendix 2.C provides information on
the intersection points of the functions (2.13b)-(2.13d). Consequently, the optimal
solution(s) to (2.13) is/are easily found.

Figure 2.3 illustrates a possible instance of (2.13), displaying constraints (2.13b)-
(2.13d). In this case, the set of optimal solutions is the union of the two intervals for d1

where constraint (2.13d) is active. This is indicated in red. Dose constraints (2.13e)
may cut off part of these intervals. If due to constraint (2.13e) both these intervals are
infeasible, the optimum is at one of the boundaries for d1.
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d1

q

f (d1, Nmin
2 ;ρL ,τL)

f (d1, Nmax
2 ;ρU ,τL)

K

Figure 2.3: Schematic illustration of (2.13). The solid and dashed curves represent constraints
(2.13b) and (2.13c), respectively, and the dotted line represent constraint (2.13d). The optimal
intervals are indicated in red.

2.3.3 Pareto adjustable robustly optimal solutions

Figure 2.3 illustrates that it is possible that there are multiple optimal solutions to
(2.13). These solutions areARO stage-1 solutions to the EDP (2.4). In general, in case
there are multiple ARO solutions these may perform vastly different if a non-worst-
case scenario realizes (De Ruiter et al., 2016). Iancu and Trichakis (2014) study static
robust optimization problems with multiple robustly optimal solutions, and introduce
the concept of Pareto robustly optimal (PRO) solutions. A robustly optimal solution
is called PRO if there is no other robustly feasible solution that has equal or better
objective value for all scenarios in the uncertainty set, while being strictly better for at
least one scenario. Non-PRO solutions are dominated by at least onePRO solution and
are therefore not desired3. The concept has previously been applied to RT planning
for breast cancer by Mahmoudzadeh (2015).

Iancu and Trichakis (2014) study PRO solutions solely for static RO problems; we
generalize the concept to 2-stage adjustable robust optimization problems.

3The concept of Pareto robust optimality closely resembles the concept of Pareto efficiency in multi-
criteria optimization (MCO). In MCO, Pareto efficient solutions can only be improved in one criteria at
the cost of a deterioration in another criteria. Only Pareto efficient solutions are of interest, and the
overall goal in MCO is to compute this set of solutions (known as the Pareto surface).
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Definition 2.8 (Pareto adjustable robustly optimal). An ARO tuple (d1, d2(·), N2(·)) is
Pareto adjustable robustly optimal (PARO) to (2.4) if there is no tuple (d̄1, d̄2(·), N̄2(·))
that is ARO to (2.4) and satisfies

N1d1 + N2(ρ,τ)d2(ρ,τ) +τ(N1d2
1 + N2(ρ,τ)d2(ρ,τ)2)

≤ N1d̄1 + N̄2(ρ,τ)d̄2(ρ,τ) +τ(N1d̄1
2 + N̄2(ρ,τ)d̄2(ρ,τ)2) ∀(ρ,τ) ∈ Z ,

N1d1 + N2(ρ̄, τ̄)d2(ρ̄, τ̄) +τ(N1d2
1 + N2(ρ̄, τ̄)d2(ρ̄, τ̄)2)

< N1d̄1 + N̄2(ρ̄, τ̄)d̄2(ρ̄, τ̄) + τ̄(N1d̄1
2 + N̄2(ρ̄, τ̄)d̄2(ρ̄, τ̄)2) for some (ρ̄, τ̄) ∈ Z .

(2.14a)

(2.14b)

�
We also define the concept PARO for the stage-1 decision d1 individually.

Definition 2.9 (Pareto adjustable robustly optimal d1). A stage-1 decision d1 is PARO

to (2.4) if there exist decision rules N2(·) and d2(·) such that (d1, d2(·), N2(·)) is PARO

to (2.4). �
If there are multiple ARO solutions, we wish to pick one that is PARO. In general,

finding PARO solutions is hard, because it requires comparing the performance of
both stage-1 decisions and stage-2 decision rules on multiple scenarios simultaneously.
However, for the current problem (2.7) and (2.8) are optimal decision rules. Plugging
these in conditions (2.14) reduces the problem of finding a PARO solution to solely
comparing the performance of ARO stage-1 decisions d1 in non-worst-case scenarios.

In Iancu and Trichakis (2014) it is shown for linear optimization that, if we op-
timize over the robustly optimal solutions for a second criterion (scenario) that is in
the relative interior of the uncertainty set, the resulting solution(s) are PRO. In a
similar fashion PARO solutions to the current problem can be found. Let X ARO de-
note the set of ARO stage-1 solutions to (2.4). It turns out that consecutively opti-
mizing over an auxiliary scenario where hyperfractionation is optimal and an auxil-
iary scenario where hypofractionation is optimal yields a set of PARO solutions. Let
(ρaux-min,τaux-min) ∈ int(Zmin), where int(·) is the interior operator. Define the auxiliary
optimization problem for the hypofractionation scenario:

max
d1∈XARO

f
�
d1, Nmin

2 ;ρaux-min,τaux-min
�
. (2.15)

Denote the set of optimal solutions to (2.15) by X aux-min. Similarly, let (ρaux-max,τaux-max)
∈ int(Zmax). Define the auxiliary optimization problem for the hyperfractionation sce-
nario:

max
d1∈X aux-min

f
�
d1, Nmax

2 ;ρaux-max,τaux-max
�
. (2.16)
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Note that it uses X aux-min as input, i.e., we solve the auxiliary problems consecutively.
Denote the set of optimal solutions to (2.16) by X PARO.

Theorem 2.10. All solutions in X PARO are PARO to (2.4).

Proof. See Appendix 2.B.2.

Solving (2.15) or (2.16) entails maximizing a strictly convex or strictly concave
function over a feasible set consisting of a small number of intervals or points. Hence,
these auxiliary problems are easily solved. Note that the second auxiliary problem is
only relevant if the first auxiliary problem has multiple optimal solutions. Switching
their order, and optimizing (2.15) over the set X aux-max may lead to different solutions,
and these are also PARO. Thus, in general X PARO does not contain all PARO solutions.
The two-step approach is necessary; numerical results show that optimizing over only
one auxiliary scenario may indeed result in non-PARO solutions.

2.4 ARO: Biomarkers provide inexact information
In this section we present an adjustable robust optimization approach to solve a more
realistic version of the adaptive treatment-length problem. Because in practice it is
impossible to exactly determine the α/β parameters from biomarker data, any values
for the α/β parameters obtained during treatment are inexact. This section presents
a model that accounts for uncertainty in biomarker information.

2.4.1 Problem formulation

The setup for the ARO problem with inexact data is based on De Ruiter et al. (2017).
After N1 fractions we obtain an estimate (ρ̂, τ̂) for (ρ,τ), the inverse α/β parameters
for the OAR and the tumor. It is still assumed that Assumption 2.6 holds for uncertainty
set Z . Furthermore, we assume that (ρ,τ), (ρ̂, τ̂) ∈ Z (as defined in (2.3)) and that
(ρ̂, τ̂)− (ρ,τ) ∈ Ẑ , with

Ẑ = {(ερ,ετ) ∈ �2 : |ερ| ≤ rρ, |ετ| ≤ rτ}.

Here rρ and rτ are parameters that define the accuracy of the estimate/observation
(ρ̂, τ̂). Set Ẑ is the uncertainty set around the inexact observation. This can also be
written as (ρ,τ) ∈ {(ρ̂, τ̂)}+ Ẑ , which is the Minkowski sum of a singleton and a set.
This new set need not be contained in the original uncertainty set Z . Define

U := {(ρ,τ, ρ̂, τ̂) : (ρ,τ), (ρ̂, τ̂) ∈ Z , (ρ̂, τ̂)− (ρ,τ) ∈ Ẑ},
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and

Z(ρ̂,τ̂) :=
�{(ρ̂, τ̂)}+ Ẑ

�∩ Z .

The set U contains all possible observation-realization pairs and Z(ρ̂,τ̂) contains all
possible realizations after observation of (ρ̂, τ̂). For given observation (ρ̂, τ̂), the new
upper and lower bounds for (ρ,τ) are given by

τ̂L =max{τL, τ̂− rτ}, τ̂U =min{τU , τ̂+ rτ},

ρ̂L =max{ρL, ρ̂ − rρ}, ρ̂U =min{ρU , ρ̂ + rρ}.

(2.17a)
(2.17b)

Compared to Section 2.3, we remove Assumption 2.1 and impose a different (slightly
stricter) assumption on the relation between dmin, dmax

1 and the bounds on N2.

Assumption 2.11. It holds that dmin ≤ dmax
1 and

dmax
1 ≤ min

	
g(dmin

1 , Nmin
2 , N1;ρL), g(dmin

1 , Nmax
2 , N1;max{ρL ,

τL

σ
− 2rρ}), g(dmin

1 , Nmax
2 , N1;ρU)



.

The inexact data problem (IDP) analogous to (2.4) is given by

max
d1,d2(ρ̂,τ̂),N2(ρ̂,τ̂)

min
(ρ,τ,ρ̂,τ̂)∈U

N1d1 + N2(ρ̂, τ̂)d2(ρ̂, τ̂) +τ(N1d2
1 + N2(ρ̂, τ̂)d2(ρ̂, τ̂)2),

s.t. σ(N1d1 + N2(ρ̂, τ̂)d2(ρ̂, τ̂)) +ρσ2(N1d2
1 + N2(ρ̂, τ̂)d2(ρ̂, τ̂)2)

≤ BEDtol(ρ), ∀(ρ,τ, ρ̂, τ̂) ∈ U ,

N2(ρ̂, τ̂) ∈ {Nmin
2 , . . . , Nmax

2 }, ∀(ρ,τ, ρ̂, τ̂) ∈ U ,

d2(ρ̂, τ̂)≥ dmin, ∀(ρ,τ, ρ̂, τ̂) ∈ U ,

dmin ≤ d1 ≤ dmax
1 .

(2.18a)

(2.18b)

(2.18c)
(2.18d)
(2.18e)

For stage-2 variables d2(ρ̂, τ̂) and N2(ρ̂, τ̂) it is indicated that they are a function
of the observations (ρ̂, τ̂) instead of the uncertain parameters (ρ,τ). Similar to Sec-
tion 2.3, we formally define several properties of solutions. Let X (ρ,τ, ρ̂, τ̂) denote
the feasible region defined by constraints (2.18b)-(2.18e) for fixed (ρ,τ, ρ̂, τ̂).

Definition 2.12 (Adjustable robust feasibility). A tuple (d1, d2(·), N2(·)) is adjustable
robustly feasible (ARF) to (2.18) if (d1, d2(ρ̂, τ̂), N2(ρ̂, τ̂)) ∈ X (ρ,τ, ρ̂, τ̂) for all
(ρ,τ, ρ̂, τ̂) ∈ U . �

Optimality of a decision rule is defined as follows.
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Definition 2.13 (Optimal decision rule). For a given d1, a decision rule pair (d2(·), N2(·))
is optimal to (2.18) if (d1, d2(·), N2(·)) is ARF and for any (ρ̂, τ̂) ∈ Z it holds that

min
(ρ,τ)∈Z(ρ̂,τ̂)

N1d1 + N2(ρ̂, τ̂)d2(ρ̂, τ̂) +τ(N1d2
1 + N2(ρ̂, τ̂)d2(ρ̂, τ̂)2)

≥ min
(ρ,τ)∈Z(ρ̂,τ̂)

N1d1 + N̄2(ρ̂, τ̂)d̄2(ρ̂, τ̂) +τ(N1d2
1 + N̄2(ρ̂, τ̂)d̄2(ρ̂, τ̂)2),

for every (d̄2(·), N̄2(·)) such that (d1, d̄2(·), N̄2(·)) is ARF. �

Note that for exact data, an optimal decision rule gives the optimal decision for
any realization in the uncertainty set Z (given d1). For inexact data, we call a decision
rule optimal if it yields the maximum worst-case (guaranteed) objective value for any
observation in the uncertainty set Z .

2.4.2 Optimal decision rules and conservative approximation

Depending on both the observed (ρ̂, τ̂) and the quality of the biomarker information
(i.e., rρ and rτ), we may be able to immediately determine the optimal value for N2.
Therefore, we split the uncertainty set for the observations (ρ̂, τ̂). Define

Zmin
ID = {(ρ̂, τ̂) ∈ Z : τ̂L ≥ σρ̂U},

Z int
ID = {(ρ̂, τ̂) ∈ Z : σρ̂L < τ̂L < σρ̂U},

Zmax
ID = {(ρ̂, τ̂) ∈ Z : τ̂L ≤ σρ̂L},

(2.19a)
(2.19b)
(2.19c)

so that Z = Zmin
ID ∪ Z int

ID ∪ Zmax
ID . Figure 2.4 provides an illustration. For an observation

(ρ̂, τ̂) there are two candidate worst-case scenarios: (ρ̂L, τ̂L) and (ρ̂U , τ̂L). If both are
on one side of the line τ = σρ, the optimal fractionation decision is known. For an
observation (ρ̂, τ̂) near the lower boundary of Z it holds that τ̂L = τL, so a further
decrease in τ̂ has no influence on (ρ̂L, τ̂L) and (ρ̂U , τ̂L) (see (2.17)), similar for the
other boundaries. This leads to the non-linearity in the subset boundaries of Figure 2.4.

The split is such that if (ρ̂, τ̂) ∈ Zmin
ID or (ρ̂, τ̂) ∈ Zmax

ID only Nmin
2 resp. Nmax

2 fractions
can be optimal in stage 2. Subset Z int

ID is the area between the dash-dotted lines. If
(ρ̂, τ̂) ∈ Z int

ID both Nmin
2 and Nmax

2 fractions in stage 2 may be optimal for the true
(ρ,τ).

The following theorem states the optimal stage-2 decision rules for a given value
of d1.
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ρL ρU

τL

τU

Zmin
ID

Z int
ID

Zmax
ID

ρ

τ

τ = σρ
τ = σρ̂U

τ = σρ̂L

Figure 2.4: The uncertainty set Z (solid lines) for (ρ̂, τ̂) is split into Zmin
ID , Z int

ID , Zmax
ID , according

to (2.19). Subset Z int is the area between the dotted and dash-dotted curves. If (ρ̂, τ̂) ∈ Z int
ID

both Nmin
2 and Nmax

2 fractions in stage 2 may be optimal for the true (ρ,τ). If (ρ̂, τ̂) ∈ Zmin
ID or

(ρ̂, τ̂) ∈ Zmax
ID only Nmin

2 resp. Nmax
2 fractions can be optimal in stage 2.

Theorem 2.14. Let d1 be the stage-1 decision of (2.18). The decision rules

N ∗
2 (d1; ρ̂, τ̂) =

⎧⎪⎪⎨⎪⎪⎩
Nmin

2 if (ρ̂, τ̂) ∈ Zmin
ID

argmax
N2∈{Nmin

2 ,...,Nmax
2 }

min{ f (d1,N2;ρ̂L ,τ̂L), f (d1,N2;ρ̂U ,τ̂L)} if (ρ̂, τ̂) ∈ Z int
ID

Nmax
2 if (ρ̂, τ̂) ∈ Zmax

ID ,

(2.20)

and

d∗
2(d1; ρ̂, τ̂) =min{g(d1, N1, N ∗

2 (d1; ρ̂, τ̂); ρ̂L), g(d1, N1, N ∗
2 (d1; ρ̂, τ̂); ρ̂U)}, (2.21)

are optimal to (2.18) for the given d1.

Proof. See Appendix 2.B.3.

The worst-case optimal decision rule (2.20) may give a value unequal to Nmin
2 and

Nmax
2 if (ρ̂, τ̂) ∈ Z int

ID . If rρ and rτ are zero, i.e., we have exact data, then it holds that
τ̂L = τ and ρ̂L = ρ̂U = ρ. Hence, the two functions f in the RHS of (2.20) are equal,
and the optimal N ∗

2 is the one that maximizes the resulting function. One can verify
that this does not depend on d1. Hence, in case of exact data Theorem 2.14 reduces
to Theorem 2.7.
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It turns out that, after plugging in (2.20) and (2.21), and splitting the uncertainty
set according to (2.19), it is not apparent how to determine the optimal stage-1 deci-
sion d∗

1 for (2.18). In Appendix 2.B.4 the following lower bound problem to (2.18) is
derived, named the Approximate Inexact Data Problem (AIDP):

max
d1,q

q,

s.t. q ≤ f (d1, Nmin
2 ;ρL,τL),

q ≤ f (d1, Nmax
2 ;ρU ,τL),

q ≤ K ,

q ≤ p(d1),

dmin ≤ d1 ≤ dmax
1 .

(2.22a)

(2.22b)
(2.22c)
(2.22d)
(2.22e)
(2.22f)

d1

q

f (d1, Nmin
2 ;ρL ,τL)

f (d1, Nmax
2 ;ρU ,τL)

K
p(d1)

Figure 2.5: Schematic illustration of (2.22). Compared to the case with exact data (Fig-
ure 2.3), the thick black curve (constraint (2.22e)) is extra. The solid, dashed and dotted
lines/curves represent constraints (2.22b), (2.22c) and (2.22d), respectively. Optimal solu-
tions are indicated by red circles.

The AIDP is best explained using an example. Figure 2.5 illustrates a possible
instance of (2.22), displaying constraints (2.22b)-(2.22e). Compared to (2.13) for
exact biomarker information (see Figure 2.3), problem (2.22) has the added constraint
(2.22e); a piecewise convex-concave function p(d1) defined by (2.C.19) in Lemma 2.19
(Appendix 2.C). It can be interpreted as follows. If (ρ̂, τ̂) ∈ Z int

ID , the optimal number of
stage-2 fractions can be inbetween Nmin

2 and Nmax
2 , as shown in Theorem 2.14. In those
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cases, the optimal number of fractions also depends on the already delivered stage-1
dose d1. The upper kinks (red circles) in the piecewise convex-concave function p(d1)
in Figure 2.5 indicate values of d1 where the worst-case scenario changes. The lower
kinks indicate values where the optimal number of stage-2 fractions changes. The
exact expression for p(d1) does not provide additional insight and is therefore omitted
here.

In Figure 2.5, optimal solutions are locations where (2.22d) and (2.22e) are both
binding, indicated by red circles. Dose constraints (2.22f) may cut off (some of) these
points. If due to constraint (2.22f) none of the circles are feasible, the optimum is at
one of the boundaries for d1. Constraint (2.22e) is the only conservative constraint
in (2.22). Hence, only if the feasible values for d1 are such that none of the circles in
Figure 2.5 are feasible and constraint (2.22e) is binding, it is possible that the optimal
objective value of (2.22) is strictly worse than that of (2.18).

Lemmas 2.15, 2.16 and 2.19 in Appendix 2.C provide information on the shape and
intersection points of constraint functions (2.22b)-(2.22e). Consequently, the optimal
solution(s) of (2.18) is/are easily obtained. If (d∗

1,q∗) is optimal to AIDP (2.22), and
N ∗

2 (·) and d∗
2(·) are given by (2.20) and (2.21) then (d∗

1, d∗
2(·), N ∗

2 (·)) is ARF to the
original IDP (2.18). It is ARF because AIDP is a conservative approximation of IDP.

2.4.3 Pareto robustly optimal solutions to conservative approxi-
mation

Figure 2.5 also illustrates that it is possible that there are multiple optimal solutions
to the AIDP (2.22). Because the AIDP provides a conservative approximation to IDP
(2.18), optimizing over auxiliary scenario(s) as in Section 2.3 does not necessarily
produce a stage-1 decision d1 that is PARO to the original IDP. It turns out that a
PRO solution to AIDP is obtained from the set of robustly optimal solutions to AIDP
if we consecutively optimize for two auxiliary observations such that any worst-case
realization is in the interior of set Zmin resp. Zmax. Two important remarks are in place
here. First, a PRO solution to AIDP need not be a PARO solution to IDP, even if it is
ARO to IDP. Second, the required auxiliary scenarios need not exist; their existence
depends on the values of rρ and rτ. Hence, further details are omitted.

2.5 Numerical results
This section presents numerical results of the methods presented in Sections 2.3 and
2.4. First, Section 2.5.1 describes the benchmark methods against which we compare
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the ARO method for EDP and IDP, and Section 2.5.2 describes the setup of the numer-
ical experiments.

2.5.1 Benchmark static and folding horizon methods

We analyze the performance of the static and folding horizon nominal method (NOM
and NOM-FH), the static and folding horizon robust optimization method (RO and
RO-FH) and the adjustable robust optimization method (ARO). In the folding horizon
approaches only the stage-1 decisions are implemented, and the model is re-optimized
for the second stage once the biomarker information is revealed.

The static method NOM optimizes for the nominal parameter values (ρ̄, τ̄) and
disregards any uncertainty and adaptability. This method is the same for both EDP
and IDP. In stage 2, NOM-FH solves the nominal problem under the assumption that
the obtained biomarker estimate is exact (which is an invalid assumption for IDP).
This method does not guarantee robustly feasible solution (feasible for all (ρ,τ) ∈ Z)
nor a robustly optimal solution (RO; (static) optimal for the worst-case realization
(ρ,τ) ∈ Z). The static method RO optimizes for the worst-case realization of (ρ,τ) in
the uncertainty set Z , and disregards adaptability. For EDP the method RO-FH solves
the same nominal problem as NOM-FH in stage 2; for IDP it solves a static robust
optimization problem in stage 2, for which the uncertainty set is determined by the
accuracy of the biomarker information. RO and RO-FH both guarantee anRO solution.

One may add a folding horizon component to ARO (for either EDP or AIDP). This
may improve the results in case a suboptimal stage-2 decision rule is used. However,
as shown in Sections 2.3.2 and 2.4.2, the used stage-2 decision rules are optimal for
any realized scenario (and for given stage-1 decision d1 in case of inexact information).
Hence, adding a folding horizon component will not change results.

Table 2.1 provides an overview of the guaranteed solution properties of the meth-
ods. It is important to note that in case of inexact biomarker information (IDP) the
methods RO and RO-FH guarantee an RO solution, whereas ARO guarantees only an
ARF solution via solving the approximate problem AIDP. Depending on the approxi-
mation quality, the ARF solution may be close or equal to an ARO solution. Next to
these five methods, we also report the results for the perfect information optimum (PI).
This is the attainable optimum if from the start of the first fraction the true (ρ,τ) is
exactly known. It can be formulated by taking the nominal problem and replacing the
nominal parameter values by their true values. While in practice not a viable strategy,
PI provides information on the value of perfect information, and allows us to put the
performance of and differences between the other methods in perspective.
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Method
Problem NOM NOM-FH RO RO-FH ARO

EDP - - RO RO PARO

IDP - - RO RO ARF

Table 2.1: Guaranteed solution properties of the five methods.

2.5.2 Study setup
We use a data set of 30 non-small cell lung cancer (NSCLC) patients, treated with
either photon or proton therapy. The mathematical models in Sections 2.3 and 2.4 are
based on the assumption that there is a single dose restricting OAR. We assume that
the single dose restricting OAR is the normal lung itself4. For the models in Sections
2.3 and 2.4, an instance is defined by a tuple (σ,ϕ, D, T, N1, Nmin, Nmax, dmin, dmax

1 ) and
the relevant uncertainty sets.

Clinically, the number of treatment fractions varied between 33 and 37 fractions,
with the majority of patients receiving 37 fractions. We set Nmin = 30 and Nmax = 40,
to allow for slight deviations from the clinical standard. We assume the biomarker
acquisition is made once N1 = 10 fractions have been administered. This implies
Nmin

2 = 20 and Nmax
2 = 30. Mean lung dose tolerance is D = 20 Gy, and we set T = 37

as that is the clinically standard regimen. The patients differ in (σ,ϕ), which charac-
terize the spatial dose distribution. Using the clinically delivered dose distribution, we
derive for each normal lung voxel its dose sparing factor si (see Section 2.2.1). The
dose shape factor ϕ and the generalized dose sparing factor σ for mean OAR BED are
given by

ϕ =
n
∑n

i=1 s2
i�∑n

i=1 si

�2 , σ =

∑n
i=1 s2

i∑n
i=1 si

,

see Perkó et al. (2018) for details.
Cox (1986) estimate normal lung tissue α/β to be between 2.4 and 6.3. We set the

nominal value at the midpoint 4.35. The α/β of NSCLC lung tumors has traditionally
been assumed to be above 10 Gy. However, recent NSCLC hypofractionation trials show
promising results, indicating that NSCLC cells are more sensitive to fraction size than
previously assumed, i.e., have a lower α/β than 10. Santiago et al. (2016) find values
between 2.2 and 9.0. We set the nominal value at the midpoint 5.6. Put together, we

4This is in line with clinical practice wherein normal lung is treated as the most important normal
tissue and the treatment is designed as to minimize the radiation exposure to normal lung.
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get the following uncertainty set for the inverse α/β ratios:

Z = {(ρ,τ) : 1/6.3 ≤ ρ ≤ 1/2.4, 1/9.0 ≤ τ≤ 1/2.2},

and the nominal scenario is (ρ̄, τ̄) = (1/4.35,1/5.6). With this uncertainty set, 20
out of 30 patient cases satisfy Assumption 2.6: these are used in the numerical exper-
iments. For the remaining ten patients the optimal number of treatment fractions can
be determined prior to treatment, so these are removed.

To discriminate between multipleARO solutions, we follow the procedure detailed
in Section 2.3.3 in the case of exact biomarker information. The auxiliary scenarios
are sampled uniformly from int(Zmin) and int(Zmax). In the case of inexact biomarker
information, the procedure discussed in Section 2.4.3 is followed if the required aux-
iliary observations exist. If such observations exist, we sample uniformly from Z until
we have found two auxiliary observations for which any worst-case realization is in
int(Zmin) resp. int(Zmax). If such observations do not exist, the robustly optimal so-
lution to AIDP with lowest stage-1 dose is selected. The method RO (and therefore
also RO-FH) may also find multiple robustly optimal solutions. For the obtained set
of robustly optimal solutions we again follow the procedure detailed in Section 2.3.3.
It turns out that for RO, the robustly optimal solutions often perform identical in non-
worst-case scenarios. We optimize over the auxiliary scenarios consecutively; the first
auxiliary scenario is the scenario corresponding to int(Zmin).

The minimum dose per fraction is dmin = 1.5 Gy and the maximum stage-1 dose
per fraction is dmax

1 = 3 Gy. This satisfies Assumption 2.1 (for EDP) and 2.11 (for IDP).
Using these parameter values, it is feasible to deliver Nmax

2 fractions with dose dmin in
all scenarios in Z . This means that stage-1 decisions cannot render stage 2 infeasible
for RO, NOM (and their FH counterparts) or PI. Numerical results indicate that results
are not sensitive to the choice of dmin and dmax

1 .
First, Section 2.5.3 presents and discusses the results for the problem with exact

biomarker information (EDP) of Section 2.3. After that, Section 2.5.4 presents and dis-
cusses the results for the problem with inexact biomarker information (IDP) of Section
2.4. Lastly, Section 2.5.5 again considers the inexact biomarker information case, and
varies parameter N1 in order to determine the optimal moment of biomarker acquisi-
tion.

We consider a sample of 200 scenarios for (ρ,τ) from Z . For each scenario, we
compute the average tumor BED over 20 patients is computed, thus creating a tumor
BED distribution for the ‘average’ patient. For this tumor BED distribution we report
the mean, 5% quantile and worst-case value. Next to this, we report the true worst-
case tumor BED over Z (averaged over 20 patients). Note that the true worst-case
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scenario can differ per patient, so the true worst-case BED is typically not attained in
the sample. For OAR violations, we report the percentage by which the OAR BED toler-
ance is exceeded (i.e., percentage overdose). The maximum violation is the maximum
value found over all patients and scenarios. All reported decision variable statistics are
averaged over all patients and scenarios.

2.5.3 Results exact biomarker information

Method
NOM NOM-FH RO RO-FH ARO PI

Tumor BED - sample mean (Gy) 162.75 161.44 156.57 160.14 161.40 161.49
Tumor BED - sample 5% quantile (Gy) 151.98 150.94 147.57 150.04 150.90 151.04
Tumor BED - sample wc (Gy) 145.98 146.33 142.53 145.58 146.32 146.39
Tumor BED - wc over Z (Gy) 114.72 116.19 116.19 116.19 116.19 116.19
OAR violation - mean (%) 1.25 0 0 0 0 0
OAR violation - max (%) 4.22 0 0 0 0 0
Stage-1 dose d1 (Gy) 1.50 1.50 2.29 2.29 1.51 1.66
Stage-2 dose d2 (Gy) 3.45 3.24 2.48 2.95 3.24 3.19
Stage-2 fractions N2 20.0 22.2 27.2 22.2 22.2 22.2

Table 2.2: Results for experiments with exact biomarker information and uniform sampling
of (ρ,τ) over Z (200 scenarios). For each scenario, results are averaged over 20 patients∗. All
methods optimize for worst-case tumor BED in Z , which is displayed in bold.
∗: the maximum OAR violation is computed over all patients and scenarios.

Table 2.2 presents the results. Altogether, the results indicate that the value of
exact information is high. NOM-FH performs very similar to ARO. This illustrates that
ignoring uncertainty and adaptability in stage 1 neither compromises worst-case or
mean performance, nor does it lead to OAR constraint violations if treatment can be
adapted based on exact biomarker information. In fact, NOM-FH outperforms RO-FH,
indicating that accounting for uncertainty in stage-1 is overly conservative.

NOM is the only method that is not worst-case optimal, but yields the highest mean
tumor BED across the sample. However, it is the only method that results in OAR
constraint violations. In the nominal scenario (ρ̄, τ̄) it is optimal to hypofractionate
for all patients, so the mean N2 equals 20 for NOM. The other static method, RO, is
worst-case optimal, but yields low tumor BED across the sample. This is not due to one
poor (patient, scenario) pair, but consistent throughout the entire sample. It delivers
significantly more fractions on average, i.e., it decides to hyperfractionate more often.

NOM-FH adds a folding horizon component to NOM, and this results in zero viola-
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tions and worst-case optimality. It does have slightly lower sample mean tumor BED.
RO-FH adds a folding horizon component to RO, and this results in improved perfor-
mance across the entire sample. It chooses to hypofractionate more often than RO.
ARO is worst-case optimal and performs very similar to NOM-FH. Excluding NOM (for
OAR constraint violations) and PI (not implementable), NOM-FH, ARO, RO-FH and RO
yield the (possibly joint) highest objective value in 83.4%, 76.4%, 22.1% and 0.6% of
all (scenario, patient) instances, respectively.

The results of Table 2.2 show that the methods have different stage-1 decisions
d1; this indicates the existence of multiple worst-case optimal stage-1 solutions. As
indicated in Section 2.5.2, RO, RO-FH and ARO optimize over auxiliary scenarios in
this case. According to Theorem 2.10, ARO finds a PARO solution this way. Overall,
methods that deliver a relatively low dose in stage-1 perform better than the methods
that deliver a higher dose. This may be data set-specific. From PI we see that for the
majority of patients and scenarios hypofractionation is optimal (average N2 = 22.2),
whereas the RO results indicate that for the majority of patients it is worst-case optimal
to hyperfractionate (average N2 = 27.2). We emphasize that for different data sets,
where for the majority of scenarios and patients hyperfractionation is optimal, a higher
stage-1 dose (which allows for Nmax constant-dose fractions) may perform better, such
as the result of RO and RO-FH.

Figure 2.6 shows the complete cumulative scenario-tumor BED graph. A point
(x , y) in Figure 2.6 can be interpreted as follows: for the average patient, in y% of
scenarios the tumor BED is at least x Gy. The results clearly demonstrate that RO and
RO-FH are outperformed by the other methods. Both NOM-FH and ARO are visually
almost indistinguishable from PI. NOM performs even better across the entire sample
(except the first percent of the sample), at the cost of OAR BED violations.

To see the difference inmean performance between themultiple worst-case optimal
solutions, we compare PARO solution found by the ARO method to the ARO solution
that performs worst in the two auxiliary scenarios. Table 2.3 shows the results, OAR
constraint violations are zero in all cases. The worst-performing ARO solution has a
considerably higher stage-1 dose. This implies that (for the current parameter settings)
delivering a high stage-1 dose does not allow as much adjustment possibilities in stage
2 as a low stage-1 dose, but it does allow for adjustments to reach the worst-case
optimum. Relative to the results of Table 2.2, the difference between the best andworst
ARO solution is considerable: the worst-performing ARO solution performs worse than
the RO-FH solution.

Appendix 2.A reports the results of an auxiliary experiment where the (ρ,τ) sam-
ple is drawn from a superset of Z , to compare the out-of-sample performance of the
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Figure 2.6: Cumulative scenario-tumor BED graph for experiments with exact biomarker in-
formation and uniform sampling of (ρ,τ) over Z (200 scenarios). A point (x , y) indicates
that in y% of scenarios the tumor BED (averaged over 20 patients) is at least x Gy. ARO and
NOM-FH are very close to PI.

Method
AROworst ARObest

Tumor BED - sample mean (Gy) 159.87 161.40
Tumor BED - sample 5% quantile (Gy) 149.86 150.90
Tumor BED - sample worst-case (Gy) 145.34 146.32
Tumor BED - wc over Z (Gy) 116.19 116.19
Stage-1 dose d1 (Gy) 2.67 1.51
Stage-2 dose d2 (Gy) 2.79 3.24
Stage-2 fractions N2 22.2 22.2

Table 2.3: Comparison between the best (PARO) and worst performing ARO solutions, for
uniform sampling of (ρ,τ) over Z (200 scenarios). For each scenario, results are averaged over
20 patients. All methods optimize for worst-case tumor BED in Z , which is displayed in bold.
OAR constraint violations are zero in all cases.

methods. NOM remains the only method with OAR constraint violations. Compared
to Table 2.2, static methods NOM and RO have poor performance. The relative perfor-
mance of the adaptive methods remains mostly unchanged.

Altogether, the results of Section 2.5.3 demonstrate that if exact biomarker informa-
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tion is available mid-treatment, most stage-1 decisions allow for sufficient adaptation
space in stage 2, also with realizations outside of Z . Different stage-1 decisions yield
the worst-case optimum, have good performance on the scenario sample and have no
OAR BED violations. We note that all presented differences in tumor BED are of rela-
tively small magnitude. One reason for this is that the number of stage-2 fractions is
restricted to [Nmin

2 , Nmax
2 ] = [20, 30]. If the minimum number of fractions represents a

‘true’ hypofractionation case, the dose per fraction can vary more, and the difference
in performance between hypo- and hyperfractionation strategies is amplified.

2.5.4 Results inexact biomarker information
In case of in inexact biomarker information (IDP), we do not obtain the true parameter
values (ρ,τ) after N1 = 10 fractions, but only an estimate (ρ̂, τ̂). As discussed in
Section 2.4, we specify a new uncertainty set Ẑ such that (ρ̂, τ̂) − (ρ,τ) ∈ Ẑ . Let
DQ ∈ [0, 1] indicate the data quality. Then we set Ẑ such that the width of the new
uncertainty intervals for τ and ρ is (1 −DQ) times the width of the original intervals
[τL,τU] and [ρL,ρU]. That is, DQ · 100% can be interpreted as the percentage by
which the uncertainty intervals can be reduced due to the observation. The relation
with the accuracy parameter rρ (or similarly rτ) is given by

rρ =
1
2
(ρU −ρL)(1 −DQ).

Note that even DQ = 0 has some value as the new interval is centered around the
observation, which already cuts off part of the original uncertainty set Z .

First, we consider the influence of DQ on the ARO decisions for an individual pa-
tient. Figure 2.7 shows the results. The worst-case tumor BED is 118.7 Gy for any DQ.
Thus, an increase in data quality solely improves average tumor BED. As soon as there
is some uncertainty in biomarker, the optimal stage-1 dose increases from 1.50 to 1.77
Gy. Note that there can be other stage-1 doses that are near worst-case optimal or
worst-case optimal but not PARO. For the stage-2 decisions, recall (see Section 2.5.3)
that for the majority of patients it is worst-case optimal to hyperfractionate. As DQ
increases, we observe a linear decrease in the number of fractions N2, and a corre-
sponding increase in dose per fraction d2. Thus, for higher DQ, we hypofractionate
more often, deviating from the worst-case optimal decision. The bottom-left panel of
Figure 2.7 shows that mean tumor BED increases linearly in DQ, with an additional
jump when DQ is 1 (i.e., exact data).

In the remainder of this section we set DQ = 2/3, so the obtained information
after fraction N1 reduces the size of the interval by 66.7% around the new observation.
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Figure 2.7: Influence of data quality (DQ) on the optimal ARO decisions and resulting mean
tumor BED for an individual patient. Results are averaged over 200 (ρ,τ) scenarios, uniform
sampled from Z . The worst-case tumor BED is 118.7 Gy for any DQ.

Variations for DQ are considered in Section 2.5.5. For all 20 patients the required
auxiliary scenarios for the method of Section 2.4.3 can be found.

Table 2.4 shows the aggregated results. The robust methods RO, RO-FH and ARO
are all worst-case optimal. This indicates that, although not theoretically guaranteed,
ARO finds an ARO solution in all considered scenarios. The mean performance of RO-
FH and ARO is further away from PI than in the case with exact biomarker information
(Table 2.2). This is as expected, as due to inexact observations the possibility for ARO
and RO-FH to make adjustments is less valuable, whereas PI is not in influenced by
this. On the other hand, NOM and NOM-FH are not worst-case optimal, but have better
performance on the sample of scenarios, at the cost of OAR violations.

ARO is the only method (together with PI) that has a different stage-1 decision than
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Method
NOM NOM-FH RO RO-FH ARO PI

Tumor BED - sample mean (Gy) 162.52 161.03 156.38 158.76 159.46 161.16
Tumor BED - sample 5% quantile (Gy) 151.36 150.12 147.04 148.51 148.94 150.21
Tumor BED - sample wc (Gy) 147.79 146.04 144.01 145.02 145.33 146.18
Tumor BED - wc over Z (Gy) 114.72 115.96 116.19 116.19 116.19 116.19
OAR violation - mean (%) 1.25 0.16 0 0 0 0
OAR violation - max (%) 4.23 1.49 0 0 0 0
Stage-1 dose d1 (Gy) 1.50 1.50 2.29 2.29 1.79 1.65
Stage-2 dose d2 (Gy) 3.45 3.25 2.48 2.78 2.92 3.20
Stage-2 fractions N2 20.0 22.0 27.2 24 24.3 22.1

Table 2.4: Results for experiments with inexact biomarker information (data quality DQ =
2/3) and uniform sampling of (ρ,τ) over Z (200 scenarios). All results are averages over a
sample of 20 patients. For each scenario, results are averaged over 20 patients∗. All methods
optimize for worst-case tumor BED in Z , which is displayed in bold.
∗: the maximum OAR violation is computed over all patients and scenarios.

in the case with exact biomarker information. This is because it is the only method
that takes inexactness of biomarker information into account at the start of stage 1.
The average stage-1 dose d1 differs considerably between ARO and RO-FH, whereas
their worst-case performance is equal on average (and equal to PI). This demonstrates
the existence of multiple worst-case optimal solutions. Whereas optimizing worst-case
optimal solutions for ARO over two auxiliary scenarios does not guarantee a PARO
solution (Section 2.4.3), results in Table 2.4 indicate that it does produce solutions
that perform slightly better on average than RO-FH.

For ARO, it is noteworthy that the average number of stage-2 fractions (24.3 fx)
differs from that of PI (22.1 fx). Although ARO uses optimal decision rules for stage 2,
these are optimal for the worst-case scenario in the new uncertainty set Z(ρ̂,τ̂), and need
not be optimal for the ‘true’ realization in this set. In fact, NOM-FH treats the inexact
biomarker information as the ‘true’ parameter values, and administers 22.0 fractions,
on average, which is closer than that of PI. Although the fractionation decision of NOM-
FH is not worst-case optimal, Table 2.4 shows that it performs better on the sample of
scenarios.

Figure 2.8 shows the complete cumulative scenario-tumor BED graph for the ‘av-
erage patient’. Whereas in case of exact biomarker information (Figure 2.6), the ARO
line was very close to PI, here a clear difference can be observed. NOM and NOM-FH
outperform ARO (and RO and RO-FH) over the entire distribution.

The good performance of NOM and NOM-FH in terms of sample mean tumor BED
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Figure 2.8: Cumulative scenario-tumor BED graph for experiments with inexact biomarker
information (data quality DQ = 2/3) and uniform sampling of (ρ,τ) over Z (200 scenarios).
A point (x , y) indicates that in y% of scenarios the tumor BED (averaged over 20 patients) is
at least x Gy. NOM-FH is very close to PI.

does come at the cost of OAR violations. However, these are relatively minor. The
reason for this is that the number of stage-2 fractions is relatively high (between 20
and 30fx), so any method delivers reasonably low dose per fraction in stage 2. Conse-
quently, the quadratic term in the BED model is smaller, and so is the influence of the
α/β parameters. With higher dose per fraction, the use of incorrect (e.g., nominal)
α/β parameter values may result in higher OAR constraint violations. Preliminary
experiments for stereotactic body radiation therapy (SBRT, an RT modality that uses
around five high dose fractions) indeed result in slightly higher OAR constraint viola-
tions for NOM and NOM-FH. In any case, a trade-off can be observed between higher
tumor BED attained by NOM and NOM-FH and associated OAR constraint violations.

2.5.5 Optimal moment of biomarker acquisition
The moment of biomarker observation need not be fixed. Part of the decision-making
process then involves choosing this observation moment such that it maximally im-
proves treatment quality. Late observation may result in limited possibilities for treat-
ment adaptation, whereas with too early observation one cannot yet reliably observe
the true individual patient response. Although one can incorporate N1 as a decision
variable in the mathematical model, the small decision space allows to simply vary its



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 68PDF page: 68PDF page: 68PDF page: 68

56 Adjustable robust treatment-length optimization

value in numerical experiments. We assume a (hypothetical) mathematical relation-
ship between information point N1 and the data quality parameter DQ. With Nmax the
maximum number of fractions, we consider the following three data quality functions:

DQ1(N1) =

�
N1

Nmax

�4

, DQ2(N1) =
N1

Nmax
, DQ3(N1) =

�
N1

Nmax

�1/4

.

Hence, DQ1, DQ2 and DQ3 describe a convex, linear and concave relationship between
observation moment and data quality, respectively. Figure 2.9 shows the graphs of the
three functions. Whether DQ1, DQ2 or DQ3 is most realistic depends on the specific
biomarker(s) that is/are used, see Section 2.2.2 for details.
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Figure 2.9: The biomarker data quality is a function of the number of treatment fractions N1

after which it is acquired. We consider three functions DQi(N1), i = 1, 2,3.

We vary the information point N1 from 0 to Nmax−1. Figure 2.10 shows the change
in stage-1 dose d1 (averaged over all patients and scenarios) for linear data quality
function DQ2, for methods PI, ARO, RO/RO-FH and NOM/NOM-FH. Results are very
similar for DQ1 and DQ3. Recall from Section 2.5.3 that for the majority of (patient,
scenario) pairs hypofractionation is optimal. For those cases, if N1 is very low PI some-
times delivers a high dose boost in stage 1, and a low dose/fx in stage 2. For higher
values of N1 this is not possible anymore, leading to a lower average dose in stage 1
(and a dose boost in stage 2). For NOM/NOM-FH the same holds, because the nominal
scenario is a hypofractionation scenario.

Also for ARO it is optimal to start with a higher dose per fraction in stage-1 if N1

is very low. For slightly higher N1, starting with a dose boost is no longer possible.
For most patients it is worst-case optimal to hyperfractionate, i.e., deliver an equal
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Figure 2.10: Change in stage-1 dose d1 (averaged over all patients and scenarios) when vary-
ing the information point N1 from 1 to Nmax −1, for the linear data quality function DQ2(N1).

dose per fraction for Nmax fractions. For N1 around 10 − 20, worst-case optimality
can be attained also with lower dose per fraction in stage 1. This tends to be the
PARO solution, because it enables a higher dose boost in stage 2 for hypofractionation
scenarios. For higher N1, it is often not possible to achieve worst-case optimality (in
hyperfractionation scenarios) if we deliver a low dose per fraction in stage 1. This
leads to a gradual shift from low dose to medium dose per fraction in stage 1 as N1

increases.
Figure 2.11 shows the mean tumor BED values and OAR constraint violations for

varying N1, for data quality functions DQi(N1), i = 1,2, 3. The left vertical axis indi-
cates the mean tumor BED (averaged over all patients and scenarios), the right vertical
axis indicates the maximum OAR tolerance violation for NOM and NOM-FH. It is im-
portant to note that as N1 increases past Nmin = 30, this also increases the minimum
number of fractions correspondingly. Moreover, the dose per fraction is constant per
treatment stage, so the choice of N1 also influences the types of treatments that can be
delivered.

For these reasons the curve for PI is not constant, even though it does not actually
use biomarker information. The optimal moment of biomarker acquisition for PI is
N1 = 29. This is because the minimum number of fractions is Nmin = 30. Hence,
if hypofractionation is optimal we can deliver one more fraction with high dose, and
deliver a low dose in stage 1. If hyperfractionation is optimal we can deliver 11 more
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(a) DQ1 (convex)

(b) DQ2 (linear)

(c) DQ3 (concave)

Figure 2.11: Change in mean tumor BED and OAR constraint violation when varying the
information point N1 from 1 to Nmax − 1, for data quality functions DQi(N1), i = 1, 2,3. The
maximum OAR BED constraint violation (%) of NOM (dash-dotted) and NOM-FH (dotted, cir-
cle marker) is measured against the right vertical axis. Note that the left vertical axis measures
displays the mean tumor BED (averaged over all patients and scenarios), while the methods
maximize the worst-case tumor BED per patient.
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fractions (and get the total maximum of 40) with low dose. Having N1 > 29 forces
the use of more than Nmin

2 = 30 fractions, which is disadvantageous for those (patient,
scenario) cases where hypofractionation is optimal.

For the latter reason the NOM curve is also not constant. It results in a higher tumor
BED than PI for any value of N1, at the cost of OAR violations of up to 20%. NOM-FH
yields a sample mean tumor BED close to PI for all three DQ functions, and the OAR
violations depend on the DQ function. With poor data quality (Figure 2.11a) and an
observation moment close to N1 = 29, OAR violations over 10% are possible, despite
the fact that NOM-FH is an adaptive method. On the other hand, with good (Fig-
ure 2.11a) data quality, the violations remain below 2%. The OAR tolerance violations
are highest near N1 = 29. This is because in case of hypofractionation in stage 2 the
influence of the uncertain α/β parameters is highest, as was noted in Section 2.5.4.

The robust methods RO, RO-FH and ARO do not result in any OAR violations, by
construction. The better the data quality, the larger the differences between RO, RO-
FH and ARO. This implies that, if robustness is required, there is value in (i) adapting
based on inexact information, (ii) taking adaptability into account when planning the
stage-1 dose. The good performance of NOM-FH shows that this value diminishes
if OAR violations are allowed. NOM-FH does not account for adaptability, and does
not take inexactness of biomarker information into account. Nevertheless, it results
in higher sample mean tumor BED for any N1, and the difference increases from poor
(convex) to good (concave) data quality. Thus, Figure 2.11c illustrates the trade-off
between higher sample mean tumor BED and possible OAR violations that was also
observed in Section 2.5.4 (for the entire sample distribution).

The shape of the data quality function influences the optimal moment of biomarker
observation only slightly. For all adaptive methods, we find that the peak is more
pronounced for high data quality (concave) than low data quality (convex), but it is
centered around N1 = 29. In case of convex data quality the peak is relatively flat,
indicating a trade-off between observing at N1 = 29 (giving maximum adaptation
flexibility) and postponing (waiting for higher data accuracy).

2.6 Concluding remarks
In this chapter we have presented an ARO approach to optimally adapt the treatment
length of radiation therapy treatments, using mid-treatment biomarker information.
Using an ARO approach, adaptability is taken into account prior to treatment and it
provides insight into the optimal stage-2 decisions.

In the case of exact biomarker information, there is sufficient space to adapt, and
numerical results show that taking into account both robustness and adaptability is
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not necessary. In the case of inexact biomarker information, adaptive strategies can
use only parameter estimates instead of true parameter values, and may still result
in violations if this uncertainty is not accounted for. Accounting for adaptability and
inexactness of biomarker information is particularly beneficial when robustness (w.r.t.
OAR violations) is of high importance. If minor OAR violations are allowed, NOM-
FH is a good performing alternative, which can outperform ARO. NOM-FH and ARO
thus present a trade-off between higher performance and OAR violations. Both the
difference in performance and the magnitude of OAR violations of NOM-FH are highly
influenced by the data quality (i.e., accuracy of parameter estimates).

The current setting can be extended in several ways. In practice the tumor and
OAR α/β values would have to be estimated from actual biomarkers (e.g., imaging,
blood-based biomarkers, genotyping), which can be incorporated in the model. Fur-
thermore, the approach can be extended to heterogeneous tumor response (different
α/β ratios for different tumor subvolumes), or time-dependent response parameters.
Other RT applications may also benefit from ARO, such as re-optimization to account
for organ motion or setup errors, optimization using the MR-linac or combining RT
with chemotherapy.

2.A Results exact biomarker information: out-of-sample
performance

To investigate the out-of-sample performance of themethods, we assume a uniform distribution
for (ρ,τ) over a larger set than Z . We can write Z as

Z = {(ρ,τ) : ρL ≤ ρ ≤ ρU ,τL ≤ τ≤ τU}= {(ρ,τ) : |ρ̄ −ρ| ≤ ερ, |τ̄−τ| ≤ ετ},

where (ερ,ετ) is the maximum deviation from the nominal scenario (ρ̄, τ̄). This allows us to
define

Zc := {(ρ,τ) : |ρ̄ −ρ| ≤ cερ, |τ̄−τ| ≤ cετ},

where c > 0 is a parameter. We assume a uniform distribution over the new set Zc. If c = 1,
we have Zc = Z , so we sample exactly from Z . If c > 1, we sample from an interval that is c2

times as large as Z (c times larger for both ρ and τ). For c = 2 we obtain the results in Table
2.A.1. The stage-1 dose d1 is the same as in Table 2.2 for all methods except PI, because PI is
the only method that is aware that the sample is not taken from uncertainty set Z but from
Z2. For NOM, the maximum violation percentage has increased slightly. All other methods are
able to deal with the out-of-sample realizations and do not have any OAR constraint violations.

Due to the larger sampling space (the area of Z2 is four times the area of Z), the difference
between sample mean and sample worst-case performance is much larger than in Table 2.2 for
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Method
NOM NOM-FH RO RO-FH ARO PI

Tumor BED - sample mean (Gy) 156.49 158.92 151.30 156.83 158.87 159.06
Tumor BED - sample 5% quantile (Gy) 140.14 142.11 137.55 141.11 142.11 142.32
Tumor BED - sample wc (Gy) 134.06 136.80 132.56 136.09 136.79 137.12
Tumor BED - wc over Z (Gy) 114.72 116.19 116.19 116.19 116.19 116.19
OAR violation - mean (%) 1.16 0 0 0 0 0
OAR violation - max (%) 5.30 0 0 0 0 0
Stage-1 dose d1 (Gy) 1.50 1.50 2.29 2.29 1.51 1.73
Stage-2 dose d2 (Gy) 3.45 3.21 2.48 2.92 3.21 3.15
Stage-2 fractions N2 20 22.9 27.2 22.9 22.9 22.9

Table 2.A.1: Results for experiments with exact biomarker information and uniform sampling
of (ρ,τ) over Z2. For each scenario, results are averaged over 20 patients∗. All methods opti-
mize for worst-case tumor BED in Z , which is displayed in bold.
∗: the maximum OAR violation is computed over all patients and scenarios

all methods. The true worst-case objective value in Z is still lower than the sample worst-case
in Z2. The reason for this is that the true worst-case scenario can differ per patient.

NOM-FH and ARO are near optimal for the worst-case sample scenario, and are also close
to PI in the sample 5% quantile and sample mean. The relative performance of the adaptive
methods remains mostly unchanged, RO-FH performs slightly worse than NOM-FH and ARO,
similar to Table 2.2. Compared to Table 2.2, NOM and RO have poor performance across the
sample. This indicates bad performance of the static methods on scenarios outside of Z .

Figure 2.A.1 shows the complete cumulative scenario-tumor BED graph for the ‘average
patient’. Compared to Figure 2.6, the main difference is the decrease in performance of NOM.
Naturally, the performance of static nominal optimization is directly related to the magnitude
of possible deviations from the nominal scenario, which is higher in Z2 than in Z .

2.B Extra analyses and proofs
For convenience, we repeat the definitions of functions B, g and f :

B(d ′, N ′;ρ) := ϕD
�
1+
ϕD
T
ρ
�−σd1N1 −σ2ρd2

1 N1,

g(d ′, N ′, N ′′;ρ) :=
−1+
�

1+ 4ρ
N ′′ B(d ′, N ′;ρ)

2σρ
,

f (d1, N2;ρ,τ) :=

⎧⎨⎩
N1d1 + N2 g(d1, N1, N2;ρ)

+τ
�
N1d2

1 + N2 g(d1, N1, N2;ρ)2
� if d1 ∈ [0, g(0,0, N1;ρ)]

−∞ otherwise,

(2.B.1a)

(2.B.1b)

(2.B.1c)

see (2.5), (2.6) and (2.10).
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Figure 2.A.1: Cumulative scenario-tumor BED graph for experiments with exact biomarker
information and uniform sampling of (ρ,τ) over Z2 (200 scenarios). A point (x , y) indicates
that in y% of scenarios the tumor BED (averaged over 20 patients) is at least x Gy. ARO and
NOM-FH are very close to PI.

2.B.1 Proof Theorem 2.7
First, we show that for fixed d1, feasible to (2.4), and given (ρ,τ), it is optimal to minimize
the number of stage-2 fractions if τ≥ σρ, and it is optimal to maximize the number of stage-2
fractions otherwise. After that, we show that with stage-2 dose d2 such that (2.4b) holds with
equality, N2(ρ,τ) = Nmin

2 is feasible if τ≥ σρ and N2(ρ,τ) = Nmax
2 is feasible otherwise.

Consider problem (2.4). At the start of stage 2, we have delivered N1 fractions with dose
d1 per fraction. Let (ρ,τ) be the realization of the uncertain parameters. The stage-2 problem
reads

N1d1 +τN1d2
1 +max

d2,N2

N2d2 +τN2d2
2 ,

s.t. σN2d2 +ρσ
2N2d2

2 ≤ B(d1, N1,ρ),

d2 ≥ dmin,

N2 ∈ {Nmin
2 , . . . , Nmax

2 }.

(2.B.2a)

(2.B.2b)
(2.B.2c)
(2.B.2d)

This is a static fractionation problem. Constraint (2.B.2b) will hold with equality at the opti-
mum, because it is the only dose-limiting constraint. This yields

d∗
2(d1, N2;ρ) = g(d1, N1, N2;ρ). (2.B.3)
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Secondly, this allows us to rewrite the objective to

max
d2,N2

N2d2

�σρ −τ
σρ

�
+
τB(d1, N1,ρ)

σ2ρ
,

which implies that if τ > σρ it is optimal to minimize d2N2. If τ < σρ it is optimal to maximize
d2N2, and if τ = σρ the objective value is independent of the value of N2. Similar results are
obtained in Mizuta et al. (2012); Bortfeld et al. (2015). As given in Section 2.3, at the optimum

N2d∗
2(d1, N2;ρ) = N2 g(d1, N1, N2;ρ) =

−N2 +
�

N2
2 + 4N2ρB(d1, N1;ρ)

2σρ
,

and it is straightforward to show that
∂ N2 g(d1, N1, N2;ρ)

∂ N2
≥ 0.

Hence, if τ > σρ, it is optimal to minimize the number of fractions, and if τ < σρ it is optimal
to maximize the number of fractions. If τ= σρ, every feasible number of fractions is optimal.

For the second part, we must show that for any (ρ,τ) ∈ Z ∩ {τ ≥ σρ} resp. (ρ,τ) ∈
Z ∩{τ < σρ}, it is indeed possible to deliver Nmin

2 resp. Nmax
2 fractions with dose according to

(2.B.3) in stage 2. That is, we must show

g(d1, N1, Nmin
2 ;ρ)≥ dmin, ∀(ρ,τ) ∈ Z ∩ {τ≥ σρ},

g(d1, N1, Nmax
2 ;ρ)≥ dmin, ∀(ρ,τ) ∈ Z ∩ {τ < σρ},

which is equivalent to

d1 ≤ g(dmin, Nmin
2 , N1;ρ), ∀(ρ,τ) ∈ Z ∩ {τ≥ σρ},

d1 ≤ g(dmin, Nmax
2 , N1;ρ), ∀(ρ,τ) ∈ Z ∩ {τ < σρ}.

(2.B.4a)
(2.B.4b)

Lemma 2.17a states that g is increasing or decreasing in ρ for a fixed first argument. Hence, it
is sufficient to consider only the largest and smallest value of ρ in either subset of Z . Therefore,
(2.B.4) is equivalent to

d1 ≤ g(dmin, Nmin
2 , N1;ρL),

d1 ≤ g(dmin, Nmin
2 , N1;min{τU

σ
,ρU}),

d1 ≤ g(dmin, Nmax
2 , N1;

τL

σ
),

d1 ≤ g(dmin, Nmax
2 , N1;ρU).

(2.B.5a)

(2.B.5b)

(2.B.5c)

(2.B.5d)

From (2.B.1b) we see that function g is decreasing in its second argument, so (2.B.5b) is
redundant. The remaining three conditions in (2.B.5) hold true due to Assumption 2.1. Hence,
an optimal decision rule for N2(·) is given by

N ∗
2 (ρ,τ) =

�
Nmin

2 if τ≥ σρ
Nmax

2 otherwise,
(2.B.6)
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and

d∗
2(d1;ρ,τ) =

�
g(d1, N1, Nmin

2 ;ρ) if τ≥ σρ
g(d1, N1, Nmax

2 ;ρ) otherwise.
(2.B.7)

are optimal decision rules for N2(·) and d2(·), respectively. For τ �= σρ, these give the unique
optimal decisions. For τ = σρ any N2 ∈ {Nmin

2 , . . . , Nmax
2 } is optimal, and the corresponding

optimal d2 follows according to (2.B.3).

2.B.2 Proof Theorem 2.10
Due to Theorem 2.7 a stage-1 decision d1 is PARO according to Definition 2.9 if conditions
(2.14) hold with (d∗

2(·), N ∗
2 (·)) plugged in. Thus, we must show that for any d1 ∈ X PARO there

is no ARO d̄1 such that

f (d1, N ∗
2 (ρ,τ);ρ,τ)≤ f (d̄1, N ∗

2 (ρ,τ);ρ,τ) ∀(ρ,τ) ∈ Z ,

f (d1, N ∗
2 (ρ̄, τ̄); ρ̄, τ̄)< f (d̄1, N ∗

2 (ρ̄, τ̄); ρ̄, τ̄) for some (ρ̄, τ̄) ∈ Z .

If |X PARO| = 1, then the single element yields a strictly better objective value than all other
elements in XARO in either scenario (ρaux-min,τaux-min) or (ρaux-max,τaux-max) or both, so it is
PARO. For the remainder of this proof we assume |X PARO| ≥ 2.

Consider X aux-min. By construction of (ρaux-min,τaux-min) it holds that τaux-min �= σρaux-min.
Hence, according to Lemma 2.18, there can be at most two values for d1 in X aux-min that yield
the same objective value f in scenario (ρaux-min,τaux-min). Hence, |X aux-min| = |X PARO| = 2.
Denote the two elements of X PARO by d ′

1 and d ′′
1 , let d ′

1 < d ′′
1 . Solutions d ′

1 and d ′′
1 are both

optimal to (2.15) and (2.16). Hence, according to Lemma 2.18, it holds that

d ′′
1 = t(d ′

1;ρaux-min,τaux-min),

d ′′
1 = t(d ′

1;ρaux-max,τaux-max).

(2.B.8a)
(2.B.8b)

From the definition of t (see (2.C.13)) we derive for σρ �= τ:
∂ t(d1;ρ,τ)
∂ ρ

=
2N ∗

2 (ρ,τ)

N1 + N ∗
2 (ρ,τ)

∂ g(d1, N1, N ∗
2 (ρ,τ);ρ)

∂ ρ
,

because N ∗
2 (ρ,τ) is constant in ρ unless σρ = τ. According to Lemma 2.17a, if for given N2 it

holds that d1 �= d−
1 (N2) and d1 �= d+1 (N2) (defined in (2.C.3)), then function g(d1, N1, N2,ρ) is

strictly increasing or decreasing in ρ. By construction, it holds that d+1 (N2) = t(d−
1 (N2);ρ,τ)

for any ρ. According to Lemma 2.16b, we have d−
1 (N

min
2 ) �= d−

1 (N
max
2 ), so d ′

1 cannot be equal
to both. Additionally, it cannot hold that d ′

1 = d+1 (N
min
2 ) or d ′

1 = d+1 (N
max
2 ), because it would

imply d ′′ ≤ d ′. Hence, either d ′
1 /∈ {d−

1 (N
min
2 ), d+1 (N

min
2 )} or d ′

1 /∈ {d−
1 (N

max
2 ), d+1 (N

max
2 )} holds

(or both).
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We show that in either case, we can construct two new scenarios where d ′
1 outperforms d ′′

1
in one scenario, and vice versa in the other. Suppose d ′

1 /∈ {d−
1 (N

min
2 ), d+1 (N

min
2 )}. In this case,

it holds that

∂ t(d ′
1;ρaux-min,τaux-min)

∂ ρ
�= 0. (2.B.9)

We consider two new scenarios. Let ε > 0 be a sufficiently small number and define

(ρ1,τ1) := (ρaux-min − ε,τaux-min), (∈ int(Zmin))

(ρ2,τ2) := (ρaux-min + ε,τaux-min). (∈ int(Zmin))

This is visualized in Figure 2.B.1. Due to (2.B.9) and (2.B.8a), it holds that�
t(d ′

1;ρ1,τ1)> d ′′ ∧ t(d ′
1;ρ2,τ2)< d ′′�∨ �t(d ′

1;ρ1,τ1)< d ′′ ∧ t(d ′
1;ρ2,τ2)> d ′′�. (2.B.10)

If the first clause is true, we obtain

f (d ′
1, Nmin

2 ;ρ1,τ1)> f (d ′′
1 , Nmin

2 ;ρ1,τ1),

f (d ′
1, Nmin

2 ;ρ2,τ2)< f (d ′′
1 , Nmin

2 ;ρ2,τ2),

where we used convexity of f (d1, Nmin
2 ;ρ,τ) for (ρ,τ) ∈ int(Zmin). Similarly, if the second

clause of (2.B.10) is true, we obtain

f (d ′
1, Nmin

2 ;ρ1,τ1)< f (d ′′
1 , Nmin

2 ;ρ1,τ1),

f (d ′
1, Nmin

2 ;ρ2,τ2)> f (d ′′
1 , Nmin

2 ;ρ2,τ2).

In either case, there is a scenario in Zmin where d ′
1 outperforms d ′′

1 and a scenario in Zmin

where d ′′
1 outperforms d ′

1. Hence, both d ′
1 and d ′′

1 are PARO. Using similar arguments, we can
show that in case d ′

1 /∈ {d−
1 (N

max
2 ), d+1 (N

max
2 )} also both d ′

1 and d ′′
1 are PARO.

2.B.3 Proof Theorem 2.14
Consider problem (2.18). At the start of stage 2, we have delivered N1 fractions with dose d1

per fraction. Let (ρ̂, τ̂) be the observation. The resulting stage-2 problem for (2.18) reads

max
d2,N2

min
(ρ,τ)∈Z(ρ̂,τ̂)

(N1d1 + N2d2) +τ(N1d2
1 + N2d2

2 ),

s.t. σN2d2 +ρσ
2N2d2

2 ≤ B(d1, N1,ρ), ∀(ρ,τ) ∈ Zρ̂,τ̂,

d2 ≥ dmin,

N2 ∈ {Nmin
2 , . . . , Nmax

2 }.

(2.B.11a)

(2.B.11b)
(2.B.11c)
(2.B.11d)

This is a static robust optimization problem. Constraint (2.B.11b) will hold with equality at the
optimum, because it is the only dose-limiting constraint. Solving for d2 yields the constraint

d2 = g(d1, N1, N2;ρ), ∀(ρ,τ) ∈ Z(ρ̂,τ̂),
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ρL ρU

τL

τU

(ρaux-min,τaux-min)

(ρ1,τ1) (ρ2,τ2)

τ= σρ

ρ

τ

Figure 2.B.1: Case d ′
1 �= d−

1 (N
min
2 ). Construction of two new scenarios (ρ1,τ1) and (ρ2,τ2)

from scenario (ρaux-min,τaux-min). Solution d ′
1 outperforms d ′′

1 at one scenario, vice versa at the
other.

and this is used to rewrite (2.B.11a) and (2.B.11b) in terms of functions f and g. Problem
(2.B.11) is equivalent to

max
N2

min
(ρ,τ)∈Z(ρ̂,τ̂)

f (d1, N2,ρ,τ),

s.t. g(d1, N1, N2;ρ)≥ dmin, ∀(ρ,τ) ∈ Z(ρ̂,τ̂),

N2 ∈ {Nmin
2 , . . . , Nmax

2 }.

(2.B.12a)

(2.B.12b)
(2.B.12c)

Similar to the exact case (Section 2.3), in any worst-case realization it will hold that τ is at its
lowest value, so it is sufficient to consider only those observations (ρ,τ) ∈ Z(ρ̂,τ̂) with τ = τ̂L.
Additionally, according to Lemma 2.17 functions f and g are increasing or decreasing in ρ.
Hence, there are two candidate worst-case scenarios: (ρ̂L , τ̂L) and (ρ̂U , τ̂L). We can rewrite
(2.B.12) to

max
N2

min
�

f (d1, N2, ρ̂L , τ̂L), f (d1, N2, ρ̂U , τ̂L)
�
,

s.t. g(d1, N1, N2; ρ̂L)≥ dmin,

g(d1, N1, N2; ρ̂U)≥ dmin,

N2 ∈ {Nmin
2 , . . . , Nmax

2 }.

(2.B.13a)

(2.B.13b)
(2.B.13c)
(2.B.13d)

We distinguish three cases:

• Case (ρ̂, τ̂) ∈ Zmax
ID : Analogous to the proof of Theorem 2.7, one can show that for any

realization (ρ,τ) ∈ Z(ρ̂,τ̂) it is optimal to maximize the number of fractions in stage
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2. We plug in N ∗
2 (ρ,τ) = Nmax

2 and show that it is feasible. Constraints (2.B.13b) and
(2.B.13c) reduce to

min
�

g(d1, N1, Nmax
2 ; ρ̂L), g(d1, N1, Nmax

2 ; ρ̂U)
�≥ dmin,

which is equivalent to

d1 ≤ min
�

g(dmin, Nmax
2 , N1; ρ̂L), g(dmin, Nmax

2 , N1; ρ̂U)
�
. (2.B.14)

It holds that ρ̂L ≥ τ̂L
σ ≥ τL

σ , and ρ̂U ≤ ρU . According to Lemma 2.17a function g is either
increasing or decreasing in ρ for other arguments fixed. Hence, by Assumption 2.11 con-
dition (2.B.14) holds. Hence, N ∗

2 (ρ,τ) = Nmax
2 is feasible and optimal. Thus, (2.B.12)

equals

min
�

f (d1, Nmax
2 , ρ̂L , τ̂L), f (d1, Nmax

2 , ρ̂U , τ̂L)
�
.

By definition of f , this implies

d2 =min
�

g(d1, N1, Nmax
2 ; ρ̂L), g(d1, N1, Nmax

2 ; ρ̂U)
�
.

• Case (ρ̂, τ̂) ∈ Zmin
ID : Similar to the previous case. Analogous to the proof of Theorem 2.7,

one can show that for any realization (ρ,τ) ∈ Z(ρ̂,τ̂) it is optimal to minimize the number
of fractions in stage 2. We plug in N ∗

2 (ρ,τ) = Nmin
2 and show that it is feasible. Similar

to the previous case, constraints (2.B.13b) and (2.B.13c) reduce to

d1 ≤ min
�

g(dmin, Nmin
2 , N1; ρ̂L), g(dmin, Nmin

2 , N1; ρ̂U)
�
. (2.B.15)

It holds that ρ̂L ≥ ρL, and ρ̂U ≤ ρU . Hence, by Assumption 2.11, Lemma 2.17a and
using the fact that function g is decreasing in its second argument, condition (2.B.15)
holds. Hence, N ∗

2 (ρ,τ) = Nmin
2 is feasible and optimal. Similar to the previous case, we

find

d2 =min
�

g(d1, N1, Nmin
2 ; ρ̂L), g(d1, N1, Nmin

2 ; ρ̂U)
�
.

• Case (ρ̂, τ̂) ∈ Z int
ID : The optimal number of fractions in stage-2 is not known a priori.

By definition of Z int
ID , it holds that ρ̂L ≥ max{ρL , τL

σ − 2rρ)} and ρ̂U ≤ ρU . By Assump-
tion 2.11 it holds that

d1 ≤ min
�

g(dmin, Nmax
2 , N1; max{ρL ,

τL

σ
− 2rρ)}, g(dmin, Nmax

2 , N1;ρU)
�
. (2.B.16)

Lemma 2.17a, the fact that function g is decreasing in its third argument and (2.B.16)
together imply that (2.B.13b) and (2.B.13c) hold for any feasible N2. Hence, from prob-
lem (2.B.13) we derive

N ∗
2 (d1; ρ̂, τ̂) = argmax

N2∈{Nmin
2 ,...,Nmax

2 }
min
�

f (d1, N2, ρ̂L , τ̂L), f (d1, N2, ρ̂U , τ̂L)
�
,
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and by definition of f the corresponding value for d2 is

d2 =min
�

g(d1, N1, N ∗
2 (d1; ρ̂, τ̂); ρ̂L), g(d1, N1, N ∗

2 (d1; ρ̂, τ̂); ρ̂U)
�
.

Combining the above three cases, we arrive at the optimal decision rules (2.20) and (2.21) for
fixed d1.

2.B.4 Extra analysis to Section 2.4
This analysis makes use of the lemmas in Appendix 2.C. Consider problem (2.18). For given
d1, the optimal stage-2 decision rules are given by Theorem 2.14. As stated in Section 2.4, we
split the uncertainty set Z into three subsets. This enables us to exploit the fact that depending
on (ρ̂, τ̂) the value N ∗

2 (d1; ρ̂, τ̂) may be known in advance. The split (2.19) is repeated here
for convenience

Zmin
ID = {(ρ̂, τ̂) ∈ Z : τ̂L ≥ σρ̂U},

Z int
ID = {(ρ̂, τ̂) ∈ Z : σρ̂L < τ̂L < σρ̂U},

Zmax
ID = {(ρ̂, τ̂) ∈ Z : τ̂L ≤ σρ̂L},

(2.B.17a)
(2.B.17b)
(2.B.17c)

so that Z = Zmin
ID ∪ Z int

ID ∪ Zmax
ID . The associated sets of observation-realization pairs (ρ,τ, ρ̂, τ̂)

are given by

Ui = U ∩ {(ρ,τ, ρ̂, τ̂) : (ρ̂, τ̂) ∈ Zi
ID}, i ∈ {min, int,max},

so it holds that U = Umin ∪ U int ∪ Umax. Set Ui can be interpreted as the set of observation-
realization pairs for which the observation (ρ̂, τ̂) is in set Zi

ID. Figure 2.4 illustrates the subsets
Zi
ID. Set Umin consists of those observation-realization pairs (ρ,τ, ρ̂, τ̂) for which N ∗

2 (d1; ρ̂, τ̂) =
Nmax

2 . If (ρ,τ, ρ̂, τ̂) ∈ U int, then based on the observation (ρ̂, τ̂) it is unclear what fractiona-
tion is worst-case optimal. Last, if (ρ,τ, ρ̂, τ̂) ∈ Umax we know N ∗

2 (d1; ρ̂, τ̂) = Nmin
2 . Problem

(2.18) is equivalent to

max
d1,q

q,

s.t. q ≤ f (d1, Nmin
2 ;ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈ Umin,

q ≤ f (d1, N ∗
2 (d1; ρ̂, τ̂);ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈ U int,

q ≤ f (d1, Nmax
2 ;ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈ Umax,

dmin ≤ d1 ≤ dmax
1 .

(2.B.18a)

(2.B.18b)
(2.B.18c)
(2.B.18d)
(2.B.18e)

Similar to the exact case (Section 2.3), in any worst-case realization it will hold that τ = τL.
Therefore, any observation with τ̂− rτ > τL cannot yield the worst-case realization. Define

Ui
L = Ui ∩ {(ρ,τ, ρ̂, τ̂) : τ̂− rτ ≤ τL}, i ∈ {min, int,max},
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which is the subset of Ui of observation-realization pairs for which τL is a possible realization
of τ. Constraints (2.B.18b)-(2.B.18e) can be replaced by

q ≤ f (d1, Nmin
2 ;ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈ Umin

L ,

q ≤ f (d1, N ∗
2 (d1; ρ̂, τ̂);ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈ U int

L ,

q ≤ f (d1, Nmax
2 ;ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈ Umax

L .

(2.B.19a)
(2.B.19b)
(2.B.19c)

For (2.B.19a) and (2.B.19c) it remains to find the worst-case realization of ρ for which the
observation-realization pair is in Umin

L and Umax
L , respectively. According to Lemma 2.17b,

function f is increasing or decreasing in ρ for fixed d1, so it is sufficient to check the maximum
and minimum realization of ρ for which the observation-realization pair is in those sets. These
are

min{ρ : (ρ,τ, ρ̂, τ̂) ∈ Umin
L }= ρL , max{ρ : (ρ,τ, ρ̂, τ̂) ∈ Umin

L }= τL

σ
,

min{ρ : (ρ,τ, ρ̂, τ̂) ∈ Umax
L }= τL

σ
, max{ρ : (ρ,τ, ρ̂, τ̂) ∈ Umax

L }= ρU .

Plugging in ρ = τL
σ in (2.B.19a) and (2.B.19c) gives q ≤ K , with K defined by (2.12).

Lemma 2.19 provides a conservative approximation of constraint (2.B.19b). Putting every-
thing together, the optimum of the following problem is a lower bound to the optimum of
(2.B.18) (or, equivalently, (2.18)):

max
d1,q

q,

s.t. q ≤ f (d1, Nmin
2 ;ρL ,τL),

q ≤ f (d1, Nmax
2 ;ρU ,τL),

q ≤ K ,

q ≤ p(d1),

dmin ≤ d1 ≤ dmax
1 ,

(2.B.20a)

(2.B.20b)
(2.B.20c)
(2.B.20d)
(2.B.20e)
(2.B.20f)

with p(d1) defined by (2.C.19) in Appendix 2.C. Constraint (2.B.20e) is the only conservative
constraint, all other constraints are exact reformulations. In particular, this means that if for a
solution the objective value equals K , it is certain that this is an optimal solution. It is easy to
obtain other straightforward conservative approximations of (2.B.18c). For instance, a policy
that delivers Nmin

2 or Nmax
2 fractions (or any number in between, for that matter) for any ob-

servation (ρ̂, τ̂) ∈ Z int
ID is a conservative approximation. However, these perform less good and

do not use all available information, as explained in the proof of Lemma 2.19.

2.C Extra lemmas
This appendix states and proves several frequently used properties of functions g and f .
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Lemma 2.15 (Convexity/concavity f w.r.t. d1). Let ρ > 0, τ > 0 and N1, N2 ∈ �+. Let
d1 ∈ [0, g(0, 0, N1;ρ)]. The following properties hold for function f :

• Function f (d1, N2;ρ,τ) is strictly convex in d1 ifτ > ρσ, with uniqueminimizer g(0,0, N1+
N2;ρ);

• Function f (d1, N2;ρ,τ) is strictly concave in d1 ifτ < ρσ, with uniquemaximizer g(0,0, N1+
N2;ρ);

• Function f (d1, N2;ρ,τ) is constant in d1 if τ= ρσ, with value 1
σB(0, 0, τσ ).

Proof. The partial derivative of f w.r.t. d1 is given by

∂ f (d1, N2;ρ,τ)
∂ d1

=

N1 + N2
∂ g(d1, N1, N2;ρ)

∂ d1
+τ
�
2N1d1 + 2N2 g(d1, N1, N2;ρ)

∂ g(d1, N1, N2;ρ)
∂ d1

�
, (2.C.1)

where the partial derivative of g w.r.t. d1 is given by

∂ g(d1, N1, N2;ρ)
∂ d1

= − 1
N2
(N1 + 2N1d1σρ)

�
1+

4ρ
N2

B(d1, N1;ρ)
�− 1

2
. (2.C.2)

Define h(d1, N2;ρ) = 1+ 4 ρN2
B(d1, N1;ρ). Then, plugging (2.C.2) in (2.C.1), we obtain

∂ f (d1, N2;ρ,τ)
∂ d1

= (N1 − (N1 + 2N1d1σρ)h(d1, N2;ρ)− 1
2

+τ
�
2N1d1 − 2

N2
(N1 + 2N1d1σρ)h(d1, N2;ρ)− 1

2 N2
−1+ h(d1, N2;ρ)

1
2

2σρ

�
=

N1

σρ

�
h(d1, N2;ρ)− 1

2 (2σρd1 + 1)− 1
�
(τ−ρσ).

Further elementary math shows that h(d1, N2;ρ)− 1
2 (2σρd1 + 1) − 1 = 0 if and only if d1 =

g(0, 0, N1 + N2;ρ). For the second derivative of f w.r.t. d1 we obtain:

∂ 2 f (d1, N2;ρ,τ)
∂ d2

1

=
�τ−ρσ
σρ

N1

� ∂
∂ d1

h(d1, N2;ρ)− 1
2 (2σρd1 + 1)

=
�τ−ρσ
σρ

N1

��
h(d1, N2;ρ)− 1

2 2σρ +
2ρ
N2
(2σρd1 + 1)h(d1, N2,ρ)− 3

2 (σN1 + 2ρσ2d1N1)

�
,

and the second part of this product is positive. Hence, its sign depends only on the term τ−ρσ.
Combining the result for the first and second derivative, we obtain

• Function f (d1, N2;ρ,τ) is strictly convex in d1 ifτ > ρσ, with uniqueminimizer g(0,0, N1+
N2;ρ);
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• Function f (d1, N2;ρ,τ) is strictly concave in d1 if τ < ρσ, with unique maximizer
g(0,0, N1 + N2;ρ);

• Function f (d1, N2;ρ,τ) is constant in d1 otherwise.
If τ= ρσ, we can rewrite f (d1, N2; τσ ,τ) to

f (d1, N2;
τ

σ
,τ) = max

d2

	
d1N1 + d2N2 +τ(d

2
1 N1 + d2

2 N2) | σ(d1N1 + d2N2) +ρσ
2(d2

1 N1 + d2
2 N2)≤ B(0,0;ρ)



= max

d2

	
d1N1 + d2N2 +τ(d

2
1 N1 + d2

2 N2) | σ(d1N1 + d2N2) +ρσ
2(d2

1 N1 + d2
2 N2) = B(0,0;ρ)



= max

d2

	
d1N1 + d2N2 +τ(d

2
1 N1 + d2

2 N2) | d1N1 + d2N2 +τ(d
2
1 N1 + d2

2 N2) =
1
σ

B(0,0,
τ

σ
)



=
1
σ

B(0, 0,
τ

σ
).

Define

d−
1 (N2) =

⎧⎪⎪⎨⎪⎪⎩
ϕD −ϕD

�
1+ (N1 + N2)

N2−T
N1T

� 1
2

σ(N1 + N2)
if N1 + N2 ≥ T ∧ N1 ≤ T

−∞ otherwise,

d+1 (N2) =

⎧⎪⎪⎨⎪⎪⎩
ϕD+ϕD

�
1+ (N1 + N2)

N2−T
N1T

� 1
2

σ(N1 + N2)
if N1 + N2 ≥ T ∧ N2 ≤ T

+∞ otherwise.

(2.C.3a)

(2.C.3b)

If two functions f with equal N2 but different ρ intersect, d1 takes value d−
1 (N2) or d+1 (N2).

The following lemma provides information on the existence and location of these intersection
points. We consider only those values for d1 where function f (d1, N2;ρ,τ) is finite for all
(ρ,τ) ∈ Z . Let

dUB = min
(ρ,τ)∈Z

g(0,0, N1;ρ).

Lemma 2.16 (Properties d−
1 and d+1 ). Let N1, T ∈ �+.

(a) Let N2 ∈ �+. If ρ1 �= ρ2, the equation

f (d1, N2;ρ1,τ) = f (d1, N2;ρ2,τ), (2.C.4)

has the following real roots for d1 on the interval [0, dUB]:

• d−
1 (N2) and d+1 (N2) if N1 + N2 ≥ T, N2 ≤ T and N1 ≤ T

• d−
1 (N2) if N1 + N2 ≥ T, N2 ≤ T and N1 > T

• d+1 (N2) if N1 + N2 ≥ T, N2 > T and N1 ≤ T

• no roots on interval if N1 + N2 ≥ T, N2 > T and N1 > T

• no real roots otherwise.

(2.C.5a)
(2.C.5b)
(2.C.5c)
(2.C.5d)
(2.C.5e)
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(b) Let NA
2 , N B

2 ∈ �+ such that NA
2 < N B

2 . It holds that

(i) If d−
1 (N

A
2 ) and d−

1 (N
B
2 ) are both finite, then d−

1 (N
A
2 )> d−

1 (N
B
2 );

(ii) If d+1 (N
A
2 ) and d+1 (N

B
2 ) are both finite, then d+1 (N

A
2 )≤ d+1 (N

B
2 ).

Proof. Both parts of the lemma are proved individually.
Proof Lemma 2.16a
By definition of f , the equation f (d1, N2;ρ1,τ) = f (d1, N2;ρ2,τ) reduces to g(d1, N1, N2;ρ1) =
g(d1, N1, N2;ρ2) with d1 ∈ [0, min{g(0,0, N1;ρ1), g(0, 0, N1;ρ2)}]. By construction of g, this
means we are interested in the pairs (d1, d2) that solve the system

σ(N1d1 + N2d2) +ρ1σ
2(N1d2

1 + N2d2
2 ) = ϕD(1+ρ1

D
T
ϕ),

σ(N1d1 + N2d2) +ρ2σ
2(N1d2

1 + N2d2
2 ) = ϕD(1+ρ2

D
T
ϕ),

d1 ≥ 0, d2 ≥ 0.

(2.C.6a)

(2.C.6b)

(2.C.6c)

We subtract ρ2
ρ1

times (2.C.6a) from (2.C.6b) and solve for d1 to obtain

d1 =
ϕD −σN2d2

σN1
. (2.C.7)

We know that d2 = g(d1, N1, N2;ρ1). Plugging (2.C.7) in this expression and simplifying gives
the following roots for d2:

r−
2 (N2) =

ϕD+ϕD
�
1+ (N1 + N2)

�N1
T − 1
�
/N2

� 1
2

σ(N1 + N2)
,

r+2 (N2) =
ϕD −ϕD

�
1+ (N1 + N2)

�N1
T − 1
�
/N2

� 1
2

σ(N1 + N2)
.

(2.C.8a)

(2.C.8b)

Plugging (2.C.8) in (2.C.7) and simplifying gives the following roots for d1:

r−
1 (N2) =

ϕD −ϕD
�
1+ (N1 + N2)

N2−T
N1T

� 1
2

σ(N1 + N2)
,

r+1 (N2) =
ϕD+ϕD

�
1+ (N1 + N2)

N2−T
N1T

� 1
2

σ(N1 + N2)
.

These roots need not be real-valued, nor in the interval [0, min{g(0,0, N1;ρ1), g(0,0, N1;ρ2)}].
For both r−

1 (N2) and r+1 (N2) to be real-valued, we require that

1+ (N1 + N2)
�N1

T
− 1
�
/N2 ≥ 0,
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which reduces to N1+N2 ≥ T . Furthermore, for nonnegativity of r−
1 (N2) and r+1 (N2) it suffices

to check nonnegativity of the former. This is equivalent to

ϕD −σN2d−
2 ≥ 0,

which reduces to N2 ≤ T . Moreover, it needs to hold that r+1 (N2)≤ g(0, 0, N1;ρ1) and r+1 (N2)≤
g(0,0, N1;ρ2). This is equivalent to r+2 (N2)≥ 0, which can be rewritten to

1+ (N1 + N2)
�N1

T
− 1
�
/N2 ≤ 1,

and this reduces to N1 ≤ T . Parameters d−
1 (N2) resp. d+1 (N2) (see (2.C.3)) take the values of

r−
1 (N2) resp. r−

1 (N2) if they are a root of (2.C.4), and −∞ resp. +∞ otherwise. All together,
we obtain the cases in (2.C.5).

It remains to show that the obtained roots are in the interval [0, dUB]. It is already shown
that, if they are (real-valued) roots to (2.C.4), then d−

1 (N2), d+1 (N2) are nonnegative. Further-
more, in that case d−

1 (N2)≤ d+1 (N2). It holds that

∂ g(0,0, N1;ρ)
∂ ρ

≤ 0 ⇔ N1 ≤ T.

Hence, if d+1 (N2) is a real-valued root to (2.C.4) it follows that

dUB = min
(ρ,τ)∈Z

g(0,0, N1;ρ)≥ lim
ρ→+∞ g(0, 0, N1;ρ) =

ϕD

σ
�

N1T
≥ d+1 (N2),

where the second equality follows from the definition of g. This implies that indeed d−
1 (N2),

d+1 (N2) ∈ [0, dUB].

Proof Lemma 2.16b
Assume NA

2 , N B
2 ∈ �+ such that NA

2 ≤ N B
2 , and assume N1+NA

2 ≥ T . Statements (i) and (ii) are
proved individually.

Proof part (i)
Assume d−

1 (N
A
2 ) and d−

1 (N
B
2 ) are both finite. The denominator of d−

1 (N2) (see (2.C.3a)) is in-
creasing in N2. The derivative (w.r.t. N2) of the part within the square root in the numerator of
(2.C.3a) is given by (N1T )−1(N1 + 2N2 − T ) ≥ 0, because N1 + N2 ≥ T . Hence, the numerator
is decreasing in N2, while the denominator is increasing in N2. This implies d−

1 (N
A
2 )> d−

1 (N
B
2 ).

Proof part (ii)
Assume d+1 (N

A
2 ) and d+1 (N

B
2 ) are both finite. One can show that

∂ d+1 (N2)

∂ N2
= ϕD

(N1 + N2)(N1 + 2N2 − T )− 2N1T
�

N2(N1+N2−T )
N1T − 2N2(N1 + N2 − T )

2N1Tσ(N1 + N2)2
�

N2(N1+N2−T )
N1T

.



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

74 Adjustable robust treatment-length optimization

This implies

∂ d+1 (N2)

∂ N2
≥ 0

⇔ (N1 + N2)(N1 + 2N2 − T )− 2N1T

√√√N2(N1 + N2 − T )
N1T

− 2N2(N1 + N2 − T )≥ 0

⇔ N1(N1 + N2 − T ) + T N2

2N1T
≥
√√√N2(N1 + N2 − T )

N1T

⇔
�
N1(N1 + N2 − T ) + T N2

�2
4N2

1 T2
≥ N2(N1 + N2 − T )

N1T

⇔ (N1 − T )2(N1 + N2)2

4N2
1 T2

≥ 0, (2.C.9)

where the fourth line is obtained by using the fact that N1+N2 ≥ T , and squaring on both sides.
The last line follows from simple algebraic manipulations. Condition (2.C.9) clearly holds, so
d+1 (N

A
2 )≤ d+1 (N

B
2 ).

Lemma 2.17 (Derivative f and g w.r.t. ρ). Let (ρ,τ) ∈ Z .

(a) Let N ′, N ′′ ∈ �+. Let d ′ ∈ [0, dUB]. If N ′ + N ′′ < T , then

∂ g(d ′, N ′, N ′′;ρ)
∂ ρ

< 0 for all d ′ ∈ [0, dUB].

If N ′ + N ′′ ≥ T , then

∂ g(d ′, N ′, N ′′;ρ)
∂ ρ

⎧⎪⎨⎪⎩
< 0 if d ′ ∈ [0, d−

1 (N
′′))∪ (d+1 (N ′′), dUB]

= 0 if d ′ ∈ [0, dUB]∩ {d−
1 (N

′′), d+1 (N
′′)}

> 0 if d ′ ∈ [0, dUB]∩ (d−
1 (N

′′), d+1 (N
′′)).

(2.C.10)

(b) Let N1, N2 ∈ �+. Let d1 ∈ [0, dUB]. If N1 + N2 < T , then

∂ f (d1, N2;ρ,τ)
∂ ρ

< 0 for all d1 ∈ [0, dUB].

If N1 + N2 ≥ T , then

∂ f (d1, N2;ρ,τ)
∂ ρ

⎧⎪⎨⎪⎩
< 0 if d1 ∈ [0, d−

1 (N2))∪ (d+1 (N2), dUB]

= 0 if d1 ∈ [0, dUB]∩ {d−
1 (N2), d+1 (N2)}

> 0 if d1 ∈ [0, dUB]∩ (d−
1 (N2), d+1 (N2)).
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Proof. We first prove Lemma 2.17a, after that the result of Lemma 2.17b is easily obtained.
It holds that

∂ g(d ′, N ′, N ′′;ρ)
∂ ρ

=

�
1+ 4ρ

N ′′ B(d ′, N ′;ρ)− 1+ 2ρ
N ′′ (d ′N ′σ−ϕD)

2σρ2
�

1+ 4ρ
N ′′ B(d ′, N ′;ρ)

,

so

∂ g(d ′, N ′, N ′′;ρ)
∂ ρ

≥ 0 ⇔�(N ′′)2 + 4ρN ′′B(d ′, N ′;ρ)≥ N ′′ + 2ρ(ϕD − d ′N ′σ). (2.C.11)

We distinguish 2 cases:

• ϕD ≥ d ′N ′σ. In this case, squaring (2.C.11) on both sides and simplifying results in

−σ2N ′(N ′ + N ′′)d ′2 + 2ϕDN ′σd ′ +
�N ′′

T
− 1
�
ϕ2D2 ≥ 0, (2.C.12)

which is a condition independent of ρ. If N ′+N ′′ < T , this inequality has no roots for d ′,
and (2.C.12) holds for all d ′ ∈ [0, ϕD

N ′σ ]. If N ′+N ′′ ≥ T one can verify that d1 = d−
1 (N

′′)
and d1 = d+2 (N

′′) are the roots of this concave parabola if they are finite. The smaller
root, d−

1 (N
′′), is finite if and only if N ′′ ≤ T . The larger root, d+1 (N

′′) is finite if and only
if N ′ ≤ T .

• ϕD < d ′N ′σ. In this case, B(d ′, N ′;ρ) > 0 only if N ′ > T . In this case, the delivered
dose exceeds the dose that is used to set the BED tolerance, which is only possible if
the number of fractions N ′ is strictly larger than the reference number of fractions T .
Condition (2.C.11) clearly holds, so g(d ′, N ′, N ′′;ρ) is increasing in ρ. Using the fact
that N ′ > T it is easily shown that d−

1 <
ϕD
σN ′ < d ′. Additionally, it can be shown that

dUB < d+1 (N
′′). Hence this case satisfies (2.C.10). Putting all of the above together yields

the required result for g, i.e., Lemma 2.17a.

The partial derivative of f w.r.t. ρ is given by

∂ f (d1, N2;ρ,τ)
∂ ρ

=
∂ g(d1, N1, N2;ρ)

∂ ρ

�
N2 + 2τN2 g(d1, N1, N2;ρ)

�
.

Hence, the sign of the partial derivative of f w.r.t. ρ is equal to the sign of the partial derivative
of g w.r.t. ρ. The result of Lemma 2.17b immediately follows.

For given (ρ,τ) such that τ �= σρ, define the twin point of d1 ∈ W (ρ,τ) as

t(d1;ρ,τ) :=

�
N1 − N ∗

2 (ρ,τ)
�
d1 + 2N ∗

2 (ρ,τ)g
�
d1, N1, N ∗

2 (ρ,τ);ρ
�

N1 + N ∗
2 (ρ,τ)

, (2.C.13)
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0
d
1 t(d

1 ;ρ,τ)

t(0;ρ,τ)

g(0,0,N
1 ;ρ)

g(0,0,N
1 +

N
2 ;ρ)

f

(a) Case t(0;ρ,τ)< g(0, 0, N1;ρ).

0
d
1 t(d

1 ;ρ,τ)

t(g(0,0,N
1 ;ρ);ρ,τ)

g(0,0,N
1 ;ρ)

g(0,0,N
1 +

N
2 ;ρ)

f

(b) Case t(0;ρ,τ)> g(0, 0, N1;ρ).

Figure 2.C.1: Illustration of d1 and t(d1;ρ,τ), for convex f .

where

W (ρ,τ) :=
�

max{0, t(g(0,0, N1;ρ);ρ,τ)}, min{t(0;ρ,τ), g(0, 0, N1;ρ)}�
\{g(0,0, N1 + N2;ρ)}.

Figure 2.C.1 illustrates the relation between d1 and t(d1;ρ,τ). Set W can be interpreted as
the points d1 for which there exists another point the graph of f that has the same value, we
refer to such points as twin points. The following lemma proves that for fixed (ρ,τ) any d1 in
the set W (ρ,τ) has a twin point t(d1;ρ,τ) that is also in the set W (ρ,τ), and their objective
values are equal.

Lemma 2.18. Let (ρ,τ) ∈ Z such that τ �= σρ, let N2 = N ∗
2 (ρ,τ) and let d1 ∈ [0, g(0, 0, N1;ρ)].

The equation

f (d1, N2;ρ,τ) = f (d ′
1, N2;ρ,τ), (2.C.14)

has a solution d ′
1 ∈ [0, g(0,0, N1;ρ)] unequal to d1 if and only if d1 ∈ W (ρ,τ). In that case,

there is a unique solution d ′
1 = t(d1;ρ,τ) ∈ W (ρ,τ), and it holds that d1 = t(t(d1;ρ,τ);ρ,τ).

Proof. Let (ρ,τ) such that τ �= σρ, let N2 = N ∗
2 (ρ,τ). We first show that if there exists a

solution d ′
1 to (2.C.14) unequal to d1, then this solution is d ′

1 = t(d1;ρ,τ) and that d1 =
t(t(d1;ρ,τ);ρ,τ). Subsequently, we show that this solution exists only if d1 ∈ W (τ,ρ) and
that in that case also t(d1;ρ,τ) ∈ W (ρ,τ).
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First part:
Let L,Q ∈ �+ denote the linear and quadratic contribution of d1 to f , i.e.,

L(d1, N2,ρ) := N1d1 + N2 g(d1, N1, N2;ρ),

Q(d1, N2,ρ) := N1d2
1 + N2 g(d1, N1, N2;ρ)2.

(2.C.15a)
(2.C.15b)

We show that for any d1 ∈ [0, g(0,0, N1;ρ)] unequal to g(0, 0, N1 + N2,ρ) there is a unique
solution d ′

1 such that

L(d1, N2;ρ) = L(d ′
1, N2;ρ),

Q(d1, N2;ρ) =Q(d ′
1, N2;ρ).

(2.C.16a)
(2.C.16b)

Any such d ′
1 has exactly the same objective value as d1. Plug (2.C.15) in (2.C.16), rewrite the

first equation to eliminate g, and plug this in the second equation to get

d ′
1 =

L(d1, N2;ρ)±�N2
N1

�
(N1 + N2)Q(d1, N2;ρ)− L2(d1, N2;ρ)

�
N1 + N2

=
N1d1 + N2 g(d1, N1, N2;ρ)± N2(d1 − g(d1, N1, N2;ρ))

N1 + N2
. (2.C.17)

The ‘+’ solution to (2.C.17) returns d ′
1 = d1, and the ‘–’ solution returns

d ′
1 =
(N1 − N2)d1 + 2N2 g(d1, N1, N2,ρ)

N1 + N2
,

andwe denote this solution by t(d1;ρ,τ). By construction, it holds that d1 = t(t(d1;ρ,τ);ρ,τ).
Because τ �= σρ, function f (d1, N2;ρ,τ) is a strictly convex or concave function according to
Lemma 2.15, so f (d1, N2;ρ,τ) = z for some constant z ∈ � has either 0, 1 or 2 solutions. In
particular, d1 = t(d1;ρ,τ) if and only if d1 equals minimizer g(0, 0, N1+N2;ρ). Hence if there
exists a solution d ′

1 to (2.C.14) unequal to d1, then this solution is d ′
1 = t(d1;ρ,τ).

Second part:

• Suppose d1 /∈ W (ρ,τ). We distinguish three cases. Case (i): ‘d1 = g(0, 0, N1 + N2;ρ)’.
Because this is the unique minimizer of f , there does not exist a d ′

1 with equal objective
value. Case (ii). ‘d1 > min{t(0;ρ,τ), g(0, 0, N1;ρ)}’. Because d1 ∈ [0, g(0,0, N1;ρ)],
this implies d1 > t(0,ρ,τ). As shown in the first part of the proof, it holds that d1 =
t(t(d1;ρ,τ);ρ,τ). Hence, d1 > t(0;ρ,τ) is equivalent to t(t(d1;ρ,τ),ρ,τ)> t(0;ρ,τ).
Because t(d1;ρ,τ) is decreasing in d1, this implies t(d1;ρ,τ) < 0, so according to
(2.B.1c) it holds that f (t(d1;ρ,τ), N2;ρ,τ) = −∞ and we have a contradiction. Case
(iii): ‘d1 < max{0, t(g(0,0, N1;ρ);ρ,τ)}’. Similar to case (ii), one can show that
f (t(d1;ρ,τ), N2;ρ,τ) = −∞.
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• Suppose d1 ∈ W (ρ,τ). From (2.C.17) one can see that, because the term
d1 − g(d1, N1, N2,ρ) is increasing in d1, the function t(d1;ρ,τ) is decreasing in d1. Con-
sequently,

d1 ≤ min{t(0;ρ,τ), g(0, 0, N1;ρ)} ⇔ d ′
1 ≥ max{0, t(g(0,0, N1;ρ);ρ,τ)}.

Furthermore, using the same argument,

d1 ≥ max{0, t(g(0,0, N1;ρ);ρ,τ)} ⇔ d ′
1 ≤ min{t(0;ρ,τ), g(0,0, N1;ρ)}.

Therefore, it holds that d ′
1 ∈ W (ρ,τ).

In the following lemma, let I(·|S) denote the indicator function for a set S:

I(x |S) =
�

1 if x ∈ S

0 otherwise.

Lemma 2.19. For given q ∈ �+ and given d1 ∈ [0, dUB],

q ≤ f (d1, N ∗
2 (d1; ρ̂, τ̂);ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈ U int

L , (2.C.18)

holds if τ≤ p(d1), with

p(d1) =
∑

η∈{Nmin
2 ,...,Nmax

2 }
max
�

f (d1,η;ρint
L ,τL), f (d1,η− 1;ρint

U ,τL)
�

I(d1|Sη)

+ f (d1, Nmin
2 ;ρint

L ,τL)I(d1|Smin) + f (d1, Nmax
2 ;ρint

U ,τL)I(d1|Smax),

(2.C.19)

where sets Smin, Smax and Sη are defined in (2.C.21a), (2.C.21d) and (2.C.24), respectively, and
ρint

L , ρint
U are defined in (2.C.26).

Proof. By definition of N ∗
2 (d1; ρ̂, τ̂) and U int

L , it holds that

q ≤ f (d1, N ∗
2 (d1; ρ̂, τ̂);ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈ U int

L ,

is equivalent to

q ≤ max
η̃∈{Nmin

2 ,...,Nmax
2 }

min{ f (d1, η̃; ρ̂L , τ̂L), f (d1, η̃; ρ̂U , τ̂L)},

∀(ρ̂, τ̂) ∈ Z int
ID ∩ {(ρ̂, τ̂) : τ̂≤ τL + rτ},

(2.C.20)

and because function f is increasing in τ, we need to consider only those observations (ρ̂, τ̂)
with τ̂L = τL. For the first part of the proof, we fix the observation (ρ̂, τ̂), plug in τ̂L = τL,
and rewrite (2.C.20) for this fixed observation.
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Because (ρ̂, τ̂) ∈ Z int
ID , it holds that σρ̂L < τL < σρ̂U . Hence, by Lemma 2.15, function

f (d1,η, ρ̂L ,τL) is convex and f (d1,η, ρ̂U ,τL) is concave in d1 for any η ∈ �+. We make use of
results of Lemma 2.16. Define

E− := {η : N1 +η≥ T,η≤ T} ∩ {Nmin
2 , . . . , Nmax

2 },

E+ := {η : N1 +η≥ T, N1 ≤ T} ∩ {Nmin
2 , . . . , Nmax

2 },

and let η−
min, η

−
max, η

+
min and η+max, denote the smallest and largest elements of E− and E+,

respectively. If η ∈ E− respectively η ∈ E+, then, according to Lemma 2.16a, d1 = d−
1 (η)

respectively d1 = d+1 (η) is a nonnegative real root of

f (d1,η; ρ̂L ,τL) = f (d1,η; ρ̂U ,τL),

and the corresponding objective value equals K . From Lemma 2.16b we know that

d−
1 (N

max
2 )< . . .< d−

1 (N
min
2 )≤ d+1 (N

min
2 )≤ . . . ≤ d+1 (N

max
2 ).

We use this to split the domain [0, dUB] as follows:

Smin :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(d−
1 (η

−
min), d+1 (η

+
min)) if E− �= �, E+ �= �

[0, d+1 (η
+
min)) if E− = �, E+ �= �

(d−
1 (η

−
min), dUB] if E− �= �, E+ = �

� if N1 + Nmax
2 < T

[0, dUB] otherwise,

(2.C.21a)

S−
η :=

�
[d−

1 (η), d−
1 (η− 1)] if η−

min ≤ η− 1< η≤ η−
max

� otherwise,

∀η ∈ {Nmin
2 + 1, . . . , Nmax

2 },

(2.C.21b)

S+η :=

�
[d+1 (η− 1), d+1 (η)] if η+min ≤ η− 1< η≤ η+max

� otherwise,

∀η ∈ {Nmin
2 + 1, . . . , Nmax

2 },

(2.C.21c)

Smax :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[0, d−
1 (η

−
max))∪ (d+1 (η+max), dUB] if E− �= �, E+ �= �

(d+1 (η
+
max), dUB] if E− = �, E+ �= �

[0, d−
1 (η

−
max)) if E− �= �, E+ = �

[0, dUB] if N1 + Nmax
2 < T

� otherwise.

(2.C.21d)

We will reformulate (2.C.20) on each interval (set) separately, assuming it is nonempty.
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1. “Smin”: If d1 ∈ Smin, then f (d1,η; ρ̂L ,τL) < f (d1,η; ρ̂U ,τL) for all η ∈ {Nmin
2 , . . . , Nmax

2 }
according to Lemma 2.17b, so it is optimal to deliver Nmin

2 fractions. Hence, on this
interval (2.C.20) is equivalent to

q ≤ f (d1, Nmin
2 ; ρ̂L ,τL).

2. “S−
η ”: From Lemma 2.16a we know that f (d1,η, ρ̂L ,τL) = f (d1,η, ρ̂U ,τL) if d1 =

d−
1 (η) or d1 = d+1 (η). In this case, the objective value equals K . Furthermore, function

f (d1,η, ρ̂L ,τL) is convex and f (d1,η, ρ̂U ,τL) is concave in d1. Consider the interval
[d−

1 (η), d−
1 (η− 1)]. It holds that

f (d1,η; ρ̂L ,τL)≤ K ≤ f (d1,η− 1; ρ̂L ,τL),

f (d1,η− 1; ρ̂U ,τL)≤ K ≤ f (d1,η; ρ̂U ,τL).

(2.C.22a)
(2.C.22b)

This implies that if d1 ∈ [d−
1 (η), d−

1 (η − 1)], it is optimal to deliver either η or η − 1
fractions. If we deliver η fractions, the restricting worst-case scenario is (ρ̂L ,τL) and the
value f is above K for the scenario (ρ̂U ,τL). If we deliver η′ > η fractions, the value for
the scenario (ρ̂L ,τL) decreases, while the value for the scenario (ρ̂U ,τL) increases even
further. Hence, delivering η′ > η fractions cannot be optimal. Similarly, delivering less
than η−1 fractions cannot be optimal. Therefore, if d1 ∈ [d−

1 (η), d−
1 (η−1)] it is optimal

to deliver either η or η − 1 fractions. This implies that on the interval S−
η constraint

(2.C.20) is equivalent to

q ≤ max{ f (d1,η; ρ̂L ,τL), f (d1,η− 1; ρ̂U ,τL)}. (2.C.23)

Note that this result does not depend on the values ρ̂L and ρ̂U , we only use that ρ̂L <
τL
σ < ρ̂U .

3. “S+η ”: Similar to the case for S+η , one can show that for d1 ∈ S+η constraint (2.C.20) is
equivalent to (2.C.23).

4. “Smax”: If d1 ∈ Smax, then f (d1,η; ρ̂L ,τL)> f (d1,η; ρ̂U ,τL) for all η ∈ {Nmin
2 , . . . , Nmax

2 }
according to Lemma 2.17b, so it is optimal to deliver Nmax

2 fractions. Hence, on this
interval (2.C.20) is equivalent to

q ≤ f (d1, Nmax
2 ; ρ̂U ,τL).

For sets S−
η and S+η the reformulation is the same. Therefore, define

Sη = S−
η ∪ S+η . (2.C.24)
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Putting everything together, for d1 ∈ [0, dUB] the constraint (2.C.20) is equivalent to

q ≤ ∑
η∈{Nmin

2 ,...,Nmax
2 }

max{ f (d1,η; ρ̂L ,τL), f (d1,η− 1; ρ̂U ,τL)}I(d1|Sη)

+ f (d1, Nmin
2 ; ρ̂L ,τL)I(d1|Smin) + f (d1, Nmax

2 ; ρ̂U ,τL)I(d1|Smax),

∀(ρ̂, τ̂) ∈ Z int
ID ∩ {(ρ̂, τ̂) : τ̂≤ τL + rτ}.

(2.C.25)

In order to find a tractable conservative robust counterpart of (2.C.25), denote

ρint
L =max{ρL ,

τL

σ
− 2rρ},

ρint
U =min{ρU ,

τL

σ
+ 2rρ},

(2.C.26a)

(2.C.26b)

and note that ρint
L ≤ ρ̂L <

τL
σ < ρ̂U ≤ ρint

U . Only if d1 ∈ Sη, the robust counterpart is con-
servative. By Lemma 2.17b, it holds that function f is strictly decreasing, constant or strictly
increasing in ρ for fixed d1, so

f (d1,η; ρ̂L ,τL)≥min{ f (d1,η;ρint
L ,τL), f (d1,η;

τL

σ
,τL)}

=min{ f (d1,η;ρint
L ,τL), K}

= f (d1,η;ρint
L ,τL),

where the second equality follows from (2.C.22). A similar result holds for f (d1,η−1; ρ̂U ,τL).
Furthermore, as shown before, f is increasing in ρ on Smin and decreasing in ρ on Smax. There-
fore, a conservative approximation of (2.C.18) is given by

q ≤ ∑
η∈{Nmin

2 ,...,Nmax
2 }

max{ f (d1,η;ρint
L ,τL), f (d1,η− 1;ρint

U ,τL)}I(d1|Sη)

+ f (d1, Nmin
2 ;ρint

L ,τL)I(d1|Smin) + f (d1, Nmax
2 ;ρint

U ,τL)I(d1|Smax),

and the RHS is p(d1).

Function p(d1) is a piecewise function. On intervals defined by Smin and Smax it is convex and
concave, respectively. On any interval Sη function p(d1) is the maximum of a concave and
convex function.
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CHAPTER 3

Optimal treatment plan adaptation using
mid-treatment imaging biomarkers

3.1 Introduction

In radiation therapy (RT), the goal of personalized treatment is to tailor the RT treat-
ment plan according to patients’ biological characteristics in order to maximize the
patient-specific therapeutic window; i.e., maximum tumor control and minimum RT-
induced complications. This can be done either before the treatment, using baseline
observations (e.g. radiological findings, gene mutation status, etc.) or during the
RT course, using mid-treatment patient-specific biological information. If appropri-
ate mid-treatment biomarkers1 are available, the latter approach provides the addi-
tional opportunity to assess the actual (as opposed to anticipated) patients’ response
to RT and adjusting the treatment plan accordingly. Although in recent years some
attention has been given to studying mid-treatment (mostly imaging) biomarkers of
RT outcome (e.g., positron emission tomography [PET]-magnetic resonance imaging
[MRI] in neoadjuvant RT of sarcoma [NCT030763332], magnetic resonance elastog-
raphy in RT of liver metastasis [NCT034018142], diffusion-weighted MRI in glioma
[NCT021862622]), the question of how to adapt the treatment plan based on these
biomarkers has not yet been properly addressed. To address this gap in the litera-
ture and provide a systematic framework for mid-treatment biomarker-based RT plan
adaptation, our team recently introduced the concept of optimal stopping in radiation
therapy (OSRT) (Ajdari et al., 2019). In short, OSRT views the treatment planning
problem as a dynamic problem in which at each decision stage (fraction), based on
the estimated assessment of patient’s radiobiological condition, the treatment plan can

1For a brief discussion of the characteristics of an appropriate mid-treatment biomarker, we refer to
Baumann et al. (2016) and Ajdari et al. (2019)

2See clinicaltrials.gov.
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84 Optimal treatment plan adaptation

be optimally adapted and/or stopped, if necessary. We also provided an overview of
mathematical approaches suitable for the resulting dynamic decision-making process.
In order to further concretize our concept, in this chapter we set out to implement
one of the aspects of OSRT, namely, the optimal mid-treatment dose adaptation, in
real-world clinical cases.

Most of the research efforts in this direction can be categorized into two broad
strands: clinical efforts and theoretical studies. Research in the first group generally
use pre-defined dose escalation or de-escalation levels which are defined based on
historical data and/or physician’s judgment when the protocol is designed. A good
example is an RTOG 1106 clinical trial (NCT011905272), where RT plans for patients
with non-small cell lung cancer (NSCLC) were adapted based on mid-treatment imag-
ing information (Kong et al., 2017), and the treatment dose was escalated in patients
who showed high focal uptake of [(18)F]-fluorodeoxyglucose (FDG) on mid-treatment
PET images. Similarly, in an ongoing clinical trial (NCT021862622), mid-treatment
diffusion-weighted MRI is being used for escalating the dose of glioblastoma patients.
Another clinical trial (NCT034161532) is pursuing dose de-escalation based on mid-
treatment FDG-PET scans for a select group of human papillomavirus-positive oropha-
ryngeal cancer patients.

In the second group, researchers have proposed several theoretical methods to
adapt the RT treatment plan based on (mostly) theoretical mid-treatment biomark-
ers. Though their method was not specifically designed for mid-treatment adaptation,
Yang and Xing (2005b) proposed a theoretical framework for including radiobiological
parameters (radiosensitivity parameters, proliferation rate, and clonogen cell density)
— which were assumed to be known, in inverse treatment planning. South et al.
(2008) then extended their work to estimate the radiobiological parameters based on
“simulated” mid-treatment (hypoxia) images. Another body of literature aims to adapt
treatment via direct optimization of biological criteria. Kim et al. (2009), Ghate (2011)
and Kim et al. (2012b) use Markov decision processes for adaptive spatiotemporal op-
timization, assuming response uncertainties. Their stochastic control framework di-
rectly optimizes tumor control probability (TCP) subject to normal tissue biologically
effective dose (BED) constraints. The framework has been concretized with hypoxia
as a biomarker (Saberian et al., 2016b). Ajdari et al. (2018) assume temporally and
spatially varying α and β parameters, and adaptively optimize the treatment-length
based on (hypothetically) observed tumor density, in order maximize TCP subject to
BED constraints. In Chapter 2 we take an adjustable robust optimization approach to
treatment-length optimization using the BED model, assuming biomarker data pro-
vides inexact estimates of α/β parameters.
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Perhaps the closest examples to our approach of blending the theoretical and clini-
cal aspects of RT plan adaptation in this chapter are the works of Søvik et al. (2007) and
Clausen et al. (2014). In Søvik et al. (2007) the RT plan of a canine sarcoma patient
is retrospectively adapted using daily mid-treatment dynamic contrast-enhanced-MRI
to maximize TCP by achieving a uniform clonogen cell density across the tumor vol-
ume. They also showed that the normal tissue complication probability (NTCP) is not
deteriorated as the result of this adaptation. Clausen et al. (2014) performed retro-
spective dose escalation of tumor sub-volumes in five canine sarcoma and carcinoma
patients. The sub-volumes were determined by baseline and mid-treatment functional
PET scans and dose-escalation was performed based on five pre-determined dose levels
(up to 150% of original dose).

What distinguishes our work from these studies is twofold: first, we present an
image-guided adaptive treatment planning framework that directly optimizes patient-
specific biological functions (i.e., TCP and NTCP), improving upon the indirect mea-
sures taken in the previous works. Second, the uncertainty in biomarker informa-
tion, which is a significant factor in determining the quality of the adapted plans,
is incorporated in our approach. In particular, the radiation response parameters
are estimated from early response as measured via surrogate pre- and mid-treatment
biomarkers. These are used for optimal uniform dose adaptation and continuous
dose adaptation, directly optimizing TCP and NTCP criteria. The approach is demon-
strated via retrospective adaptive optimization of treatment plans for a cohort of 14
canines with sinonasal tumors imaged with 3’-deoxy-3’[(18)F]-fluorothymidine (FLT)
PET/computed tomography (CT) (Bradshaw et al., 2013, 2015) as the response
biomarker. This work can be seen as the first step towards a clinical implementation
of our OSRT framework.

The remainder of this chapter is organized as follows. Section 3.2 describes the
methodology, and Section 3.3 describes the results of the retrospective adaptive opti-
mization of a cohort of canine sinonasal patients. Subsequently, Section 3.4 discusses
the results, information uncertainty and modeling limitations. Section 3.5 concludes
the chapter.

3.2 Methods
In the current study, we present a methodology for optimally adapting treatment plans
based on imaging biomarkers. We consider a fractionated treatment consisting of two
stages. Prior to treatment, an imaging biomarker is taken, and a treatment plan is
constructed. This treatment is delivered for a fixed number of fractions (stage 1),
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86 Optimal treatment plan adaptation

after which a mid-treatment imaging biomarker is taken. Based on the pre- and mid-
treatment scan, the treatment plan is adapted and delivered for the remainder of the
treatment course (stage 2). There are four main components in this methodology (a
schematic overview is provided in Figure 3.1):

1. An imaging biomarker that produces voxel-wise signals of early treatment re-
sponse.

2. A biological response model relating absorbed dose in a tissue to a quantifiable
outcome measure.

3. A method to transform the obtained imaging signals to parameter estimates for
the employed biological response model.

4. An adaptive treatment plan optimization method based on the “updated” param-
eter estimates.

It should be noted that while the methodology presented here uses specific choices for
the above components, the concept is generic enough to incorporate other choices for
imaging biomarkers, biological models and parameter estimation methods.

Acquire
biomarker
signal

Transform
signal into
model

parameters

Update
biological
response
model

Solve new
optimization
problem

Figure 3.1: Schematic overview of adaptation framework

3.2.1 Patients, imaging and treatment

This study included 17 canine veterinary patients with sinonasal cancer, treated at
the University of Wisconsin Veterinary Medical Teaching Hospital, 14 of which were
selected for analysis. Two patients were excluded because not all organ-at-risk (OAR)
and target volume delineations were available, one due to a missing mid-treatment
FLT PET scan. Diagnosis was established using CT and analysis of histopathological
samples. All patients exhibited nasal or paranasal sinus tumors without intracranial
infiltration or distant metastases.

Data from multiple imaging modalities was acquired for the patients. The patients
received FDG, FLT and copper(II)-diacetyl-bis(N4-methylthiosemicarbazone)
(Cu-ATSM) PET/CT scans on the GE Discovery VCT scanner, using 4-10 mCi of tracer.
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The FLT PET scan was acquired as a 90-minute dynamic 3D acquisition, acquired over
a single 15 cm bed position. Patients fasted 12 hours before scanning and were kept in
a kennel during tracer uptake to limit physical activity. During imaging, patients were
anesthetized and immobilized using a custom bite block fixed to the scanner couch
and a vacuum mattress.

Veterinarians contoured the gross tumor volume (GTV) as the visible anatomical
changes on planning CT, and the clinical target volume (CTV) as expected extent of
microscopic disease, which often included the entire nasal cavity. Mean GTV volume
is 56 cm3 (range: 3-146 cm3, σ: 47 cm3). A planning volume named “PTV42" was
obtained by expanding the CTV by a uniform geometric expansion of 2 mm. A sec-
ond planning volume named “PTV50" was obtained by directly expanding the GTV by
a 2 mm margin. While this volume was primarily used in the dose boost group in-
troduced below, the segmentation was performed for all patients in both groups, and
both PTV volumes were used for dose plan evaluation. Brain and eye volumes were
also contoured as relevant OARs.

Patients were prescribed intensity modulated radiation therapy (IMRT) by helical
tomotherapy, with curative intent. As part of a larger study investigating dose escala-
tion, patients were divided into two treatment groups. The first group was prescribed
a clinical standard of 42 Gy radiation dose, delivered uniformly to PTV42 in ten frac-
tions. A minimum of 98% of PTV42 volume was required to achieve the dose of 42
Gy. The second group received an additional integrated boost of 8 Gy to the PTV50,
for a total of 50 Gy, also in ten fractions. A minimum of 95% of PTV50 volume was re-
quired to receive at least 50 Gy. The highest priority in dose optimization was given to
achieving sufficient dose coverage in the PTV42, followed by PTV50. The remaining
structures used in plan optimization, in order of importance, were: brain, eyes and
normal tissues. After the first two RT fractions, amongst others “mid-treatment” FLT
PET images were acquired, 7 days after the first FLT PET/CT scan. For more details on
the trial we refer to Bradshaw et al. (2015).

The current study makes use of the planning CT, the pre- and mid-treatment FLT
PET scans, the clinically delivered dose distribution and delineations of the PTV50,
PTV42, the brain and both eyes. In the numerical experiments the target volume for
the response model is the PTV50, due to the fact that the PTV42 includes anatomically
invisible disease, often in the entire nasal cavity. For the current study grids of size
128 × 128 × 77 with voxel size 2.3 × 2.3 × 3.3 mm are used.
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3.2.2 Imaging biomarker
As the first component of the adaptation framework, an imaging biomarker is required
that produces voxel-wise signals of early response. Early response signals are obtained
from pre- and mid-treatment scans. For any target voxel i, let F p

i and F m
i denote

the intensity values of the pre- and mid-treatment scans, respectively. The delivered
dose at the time of the mid-treatment imaging should be such that measurable signal
changes can be observed, compared to the pre-treatment scan.

In the current study, FLT PET images are used as a surrogate biomarker for cell
proliferation. The correlation of FLT PET uptakes with cell proliferation have been
shown both in cell lines (Toyohara et al., 2002) and in in vivo experiments (Vesselle
et al., 2002; Shields et al., 2005; Muzi et al., 2005; Kenny et al., 2005), and in various
tumor types including breast, laryngeal, lung, and brain cancers (Been et al., 2006;
Cobben et al., 2004a,b; Choi et al., 2005). Due to its applicability in assessing cell
proliferation, we use change in FLT PET signals from baseline as direct indicators of
cell kill, and therefore as a biomarker of early tumor RT response.

Because any imaging signal is subject to noise, low magnitude signals should be
interpreted with caution. In particular, relative changes in low magnitude pre- to mid-
treatment signals are subject to high uncertainty, and so are any radiation response
estimates for these voxels. For this reason, voxels with pre-treatment signal below
threshold value FTH = 2 are excluded from analysis; the threshold value was chosen
based on expected repeatability of FLT PET scans within each voxel.

For any target voxel with a sufficiently large pre-treatment signal F p
i , we assume

that pre- to mid-treatment change in signal is positively associated with the voxels’
early response to radiation. The early response of an individual target voxel i is defined
as

ri :=
F p

i − F m
i

F p
i

. (3.1)

So, a response ri ∈ [0, 1] means that the signal intensity in voxel i has decreased by
ri · 100%. Response is truncated at 0, i.e., a voxel with an increase in signal is said to
have no radiation response. Similar (piecewise) linear transformations have previously
been used to map scan intensity data directly to prescription doses (Alber et al., 2003;
Das et al., 2004; Vanderstraeten et al., 2006).

3.2.3 Biological response models

Biological response models relate the absorbed dose in a tissue to a quantifiable out-
come measure. Typically, this outcome measure is TCP or NTCP. Common TCP and
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NTCP models depend on a number of parameters, and more accurate estimates of
these parameters give response models that are closer to reality.

As a response model for the target volume, we use the linear-quadratic (LQ) model
of cell kill (McMahon, 2019). Let nT denote the number of voxels in the target volume.
The LQ-based tumor control probability (TCP) is given by

TCPLQ(d
T ;α,ν) =

nT∏
i=1

exp
�− νiSFi(d

T
i ;αi)
�
, (3.2)

where SFi is the survival fraction of cells in voxel i after delivery of a total dose of
dT

i Gy. Parameter νi is the pre-treatment number of clonogens, and αi is the intrinsic
radiation sensitivity of voxel i.

As a response model for the OARs, we use the LKB NTCP model (Lyman, 1985;
Kutcher and Burman, 1989), which states that the NTCP of a homogeneous dose dh is
given by

NTCPLKB(dh) = Φ
�dh − d50

md50

�
, (3.3)

where Φ(z) = 1/
�

2π
∫ z

−∞ e− 1
2 x2

d x is the standard normal cumulative distribution
function. Parameter d50 is the dose that yields a 50% complication probability if uni-
formly delivered to the entire organ, and m is a parameter for the slope of the NTCP
curve.

In the current study, the set of OARs with NTCP criteria is R = {brain, right eye,
left eye}. Endpoint for brain NTCP is necrosis, endpoint for eyes NTCP is cataract.
FLT PET signals are used to obtain estimates of the voxel-wise radiation response pa-
rameters {(αi,νi)}nT

i=1 of the target volume. NTCP model parameters are not updated,
but such an extension can be readily incorporated if suitable biomarkers are available.
Further modeling details and parameter choices are provided in Appendix 3.A.1.

3.2.4 Estimation of radiation response parameters

As a third component of the adaptation framework, a method to transform obtained
imaging signal to parameter estimates for the biological response model(s) is required.

In the current study, the early response values are used to estimate (αi,νi) for each
target voxel i. We assume that voxel estimates α̂i are obtained simultaneously for all
patients in the cohort and all voxels with F p

i at least FTH via scaling of the response
values. It is assumed that voxels with higher early radiation response have a higher
α parameter. First, we pick a lower bound αmin and a mean value ᾱ. The latter is,
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e.g., a value derived from literature for the particular tumor site (Tai et al., 2008;
Klement, 2017). Voxels with a response of 0 get assigned the estimate α̂i = αmin. For
the remaining voxels (those with a positive response), the response values are scaled
such that the mean of all α̂i estimates is equal to ᾱ. That is, for a target voxel i the
estimate α̂i is given by

α̂i := αmin + cαri, (3.4)

where scaling factor cα is such that the mean αi over all target voxels and all pa-
tients equals the pre-determined ᾱ. Note that for an individual patient the mean α̂i

estimate can be either above or below ᾱ. This reflects that average early response dif-
fers between patients. We take reference ᾱ = 0.35 Gy−1, a typical value for human
head-and-neck tumors (Fowler et al., 2003; Fowler, 2009). We pick αmin = 0.20 Gy−1,
which corresponds with a deviation from ᾱ of approximately 40% and covers the most
probable spectrum of deviations.

In the LQ-based TCP model, the survival fraction SFi of any voxel i is multiplied
by its estimated number of clonogenic cells. Rather than assuming a uniform initial
clonogen density throughout the target volume, the number of clonogens in voxel i is
determined as

ν̂i := cνF
p
i , (3.5)

where cν is a scaling factor such that the population average of ν̂i estimates equals a
pre-determined ν̄. We assume the standard initial clonogen density of 107/cm3 (Webb
and Nahum, 1993; Chapman and Nahum, 2015). According to Section 3.2.1 the voxel
volume is 0.0180 cm3, so we obtain ν̄ = 1.80 · 105. The rationale behind (3.5) is that
a higher pre-treatment signal is associated with more activity and/or more cells in a
voxel, and those voxels have a higher contribution to TCP. Note that this additionally
implies that the voxels with low pre-treatment signal F p

i have less contribution to TCP,
so the influence of assigning them parameter ᾱ is small.

For any target voxel i, the estimates (α̂i, ν̂i) are subject to uncertainty, due to
inevitable biomarker measurement errors and imperfect parameter estimation from
biomarker data. It has been shown that uncertainty in dose-response relationships
may have considerable influence on the benefit of dose-painting strategies (Zhang
et al., 2013; Barry et al., 2020; Petit et al., 2021). This issue is discussed in more
detail in Section 3.4.1. To account for parameter estimation inaccuracy, we do not use
the estimates (α̂i, ν̂i) directly, but take a worst-case approach. Lower values of αi cor-
respond with lower radiation sensitivity and consequently lower TCP. On the contrary,
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higher values of ν̂i correspond with higher initial clonogen numbers and lower TCP.
Therefore, we optimize using worst-case radiosensitivity values

α̂wi = (1 − pα)α̂i,

ν̂wi = (1+ pν)ν̂i,

(3.6a)
(3.6b)

where pα · 100% and pν · 100% are the maximum estimation error percentages. We
assume maximum error factors pα, pν of 0.1; the influence of this choice will be ana-
lyzed and discussed in Sections 3.3 and 3.4.1. The output of the method is two vectors
α̂w, ν̂w ∈ �nT

+ which are to be plugged in (3.2). Note that the best-case estimates α̂bi
and α̂bi are obtained by reversing the signs for pα and pν in (3.6).

3.2.5 Adaptation strategies

The last component of the adaptation framework is a method to optimally adapt the
treatment plan using the updated parameter estimates. Figure 3.2 gives a schematic
overview of the adaptations we consider. If the original treatment plan is adapted,
the dose is either uniformly or continuously adapted. Within uniform dose adapta-
tion we can distinguish uniform dose escalation and uniform dose de-escalation, i.e.,
scaling the entire dose distribution up or down. Continuous dose adaptation, also
known as dose painting, modulates the spatial dose pattern itself. If none of these
adaptation strategies is beneficial for the treatment plan quality (e.g., in terms of TCP
and/or NTCP), no adaptation is made. The original treatment plan can be continued
if information acquired mid-treatment indicates the original treatment plan quality is
sufficient. If neither an adapted treatment plan nor the original treatment plan yields
sufficient treatment plan quality, one can stop the treatment, and possibly switch to
another treatment modality. In the context of OSRT, one can also opt to optimally
adapt the number of treatment fractions; in Ajdari et al. (2018) and in Chapter 2
this problem is studied from a theoretical perspective. This adaptation strategy is not
considered in the current study.

Once the resulting TCP interval and NTCP values for the various considered adap-
tation strategies and the original treatment plan have been determined, Figure 3.2
can be used as a decision tree as well. Thresholds depending on TCP intervals, NTCP
values and radiation response parameter estimates can be used as decision criteria. All
of these implicitly account for uncertainty in parameter estimates. Nevertheless, clini-
cally relevant decision criteria will likely depend on more factors than those currently
presented, and precise decision criteria are likely disease site and institution specific.
Formulating these is beyond the scope of this work.
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Uniform dose adaptation and continuous dose adaptation are described in the next
two sections.

Mid-treatment
decision

Adaptation

Uniform dose
adaptation

Continuous
dose

adaptation

Uniform dose
escalation

Uniform dose
de-escalation

No adaptation

Continue
treatment

Stop treatment

Figure 3.2: Schematic overview of adaptation strategies.

Uniform dose adaptation

The uniform dose adaptation (UDA) strategy does not involve a full beam(let) opti-
mization step. Instead, the dose distribution that is administered in the first stage is
escalated or de-escalated (i.e., scaled) for the second stage, based on the estimated
radiation response parameters. Naturally, uniform dose escalation increases both TCP
and NTCP, whereas uniform dose de-escalation decreases both TCP and NTCP. The
decision variable is the scaling parameter s, defined by

s :=
d̄ T
adapt

d̄ T
orig

,

where d̄ T
orig and d̄ T

adapt denote the original and adapted mean target dose over both
stage 1 and 2, respectively. A value s < 1 denotes dose de-escalation and s > 1 denotes
dose escalation. As there is a one-to-one relationship between mean target dose in the
adaptive plan and the scaling parameter s, it is more intuitive to discuss UDA policies
in terms of mean target dose adaptations. The resulting worst-case and best-case TCP
for an adapted mean target dose d̄ T

adapt are

TCPw(d̄
T
adapt) := TCPLQ(sd

T
orig; α̂

w, ν̂w),

TCPb(d̄
T
adapt) := TCPLQ(sd

T
orig; α̂

b, ν̂b).

The benefit of having a single optimization variable is that the NTCP curve and the
worst- and best-case TCP curves can directly be visualized. This yields a graphical
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illustration of the changes in NTCP, and worst-case and best-case TCP associated with
a particular UDA policy. Thus, restrictions on the allowed adaptations in terms of
physical dose, scaling factor or TCP/NTCP changes need not be set in advance.

25 30 35 40 45 50 55 60
0
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0.6

0.8

1

Escalation

Mean target dose (Gy)

TCP/NTCP

Worst-case TCP
Best-case TCP
Original TCP
NTCP

Figure 3.3: Illustrative TCP/NTCP graph from response parameter estimates. The left and
right vertical lines represent the original and escalated treatment plan, respectively. The in-
tervals contained by the diamond and circles are the TCP intervals of the original and the
escalated treatment plan, respectively.

Figure 3.3 shows a toy example. The original TCP and NTCP are indicated by
black and blue curves. The original treatment plan is the leftmost dashed vertical
line, and yields a TCP of approximately 0.88. Mid-treatment imaging and subsequent
parameter estimation allows for an update of the TCP curve, and yields the worst-case
(dotted red) and best-case (dashed red) curves. This implies the original treatment
plan in fact results in a TCP anywhere between 0.27 and 0.98 (interval contained by
the diamonds). Uniform dose escalation by+5 Gy is visualized by the rightmost dashed
vertical line. This results in a TCP interval of [0.73,1.00] (interval contained by the
circles), while NTCP has increased from 0.13 to 0.25.

It is important to note that the original TCP curve need not be between the es-
timated best-case and worst-case TCP curves, but may also be above or below both
estimated curves. Additionally, if biomarker data provides grounds for updating the
NTCP curve, an updated NTCP interval can be drawn in the same figure analogous to
the TCP interval.

In principle, this presents a continuum of adaptation possibilities to the clinical
decision maker, with a direct visualization of resulting TCP and NTCP values. In the
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current chapter, the objective is to maximize the worst-case therapeutic ratio

TR(d̄ T
adapt) = TCPw(d̄

T
adapt)−NTCP(

d̄ T
adapt

d̄ T
orig

d r
orig),

where for NTCP structure r we use the NTCP for cataract to the eye that receives the
lowest dose. Scaling the dose distribution increases or decreases dT and d r simultane-
ously.

Values of d̄ T
adapt are restricted to deviate at most ddev = 5 Gy from the original mean

target dose d̄ T
orig. Note that one could also control the adaptation by restricting the

worst-case TCP or NTCP to deviate at most a certain number from the original TCP or
NTCP. A drawback of this is that these measures are nonlinear, so it is less intuitive for
physicians to specify the allowed deviations. For a relatively flat TCP or NTCP curve,
a particular allowed deviation in terms of TCP or NTCP may result in an unexpected
large dosimetric deviation. In either case, UDA finds the adaptation within the allowed
deviation interval that maximizes the worst-case therapeutic ratio.

Continuous dose adaptation

Continuous dose adaptation (CDA), also known as adaptive biologically conformal
treatment or dose painting, is a more complex adaptation strategy than UDA. It per-
forms a full beam(let) optimization, in order to adapt the spatial dose distribution to
spatial patterns of radiation response estimated from pre- and mid-treatment imag-
ing data. The CDA optimization model directly optimizes the TCP and NTCP criteria.
Next to this, the model imposes mean dose and voxel-wise dose restrictions on vari-
ous tissues to ensure the resulting treatment plans are not too far from clinical reality.
Furthermore, the mean target dose is fixed at the originally (clinically) delivered mean
target dose, so that target dose is only redistributed and not added. The rationale is
that redistribution of dose allows for delivering more dose to radioresistant voxels and
less dose to radiosensitive voxels, thus increasing TCP while keeping mean dose equal.

Let d ∈ �n denote the concatenated vector of target doses dT , OAR doses d r , r ∈ R,
and other relevant tissue doses dO; mean values are again indicated by a horizontal
bar. Let x ∈ �m

+ denote the (nonnegative) beamlet weight, and let A ∈ �n×m denote
the dose deposition matrix. With a�

i the i-th row of A, the dose deposited in voxel i for
beamlet weights x is given by a�

i x . The model maximizes the worst-case TCP subject
to NTCP tolerances for all OARs in R:

max
x ,d

TCPLQ(d
T ; α̂w, ν̂w),

s.t. NTCPr(d r)≤ NTCPr
tol, r ∈ R,

(3.7a)

(3.7b)
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d̄ r ≤ dr
tol, r ∈ R,

d̄ T = d̄ T
orig,

dL ≤ d ≤ dU ,

d = Ax ,

x ≥ 0,

(3.7c)
(3.7d)

(3.7e)
(3.7f)
(3.7g)

where NTCPr(d r) is the LKB NTCP corrected for heterogeneous dose and nonuniform
fractionation, see Appendix 3.A.1 for details. Constraints (3.7b) and (3.7c) ensure
that for all OARs the resulting mean OAR doses and NTCP values do not exceed set
tolerances. Constraint (3.7d) forces the mean target dose to equal the mean target
dose of the original treatment plan, and (3.7e) prescribes minimum and maximum
voxel doses. Lastly, constraint (3.7f) relates beamlet weights to voxel doses and (3.7g)
ensures nonnegativity of beamlet weights. The optimization model (3.7) is convexified
using the methodology of Hoffmann et al. (2008).

For the current study we add a quadratic underdose penalty to the (convexified)
objective, which penalizes PTV42 dose lower than 42 Gy. This resembles the original
treatment goal that a minimum of 98% of PTV42 volume was required to achieve
the dose of 42 Gy. The OAR NTCP tolerance is equal to the resulting NTCP of the
original treatment plan, with a minimum of 0.05. Mean OAR dose tolerance is equal
to the resulting mean OAR dose of the original treatment plan. PTV50, PTV42 and
OAR dose must be at most the maximum PTV50 dose of the original treatment plan
plus 5 Gy. Dose to other (non-OAR) normal tissue voxels is subject to the same upper
bound, see Appendix 3.A.2 for more details. By basing our NTCP upper bounds on the
originally delivered dose distributions in this way, the optimized plans cannot yield
a (noteworthy) worse TCP or NTCP than the originally delivered plan. Nevertheless,
the obtained dose distributions may differ from the dose distribution of the original
treatment plan.

Dose optimization is performed using an in-house treatment planning software
WiscPlan (Flynn, 2007). Dose is calculated for 64 beamlets at 21 angles for each
rotation of the gantry. Treatment pitch was set to 0.86. The WiscPlan software func-
tionality includes classical optimization and minimax robust optimization for setup
and range errors, but these are omitted for the current study. For the current study
functionality was expanded to directly optimize TCP and NTCP criteria. In particu-
lar, the large-scale convex optimization problem (3.7) is solved using the open-source
interior-point method IPOPT (Wächter and Biegler, 2006) in MATLAB R2018b (Math-
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works, Natick, MA, US), interfaced through the MATLAB OPTI toolbox (Currie and
Wilson, 2012). All computations are performed on a system with a 24-core Intel Xeon
Gold 6126 (2.60GHz) CPU. Table 3.1 give an overview of the number of beamlets
and the number of voxels. Further technical optimization details are provided in Ap-
pendix 3.A.2.

Number of beamlets Number of voxels
PTV50 PTV42 Brain Right eye Left eye

Minimum 1713 466 1385 3037 226 249
Mean 5741 4458 8892 5003 400 395

Maximum 10073 11313 17271 6091 618 509

Table 3.1: Statistics on number of beamlets and number of voxels in patient cases.

3.3 Numerical results
Section 3.3.1 presents the results of the radiation response parameter estimation. Sec-
tions 3.3.2 and 3.3.3 present the results for the UDA and CDA strategies, respectively.
As indicated in Section 3.2 we make no attempt to quantify thresholds and other cri-
teria for deciding among the various adaptation strategies. As such, we do not present
individualized adaptation recommendations for each patient. Instead, we present the
mathematically optimal results of UDA and CDA, and consider the influence of un-
certainty. We illustrate for a few patient cases how the TCP and NTCP information
available mid-treatment can be used in the decision making process.

3.3.1 Radiation response parameter estimation
Figures 3.4 and 3.5 display boxplots for the distribution of ν̂i and α̂i estimates, respec-
tively, as determined from the pre- and mid-treatment FLT scans. Patients are ordered
according to their mean clonogen number estimates. By construction, the minimum
α̂i estimate is 0.20 and the mean estimate is 0.35. The resulting maximum α̂i estimate
is approximately 0.52. By construction, the mean of the clonogen number estimates
ν̂i is 1.80 · 105.

By construction, patients with low initial clonogen numbers (e.g., patients 11-14)
have little to no variance in radiation sensitivity estimates. For these patients, the boxes
in Figure 3.5 are not visible, i.e., the 25th and 75th percentile coincide with ᾱ. These
are the patients with low magnitude pre-treatment voxel signals, for which pre- to
mid-treatment signal changes cannot reliably be interpreted as radiation response due
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Figure 3.4: Distribution of clonogen number estimates ν̂i. The bottom and top horizontal blue
line indicate the 25th and 75th percentile, respectively. The horizontal red line and diamond
inside the boxes indicate the median and the mean, respectively. Individual marks indicate
outliers. Patients are ordered according to their mean estimates.

to influence of, e.g., noise. Although voxel-wise α̂i estimates are little or not available
for those patients, the low estimates of initial clonogen numbers suggest that dose
de-escalation may be beneficial.

For patients with higher estimated initial clonogen numbers ν̂i (e.g., patients 1-4)
more heterogeneity in voxel response is observed, which translates to more hetero-
geneity in α̂i estimates. In the LQ-based TCP function (3.2), the predominant influ-
ence on TCP is due to voxels with high radioresistance. Thus, a high variation in α̂i

estimates suggests that uniform or continuous dose adaptation may be beneficial to
also ensure eradication of clonogens in those voxels with low α̂i estimates.

For both ν̂i and α̂i themedian estimates (red horizontal lines in Figures 3.4 and 3.5)
are unequal to the mean estimates (diamonds in Figures 3.4 and 3.5) for those patients
with high intra-patient heterogeneity. Thus, for individual patients the spread of radi-
ation sensitivity parameter estimates and initial clonogen number estimates is skewed,
and cannot be described by, for instance, a normal distribution.

Figure 3.6 shows a histograms of the response estimates for a patient with an av-
erage α̂i higher (patient 1) and lower (patient 6) than ᾱ. These patients are chosen
because they have sufficient heterogeneity in α̂i estimates but are not the extreme
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Figure 3.5: Distribution of radiation sensitivity estimates α̂i. The bottom and top horizon-
tal blue line indicate the 25th and 75th percentile, respectively. The horizontal red line and
diamond inside the boxes indicate the median and the mean, respectively. Individual marks
indicate outliers. Patients are ordered according to their mean clonogen number estimates.

cases. Figures 3.6a and 3.6c show that for both patients a large fraction of voxels re-
ceive the baseline ᾱ estimate rather than an individualized estimate. This corresponds
well with the clonogen number estimates; the scaling factor cν is 8.03 ·104, so individ-
ual α̂i estimates are computed only for those voxels for which ν̂i ≥ cνFTH = 1.61 · 105.
In Figure 3.6b and Figure 3.6d 40% resp. 69% of voxels does not pass this thresh-
old. The worst-case, best-case and nominal (assuming no uncertainty) TCP values of
the original treatment plans are obtained via (3.2). Table 3.2 reports these values
along with NTCP values and dosimetric characteristics. As typical for canine sinonasal
tumors (Gutiérrez et al., 2007), often one of the eyes is sacrificed to ensure proper
tumor coverage. Instead of reporting results for right and left eye, results are reported
for the eye with lowest and highest dose.

We observe that indeed one eye (the sacrificed) receives considerably more dose
than the other (the spared). This is reflected in the mean NTCP values. Brain necrosis
NTCP is close to zero on average, despite the average D2 being substantial. The TCP
of the PTV50 has a range of 0.26, for the assumed estimation error bounds pα = pν =
0.10. This indicates that (on average) TCP is sensitive to the parameter estimates and
that the original treatment plan exhibits much uncertainty regarding TCP.
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(a) α̂i estimates radioresistant patient (b) ν̂i estimates radioresistant patient

(c) α̂i estimates radiosensitive patient (d) ν̂i estimates radiosensitive patient

Figure 3.6: Radiation response estimates (α̂i , ν̂i) for a radioresistant (patient 1) and a ra-
diosensitive (patient 6) patient.

TCPnom [TCPrange] NTCP d98 (Gy) dmean (Gy) d2 (Gy)

0.64
PTV50

[0.48, 0.74]
45.24 48.44 49.47

PTV42 41.02 46.63 49.45
Brain 0.03 8.14 36.63

Eye (low) 0.33 9.16 23.19
Eye (high) 0.68 15.69 33.54

Table 3.2: Results for the original treatment plan. D98 and D2 are the near minimum and near
maximum dose, respectively. All numbers are cohort averages.
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3.3.2 Uniform dose adaptation

Patient Original De-escalation (-5 Gy) Escalation (+5 Gy)
TCP NTCP TCP NTCP TCP NTCP

1 [0.00, 0.50] 0.88 [0.00, 0.00] 0.69 [0.04, 0.94] 0.97
2 [0.02, 0.81] 0.96 [0.00, 0.30] 0.83 [0.44, 0.96] 1.00
3 [0.00, 0.00] 0.03 [0.00, 0.00] 0.02 [0.00, 0.20] 0.05
4 [1.00, 1.00] 0.01 [0.91, 1.00] 0.01 [1.00, 1.00] 0.02
5 [0.43, 0.99] 0.95 [0.00, 0.74] 0.77 [0.96, 1.00] 1.00
6 [0.98, 1.00] 0.17 [0.80, 1.00] 0.09 [1.00, 1.00] 0.28
7 [0.00, 0.05] 0.59 [0.00, 0.00] 0.34 [0.00, 0.74] 0.82
8 [0.00, 0.02] 0.10 [0.00, 0.00] 0.05 [0.00, 0.64] 0.19
9 [0.26, 0.98] 0.00 [0.00, 0.62] 0.00 [0.91, 1.00] 0.00
10 [1.00, 1.00] 0.09 [0.98, 1.00] 0.05 [1.00, 1.00] 0.15
11 [0.06, 0.97] 0.77 [0.00, 0.35] 0.49 [0.87, 1.00] 0.94
12 [0.99, 1.00] 0.02 [0.84, 1.00] 0.01 [1.00, 1.00] 0.03
13 [1.00, 1.00] 0.00 [0.98, 1.00] 0.00 [1.00, 1.00] 0.00
14 [0.99, 1.00] 0.01 [0.89, 1.00] 0.00 [1.00, 1.00] 0.01

Table 3.3: TCP interval and NTCP (low dose eye) for all patients, for the original treatment
plan and the ± 5 Gy UDA plans. Patient numbers are the same as in Figures 3.4 and 3.5.

Before presenting the mathematically optimal UDA policies, Table 3.3 shows the
TCP interval and NTCP to the low dose eye for all patients, for the original treatment
plan and the maximum dose escalation and de-escalation policy. This indicates the
bandwidth of adaptations for each patient. For the majority of these patients the NTCP
of the high dose eye is close to one and the brain NTCP is close to zero in all three
scenarios. Thus, changes in the low dose eye NTCP are most relevant for comparing
adaptation strategies. For some patients, e.g., patient 13, neither maximum dose de-
escalation nor dose escalation leads to noteworthy changes in TCP interval or NTCP
values. Thus, the optimal UDA strategy will not differ from the original treatment plan
either in terms of TCP or NTCP criteria. For other patients, e.g., patient 5, both the
TCP interval and the NTCP value differ significantly between the original treatment
plan and the maximum dose escalation and de-escalation plans. Thus, the optimal
UDA strategy may differ substantially from the original treatment plan. For 9 out of
14 patients the worst- and best-case TCP of the original treatment plan are both near
0 or near 1. For these patients radiation response uncertainty does not lead to a wide
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TCP interval, i.e., have little influence on expected outcome according to the employed
TCP model. This is highly dependent on the used TCP model and is discussed in more
detail in Section 3.4.2.

TCPnom [TCPrange] NTCP d98 (Gy) dmean (Gy) d2 (Gy)

0.70 [+0.06]PTV50 [0.65 [+0.17], 0.71 [-0.02]] 45.46 [+0.21] 48.67 [+0.23] 49.70 [+0.23]

PTV42 41.28 [+0.27] 46.87 [+0.25] 49.68 [+0.22]
Brain 0.07 [+0.03] 8.19 [+0.06] 36.36 [-0.27]

Eye (low) 0.30 [-0.02] 9.19 [+0.03] 23.26 [+0.07]
Eye (high) 0.65 [-0.03] 15.56 [-0.13] 33.30 [-0.23]

Table 3.4: Results for the UDA strategy. d98 and d2 are the near minimum and near maximum
dose, respectively. Numbers in red indicate the change compared to the original treatment
plan (Table 3.2). All numbers are cohort averages.

Table 3.4 presents the results for the UDA strategy. Numbers in red indicate the
change compared to the original treatment plan (Table 3.2). The average worst-case
TCP has increased by approximately 0.17 (range: [−0.02,0.81], σ: 0.30) and the av-
erage best-case TCP has decreased slightly. Thus, due to an improvement (on average)
in worst-case TCP, the TCP window is more than four times smaller. Nominal TCP (as-
suming no uncertainty) has improved from 0.64 to 0.70. The average brain necrosis
NTCP has doubled, but remains low. The average NTCP values for eye cataract show
only minor changes. Dosimetrically, only very minor changes can be observed on aver-
age. This indicates that the total magnitudes of dose escalation and dose de-escalation
are approximately equal over the patient cohort. Recall that the objective for UDA is
to maximize the worst-case TCP minus the NTCP to the low dose eye. The average
therapeutic ratio has improved from 0.15 to 0.35.

In all results presented thus far the maximum radiation response errors are set at
10%. Results in Table 3.3 already indicate that this leads to rather wide TCP intervals.
Figure 3.7 compares the TCP intervals of the optimal UDA treatment plans for pα =
pν = 0.1 and 0.2. The vertical bars represent the TCP interval of the original (blue)
and UDA (red) treatment plan, respectively. Note that the optimal UDA treatment plan
may be different for pα = pν = 0.1 and 0.2.

Figure 3.7a shows that with pα = pν = 0.1 UDA is able to improve the guaranteed
(worst-case) TCP for a few patients, and decrease the TCP interval width at the same
time. For some other patients the original best-case TCP is very low, and the therapeutic
ratio can only be increased by decreasing NTCP. Thus, the worst-case and best-case TCP
are both decreased to almost zero. There is only a single patient with a very uncertain
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(a) pα = pν = 0.1.
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(b) pα = pν = 0.2.

Figure 3.7: TCP intervals for the original treatment plan (blue) and the optimal UDA plan
(red). Higher radiation response uncertainty (higher pα and pν) increases TCP interval width.
Patient numbers are the same as in previous figures.

(i.e., wide) UDA TCP interval. Note that these results are a direct consequence of
optimizing for the worst-case therapeutic ratio, and the original treatment plans are
optimized for different criteria. This is further discussed in Section 3.4.2.

Figure 3.7b shows that with pα = pν = 0.2 many patients remain with a very wide
TCP interval after UDA. For some patients, the resulting TCP interval has a width of
over 0.7, which means data is too uncertain to draw any conclusions regarding possible
benefits of uniform treatment dose adaptations. The figures demonstrate that radiation
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response uncertainty can quickly decrease the benefit of UDA adaptations.
Patient-specific TCP/NTCP graphs can be created in order to visualize the contin-

uum of adaptation possibilities, as discussed in Section 3.2.5. Figure 3.8 shows the
TCP/NTCP graphs and dose-volume histogram (DVH) for four patients, again using
pα = pν = 0.1. Next to patient 1 and 6, patients 5 and 10 are chosen to illustrate each
adaptation strategy of Figure 3.2 (except CDA). For each of these patients, we illus-
trate how the available TCP and NTCP information can be used to make an adaptation
recommendation. Note that these recommendations need not be the mathematical
optimum, as presented in Table 3.4 and Figure 3.7. We emphasize that these recom-
mendations solely serve to illustrate how the TCP and NTCP information can be used
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(b) Dose escalation (patient 5)

Figure 3.8 (part 1): TCP/NTCP graph showing adaptation possibilities and DVH graph of
original and optimal UDA plan, for four patients. Patients 1 and 6 are the same as in Figure 3.6.
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(c) Continue treatment (patient 6)
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(d) Dose de-escalation (patient 10)

Figure 3.8 (part 2): TCP/NTCP graph showing adaptation possibilities and DVH graph of
original and optimal UDA plan, for four patients. Patients 1 and 6 are the same as in Figure 3.6.

for a UDA strategy, and we make no attempt to specify clinical guidelines for adapta-
tion decisions.

For each patient, the left panel in Figure 3.8 presents the TCP/NTCP graph and the
right panel presents the DVH of the original plan and the recommended UDA plan.
In the TCP/NTCP graphs the dotted vertical line indicates the original treatment plan,
the dashed vertical lines are the maximum (de)-escalation plans. These bounds are set
such that the mean target dose (on the horizontal axis) deviates by at most ddev = 5
Gy from the original treatment plan.

In the case of Figure 3.8a, the original TCP curve is not in between the estimated
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worst-case and best-case TCP curves, i.e., the estimated TCP curves are more pes-
simistic than the original TCP curve. The original treatment plan results in a very
uncertain TCP: approximately the interval [0,0.51]. The NTCP to both eyes is already
extremely high, thus these complications are unavoidable. Uniform dose escalation by
+5 Gy improves the TCP interval to [0.05, 0.94], while the NTCP to the right eye and
the brain increases by approximately 0.1. The TCP interval is very wide, and if worst-
case TCP is the main criteria this is not a desirable adaptation. The mathematically
optimal therapeutic ratio is achieved by dose de-escalation by −5 Gy, but this reduces
best-case TCP to zero. Thus, continuing with any reasonably adapted treatment will
not provide a satisfactorily high guaranteed TCP, and one could opt to stop radiation
therapy for this patient and possibly switch to another treatment modality. The right
panel of Figure 3.8a shows the DVH of the original treatment plan.

In the case of Figure 3.8b, the original treatment plan results in a very uncertain
TCP, i.e., approximately the interval [0.57, 0.99]. The NTCP to both eyes is already
extremely high, thus these complications are unavoidable. Uniform dose escalation by
+5 Gy improves the TCP interval to [0.95, 1.00], while the NTCP to the brain remains
below 0.1. The optimal therapeutic ratio is achieved by dose escalation, as shown in
the DVH graph.

Figure 3.8c shows a case where the original plan results in a very high TCP (both
in worst- and best-case), and a high NTCP to the left eye. Any dose escalation would
only marginally improve worst-case TCP, while the NTCP values for both eyes would
considerably increase. Dose de-escalation would decrease worst-case TCP faster than it
would decrease NTCP values. The maximum therapeutic ratio is achieved by a dose de-
escalation with very small magnitude. Thus, when solely considering TCP and NTCP,
(major) deviations from the original treatment plan are not recommended. The right
panel gives the DVH of the original treatment plan.

Figure 3.8d shows a case where the original treatment plan has a high worst-case
TCP, but the NTCP to the sacrificed (left) eye is of concern. Uniform dose de-escalation
by −5 Gy results in a TCP interval of approximately [0.97,1.00], while the NTCP of
the left eye is considerably decreased. Thus, uniform dose de-escalation is suitable.
The right panel show the DVH graph of the original treatment plan and the plan that
gives the optimal therapeutic ratio; the DVH graph shows this is indeed a uniform dose
de-escalation plan.

3.3.3 Continuous dose adaptation
Compared to UDA, the CDA strategy has a much larger decision space. Thus, we can-
not easily present the entire bandwidth of the adaptation possibilities analogous to
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Table 3.3. Table 3.5 reports the mathematically optimal results for the CDA strat-
egy. For the worst- and best-case TCP computation we again use error parameters
pα = pν = 0.1, and instead of reporting results for right and left eye, results are re-
ported for the eye with lowest and highest dose. Recall that, unlike for the UDA strat-
egy, the objective of CDA is to maximize the worst-case TCP. This is further discussed
in Section 3.4.2. Compared to the original treatment plan (Table 3.2), the worst-case

TCPnom [TCPrange] NTCP d98 (Gy) dmean (Gy) d2 (Gy)

0.77 [+0.13]PTV50 [0.56 [+0.07], 0.91 [+0.17]] 43.83 [-1.41] 48.44 [-] 52.90 [+3.44]

PTV42 41.14 [+0.12] 47.79 [+1.16] 53.51 [+4.06]
Brain 0.01 [-0.03] 7.74 [-0.40] 34.64 [-1.99]

Eye (low) 0.27 [-0.06] 9.03 [-0.13] 22.32 [-0.87]
Eye (high) 0.63 [-0.06] 15.59 [-0.11] 31.39 [-2.15]

Table 3.5: Results for the CDA strategy. d98 and d2 are the near minimum and near maximum
dose, respectively. Numbers in red indicate the change compared to the original treatment
plan (Table 3.2). All numbers are cohort averages.

TCP improved on average by 0.07 (range: [−0.03,0.76], σ: 0.21). Nominal (assum-
ing no uncertainty) and best-case TCP increased by 0.13 and 0.17, respectively. NTCP
values and d2 have decreased slightly for all OARs, while dmean remains mostly un-
changed. The decrease in near-maximum OAR dose may be due to the use of slightly
different dosimetric criteria for target and OAR structures in the CDA plan compared to
the original treatment plan, or several post-optimization steps the original treatment
plan went through to make it practically deliverable. Both PTV50 and PTV42 have a
larger gap between d98 and d2, on average, indicating more heterogeneous dose distri-
butions. Summarizing, on average, the CDA dose distribution improves both TCP and
NTCP criteria and does not lead to a dosimetrically worse OAR dose distribution.

The original treatment plan was optimized for physical dose criteria rather than
TCP and NTCP criteria. Thus, any improvements by CDA may be partially due to in-
clusion of imaging biomarkers, and partially due to the direct optimization of TCP and
NTCP. To investigate this, we also solve model (3.7) using reference values (ᾱ, ν̄) in-
stead of (α̂w, ν̂w) in the objective. Appendix 3.A.3 presents the results. These indicate
that direct optimization of TCP using reference values (ᾱ, ν̄) does not produce treat-
ment plans that are better than the original treatment plans, in terms of TCP values
for estimated response parameters (α̂w, ν̂w). Thus, the improvement is indeed due to
the inclusion of imaging biomarkers, and optimizing for the updated TCP function.

Similar to Figure 3.7, we test the influence of the maximum radiation response
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(a) pα = pν = 0.1.
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(b) pα = pν = 0.2.

Figure 3.9: TCP intervals for the original treatment plan (blue) and the optimal CDA plan
(red). Higher radiation response uncertainty (higher pα and pν) increases TCP interval width.
Patient numbers are the same as in previous figures.

errors on CDA results. Figure 3.9 compares the TCP intervals of the optimal CDA
treatment plans for pα = pν = 0.1 and 0.2. The vertical bars represent the TCP interval
of the original (blue) and adapted (red) treatment plan, respectively. The optimal CDA
treatment plan may be different for pα = pν = 0.1 and 0.2.

If pα = pν = 0.1, Figure 3.9a shows the worst-case TCP has improved considerably
for patients 2 and 9. For patients 1, 3, 7 and 8 the worst-case TCP did not increase
much, but the best-case TCP has increased, thus leading to a much wider TCP interval.
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For the remaining patients, the TCP interval changes are negligible. Figure 3.9b shows
that if pα = pν = 0.2 the optimal CDA policies yield very wide TCP intervals. The
uncertainty is even higher than for UDA (compare Figure 3.7b), indicating that the
benefit of CDA is even more sensitive to radiation response uncertainty than UDA. The
possible benefit of CDA is unclear if pα = pν = 0.2.
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(c) patient 6
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(d) patient 10

Figure 3.10: DVH of the original and optimal CDA treatment plan for patients 1, 5, 6 and 10.
These are the same patients as in Figure 3.8.

Figure 3.10 gives the DVHs of the optimal CDA plans for same four patients as
Figure 3.8, using pα = pν = 0.1. As expected, the optimal CDA plans have more
heterogeneous dose distributions for both the PTV50 and the PTV42. In Figure 3.10a
the maximum PTV50 dose of the CDA plan is exactly 5 Gy higher than the maximum
PTV50 dose of the original treatment plan, thus exactly attaining the prescribed upper
bound.
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In several cases OAR dose distributions differ between the original and CDA treat-
ment plan. For example, in several cases the maximum dose to the OAR is lower,
whereas the volume receiving a dose between 10 and 20 Gy has increased. As given
in Table 3.A.1 in the Appendix, the generalized equivalent uniform dose (gEUD) a pa-
rameter is 3.33 for eyes and 4 for brain, which suggests that not only maximum dose
but also lower doses contribute to the gEUD (i.e., contribute to NTCP). Thus, differ-
ently shaped dose distributions can yield the same LKB NTCP for eyes or brain. We
present more detailed results for two patients, and again illustrate how the TCP and
NTCP information and the spatial pattern of radiation sensitivity estimates can be used
in a CDA strategy.

For patient 1, the TCP interval resulting from the original treatment plan is
[0.00, 0.51], and the NTCP values for brain, right and left eye are 0.01, 0.88 and 1.00,
respectively. The TCP interval for the optimal CDA treatment plan is [0.06,0.95]. Brain
NTCP decreases to 0.00, right eye NTCP decreases to 0.75, left eye NTCP decreases
to 0.87. Figures 3.11a and 3.11b show the original and optimal CDA dose distribu-
tion for patient 1, for one CT slice, focusing on the PTV50. Figure 3.11c shows there
are two (small) volumes with low α̂i, i.e., voxels with clonogenic cells that are esti-
mated to be radioresistant. The optimal CDA treatment plan increases the dose in
these volumes, and decreases the dose in other parts of the PTV50. This redistribution
improves the probability of tumor control. Due to large difference between worst-case
and best-case TCP, only a minor increase in guaranteed (worst-case) TCP is observed.
As such, when considering only the TCP interval and NTCP values, no clear adaptation
recommendation can be made.

For patient 6, the worst-case TCP improves from 0.985 in the original treatment
plan to 0.996 in the CDA plan. Thus, whereas CDA is able to improve upon the original
treatment plan, this does not translate to practically relevant improvements. In the
original treatment plan, NTCP values for brain, right and left eye are 0.00, 0.17 and
0.83, respectively, and the CDA plan results in no noteworthy change.

Figure 3.12 presents the spatial dose distributions of α̂i estimates, the original plan
and the CDA plan for patient 6, for one CT scan slice, focusing on the PTV50. In Fig-
ure 3.12c one can observe a volume with high α̂i, i.e., voxels with clonogenic cells that
are estimated to be radiosensitive. Figure 3.12b shows that the optimal CDA treatment
plan administers slightly less dose to this area than the original plan in Figure 3.12a.
Redistributing this dose to other volumes in turn improves the probability of tumor
control. For patient 6 the TCP interval resulting from the original treatment plan is
already sufficiently high, and a further improvement in TCP is not required. Neverthe-
less, the resulting heterogeneous dose distribution is more biologically conformal.
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(a) Original dose distribution (Gy). (b) Optimal CDA dose distribution (Gy).

(c) Estimates α̂i (Gy−1).

Figure 3.11: Distribution of α̂i estimates and dose for original and CDA plan on one CT slice
for patient 1. The PTV50 is contoured in blue. Darker shades in α̂i spatially correlate with
darker shades in CDA dose.

Compared to the original dose distributions, the CDA dose distributions in Fig-
ures 3.10 to 3.12 have changed considerably. This is a consequence of the employed
optimization methodology for CDA, see Section 3.2.5, where as little additional dose-
limiting structures and constraints are added as possible to focus on TCP and NTCP.
More strict constraints can be imposed, and this might decrease the (worst-case) TCP
gain in Table 3.5 and/or the improvement in NTCP. Nevertheless, results show that
dose redistribution via optimization of TCP and NTCP criteria can improve the result-
ing TCP and/or NTCP, without major changes in DVH graphs.
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(a) Original dose distribution (Gy). (b) Optimal CDA dose distribution (Gy).

(c) Estimates α̂i (Gy−1).

Figure 3.12: Distribution of α̂i estimates and dose for original and CDA plan on one CT slice
for patient 6. The PTV50 is contoured in blue. Lighter shades in α̂i spatially correlate with
lighter shades in CDA dose.

3.4 Discussion

3.4.1 Information uncertainty

Information uncertainty plays an important role in treatment plan adaptations. There
is currently no generally accepted method to determine the uncertainty level of (func-
tional) imaging data and response parameters derived from imaging data. Casares-
Magaz et al. (2018) use a visual analytic tool to determine the uncertainty in TCP



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 124PDF page: 124PDF page: 124PDF page: 124

112 Optimal treatment plan adaptation

values for prostate cancer cases, when initial cell density is estimated from MRI scans.
Similar methods may also be used for parameters such as radiation sensitivity. In the
current chapter, we have used uncertainty levels pα = pν = 0.1 and 0.2 (i.e., 10%
and 20%), and these are arbitrary to some extent. Although it is currently not clear
how to determine a realistic uncertainty level (i.e., range of parameter variation), the
current chapter provides insight in the reverse problem: what uncertainty level al-
lows for useful adaptations? The results in Sections 3.3.2 and 3.3.3 show that when
going from 10% to 20% uncertainty in both response parameters (α and ν), the re-
sulting TCP interval becomes much wider. Whereas at 10% uncertainty clear benefits
of treatment adaptation (either UDA or CDA) can be observed for several patients,
the benefit of adaptation (in terms of TCP) is unclear if the uncertainty level is 20%.
This provides information on the data accuracy required for adaptive treatments, i.e.,
this underlines the need for reliable imaging biomarker signals and methodology for
transforming these into accurate model parameters.

The required data accuracy also depends on how uncertainty in data propagates
to uncertainty in model parameters and subsequently model outcome. Uncertainty in
somemodel parameters may have a larger influence on the uncertainty of the resulting
TCP value than uncertainty in other parameters. Barry et al. (2020) have developed
a tool to assess the relation between uncertainty in model parameters and the un-
certainty in the calculated TCP and/or NTCP values. This allows to analyze which
parameters drive the uncertainty in biological response models. In the current chap-
ter, we did not distinguish between uncertainty levels (and their impact) for α and ν;
this would be a valuable next step.

Although FLT PET imaging has been used in multiple studies and reported to be
correlated with cell proliferation, its limitations should be acknowledged: first, even
though FLT signals can be a rather accurate indicator of cell kill, its application as
indicators of radiation response and radiosensitivity (α parameters) is perhaps less re-
liable; second, PET imaging quality is an important bottleneck in quantitative analysis
of the image, especially for voxel-based adaptations. Nevertheless, the framework pro-
posed here is not biomarker-specific and can in essence be used with other biomarkers
such as FDG PET, contrast-enhanced CT, and dynamic contrast-enhanced MRI (Marcu
et al., 2018), as long as their clinical surrogacy to favorable outcome is established. For
the case of dose (de)escalation, other systemic biomarkers such as circulating tumor
DNA (Cheng et al., 2016), circulating tumor cells (Perumal et al., 2019), and gene sig-
nature panels (Scott et al., 2017) can be employed to assess tumor’s radiosensitivity
during RT course, although these biomarker lack the spatial information necessary for
dose-painting adaptation schemes. The currently proposed adaptation methodology
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is applicable; next to the biomarker itself, only the method for transforming biomarker
data into response model parameters would differ.

3.4.2 Modeling limitations
Currently presented absolute TCP and NTCP values depend highly on modeling as-
sumptions and parameter choices. For instance, other NTCP models than the LKB
model for brain necrosis may result in substantially higher NTCP estimates (Niyazi
et al., 2020). Choices for allowed minimum and maximum dose, as well as dosimetric
deviations from the original treatment plan are made for illustrative purposes only and
are not necessarily according to clinical standards. Of the two presented adaptation
strategies, UDA is much more in line with current clinical practice, and CDA is more
speculative. The employed TCP and NTCP models are much less reliable for the re-
sulting non-uniform dose distributions. As such, the resulting absolute TCP and NTCP
numbers should mostly be considered in terms of trends rather than absolute values,
especially for the CDA strategy. Nevertheless, observed differences in TCP and NTCP
values between different treatment strategies may be informative for changes in tumor
control and normal tissue toxicity associated with a change in strategy.

A necessary step for implementation of the presented adaptation methodology is
to calibrate a biological response model (e.g., fit a sigmoidal curve (Levegrün et al.,
2001)) on a sufficiently large representative data set, using a clinically relevant quan-
titative outcome measure. Due to limited sample size, this has not been done for the
current study, and reported TCP numbers for the original treatment plan need not
reflect the clinical treatment outcome.

As part of the adaptation framework, two adaptive treatment planning strategies
are presented: uniform and continuous dose adaptation (abbreviated UDA and CDA,
respectively). The numerical results of Sections 3.3.2 and 3.3.3 show that both strate-
gies lead to a worst-case TCP improvement without deteriorating on NTCP, for max-
imum radiation response errors pα = pν = 0.1. Naturally, for some patients the im-
provement is larger than for others. For several patients, clear improvements in TCP
and/or NTCP can be found using either UDA or CDA. For other patients (e.g., Fig-
ure 3.8c) one might also conclude that the original treatment plan does not require
any adaptations. For some patients the uncertainty in outcome (i.e., TCP criteria val-
ues) remains very large. For several of these patients, the reported optimal treatment
adaptation is purely the mathematical optimum given the current model, and the pre-
ferred adaptation in clinical practice would be switching to another treatment modal-
ity or stopping treatment altogether. These adaptations are not accounted for in the
current models.
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There are many more adaptation possibilities than the ones currently considered.
In particular, one may adapt the fractionation scheme for the remainder of the treat-
ment. The benefit of early treatment stopping on the therapeutic ratio depends amongst
others on the α/β ratio of the target volume and the relevant OARs. Other adaptation
possibilities include combining dose painting (dose redistribution) with dose boosting,
and adapting to anatomical and/or geometrical changes simultaneously. We refer to
Baumann et al. (2016) for an overview of adaptation strategies.

An essential difference between the two presented adaptation strategies and the
original treatment plan is the objective: UDA maximized the therapeutic ratio (de-
fined as worst-case TCP minus the cataract NTCP to the spared eye), CDA maximized
worst-case TCP, and the original treatment plan did not take TCP and/or NTCP into
account at all. The current objective for CDA is not suitable for UDA, because if the
maximum NTCP is fixed and the dose distribution can only be uniformly scaled, there
are no degrees of freedom left to optimize. Differences between CDA and UDA can for
a large part be attributed to the set boundary conditions. CDA is restricted to dose re-
distribution whereas UDA can add or remove dose. Moreover, UDA can increase NTCP
if this yields an improvement in therapeutic ratio, whereas CDA cannot increase NTCP.
Thus, results in Tables 3.4 and 3.5 are consistent with the imposed boundary condi-
tions. We did not attempt to make a direct comparison between the results of UDA and
CDA. Moreover, in cases where therapeutic ratio is maximized for a worst-case TCP and
NTCP both close to zero, the clinically preferred adaptation might not be captured by
either model (see previous paragraph). The results show the importance of deciding
what outcome measure is to be optimized under what boundary conditions, and the
influence of this component of the adaptation framework.

In the current study a linear transformation is used to acquire radiation response
parameter estimates from imaging signals. For an individual voxel the relative re-
maining signal 1− ri can be interpreted analogous to the survival fraction in equation
(3.A.1). Alternative to our approach, one could substitute 1 − ri for SFi, plug in the
delivered voxel dose and directly obtain αi for each voxel i. However, in order to ob-
tain estimates αi that are in the order of magnitude of a reference (literature) value of
0.35 Gy−1, response estimates need to be approximately 0.95, i.e., approximately 5%
of original signal should be remaining in the mid-treatment signal. Preliminary nu-
merical experiments using standardized uptake values acquired via FLT PET imaging
as signals show that the relative remaining signal is typically much higher. As such,
α̂i estimates obtained this way are typically too low for use in adaptive optimization
methods. The current estimation method is not directly based on biological models,
and is based on a few simple assumptions regarding early response.
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Radiation response values found for α via fitting the TCP curve to clinical data may
be substantially lower than the employed minimum of 0.20 Gy−1 (Van Leeuwen et al.,
2018), but the fitted TCP model parameters depend largely on the employed method-
ology. Many studies see parameters αi and vi as fitting parameters, and decouple the
biological interpretation. This has considerable influence on obtained parameter val-
ues (Chapman and Nahum, 2015).

The currently proposed methodology takes a cohort-based approach in the radia-
tion response parameter estimation. It is assumed that the average radiation response
parameters of the entire patient cohort are equal to parameter estimates taken from
literature. A large-scale study would be needed to establish average imaging and ra-
diation response parameters in a representative population, to serve as a reference
baseline. While this would be a necessary step before practical implementation, it is
outside the scope of this work.

Finally, we note that the proposed framework solely adapts to biological response
and does not consider adaptations to anatomical and/or geometric changes or deliv-
ered dose. Such adaptations have been studied for decades, see, e.g., Lim-Reinders
et al. (2017) for a review. Whereas methodology can readily applied to both ap-
proaches, one should be aware of significant differences. For example, biological
changes occur much faster than anatomical changes (e.g., FLT PET signal often drops
beyond detectability limit, when CT changes are still largely negligible), which signif-
icantly affects potential for adaptation. In addition they are driven by different factors
(e.g., anatomical changes follow biological changes and are affected by other physio-
logical changes, such as inflammation, infiltration), so direct comparisons should be
very carefully considered.

3.5 Conclusion
This chapter presents a framework for mid-treatment imaging-based adaptive treat-
ment plan optimization. By directly taking into account both the baseline and early
response information, more information than typically considered in a re-optimization
workflow, it allows for ‘smarter’ adaptations. The generic concept requires the avail-
ability of reliable biomarkers, biological response models and a way of transforming
imaging data into model parameters. These components remain subject to research.
The possibilities of the proposed adaptation framework crucially depend on the level
on uncertainty associated with the above mentioned components. The current results,
based on real patient data, account for these uncertainties and show the possibilities of
the proposed framework. Under the current modeling choices and a 10% uncertainty
level, both the UDA and CDA strategy result in a noteworthy average improvement
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in guaranteed (worst-case) TCP. If the required components are sufficiently reliable,
the presented framework enables a first step towards individualized adaptive radiation
therapy.
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3.A Modeling details

3.A.1 Modeling choices
To account for non-standard fractionation schemes, we make use of the biologically effective
dose (BED) model (Fowler, 1989, 2010). The BED to voxel i is

BEDi(di) = (di − d(1)i )
�
1+

1
α/β

di − d(1)i

N (2)

�
+ d(1)i

�
1+

1
α/β

d(1)i

N (1)

�
,

where d(1)i is the dose already delivered to voxel i in the first N (1) treatment fractions (stage
1), and N (2) is the remaining number of treatment fractions after mid-treatment biomarker
acquisition (stage 2). Parameter α/β is the (fixed) fractionation sensitivity parameter of the
tissue to which the voxel belongs.

For the TCP model, we assume a assume a fixed (α/β)T = 10, typical for human head-
and-neck tumors (Fowler et al., 2003; Fowler, 2009). For any target voxel i = 1, . . . , nT , the
surviving fraction of cells after delivery of a total dose of dT

i Gy is

SFi(d
T
i ;αi) = exp

�−αiBEDi(d
T
i )
�
. (3.A.1)

Plugging this in the TCP function (3.2) completely specifies the model.
The NTCP model (3.3) takes as input a homogeneous dose dh. Additionally, for correct

application of the NTCP model, the parameters and the dose used for evaluation should be
normalized to the same fraction dose (Li et al., 2012). Burman et al. (1991) give LKB-NTCP
parameters for a 2 Gy per fraction scheme.

An OAR often does not receive a homogeneous dose distribution. The generalized equiva-
lent uniform dose (gEUD) (Niemierko, 1999) is the dose that, if delivered uniformly to the OAR
tissue, yields the same biological effect as the original heterogeneous dose distribution. For an
OAR r with ar a tissue specific parameter indicating the volume effect and nr the number of
voxels in the OAR, the gEUD of a heterogeneous dose distribution d r is given by

gEUD(d r) =
� 1

nr

nr∑
i=1

(di)
ar
� 1

ar .
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To account for non-standard fractionation schemes, we do not directly use the physical
dose but convert this into the equivalent dose delivered in 2 Gy fractions:

LQED2(dr
i ) =

BEDr
i (d

r
i )

1+ 2
(α/β)r

,

where (α/β)r is the fractionation sensitivity parameter of tissue r. The resulting
gEUD(LQED2(dr

i )) is also known in literature as the modified equivalent uniform dose (Park
et al., 2005). AAPM Report 166 (Li et al., 2012) recommends that NTCP computations are
done using this fractionation-corrected uniform dose. Hence, in the current methodology the
normal tissue complication probability for OAR r, resulting from a heterogeneous OAR dose
distribution d r , is calculated as

NTCPr(d r) := NTCPr
LKB(gEUD(LQED2(d

r))).

LKB-NTCP parameters (a, TD50 and m) for the OARs are taken from human head-and-neck
data for a 2 Gy per fraction scheme (Burman et al., 1991), and OAR α/β parameters are taken
from an earlier canine sinonasal tumor study (Gutiérrez et al., 2007). Table 3.A.1 gives the
parameter values.

Endpoint α/β (Gy) a TD50 (Gy) m

Brain (necrosis) 2 4 60 0.15
Eyes (cataract) 3 3.33 18 0.27

Table 3.A.1: Parameter settings for LKB NTCP model. Parameter α/β taken from Gutiérrez
et al. (2007), parameters a, TD50 and m taken from Burman et al. (1991).

3.A.2 Optimization method
In order to reduce the total number of variables, the optimization problem (3.7) is first solved
with only voxels belonging to the PTV50, PTV42 and the three OARs. Subsequently, the set of
normal tissue voxels i for which the resulting dose exceeds di

U + ε is determined, with ε > 0 a
tolerance parameter. If this set is nonempty, these voxels are added to the model (constraints
(3.7e)-(3.7f) are updated) and the model is re-solved. This is continued until no voxels exceed
the dose tolerance with more than ε and the total number of voxel violations is at most nε. For
our implementation we choose ε = 1 (Gy) and nε = 10. This typically requires no more than
3 iterations. An iteration is terminated once feasible and near-optimal results are obtained,
which takes between 30 minutes and 2 hours.

The intent of this procedure is to avoid hot-spots without requiring the delineation of ar-
tificial dose-limiting ring structures. Whereas the latter procedure will be more successful in
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avoiding hot spots, the intent of the current study is to let the TCP and NTCP criteria have the
dominant influence on the final dose distribution.

3.A.3 TCP and NTCP optimization with reference response
parameters

The original treatment plan did not optimize directly for TCP and NTCP. Thus, the improve-
ments of CDA over the original treatment plan that are reported in Section 3.3.3 may be par-
tially due to inclusion of imaging biomarkers, and partially due to the direct optimization of
TCP and NTCP. We solve model (3.7) using reference values (ᾱ, ν̄) instead of (α̂w, ν̂w) in the
objective.

TCPnom [TCPrange] NTCP d98 (Gy) dmean (Gy) d2 (Gy)

0.64 [-]PTV50 [0.47 [-0.01], 0.73 [-0.01]] 44.61 [-0.64] 48.44 [-] 52.73 [+3.27]

PTV42 42.65 [+1.63] 48.11 [+1.48] 53.67 [+4.22]
Brain 0.01 [-0.02] 7.71 [-0.43] 35.44 [-1.19]

Eye (low) 0.29 [-0.04] 8.98 [-0.17] 23.28 [+0.09]
Eye (high) 0.63 [-0.05] 15.57 [-0.12] 32.18 [-1.36]

Table 3.A.2: Results for the CDA strategy with reference (ᾱ, ν̄). d98 and d2 are the near
minimum and near maximum dose, respectively. Numbers in red indicate the change compared
to the original treatment plan (Table 3.2). All numbers are cohort averages.

Table 3.A.2 presents the results. Numbers in red indicate changes compared to the original
treatment plan (Table 3.2). Both the worst-case and best-case TCP decreased by one per-
centage point, on average. The CDA strategy with the estimated (α̂w, ν̂w) (Table 3.5) yields
improvements in worst-case and best-case TCP of 0.07 and 0.17, on average. Thus, direct opti-
mization of TCP using reference values (ᾱ, ν̄) does not produce treatment plans that are better
than the original treatment plans in terms of TCP values for estimated response parameters
(α̂w, ν̂w). The reported dosimetric statistics are comparable to those of the CDA strategy with
the estimated response parameters (Table 3.5).
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CHAPTER 4

Conic formulation of fluence map optimization
problems

4.1 Introduction

Fluence map optimization (FMO) is one of the core elements of inverse treatment plan-
ning for intensity-modulated radiation therapy (IMRT) and an essential part of any
treatment planning system (TPS). It aims to find the combination of fluences (beam-
let intensities) that yields the optimal trade-off between various treatment plan eval-
uation criteria. For an overview of fluence map optimization and other optimization
challenges in the IMRT planning phase, we refer to Shepard et al. (1999) and Ehrgott
et al. (2008). In general, determining the optimal fluence map is a large-scale opti-
mization problem. In the current chapter, we formulate this as a conic optimization
problem and propose to solve these using state-of-the art algorithms from the conic
optimization field.

The types of employed evaluation criteria determine whether the FMO problem is
linear, quadratic, otherwise convex or nonconvex. For example, minimum, mean and
maximumdose criteria lead to linear functions and quadratic errors from a prescription
dose lead to quadratic functions. Dose-volume based constraints are known to be
nonconvex, but convex approximations exist (Romeijn et al., 2003; Saberian et al.,
2016b; Liu et al., 2018; Fu et al., 2019); several of these papers solve multiple convex
sub-problems.

Next to dose and dose-volume criteria, one can also optimize biologically-based
evaluation criteria, such as tumor control probability (TCP) and normal tissue com-
plication probability (NTCP) criteria. The potential of biological-based models over
surrogate dose-based criteria has long been recognized (Ling et al., 2005; Niemierko,
2006), and their importance can be expected to increase with the advance of personal-
ized treatment planning (Baumann et al., 2016). In Ajdari et al. (2019) and Chapter 3
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it is proposed to optimally adapt treatment plans based on direct optimization of TCP
and/or NTCP criteria. Although practical implementation presents many challenges,
the attention of commercial treatment planning systems in biological-based models is
increasing (Li et al., 2012).

Biologically-based evaluation criteria often have more complicated structures in-
volving exponentials, logarithms and power functions. However, many commonly used
dose-based and biologically-based treatment planning criteria can be (re)formulated
as convex objectives and constraints (Romeijn et al., 2004; Hoffmann et al., 2008). In
these approaches, a strictly increasing or decreasing function is applied to the evalu-
ation criterion such that the new composite function is convex. For constraints, this
immediately gives a convex constraint. For an objective, optimizing the new composite
function is equivalent to optimizing the original objective function, and in a multicri-
teria optimization (MCO) setting the Pareto surface remains unchanged. Hence, most
FMO problems, both physical dose-based and/or biologically-based, can be formulated
as convex optimization problems. The main advantage of convex optimization prob-
lems is that any local optimum is a global optimum.

TPS Algorithm Supported biological models

RayStation
Sequential quadratic TCP Poisson-LQ, NTCP Poisson-LQ,

programming NTCP LKB, min/max gEUD

Eclipse
conjugate gradient TCP Poisson-LQ, NTCP Poisson-LQ,

method∗ NTCP Lyman, min/max gEUD

Pinnacle L-BFGS Min/target/max gEUD

Monaco barrier method
Poisson TCP, serial and

parallel complication model

Table 4.1: Used algorithm and supported biological models for treatment plan optimization
in commercial treatment planning systems. Supported biological models are according to the
report of AAPM Task Group 166 (Li et al., 2012) for Monaco® V1.0, Pinnacle® V8.0h and
Eclipse V10.0, and according to RaySearch Laboratories AB (2017a) for RayStation. LQ = lin-
ear quadratic, LKB = Lyman-Kutcher-Burman, gEUD = generalized equivalent uniform dose.
∗: If biological optimization is selected, Eclipse uses a separate plug-in (by RaySearch), instead
of its own FMO solver.

In order to solve these problems, commercial TPSs use a variety of solution meth-
ods. RayStation (RaySearch Laboratories AB, Stockholm, Sweden) uses sequential
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quadratic programming (RaySearch Laboratories AB, 2017b), Eclipse (Varian Medi-
cal Systems, Palo Alto, CA) uses conjugate gradient methods (Doolan et al., 2014),
Pinnacle (Philips Medical Systems, Andover, MA) uses a limited memory Broyden—
Fletcher—Goldfarb-–Shanno (L-BFGS) algorithm adapted to account for constraints
(Philips, 2019), and Monaco (CMS/Elekta, Maryland Heights, MO) uses a (interior-
point) barrier method (Alber and Reemtsen, 2007). Table 4.1 provides an overview
of the algorithms implemented by commercial TPSs, and the supported biologically-
based evaluation criteria (next to physical dose and dose-volume criteria).

Next to these, several open-source research-oriented TPSs exist. The CERR tool-
box (Deasy et al., 2003) requires a user pre-installed solver, and the matRad tool-
box (Wieser et al., 2017) calls the open-source general convex optimization solver
IPOPT (Wächter and Biegler, 2006). Many different solution approaches have been
considered to improve speed and/or solution quality for specific problem formulations.
FMO problems formulated as penalty-based problems (without hard constraints, ex-
cept beamlet nonnegativity) are often solved using first-ordermethods such as gradient
descent and conjugate gradient methods, and (quasi-)Newton methods (e.g., L-BFGS),
see amongst others Bortfeld et al. (1990), Wu and Mohan (2000), Zhang et al. (2004)
and Pflugfelder et al. (2008). To allow for constraints, a different line of research uses
linear FMO formulations and employs projection algorithms, which have been shown
to be very fast (Censor et al., 2006; Chen et al., 2010; Gorissen, 2019).

Proximal operators can be seen as generalizations of projections, and they are the
basis for the class of proximal algorithms, which can solve non-smooth and constrained
problems. These include proximal gradient descent and alternating direction method
of multipliers (ADMM). Constraints are handled via proximal operators, and proxi-
mal algorithms work particularly well when the proximal operators can be efficiently
evaluated, e.g., for linear constraints. ADMM has been applied to FMO problems with
linear constraints (Gao, 2016; Liu et al., 2017).

Interior-point methods (IPMs) are general purpose algorithms for constrained con-
vex optimization, and have successfully been implemented in a wide variety of appli-
cations. Especially primal-dual IPMs are regarded as the state-of-the art algorithms in
the optimization community. IPMs have been used in fluence map optimization with
linear evaluation criteria by Romeijn et al. (2003), Romeijn et al. (2006), Aleman
et al. (2010) and Gorissen (2021). The in-house solver of Erasmus MC (Rotterdam,
The Netherlands), iCycle (Breedveld et al., 2012, 2017), allows for several nonlinear
evaluation criteria. It is the state-of-the-art (functional form) primal-dual IPM imple-
mentation in radiation therapy, and it is specially tuned for FMO problems with par-
ticular treatment plan evaluation criteria. Each of the above approaches solves FMO
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problems in functional form. These algorithms may attain the global optimum, but in
general do not guarantee to do so efficiently (i.e., do not guarantee to converge in poly-
nomial time). For the latter, one needs to prove that the feasible region described by
the evaluation criteria allows for a so-called self-concordant barrier function (Nesterov
and Nemirovski, 1994), which is a non-trivial task.

In this chapter, we take a conic optimization approach to FMO. Conic optimization
is a subfield of convex optimization. It allows for nonlinear evaluation criteria, thus
being more general than linear optimization. Nonlinear evaluation criteria are not
treated in their original functional form, but are formulated by restricting variables
to belong to certain convex ‘cones’. By restricting the types of allowed cones to the
quadratic, exponential and power cone, it is more structured than convex optimization
in functional form. The main advantages of formulating an optimization problem in
conic form using these three cones are:

• Implementing the model is more structured and less error prone. For example,
it is not necessary to specify derivatives and Hessians.

• By formulating an optimization problem in conic form using these three cones,
we know there exist IPM algorithms that can solve the problem in polynomial
time. To the best of our knowledge, all other currently used approaches for FMO
lack this theoretical backing.

• General purpose primal-dual IPM solvers exist for these conic optimization prob-
lems, with very good practical performance. It is not necessary to develop and
maintain a solver for FMO problems of a specific form.

• It is flexible regarding extensions. For example, it can be shown that for problems
in conic form the robust counterpart can also be written in conic form. Moreover,
the dual problem of any conic problem is easy to set up.

We present a conic optimization methodology for FMO, with a focus on biological-
based evaluation criteria. We emphasize that we do not develop a new dedicated
algorithm for these problems. Instead, we model FMO problems as conic optimization
problems, and use general purpose conic solvers. Specifically, our contributions are:

• We provide (approximate) conic representations of all common biological-based
treatment plan evaluation criteria, e.g., TCP and NTCP criteria, making use of
the quadratic, exponential and power cone. Any new treatment plan evaluation
criteria can be incorporated in a similar, straightforward manner, if conic rep-
resentable. Whereas for some individual criteria results exist, to the best of our
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knowledge this is the first proof that FMO problems with any combination of the
analyzed biological criteria can be solved in polynomial time.

• We provide numerical results using a general purpose conic primal-dual IPM
solver on the TROTS data set (Breedveld and Heijmen, 2017), demonstrating
that conic form problems can be solved to optimality in practice, with promising
speed.

We note that conic optimization has been used before in FMO. Chu et al. (2005)
rewrites the robust counterpart of a linear FMO problem with uncertain data to conic
quadratic form. Kim et al. (2012a) uses a first-order conic method to solve FMO prob-
lems with a total-variation regularization term, containing �1- and �2-norms. Both
studies use conic optimization only for a particular problem formulation, and do not
use the modeling capabilities of quadratic, exponential and power cones to set up a
general framework.

The remainder of this chapter is organized as follows. First, Section 4.2.1 intro-
duces the conic optimization methodology. To emphasize its general applicability and
improve readability, conic optimization will first be introduced in a general setting. Af-
ter that, Section 4.2.2 shows that all common biological-based treatment plan criteria
can be reformulated to conic form. Section 4.2.3 describes the setup of our numerical
experiments on the TROTS data set. Section 4.3 presents numerical results. Section 4.4
discusses the methodology and results and Section 4.5 concludes the chapter.

4.2 Methods
In a generic FMO problem, the goal is to minimize particular treatment plan evaluation
criterion f0, subject to constraints on evaluation criteria f1, . . . , fp, evaluated in dose
vector d. In a typical FMO setup, functions f0, . . . , fp are convex, or can be reformulated
to or approximated by convex functions. The FMO problem can be written as

min
x ,d

f0(d),

s.t. f j(d)≤ 0, j = 1, . . . , p,

d = Ax ,

x ≥ 0.

(4.1a)

(4.1b)
(4.1c)
(4.1d)

Constraint (4.1c) relates d to the pencil beam weights x according to pencil beam (or
dose deposition) matrix A. Constraint (4.1d) ensures (elementwise) nonnegativity of
pencil beam weights. In solving an FMO, we can in general distinguish two steps:
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1. Formulate an FMO problem in such a way that it is algorithm readable.

2. Solve the FMO problem formulation using a suitable algorithm.

Many implementations use formulations of form (4.1). This is what we refer to as
functional form, i.e., the functions f0, . . . , fp describing the treatment plan evaluation
criteria are directly used as input for the algorithm. In the current chapter, we in-
troduce an alternative form, known as the conic form. This allows us to use conic
optimization algorithms in the second step of the FMO procedure.

4.2.1 Conic optimization methodology

Introduction to conic optimization

We provide a brief introduction to conic optimization (not restricted to FMO prob-
lems), starting from linear optimization. For details we refer to Ben-Tal and Nemirovski
(2001) and Nemirovski (2007). Let c ∈ �n, A ∈ �m×n, b ∈ �m. A linear optimization
problem in standard form is given by

min
x

c�x ,

s.t. Ax = b,

x ∈ �n
+,

(4.2a)

(4.2b)
(4.2c)

where the set �n
+ is the nonnegative orthant. When moving from linear to convex

optimization, the common approach is to replace the objective by a convex function
f0(x ) and replace the constraints by convex constraints f j(x )≤ 0, j = 1, . . . , p, where
u ∈ �p is an upper bound vector. A general convex optimization problem reads

min
x

f0(x ),

s.t. f j(x )≤ 0, j = 1, . . . , p.

(4.3a)

(4.3b)

Conic optimization takes an alternative approach and solely changes (4.2c) by re-
placing it with a proper cone. A set C is a cone if x ∈ C implies that λx ∈ C for all
scalars λ≥ 0. A proper cone is defined as follows.

Definition 4.1 (Ben-Tal andNemirovski (2001)). A cone C ⊆ �n is a proper (or regular)
cone if it is closed, has a nonempty interior and

• x ∈ C , −x ∈ C ⇒ x = 0 (Pointed),
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• x , y ∈ C ⇒ x + y ∈ C (Convex). �

The standard form of a conic optimization problem, introduced by Nesterov and
Nemirovski (1994, Chapter 4) is

min
x

c�x ,

s.t. Ax = b,

x ∈ C ,

(4.4a)

(4.4b)
(4.4c)

with C a proper cone. It is straightforward to see that the nonnegative orthant �n
+ is a

proper cone. Another way of moving from linear optimization to conic optimization is
by considering the inequality associated with�n

+. The element-wise inequality x ≥ y is
equivalent to xi−yi ≥ 0, i = 1, . . . , n, which can also bewritten as x−y ∈ �n

+. Similarly,
for a proper cone C the generalized inequality x ≥C y is equivalent to x − y ≥C 0,
which is again equivalent to x − y ∈ C . For more details we refer to Ben-Tal and
Nemirovski (2001). Instead of the standard form (4.4) we consider the general conic
optimization form

min
x

c�x ,

s.t. l c ≤ Ax ≤ u c,

l x ≤ x ≤ u x ,

x ∈ C ,

(4.5a)

(4.5b)
(4.5c)
(4.5d)

with l c, u c bounds on the linear constraints and l x , u x bounds on variable x . Addi-
tionally, we assume there exists a partitioning x = (x 1, . . . , x p), such that x k ∈ Ck, i.e.,
each subvector x k belongs to a smaller cone Ck. The following property allows models
involving a mix of various different proper cones to be represented in form (4.5)1.

Proposition 4.2 (Ben-Tal and Nemirovski (2001)). If C1, . . . , Cp are proper cones, their
Cartesian product C = C1 × . . . × Cp is a proper cone.

Practically useful cones

The simplest useful cone is the n-dimensional nonnegative orthant

�n
+ =
�
x ∈ �n : x1, . . . , xn ≥ 0

�
.

1Form (4.5) implies that any subvector x k belongs to exactly one cone. However, this is not a restric-
tion because duplicates of variables can be introduced via linear equality constraints. For conciseness,
we will not explicitly state these extra constraints in the remainder of the chapter.
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126 Conic formulation of fluence map optimization problems

Note that in form (4.5) the nonnegative orthant is redundant because all linear com-
ponents are captured by (4.5b) and (4.5c). The n-dimensional quadratic cone is given
by

Qn =
	

x ∈ �n : x1 ≥�x2
2 + x2

3 + . . .+ x2
n



,

which is also known as the second-order, Lorentz or ice-cream cone. Sometimes it
is more convenient to use the n-dimensional rotated quadratic cone representation,
which is given by

Qn
r =
�
x ∈ �n : 2x1 x2 ≥ x2

3 + . . .+ x2
n, x1, x2 ≥ 0

�
.

There is an easy transformation from quadratic cones to rotated quadratic cones
(MOSEK ApS, 2018). The nonnegative orthant and quadratic cone are so-called sym-
metric cones2 (Nemirovski, 2007), and offer great modeling flexibility. However, they
do not admit the modeling of expressions involving amongst others exponentials and
logarithms. Also, many power functions can in theory be represented using quadratic
cones, but these functions are more naturally represented using different cones.

Two particularly useful non-symmetric cones are the exponential cone and the
power cone. The 3-dimensional exponential cone is given by

Kexp =
�
(x1, x2, x3) : x1 ≥ x2 exp(x3/x2), x2 > 0

�∪ �(x1, 0, x3) : x1 ≥ 0, x3 ≤ 0
�
.

Various representations of the power cone exist. With 0 < α < 1, the most common
form of the n-dimensional power cone is given by

Pα,1−α
n =

�
x ∈ �n : xα1 x1−α

2 ≥�x2
3 + . . .+ x2

n, x1, x2 ≥ 0
�
,

but one may also define a more general version where the left hand side consists of
arbitrarily many terms (MOSEK ApS, 2018). It is widely accepted in the optimization
community that the quadratic, exponential and power cone, together with the semidef-
inite cone, canmodel almost all convex functions arising in practice. Lubin et al. (2016)
showed that all (mixed-integer) convex problems in the MINLPLIB2 benchmark library
(Vigerske, 2021) can be modeled using the quadratic, exponential and power cone.
The MOSEK modeling cookbook (MOSEK ApS, 2018) provides an overview of (sim-
ple) functions and sets that can be represented using these cones. Modeling using
these conic representable expressions is called extremely disciplined convex optimiza-
tion/modeling by MOSEK. For clarity, we will simply use conic optimization and conic
modeling.

2The semidefinite cone is a third often used symmetric cone, but we omit it here because it is irrele-
vant for modeling radiation therapy functions and it clutters notation.
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Lastly, we note there are generalizations of Farkas’ lemma (Farkas, 1902) from lin-
ear optimization to conic optimization, see, e.g., Renegar (2001). Thus, formulating
a problem in conic form (using the quadratic, exponential and power cone) immedi-
ately presents a feasibility check. Farkas’ lemma has previously been used in FMO by
Gorissen (2019).

Conic reformulations

Reformulating a convex optimization problem P of form (4.3) to an equivalent problem
Q of form (4.5) typically requires the introduction of auxiliary variables. Let x ∈ �n

denote the variable vector of problem P, and let (x , y) ∈ �n+q denote the variable vector
of problem Q. That is, in Q we distinguish between original variables x that already
exist in the original problem P and auxiliary variables y ∈ �q. Equivalence of P and Q
is defined as follows.

Definition 4.3. Optimization problems P and Q are equivalent if x ∗ is optimal to P if
and only if there exists a y∗ ∈ �q such that (x ∗, y∗) is optimal to Q. �

The idea is that after the reformulation the new problemQ can be represented using
only the cones introduced in Section 4.2.1. A conic problem is defined as follows3:

Definition 4.4. An optimization problem Q of form (4.5) is named a conic problem
(CP) if all cones Ck, k = 1, . . . , p, are quadratic, rotated quadratic, exponential or
power cones. �

We are now equipped to reformulate problems to equivalent CPs. We start with the
functional form (4.3), as many optimization problems arising in practice come in this
form. We rewrite (4.3) to

min
x ,t

t,

s.t. f0(x )≤ t,

f j(x )≤ 0, j = 1, . . . , p,

(4.6a)

(4.6b)
(4.6c)

where in the FMO setting functions f j could be TCP or NTCP functions. This form
suggests the analysis of epigraph sets

epi( f ) =
�
(x , t) : x ∈ �n, t ∈ �, f (x )≤ t

�
,

for f0 and f j for all j. We make use of the following definitions3:
3In the definitions of a conic problem and conic constraint we restrict to a certain family of cones.

These are not the standard definitions of conic problems and constraints, but these are more suitable
for practical purposes.
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128 Conic formulation of fluence map optimization problems

Definition 4.5. A constraint is a conic constraint if it is a linear constraint or a constraint
of the form x ∈ C , with C a quadratic, rotated quadratic, exponential or power cone.
�

Definition 4.6. A set S ⊆ �n is conic representable (Cr) if (i) there exists a set T ⊆ �n+q

such that T can be described by finitely many conic constraints, and (ii) x ∈ S if and
only if there exists an u ∈ �q such that (x , u) ∈ T . The conic constraints describing
set T are the conic representation (CR) of S. �

If, via the introduction of auxiliary variables and constraints, we find CRs for the
epigraphs of f0 and f j, j = 1, . . . , p, the resulting optimization problem is a CP that is
equivalent to (4.6) (or (4.3)). While sufficient, it turns out that this is not necessary.

Proposition 4.7. Let g0 : � �→ � and g j : � �→ �, j = 1 . . . , p be strictly increasing
functions. Solution x is optimal to (4.3) if and only if there exists a τ ∈ � such that
(x ,τ) is optimal to

min
x ,τ
τ,

s.t. g0( f0(x ))≤ τ,

g j( f j(x ))≤ g j(0), j = 1, . . . , p.

(4.7a)

(4.7b)
(4.7c)

Proof. Consider the strictly increasing functions g0 : � �→ � and g j : � �→ �, j =
1 . . . , p. Applying g0 to (4.6b) is equivalent to

g0( f0(x ))≤ τ,

τ≤ g0(t),

(4.8a)
(4.8b)

where τ ∈ � is a new variable. The objective of (4.6) is to minimize t, which is equiv-
alent to minimizing g0(t) because g0 is strictly increasing. Variable t occurs only in
constraint (4.8b), so we can equivalently minimize τ and remove variable t altogether.
Stated differently, when applying g0 to both sides of the inequality f0(x ) ≤ t, we can
replace right-hand side g0(t) by new variable τ. This results in (4.7a) and (4.7b).
Lastly, applying functions g j to (4.6c) gives (4.7c).

Note that g j(0) is a constant for all j = 1, . . . , p. This shows that, in order to find
a CP equivalent to (4.3), it suffices to find for every j = 0, . . . , p a strictly increasing
function g j for which we can find a CR of the set epi(g j ◦ f j). In particular, any function
f is suitable for conic optimization if we can find a strictly increasing function g such
that epi(g ◦ f ) is Cr.
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Note that in the above we impose an upper bound or minimize function f . In case
of a lower bound or maximization, we instead consider the hypograph

hypo( f ) =
�
(x , t) : x ∈ �n, t ∈ �, f (x )≥ t

�
,

and function f is suitable for conic optimization if we can find a strictly increasing
function g such that hypo(g ◦ f ) is Cr.

An optimization problem that can be transformed to a CP using only the afore-
mentioned cones can be solved to optimality using (amongst others) primal-dual IPMs.
More details on solving conic optimization problems, IPMs and complexity theory are
provided in Appendix 4.A. In Appendix 4.B it is shown that reformulating an FMO
problem to a CP (using the presented reformulation methodology) guarantees that
the original FMO problem can be solved in polynomial time. There are two (mild)
technical conditions: (i) the number of additional variables introduced by the conic
reformulation is polynomial in the original number of variables, and (ii) the strictly
increasing function g is differentiable.

Lastly, we emphasize that formulating an FMO problem in conic form does not
restrict the solution method to IPMs. This point is further discussed in Section 4.4.

4.2.2 Conic representations of common evaluation criteria

The methodology of Section 4.2.1 describes how to reformulate a generic FMO prob-
lem of form (4.1) (functional form) to conic form. In this section, we show that many
commonly used objectives and constraints in radiation therapy treatment optimiza-
tion can be reformulated to conic form via this methodology. As mentioned in Sec-
tion 4.2.1, FMO problems consisting only of functions that can be reformulated using
the proposed methodology can be solved in polynomial time. This has an important
theoretical consequence: to the best of our knowledge, this is the first proof that FMO
problems with any combination of such functions can be solved in polynomial time.

Observation: Any FMO problem consisting only of evaluation criteria described in the
current section can be solved in polynomial time.

According to the methodology of Section 4.2.1, for each function f that is to be
minimized or has an upper bound, we find a strictly increasing function g and a CR of
epi(g ◦ f ). Alternatively, if f is to be maximized or has a lower bound, we find a strictly
increasing function g and a CR of hypo(g ◦ f ). We mainly consider the library of TCP
and NTCP functions that are analyzed in Romeijn et al. (2004). Conic reformulations
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and/or conic approximations of the fractionation-corrected models analyzed by Hoff-
mann et al. (2008) are derived in Appendix 4.C. These results are summarized at the
end of this section.

Notation: We consider a set of n voxels indexed by i. Let d ∈ �n
+ denote the voxel

doses. Let vi > 0 denote the relative volume of voxel i, i.e.,
∑n

i=1 vi = 1. For every voxel
i dose di is delivered uniformly over N fractions. Let α > 0 denote the tissue radia-
tion sensitivity parameter and let α/β > 0 denote the tissue fractionation sensitivity
parameter.

Linear Poisson survival function

The linear Poisson survival function (McMahon, 2019) describes the cell survival frac-
tion after delivery of dose di in a voxel i as

SFL(di) = exp
	−αdi



.

It is also known as the single-hit model. The inequality SFL(di)≤ t is equivalent to the
following conic constraint:

(t, 1,−αdi) ∈ Kexp.

We did not require a strictly increasing function g for the reformulation, so we can
pick g(t) = t. Then epi(g ◦ SFL) is Cr. The linear-quadratic Poisson survival function
is discussed in Appendix 4.C.

Linear Poisson TCP function

The linear Poisson TCP (see, e.g., Brahme and Argren (1987)) is given by

TCPL(d) = exp
�− N0

n∑
i=1

viSFL(di)
�
, (4.9)

where N0 is the total initial number of clonogenic cells. The total number of tumor
cells remaining (TNTCR) is given by − log(TCPL), which gives

TNTCRL(d) = N0

n∑
i=1

viSFL(di).

Generally the goal is to maximize TCP, so we aim to find a CR of hypo(g ◦ TCPL)
and consider the inequality TCPL(d) ≥ t, for some t ∈ [0, 1). Consider the strictly
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increasing function g(t) = log(t), and let τ denote either the new objective variable
or the constant term (see Section 4.2.1) that replaces g(t). Then, with y ∈ �n an
auxiliary variable, TCPL(d)≥ t is equivalent to⎧⎪⎨⎪⎩ −N0

n∑
i=1

vi yi ≥ τ,

yi ≥ SFL(di), ∀i.

(4.10a)

(4.10b)

The second inequality is shown to be Cr in the reformulation of the linear Poisson
survival fraction model.

Alternatively, with p ∈ � an auxiliary variable, TNTCRL(d)≤ t can be reformulated
to ⎧⎪⎨⎪⎩N0

n∑
i=1

vi exp{−αdi − p} ≤ 1,

p ≤ log(t).

With the introduction of auxiliary variable y ∈ �n, this is equivalent to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N0

n∑
i=1

vi yi ≤ 1,

(t, 1, p) ∈ Kexp,

(yi, 1,−αdi − p) ∈ Kexp, ∀i.

The benefit of this reformulation is that the exponents −αdi − p have (much) smaller
absolute values than −αdi itself if p < 0 (i.e., upper bound t ≤ 1), thus improving
numerical stability.

Alber and Reemtsen (2007) uses the logarithmic tumor control probability (LTCP),
which is a variation on the linear TCP and is given by

LTCP(d) =
1
n

n∑
i=1

exp{−α(di − dp)},

with α the radiation sensitivity parameter and dp the prescribed dose. The inequality
LTCP(d)≤ t is equivalent to⎧⎪⎨⎪⎩

1
n

n∑
i=1

yi ≤ t,

(yi, 1,−α(di − dp)) ∈ Kexp,

where y ∈ �n is an auxiliary variable. For the reformulation methodology, we pick
g(t) = t and we find that epi(g ◦ LTCP) is Cr.
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Equivalent uniform dose (EUD)

The EUD (Niemierko, 1997) of a nonuniform dose to the tumor is the dose that, if
delivered homogeneously to the tumor, yields the same TCP. With the linear Poisson
survival model the EUD is given by

EUDL(d) = −1
α

log
�1

n

n∑
i=1

SFL(di)
�
. (4.11)

As we generally wish to maximize tumor EUD, we consider the inequality EUDL(d)≥ t.
With strictly increasing function g(t) = −exp{−αt} and g(t) replaced by new variable
τ, hypo(g ◦ EUDL) is equivalent to⎧⎪⎨⎪⎩

1
n

n∑
i=1

yi ≤ −τ,

yi ≥ SFL(di), ∀i,

and the latter inequality is Cr (see the reformulation of the linear Poisson survival
fraction model).

Generalized equivalent uniform dose (gEUD)

The gEUD of a heterogeneous dose distribution (Niemierko, 1999) is given by

gEUD(d; a) =
�1

n

n∑
i=1

da
i

� 1
a
, (4.12)

where a is a tissue specific parameter. The analysis depends on the value of parameter
a, see also Choi and Deasy (2002). As a → +∞, the gEUD approaches the maximum
dose; as a → −∞, the gEUD approaches the minimum dose. Furthermore, a = 1 is
the mean dose and as a → 0 the gEUD approaches the geometric mean. For an organ-
at-risk (OAR), it is assumed that a ≥ 1 and for a target volume it is assumed that a < 0.
For the analysis we rewrite (4.12) to

gEUD(d; a) = n− 1
a

� n∑
i=1

da
i

� 1
a
= n− 1

a ‖d‖a,

where ‖ · ‖a is the generalized a-norm (slight abuse of notation: not in fact a norm if
a < 0). We consider the cases a < 0 and a ≥ 1 separately.
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Case 1 (a < 0):
For a target volume, we consider the inequality ‖d‖a ≥ t. This is equivalent to t ≥∑

i da
i t1−a, which, on its part, is equivalent to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
i=1

yi ≤ t,

y
1

1−a
i d

−a
1−a
i ≥ t, ∀i,

di ≥ 0, ∀i.

(4.13a)

(4.13b)
(4.13c)

It is straightforward to note that (4.13b) is equivalent to

(yi, di, t) ∈ P
1

1−a , −a
1−a

3 , ∀i,

so the hypograph of the gEUD function with a < 0 can be modeled using a power
cone. Alternatively, Ben-Tal and Nemirovski (2001, Chapter 3) show that (4.13b) is
conic quadratic representable4 (CQr) if we restrict a < 0 to be a rational number, al-
though the reformulation is complicated and impractical. As the explicit description
of (4.13b) in conic quadratic inequalities is cumbersome, we omit it here. The CQr
representation of gEUD has previously been discussed by Zinchenko et al. (2008). For
the reformulation methodology, we pick g(t) = t and the above result shows that
hypo(g ◦ gEUD) is Cr for a < 0.

Case 2 (a ≥ 1):
For an OAR, we consider the inequality ‖d‖a ≤ t. This can be rewritten to

∑
i da

i t1−a ≤
t. Compared to the case a < 0 the inequality sign is reversed, but (due to the value of a)
also this inequality can be rewritten to

∑
i da

i t1−a ≤ t. Subsequently, this is equivalent
to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
i=1

yi ≤ t,

di ≤ y
1
a
i t

a−1
a , ∀i,

di ≥ 0, ∀i.

(4.14a)

(4.14b)
(4.14c)

The inequality (4.14b) is equivalent to

(yi, t, di) ∈ P
1
a , a−1

a
3 , ∀i,

4Optimization using only the linear and quadratic cone is known as conic quadratic programming
or second-order cone programming, see, e.g., Ben-Tal and Nemirovski (2001).
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so the epigraph of the gEUD function with a ≥ 1 can be modeled using a power cone.
Similar to the previous case, if we restrict a ≥ 1 to be a rational number, (4.14b) can
again be shown to be CQr. For the reformulation methodology, we pick g(t) = t and
the above result shows that epi(g ◦ gEUD) is Cr for a ≥ 1.

NTCP functions

The LKB function (Lyman, 1985; Kutcher and Burman, 1989) for NTCP is given by

NTCPLKB(d) = Φ
�d − d50

md50

�
,

where d is a homogeneous dose and Φ(z) = 1/
�

2π
∫ z

−∞ e− 1
2 x2

d x is the standard nor-
mal cumulative distribution function (CDF). Parameter d50 is the dose that yields a 50%
complication probability and m > 0 is a parameter for the slope of the NTCP curve.
The inequality NTCPLKB(d)≤ t can be rewritten as

d − d50

md50
≤ Φ−1(t)⇔ d ≤ d50

�
1+mΦ−1(t)

�
,

which constitutes a linear constraint. Function Φ−1 is a strictly increasing function, and
so is g(t) = d50

�
1+mΦ−1(t)

�
. Therefore, with τ a new variable taking the value g(t),

epi(g ◦NTCPLKB) is equivalent to d ≤ τ. The inequality is linear, so Cr.
Stavrev et al. (2003) apply the NTCP LKB function to the gEUD of a heterogeneous

dose d. With the same strictly increasing function g, the epigraph epi(g ◦NTCPLKB) is
equivalent to gEUD(d; a) ≤ τ, where τ again replaces g(t). As shown in the previous
section, gEUD constraints are Cr.

Alber and Nüsslin (2001) uses mechanistic concepts to derive a phenomenological
NTCP model. They propose the following expression:

NTCPA&N(d; a) = 1 − exp
	− �gEUD(d; a)

Δ

�a

,

where a ≥ 1 is the gEUD parameter andΔ is the dose that yields a 1−e−1 complication
probability. The inequality NTCPA&N(d; a)≤ t can be rewritten as

gEUD(d; a)≤Δ� log
� 1

1 − t

�� 1
a
.

Hence, with strictly increasing function g(t) = Δ log
�

1
1−t

� 1
a , the epigraph epi(g ◦

NTCPA&N) is equivalent to gEUD(d; a)≤ τ, where τ replaces g(t). This is again Cr.
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Sigmoidal criteria based on gEUD

Wu et al. (2002) propose to maximize a sigmoidal-shaped function based on the gEUD
for both target volume and OARs. With a the gEUD parameter, their logistic function
based criteria reads

w(d; a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

1+
�

gEUD0
gEUD(d;a)

�k if a < 0

1

1+
�
gEUD(d;a)
gEUD0

�k if a ≥ 1,

where for the target volume gEUD0 is the gEUD of the prescription dose. For OARs
gEUD0 is the gEUD of the tolerable uniform dose, e.g., d50. Parameter k > 0 determines
the steepness of the function at gEUD0. As we wish to maximize function w, we are
interested in the inequality w(d; a)≥ t, with t ∈ (0,1). If a < 0, this reduces to

gEUD(d; a)≥ gEUD0

� t
1 − t

� 1
k
, (4.15)

and the RHS is strictly increasing in t for t ∈ (0,1). Denote the RHS by g(t) and
replace this by a new variable τ. Then the hypograph hypo(g ◦ w) is equivalent to
gEUD(d)≥ τ. This is Cr (see gEUD reformulation). If a ≥ 1, we obtain

−gEUD(d; a)≥ −gEUD0

�1 − t
t

� 1
k
,

and the RHS is strictly increasing in t for t ∈ (0, 1). Denote the RHS by g(t) and replace
this by a new variable τ. The hypograph hypo(g ◦ w) is equivalent to gEUD(d) ≤ −τ.
This is Cr.

Romeijn et al. (2004) indicate that one could also maximize a sigmoidal-shaped
function based on the CDF of the normal distribution. The following criteria is ob-
tained:

w̆(d; a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −Φ�gEUD0 − gEUD(d; a)

σgEUD0

�
if a < 0

1 −Φ�gEUD(d; a)− gEUD0

σgEUD0

�
if a ≥ 1,

where σ determines the steepness at gEUD0. We are interested in the inequality
w̆(d; a)≥ t, t ∈ (0,1). In case a < 0, the inequality reduces to

gEUD(d; a)≥ gEUD0

�
1 −σΦ−1(1 − t)

�
,
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and the RHS is increasing in t for t ∈ (0, 1). Denote the RHS by g(t) and replace
this by a new variable τ. The hypograph hypo(g ◦ w) is equivalent to gEUD(d; a) ≥ τ
which is Cr for a < 0. Similarly, for a ≥ 1 and strictly increasing function g(t) =
−gEUD0

�
1+σΦ−1(1−t)

�
, the hypograph hypo(g◦w) is equivalent to gEUD(d; a)≤ −τ.

Over- and underdose penalty functions

A general underdose penalty function for tumors reads

fT(d) =
n∑

i=1

vi max{0, pi − di}γ,
where pi is the prescription dose to voxel i, γ ≥ 1 is the shape parameter of the error
and vi is the relative volume of voxel i. Common choices γ = 1 and γ = 2 correspond
to absolute errors and squared errors, respectively. The goal is to minimize this error,
and as such we consider the inequality fT(d)≤ t. By extracting the max operator this
can be rewritten to⎧⎪⎨⎪⎩

n∑
i=1

vi y
γ

i ≤ t,

yi ≥ max{0, pi − di}, ∀i,

which is equivalent to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

vizi ≤ t,

zi ≥ yγi , ∀i,

yi ≥ pi − di, ∀i,

yi ≥ 0, ∀i.

(4.16a)

(4.16b)
(4.16c)
(4.16d)

In the special case γ= 1, then the second inequality is linear. In case γ= 2 the second
inequality is CQr. If γ is any other value larger than one, because yi ≥ 0, the second

inequality is equivalent to z
1
γi
i ≥ yi, which can be written as (zi, 1, yi) ∈ P1/γ,1−1/γ

3 .
Therefore, all inequalities in (4.16) are conic constraints. Hence, with g(t) = t the
epigraph epi(g ◦ fT) is Cr.

The overdose penalty function for OARs reads

fOAR(d) =
n∑

i=1

vi max{0, di − pi}γ.
For OARs it is common that pi = 0 for all voxels. The reformulation of fOAR is analogous
to that of fT.
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Quadratic smoothing constraints

Smoothing constraints prevent spiked beamlet profiles, and generate smoother flu-
ence maps that are more easily deliverable in practice using multileaf collimators, and
are less sensitive to patient movement. Webb et al. (1998) propose to use the sec-
ond derivative of the fluence as an indication of smoothness. Breedveld et al. (2006)
discretize this and define the quadratic smoothness term

sq(x ) =
1
2

x�Sqx ,

with Sq ∈ �n×n a symmetric positive definite matrix. Let matrix F ∈ �p×n be such that
Sq = F�F , e.g., F can be the Cholesky factor of Sq. Then sq(x )≤ t is equivalent to

(F x )�(F x )≤ 2t, (4.17)

which is equivalent to (t, 1, F x ) ∈ Qn+2
r . Thus, with strictly increasing function g(t) =

t, epi(g ◦ sq) is Cr. If upper bound t is a constant, (4.17) can also be rewritten to
(
�

2t, F x ) ∈ Qn+1.
An alternative linear form is proposed by Saberian et al. (2017), who consider the

linear term sl(x ) = Sl x , with Sl a block diagonal matrix with entries −(1 − ε), (1 −
ε),−1, 0,+1, positioned such that adjacent beamlet intensity variation is at most ε.
Naturally, this is Cr with g(t) = t.

Dose-volume criteria

Dose-volume criteria are common in current clinical treatment planning. They impose
dose restrictions on partial volumes. For example, a dose-volume constraint can state
“at least 95% of the target volume must receive the prescription dose” or “at most
5cc of a particular OAR may receive a dose higher than 15 Gy”. They can also be
included in the objective. A major advantage of dose-volume criteria is that clinical
experience can be translated to dose-volume criteria (Deasy, 1997; Bortfeld et al.,
1997). Moreover, they can be visualized directly on a dose-volume histogram (DVH),
which aids interpretation. Unfortunately, dose-volume criteria are nonconvex (Deasy,
1997) and many different approaches have been proposed to incorporate them.

Romeijn et al. (2003), Romeijn et al. (2006) and Engberg et al. (2017) propose
to approximate dose-volume constraints using conditional value-at-risk (CVaR) con-
straints, which can be reformulated to linear constraints. Kishimoto and Yamashita
(2018) propose to solve a sequence of CVaR constrained problems for an improved
approximation. Saberian et al. (2016b), Liu et al. (2018) and Fu et al. (2019) pro-
pose approaches that solve several convex subproblems, which can be reformulated
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to CPs. Zinchenko et al. (2008) prove that a dose-volume constraint is equivalent to
an infinite sequence of gEUD constraints, and use this to construct a tractable approx-
imation. Thus, dose-volume constraints can be approximated by solving a sequence
of CPs. Presenting conic reformulations of these convex approximations is beyond the
scope of this chapter.

Criterion Parameter Type g(t) Cones∗range

Survival fraction SFL(d) - min t Kexp

Tumor control probability TCPL(d) - max log(t) Kexp

Logarithmic tumor LTCP(d) - min t Kexpcontrol probability

Equivalent uniform dose
EUDL(d) - max −exp(−αt) Kexp

gEUD(d; a)
a < 0 max t P3

a ≥ 1 min t P3

NTCP models
NTCPLKB(d) - min d50(1+mΦ−1(t)) linear
NTCPLKB(gEUD(d; a)) a ≥ 1 min d50(1+mΦ−1(t)) P3

NTCPA&N(d; a) a ≥ 1 min Δ log( 1
1−t )

1
a P3

Sigmoidal criteria
w(d; a)

a < 0 max gEUD0(
t

1−t )
1
k P3

a ≥ 1 max −gEUD0(
1−t

t )
1
k P3

w̆(d; a)
a < 0 max gEUD0(1 −σΦ−1(1 − t)) P3

a ≥ 1 max −gEUD0(1+σΦ
−1(1 − t)) P3

Over- and underdose penalty fT(d) - min t P3

fOAR(d) - min t P3

Smoothing constraints sq(x ) - min t Qn+2
r

sl(x ) - min t linear

Table 4.2: Overview of results without fractionation correction. The column ‘type’ indicates
min if the epigraph is Cr, and max if the hypograph is Cr (i.e., it can be used for minimization
resp. maximization).
∗: Next to the nonnegative orthant.

Table 4.2 provides an overview of the cones (next to the nonnegative orthant) nec-
essary to describe the radiation therapy criteria in a single-hit case (excluding fraction-
ation). For each criterion the strictly increasing function g(t) used in the reformulation
is also provided. Column 3 indicates the criterion type; for minimization criteria the
epigraph of epi(g ◦ f ) is Cr, for maximization criteria the hypograph hypo(g ◦ f ) is Cr.
For cases where the conic reformulation depends on gEUD parameter a, its range is
indicated. Table 4.3 gives an overview of the results for fractionation-corrected mod-
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els. Several of these results are not exact conic reformulations but approximations. For
details on these models and proofs of the results we refer to Appendix 4.C.

Criterion Parameter Type g(t) Cones∗range

Survival fraction "SFLQ(d) - min t Kexp, Q3
r

Tumor control probability TCPLQ(d) - max log(t) Kexp, Q3
r

Equivalent uniform dose EUDLQ(d) - max −exp(−αN(t + t2

α/β )) Kexp, Q3
r

gEUD(BED(d); a) a ≥ 1 min t P3, Q3

NTCP models

NTCPLKB(BED(d)) - min d50(1+mΦ−1(t)) Q3

NTCPLKB(gEUD(BED(d); a)) a ≥ 1 min d50(1+mΦ−1(t)) P3, Q3

NTCPA&N(BED(d)) a ≥ 1 min Δ log( 1
1−t )

1
a P3, Q3#NTCPRS(d) - min − log(1 − ts) Q3

r

Table 4.3: Overview of results with fractionation correction. The column ‘type’ indicates min
if the epigraph is Cr, and max if the hypograph is Cr (i.e., it can be used for minimization resp.
maximization). RS = relative seriality s-model. For details see Appendix 4.C.
∗: Next to the nonnegative orthant.

Generalization to multicriteria optimization
The optimal trade-off between various treatment plan evaluation criteria in FMO de-
pends on the relative importance of these criteria. As often these criteria are con-
flicting, e.g., an increase in dose might increase both TCP and NTCP, an important
element in FMO is balancing several conflicting objectives. Multicriteria optimization
(MCO) (Miettinen, 1999; Ehrgott, 2005) is the predominant method for handling such
trade-offs (Küfer et al., 2003; Breedveld et al., 2019), and aims to compute a set of
solutions known as the Pareto surface (or frontier). Loosely speaking, it is the set of
all solutions for which the objective value of one objective function cannot be strictly
decreased without strictly increasing the objective value of another objective function.
It is regarded as the set of all meaningful candidate solutions that could be considered
in decision making.

There are many methods for generation of the Pareto surface (Craft et al., 2006),
a common family of methods are scalarization methods (Ehrgott, 2005). One such
method, the ε-constraint method, introduces a vector ε ∈ �p and solves for each k =
1, . . . , p the problem

min
d∈S

fk(d),

s.t. f j(d)≤ ε j, j = 1 . . . , p, j �= k.

(4.18a)

(4.18b)
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By varying the ε in (4.18), the Pareto surface can be computed. The ε-constraint
method solves problems with a single objective function, so if CRs of the epigraphs of
the individual treatment criteria are found, the ε-constraint method can be used in the
conic reformulation methodology to obtain the Pareto surface.

4.2.3 Experiment setup

The Radiotherapy Optimisation Test Set (TROTS) is an extensive data set of FMO
problems originating from patients treated at Erasmus MC in the Netherlands (Breed-
veld and Heijmen, 2017). For various treatment sites/protocols, it contains patient
data, pencil beam matrices and the FMO problem descriptions. Beam angles (and
related planning aspects) are fixed, and clinical deliverability (i.e., leaf-sequencing)
is not taken into account. The multicriteria FMO problems are converted to single-
objective problems by a priori selection of objective weights. For all instances, the
results obtained by the Erasmus MC in-house TPS iCycle are available5. The pencil
beam matrices in the TROTS data set are generated by iCycle using a pencil beam
algorithm (Breedveld et al., 2012).

TROTS contains instances from six treatment sites/protocols, Table 4.4 gives an
overview of the considered treatment sites/protocols. The TROTS liver cases, with
(nonconvex) dose-volume constraints, are not considered here, although convexified
approximations exist (see Section 4.2.2). TROTS also contains brachytherapy cases,
which are beyond the scope of this study. We note that, despite the naming, the

cases are in fact 23-beam IMRT FMO problems. In Voet et al. (2014),
the iCycle solution for these problems is used as a starting point to generate a single-
arc volumetric modulated arc therapy (VMAT) plan. The proton cases contain only
linear minimum and maximum dose constraints. All other cases contain several non-
linear treatment criteria. Conic reformulations of gEUD, LTCP and quadratic smooth-
ing criteria are presented in Section 4.2.2. Thus, the FMO problems in Table 4.4 can
be solved as conic problems and results can be compared to those obtained by other
solvers. For further details on the protocols we refer to Breedveld and Heijmen (2017)
and references therein.

The considered TROTS instances are convex optimization problems, and different
algorithms for such problems find globally optimal solutions in theory. However, this
does not always translate to good performance in practice, due to amongst others nu-
merical issues. We test the performance of several solvers, both solvers for optimization
problems in conic form and functional form. All methods use the same pencil beamma-

5TROTS data and iCycle results are available at .
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Site/ # Cases # Beamlets
∗

# Voxels
∗ Min/max Linear Quadratic gEUD LTCPprotocol dose smoothing smoothing

Protons 20 1803 350,428 � � � � �

Prostate CK 30 2937 153,151 � � � � �
Prostate VMAT 30 2697 155,787 � � � � �
Head & Neck 15 8302 283,137 � � � � �

Table 4.4: TROTS data set overview.
∗: Averaged over all patients.

trices. In sparse matrix format, these range in size between 350 MB for the
cases to 1.9 GB for the cases (on average). The tested solvers are

• iCycle: A (non-conic) primal-dual IPM developed by Erasmus MC and optimized
for the TROTS data set (Breedveld et al., 2017). It uses a Mehrotra predictor-
corrector method6. Using problem-specific information an initial feasible solu-
tion is constructed to the FMO problem, and subsequently extended to a feasible
primal-dual solution. By efficient handling of the pencil beam matrices, the com-
putational efficiency of solving the normal equation of the IPM is improved. The
solver is not open-source, but results obtained for the TROTS data set are avail-
able online5. Thus, the iCycle objective values (and convergence aspects) can be
compared to those obtained by other solvers.

• matRad (version 3.0.0): The TPS system matRad makes use of IPOPT (version
3.11.8), an open-source (non-conic) primal-dual solver (Wächter and Biegler,
2006) developed for general purpose convex optimization problems. It uses a
limited memory implementation, approximating the Hessian of the Lagrangian
by a limited-memory quasi-Newton method (L-BFGS) and approximating maxi-
mum dose constraints via a log-sum-exp function. Changing this to exact Hessian
computations resp. exact maximum dose constraints leads to memory issues. We
extended the matRad capabilities to include all evaluation criteria in Table 4.4.

• MOSEK (version 9.2): A commercial primal-dual conic optimization solver sup-
porting the quadratic, exponential and power cone (MOSEK ApS, 2020).

• ECOS (version 2.0.7): An open-source primal-dual conic optimization solver sup-
porting the quadratic and exponential cone, but not the power cone (Domahidi
et al., 2013; Serrano, 2015).

6They also propose a combined Mehrotra-Gondzio approach, where first a full Mehrotra step is taken
before using the Gondzio update scheme. This approach did not yield better results than the Mehrotra
method.
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• SCS (version 2.1.2): An open-source (first-order) splitting conic solver
(O’Donoghue et al., 2019) which uses an algorithm based on ADMM.

TROTS contains challenging problems, and preliminary results indicate that not
all solvers are able to solve the instances. ECOS encounters numerical issues on sev-
eral problems, preventing convergence. Additionally, ECOS is designed for small and
medium sized problems and does not scale well to larger problems. SCS is not fast
enough to allow for comparison, and (due it being a first order method) it lacks solu-
tion accuracy.

For many instances, matRad has difficulties dealing with the hard maximum dose
constraints on OARs (even using the log-sum-exp approximation). For most of those
instances, replacing the constraint with a quadratic overdose penalty leads to signif-
icant better results (denote this approach by matRad-p). Only for the Prostate CK
cases, the original matRad approach produced reasonable results. For these cases we
report results for both matRad and matRad-p, for other treatment sites/protocols we
report solely the result of matRad-p. Note that, to ensure a fair comparison, when
comparing the final objective values of different solvers, the value of the penalty term
for matRad-p is omitted.

In Section 4.3, we report results for iCycle, MOSEK, matRad (only for Prostate CK)
and matRad-p. All results of iCycle are obtained using a dual CPU system with two
octocore Intel Xeon E5-2690 CPUs (2.90GHz) (Breedveld et al., 2017). The results of
MOSEK, matRad and matRad-p are obtained on a system with a 24-core Intel Xeon
Gold 6126 (2.60GHz) CPU, restricted to using 16 cores. For MOSEK, all instances are
solved in primal form, and all solver options are left at their default values. For matRad
and matRad-p, the maximum computation time is set at 3000s and the maximum
number of iterations at 20000. The relative convergence tolerance parameter is set
at 10−8 (both desired and acceptable). Other IPOPT options are left at their default
values.

4.3 Results
The results obtained by iCycle, MOSEK, matRad and matRad-p are compared on ob-
jective value, constraint violations, time and number of iterations. The objective for
instance in the TROTS data set is a weighted sum of various criteria, both dose-based
and biological. For constraint violations the number of constraints with a violation
above 5% is reported. This includes dose-based and biological constraints, as well as
smoothing constraints. Thus, both the reported objective value and constraint viola-
tions do not have a direct clinical interpretation. However, lower objective value and
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lower constraint violations do imply better results in general, and this allows us to
compare the performance of the tested solvers.

4.3.1 Quality of solutions

Figure 4.1 presents the constraint violations of the solution found by each solver for
each instance. Results are grouped by treatment site/protocol. Individual instances
are ordered on the horizontal axis, so vertically stacked symbols correspond to the
objective values obtained by the different solvers for the same instance. Figure 4.2
presents the objective values; note the logarithmic vertical axis.
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Figure 4.1: Number of violated constraints. Each symbol represents the result of one solver
for one instance of the TROTS data set. The violations for iCycle and MOSEK are zero for all
instances.

Both iCycle and MOSEK find a solution that does not violate any constraint (above
5%) for each instance in every protocol/treatment site. In fact, violations are less than
0.01% for all constraints for these solvers. This means that hard constraints on dose,
gEUD and LTCP are satisfied, as well as the dose smoothing constraints. For Protons,
matRad-p achieves constraint violations smaller than 5% for all instances except one.
Solutions with a single constraint violation may still be useful. For example, they may
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occur due to the fact that maximum dose constraints are handled using an approxi-
mation. A higher number of violated constraints may indicate that the solver was not
able to properly handle the imposed constraints. For some instances of Prostate CK,
matRad produced solutions that handled the constraints better than matRad-p. For the
other treatment sites/protocols, matRad did not produce meaningful results; these are
omitted in all figures to improve clarity.
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Figure 4.2: Obtained objective values. Each symbol represents the result of one solver for one
instance of the TROTS data set. Note the different scaling on the y-axes.

Figure 4.2 reports the objective values. Both iCycle and MOSEK find the optimal
objective value for each instance in every protocol/treatment site. The relative differ-
ence in objective value is smaller than 0.005 for all instances except for an outlier of
0.03. In Figure 4.2, the markers for iCycle and MOSEK coincide for all instances. Not
only the objective values coincide but also the corresponding solutions are the same.
The beamlet weight vectors have a cosine similarity of above 0.99 in almost all in-
stances (with a few outliers in [0.95, 0.99]). Hence, the dose distributions of MOSEK
and iCycle are indistinguishable in almost all instances.

For Protons and Prostate VMAT, matRad-p is able to find solutions with optimal
or near-optimal objective value, although we know from Figure 4.1 that for Prostate
VMAT these come with constraint violations. For Prostate CK, matRad and matRad-
p find solutions with higher objective values and for Head-and-Neck matRad-p finds
solutions with higher objective values. Some of these suboptimal solutions may still
translate to dose distributions that are clinically reasonable, this would have to be



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 157PDF page: 157PDF page: 157PDF page: 157

Results 145

checked on a case-by-case basis. For cases with objective values of several orders of
magnitudes higher, or high constraint violations, matRad and matRad-p do not offer
a reasonable alternative to iCycle and MOSEK.

4.3.2 Computation time and convergence
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Figure 4.3: Required computation time. Each symbol represents the result of one solver for
one instance of the TROTS data set.

Figures 4.3 and 4.4 presents the computation time and required number of iter-
ations for all instances, respectively, similar to Figures 4.1 and 4.2. For Protons and
Prostate VMAT matRad-p reached the time limit of 3000 seconds. Together with re-
sults of Section 4.3.1, this implies that whereas the objective value was near optimum,
matRad-p was not able to further reduce constraint violations within the set time limit.
This is also reflected in the high number of iterations for these cases. One possible rea-
son for this slow convergence is that it uses only approximate Hessian information,
whereas iCycle and MOSEK use exact Hessians. For Prostate CK and Head-and-Neck,
the computation times of matRad-p are comparable to those of iCycle and the required
number of iterations is relatively low. Thus, it was able to obtain a solution very fast,
but the solution did not reach the optimal objective value and/or violated constraints.
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Figure 4.4: Number of iterations required. Each symbol represents the result of one solver for
one instance of the TROTS data set.

For Prostate CK, matRad requires considerably more computation time and iterations
than matRad-p, but often has better objective values and/or lower constraint viola-
tions. These results indicate that matRad and matRad-p are not very numerically
stable: sometimes it converges very fast to a suboptimal or infeasible solution and
sometimes it converges towards the optimal solution, but does so very slowly.

MOSEK requires slightly less time than iCycle for the Protons cases, but requires sig-
nificantly more time for the other treatment sites/protocols. The CPU used for iCycle is
worse than the one used for MOSEK (see Section 4.2.3), so iCycle outperforms MOSEK
in terms of speed for those treatment sites. The required number of iterations is consis-
tently low for both iCycle and MOSEK, indicating stable numerical performance. The
results demonstrate that the theoretical guarantee of polynomial-time convergence for
conic optimization indeed translates to fast convergence in practice.

Figure 4.5 displays detailed convergence results of MOSEK for two test cases,
���������	
��� and 
���������������. For each iteration, the primal and dual
objective values are plotted w.r.t. the left vertical axis. The corresponding primal and
dual infeasibility are plotted w.r.t. the right vertical axis (note the logarithmic scale).
The infeasibility measure is the infinity norm of the linear constraint violations. The
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(b) Convergence for 
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Figure 4.5: Convergence results for MOSEK on two test cases. Optimality and infeasibility
(both primal and dual) are plotted w.r.t. the left and right vertical axis, respectively. The infea-
sibility measure is the infinity norm of the linear constraint violations. Notice the logarithmic
scale of the right vertical axis.

first few iterations are not very informative and distort scaling, and are hence removed.
Primal-dual IPMs start from an infeasible point, and in each iteration attempt to im-
prove the primal and dual objective value and reduce primal and dual infeasibilities.
A decrease in infeasibilities may lead to an increase in objective value, so the objective
value curves are not guaranteed to be decreasing. The MOSEK algorithm terminates
after 51 and 46 iterations for the two test cases.

As noted in Appendix 4.A, one may terminate the algorithm early to get an ap-
proximate solution. If both the primal and dual solution are feasible, the duality gap
is a measure for suboptimality of the current primal solution. In both Figure 4.5a and
Figure 4.5b, the duality gap is closed before the primal and dual solutions have a suf-
ficiently low infeasibility measure (i.e., low linear constraint violations). Therefore,
early termination results in an infeasible solution. In other instances similar conver-
gence results are obtained. Thus, although early termination of primal-dual IPMs for
FMO problems in conic form is possible in theory, no such opportunity presents itself
in the current numerical experiments.

4.3.3 Illustrative example

To illustrate the practical implications of differences in objective value, we study the
results for ������������	
�� in more detail. The dose distributions of MOSEK and
iCycle are indistinguishable (see Section 4.3.1), so we display only one for clarity.
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Figures 4.6a and 4.6b show a slice of the dose distribution obtained by MOSEK/iCycle
and matRad-p, respectively. Note that the dosimetric criteria set for these cases (which
are based on TROTS’ specifications) are not necessarily meant to result in clinically-
acceptable dose distributions.

(a) Dose distribution MOSEK/iCycle. (b) Dose distribution matRad-p
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Figure 4.6: Results for . SMG = submandibular gland.

The MOSEK/iCycle solution achieves an objective value of 1.7 and matRad-p
achieves 21.8, i.e., the matRad-p solution is suboptimal. MOSEK obtained the optimal
solution in 46 iterations (529s) and iCycle in 43 iterations (147s). After 180 iterations
(107s) matRad-p reported solution status ‘solved’, which indicates that the solution
satisfies all imposed feasibility and optimality tolerances. However, the matRad-p so-
lution violates a maximum dose constraint on an auxiliary planning target volume
(PTV) shell by 0.50 Gy. This is a consequence of the approximation of maximum dose
constraints (see Section 4.2.3).

The aggregate objective score (lower is better) contains amongst others an LTCP
objective on the PTV, gEUD objectives on other auxiliary PTV structures andmean dose



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 161PDF page: 161PDF page: 161PDF page: 161

Discussion 149

objectives on various OARs. The MOSEK/iCycle solution results in an LTCP of 0.40,
versus 21.3 for matRad-p. The dose distributions in Figure 4.6 show that the lower
LTCP of the MOSEK/iCycle solution indeed translates to a higher and more conformal
PTV dose than the matRad-p solution. Moreover, the MOSEK/iCycle solution yields a
maximum spinal cord dose of 29.0 Gy versus 37.9 Gy for the matRad-p solution.

We emphasize that the resulting dose distributions are a direct consequence of the
FMO problem formulations in the TROTS data set. Different objective weights may
result in different dose distributions; for the current set of weights, MOSEK/iCycle
found a lower objective value than matRad-p. This does not necessarily mean that
MOSEK/iCycle perform better than matRad-p for all individual objectives. If the clin-
ical decision maker does not find the MOSEK/iCycle dose distribution more desirable
(while it has a lower aggregate objective value), one can adjust the weights or reformu-
late the FMO problem to better reflect the clinical goals and priorities. In the current
study, the FMO problems are taken from the TROTS data set with fixed weights; we
do not study the clinical relevance of the problem formulations and the solutions.

4.4 Discussion
We have presented a methodology for formulating FMO problems as conic optimiza-
tion problems. FMO problems with many commonly used treatment plan evaluation
criteria (including biological models) can be formulated as conic optimization prob-
lems using the quadratic, exponential and power cone. Implementing the conic form is
more structured and less error prone than implementing a convex optimization model
in functional form. For example, one need not specify derivatives and Hessians. Nev-
ertheless, for FMO problems in functional form work has been done to make imple-
mentation of derivatives easier (Van Haveren and Breedveld, 2019).

The conic reformulation methodology can be seen as a next step in the work of
Romeijn et al. (2004) and Hoffmann et al. (2008). Whereas they solely prove convexity
of treatment plan evaluation criteria, we provide conic reformulations. This is not only
a stronger result from a theoretical point of view, but also more useful in practice.
After formulating FMO problems in conic form, one can directly use an existing conic
optimization solver. Thus, it is directly implementable in the FMO module of both
commercial and research treatment planning systems. Dose-volume criteria are non-
convex and cannot be transformed to conic form like many other evaluation criteria.
Nevertheless, all common convex approximation procedures for handling dose-volume
criteria can be formulated as conic optimization problems. For fractionation-corrected
criteria, conic reformulations or approximations are presented in Appendix 4.C.
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Themethodology enables the use of advanced primal-dual IPM algorithms from the
field of conic optimization, which guarantee polynomial-time convergence to an opti-
mal solution. To the best of our knowledge, this is the first proof that FMO problems
with (any combination of) evaluation criteria in Table 4.2 can be solved in polyno-
mial time. We note that the algorithms implemented in software packages are not
necessarily the ones with the best theoretical guarantees. In particular, the MOSEK
algorithm does not guarantee polynomial-time convergence, but this has been shown
for a related variant. For more details, see Appendix 4.A.

Conic optimization using exponential and power cones is a recent development
in the mathematical optimization community. Several solvers have been developed
in recent years, both commercial and open-source, but it remains ongoing research.
Whereas in our exposition we have primarily focused on primal-dual IPMs as solvers
for FMO problems, writing an FMO problem in conic form is not tied to the use of
IPMs. In particular, there are also developments in proximal algorithms (Parikh and
Boyd, 2014). These are typically first-order methods, i.e., they may scale to higher
dimensions than second-order methods such as IPMs, at the cost of reduced accuracy.
Proximal algorithms rely on the efficient computation of proximal operators. For hard
constraints, the proximal operators reduce to the projection operators for the set de-
fined by the constraints. Whereas for a constrained convex optimization problem in
functional form these projections are often non-trivial, for the commonly used cones
this is a relatively easy operation (Parikh and Boyd, 2014; Khanh Hien, 2015). The
tested solver SCS uses a method based on ADMM, with projections onto these cones
(O’Donoghue et al., 2016). Although the solver did not produce competitive results,
developments in this area may be interesting for solving FMO problems in conic form.

We have evaluated several conic and non-conic solvers on the TROTS data set, and
the results are promising. Whereas two conic optimization solvers were not able to
solve the problems properly, the conic solver MOSEK already outperforms the matRad
TPS, in terms of speed and/or solution quality. Both the iCycle TPS and MOSEK ob-
tain the optimal solution, indicating that the theoretical optimality guarantee of conic
optimization indeed translates to optimal solutions in practice. Nevertheless, the iCy-
cle TPS outperforms MOSEK in terms of speed for most treatment sites. We note that
iCycle is an in-house TPS and is not available to the larger research and clinical com-
munity; our proposed methodology has the potential to be readily incorporated in
RT research. Commercial solvers often offer free academic licenses, and open-source
solvers can readily be used. We have also attempted to compare our methodology with
the solutions of commercial TPSs, but did not succeed, because they typically do not
directly provide the pencil beam matrices necessary for formulating the FMO problem.
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The currently observed speed difference between iCycle and MOSEK is likely due
to the fact that iCycle is specifically tailored to FMO problems of the form encountered
in the TROTS data set. Breedveld et al. (2017) also note that using application spe-
cific properties to improve efficiency of sparse matrix operations can yield significant
speedups. This is also noted by Engberg et al. (2017), who implement a custom primal-
dual IPM and use the FMO structure to eliminate voxel variables in the linear system
of the IPM. In principle, one could also tailor a conic optimization solver to exploit the
particular structure of FMO problems. However, there is a trade-off between tailoring
the solver to the current type of FMO problems and preserving the flexibility of gen-
eral purpose solvers. One benefit of the latter is that adding new treatment criteria
will likely have less negative impact on performance. Another benefit is that improve-
ments in general purpose conic solvers will directly translate to improvements in the
FMO module. The latter is not unlikely, given that conic optimization is a hot topic
in the mathematical optimization community. For example, a recent minor update of
MOSEK reduced the total number of iterations by 3.7%.

On a higher level, solvers can often be tuned by the user, by setting various param-
eters such as termination criteria. Solvers typically allow the specification of, amongst
others, an optimality tolerance, to strike the right balance between optimality and
speed. In our numerical experiments, we have decreased such a parameter for IPOPT
to focus on optimality. For FMO problems, one typically aims to find a near-optimal
solutions whilst preventing spending many iterations on improvements with irrele-
vant magnitude. Further tuning of parameters may improve computation time of both
MOSEK and matRad for the current data set, and possibly for FMO problems in gen-
eral. In Appendix 4.A it is noted that primal-dual IPMs for conic optimization may be
used to obtain approximate solutions to FMO problems, and the duality gap provides
a bound on the suboptimality. A prerequisite for this is that the primal and dual solu-
tions are both feasible. Results in Section 4.3.2 indicate that primal and dual feasibility
is not always achieved early on, so this theoretical result is not directly applicable in
practice. Adapting the solver or tuning solver parameters to initially focus on primal
and dual feasibility instead of closing the duality gap may be necessary for early solver
termination in practice. This requires further research.

Solution methods for FMO cannot directly be applied to the planning of VMAT
treatments. During VMAT, the gantry makes a single arc rotation with continuous ir-
radiation (Otto, 2008). If delivery time is taken into account, the FMO problem for
each beam angle cannot be separated from the multi-leaf collimator leaves. Thus, the
currently presented conic optimization approach to FMO is not directly applicable to
VMAT planning. However, this is not a disadvantage particular to conic optimization,



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 164PDF page: 164PDF page: 164PDF page: 164

152 Conic formulation of fluence map optimization problems

other FMO approaches also face this limitation. Moreover, a common two-step heuris-
tic for VMAT planning does solve FMO problems, and subsequently merges neighbor-
ing fluence maps (Craft et al., 2012). Lastly, we note that for IMRT we have applied
conic optimization solely to the FMO component of the entire treatment planning pro-
cess, which also consists of beam angle optimization and leaf sequencing. However,
of these three components usually FMO has the largest impact on the overall quality
of the treatment (Aleman, 2018). Therefore, improvements in quality and speed of
the FMO component might translate into treatment plans with better quality and save
valuable clinical time.

4.5 Conclusion

We have presented a methodology for reformulating FMO problems to conic opti-
mization problems, which has both theoretical and practical advantages. We have
shown that many commonly used treatment plan evaluation criteria are conic repre-
sentable, and for others accurate conic approximations can be obtained, thus making
the methodology generally applicable. Numerical results using a general purpose conic
solver on the TROTS data set show that the theoretical advantages of conic optimiza-
tion indeed translate to good practical performance in terms of speed and solution
quality.

4.A Solving conic optimization problems
In complexity theory, one distinguishes optimization problems for which there exists an algo-
rithm that solves the problem to optimality in polynomial time from problems for which such
an algorithm does not exist. In the former case, the algorithm is said to be efficient for the
considered problem. It the latter case, any algorithm that produces the optimal solution has
exponential time convergence. Such algorithms may perform well on small-scale problems, but
the required number of iterations (and time) often grows prohibitively fast to be of practical
use for large-scale problems. For an introduction to complexity theory, focused at primal-dual
IPMs, we refer to Wright (1997).

Traditionally, IPMs for conic optimization were restricted to the symmetric cones (nonnega-
tive orthant, quadratic and semidefinite matrix cone). More recent developments extend capa-
bilities to exponential and power cones. Several different IPM approaches exist for solving conic
optimization problems with these five cones. By proving the existence of self-concordant bar-
rier functions for these cones, Nesterov and Nemirovski (1994); Nesterov (2006) have shown
that the barrier method converges in polynomial time for such conic optimization problems.
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That is, it guarantees an objective value that is within a factor ε of the global optimum, within
a number of iterations that is polynomial in n (the number of decision variables) and log(1/ε).

The above guarantees hold for the conic form of the FMO problem, and it must be ver-
ified that they translate to guarantees for the original FMO problem. This is confirmed in
Appendix 4.B under mild technical conditions. Therefore, formulating an FMO problem (or
any other optimization problem) in conic form (using these five cones) automatically gives the
guarantee that the problem can be solved in polynomial time. In contrast, directly proving
that specific FMO problems can be solved in polynomial time is difficult. This requires proving
the existence of a self-concordant barrier function for the feasible region described by the set
of treatment plan evaluation criteria. To the best of our knowledge, such attempts have been
unsuccessful.

As an alternative to the (primal) barrier methods, primal-dual IPMs for the symmetric
cones were introduced by Nesterov and Todd (1997, 1998). They are also proven to converge
in polynomial time (for the symmetric cones) and outperformed the barrier methods in prac-
tice. Recently, progress in primal-dual methods for the exponential and power cone has found
its way to software packages. The second-order cone solver ECOS (Domahidi et al., 2013) has
been extended to incorporate exponential cones (Serrano, 2015). Coey et al. (2021) describes
the development of a solver (Hypatia) with a large number of predefined cones, to stay as
close to the natural formulation of the problem as possible. Recently the primal-dual method
of the commercial solver MOSEK was extended to support the exponential cone and the power
cone. Its algorithm for the exponential cone is described in Dahl and Andersen (2021). Re-
cently, Badenbroek and Dahl (2021) proved polynomial time convergence of a stylized version
of MOSEK’s implementation for the exponential and power cone. Specifically, they proved it
requires at most O(ν log(1/ε)) iterations, with ν a parameter depending on the dimension of
cone C in problem (4.5).

As noted in Section 4.1, primal-dual IPMs are a general class of algorithms. They are
not solely restricted to optimization problems in conic form, but can also be used to solve
convex optimization problems in functional form, by solving the KKT optimality conditions.
Understanding the intricacies of the various methods requires a high level of expertise. Part of
the good practical performance of primal-dual IPMs for symmetric cones can be attributed to
the existence of a unique so-called scaling point for these cones, which relates primal and dual
variables. Dahl and Andersen (2021) and Badenbroek and Dahl (2021) use a ‘scaling matrix’
to mimic this behavior in non-symmetric cones.

Lastly, we note that primal-dual IPMs may also be used to find an approximate solution
to the conic reformulation of the FMO problem. In each iteration, the algorithm produces
a solution to the primal problem and a solution to the dual problem. If both solutions are
feasible for their respective problems, the corresponding difference in primal and dual objective
values, known as the duality gap, provides useful convergence information. In particular, it is
an upper bound on the suboptimality of the currently found (primal) solution. The algorithm
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can be terminated once primal an dual feasibility is achieved and the duality gap is deemed
low enough, i.e., a sufficiently accurate solution has been obtained. Appendix 4.B relates the
desired accuracy of the FMO objective to the termination criteria of the conic form problem.
In general, early termination of other optimization algorithms does not give bounds on the
suboptimality of the current solution. The primal-dual IPM of iCycle (Breedveld et al., 2017)
provides an estimation of the duality gap in each iteration, but this is not exact.

4.B Convergence
IPMs guarantee an objective value that is within ε of the global optimum, within a number of
iterations that is polynomial in the number of decision variables and log(1/ε). However, these
guarantees are for the conic reformulation of the FMO problem. It must be verified that this
indeed translates to convergence guarantees for the original FMO problem. Note that is not
just the case for FMO problems. This must be verified for any optimization problem which is
reformulated to conic form, before statements on polynomial time convergence of the original
problem can be made.

Consider an FMO problem with objective f : �n �→ � and feasible region X ⊆ �n:

min
x∈X

f (x ). (4.B.1)

Let OPT denote the optimal objective value. Let g : � �→ � be a strictly increasing function,
such that the set defined by g( f (x )) ≤ τ is conic representable. Then, according to our conic
reformulation methodology, (4.B.1) is equivalent to the following problem in epigraph form:

min
x∈X ,τ

τ,

s.t. g( f (x ))≤ τ.

(4.B.2a)

(4.B.2b)

The optimal objective value to (4.B.2) (and its conic reformulation) is g(OPT). Let nc denote
the number of variables in the conic reformulation of (4.B.2). We assume that nc is polynomial
in n, i.e., the conic reformulation leads to a polynomial increase in number of variables. For all
treatment plan evaluation criteria discussed in Section 4.2.2 this is satisfied; in fact, they all
yield a linear increase in number of variables.

Moreover, the following assumption asserts that the conic form problem can be solved
efficiently.

Assumption 4.8. Let ε ∈ (0, 1). There exists an algorithm that produces a solution x ∗ to the
conic reformulation of (4.B.2) such that g( f (x ∗))≤ g(OPT) + ε in O(nc log(1/ε)) iterations.

Suppose we use the algorithm of Assumption 4.8 to solve the conic reformulation of (4.B.2),
and terminate once we find a solution (x̄ , τ̄)with an objective value that is at most ε > 0 higher



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 167PDF page: 167PDF page: 167PDF page: 167

Convergence 155

than g(OPT). Then it holds that

g( f (x ∗)) = τ̄≤ g(OPT) + ε.

Because g−1(·) is also strictly increasing we know

f (x ∗)≤ g−1(g(OPT) + ε).

The value ε must be set such that f (x ∗)−OPT ≤ θ . A sufficient condition is

g−1(g(OPT) + ε)≤ OPT+ θ ,

or

ε ≤ g(OPT+ θ )− g(OPT).

The value of OPT is not known prior to the optimization. A conservative choice is

ε∗ = min
z∈range( f ) g(z + θ )− g(z). (4.B.3)

Denote the minimizer by z∗. Function g is univariate and strictly increasing, so z∗ is easily
obtained. For Assumption 4.8, we require ε∗ ∈ (0, 1), so the tolerance θ must be set (by the
user) such that

g(z∗ + θ )− g(z∗) ∈ (0,1).

Additionally, θ must also be such that z∗ + θ ∈ dom(g). For any function g, we can determine
this implicit upper bound on θ , call this u. Thus, if θ ∈ (0, u), the desired accuracy of the
original FMO problem (4.B.1) is ensured if tolerance (4.B.3) is used for the conic reformulation
of problem (4.B.2).

The following proposition provides the required complexity result.

Proposition 4.9. Let θ ∈ (0, u) and suppose that g(·) is differentiable and nc is polynomial in n.
There exists an algorithm that produces a solution x ∗ to (4.B.1) such that f (x ∗) ≤ OPT+ θ in
O(n log(1/θ )) iterations.

Proof. Assumption 4.8 guarantees that the solution x ∗ is produced in a number of iterations
that is polynomial in nc log(1/ε∗). By assumption, nc is polynomial in n, so the number of
iterations is clearly polynomial in the problem size n of (4.B.1). We proceed by bounding a
polynomial of log(1/ε∗) by a polynomial of log(1/θ ). Let q : � �→ � be a polynomial such that
the number of iterations to find a solution to the conic reformulation of (4.B.1) within ε∗ of
g(OPT) is bounded by q(log(1/ε∗)). Function g is differentiable, so we can define

θl = argminθ∈(0,u)
∂ g(z∗ + θ )
∂ θ

,
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i.e., the point with lowest slope on the interval (0, u). Define linear function l : � �→ � by
l(θ ) = g ′(z∗ + θl)θ . We have

0< l(θ )≤ g(z∗ + θ )− g(z∗), ∀θ ∈ (0, u).

Consequently, using the definition of ε∗ and l(θ ), for any θ ∈ (0, u) it holds that

q(log(1/ε∗)) = q
$

log
� 1

g(z∗ + θ )− g(z∗)
�%

≤ q
�

log
�
1/l(θ )
��

= q
�

log
�
1/g ′(z∗ + θl)

�
+ log
�
1/θ
��

, (4.B.4)

and in (4.B.4), the first term of the argument of q is a finite real constant (g ′(·) > 0). Thus,
(4.B.4) is a polynomial in log(1/θ ). This completes the proof.

If (4.B.1) is a maximization problem, the term g(z+θ )− g(z) is replaced by g(z)− g(z−θ )
everywhere, e.g., ε∗ is now

ε∗ = min
z∈range( f ) g(z)− g(z − θ ), (4.B.5)

and the linear function l : � �→ � is instead defined by l(θ ) = g ′(z∗ − θl)θ . The remainder of
the analysis remains unchanged.

Example 4.10. Let f be the linear TCP function (4.9), then we have g(t) = log(t). Using
(4.B.5), we find that z∗ = 1, and we can derive u= 1−e−1 ≈ 0.6321. Thus, as long as accuracy
parameter θ for the original TCPmaximization problem is chosen from the interval (0, 0.6321),
the corresponding accuracy parameter ε∗ for the conic reformulation can be chosen. Given that
the TCP is between (0.1), the maximum allowed deviation will not likely exceed 0.6321, so
the condition on θ is mild.

Note that ε∗ is chosen conservatively. Suppose we set accuracy parameter θ = 0.01 and
suppose the true optimal attainable TCP is OPT = 0.6. The conic reformulation maximizes
log(TCP), i.e., it minimizes the total number of tumor cells remaining (TNTCR) according to
the Poissonmodel. We have log(TCP) = −0.511, i.e., the TNTCR is 0.511. According to (4.B.5),
ε∗ = 0.010, so the algorithm terminates once the TNTCR is lower than 0.521. However, if
instead of using the conservative z∗ = 1 we use z∗ = OPT we get ε∗ = 0.017. Thus, the
algorithm can in fact already terminate once the TNTCR is lower than 0.528. �

4.C Fractionation-corrected models
Radiation treatments are typically delivered over multiple fractions. Several of the previously
discussed treatment criteria can be corrected to account for the dose-per-fraction effects. The
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Poisson LQ survival model (McMahon, 2019) is the predominant model for expressing the cell
survival fraction of fractionated treatments. According to the LQ model, the surviving fraction
of cells in voxel i after receiving a dose of di in N fractions is given by

SFLQ(di) = exp
	−αdi

�
1+

1
α/β

di

N

�

. (4.C.1)

In Hoffmann et al. (2008) it is shown that (4.C.1) is convex, as long as the voxel dose satisfies

di ≥
√√1

2
(α/β)N
α

− 1
2
(α/β)N .

Let

L =max
	

0,

√√1
2
(α/β)N
α

− 1
2
(α/β)N



.

We restrict ourselves to di ≥ L. This bound is not very restrictive, see e.g. Hoffmann et al.
(2008). The LQ survival function is only convex on a subset (i.e., di ≥ L) of its natural domain.
Such functions are typically not Cr. Indeed, it is not apparent to find an exact CR, and we
provide an approximation. Let d̄i ≥ L and let

"SFLQ(di; d̄i) =max
�
0, a1(d̄i)di + a2(d̄i)}exp

	
a3(d̄i)di + a4(d̄i)



, (4.C.2)

with fitting parameters a1(d̄i), a3(d̄i) < 0, a2(d̄i) > 0, a4(d̄i). Function "SFLQ(di; d̄i) is a lower
bound to SFLQ(di) for all di ≥ L that is tangent at the point di = d̄i. The precise definitions
of the fitting parameters that result in this behavior are rather complicated; these are given in
Appendix 4.E.1. They do not have a direct physical interpretation. The result is formalized in
the following lemma.

Lemma 4.11. For all di ≥ L it holds that "SFLQ(di; d̄i) ≤ SFLQ(di) and "SFLQ(di; d̄i) is tangent to
SFLQ(di) at di = d̄i.

Proof. See Appendix 4.E.1.

The provided approximation is not conservative, i.e., if (di , t) satisfies "SFLQ(di; d̄i) ≤ t it
need not satisfy SFLQ(di) ≤ t. By taking the pointwise maximum over "SFLQ(di; d̄i) for various
values of d̄i, improved approximations are obtained. Already for a few values of d̄i, the obtained
approximation is very accurate. Numerical results demonstrating the approximation quality
can be found in Appendix 4.D.1.

We proceed by showing that the epigraph of (4.C.2) is Cr. Consider the inequality"SFLQ(di; d̄i) ≤ t. We introduce an auxiliary variable z ∈ � to eliminate the max operator
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multiplied by a3(d̄i)/a1(d̄i). Then the inequality is equivalent to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a1(d̄i)

a3(d̄i)
z exp
	

z − a2(d̄i)a3(d̄i)

a1(d̄i)
+ a4(d̄i)


≤ t,

z ≥ a3(d̄i)di +
a2(d̄i)a3(d̄i)

a1(d̄i)
,

z ≥ 0.

(4.C.3a)

(4.C.3b)

(4.C.3c)

Inequality (4.C.3a) is of the form cz exp{z} ≤ t for some constant c > 0. As shown in MOSEK
ApS (2018), because z ≥ 0 the inequality (4.C.3a) can be written as

z exp(z2/z)≤ t/c ⇔
�

z exp(w/z)≤ t/c

z2 ≤ w
⇔
�
(t/c, z, w) ∈ Kexp

(1/2, w, z) ∈ Q3
r .

Putting everything together,"SFLQ(di; d̄i)≤ t holds if and only if there exist scalar variables z, w
such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(t/c, z, w) ∈ Kexp,

(1/2, w, z) ∈ Q3
r ,

z ≥ a3(d̄i)di +
a2(d̄i)a3(d̄i)

a1(d̄i)
,

z ≥ 0.

We did not require a strictly increasing function g for the reformulation; pick g(t) = t. Then
epi(g◦"SFLQ) is Cr on di ≥ L. We will proceed by analyzing several composite treatment criteria
based on the LQ survival fraction function. These will assume either form (4.C.1) or (4.C.2).

As a first example, we consider the fractionation-corrected analogue of the TCP function
(4.9) in Section 4.2.2:

TCPLQ(d) = exp
�− N0

n∑
i=1

vi"SFLQ(di)
�
. (4.C.4)

The reformulation is analogous to that of function (4.9), only with SFL replaced by "SFLQ in
(4.10b).

The single-hit EUD model (4.11) is discussed in Section 4.2.2. Using "SFLQ, the LQ-based
EUD model is given by

EUDLQ(d) = −1
2
α

β

⎡⎣1 −
√√√

1 − 4β
α2N

log
�1

n

n∑
i=1

"SFLQ(di)
� ⎤⎦ , (4.C.5)
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see also McGary et al. (2000). We consider the inequality EUDLQ(d) ≥ t. By extracting the
survival fraction functions and rewriting, this is equivalent to⎧⎪⎨⎪⎩−1

n

n∑
i=1

yi ≥ −exp
	−αN

�
t +

1
α/β

t2
�


,

yi ≥"SFLQ(di), ∀i.

Hence, with strictly increasing function g(t) = −exp
	−αN

�
t + 1

α/β t2
�


and g(t) replaced by
the new variable τ, hypo(g ◦ EUDLQ) is equivalent to the following Cr inequalities:⎧⎪⎨⎪⎩ −1

n

n∑
i=1

yi ≥ τ,

yi ≥"SFLQ(di), ∀i.

Using the LQ model, the dose to each voxel can be converted to its biologically effective
dose (BED) (Fowler, 1989, 2010). If voxel i receives a dose di, its BED is given by

BED(di) = di

�
1+

di

(α/β)N

�
.

Let BED(d) denote the BED vector associated with dose vector d. The BED model enables the
construction of fractionation-corrected gEUD constraints. For OARs (gEUD parameter a ≥ 1),
the inequality of interest is ‖BED(d)‖a ≤ t (see Section 4.2.2). We can extract the BED term
to obtain* ‖y‖a ≤ t,

BED(di)≤ yi , ∀i,

and for any i the latter constraint is equivalent to

di +
d2

i

(α/β)N
≤ yi ⇔d2

i ≤ 1
4

+
(α/β)N(yi − di) + 1

,2 − 1
4

+
(α/β)N(yi − di)− 1

,2
⇔
---�di ,

1
2

+
(α/β)N(yi − di) + 1

,�---
2
≤ +(α/β)N(yi − di)− 1

,
⇔�+(α/β)N(yi − di)− 1

,
, di ,

1
2

+
(α/β)N(yi − di) + 1

,� ∈ Q3.

(4.C.6)

For tumor volumes (gEUD parameter a < 0), the inequality of interest is ‖BED(d)‖a ≥ t, which
is not convex, because the BED model is convex quadratic. As such, it is not Cr.

Similar to the gEUDmodels, the BEDmodel can also be used as a fractionation-correction to
the NTCPmodels of Section 4.2.2. For any of the NTCPmodels, the inequality NTCP(BED(d))≤
t is equivalent to*

NTCP(z)≤ t,

BED(di)≤ zi , ∀i,
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and the latter is Cr according to (4.C.6). Note that model parameters should be replaced by
their BED equivalents, i.e., BED50 instead of D50 for the LKB NTCP model.

Lastly, we consider the relative-seriality s-model, proposed by Källman et al. (1992):

NTCPRS(d) =
�

1 −
n∏

i=1

�
1 − exp{−N0SFLQ(di)}s

�vi

� 1
s

. (4.C.7)

Parameter s ∈ (0, 1] is the relative seriality parameter. It is not apparent to find an exact
CR of the epigraph of NTCPRS(d). We provide an approximation. We consider the function
f (y) = log

�
1 − exp

� − N0s exp(−y)
�
, which is concave for d ≥ 0 (Hoffmann et al., 2008).

Let Y = {y1, . . . , yK} ⊂ dom( f ) denote a finite set of K points with y1 < . . . < yK . The line
segment between (yk, f (yk)) and (yk+1, f (yk+1)) is a lower bound of f (y) on the interval
[yk, yk+1], k = 1, . . . , K − 1. Denote the linear function corresponding to this line segment by
hk(y).

For the approximation of (4.C.7), let d ∈ �n such that 0 ≤ di ≤ U , i = 1, . . . , n. Choose set
Yd = {d1, . . . , dK} such that 0 = d1 < . . . < dK = U , and set yk = αBED(dk) for k = 1, . . . , K .
Define

#NTCPRS(d) = �1 −
n∏

i=1

exp
	

vi min
k−1,...,K

hk(αBED(di))}
� 1

s

. (4.C.8)

Lemma 4.12. Let d ∈ �n such that 0 ≤ di ≤ U , i = 1, . . . , n. It holds that NTCPRS(d) ≤#NTCPRS(d).
Proof. The inequality NTCPRS(d)≤#NTCPRS(d) is equivalent to

n∏
i=1

exp
	

vi min
k=1,...,K

hk

�
αBED(di)

�
≤ n∏
i=1

�
1 − exp{−N0SFLQ(di)}s

�vi
.

Take the logarithm on both sides and plug in the definition of SFLQ(di) to obtain

n∑
i=1

vi min
k=1,...,K

hk

�
αBED(di)

�≤ n∑
i=1

vi log
�
1 − exp

	− N0s exp
�−αBED(di)

�
�
.

By construction of hk, it holds that mink=1,...,K hk(y)≤ f (y). Therefore,

min
k=1,...,K

hk(αBED(d))≤ f (αBED(d)), ∀ 0 ≤ d ≤ U . (4.C.9)

Consequently, NTCPRS(d)≤#NTCPRS(d) for all d ∈ �n such that 0 ≤ di ≤ U , i = 1, . . . , n.
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Lemma 4.12 provides a conservative approximation to the relative seriality NTCP model.
The minimum over functions hk constitutes a piecewise linear approximation. Similar to the
approximation for the survival fraction function (Lemma 4.11), adding more points to set K
improves the approximation. Numerical results demonstrating the good approximation quality
can be found in Appendix 4.D.2.

We proceed by showing that the epigraph of (4.C.8) is Cr. Consider the inequality#NTCPRS(d) ≤ t. Apply the strictly increasing function g(t) = − log(1 − ts) on both sides to
obtain

−
n∑

i=1

vi min
k=1,...,K

hk(αBED(di))≤ − log(1 − ts).

Introduce the auxiliary variable τ and substitute τ = g(t). Subsequently, we multiply both
sides by −1 and introduce an auxiliary variable y ∈ �n to obtain⎧⎪⎨⎪⎩

n∑
i=1

vi yi ≥ −τ,

yi ≤ hk(αBED(di)), ∀k, i.

Lastly, we introduce a new variable z ∈ �n to extract the CQr BED term and find⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n∑

i=1

vi yi ≥ −τ,

yi ≤ hk(zi), ∀k, i,

zi ≥ αBED(di), ∀i.

(4.C.10a)

(4.C.10b)
(4.C.10c)

Because the functions hk, k = 1, . . . , K , are linear, (4.C.10) is a CR of epi(g ◦#NTCPRS).
Table 4.C.1 provides an overview of the results incorporating fractionation via the linear-

quadratic model. For the LQ survival fraction model (4.C.1) and the relative seriality NTCP
model (4.C.7) the conic reformulations are approximate. The survival fraction model is also
used for the LQ TCP model (4.C.4) and the LQ EUD model (4.C.5). Table 4.C.1 is identical to
Table 4.3.

4.D Approximation quality
4.D.1 Survival fraction approximation
Figure 4.D.1 shows the true survival fraction function SF and the approximation "SF, for pa-
rameters α = 0.3, α/β = 10, N = 30. Figure 4.D.1a shows both SF(d) and "SF(d, d̄), using
tangent point d̄ = 30. Figure 4.D.1b shows the difference function. The maximum difference
is attained at d = 5.
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Criterion Parameter Type g(t) Cones∗range

Survival fraction "SFLQ(d) - min t Kexp, Q3
r

Tumor control probability TCPLQ(d) - max log(t) Kexp, Q3
r

Equivalent uniform dose EUDLQ(d) - max −exp(−αN(t + t2

α/β )) Kexp, Q3
r

gEUD(BED(d); a) a ≥ 1 min t P3, Q3

NTCP models

NTCPLKB(BED(d)) - min d50(1+mΦ−1(t)) Q3

NTCPLKB(gEUD(BED(d); a)) a ≥ 1 min d50(1+mΦ−1(t)) P3, Q3

NTCPA&N(BED(d)) a ≥ 1 min Δ log( 1
1−t )

1
a P3, Q3#NTCPRS(d) - min − log(1 − ts) Q3

r

Table 4.C.1: Overview of results with fractionation correction. The column ‘type’ indicates
min if the epigraph is Cr, and max if the hypograph is Cr (i.e., it can be used for minimization
resp. maximization).
∗: Next to the nonnegative orthant.

An improved approximation can be obtained by adding d̄ = 5 as a second tangent point.
The approximation function is the pointwise maximum of"SF(d, 5) and"SF(d, 5). Figure 4.D.1c
and Figure 4.D.1d show the results. The results show that using two tangent points yields a
very accurate approximation.

As an alternative approximation error measure, one could look at the relative difference in
survival fraction:

rel-diff(d) =
SF(d)−"SF(d, d̄)

SF(d)
.

However, unless one of the tangent points is the upper bound for d (this is 50 in the example),
the approximate survival fraction equals zero for high values of d. This results in a relative
difference of one and is not very informative.

4.D.2 Relative seriality NTCP approximation
Unlike the survival fraction function (4.C.1), the relative seriality NTCP function (4.C.7) is
multivariate. We uniformly sample a dose vector d ∈ [30, 40]n, with n = 100,000 voxel,
vi = 1/n for i = 1, . . . , n. Let L = 0, U = 50, α = 0.3, α/β = 3, N0 = 106 and s = 0.2. By
scaling dose vector d to a given mean dose d, the NTCP curve can be visualized. Figure 4.D.2
shows NTCPRS and the approximation #NTCPRS with the dose vector d scaled according to
the horizontal axis. In order to have scaled voxel doses in the interval [0,50], mean dose is
restricted to [0,43.75].
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Figure 4.D.1: Comparison of survival fraction function SF(d) and approximation "SF(d, 30), with
α= 0.3, α/β = 10, N = 30.

Figure 4.D.2a displays NTCPRS and the approximation#NTCPRS using 3 line segments. Fig-
ure 4.D.2b shows the corresponding difference function. It is important to note that even if
d ∈ Y , the approximation function does not equal the true NTCP function, unless the dose vec-
tor d is homogeneous. Figure 4.D.2c displays NTCPRS and the approximation#NTCPRS using 6
line segments. Figure 4.D.2d shows the corresponding difference function. The figures show
that an accurate approximation can be obtained using 6 line segments.
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(b) Difference NTCPRS(d)−#NTCPRS(d) using
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proximation #NTCPRS(d) (blue) using
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Figure 4.D.2: Comparison of relative seriality function NTCPRS(d) and approximation#NTCPRS(d),
with α = 0.3, α/β = 3, N = 30, N0 = 106 and s = 0.2. For a given value of d (horizontal axis), dose
vector d is scaled by c such that 1

n

∑n
1 cdi = d.
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4.E Proofs
4.E.1 Proof Lemma 4.11
We can rewrite (4.C.1) to

SFLQ(di) = exp
	− ad2

i − bdi − c



,

with parameters

a =
α

(α/β)N
(> 0),

b = α
�
1+

2L
(α/β)N

�
(> 0),

c = αL
�
1+

L
(α/β)N

�
(> 0).

It is straightforward to show that this implies b2 ≥ 2a, a result which will be used later on.
Define the function f : �+ �→ (0, 1] as

f (x) := exp
�− ax2 − bx

�
.

Parameters a and b are chosen such that function f (x) is convex for all x ≥ 0. Note that
SF(di) = f (di − L)exp(−c). Therefore, we can restrict to function f (x). Specifically, we will
find parameters p < 0, q > 0 and r < 0 such that

φ(x) =max{0, px + q}exp{r x}, (4.E.1)

satisfies for y = d̄i − L the conditions

φ(y) = f (y),

φ′(y) = f ′(y),
φ(x)≤ f (x), ∀x ≥ 0.

(4.E.2a)
(4.E.2b)
(4.E.2c)

First, we note that f ′(y) = (−2a y − b) f (y). If y < q
r , conditions (4.E.2a) and (4.E.2b)

reduce to

(p y + q)exp{r y}= f (y),�
p+ (p y + q)r

�
exp{r y}= (−2a y − b) f (y).

(4.E.3a)
(4.E.3b)

Rewriting (4.E.3a) in terms of p y + q and plugging this in (4.E.3b) yields:

p = −exp{−r y} f (y)(r + 2a y + b). (4.E.4)
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Condition p < 0 holds if r > −2a y − b. Rewriting (4.E.3a) in terms of exp{r y} and plugging
this in (4.E.3b) yields:

p =
−q(r + 2a y + b)

1+ y(r + 2a y + b)
. (4.E.5)

Equating (4.E.4) and (4.E.5) allows us to derive an expression for q in terms of the unknown
parameter r:

q = exp{−r y} f (y)(1+ y(r + 2a y + b)). (4.E.6)

Clearly, if p < 0 then q > 0. Also note that q/p = y+(r+2a y+b)−1, so y < q/p if r > −2a y−b.
Hence, it holds that φ(y) > 0, which should indeed hold because f (x) > 0 for all x ≥ 0.
Plugging (4.E.4) and (4.E.6) in (4.E.1) results in

φ(x) =max
	

0,1+ (x − y)(−r − 2a y − b)



f (y)exp
�

r(x − y)
�
.

It remains to find a r ∈ (−2a y − b, 0) such that

max
	

0, 1+ (x − y)(−r − 2a y − b)



f (y)exp
�

r(x − y)
�≤ f (x), ∀x ≥ 0. (4.E.7)

First, we note that we need to consider only the case where 1+ (x − y)(−r − 2a y − b) > 0,
otherwise the constraint is clearly satisfied. Define κ := r + 2a y + b, so κ ∈ (0, 2a y + b).
Plugging in the definition of κ and removing the max{0, ·} operator, (4.E.7) reduces to

(1 − κ(x − y))≤ exp{−κ(x − y)− a(x − y)2}, ∀x ≥ 0.

Define

H(x) =
�
1 − κ(x − y)

�− exp
	− κ(x − y)− a(x − y)2



, x ≥ 0.

We must find an expression for κ ∈ (0, 2a y + b) such that

H(x)≤ 0, ∀x ≥ 0. (4.E.8)

We make use of the following result:

Lemma 4.13. Inequality (4.E.8) holds if and only if κ≥ �
2a and H(0)≤ 0.

Proof. See Appendix 4.E.2.

Denote h(κ) = (1+κy)−exp{κy−a y2}, then condition H(0)≤ 0 is equivalent to h(κ)≤ 0.
The best lower bound is found by picking κ ∈ [�2a, 2a y + b) such that h(κ) = 0, if feasible.
Note that the interval is nonempty because b2 ≥ 2a and we consider only y > 0.
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Function h(κ) is concave in κ with maximizer κ = a y and a positive value at κ = 0. We
check the signs at the bounds of the intervals. The lower bound κ=

�
2a satisfies h(

�
2a)≥ 0

if
�

2a ≤ a y , because both h(0) and h(a y) are larger than zero. If
�

2a > a y , the inequality
h(

�
2a) ≥ 0 can be shown to hold by computing the first and second derivative w.r.t. y. For

the upper bound, h(2a y + b)< 0 reduces to

exp{a y2 + b y}> 2a y2 + b y + 1,

which can be shown to hold via the 2nd order Taylor series expansion of the LHS, and making
use of the fact that b2 ≥ 2a and y > 0.

Thus, a positive solution to h(κ) = 0 satisfies κ ∈ [�2a, 2a y + b). To find the solution we
make use of the substitution η= −κy−1, so it must hold that η ∈ �−2a y2−b y−1,−�

2a y−1
,
.

We obtain:

−η= exp{−η− 1 − a y2},

⇔ ηexp{η}= −exp{−1 − a y2},

⇔ η=W
�− exp{−1 − a y2}�,

where W is the Lambert W function, see, e.g., Corless et al. (1996). First, we note that
−exp{−1 − a y2} ∈ (−1

e , 0) for y > 0. Hence, both branches W0 and W−1 are defined on
the input argument. We seek a solution η ≤ −�

2a y − 1 which restricts us to the branch W−1

with range (−∞,−1].
Because η = −κy − 1 and r = κ − 2a y − b we obtain the following expression for the

original parameters p,q and r:

p∗ = −exp{−r∗ y} f (y)(r∗ + 2a y + b),

q∗ = exp{−r∗ y} f (y)(1+ y(r∗ + 2a y + b)),

r∗ = 1
y

$
− 1 − W−1

�− exp{−1 − a y2}�%− 2a y − b.

Finally, with di = x + L and d̄i = y + L, we obtain as lower bound to SFLQ(di):"SFLQ(di , d̄i) = φ(di − L)exp(−c)

=max{0, p∗(di − L) + q∗}exp{r∗(di − L)− c}
=max{0, a1(d̄i)di + a2(d̄i)}exp{a3(d̄i)di + a4(d̄i)},

with a1(d̄i) = p∗ (< 0), a2(d̄i) = q∗ − p∗L (> 0), a3(d̄i) = r∗ (< 0), a4(d̄i) = −r∗L − c. This
concludes the proof.

4.E.2 Proof Lemma 4.13
First, we show that if κ <

�
2a then (4.E.8) cannot hold. Afterwards, we show that function

H(x) is decreasing in x if x ≥ y and quasiconvex in x on [0, y]. We make use of the following:
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H ′(x) = −κ− exp
�− κ(x − y)− a(x − y)2

�
(−κ− 2a(x − y)),

H ′′(x) = −exp
�− κ(x − y)− a(x − y)2

��
4a2(x − y)2 + 4κa(x − y) + κ2 − 2a

�
.

(4.E.9a)
(4.E.9b)

1. At x = y we have H(y) = 0, H ′(y) = 0 and H ′′(y) = 2a − κ2. Hence, if κ <
�

2a we
have H(y + ε) > 0 for sufficiently small ε > 0. Therefore, condition (4.E.8) does not
hold if κ <

�
2a. In the remainder of the proof we assume κ≥ �

2a.

2. Second, let x ≥ y . We show that H(x) is decreasing. From (4.E.9a) we find that
H ′(y) = 0. Because κ≥ �

2a, the second derivative (4.E.9b) is nonpositive for all x ≥ y.
Hence, H(x) is decreasing in x for x ≥ y.

3. Third, let x ∈ [0, y]. We show that H(x) is quasiconvex. Because H(x) is twice differ-
entiable on [0, y], it is quasiconvex if for all interior points with zero slope the second
derivative is nonnegative, i.e., for all x ∈ (0, y) it holds that H ′(x) = 0 ⇒ H ′′(x) ≥ 0
(Boyd and Vandenberghe, 2004). The condition H ′′(x)≥ 0 holds if and only if

x ≤ y +
�

2a − κ
2a

.

Hence, it remains to show there is no x ∈ �y + �
2a−κ
2a , y
�
with H ′(x) = 0. First, we note

that

H ′�y + �
2a − κ
2a

�
= −κ+�

2a exp
	κ2

4a
− 1

2



.

Hence, H ′(y +
�

2a−κ
2a )> 0 is equivalent to

exp
	κ2

2a
− 1


>
κ2

2a
,

which can be shown to hold via the 1st order Taylor series expansion of the LHS. More-
over, at x = y it holds that H(y) = 0 and H ′′(y)< 0. Hence, x = y is a local (boundary)
maximum. Thus, H(x) has a positive derivative at x = y +

�
2a−κ
2a , which diminishes on

the entire interval [y +
�

2a−κ
2a , y], whilst x = y is a boundary maximum. Thus, function

H(x) must be strictly increasing on the interior of the interval, and there is no x in the
interior such that H ′(x) = 0. Therefore, H(x) is quasiconvex on [0, y].

On the interval [0, y] function H(x) is maximized either at x = 0 or x = y due to quasiconvex-
ity. On the interval [y,+∞) the function H(x) is maximized at x = y because it is decreasing.
By construction, it holds that H(y) = 0. Hence, condition (4.E.8) holds if and only if H(0)≤ 0.
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CHAPTER 5

Pareto adjustable robust optimality via
a Fourier-Motzkin elimination lens

5.1 Introduction

Robust optimization (RO) is a widespread methodology for modeling decision-making
problems under uncertainty that seeks to optimize worst-case performance (Bertsimas
et al., 2011; Gabrel et al., 2014; Gorissen et al., 2015). In practice, RO problems usu-
ally admit multiple worst-case optimal solutions, the performance of which may differ
substantially under non-worst-case uncertainty scenarios. Consequently, the choice of
an optimal solution often has material impact on performance under real-world im-
plementations. This important consideration, which was first brought forth by Iancu
and Trichakis (2014), has been successfully tackled for static, single-stage (linear) RO
problems. For the increasingly popular and broad class of dynamic, multi-stage ad-
justable robust optimization (ARO) problems (Ben-Tal et al., 2004), however, there
is no successful approach for choosing an optimal solution, and the purpose of this
chapter is to bridge this gap.

In particular, for static RO problems, Iancu and Trichakis (2014) proposed the
choice of so-called Pareto robustly optimal (PRO) solutions. In general, PRO solutions
unarguably dominate non-PRO solutions, because, by definition, the former guarantee
that there do not exist other worst-case optimal solutions that perform at least as good
as the current solution for all scenarios in the uncertainty set, while performing strictly
better for at least one scenario.

Going beyond static RO problems, it is well understood that the choice of an optimal
solution remains crucial for the broader class of multi-stage ARO problems. Similar to
RO solutions, by following a worst-case philosophy and not considering performance
across the entire spectrum of possible scenarios, ARO optimal solutions could lead to
substantial performance losses. For example, see the work by De Ruiter et al. (2016),
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who numerically demonstrate existence of multiple worst-case optimal solutions for
the classical multi-stage inventory-production model that was considered in Ben-Tal
et al. (2004), and find them to differ considerably from each other in their non-worst-
case performance.

For ARO problems, however, a solution approach that unarguably chooses “good
solutions,” similar to PRO solutions for static RO problems, has proved to be elusive
thus far. Extant approaches have all attempted to simply apply the concept of PRO to
ARO problems. Specifically, they advocate restricting attention to adjustable variables
that depend affinely on the uncertain parameters; commonly referred to as linear de-
cision rules (LDRs). Restricting to LDRs reduces the problem to static RO, and enables
the search for associated PRO solutions (Iancu and Trichakis, 2014; Bertsimas et al.,
2015; De Ruiter et al., 2016). As we shall show, however, this indirect application of
the PRO concept fails to produce solutions that cannot be dominated.

In this chapter, we introduce and study the concept of Pareto adjustable robustly
optimal (PARO) solutions for linear ARO problems. Similar to PRO solutions for static
RO problems, PARO solutions yield worst-case optimal performance and are not dom-
inated by any other such solutions in non-worst-case scenarios. In other words, PARO
solutions unarguably dominate non-PARO solutions, leading to improved performance
in non-worst-case scenarios, while maintaining worst-case optimality. From a practical
standpoint, this means that implementing PARO solutions can only yield performance
benefits, without any associated drawbacks.

To introduce the PARO concept and highlight its practical importance, we provide
an illustrative toy example. The example also serves two additional important pur-
poses. First, it enables us to show in a simple setting how PARO solutions can dominate
PRO solutions, as remarked above. Second, the example motivates the need for new
analysis techniques for studying PARO.

Example 5.1. In treatment planning for radiation therapy, the goal is to deliver a curative
amount of dose to the target volume (tumor tissue), while minimizing the dose to healthy
tissues. Consider a simplified case with two target subvolumes. For subvolume i ∈ {1,2}, the
required dose level di depends on the radiation sensitivity of the tissue, which is unknown.
Assume that, prior to treatment, the doses lie in

U = {(d1, d2) | 50 ≤ di ≤ 60, i = 1,2}.

Mid-treatment, the required doses are ascertained via biomarker measurements.
Treatment doses are administered in two stages. The dose administered in the first stage,

denoted by x , needs to be decided prior to treatment. The dose administered in the second
stage, denoted by y, can be decided after the required doses have been ascertained, i.e., it can
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be adapted to uncertainty revelation. Both treatment doses are delivered homogeneously over
both volumes in each stage. Dose in each stage is limited to the interval [20,40]. The total
dose administered is x + y, and the healthy tissue receives a fraction δ > 0 of it. The stage-1
dose x , and a decision rule y(·) for the adjustable stage-2 dose can be chosen by solving:

min
x ,y(·) max

(d1,d2)∈U
δ(x + y(d1, d2))

s.t. x + y(d1, d2)≥ d1, ∀(d1, d2) ∈ U ,

x + y(d1, d2)≥ d2, ∀(d1, d2) ∈ U ,

20 ≤ x ≤ 40,

20 ≤ y(d1, d2)≤ 40, ∀(d1, d2) ∈ U .

(5.1a)

(5.1b)
(5.1c)
(5.1d)
(5.1e)

Problem (5.1) is an ARO problem with constraintwise uncertainty, for which static decision
rules are worst-case optimal (Ben-Tal et al., 2004). Plugging in y(d1, d2) = ŷ and solving the
resulting static RO model yields a worst-case optimal objective value of 60δ, achieved by all
(x , ŷ) such that x + ŷ = 60. For any such solution, the objective value remains 60δ in not only
the worst-case scenario but in all scenarios. Hence, all these solutions are PRO, according to
the definition of Iancu and Trichakis (2014). Consequently, the stage-1 decisions that are PRO
lie in the set:

X PRO = {x | 20 ≤ x ≤ 40}.

Consider now the decision rule y∗(d1, d2) =max{20, d1− x , d2− x}, which is feasible for all
feasible x . Furthermore, this rule minimizes the objective for any fixed x , d1 and d2. Plugging
this in gives

min
20≤x≤40

max
(d1,d2)∈U

δmax{20+ x , d1, d2}.

For given (d1, d2) the objective value is at least δmax{d1, d2}, and this is achieved by all x ≤ 30.
Thus, it should be preferable to implement one of these solutions for the stage-1 decision. In
fact, these solutions, which we call PARO, cannot be dominated by other solutions. Notably,
the set of PARO solutions

X PARO = {x | 20 ≤ x ≤ 30},

is a strict subset of X PRO. This implies that PARO solutions could dominate PRO solutions that
are non-PARO. To exemplify, compare the following three solutions: (i) PARO solution x∗ = 25
with optimal decision rule y∗(d1, d2), (ii) PRO (non-PARO) solution x̂∗ = 25 with optimal de-
cision rule y∗(d1, d2), (iii) PRO solution x̂∗ = 25 with static decision rule ŷ = 35. Table 5.1
shows the performance for three scenarios. For worst-case scenario (60, 60) all solutions per-
form equal. For scenario (50,55) the solution (iii) is outperformed by the other two solutions,
for scenario (50, 50) both solutions (ii) and (iii)) are outperformed by PARO solution (i). There
is no scenario where x̂ results in a strictly better objective value than x∗, irrespective of the
used decision rule. Thus, the PRO solution x̂ is dominated by the PARO solution x∗. �
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Scenario (d1, d2) (x∗, y∗) ( x̂ , y∗) ( x̂ , ŷ)

(60,60) 60δ 60δ 60δ
(50,55) 55δ 55δ 60δ
(50, 50) 50δ 55δ 60δ

Table 5.1: Differences in objective values for PARO and PRO solutions for Example 5.1.

Besides showing that PRO solutions could be dominated in ARO problems, Exam-
ple 5.1 also provides intuition into how. In particular, what unlocks extra performance
in ARO problems is the application of decision rules that are not merely worst-case op-
timal, but rather “Pareto optimal,” i.e., they optimize performance over non-worst-case
scenarios as well. Note, however, that although for worst-case optimality linear deci-
sion rules might suffice under special circumstances, for Pareto optimality nonlinear
rules appear to be more often necessary, as illustrated by the example.

The application of nonlinear decision rules to study PARO solutions invalidates the
techniques used in the analysis of Pareto efficiency in RO in the extant literature, which
is solely focused on linear formulations. In other words, analysis of Pareto efficiency in
ARO calls for a new line of attack, which brings us to another contribution we make.
Specifically, to study PARO solutions, we rely heavily on Fourier-Motzkin elimination
(FME) as a proof technique. Through the lens of FME we consider optimality of deci-
sion rule structures, which then enables us to study PARO. Furthermore, we illustrate
how this proof technique can be applied in ARO more generally, by providing more
general and more insightful proofs of known results (not related to Pareto efficiency).

Findings and contributions

Before we begin our analysis, we summarize the findings and the contributions of this
chapter. The treatment presented is restricted to two-stage ARO models that are linear
in both decision variables and uncertain parameters.

1. Concept of PARO solutions. In the context of linear ARO problems, we introduce
the concept of Pareto Adjustable Robustly Optimal (PARO) solutions. PARO solu-
tions have the property that no other solution and associated adjustable decision
rule exist that dominate them, i.e., perform at least as good under any scenario,
and perform strictly better under at least some scenario. As Example 5.1 above
has already shown, in the context of ARO problems, PARO solutions can dom-
inate other Pareto optimal solution concepts already proposed in the literature
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(Iancu and Trichakis, 2014). In practice, PARO solutions can only yield perfor-
mance benefits comparedwith non-PARO solutions, as the latter lead to efficiency
losses.

2. Properties of PARO solutions. We derive several properties of PARO solutions.
Among them, we show that first-stage PARO solutions exist for any two-stage
ARO problem with a compact feasible region. Furthermore, we prove that for
any two-stage ARO problem there exists a piecewise linear (PWL) decision rule
that is PARO. To arrive at these results, our analysis relies on FME.

3. Finding PARO solutions and their practical value. We present several approaches
to find and/or approximate PARO solutions in practice, amongst others using
techniques based on FME. We also conduct a numerical study for a facility lo-
cation example. The results reveal that (approximate) PARO solutions can yield
substantially better performance in non-worst-case scenarios than worst-case op-
timal and PRO solutions, thus demonstrating the practical value of the proposed
methodology.

4. FME as a proof technique for PARO. Zhen et al. (2018) introduce FME as both a
solution and proof technique for ARO. We apply and extend the latter idea, and
use FME to prove worst-case and Pareto optimality of various decision rule struc-
tures. We extend and/or generalize known results in ARO, not related to Pareto
optimality, and provide more insightful proofs; for example, one that uses FME
to establish the results by Bertsimas and Goyal (2012) and Zhen et al. (2018)
on optimality of LDRs under simplex uncertainty sets.

Finally, we note that PARO solutions have already been discussed for a nonlinear
ARO problem arising in radiation therapy treatment planning in Chapter 2, but no
general treatment of the topic was included. In this chapter we formalize the concept,
derive properties, such as existence of PARO solutions, and also discuss constructive
approaches towards finding them. With regards to FME, Zhen et al. (2018) were the
first to recognize its applicability to linear ARO problems, owing to its ability to elim-
inate adjustable variables. They use FME as both a solution and proof technique; for
the latter the main obstacle is the exponential increase in number of constraints after
variable elimination. In the current chapter, we apply and extend the ideas of Zhen
et al. (2018), and use FME as a proof technique. Through the lens of FME we first
consider (worst-case) optimality of decision rule structures, and provide more general
and more insightful proofs of known results. Subsequently, we investigate Pareto opti-
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mality using FME and present numerical results which demonstrate the value of PARO
solutions.

Notation and organization

Boldface characters represent matrices and vectors. All vectors are column vectors and
the vector ai is the i-th row of matrix A. The space of all measurable functions from
�n to �m that are bounded on compact sets is denoted by Rn,m. The vectors ei, 1 and
0 are the standard unit basis vector, the vector of all-ones and the vector of all-zeros,
respectively. Matrix I is the identity matrix. The relative interior of a set S is denoted
by ri(S); its set of extreme points is denoted by ext(S).

The chapter is organized as follows. First, Section 5.2 introduces the ARO setting
and the notion of PARO. Section 5.3 introduces FME and uses it to establish (worst-
case) optimality of decision rule structures. Section 5.4 investigates the existence of
PARO solutions, and Section 5.5 presents some practical approaches for the construc-
tion of PARO solutions. In Section 5.6 we present the results of our numerical experi-
ments.

5.2 Pareto optimality in (adjustable) robust optimiza-
tion

We first generalize the definition of PRO of Iancu and Trichakis (2014) to nonlinear
static RO problems. The reason for this is that there turns out to be a relation be-
tween Pareto efficiency for nonlinear static RO problems and linear ARO problems.
Let x ∈ X ⊆ �nx denote the decision variables and let z ∈ U ⊆ �L denote the uncer-
tain parameters. Let f : �nx ×�L �→ � and consider the static RO problem

min
x∈X max

z∈U
f (x , z). (5.2)

Let X RO denote the set of robustly optimal (i.e., worst-case optimal) solutions. A ro-
bustly optimal solution x is PRO if there does not exist another robustly optimal solu-
tion x̄ that performs at least as good as x for all scenarios in the uncertainty set, while
performing strictly better for at least one scenario. If such a solution x̄ does exist, it is
said to dominate x . In practice, solution x̄ will always be preferred over x . If all uncer-
tainty in the objective is moved to constraints using an epigraph formulation, Pareto
robust optimality may also be defined in terms of slack variables (Iancu and Trichakis,
2014, Section 4.1), but we do not use that definition here. We use the following formal
definition:
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Definition 5.2 (Pareto robustly optimal). A solution x ∈ X RO is PRO to (5.2) if there
does not exist another x̄ ∈ X RO such that

f (x̄ , z)≤ f (x , z), ∀z ∈ U ,

f (x̄ , z̄)< f (x , z̄), for some z̄ ∈ U . �

We aim to extend the concept of PRO to ARO problems. In particular, we consider
the following adjustable linear optimization problem:

min
x ,y(·) max

z∈U
c(z)�x + d�y(z),

s.t. A(z)x + By(z)≤ r (z), ∀z ∈ U ,

(5.3a)

(5.3b)

where z ∈ U ⊆ �L is an uncertain parameter, with U a compact, convex uncertainty
set with nonempty relative interior. Variables x ∈ �nx are the stage-1 (here-and-now)
decisions. Usually we will assume x to be continuous variables, but we emphasize that
all results in the chapter also hold if (part of) x is restricted to be integer-valued. Vari-
ables y ∈ RL,ny are also continuous and capture the stage-2 (wait-and-see) decisions,
i.e., they are functions of z. The matrix B ∈ �m×ny and vector d ∈ �ny are assumed to
be constant (fixed recourse), and A(z), r (z) and c(z) depend affinely on z:

A(z) := A0 +
L∑

k=1

Akzk, r (z) := r 0 +
L∑

k=1

r kzk, c(z) := c0 +
L∑

k=1

ckzk,

with A0, . . . , AL ∈ �m×nx , r 0, . . . , r L ∈ �m and c0, . . . , c L ∈ �nx . Uncertainty in the
objective (5.3a) can be moved to the constraint using an epigraph formulation. Nev-
ertheless, it is explicitly stated in the objective to facilitate a convenient definition of
PARO. Let OPT denote the optimal (worst-case) objective value of (5.3). We continue
by stating several assumptions and definitions regarding adjustable robust feasibility
and optimality.

Definition 5.3 (Adjustable robustly feasible). A pair (x , y(·)) is adjustable robustly fea-
sible (ARF) to (5.3) if A(z)x + By(z)≤ r (z), ∀z ∈ U . �

Sometimes it is useful to consider properties of the first- and second-stage decisions
separately. Therefore, we also define adjustable robust feasibility for stage-1 and stage-
2 decisions individually.

Definition 5.4 (Adjustable robustly feasible x and/or y(·)).
(i) A stage-1 decision x is ARF to (5.3) if there exists a y(·) such that (x , y(·)) is ARF to

(5.3).
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(ii) A stage-2 decision y(·) is ARF to (5.3) if there exists a x such that (x , y(·)) is ARF to
(5.3). �

The set of all ARF solutions x is given by

X = {x ∈ �nx | ∃y ∈ RL,ny : A(z)x + By(z)≤ r (z), ∀z ∈ U}.

We assume set X is nonempty, i.e., there exists an x that is ARF, and we assume (5.3)
has a finite optimal objective value, i.e., OPT is a finite number. After feasibility, the
natural next step is to formally define optimality.

Definition 5.5 (Adjustable robustly optimal). A pair (x , y(·)) is adjustable robustly
optimal (ARO)1 to (5.3) if it is ARF and c(z)�x + d�y(z)≤ OPT, ∀z ∈ U . �

We also define adjustable robust optimality for stage-1 and stage-2 decisions indi-
vidually.

Definition 5.6 (Adjustable robustly optimal x and/or y(·)).
(i) A stage-1 decision x is ARO to (5.3) if there exists a y(·) such that (x , y(·)) is ARO to

(5.3).
(ii) A stage-2 decision y(·) is ARO to (5.3) if there exists a x such that (x , y(·)) is ARO to

(5.3). �

We are now in position to define Pareto adjustable robust optimality for two-stage
ARO problems.

Definition 5.7 (Pareto adjustable robustly optimal). A pair (x , y(·)) is Pareto adjustable
robustly optimal (PARO) to (5.3) if it is ARO and there does not exist a pair (x̄ , ȳ(·))
that is ARO and

c(z)� x̄ + d� ȳ(z)≤ c(z)�x + d�y(z), ∀z ∈ U ,

c(z̄)� x̄ + d� ȳ(z̄)< c(z̄)�x + d�y(z̄), for some z̄ ∈ U . �

As before, the definitions can be extended to stage-1 and stage-2 decisions individ-
ually.

Definition 5.8 (Pareto adjustable robustly optimal x and/or y(·)).
1To ease exposition, we overload and reuse certain acronyms, such as ARO for “adjustable robust

optimization” and “adjustable robustly optimal”, as long as they can be readily disambiguated from the
context.
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(i) A stage-1 decision x is PARO to (5.3) if there exists a y(·) such that (x , y(·)) is PARO to
(5.3).

(ii) A stage-2 decision y(·) is PARO to (5.3) if there exists a x such that (x , y(·)) is PARO to
(5.3). �

Our main interest is in Definition 5.8(i). The reason for this is that the here-and-
now decision x is usually the only one that the decision maker has to commit to. In
contrast, instead of using decision rule y(·), one can often resort to re-solving the
optimization problem for the second stage once the value of the uncertain parameter
has been revealed. This is known as the folding horizon approach, and it is applicable
as long as there is time to re-solve between observing z and having to implement y(z).
There is no such alternative for x , however, and different decisions in stage 1 may lead
to different adaptation possibilities in stage 2.

Lastly, Pareto optimality can also be investigated for stage-2 decisions if the stage-1
decision x is fixed.

Definition 5.9 (Pareto adjustable robustly optimal extension y(·)). A stage-2 decision
y(·) is a PARO extension to x for (5.3) if (x , y(·)) is ARO to (5.3) and there does not
exist another ȳ(·) such that (x , ȳ(·)) is ARO to (5.3) and

c(z)�x + d� ȳ(z)≤ c(z)�x + d�y(z), ∀z ∈ U ,

c(z̄)�x + d� ȳ(z̄)< c(z̄)�x + d�y(z̄), for some z̄ ∈ U . �

Figure 5.1 illustrates the PARO concept for a single uncertain parameter. Each
graph represents the objective value of (5.3) for a given pair (x , y(z)) as a function
of uncertain parameter z. The solution pair (x̂ , ŷ(z)) (solid line) is dominated by
(x̂ , ȳ(z)) (solid-dotted line), which has the same here-and-now decision x̂ but a dif-
ferent decision rule. Thus, according to Definition 5.9, decision rule ŷ(·) cannot be
a PARO extension of x̂ , but decision rule ȳ(·) may be. Further, the graph of solution
(x ∗, y∗(z)) is below the graphs of the other two solution pairs, so neither of those pairs
can be PARO according to Definition 5.7. However, care must be exercised. It may be
the case that there is yet another decision rule ỹ(z) so that (x̂ , ỹ(z)) is not dominated
by (x ∗, y∗(z)). Hence, we cannot conclude that x̂ is not PARO. Lastly, (x ∗, y∗(z)) can
be PARO, but that cannot be concluded from the figure either.

We conclude this section by mentioning three ways that the PARO concept can
be generalized and relaxed, although we do not consider these any further. First,
Bertsimas et al. (2015) define Pareto optimal adaptive solutions for general (nonlinear)
two-stage ARO problems, which for linear problems is equivalent to our definition
of PARO. They subsequently define Pareto optimal affine adaptive solutions, which is
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Figure 5.1: Illustration of PARO concept. Each graph represents the objective value of (5.3) for
a given pair (x , y(z)) as a function of uncertain parameter z. Solution (x̂ , ŷ(z)) is dominated
by (x̂ , ȳ(z)). Decision rule ȳ(z) may be a PARO extension of x̂ , decision rule ŷ(z) is not.
Solution (x ∗, y∗(z)) dominates both (x̂ , ŷ(z)) and (x̂ , ȳ(z)) and may be PARO. Solution x̂ may
also be a PARO stage-1 solution.

equivalent to the definition of PRO after using LDRs, and focus on finding the latter
type of solutions. In their numerical studies, Iancu and Trichakis (2014) also consider
two-stage problems and find PRO solutions after plugging in LDRs.

Secondly, we can also solely relax the requirement that the solution is ARO. For
example, often LDRs do not guarantee an ARO solution but do exhibit good practical
performance (Kuhn et al., 2009). Suppose these yield a worst-case objective value p
(> OPT). Then we can define p-PARO solutions as those solutions (x , y(·)) that yield
an objective value of at most p in each scenario, and are not dominated by another
solution (x̄ , ȳ(·)) that yields an objective value of at most p in each scenario.

Thirdly, PARO may also be defined in terms of slack variables, analogous to the
extension of PRO to constraint slacks in Iancu and Trichakis (2014, Section 4.1). In that
paper, a slack value vector is introduced that quantifies the relative importance of slack
in each constraint. This scalarization allows the computation of the total slack value of
a solution in any scenario. Subsequently PRO (and also PARO) can be defined on this
total slack value instead of the objective value. Thismay be useful in applications where
ARO is mainly used for maintaining feasibility, such as immunizing against uncertain
renewable energy source output (Jabr, 2013) and adjusting to disturbances in railway
timetabling (Polinder et al., 2019).
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5.3 Optimality of decision rule structures via an FME
lens

In this section, we introduce FME as a proof technique for ARO, and we analyze various
decision rule structures. This FME lens enables us to prove that an ARF decision rule
with the particular structure exists for every ARF x , instead of solely proving it is opti-
mal for an ARO x . These results are crucial for one of our main results in Section 5.5.
Moreover, the results in this section show that FME not only provides more general
results, but also leads to more concise (and perhaps more intuitive) proofs to known
results on optimal decision structures.

5.3.1 Eliminating adjustable variables using Fourier-Motzkin elim-
ination

FME (Fourier, 1827; Motzkin, 1936) is an algorithm for solving systems of linear in-
equalities. We refer to Bertsimas and Tsitsiklis (1997) for an introduction to FME in
linear optimization. Its usefulness in ARO is due to the fact that it can be used to
eliminate adjustable variables, as proposed by Zhen et al. (2018). FME leads to an ex-
ponential increase in number of constraints. Zhen et al. (2018) introduce a redundant
constraint identification scheme, which helps to reduce the number of redundant con-
straints, although the number of constraints remains exponential. Zhen et al. (2018)
also propose to use FME to eliminate only part of the variables and using LDRs for
remaining adjustable variables. Next to this, they use FME to prove (worst-case) op-
timality of PWL decision rules. Furthermore, they consider optimal decision rules for
the adjustable variable in the dual problem: they prove (worst-case) optimality of LDRs
in case of simplex uncertainty and (two-)piecewise linear decision rules in case of box
uncertainty. Zhen and den Hertog (2018) use a combination of FME and ARO tech-
niques to compute the maximum volume inscribed ellipsoid of a polytopic projection.
The following example illustrates the use of FME to eliminate an adjustable variable.

Example 5.10. We use FME to eliminate adjustable variable y from (5.1) in Example 5.1. We
move the uncertain objective to the constraints using an epigraph variable t ∈ �, and rewrite
the constraints to obtain:

min
x ,t,y(d1,d2)

t,

s.t. 20 ≤ x ≤ 40,

y(d1, d2)≤ t/δ− x , ∀(d1, d2) ∈ U ,

(5.4a)

(5.4b)
(5.4c)
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d1 − x ≤ y(d1, d2), ∀(d1, d2) ∈ U ,

d2 − x ≤ y(d1, d2), ∀(d1, d2) ∈ U ,

20 ≤ y(d1, d2)≤ 40, ∀(d1, d2) ∈ U .

(5.4d)
(5.4e)
(5.4f)

For fixed (d1, d2), Constraints (5.4c)-(5.4f) specify lower and/or upper bounds on y. By com-
bining each pair of lower and upper bounds on y into a new constraint, we find the following
problem in terms of (x , t):

min
x ,t

t,

s.t. 20 ≤ x ≤ 40,

d1 ≤ t/δ, ∀(d1, d2) ∈ U ,

d2 ≤ t/δ, ∀(d1, d2) ∈ U ,

20 ≤ t/δ− x , ∀(d1, d2) ∈ U ,

d1 − x ≤ 40, ∀(d1, d2) ∈ U ,

d2 − x ≤ 40, ∀(d1, d2) ∈ U ,

(5.5a)

(5.5b)
(5.5c)
(5.5d)
(5.5e)
(5.5f)
(5.5g)

where we have removed the trivial new constraint 20 ≤ 40. Any solution (x , t) sets the follow-
ing bounds on y:

max{d1 − x , d2 − x , 20} ≤ y(d1, d2)≤ min{t/δ− x , 40}, ∀(d1, d2) ∈ U ,

and any decision rule satisfying these inequalities is ARO to (5.1). Thus, two-stage problem
(5.1) has been reduced to static linear RO problem (5.5). Auxiliary variable t can be eliminated,
but this transforms (5.5) to an RO problem with a PWL objective. �

We focus on applying FME as a proof technique. Through the “lens” of FME we first
consider (worst-case) optimality of decision rule structures, and subsequently consider
Pareto optimality. In the remainder of the chapter, if FME is applied, w.l.o.g. it is
applied on the adjustable variables in the order y1(z), . . . , yny

(z), i.e., according to
their index. We first state some frequently used definitions. If FME is performed on X
until all adjustable variables are eliminated, the feasible region can be written as

XFME = {x ∈ �nx | G(z)x ≤ f (z), ∀z ∈ U},

for some matrix G(z) and vector f (z) depending affinely on z. Zhen et al. (2018)
show that X = XFME. For the analysis of particular decision rule structures, it is crucial
to keep track of the original constraints during the FME procedure. A frequently used
technical result on this is provided in Lemma 5.36 in Appendix 5.A.1.
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5.3.2 Optimality of decision rule structures

In this section, we consider several special cases of problem (5.3) for which particular
decision rule structures are known to be optimal. We use FME to prove generalizations
of these results for linear two-stage ARO problems. In particular, using FME as a proof
technique enables us to show that the particular decision rule structure is not only ARO
(i.e., worst-case optimal), but is ARF for each ARF stage-1 decision x . These results
will later be used in analyzing PARO in Section 5.5.

We consider the cases where uncertainty appears (i) constraintwise, (ii) in a hybrid
structure (part constraintwise, part non-constraintwise), (iii) in a block structure, and
we consider (iv) the case with a simplex uncertainty set and the case with only one
uncertain parameter.

(i) Constraintwise uncertainty

Ben-Tal et al. (2004) show that for constraintwise uncertainty the objective values of
the static and adjustable problem are equal, i.e., there exists an optimal static decision
rule. Using FME, a generalization of their result can be easily proved. We first provide
an example.

Example 5.11. Consider the following ARO problem with constraintwise uncertainty:

min
x ,y(·) x ,

s.t. x − y2(z)≤ −1
2

z1, ∀z1 ∈ [0, 1],

− x + y1(z) + y2(z)≤ 1
2

z2 +
1
2

z3 + 2, ∀(z2, z3) ∈ [0, 1]2,

1 ≤ y1(z), ∀z ∈ U ,
3
2

≤ y2(z)≤ 2, ∀z ∈ U

with U = [0, 1]3. Uncertain parameter z1 occurs only in the first constraint and (z2, z3) occur
only in the second constraint. Using FME, we first eliminate y1(z) and subsequently eliminate
y2(z).

1 ≤y1(z)≤ −y2(z) + x + 2+
1
2

z2 +
1
2

z3, ∀z ∈ U ,

max{3
2

, x +
1
2

z1} ≤y2(z)≤ min{2, x + 1+
1
2

z2 +
1
2

z3}, ∀z ∈ U .

From the bounds on y2(z) four linear constraints for x can be derived. One can verify that
the (unique) ARO solution is x∗ = 1

2 . Additionally, note that the term 1
2z2 +

1
2z3 appears in
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both upper bounds with a positive sign. As this is the only term that depends on (z2, z3), it
can be replaced by its worst-case value 0. Similarly, the term −1

2z1 appears in the lower bound
on y2(z) with a negative sign, and can be replaced by its worst-case value −1

2 . This gives the
following bounds on y1(z) and y2(z):

1 ≤y1(z)≤ −y2(z) +
5
2

, ∀z ∈ U ,

max{3
2

, 1} ≤y2(z)≤ min{2,
3
2
}, ∀z ∈ U .

For y2(z), the only feasible (and hence ARO) decision rule is y2(z) =
3
2 . This implies y1(z) = 1,

and we find that for both adjustable variables the optimal decision rule is static. �

According to Lemma 5.36, any term such as 1
2z2 +

1
2z3 in Example 5.13 appears

in all upper bounds with a positive sign and all lower bounds with a negative sign,
or vice versa. Hence, if this is the only term depending on z2 and z3, these uncertain
parameters can be eliminated by replacing them with their worst-case value. The
resulting bounds on adjustable variables are independent of uncertain parameters.
Constraintwise uncertainty is formally defined as follows.

Definition 5.12. ARO problem (5.3) has constraintwise uncertainty if there is a parti-
tion

z = (z(0), z(1), . . . , z(m)),

such that z(0), . . . , z(m) are disjoint, the objective depends only on z(0) and constraint
i depends only on z(i), i = 1, . . . , m. Additionally, U = {(z(0), . . . , z(m)) | z(i) ∈ Ui, i =
0, . . . , m}, with Ui ⊆ �|z(i)| for all i = 0, . . . , m. �

Instead of directly providing a formal proof of the result for constraintwise un-
certainty, it follows as a corollary from our analysis of hybrid uncertainty, which is
considered next.

(ii) Hybrid uncertainty

Hybrid uncertainty is a generalization of constraintwise uncertainty, where part of the
uncertain parameters appear constraintwise, and part does not appear constraintwise.
This uncertainty structure has previously been considered in Marandi and den Hertog
(2018).

In case of hybrid uncertainty, there exist ARO decision rules that do not depend on
the constraintwise uncertain parameters. We illustrate this with a toy example.
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Example 5.13. We extend Example 5.11 to a problemwith hybrid uncertainty by introducing
a non-constraintwise uncertain parameter ẑ:

min
x ,y(·) x ,

s.t. x − y2(z)≤ −ẑ − 1
2

z1, ∀(ẑ, z1) ∈ [0,1]2,

− x + y1(z) + y2(z)≤ ẑ +
1
2

z2 +
1
2

z3 + 2, ∀(ẑ, z2, z3) ∈ [0, 1]3,

1 ≤ y1(z), ∀z ∈ U ,
3
2

≤ y2(z)≤ 2, ∀z ∈ U ,

(5.6a)

(5.6b)

(5.6c)

(5.6d)

(5.6e)

with U = [0, 1]4. Uncertain parameter ẑ occurs in both constraints, z1 occurs only in the first
constraint and (z2, z3) occur only in the second constraint. Using FME, we again first eliminate
y1(z) and subsequently eliminate y2(z).

1 ≤y1(z)≤ ẑ − y2(z) + x + 2+
1
2

z2 +
1
2

z3, ∀z ∈ U ,

max{3
2

, x + ẑ +
1
2

z1} ≤y2(z)≤ min{2, x + 1+ ẑ +
1
2

z2 +
1
2

z3}, ∀z ∈ U .

From the bounds on y2(z) again four linear constraints for x can be derived. The new parame-
ter ẑ does not break robustness of solution x∗ = 1

2 , so this is still the unique ARO solution. The
unique ARO solution is still x∗ = 1

2 . Similar to Example 5.11, we can replace both occurrences
of the term 1

2z2 +
1
2z3 by its worst-case value 0, and −1

2z1 can be replaced by its worst-case
value −1

2 . This yields the following bounds on y1(z) and y2(z):

1 ≤y1(z)≤ ẑ − y2(z) +
5
2

, ∀z ∈ U ,

max{3
2

, 1+ ẑ} ≤y2(z)≤ min{2,
3
2
+ ẑ}, ∀z ∈ U .

For y2(z), the only feasible (and hence ARO) LDR is y2(ẑ) =
3
2 +

1
2 ẑ. This implies 1 ≤ y1(z) ≤

1+ 1
2 ẑ, and any decision rule that satisfies these bounds is ARO. Note that both decision rules

do not depend on the constraintwise uncertain parameters. One can also pick a PWL decision
rule for y2(z), such as its lower or upper bound. Also in this case the decision rules for y1 and
y2 do not depend on z1, z2 or z3. �

Hybrid uncertainty is defined as follows.

Definition 5.14. ARO problem (5.3) has hybrid uncertainty if there is a partition

z = (ẑ, z(0), z(1), . . . , z(m)),
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such that ẑ, z(0), . . . , z(m) are disjoint, the objective depends only on ẑ and z(0) and
constraint i depends only on ẑ and z(i), i = 1, . . . , m. Additionally,

U = {(ẑ, z(0), . . . , z(m)) | ẑ ∈ Û , z(i) ∈ Ui, i = 0, . . . , m},

with Û ⊆ �|ẑ| and Ui ⊆ �|z(i)| for all i = 0, . . . , m. �

To formally prove our claim that there exist ARO decision rules that do not depend
on the constraintwise uncertain parameters, we first need a result on feasibility.

Lemma 5.15. Let Phybrid denote an ARO problem of form (5.3) with hybrid uncertainty
and let x be ARF to Phybrid. Then, there exists a decision rule y(·) that depends only on ẑ
such that (x , y(·)) is ARF to Phybrid.

Proof. See Appendix 5.A.2.

The following result is an immediate consequence of Lemma 5.15 for ARO deci-
sions.

Corollary 5.16. Let Phybrid denote an ARO problem of form (5.3)with hybrid uncertainty.
For each x that is ARO to Phybrid there exists a decision rule y(·) depending only on ẑ such
that the pair (x , y(·)) is ARO to Phybrid.

Proof. See Appendix 5.A.3.

In case of pure constraintwise uncertainty (U0 = �) Lemma 5.15 shows that for
each ARF x there exists a static y such that (x , y) is ARF. Additionally, Corollary 5.16
shows that for each ARO x there exists a static y such that (x , y) is ARO.

Marandi and den Hertog (2018) prove a similar result to Corollary 5.16 for non-
linear problems. More precisely, they prove that for problems with hybrid uncertainty
there exists an optimal decision rule that is a function of only the non-constraintwise
uncertain parameters if the problem is convex in the decision variables, concave in
uncertain parameters, has a convex compact uncertainty set and a convex compact
feasible region for the adjustable variables.

(iii) Block uncertainty

Suppose we can split the constraints into blocks, where each block has its own un-
certain parameters and adjustable variables, and the uncertainty set is a Cartesian
product of the block-wise uncertainty sets, then there exists an optimal decision rule
for each adjustable variable that depends only on the uncertain parameters in its own
block. We first provide an example to develop some intuition for block uncertainty.
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Example 5.17. Consider again Example 5.13. Add the following constraints to (5.6):

y3(z) + x ≤ −1
2

z4 +
3
2

, ∀z4 ∈ [0,1],

y3(z) + 2x ≥ 1
2

z5 + 1, ∀z5 ∈ [0,1],

(5.7a)

(5.7b)

and let U = [0, 1]6 denote the new uncertainty set. Then the first block consists of constraints
(5.6b)-(5.6e), adjustable variables y1(z), y2(z) and uncertain parameters z0, . . . , z3. The sec-
ond block consists of constraints (5.7), adjustable variable y3(z) and uncertain parameters z4

and z5. One can verify that the unique ARO solution remains x∗ = 1
2 . The following bounds

on y3(z) are obtained:
1
2

z5 ≤ y3(z)≤ 1 − 1
2

z4, ∀z ∈ U .

One feasible (and hence ARO) decision rule is y3(z4, z5) =
1
2(1+z5 −z4). The decision rules for

y1 and y2 remain unchanged. It follows that for each adjustable variable the optimal decision
rule is a function of only the uncertain parameters in its own block. �

The formal definition of block uncertainty is as follows. Recall that constraints are
indexed 1, . . . , m. Let index 0 refer to the objective.

Definition 5.18. ARO problem (5.3) has block uncertainty if there exist partitions z =
(z(1), . . . , z(V )), y(·) = (y(1)(·), . . . , y(V )(·)) and {0, . . . , m}= {K(1), . . . , K(V )} such that

• U = {(z(1), . . . , z(V )) | z(v) ∈ U v, v = 1, . . . , V}, with U v ⊆ �|z(v)| for all blocks
v = 1, . . . , V .

• A constraint or objective with index in set K(v) is independent of uncertain pa-
rameters z(w) and adjustable variables y(w) if block w �= v. �

In order to prove the claim that there exists an optimal decision rule for each ad-
justable variable that depends only on the uncertain parameters in its own block, we
again first consider feasibility.

Lemma 5.19. Let Pblock denote an ARO problem of form (5.3) with block uncertainty and
let x be ARF to Pblock. Then there exists a decision rule y(·) with y(v)(·) depending only on
z(v), for all v = 1, . . . , V , such that (x , y(·)) is ARF to Pblock.

Proof. See Appendix 5.A.4.

Corollary 5.20. Let Pblock denote an ARO problem of form (5.3) with block uncertainty.
For each x that is ARO to Pblock there exists a decision rule y(·) with y(v)(·) depending only
on z(v), for all v = 1, . . . , V , such that the pair (x , y(·)) is ARO to Pblock.

Proof. Follows from Lemma 5.19 analogous to the proof of Corollary 5.16.
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(iv) Simplex uncertainty or one uncertain parameter

Bertsimas and Goyal (2012) prove optimality of LDRs for right-hand side uncertainty
and a simplex uncertainty set. Zhen et al. (2018) generalize this to both left- and
right-hand side uncertainty, their proof uses FME on the dual problem. We use FME
on the primal problem, which leads to a more intuitive proof; the following example
illustrates the main idea. We note that the case with one uncertain parameter is a
special case of simplex uncertainty, so the results of this section also hold for that case.

Example 5.21. Consider the problem

min x ,

s.t. x − y2 ≤ −z1 − 1
2

z2 − 1
2

, ∀z ∈ U ,

− x + y1 + y2 ≤ z1 + z3 + 2, ∀z ∈ U ,

0 ≤ y1(z), ∀z ∈ U ,
3
2

≤ y2(z)≤ 2, ∀z ∈ U ,

with standard simplex uncertainty set U = {(z1, z2, z3) : z1+ z2+ z3 ≤ 1, z1, z2, z3 ≥ 0}. Similar
to Example 5.13, we first eliminate y1 and then y2. This results in the following bounds on the
adjustable variables:

0 ≤y1(z)≤ z1 + z3 + 2+ x − y2(z), ∀z ∈ U ,

max{3
2

,
1
2
+ x + z1 +

1
2

z2} ≤y2(z)≤ min{2, z1 + z3 + 1+ x}, ∀z ∈ U .

(5.8a)

(5.8b)

Equivalently, these bounds have to be satisfied for each point in ext(U). One can verify that
x∗ = 1

2 is an ARO solution. Plugging this in (5.8), we get the following bounds for each extreme
point:

(0,0, 0) : 0 ≤ y1 ≤ 5
2

− y2,
3
2

≤ y2 ≤ 3
2

,

(1, 0, 0) : 0 ≤ y1 ≤ 7
2

− y2, 2 ≤ y2 ≤ 2,

(0,1, 0) : 0 ≤ y1 ≤ 5
2

− y2,
3
2

≤ y2 ≤ 3
2

,

(0, 0, 1) : 0 ≤ y1 ≤ 7
2

− y2,
3
2

≤ y2 ≤ 2.

(5.9)

Because U is a simplex, the four extreme points are affinely independent. Therefore, there
is a unique LDR such that the upper bound on y2(·) holds with equality for each extreme
point. This is also the case for the lower bound, and any convex combination of both decision
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rules also satisfies the bounds for y2 in (5.9). The LDR corresponding with the upper bounds
is y2(z1, z3) =

1
2(3 + z1 + z3), and plugging this in the bounds on y1 yields a similar system

as (5.9) for y1. This guarantees existence of an LDR for y1; for the upper bound we find
y1(z1, z3) =

1
2(2+ z1 + z3). Note that this does not generalize to uncertainty sets described by

more than L + 1 extreme points. �

Similar to the cases for hybrid and block uncertainty, we first prove feasibility for
each ARF x , and subsequently prove optimality.

Lemma 5.22. Let Psimplex denote an ARO problem of form (5.3) with a simplex uncer-
tainty set, i.e., U = Conv(z1, . . . , zL+1), with z j ∈ �L such that z1, . . . , zL+1 are affinely
independent. Let x be ARF to Psimplex. Then there exists an LDR y(·) such that (x , y) is
ARF to Psimplex.

Proof. See Appendix 5.A.5.

Similar to Corollary 5.16, we have the following result for ARO decisions.

Corollary 5.23. Let Psimplex denote an ARO problem of form (5.3) with a simplex uncer-
tainty set, i.e., U = Conv(z1, . . . , zL+1), with z j ∈ �L such that z1, . . . , zL+1 are affinely
independent. For each x that is ARO to Psimplex there exists an LDR y(·) such that the pair
(x , y(·)) is ARO to Psimplex.

Proof. Follows from Lemma 5.22 analogous to the proof of Corollary 5.16.

Because the case with one uncertain parameter is a special case of simplex uncer-
tainty, the results of Lemma 5.22 and Corollary 5.23 also hold for that case.

The results on PARO in the next sections make use of the fact that an ARF deci-
sion rule with the particular structure exist for every ARF x , i.e., Lemmas 5.15, 5.19
and 5.22.

5.4 Properties of PARO solutions

In this section, we prove existence of PARO solutions for two-stage ARO problems of
form (5.3). First, we use FME to prove that a PARO stage-1 (here-and-now) solution is
equivalent to a PRO solution of a PWL convex static RO problem, and use that to prove
the existence of a PARO stage-1 solution. Subsequently, we prove that there exists a
PWL decision rule that is PARO to (5.3).
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5.4.1 Existence of a PARO stage-1 solution

We prove existence of PARO stage-1 solutions in two steps. First, we prove that a PARO
solution to (5.3) is equivalent to a PRO solution to a static RO problem with a convex
PWL objective. Subsequently, we prove that PRO solutions to such problems always
exist.

Lemma 5.24. A solution x ∗ is PARO to (5.3) if and only if it is PRO to

min
x∈XFME

max
z∈U

c(z)�x + max
(S,T )∈M

{hS,T (x , z)}, (5.10)

where each element (S, T ) of set M is a pair of sets of original constraints of (5.3) and
each function hS,T (x , z) is bilinear in x and z.

Proof. See Appendix 5.A.6.

Thus, existence of a PARO solution to (5.3) is now reduced to existence of a PRO
solution to a static RO problem with a convex PWL objective in both x and z. For
problems without adjustable variables in the objective the following result immediately
follows.

Corollary 5.25. If d = 0, a solution x ∗ is PARO to (5.3) if and only if it is PRO to

min
x∈XFME

max
z∈U

c(z)�x .

Proof. This directly follows from plugging in d = 0 in the proof of Lemma 5.24.

We can now prove one of our main results: existence of a PARO x for any ARO
problem of form (5.3) with compact feasible region. Our proof uses Lemma 5.24 and
essentially proves existence of a PRO solution to (5.10).

Theorem 5.26. If X is compact, there exists a PARO x to (5.3).

Proof. See Appendix 5.A.7.

Note that the theorem also holds if X restricts (some elements of) x to be integer-
valued. The boundedness assumption on X cannot be relaxed, because in that case a
PRO solution to (5.10) need not exist. For example, consider the static RO problem
maxx≥0 minz∈[0,1] xz. The worst-case scenario is z = 0, and any x ≥ 0 is worst-case
optimal. In any other scenario z > 0, higher x is better. Any x is dominated by x + ε
with ε > 0, and there is no PRO solution.



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 201PDF page: 201PDF page: 201PDF page: 201

Properties of PARO solutions 189

5.4.2 Existence of a PARO piecewise linear decision rule

Now that existence of a PARO x is established, we investigate the structure of decision
rule y(·). We illustrate via an example that for any ARF x there exists a PWL PARO
extension y(·).
Example 5.27. Consider the following ARO problem, a slight adaptation of Example 5.13:

min
x ,y(·) max

z∈[0,1]4
x − y1(z) + y2(z),

s.t. x − y2(z)≤ −z0 − 1
2

z1, ∀(z0, z1) ∈ [0, 1]2,

− x + y1(z) + y2(z)≤ z0 +
1
2

z2 +
1
2

z3 + 2, ∀(z0, z2, z3) ∈ [0,1]3,

1 ≤ y1(z)≤ 2, ∀z ∈ U ,
3
2

≤ y2(z)≤ 2, ∀z ∈ U .

(5.11a)

(5.11b)

(5.11c)

(5.11d)

(5.11e)

We eliminate y1(z) and y2(z) in constraints (5.11b)-(5.11e) analogous to Example 5.13, and
find the ARF solution x∗ = 1

2 and the following bounds on y1(z) and y2(z):

1 ≤y1(z)≤ min{2, z0 − y2(z) +
5
2
},

max{3
2

, 1+ z0} ≤y2(z)≤ min{2,
3
2
+ z0}.

(5.12a)

(5.12b)

Variables y1(z) and y2(z) have not been eliminated in the objective. Therefore, any decision
rule satisfying (5.12) is ARF to (5.11) but need not be ARO or PARO.

Variable y1(z) does not appear in the bounds of y2(z), so we can consider its individual
contribution to the objective value. The objective coefficient of y1(z) is negative, so for any
z (including the worst-case) the best possible contribution of y1(z) to the objective value is
achieved if we set y1(z) equal to its upper bound. Therefore, for the given x∗, we have the
following PWL PARO extension as a function of y2(z):

y∗
1(z) =min{2, z0 − y2(z) +

5
2
}.

Now that y1(z) is eliminated in the objective value, it remains to find the optimal decision
rule for y2(z). Variable y2(z) now appears directly in the objective (5.11a) and through its
occurrence in the decision rule y∗

1(z). For fixed z, the optimal y2(z) is determined by solving

min
y2(z)

− min{2, z0 − y2(z) +
5
2
}+ y2(z),

s.t. max{3
2

,1+ z0} ≤ y2(z)≤ min{2,
3
2
+ z0}.
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One can easily see that the objective is increasing in y2(z), so for any z the best possible
contribution of y2(z) to the objective value is achieved if we set y2(z) equal to its lower bound.
Thus, for the given x∗, we have the following PWL PARO extension:

y∗
2(z) =max{3

2
, 1+ z0}.

Note that plugging in a PWL argument in a PWL function retains the piecewise linear structure.
Therefore, we also obtain the following PWL PARO extension for y∗

1(z):

y∗
1(z) =min{2, z0 − max{3

2
,1+ z0}+ 5

2
}.

Note that we did not move adjustable variables in the objective to the constraints using
an epigraph variable, as was done in Example 5.10. Using an epigraph variable for the objec-
tive ensures that each decision rule satisfying the bounds is worst-case optimal, but prevents
from comparing performance in other scenarios. Naturally, computationally it has the major
advantage that it remains a linear program. �

Bemporad et al. (2003) show worst-case optimality of PWL decision rules for right-
hand polyhedral uncertainty, i.e., ARO PWL decision rules in our terminology. Zhen
et al. (2018, Theorem 3) generalize this to problems of form (5.3) with particular
assumptions on the uncertainty set. These decision rules are general PWL in z for
all variables yj, j �= l, where yl is the last eliminated variable in the FME procedure.
The decision rule is convex or concave PWL in yl . These results solely consider the
performance of PWL decision rules in the worst-case. Example 5.27 illustrates that for
any ARF x there exists a PWL PARO extension y(·). The lemma below formalizes this
claim.

Lemma 5.28. For any x that is ARF to (5.3) there exists a PARO extension y(z) that is
PWL in z.

We present two proofs to Lemma 5.28; one via FME using the idea of Example 5.27,
and one via basic solutions in linear optimization.

Proof of Lemma 5.28 via FME. See Appendix 5.A.8.

Proof of Lemma 5.28 via linear optimization. See Appendix 5.A.9.

In both proofs the constructed decision rule is in fact optimal for all scenarios in
the uncertainty set. As long as x is fixed, this is necessary for PARO solutions. The
following theorem establishes the existence of PARO PWL decision rules.
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Theorem 5.29. If X is compact, there exists a PARO y(·) for (5.3) such that y(z) is PWL
in z.

Proof. According to Theorem 5.26 there exists a PARO x , and according to Lemma 5.28
there exists a PARO extension y(·) for this x that is PWL in z. It immediately follows
that y(·) is PARO.

5.5 Constructing PARO solutions
Adjustable robust optimization problems of form (5.3) are in general NP-hard (Gus-
litser, 2002), and finding ARO solutions is still the focus of ongoing research (Yanıkoğlu
et al., 2019). Thus, finding a method that, given an ARO solution to (5.3), can produce
a PARO solution is not an easy task either. The methods used in the existence proofs
of Section 5.4 are not computationally tractable, i.e., they provide little guidance for
finding PARO solutions in practice. In this section we present several practical methods
for finding and approximating PARO solutions for particular problems.

First, we consider the problems with known ARO decision rules of Section 5.3,
and show how to obtain PARO solutions in case stage-2 variables do not appear in
the objective. Subsequently, we show how for fixed x we can check whether y(·) is a
PARO extension. After that, we consider an application of the finite subset approach
of Hadjiyiannis et al. (2011). Lastly, we consider two practical approaches for finding
(approximate) PARO solutions if a convex hull description of the uncertainty set is
available.

5.5.1 Known worst-case optimal decision rules
In Section 5.3, we have shown that for particular ARO problems there exist decision
rule structures such that for any ARF stage-1 decision there exists an ARF decision rule
with that structure. For example, for ARO problems with hybrid uncertainty, for any
ARF stage-1 decision there exists an ARF decision rule that depends only on the non-
constraintwise uncertain parameter. It turns out that, in case there are no adjustable
variables in the objective, PRO solutions to the static problem obtained after plugging
in that decision rule structure are PARO solutions to the original ARO problem. To
formalize this, let y(z) = fw (z) be a decision rule with known form f (e.g., linear or
quadratic) and finite number of parameters w ∈ �p, such that fw (z) ∈ RL,ny for any
w .

Theorem 5.30. Let P denote an ARO problem of form (5.3) with d = 0 and where for
any ARF x there exists an ARF decision rule of form y∗(z) = fw (z) for some w . Then
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any x ∗ that is PRO to the static robust optimization problem obtained after plugging in
decision rule structure fw (z) is PARO to P.

Proof. See Appendix 5.A.10.

Due to Lemmas 5.15, 5.19 and 5.22, the following result immediately follows for
hybrid, block and simplex uncertainty.

Corollary 5.31.

(i) Let Phybrid denote an ARO problem of form (5.3) with d = 0 and hybrid uncer-
tainty. Let Q denote the static robust optimization problem obtained from Phybrid by
plugging in a decision rule structure that depends only on the non-constraintwise
parameter. Any x ∗ that is PRO to Q is PARO to Phybrid.

(ii) Let Pblock denote an ARO problem of form (5.3) with d = 0 and block uncertainty.
LetQ denote the static robust optimization problem obtained from Pblock by plugging
in a decision rule structure where adjustable variable y∗

(v)(·) depend only on z(v) for
all v = 1, . . . , V . Then any x ∗ that is PRO to Q is PARO to Pblock.

(iii) Let Psimplex denote an ARO problem of form (5.3) with d = 0 and a simplex un-
certainty set, i.e., U = Conv(z1, . . . , zL+1), with z j ∈ �L such that z1, . . . , zL+1 are
affinely independent. Let Q denote the static robust optimization problem obtained
from Psimplex by plugging in an LDR structure. Then any x ∗ that is PRO to Q is PARO
to Psimplex.

Proof. See Appendix 5.A.11.

Similar to Section 5.3, the case with constraintwise uncertainty is again a special
case of Corollary 5.31(i). The case with one uncertain parameter is again a special case
of Corollary 5.31(iii). Note that, unlike for worst-case optimization, it is necessary that
d = 0, because our definition of PRO involves the term d. If d �= 0, the results above
do not hold. This is also illustrated in Example 5.1 in Section 5.1.

The results of Corollary 5.31 can be combined. For example, for problemswith both
simplex uncertainty and hybrid uncertainty, Corollary 5.31(i) and Corollary 5.31(iii)
together imply that one needs to consider only decision rules that are affine in the non-
constraintwise parameter, if there are no adjustable variables in the objective. Simplex
uncertainty sets arise in a variety of applications and can be used to approximate other
uncertainty sets (Ben-Tal et al., 2020).
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5.5.2 Check whether a decision rule is a PARO extension
If the stage-1 decision x is fixed, one can verify whether the decision rule y is a PARO
extension (Definition 5.9) as follows.

Lemma 5.32. Let (x̃ , ỹ(·)) be an ARO solution to (5.3). Consider the problem

max
z,y

d�( ỹ(z)− y),

s.t. A(z)x̃ + By ≤ r (z),

z ∈ U .

(5.13a)

(5.13b)
(5.13c)

If the optimal objective value is zero, ỹ(·) is a PARO extension of x̃ . If the objective value is
positive, then ỹ(·) is not a PARO extension of x̃ and the suboptimality of ỹ(·) is bounded
by the optimal objective value.

Proof. See Appendix 5.A.12.

If the optimal value is positive and (z∗, y∗) denotes an optimal solution to (5.13),
then z∗ is a scenario where the suboptimality bound is attained, and y∗ is an optimal
decision for this scenario. Also, note that if the optimal value of (5.13) equals zero, the
pair (x̃ , ỹ(·)) need not be PARO; there may be a different pair (x̂ , ŷ(·)) that dominates
the current pair.

5.5.3 Unique ARO solution on finite subset of scenarios is PARO
The finite subset approach of Hadjiyiannis et al. (2011) can be used in a PARO setting
as well. If the lower bound problem has a unique solution and this solution is feasible to
the original problem, it is a PARO solution to the original problem. This is formalized
in Lemma 5.33.

Lemma 5.33. Let S = {z1, . . . , zN} denote a finite set of scenarios, S ⊆ U . Let x
be the unique ARO here-and-now decision for which there exist y1, . . . , yN such that
(x , y1, . . . , yN ) are an optimal solution to

min
x ,y1,...,yN

max
i=1,...,N

{c(z i)�x + d�y i},

s.t. A(z i)x + By i ≤ r (zi), ∀i = 1, . . . , N .

(5.14a)

(5.14b)

Then x is PARO to (5.3).
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Proof. Let (x̄ , ȳ(·)) be ARO to (5.3) with x̄ unequal to x . Then the solution (x̄ , ȳ(z1),
. . . , ȳ(zN )) is feasible to (5.14). Because x is the unique here-and-now ARO decision
that can be extended to an optimal solution of (5.14), it holds that

c(z i)�x + d�y i < c(z i)� x̄ + d� ȳ(z i) for some z i ∈ S.

That is, for each x̄ that is ARO to (5.3) and unequal to x there is at least one scenario
z i in U for which x outperforms x̄ . This implies that x is PARO to (5.3).

It should be noted that requiring x to be both ARO to (5.3) and a unique optimal
solution to (5.14) is quite restrictive.

5.5.4 Convex hull description of scenario set
Next, consider the case where the uncertainty set is given by the convex hull of a finite
set of points, i.e., U = Conv(z1, . . . , zN ). Then (5.3) is equivalent to

min
x ,y1,...,yN

max
i=1,...,N

c(z i)�x + d�y i,

s.t. A(z i)x + By i ≤ r (z i), ∀i = 1, . . . , N .

(5.15a)

(5.15b)

Let (x̃ , ỹ1, . . . , ỹ N) denote the optimal solution. Note that x̃ is ARO to (5.3). Analogous
to Iancu and Trichakis (2014), we can perform an additional step by optimizing the set
of ARO solutions over a scenario in the relative interior (denoted ri(·)) of the convex
hull of our finite set of scenarios. If the objective does not contain adjustable variables,
this produces a PARO here-and-now solution to (5.3).

Lemma 5.34. Let d = 0. Let U = Conv(z1, . . . , zN ), z̄ ∈ ri(U) and let (x̄ , ȳ1, . . . , ȳN )
denote an optimal solution to

min
x ,y1,...,yN

c(z̄)�x ,

s.t. A(z i)x + By i ≤ r (zi), ∀i = 1, . . . , N ,

c(zi)�x + d�y i ≤ OPT, ∀i = 1, . . . , N ,

(5.16a)

(5.16b)
(5.16c)

where OPT denotes the optimal objective value of (5.15). Then x̄ is PARO to (5.3).

Proof. See Appendix 5.A.13.

For the general case with d �= 0, we restrict ourselves to problems with right-hand
side uncertainty. Let x̂ denote an ARO (worst-case optimal) solution. Let V denote
a set where each element is a pair of a scenario in U and a required objective value
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for that scenario. We initialize V = {(z1,OPT), . . . , (zN ,OPT)}; the proposed solution
method will later add additional elements to this set. The following optimization prob-
lem produces a scenario z̄ where x̂ is most suboptimal, and provides the ARO stage-1
decision x̄ that allows for the largest improvement:

p(x̂ , V ) = min
z̄,x̄ ,ȳ ,

ȳ1,...,ȳ |V |
max

ŷ:Ax̂+Bŷ≤r (z̄)
(c� x̄ + d� ȳ)− (c� x̂ + d� ŷ),

s.t. Ax̄ + Bȳ ≤ r (z̄),

Ax̄ + Bȳ i ≤ r (zi), ∀i = 1, . . . , |V |,
c� x̄ + d� ȳ i ≤ vi, ∀i = 1, . . . , |V |,
z̄ ∈ U .

(5.17a)

(5.17b)
(5.17c)
(5.17d)
(5.17e)

Constraint (5.17b) ensures that the stage-1 decision x̄ and the decision ȳ for scenario
z̄ are feasible for that scenario. Due to the current choice of set V , constraint (5.17c)
ensures robust feasibility of x̄ and constraint (5.17d) ensures robust optimality of x̄ .
Hence, x̄ is ARO and performs strictly better than x̂ on the scenario z̄, if the optimal
objective value of (5.17) is strictly negative.

One may note that solving (5.17) is non-trivial. We first describe how problem
(5.17) can be incorporated in an algorithm that guarantees a PARO solution. Subse-
quently, we describe an approach to approximately solve (5.17).

Solution x̄ need not be PARO; further improvements may be possible. We propose
an algorithm that solves problem (5.17) multiple times. In each iteration the starting
stage-1 solution is the optimal stage-1 solution of the previous iteration. Additionally,
the scenario where the maximum difference is attained is added to the scenario set
V , together with the attained objective value in that scenario. Algorithm 5.1 describes
the algorithm and Lemma 5.35 proves that it yields a PARO stage-1 solution.

Lemma 5.35. A solution x̄ obtained from Algorithm 5.1 is PARO to (5.3).

Proof. See Appendix 5.A.14.

Algorithm 5.1 requires solving (5.17) multiple times, but unfortunately it is in-
tractable in general. The reason is that for the original stage-1 decision x̂ , the optimal
recourse decision ŷ for scenario z̄ needs to be chosen adversely. However, the set of
feasible recourse decisions depends on the scenario z̄. We propose to use a simple
alternating direction heuristic, also known as mountain climbing, which guarantees
a local optimum (Konno, 1976). For some initial z̄ one can determine the optimal
{x̄ , ȳ , ȳ1, . . . , ȳ |V |} by solving an LP. Subsequently, we alternate between optimizing
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Algorithm 5.1: Iterative improvement algorithm

begin
Set k = 0, p0 = −∞ and V0 = {(z1,OPT), . . . , (zN ,OPT)};
Compute ARO solution x 0;
while pk < 0 do

Set k = k+ 1;
if k > 1 then

Set Vk ← Vk−1 ∪ {(zk−1, c�x k−1 + d�yk−1)};
end
Compute pk := p(x k−1, Vk) and denote the solution by
(zk , x k , y k, y1,k, . . . , yN ,k);

end
Set x̄ = x k;

end

for ŷ and {z̄, x̄ , ȳ , ȳ1, . . . , ȳ |V |} while keeping the other set of variables at their current
value. For either set of variables, the problem is an LP. This is continued until two
consecutive LP problems yield the same objective value.

By using a heuristic approach to solving (5.17), it possible that at a certain iteration
k in Algorithm 5.1 we obtain an estimate p̂k ≥ 0, while the true pk < 0, so the algorithm
terminates without finding a PARO solution. Nevertheless, also solutions obtained this
way that are not proven to be PARO can improve upon the original ARO solution.

The solution quality of Algorithm 5.1 depends on the starting z̄. One option is to
simply pick the nominal scenario, if it is defined. An alternative starting solution can
be obtained by plugging in an LDR for ŷ in (5.17), i.e., solving

max
w ,W

min
z̄,x̄ ,ȳ ,

ȳ1,...,ȳ |V |

	
(c� x̄ + d� ȳ)− (c� x̂ + d�(w +W z̄)) | Ax̂ + B(w +W z̄)≤ r (z̄)



,

additionally subject to (5.17b)-(5.17e). This is a static linear robust optimization prob-
lem.

An alternative approach gives an exact solution to (5.17). The inner minimization
problem is an LP for which we can write down the optimality conditions. Subsequently,
the complementary slackness conditions can be linearized using big-M constraints and
auxiliary binary variables. This results in an exact reformulation to a mixed binary
convex reformulation (mixed binary linear if U is polyhedral). This reformulation was
previously used in the column-and-constraint generation method of Zeng and Zhao
(2013) for ARO problems with a polyhedral uncertainty set, and to solve bilinear op-
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timization problems with a disjoint uncertainty set (Zhen et al., 2021). By dualizing
the inner maximization problem, we obtain

min
z̄,x̄ ,ȳ ,λ

ȳ1,...,ȳ |V |
(c� x̄ + d� ȳ)− (c� x̂ +λ�(r (z̄)− Ax̂ )),

s.t. Ax̄ + Bȳ ≤ r (z̄),

Ax̄ + Bȳ i ≤ r (zi), ∀i = 1, . . . , |V |,
c� x̄ + d� ȳ i ≤ vi, ∀i = 1, . . . , |V |,
z̄ ∈ U ,

B�λ= d, λ≤ 0.

(5.18a)

(5.18b)
(5.18c)
(5.18d)
(5.18e)
(5.18f)

The feasible sets for λ and {z̄, x̄ , ȳ , ȳ1, . . . , ȳ |V |} are disjoint, so this is indeed a dis-
joint bilinear optimization problem. Problem (5.18) can be solved using a variety of
methods, we refer to Konno (1976), Nahapetyan (2009) and Zhen et al. (2021) for
details. The mountain climbing heuristic can also be used for solving (5.18), possibly
with different partitions of the set of variables than in (5.17). The partition for (5.17)
with ŷ separate works best in our numerical experiments.

Lastly, the presented approach can also be applied to problems with uncertain A(z)
and/or c(z). It would be interesting to investigate the numerical performance of the
mountain climbing heuristic for those cases.

5.6 Numerical experiments
To demonstrate the value of PARO solutions in practice, we focus on one example prob-
lem in which (adaptive) robust optimization has been successfully applied: a facility
location problem.

5.6.1 Setup
We will study a problem formulation with right-hand side uncertainty, and consider
instances that are small enough so that the vertices of the uncertainty set can be enu-
merated. Thus, we can obtain an ARO solution xARO by defining a separate recourse
variable for each vertex of the uncertainty set. Moreover, Algorithm 5.1 of Section 5.5.4
can be used; denote the approximate PARO solution by xPARO.

For comparison purposes, we also compute a PRO solution to (5.3) using themethod-
ology of Iancu and Trichakis (2014, Theorem 1), which we repeat for convenience.
Specifically, we plug in LDR y(z) = w +W z, and obtain solution (x1, w1, W1). Subse-
quently, we optimize for the nominal scenario z̄ whilst ensuring that performance in
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other scenarios does not deteriorate, and feasibility is maintained:

min
x ,w ,W

x2,w2,W2

c(z̄)�x2 + d�(w2 +W2 z̄),

s.t. c(z)�x2 + d�(w2 +W2z)≤ 0, ∀z ∈ U ,

A(z)x + B(w +W z)≤ r (z), ∀z ∈ U ,

x = x1 + x2, w = w1 + w2, W = W1 +W2.

(5.19a)

(5.19b)
(5.19c)
(5.19d)

Constraint (5.19d) states that the new solution equals the original solution (variables
with subscript 1) plus an adaptation (variables with subscript 2). Constraint (5.19b)
ensures that the adaptation does not deteriorate performance in any scenario, and the
objective is to optimize performance in scenario z̄. According to Iancu and Trichakis
(2014, Theorem 1), the optimal solution for (x , w , W) is PRO to (5.3). Let xPRO denote
the optimal solution for x .

We compare the performance of the stage-1 (here-and-now) solutions xPARO, xARO

and xPRO. For solutions xPARO and xARO we use the optimal recourse decision. For xPRO

we report the results for two decision rules: (i) the optimal recourse decision, (ii)
the LDR. We refer to the four objective values as PARO, ARO, PRO and PRO(LDR). We
compute the relative improvement (in %) of PARO over the other three objective values
for three different cases:

Nominal: Relative improvement in nominal scenario z̄.

Average: Average relative improvement over 10 uniform randomly sampled scenarios.

Maximum: Relative improvement in the scenario with the maximum performance
difference between xARO and xPARO. This scenario, which we denote z∗, is found
by solving (5.17) with fixed x̂ = xARO and x̄ = xPARO.

All optimization problems are solved using Gurobi 9.0 (Gurobi Optimization LLC,
2020) with the dual simplex algorithm selected. We note that the influence of dif-
ferent solvers may also be investigated, but this is beyond the scope of this work.

During our numerical studies we found examples where Algorithm 5.1 was not able
to improve upon the initial stage-1 solution xARO. This could occur if the initial xARO

happens to be PARO. Or, it could occur if there is a unique ARO solution - after all,
not every ARO instance has multiple worst-case optimal stage-1 solutions. The latter
has been reported before in literature. De Ruiter et al. (2016) show that the multi-
stage production-inventory model of Ben-Tal et al. (2004) has unique here-and-now
decisions in almost all time periods, if LDRs are used. In that example, the reported
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multiplicity of solutions is mainly due to non-PRO decision rule coefficients. We find
that multiplicity of stage-1 solutions appears in particular when problem data is inte-
ger.

5.6.2 Problem description
Consider a strategic decision-making problem where a number of facilities are to be
opened, in order to satisfy the demand of a number of customers. The goal is to choose
the locations for opening a facility such that the cost for opening the facilities plus the
transportation cost for satisfying demand is minimized. We consider this problem in a
two-stage setting with uncertain demand. Thus, facility opening decisions need to be
made in stage 1, before stage-2 demand is known.

Suppose there are n locations where a facility can be opened, and m demand lo-
cations. Let x ∈ {0, 1}n be a binary stage-1 decision variable denoting the facility
opening decisions. Opening facility costs fi and yields a capacity si, i = 1, . . . , n. Let
y ∈ Rm,m×n be the stage-2 decision variable denoting transport from facility i to de-
mand location j; let ci j denote the associated costs, i = 1, . . . , n, j = 1, . . . , m. Let
zj denote the uncertain demand in location j. The two-stage facility location model
reads

min
x ,y(·) max

z∈U

n∑
i=1

m∑
j=1

ci j yi j(z) +
n∑

i=1

fi xi,

s.t.
n∑

i=1

yi j(z)≥ zj, ∀z ∈ U , ∀ j = 1, . . . , m,

m∑
j=1

yi j(z)≤ si xi, ∀z ∈ U , ∀i = 1, . . . , m,

yi j(z)≥ 0, ∀z ∈ U , ∀i = 1, . . . , n, j = 1, . . . , m,

x ∈ {0,1}n,

(5.20a)

(5.20b)

(5.20c)

(5.20d)
(5.20e)

with uncertainty set

U = {z :
m∑

j=1

zj ≤ Γ , l j ≤ zj ≤ uj, ∀ j = 1, . . . , m}.

5.6.3 Data
We consider 1000 instances with m= 8 demand locations and n= 20 possible facility
locations. Facility capacity si is set at 15 for each i. Other parameters are indepen-
dently drawn from a discrete uniform distribution. Construction costs f ∈ �n are
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drawn between 4 and 22. Entries of transportation cost matrix C ∈ �n×m are drawn
between 2 and 12.

We set lower and upper bound l j = 8 and uj = 12 for each demand location j =
1, . . . , m, and set maximum total demand Γ = 90. The nominal demand scenario is
z̄ j = 10 for all j. Note that z̄ ∈ ri(U).

5.6.4 Results
Computing an ARO solution takes on average 10 seconds. Subsequently, Algorithm 5.1
performs 1 or 2 iterations (average 51 seconds) to find a (approximate) PARO solution.

For the worst-case scenario, PRO(LDR) and PRO are both within 0.72% of the opti-
mum for all instances. In 28% of the instances the stage-1 solution xPARO differs from
xARO and/or xPRO. Table 5.2 reports the median and maximum difference in �1-norm
for these instances. This represents the number of different facilities that are opened.
For example, an �1-norm of 2 indicates that one solution opened facility i and another
solution opened facility j, or one solution opened both facilities i and j and the other
solution opened neither. The total number of considered facility locations is n = 20,
so the differences reported in Table 5.2 are substantial.

‖xPARO − xARO‖1 ‖xPARO − xPRO‖1 ‖xARO − xPRO‖1

median 0 1 1
max 7 8 9

Table 5.2: Total differences in stage-1 facility openings.

Figure 5.2 shows histograms of the relative objective value improvement of PARO
over ARO, PRO and PRO(LDR) for the 28% of instances with different stage-1 decisions.
Figure 5.2a show the improvement for maximum difference scenario z∗, Figure 5.2b
show the improvement for nominal scenario z̄ and Figure 5.2c show the improvement
for 10 random scenarios in the uncertainty set. Table 5.3 details the minimum, median
and maximum relative improvement.

The magnitude of differences is larger for scenario z∗ than for the other two mea-
sures. In all cases the maximum relative improvement is substantial, but the median
relative improvement is only minor in most cases. However, if the stage-1 solution
represents a decision that is to be implemented in practice, even the possibility to get
an improvement of a few percentage points warrants the extra effort to obtain a (ap-
proximate) PARO solution. We note that for ARO we use the first found ARO solution
xARO; it is possible that there exists yet another ARO solution, for which the improve-



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 213PDF page: 213PDF page: 213PDF page: 213

Numerical experiments 201

-5 0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

(a) Scenario z∗

-5 0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

(b) Scenario z̄

-5 0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

(c) 10 Random scenarios

Figure 5.2: Histograms with relative improvement of PARO solution over alternative solutions
for the facility location example.

ment percentages of PARO over ARO are larger than those reported in Table 5.3 and
Figure 5.2.

The relative improvement of PARO over PRO is similar to that of PARO over
PRO(LDR), although the latter has slightly higher magnitude. Thus, reported differ-
ences are for a large part due to the different stage-1 decision, and for a small part
due to the stage-2 decision rule. In some scenarios the relative improvement is neg-
ative (i.e., PARO has a worse objective value), although Figure 5.2 shows that for the
large majority of instances the relative improvement is positive. For many instances
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Relative improvement (%)
PARO over ARO PARO over PRO PARO over PRO(LDR)

Scenario z∗
minimum 0 -2.62 -2.62
median 0 1.89 2.00

maximum 11.2 9.48 24.2

Scenario z̄
minimum -0.39 -4.89 -3.51
median 0 0.77 1.35

maximum 6.37 6.37 9.97

10 Random
scenarios

minimum -0.58 -4.65 -3.58
median 0 0.71 1.15

maximum 5.48 5.35 10.9

Table 5.3: Relative improvement of PARO solution over alternative solutions for the facility
location example.

the relative difference between PARO and ARO is zero, i.e., a different stage-1 solution
x does not always translate to a different performance on the three reported measures.
Nevertheless, also compared to ARO, the maximum relative improvement of PARO can
be substantial. Lastly, the results indicate a larger spread in objective value for PRO
and PRO(LDR) than for ARO.

5.7 Conclusion
In this chapter, we dealt with Pareto efficiency in two-stage adjustable robust opti-
mization problems. Similar to static robust optimization, the large majority of solu-
tion techniques focus only on worst-case optimality, and may yield solutions that are
not Pareto efficient. To alleviate this, we introduced the concept of Pareto adjustable
robustly optimal (PARO) solutions.2

Using FME as the predominant technique, we have analyzed the relation between
PRO and PARO and investigated optimality of various decision rule structures in both
worst-case and non-worst-case scenarios. We have shown the existence of PARO here-
and-now decisions and shown that there exists a PWL decision rule that is PARO.

Moreover, we have provided several practical approaches to generate or approxi-
mate PARO solutions. Numerical experiments on a facility location example demon-

2For ARO problems, every non-PARO solution is dominated by a PARO solution, even if the former is
Pareto robustly optimal (PRO), as defined by Iancu and Trichakis (2014).
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strate that PARO solutions can significantly improve performance in non-worst-case
scenarios over ARO and PRO solutions.

A potential direction for future research would be to further investigate construc-
tive approaches to find or approximate PARO solutions. In particular, it would be valu-
able to have tractable algorithms for larger instances and/or more general classes of
problems than the ones that can be tackled using the currently presented approaches.

5.A Technical lemmas and proofs

5.A.1 Bounds on eliminated adjustable variables

Lemma 5.36. Let x be ARF to (5.3). Let ϕi(x , z) = ri(z) − ai(z)�x for each constraint i =
1, . . . , m of (5.3b). Consider the system of inequalities b�

i y(z) ≤ ϕi(x , z), i = 1, . . . , m and use
FME to eliminate all variables. For all k = 1, . . . , ny we can write the bounds after elimination of
variable yk(z) as

max
Sk∈C−

k

	∑
p∈Sk

α(Sk, p)ϕp(x , z)−
ny∑

l=k+1

β(Sk, l)yl(z)

≤ yk(z)

≤ min
Tk∈C+k

	∑
q∈T

α(Tk,q)ϕq(x , z)−
ny∑

l=k+1

β(Tk, l)yl(z)



, ∀z ∈ U ,

(5.A.1)

for some coefficients α and β independent of z, and C−
k , C+k ⊆ P({1, . . . , m}), with P({1, . . . , m})

the power set of {1, . . . , m}. Additionally, if Sk ∈ C−
k for some k, then α(Sk, p) < 0 for all p ∈ Sk.

If Tk ∈ C+k for some k, then α(Tk,q)> 0 for all q ∈ Tk.

Proof. Proof by induction.

Base case:
Elimination of variable y1(z) yields

max{p:bp,1<0}
	ϕp(x , z)

bp,1
−
∑ny

l=2 bp,l yl(z)

bp,1


≤ y1(z)≤ min{q:bq,1>0}
	ϕq(x , z)

bq,1
−
∑ny

l=2 bq,l yl(z)

bq,1



.(5.A.2)

Define

C−
1 = {p | bp,1 < 0}, C+1 = {q | bq,1 > 0},

then each constraint in C−
1 defines a lower bound on y1(z) and each constraint in C+1 defines

an upper bound on y1(z). Each element of C−
1 and C+1 is an individual ‘original’ constraint

index and not a set of constraints indices. For all S1 = {p} ∈ C−
1 set α(S, p) = b−1

p,1, and for all
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T1 = {q} ∈ C+1 set α(T, q) = b−1
q,1. Furthermore, set β(S1, l) = bp,l B

−1
p,1 for all S1 = {p} ∈ C−

1 ∪C+1
and all l = 2, . . . , ny . With these definitions, (5.A.2) is reformulated in form (5.A.1). Addition-
ally, by construction, α(S1, p)< 0 if p ∈ S1, S1 ∈ C−

1 and α(T1, q)> 0 if q ∈ T1, T1 ∈ C+1 .

Induction step:
Suppose the result holds for some k − 1 (i.e., after elimination of variable yk−1(z)). Vari-
able yk(z) can occur in two types of constraints: (i) original constraints i = 1, . . . , m that do
not depend on y1(z), . . . , yk−1(z)) and (ii) the new constraints acquired after elimination of
y1(z), . . . , yk−1(z)). For case (i), define

I−k = {p | bp,k < 0, bp,l = 0, ∀l = 1, . . . , k − 1},

I+k = {p | bp,k > 0, bp,l = 0, ∀l = 1, . . . , k − 1},

then each constraint in I−k defines a lower bound on yk(z) and each constraint in I+k provides
an upper bound on yk(z). Reformulation to form (5.A.1) is similar to the case k = 1. Thus,
α(Sk, p)< 0 if p ∈ Sk, Sk ∈ I−k and α(Tk, p)> 0 if p ∈ Tk, Tk ∈ I+k .

For case (ii), yk(z) can occur in constraints resulting from picking linear lower and upper
bounds on yl(z) from (5.A.1). If these bounds are independent of yl+1(z), . . . , yk−1(z), for l =
1, . . . , k − 1, they are used directly to eliminate yk(z). For any such pair of constraints Sl ∈ C−

l
and Tl ∈ C+l , FME yields the following bound on yk(z) (due to the induction assumption):

∑
p∈Sl

α(Sl , p)ϕp(x , z)−∑
q∈Tl

α(Tl , q)ϕq(x , z)−
ny∑

l=k+1

yl(z)
�
β(Sl , l)− β(Tl , l)

�
≤ yk(z)

�
β(Sl , k)− β(Tl , k)

�
.

(5.A.3)

We proceed by dividing by the coefficient of yk(z). If β(Sl , k) > β(Tl , k), inequality (5.A.3)
defines a lower bound for yk(z); if β(Sl , k) < β(Tl , k), inequality (5.A.3) defines an upper
bound for yk(z). Define

J−
k = {Sk | ∃l = 1, . . . , k − 1 s.t. Sk = Sl ∪ Tl , Sl ∈ C−

l , Tl ∈ C+l ,

β(Sl , j) = β(Tl , j), ∀ j < l, β(Sl , k)> β(Tl , k)},

J+k = {Tk | ∃l = 1, . . . , k − 1 s.t. Tk = Sl ∪ Tl , Sl ∈ C−
l , Tl ∈ C+l ,

β(Sl , j) = β(Tl , j), ∀ j < l, β(Sl , k)< β(Tl , k)},

so each element Sk in J−
k (or Tk in J+k ) is a union of the indices of a lower bound constraint (set

Sl) and an upper bound constraint (set Tl) on yl(z). The condition β(Sl , j) = β(Tl , j), ∀ j < l
on the second line ensures that these lower and upper bound constraints on yl(z) do not specify
a constraint on yl+1(z), . . . , yk−1(z).

Set the coefficients for the not yet eliminated variables yk+1(z), . . . , yny
(z) for form (5.A.1)

as

β(Sk, j) =
β(Sl , j)− β(Tl , j)
β(Sl , k)− β(Tl , k)

, ∀ j = k+ 1, . . . , ny .
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If Sk ∈ J−
k , with Sk = Sl ∪ Tl for some Sl ∈ C−

l and Tl ∈ C+l , l = 1, . . . , k − 1, then set

α(Sk, p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α(Sl , p)
β(Sl , k)− β(Tl , k)

if p ∈ Sl , p /∈ Tl ,

α(Sl , p)−α(Tl , p)
β(Sl , k)− β(Tl , k)

if p ∈ Sl ∩ Tl ,

−α(Tl , p)
β(Sl , k)− β(Tl , k)

if p /∈ Sl , p ∈ Tl .

(5.A.4)

Similarly, if Tk ∈ J+k , with Tk = Sl ∪ Tl for some Sl ∈ C−
l and Tl ∈ C+l for some l = 1, . . . , k − 1,

then set

α(Tk, p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α(Sl , p)
β(Sl , k)− β(Tl , k)

if p ∈ Sl , p /∈ Tl ,

α(Sl , p)−α(Tl , p)
β(Sl , k)− β(Tl , k)

if p ∈ Sl ,∩Tl

−α(Tl , p)
β(Sl , k)− β(Tl , k)

if p /∈ Sl , p ∈ Tl .

(5.A.5)

Due to the induction hypothesis, α(Sl , p) < 0 if Sl ∈ C−
l and α(Tl , p) > 0 if Tl ∈ C+l for

l < k. The denominator in both lines of (5.A.4) is positive, so in that case α(Sk, p) < 0. The
denominator in both lines of (5.A.5) is negative, so in that case α(Tk, p) > 0. With the new
coefficients chosen as above, (5.A.3) provides a lower or upper bound on yk̂(z) of the form
inside the maximum or minimum operator in (5.A.1), respectively.

Finally, define C−
k = I−k ∪ J−

k and C+k = I+k ∪ J+k . Each constraint in C−
k defines a lower

bound on yk(z) and each constraint in C+k defines an upper bound on yk(z). Moreover, set
Ck = C−

k ∪C+k contains all constraints after elimination of y1(z), . . . , yk−1(z) that have yk(z) as
lowest indexed adjustable variable. This completes the induction step.

5.A.2 Proof Lemma 5.15
We consider only adjustable robust feasibility and not optimality, so the objective of Phybrid
can be ignored. According to Lemma 5.36, each adjustable variable yk(z), k = 1, . . . , ny must
satisfy bounds (5.A.1). For Phybrid term ϕi(ẑ, z(i)) = ri(ẑ, z(i))− ai(ẑ, z(i))�x depends only on
ẑ and z(i), for each i = 1, . . . , m. Sets Û and Ui are disjoint for each i = 1, . . . , m so this is
equivalent to

max
S∈C−

k

	∑
p∈S

max
z(p)∈U p

�
α(S, p)ϕp(ẑ, z(p))−

ny∑
l=k+1

β(S, l)yl(z)
�
≤ yk(z)

≤ min
T∈C+k

	∑
q∈T

min
z(q)∈Uq

�
α(T,q)ϕq(ẑ, z(q))−

ny∑
l=k+1

β(T, l)yl(z)
�


, ∀ẑ ∈ Û .

(5.A.6)
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We proceed by backward induction. For k = ny , i.e., the last eliminated variable, bounds
(5.A.6) depend only on z and not on other adjustable variables. According to Lemma 5.36,
each term ϕi(z(i)), i = 1, . . . , m, appears in upper bounds with a positive coefficient and in
lower bounds with a negative coefficient for all variables y1(z), . . . , yny

(z) (if it appears), or
vice versa. Hence, the worst-case scenario for z(i) ∈ Ui (in terms of feasibility) is equal for all
linear terms in the lower and the upper bound for all i = 1, . . . , m. Plugging in this worst-case
scenario yields lower and upper bounds on yny

(z) depending only on ẑ. Thus, there exists a
decision rule for yny

(·) that is a function of only the non-constraintwise uncertain parameters
ẑ.

Suppose that for some k the lower and upper bounds (5.A.6) for yk(z) depend only on
ẑ. Thus, there exists a decision rule for yk(·) that is a function of only ẑ. Plug this decision
rule in the lower and upper bounds (5.A.6) for yk−1(z). Then, according to Lemma 5.36, each
term ϕi(z(i)), i = 1, . . . , m, appears in upper bounds with a positive coefficient and in lower
bounds with a negative coefficient (if it appears), or vice versa. Hence, the worst-case scenario
for z(i) ∈ Ui (in terms of feasibility) is equal for all linear terms in the lower and the upper
bound, for all i = 1, . . . , m. Plugging in this worst-case scenario yields lower and upper bounds
on yk−1(z) depending only on ẑ. This completes the induction.

Let y(ẑ) be the decision rule resulting from the above procedure. Because x is ARF to
Phybrid, the resulting pair (x , y(ẑ)) is ARF to Phybrid.

5.A.3 Proof Corollary 5.16

We note that if (5.3) has hybrid uncertainty and the objective (5.3a) contains adjustable vari-
ables, it can equivalently be written as

min
t,x ,y(·) t,

s.t. c(ẑ, z(0))
�x + d�y(z)≤ t ∀(ẑ, z(0)) ∈ Û × U0,

ai(ẑ, z(i))
�x + b�

i y(z)≤ ri(ẑ, z(i)), ∀(ẑ, z(i)) ∈ Û × Ui , ∀i = 1, . . . , m,

(5.A.7a)

(5.A.7b)
(5.A.7c)

where t ∈ � is an auxiliary here-and-now decision variable. Problem (5.A.7) also has hybrid
uncertainty, and a pair (x , y(·)) is ARO to (5.3) if and only if there exists a t ∈ � such that
(x , y(·), t) is ARO to (5.A.7). Thus, in the remainder of the proof we can assume d = 0, i.e.,
the objective is independent of adjustable variables.

According to Lemma 5.15, for any ARF x there exists a decision rule y(·) that depends only
on ẑ such that (x , y(·)) is ARF to Phybrid. Any x ∗ that is ARO to Phybrid is also ARF to Phybrid, so
also for each ARO x ∗ there exists such a decision rule y∗(·). The objective is independent of
adjustable variables, so (x ∗, y(·)) is ARO for any ARF y(·). Hence, (x ∗, y∗(·)) is ARO to Phybrid.
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5.A.4 Proof Lemma 5.19
We consider only adjustable robust feasibility and not optimality, so the objective of Pblock can
be ignored. Remove index 0 from its constraint set K(v) (for some v). The set of constraints
can be written as

ai(z(v))
�x + b�

i y(v)(z)≤ ri(z(v)), ∀z ∈ U , ∀i ∈ K(v), ∀v = 1, . . . , V.

Due to the block uncertainty structure, all adjustable variables can be eliminated by performing
FME on each block v separately. According to Lemma 5.36, bounds on each adjustable variable
yk(z) can be represented by (5.A.1). If for some k = 1, . . . , ny , variable yk(z) is an element of
y(v)(z) for some block v, any S ∈ C−

k or T ∈ C+k is a subset of K(v), the original set of constraints
for block v. The following two observations immediately follow for the given block v:

• For each l = 1, . . . , ny the coefficient of yl(z) is zero if yl(z) is not an element of y(v),
i.e., β(S, l) = 0 for all S ∈ C−

k ∪ C+k .

• For any p in S or T it holds that ϕp(·) is a function of z(v) only.

For k = ny , i.e., the last eliminated variable, this implies the lower and upper bounds on yny
()

are independent of z(w) for w �= v, and any feasible decision rule can be written as a function of
z(v) only. Plugging any such decision rule in the lower and upper bounds for k = ny − 1 yields
the same result for yny−1(). The final result follows from backward induction.

Let y(z) be the decision rule resulting from the above procedure. Because x is ARF to
Pblock, the resulting pair (x , y(z)) is ARF to Pblock.

5.A.5 Proof Lemma 5.22
We consider only adjustable robust feasibility and not optimality, so the objective of Psimplex
can be ignored. According to Lemma 5.36, in the FME procedure the bounds on variable yk(z)
are given by (5.A.1). It is sufficient to satisfy the bounds on yk(z) for all extreme points of
uncertainty set U , so we can alternatively write:

max
Sk∈C−

k

	∑
p∈Sk

α(Sk, p)ϕp(x , z j)−
ny∑

l=k+1

β(Sk, l)yl(z
j)

≤ yk(z

j)

≤ min
Tk∈C+k

	∑
q∈T

α(Tk, q)ϕq(x , z j)−
ny∑

l=k+1

β(Tk, l)yl(z
j)



, ∀z j , j = 1, . . . , L + 1.

(5.A.8)

For each j = 1, . . . , L + 1, let lk(z j) and uk(z j) denote the lower resp. upper bound on yk(z j)
from (5.A.8). Affine independence of z1, . . . , zL+1 implies linear independence of
(1, z1), . . . , (1, zL+1). Hence, by basic linear algebra, there exists exactly one (a0, a) ∈ �×�L

such that a0 + a�z j = l(z j) for all j = 1, . . . , L + 1. Consider the LDR yk(z) = a0 + a�z. Then
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l(z j) = yk(z j) ≤ u(z j) for all j = 1, . . . , L + 1. Hence, yk(z) is an LDR that satisfies bounds
(5.A.8). Alternatively, one can construct an LDR that passes through points (z j ,u(z j)) for all
j = 1, . . . , L + 1, or any LDR that is a convex combination of the previous two LDRs.

Thus, we can construct a decision rule for yk(z) that is linear in z. For all k = 1, . . . , ny −1,
this decision rule depends on yk+1(z), . . . , yny

(z). For variable yny
(·), the constructed decision

rule is independent of other adjustable variables. Plugging this in the decision rule for yny−1(·)
yields a decision rule that is again independent of other adjustable variables, and still linear
in z because the coefficient for yny

(z) in lny−1(z) and uny−1(z) does not depend on z (fixed
recourse). Continuing this procedure yields LDRs for all adjustable variables y1(·), . . . , yny

(·).
Let y(z) be the decision rule resulting from the above procedure. Because x is ARF to

Psimplex, the resulting pair (x , y(z)) is ARF to Psimplex.

5.A.6 Proof Lemma 5.24
We first prove that the original problem (5.3) is equivalent to a convex PWL static RO problem;
its proof uses Lemma 5.36.

Lemma 5.37. If (x ∗, y∗(·)) is ARO to (5.3), y∗(·) satisfies
d�y∗(z) = max

(S,T )∈M
{hS,T (x

∗, z)}, ∀z ∈ U , (5.A.9)

and x ∗ is optimal to

min
x∈XFME

max
z∈U

c(z)�x + max
(S,T )∈M

{hS,T (x , z)}, (5.A.10)

with

M = {(S, T ) | ∃k = 1, . . . , ny s.t. S ∈ C−
k , T ∈ C+k ,β(S, l) = β(T, l), ∀l > k, 0 ∈ S ∪ T},

and linear functions

hS,T (x , z) =
∑

p∈S,p>0

α(S, p)
α(T, 0)−α(S, 0)

ϕp(x , z)− ∑
q∈T,q>0

α(T, q)
α(T, 0)−α(S, 0)

ϕq(x , z),

and sets C−, C+, functions ϕ(·) and coefficients α and β defined as in Lemma 5.36. Conversely, if
x ∗ is optimal to (5.A.10), there exists a y∗(·) such that (x ∗, y∗(·)) is ARO to (5.3), and any such
y∗(·) satisfies (5.A.9).
Proof of Lemma 5.37. Consider problem (5.3), with the objective moved to the constraints us-
ing epigraph variable t ∈ �:

min
t,x ,y(·) t,

s.t. t ≥ c(z)�x + d�y(z), ∀z ∈ U ,

A(z)x + By(z)≤ r (z), ∀z ∈ U .

(5.A.11a)

(5.A.11b)
(5.A.11c)
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Eliminate all adjustable variables in (5.A.11b)-(5.A.11c) via FME. Let ϕ0(x , t, z) = t − c(z)�x .
In notation of Lemma 5.36, FME is performed on

d�y(z)≤ ϕ0(x , t, z),

b�
i y(z)≤ ϕi(x , t, z), ∀i = 1, . . . , m,

(5.A.12a)
(5.A.12b)

where the coefficient for t is zero in ϕi, i = 1, . . . , m. According to Lemma 5.36, after elimina-
tion of variable k, inequalities (5.A.1) hold. Suppose for some Sk ∈ C−

k , Tk ∈ C+k the upper and
lower bounds on yk(z) do not depend on yk+1(z), . . . , yny

(z). Then the following constraint is
derived for the static robust optimization problem after completing the full FME procedure:∑

p∈Sk

α(Sk, p)ϕp(x , t, z)≤∑
q∈Tk

α(Tk,q)ϕq(x , t, z), ∀z ∈ U , (5.A.13)

where ϕp(·) is a function of t only if p = 0. Constraints of the original system (5.A.11c) that
are independent of adjustable variables can also be represented in form (5.A.13). Original
constraints (5.A.11b) are part of a particular constraint in form (5.A.13) if and only if 0 ∈ Sk∪Tk

for some Sk ∈ C−
k , Tk ∈ C+k , k = 1, . . . , ny . Thus, problem (5.A.11) after FME can be written as

min
t,x

t,

s.t.
∑
p∈S

α(S, p)ϕp(x , t, z)≤∑
q∈T

α(T, q)ϕq(x , t, z), ∀(S, T ) ∈ M , ∀z ∈ U ,∑
p∈S

α(S, p)ϕp(x , t, z)≤∑
q∈T

α(T, q)ϕq(x , t, z), ∀(S, T ) ∈ N , ∀z ∈ U ,

(5.A.14a)

(5.A.14b)

(5.A.14c)

with

M = {(S, T ) | ∃k = 1, . . . , ny s.t. S ∈ C−
k , T ∈ C+k ,β(S, l) = β(T, l), ∀l > k, 0 ∈ S ∪ T},

N = {(S, T ) | ∃k = 1, . . . , ny s.t. S ∈ C−
k , T ∈ C+k ,β(S, l) = β(T, l), ∀l > k, 0 /∈ S ∪ T}.

In other words, we separated the constraints depending on t from the constraints not depend-
ing on t. From Lemma 5.36 one can see that (5.A.14c) is the result of performing FME on
the set of constraints (5.A.12b), which are the constraints defining set X . Thus, (5.A.14c)
describes set XFME. Furthermore, if we define α(S, 0) = 0 if 0 /∈ S and γ(T, 0) = 0 if 0 /∈ T ,
constraint (5.A.14b) can be rewritten to

t ≥ c(z)�x +
∑

p∈S,p>0

α(S, p)
α(T, 0)−α(S, 0)

ϕp(x , t, z)− ∑
q∈T,q>0

α(T, q)
α(T, 0)−α(S, 0)

ϕq(x , t, z)

∀(S, T ) ∈ M , ∀z ∈ U ,

(5.A.15)

because α(T, 0) > α(S, 0) according to Lemma 5.36. Note that the coefficient for t is zero for
all functions ϕ on the RHS. Thus, for fixed z ∈ U , constraint (5.A.15) defines a lower bound
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on epigraph variable t that is convex PWL in x . Subsequently, we eliminate t and define

hS,T (x , z) :=
∑

p∈S,p>0

α(S, p)
α(T, 0)−α(S, 0)

ϕp(x , z)− ∑
q∈T,q>0

α(T,q)
α(T, 0)−α(S, 0)

ϕq(x , z).

This yields the following problem equivalent to (5.A.14):

min
x∈XFME

max
z∈U

c(z)�x + max
(S,T )∈M

{hS,T (x , z)}. (5.A.16)

If (x ∗, t∗, y∗(·)) is optimal to (5.A.11), x ∗ is optimal to (5.A.16) with equal objective value.
This implies that y∗(·) satisfies

d�y∗(z) = max
(S,T )∈M

{hS,T (x
∗, z)}, ∀z ∈ U . (5.A.17)

Conversely, if x ∗ is optimal to (5.A.16), there exists a (t∗, y∗(·)) such that (x ∗, t∗, y∗(·)) is opti-
mal to (5.A.11) with equal objective value. This implies that any such y∗(·) satisfies (5.A.17).
Lastly, note that x ∗ is optimal to (5.3) if and only if there exists a t∗ ∈ � such that (t∗, x ∗) is
optimal to (5.A.11). This completes the proof.

The result of Lemma 5.37 is also illustrated in Example 5.10, where if auxiliary variable t
is eliminated the resulting problem has a convex PWL objective. If the number of adjustable
variables in (5.3) is small enough that full FME can be performed (order of magnitude: 20
adjustable variables (Zhen et al., 2018)), one can solve (5.10) via an epigraph formulation in
order to obtain an ARO x to (5.3).

We are now in position to prove the result of Lemma 5.24.

Proof of Lemma 5.24. By Definition 5.8(i) a solution x ∗ is PARO to (5.3) if and only if

• There exists a y∗ ∈ RL,ny such that (x ∗, y∗(·)) is ARO to (5.3) and there does not exist a
pair (x̄ , ȳ(·)) that is ARO to (5.3) and the following conditions hold:

c(z)� x̄ + d� ȳ(z)≤ c(z)�x ∗ + d�y∗(z), ∀z ∈ U ,

c(z̄)� x̄ + d� ȳ(z̄)< c(z̄)�x ∗ + d�y∗(z̄), for some z̄ ∈ U .
(5.A.18)

By Lemma 5.37, this holds if and only if

• x ∗ is optimal to (5.10) and there exists a y∗ ∈ RL,ny such that

d�y∗(z) = max
(S,T )∈M

{hS,T (x
∗, z)} ∀z ∈ U , (5.A.19)

and there does not exist a (x̄ , ȳ) such that x̄ is optimal to (5.10) and (x̄ , ȳ(·)) satisfies
(5.A.19) and (5.A.18) holds.
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Substituting (5.A.19) in (5.A.18) yields the following set of equivalent conditions:

• x ∗ is optimal to (5.10) and there does not exist another x̄ optimal to (5.10) such that

c(z)� x̄ + max
(S,T )∈M

{hS,T (x̄ , z)} ≤ c(z)�x ∗ + max
(S,T )∈M

{hS,T (x
∗, z)}, ∀z ∈ U ,

c(z̄)� x̄ + max
(S,T )∈M

{hS,T (x̄ , z̄)}< c(z̄)�x ∗ + max
(S,T )∈M

{hS,T (x
∗, z̄)}, for some z̄ ∈ U .

This statement holds if and only if x ∗ is PRO to (5.10), by Definition 5.2.

5.A.7 Proof Theorem 5.26
First, we prove the existence of PRO solutions to a general class of static RO problems, with
bounded feasible region X .

Lemma 5.38. Let f : �n×�L �→ �, with f (x , z) continuous in z. Consider the static RO problem

min
x∈X max

z∈U
f (x , z). (5.A.20)

Let U ⊆ �L be closed, convex with a nonempty relative interior. If (i) X is compact and f (x , z)
continuous in x and/or (ii) X is a finite set, and additionally there exists an RO solution to
(5.A.20), there also exists a PRO solution to (5.A.20).

Proof of Lemma 5.38. Let (�L ,B(�L)) be a measurable space, with B(�L) the Borel σ-algebra.
For fixed x , function f (x , z) is continuous in z, so it is measurable on closed subsets of �L, in
particular set U . Define function g : �n �→ � with

g(x ) :=

∫
U

f (x , z)dP(z), (5.A.21)

where P denotes a strictly positive probability measure on �L, such as the Gaussian measure.
Because 0 ≤ P(U)≤ P(�L) = 1, the Lebesgue integral (5.A.21) assumes finite values for any x .
Hence, f (x , z) is Lebesgue-integrable in its second argument onmeasured space (�L ,B(�L), P)
for any x and g is well-defined.

We proceed by showing that an optimal solution to the following optimization problem is
PRO to (5.A.20):

min
x∈XRO

g(x ). (5.A.22)

The remainder of the proof consists of two parts. First, we show that an optimal solution to
(5.A.22) is always attained. Subsequently, we show that such an optimal solution is PRO to
(5.A.20).
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Part 1 (The optimum is attained):
We treat the two cases for X separately.

Case (i): Set X is compact and f (x , z) continuous in x . We show that g is continuous.
Consider a sequence {xn}n∈� converging to x . By continuity of f in x , limn→∞ f (xn, z) =
f (x , z). Thus,

g(x ) =

∫
U

f (x , z)dP(z) =

∫
U

lim
n→∞ f (xn, z)dP(z). (5.A.23)

Let M > 0 be such that | f (x , z)| < M , and define h : �L �→ � with h(z) = M for all z. Then
h is Lebesgue-integrable, and we can apply the dominated convergence theorem to switch the
order of the limit and integration in (5.A.23) to obtain

g(x ) = lim
n→∞

∫
U

f (xn, z)dP(z) = lim
n→∞ g(xn),

Hence, g(x ) is continuous for each x ∈ �n. Let X RO denote the set of robustly (worst-case) op-
timal solutions to (5.A.20). Then X RO is compact if X is compact. Problem (5.A.22) minimizes
a continuous function over a compact domain, so, by the extreme value theorem, a minimum
is always attained.

Case (ii): Set X is a finite set. Problem (5.A.22) minimizes g(x ) over a finite set, so the
minimum is attained.

Part 2 (An optimal solution is PRO):
Let x̂ denote an optimal solution to (5.A.22). We proceed by showing via proof by contradiction
that x̂ is PRO to (5.A.20). Suppose x̂ is not PRO to (5.A.20). Then there exists an x̄ ∈ X RO

such that

f (x̄ , z)≤ f (x̂ , z), ∀z ∈ U ,

f (x̄ , z̄)< f (x̂ , z̄), for some z̄ ∈ U .

We proceed by showing that theremust exist a ball contained in U with strictly positive measure
where strict inequality holds. Let B̄ denote the ball with radius δ centered at z̄:

B̄ = {z ∈ �L : ‖z − z̄‖2 ≤ δ}.

By continuity of f (x̄ , z)− f (x̂ , z) w.r.t. z, there exists a δ > 0 such that for each z ∈ B̄ it holds
that f (x̄ , z)− f (x̂ , z)< 0. Note that z̄ need not be in the relative interior of U . Hence, the ball
B̄ need not be contained in U . Let z̃ ∈ ri(U). We construct a new scenario z∗ = θ z̃ + (1 − θ )z̄.
Because U is convex, z∗ ∈ ri(U) if 0 ≤ θ < 1 according to Rockafellar (1970, Theorem 6.1).
Choosing 1 − δ‖z̃ − z̄‖−1

2 < θ < 1 ensures that z∗ ∈ int(B̄) ∩ ri(U) = ri(U ∩ B̄). Consider the
ball B∗ with radius ε > 0 centered at z∗:

B∗ = {z ∈ �L : ‖z − z∗‖2 ≤ ε}.
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For sufficiently small ε > 0, it holds that z ∈ B∗ ⇒ z ∈ U ∩ B̄. In other words, for such an ε,
each point z ∈ B∗ is in the uncertainty set U and is such that f (x̄ , z)< f (x̂ , z).

Finally, we consider the difference between g(x̄ ) and g(x̂ ) on U . Note that |g(x )| <∞
for all x . The following holds:

g(x̄ )− g(x̂ ) =

∫
U\B∗

f (x̄ , z)− f (x̂ , z)dP(z) +

∫
B∗

f (x̄ , z)− f (x̂ , z)dP(z).

The first integral is nonpositive since f (x̄ , z)≤ f (ẑ, z) for each z ∈ U\B∗. The second integral
is strictly negative since f (x̄ , z) < f (ẑ, z) for z ∈ B∗ and measure P is strictly positive, i.e.,
P(B∗)> 0. Hence, g(x̄ )< g(x̂ ), contradicting the fact that x̂ is optimal to (5.A.22).

The result of Theorem 5.26 immediately follows.

Proof of Theorem 5.26. By Lemma 5.24, it suffices to prove existence of a PRO solution to
(5.10). Because X = XFME, set XFME is compact. By construction of (5.3), uncertainty set
U is assumed to be convex, compact with a nonempty relative interior. Lastly, the objective
function of (5.10) is continuous in x and z. Hence, all conditions of Lemma 5.38 are satisfied,
and existence of a PARO solution to (5.3) is guaranteed.

5.A.8 Proof Lemma 5.28 via FME
Let x be ARF to (5.3). W.l.o.g., suppose in the FME procedure the adjustable variables are
eliminated in the order y1, . . . , yny

, i.e., according to their index. Let Fk(yk+1(z), . . . , yny
(z), z)

denote the optimal decision rule for yk as a function of the decision rules for the adjustable
variables with higher index and the uncertain parameter z. We prove by induction on k =
1, . . . , ny that Fk(yk+1(z), . . . , yny

(z), z) is jointly PWL in yk+1, . . . , yny
and z.

According to Lemma 5.36, we can write the bounds after elimination of variable y1(z) as

max
S∈C−

1

	∑
p∈S

α(S, p)ϕp(z)−
ny∑

l=2

β(S, l)yl(z)

≤ y1(z)

≤ min
T∈C+1

	∑
q∈T

α(T,q)ϕq(z)−
ny∑

l=2

β(T, l)yl(z)



, ∀z ∈ U ,

for some coefficients α and β independent of z. For fixed y2, . . . , yny
, z and x , the highest

possible contribution of y1 to the objective value is achieved by setting y1 equal to its upper
bound if d1 < 0, and equal to its lower bound if d1 > 0. Thus, F1(y2(z), . . . , yny

(z), z) is equal
to either the upper or the lower bound on y1. Both the upper and lower bound are jointly PWL
in yi, i = 2, . . . , ny and z.

Now, suppose that for each i = 1, . . . , k − 1, after elimination of variable yi(z) the optimal
decision rule Fi(yi+1(z), . . . , yny

(z), z) is jointly PWL in yi+1, . . . , yny
.
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214 Pareto adjustable robust optimality via an FME lens

After elimination of yk(z) we can again write the bounds according to Lemma 5.36. For
fixed yk+1, . . . , yny

, z and x , the highest possible contribution of yk to the objective value is
achieved by minimizing d�y , i.e., solving

min
yk

k−1∑
i=1

di Fi(Fi+1(. . . ), . . . , Fk−1(yk(z), . . . , yny
(z), z), yk(z), . . . , yny

(z), z)

+ dk yk(z) +
ny∑

i=k+1

di yi(z),

s.t. max
S∈C−

k

	∑
p∈S

α(S, p)ϕp(z)−
ny∑

l=k+1

β(S, l)yl(z)

≤ yk(z),

min
T∈C+k

	∑
q∈T

α(T,q)ϕq(z)−
ny∑

l=k+1

β(T, l)yl(z)

≥ yk(z),

(5.A.24a)

(5.A.24b)

(5.A.24c)

where the last term in the objective (the last summation) may be dropped because it does not
depend on yk. In the objective each decision rule Fi, i = 1, . . . , k−1, is a function of the decision
rules Fi+1, . . . , Fk−1, variables yk(z), . . . , yny

(z) and z. Plugging in a PWL argument in a PWL
function retains the piecewise linear structure. Thus, (5.A.24) asks to minimize a univariate
PWL function on a closed interval. The optimum is attained at either an interior point or a
boundary point; we consider these cases separately.

• Problem (5.A.24) has a boundary minimum. The minimum is attained at either the
lower or upper bounds provided by (5.A.24b) and (5.A.24c). In this case, the function
Fk(yk+1(z), . . . , yny

(z), z) is clearly jointly PWL in yk+1(z), . . . , yny
(z) and z.

• Problem (5.A.24) has an interior minimum. The unrestricted minimum of (5.A.24a)
is at the intersection of two functions that are jointly linear in yk, . . . , yny

and z. Any
intersection point can be expressed as

s0(z) +
ny∑
i=k

si yi(z) = t0(z) +
ny∑
i=k

ti yi(z),

for some scalars s0(z) and t0(z) depending linearly on z and some vectors s , t ∈ �ny−k.
This is equivalent to

yk(z) =
s0(z)− t0(z) +

∑ny

i=k+1(si − ti)yi(z)

tk − sk
,

and this is jointly linear in yk, . . . , yny
and z. The pair {(s0(z), s), (t0(z), t )} that defines

the interior minimum intersection point depends on yk, . . . , yny
and z. Thus, the optimal

decision rule Fk(yk+1(z), . . . , yny
(z), z) is a PWL function of yk+1, . . . , yny

and z.
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This completes the induction step. Lastly, note that Fny
(z) is PWL in z and that plugging in a

PWL argument in a PWL function retains the piecewise linear structure. Thus, going from k =
ny to k = 1 and for each k plugging in Fk(yk+1(z), . . . , yny

(z), z) in Fk−1(yk(z), . . . , yny
(z), z)

yields decision rules that are PWL in z for all variables y1, . . . , yny
.

5.A.9 Proof Lemma 5.28 via linear optimization
Let x be ARF to (5.3). We make use of the concept of basic solutions in linear optimization
(Bertsimas and Tsitsiklis, 1997). In standard form the remaining problem for y for fixed z,
reads:

min
y+,y−,s

d��y+ − y−�,
s.t. B
�
y+ − y−�+ s = r (z)− A(z)x ,

y+, y−, s ≥ 0,

(5.A.25a)

(5.A.25b)
(5.A.25c)

where s is a slack variable and y is represented by the difference of two nonnegative variables.
Let v ∈ �2ny+m, M ∈ �m×(2ny+m) and f ∈ �2ny+m denote the vector of decision variables, the
equality constraint matrix and the objective vector of (5.A.25), respectively:

v = [y+ y− s]�, M = [B −B I], f = [d −d 0]�.

Each basis is represented by m linearly independent columns of M . Let W ∈ �m×m denote a
basis matrix, and let vW and fW denote the components of v and f corresponding to the basic
variables. For any basic solution v it holds that

vW = W−1
�
r (z)− A(z)x

�
, (5.A.26)

and the remaining non-basic components of v are equal to zero. Denote the basic solution by
(vW ,0\W ); it is a basic feasible solution (BFS) to (5.A.25) if and only if vW ≥ 0. For optimality
of (vW ,0\W ) it is additionally required that the reduced costs are nonnegative. Nonnegativity
of the reduced costs (i.e., optimality of (vW ,0\W )) reads

f − f �
W W−1M ≥ 0. (5.A.27)

We restrict ourselves to those basic solutions for which optimality condition (5.A.27) holds,
note that this condition is independent of z. It follows that for each basis matrix W that satisfies
(5.A.27), it associated basic solution (vW ,0\W ) is feasible (and optimal) if and only if z is in
the following subset of U:

UW (x ) = {z ∈ U : W−1
�
r (z)− A(z)x

�≥ 0}.

Let y(x , z, W) denote the basic solution corresponding to W in terms of the original variables
y . From (5.A.26) it follows that y(x , z, W) is linear in z.
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216 Pareto adjustable robust optimality via an FME lens

Any basic solution to (5.A.25) corresponds with at least one basis, and each basis is repre-
sented by m linearly independent columns of M . Thus, there are at most β =

�2ny+m
m

�
bases

(i.e., matrices W) to (5.A.25) that satisfy (5.A.27), independent of z. Number the matrices
W1, . . . , Wβ . Each of these matrices W j has its own LDR y(x , z, W j) that is optimal for all
z ∈ UW j

(x ).
Because x is ARF to (5.3) and (5.3) has a finite optimal objective value, problem (5.A.25)

is feasible and has a finite optimum for all z ∈ U . Therefore, there exists an optimal basic
feasible solution for all z ∈ U , and the union of all UWi

equals U itself. This implies that, for
the given x , the following PWL decision rule is optimal for each z ∈ U:

y(z) = y(x , z, Wi∗) if i∗ =min{i : z ∈ UWi
(x )}.

Note that a different numbering of the matrices gives a (possibly) different optimal PWL deci-
sion rule. In essence, the proof performs sensitivity analysis on the right-hand side vectors of
(5.A.25), which is the only term in (5.A.25) that depends on z.

5.A.10 Proof Theorem 5.30
Let OPT denote the optimal (worst-case) objective value of P. By Definition 5.8(i), and using
that d = 0, a solution x ∗ is PARO to P if and only if the following statement holds:

• There exists a y∗ ∈ RL,ny such that (x ∗, y∗(·)) is ARO to P and there does not exist a
pair (x̄ , ȳ(·)) that is ARO to P and

c(z)� x̄ ≤ c(z)�x ∗, ∀z ∈ U ,

c(z̄)� x̄ < c(z̄)�x ∗, for some z̄ ∈ U .
(5.A.28)

By definition of set X , this holds if and only if

• x ∗ ∈ X , OPT = maxz∈U c(z)�x ∗ and there does not exist an x̄ ∈ X such that OPT =
maxz∈U c(z)� x̄ and (5.A.28) holds.

Because for any ARF x there exists an ARF decision rule y(·) such that y(z) = fw (z) for some
w , it follows that X is equal to

X f = {x ∈ �nx | ∃w ∈ �p : A(z)x + B fw (z)≤ r (z), ∀z ∈ U},

which is the set of feasible x when stage-2 decision rules are restricted to be of form fw (z).
Hence, the previous set of conditions holds if and only if

• x ∗ ∈ X f , OPT = maxz∈U c(z)�x ∗ and there does not exist an x̄ ∈ X such that OPT =
maxz∈U c(z)� x̄ and (5.A.28) holds.

Parameters w are now stage-1 decision variables, so X f does not contain adjustable variables.
The set of conditions describes a PRO solution to the static robust optimization problem ob-
tained after plugging in decision rule structure fw (·).
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5.A.11 Proof Corollary 5.31
Corollary 5.31(i): For any vector of parameters w ∈ �p, let fw (ẑ) denote a decision rule that
depends only on ẑ ∈ Û , the non-constraintwise component of uncertain parameter z. From
Lemma 5.15 it follows that X is equal to

Xhybrid = {x ∈ �nx | ∃w ∈ �p : A(z)x + B fw (ẑ)≤ r (z), ∀z ∈ U},

i.e., the feasible region for x remains unchanged if all adjustable variables are restricted to
depend only on the non-constraintwise component of z. Hence, setting X f = Xhybrid in the
proof of Theorem 5.30 yields the result.

Corollary 5.31(ii): For each block v = 1, . . . , V , let w (v) ∈ �p(v) denote a vector of pa-
rameters and let f v

w (v)(z(v)) denote a decision rule that depends only on z(v), the uncertain
parameters in block v. From Lemma 5.19 it follows that X is equal to

Xblock =
	

x ∈ �nx | ∀v = 1, . . . , V, ∃w (v) ∈ �p(v) :

ai(z(v))
�x + b�

i f v
w (v)(z(v))≤ ri(z(v)), ∀z ∈ U v , ∀i ∈ K(v)



,

i.e., the feasible region for x remains unchanged if all adjustable variables are restricted to
depend only on uncertain parameters in their own block. Hence, setting X f = Xblock in the
proof of Theorem 5.30 yields the result.

Corollary 5.31(iii): From Lemma 5.22 it follows that for simplex uncertainty X is equal to

Xsimplex = {x ∈ �nx | ∃u ∈ �ny , V ∈ �ny×L : A(z)x + B(u + Vz)≤ r (z), ∀z ∈ U},

i.e., the feasible region for x remains unchanged if all adjustable variables are restricted to
depend affinely on z. Hence, setting X f = Xsimplex in the proof of Theorem 5.30 yields the
result.

5.A.12 Proof Lemma 5.32
The two cases are considered separately.

• Optimal objective value is zero: Proof by contradiction. Suppose ỹ(·) is not a PARO exten-
sion of x̃ . Then, by Definition 5.9, there exists a ȳ(·) such that (x̃ , ȳ(·)) is ARO to (5.3)
and for some z̄ ∈ U it holds that

c(z̄)� x̃ + d� ỹ(z̄)> c(z̄)� x̃ + d� ȳ(z̄).

However, then (z, y) = (z̄, ȳ(z̄)) is feasible to (5.13) with positive objective value. This
is a contradiction.
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• Optimal objective value is positive: Let (z∗, y∗) denote the optimal solution to (5.13) and
let v∗ denote the optimal objective value. The decision rule

y(z) =

�
ỹ(z) if z �= z∗

y∗ otherwise,

dominates the decision rule ỹ(·), so the latter is not PARO. We prove the last part of the
lemma by contradiction. Suppose there exists a scenario z̄ and a decision ȳ such that�

c(z̄)� x̃ + d� ỹ(z̄)
�− �c(z̄)� x̃ + d� ȳ

�
> v∗,

A(z̄)x̃ + Bȳ ≤ r (z̄),

i.e., ȳ is a feasible wait-and-see decision for scenario z̄, and the resulting objective value
of ỹ(z̄) exceeds that of ȳ by more than v∗. Then (z̄, ȳ) is feasible to (5.13) with a strictly
better objective value than v∗. This is a contradiction.

5.A.13 Proof Lemma 5.34

Proof by contradiction, analogous to proof of Theorem 1 of Iancu and Trichakis (2014). Because
U is the convex hull of z1, . . . , zN , (5.16b) and (5.16c) ensure that x̄ is ARO to (5.3) (with
d = 0). Suppose x̄ is not PARO to (5.3). According to Definition 5.8(i) there exists an x̂ that
is ARO to (5.3) and

c(z)� x̂ ≤ c(z)� x̄ , ∀z ∈ U ,

c(ẑ)� x̂ < c(ẑ)� x̄ , for some ẑ ∈ U .

Because x̂ is ARO to (5.3), there also exist ( ŷ1, . . . , ŷ N) that, together with x̂ , are feasible to
(5.16).

The linear optimization problem minz∈U c(z)�(x̂ − x̄ ) attains the minimum in a vertex
solution, so without loss of generality we can assume ẑ ∈ ext(U). Any point z̄ ∈ ri(U) can
be written as a strict convex combination of the extreme points of U (Rockafellar, 1970), so
z̄ =
∑N

i=1αi z
i for some α ∈ �N with

∑N
i=1αi = 1, αi > 0 for all i. Then

c(z̄)�(x̂ − x̄ ) =
N∑

i=1
z i �=ẑ

αic(z
i)�(x̂ − x̄ ) + α̂c(ẑ)�(x̂ − x̄ ),

where the first term of the RHS is nonpositive and the second term is strictly negative. This
contradicts the fact that (x̄ , ȳ1, . . . , ȳ N) is optimal to (5.16).
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5.A.14 Proof Lemma 5.35
First, we note that in problem p(x̂ , V ), setting stage-1 decision x̄ = x̂ is feasible, and in that
case for any scenario the optimal recourse decision is the same for the original x̄ and the new
x̄ . Thus, p(x̂ , V ) is always nonpositive.

Suppose Algorithm 5.1 terminates after k iterations with solution x̄ . Then x̄ is part of the
optimal solution to problem p(x k−1, Vk)which is solved in iteration k and yields objective value
0. Thus, due to (5.17c) and (5.17d) and the fact that the extreme points are in set Vk, we know
that x̄ is ARO.

It remains to show that x̄ is PARO according to Definition 5.8(i). Proof by contradiction.
Suppose x̄ is not PARO. Then there exists another x ∗ that is ARO to (5.3) that additionally
satisfies the following two conditions:

1. For each z ∈ U there exists a y such that for all ȳ with Ax̄ + Bȳ ≤ r (z) we have

c�x ∗ + d�y ≤ c� x̄ + d� ȳ ,

Ax ∗ + By ≤ r (z).

2. There exists a z∗ ∈ U and a y∗ such that for all ȳ with Ax̄ + Bȳ ≤ r (z∗) we have

c�x ∗ + d�y∗ < c� x̄ + d� ȳ ,

Ax ∗ + By∗ ≤ r (z∗).

Because for every (z i , vi) ∈ Vk it holds that z i ∈ U , the first condition implies that for each
(zi , vi) ∈ V k there exists a recourse decision y i∗ such that (x ∗, y i∗) satisfies constraints (5.17c)
and (5.17d). The second condition is equivalent to the statement that there exists z∗ ∈ U and
a y∗ such that

max
ȳ:Ax̄+Bȳ≤r (z∗)

(c�x ∗ + d�y∗)− (c� x̄ + d� ȳ)< 0,

Ax ∗ + By∗ ≤ r (z∗).

Put together, this implies that (z∗, x ∗, y∗, y1∗, . . . , y |Vk |∗) is a feasible solution to (5.17) with
strictly negative objective value. This contradicts with p(x k−1, Vk) = 0. Thus, x̄ is PARO.
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CHAPTER 6

Optimal combined proton-photon therapy schemes

6.1 Introduction

In external beam radiation therapy (EBRT), the goal is to kill the tumor cells using
ionizing radiation, while sparing the normal (healthy) tissues as much as possible. In
spatial optimization, the radiation beam directions and intensities are optimized such
that the dose to the healthy tissues is minimal, while still delivering the prescribed
dose to the tumor. On the other hand, temporal optimization aims to select the opti-
mal number of fractions of the treatment. The concept of fractionation is based on the
observation that healthy cells have the capability to tolerate a larger dose if it is de-
livered in smaller fractions over multiple days, since they can repair radiation damage
between treatments (Fowler, 1989; Withers, 1985).

Regarding the spatial component, different beam types (modalities) have different
healthy tissue sparing properties. The relevant modalities for this work are photon
beams (X-rays) and proton beams. Photon therapy is a conventional method that is by
far the most frequently used. Proton therapy is a more advanced method, which the-
oretically has superior healthy tissue sparing properties, but is more expensive. While
protons can offer higher dose conformity due to the pronounced Bragg peak, in the
current planning approach often larger margins are used for protons than for photons
due to range uncertainties (Perkó et al., 2018). This is not a fundamental character-
istic of proton therapy, but rather a consequence of limited image guidance and range
control abilities in current proton therapy practice. Therefore, in present clinical set-
ting using protons is not necessarily better for organs very close to the target (Perkó
et al., 2018), and investigating combined proton-photon treatments can be of interest.

In the fractionation optimization literature we can distinguish between single and
multiple normal tissues, and between single and combined modality models. The
biologically effective dose (BED) model (Fowler, 1989, 2010) has been the basis of
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most work on the topic. For the case with a single normal tissue and a single treat-
ment modality, many numerical and analytical results have been derived. Mizuta et al.
(2012) mathematically prove that in this case the decision between hypofractionation
and hyperfractionation depends on the ratio between the normal tissue α/β -ratio and
the tumor α/β -ratio, where the α/β -ratio is a tissue-specific parameter representing
the sensitivity of the tissue to fractionation. In the work of Unkelbach et al. (2013a)
this is generalized to the case where a spatially heterogeneous dose distribution is
allowed via the introduction of dose sparing factors. Bortfeld et al. (2015) further ex-
tend this model by including a tumor repopulation term. Many other studies examine
specific aspects of the problem, or applications to specific tumor sites (Bertuzzi et al.,
2013; Yang and Xing, 2005a; Wein et al., 2000).

Recently there has been significant progress on the optimal fractionation problem
with a single treatment modality and multiple normal tissues. Saberian et al. (2015)
and Badri et al. (2016) independently formulate and solve the optimization problem
via a reformulation to a two variable linear programming problem. Saberian et al.
(2016a) derive several results for the general optimization problem with maximum
point dose, mean dose and dose-volume histogram (DVH) constraints. Amongst others
they derive sufficient conditions for optimality of equal-dosage (more than one frac-
tion) or single-dosage solutions. Kim et al. (2015) apply the single modality optimal
fractionation model with multiple normal tissues to phantom lung cases and find that,
especially for cases with favorable geometry, nonconventional fractionation schemes
may improve local tumor control while yielding shorter treatment courses. Perkó et al.
(2016) apply the same method to liver patients cases, and it is demonstrated that an
intermediate fractionation scheme is optimal in the case of competing normal tissues.

In Unkelbach et al. (2013b) and Unkelbach and Papp (2015) the spatiotemporal
optimization problem is considered, where they simultaneously optimized the spatial
dose distribution and the fractionation, in order to minimize a weighted sum of normal
tissue doses and deviations from a prescribed tumor BED. Saberian et al. (2017) con-
sider the spatiotemporal optimal fractionation problem where they maximize tumor
BED subject to BED constraints on multiple normal tissues. O’Connor et al. (2018)
solve the physical dose-based beam orientation optimization problem, allowing for
different (non-coplanar) beam angles in different fractions.

Nill (2001, Chapter 4) concludes that combined proton-photon treatments do not
improve over proton treatments. However, they do not take into account fractionation.
An application of the BED model to combined modality treatments is discussed in
Bodey et al. (2004), but this study combines photon therapywith targeted radionuclide
therapy (a form of internal radiation therapy), instead of another EBRT modality.
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This chapter investigates combined modality fractionated treatments where each
fraction employs either photon or proton therapy. Our three main contributions are as
follows:

• Analytical and numerical demonstration of optimal combinedmodality treat-
ments: We formulate and solve simplified combinedmodality optimization prob-
lems, that prove they can outperform single modality proton treatments for two
reasons. First, in situations with multiple constraints, one constraint may be
more restrictive for one treatment modality, while the other more restrictive for
the other modality, making combined treatments optimal. Second, in situations
where proton plans are superior in terms of dose, using photon fractions can
yield plans that are better in terms of BED, due to the fractionation effect.

• Demonstration of improved patient treatment plans: We formulate the mul-
tiple normal tissue combined proton-photon fractionation optimization prob-
lem and solve it using real data from 17 patients, showing that for 5 patients
combined modality treatments are an improvement over single modality proton
treatments. Out of these 5, for 2 also the single modality photon plan outper-
formed the proton plan.

• Demonstration of better resource allocation: For 3 patients we show that a
combined modality treatment plan can be found that is only marginally worse
than the optimal proton treatment, while it uses fewer proton fractions.

The literature on (fractionation) optimization for combined proton-photon treat-
ments is limited. The recent paper Unkelbach et al. (2018b) studies a similar combined
modality problem, using spatiotemporal optimization. In their paper, first a 30-fraction
plan is optimized for photons only and protons only. They use these to generate a ref-
erence plan, which is a proportional combination of these single modality plans such
that the total number of photon and proton fractions is 30. Finally they optimize the
combined modality plan, restricted to 30 fractions and enforcing that several perfor-
mance measures do not deteriorate with respect to the reference plan. Unlike their
approach, our method does not fix the total number of fractions and within a single
modality we allow for nonuniform fractionation. Furthermore, while the method of
Unkelbach et al. (2018b) is demonstrated only for a single patient, our larger data set
indicates that several types of patients can be distinguished with regard to the benefit
of combined modality. Lastly, we provide theoretical results that demonstrate the con-
ditions under which combined modality can outperform single modality treatments.
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Nourollahi et al. (2019) also study BED-based combined modality fractionation op-
timization problems. However, they do not allow for a heterogeneous dose distribution
via voxel-specific dose sparing factors, and consequently do not take DVH constraints
into account either. Their approach and numerical results mainly focus on hypothetical
cases with a single healthy tissue, whereas we find that one of the reasons for optimal-
ity of combined modality treatments is the interplay of multiple healthy tissues.

The outline of this chapter is as follows. Section 6.2.1 discusses two reasons why
combined proton-photon treatments may outperform single modality treatments. Sec-
tion 6.2.2 presents the full combined proton-photon fractionation optimization prob-
lem. In Section 6.3 this model is tested on a data set of liver patients treated at Mas-
sachusetts General Hospital (Boston, USA) and the results are presented. Section 6.4
discusses the results and their relevance to clinical practice. Last, Section 6.5 presents
our conclusions.

6.2 Methods
Our approach is based on the standard biologically effective dose (BED) model. Tu-
mor repopulation is not taken into account. The standard BED model states that the
biological effect of a dose D given to a tissue in N fractions is given by

BED= D
�
1+

1
α/β

D
N

�
, (6.1)

where α/β is a parameter indicating the fractionation sensitivity of the tissue, and BED
is measured in Gyα/β instead of Gy. We generalize BED equation (6.1) to the situation
with unequal dose per fraction and two treatment modalities. Due to additivity, the
BED to an irradiated tissue equals the BED from a photon dose plus the BED from a
proton dose. Let DT

i =
∑Ni

ti=1 di,ti
be the total dose to the tumor of modality i, where di,ti

is the dose of modality i to the tumor in fraction ti, and Ni is the number of fractions
of modality i. Subscripts i = γ and i = p stand for photons and protons, respectively.
Let si, j denote the dose sparing factor of any voxel j in the tumor or in an OAR for
treatment modality i. The BED to voxel j is given by

BED j =
Nγ∑

tγ=1

sγ, jdγ,tγ +ρ
Nγ∑

tγ=1

s2
γ, jd

2
γ,tγ
+

Np∑
tp=1

sp, jdp,tp
+ρ

Np∑
tp=1

s2
p, jd

2
p,tp

,

where ρ denotes the inverse α/β ratio of the tissue containing voxel j.
In Section 6.2.1 we describe two reasons why combined proton-photon treatments

may outperform single modality treatments. Section 6.2.2 presents the BED-based full
combined proton-photon fractionation optimization problem.



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 237PDF page: 237PDF page: 237PDF page: 237

Methods 225

6.2.1 Two reasons why combined proton-photon treatments can
outperform single modality treatments

We consider a situation with two organs-at-risk (OARs). OAR 1 includes the tumor and
OAR 2 is another organ close to the tumor, see Figure 6.1. The outer circle indicates
OAR 1, the tumor is the black circle in the middle, and the blue circle indicates OAR 2.
No other OARs play a significant role. Figure 6.1 is naturally a 2D representation of a
3D situation, with OAR 2 interpreted as an organ close to the tumor.

�

(a) The photon dose distribution causes
‘high’ damage inside the intersection of the
beams (red) and ‘low’ damage everywhere
else (green).

(b) The proton beam causes ‘high’ dam-
age in the spread out Bragg Peak (red),
‘low’ damage at the entrance (green) and
no damage anywhere else.

Figure 6.1: Schematic view of the simplified (2D) scenario with an OAR containing a tumor,
and a second nearby OAR. The outer circle represents OAR 1 with the tumor in the middle
(black), and the blue circle represents OAR 2.

For the photon dose distribution (Figure 6.1a) we assume that the gantry com-
pletes a full rotation around the patient shooting beams from all angles. These angles
intersect in the area within the red circle, where the dose is high. Outside this area,
we assume that photon beams do not intersect, so the dose is equally low everywhere
(green area). Thus, the tumor and a small part of OAR 1 receive a uniform high dose,
and the rest of OAR 1 and the entire volume of OAR 2 (blue area) receive a uniform
low dose.

For the proton dose distribution (Figure 6.1b) there is a single beam. There is a
high dose area (spread out Bragg Peak in red) and a low dose area (the beam entrance
in green). Thus, the tumor, part of OAR 1 (around the tumor) and part of OAR 2
(intersection of red and blue area) receive a uniform high dose, part of OAR 1 receives
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a uniform low dose, and the remaining parts of OAR 1 and OAR 2 receive no dose.
We need to determine howmuch dose should be given with each modality, i.e. how

much the dose distributions described above should be scaled. The corresponding opti-
mization problem can be formulated in terms of dose, or in terms of BED. In the latter
case, it must also be determined how many fractions are needed for each modality.
The objective is to maximize the dose or BED to the tumor, such that the dose or BED
to the OARs remains below some tolerance level. If the optimal solution makes use
of both photon and proton dose (and fractions), this implies that combined modality
yields a better solution than single modality, and analyzing the underlying mathemat-
ical model can reveal the conditions under which this occurs. Below we identify two
such reasons. Combined modality treatments can also be shown to be optimal (see
Appendix 6.A.3) if one minimizes the dose or BED to one of the OARs, while one con-
strains the tumor dose or BED to a prescribed level and the dose or BED to the other
OAR below a tolerance.

Optimality due to competing constraints, with protons and photons being better
for different ones

The first reason why combined modality treatments may outperform single modality
proton treatments is due to the different shape of the high dose regions of the photon
and proton dose distributions, when there are multiple OARs in proximity to the tumor.
As seen in Figure 6.1, part of OAR 2 falls in the proton high dose region, but not in
the photon high dose region, meaning that a DVH or maximum point dose constraint
may be more restrictive for protons than for photons. For example, consider a DVH
constraint on OAR 2 where the restricted volume (the maximum volume for which the
dose may exceed a given tolerance level) is smaller than the high dose region of OAR
2 for the proton dose distribution. This constraint is much more restrictive for protons
than for photons. Hence, if we only set this constraint, the photon dose distribution
is favorable. On the other hand, a mean dose constraint on OAR 1 is more restrictive
for the photon dose distribution than for the proton dose distribution, due to the much
larger photon low dose region. Hence, a mean dose constraint favors protons.

In essence, we have two competing constraints, both favoring a different treatment
modality. A combined modality treatment that uses part photons and part protons is
able to balance these two interests best. As mathematically derived in Appendix 6.A.1,
a combined modality treatment can deliver a higher dose to the tumor than either
modality alone, while it also satisfies the DVH and mean dose constraints on OAR 2
and OAR 1 respectively.

A similar conclusion can be reached if a DVH constraint is set such that the proton
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entrance dose is constrained, or if more DVH constraints are added, and the example
can naturally be generalized to allow more proton beams. While we supposed a larger
high dose region for protons than for photons, this is not a necessary condition for
our statements to hold, simple shape differences can also lead to similar conclusions
(protons depositing high dose in OAR 2 while photons not). Moreover, proton plans
in practice can indeed show larger high dose regions compared to photon plans due
to larger planning margins (due to more uncertainty in range, e.g., for organs with
significant internal motion) and worse lateral penumbra (Perkó et al., 2018). As shown
in Section 6.3, this is truly the case for our patient data.

Optimality due to having more fractions, even if photons are somewhat worse

The second reason why combined modality may outperform single modality proton
treatments is related to the fractionation effect. If the α/β -ratio of the OAR is smaller
than that of the tumor, the benefit of fractionation is larger for the OAR than for the
tumor. For simplicity, suppose the α/β -ratio of the tumor is sufficiently large so that we
can neglect the fractionation effect and optimize for maximum tumor physical dose.
Next, consider a mean dose constraint on OAR 1. For a fixed dose to (part of) OAR 1,
the BED to (that part of) OAR 1 will be lower if this dose is administered over multiple
fractions. As the number of fractions does not influence the damage to the tumor, once
we are delivering a non-zero dose with a modality (photons or protons), it will always
be optimal to use the maximum number of allowed fractions for this modality.

For the same tumor dose, the proton dose distribution has a lower mean dose in
OAR 1 than the photon dose distribution. Therefore, when using equal dose per frac-
tion to minimize BED, protons also deliver lower mean BED in OAR 1 than photons for
a given number of fractions, and it is always optimal to set a non-zero dose per fraction
to the proton fractions. In case we use only protons, the proton dose per fraction is
increased until we reach the mean BED tolerance on OAR 1. Delivering part of the
dose via photon fractions allows for a lower dose per fraction in the proton fractions.
Adding these photon fractions naturally leads to slightly worse OAR sparing in terms
of physical dose, however due to the higher total number of fractions, the BED in OAR
1 does not necessarily increase. Whether or not using the photon fractions is optimal
depends on the trade-off between the worse OAR sparing in terms of physical dose and
the benefit of fractionation. In Appendix 6.A.2 we demonstrate that this trade-off in-
deed occurs, and that combined proton-photon treatments outperform single modality
proton treatments in terms of achievable tumor dose, if the BED tolerance level exceeds
a threshold. That is, unless the BED tolerance of OAR 1 is very restrictive, the benefit
of having more fractions outweighs the disadvantage of some of these fractions (the
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photon fractions) having worse physical OAR sparing.

6.2.2 General combined modality fractionation model with multi-
ple OARs

In this section the general optimization problem for the combined proton-photon opti-
mal fractionation problem with multiple normal tissues is formulated. The model can
take into account maximum point dose, mean dose and dose-volume constraints, ac-
cepts arbitrary proton and photon dose distributions as given inputs, and determines
the optimal dose for each modality (i.e. how much the dose distributions need to be
scaled) and the number of fractions these doses should be delivered. Note that the
general model described in this section is completely separate from the simplified ge-
ometry of Section 6.2.1 and makes no assumptions regarding the dose distributions.

Similar to the approach of Saberian et al. (2015) for the single modality fraction-
ation problem, we formulate our model not in terms of dose vectors dγ and dp (for
photons and protons respectively), but instead in terms of four new variables. For
photons, let xγ and yγ denote the total dose and the sum of squared doses. For pro-
tons, denote these quantities by xp and yp, respectively. Thus, we use the following
substitutions:

xγ =
Nγ∑

tγ=1

dγ,tγ , yγ =
Nγ∑

tγ=1

d2
γ,tγ

, xp =
Np∑

tp=1

dp,tp
, yp =

Np∑
tp=1

d2
p,tp

. (6.2)

First we consider the objective function. Let nT be the number of voxels in the
tumor, and ρT the inverse α/β -ratio of the tumor. Let sT

i, j be the dose sparing factor of
tumor voxel j for treatment modality i. The objective is to maximize the mean target
BED, which can be formulated as

max
xγ,yγ,xp ,yp

1
nT

nT∑
j=1

�
sT
γ, j xγ +ρ

T (sT
γ, j)

2 yγ + sT
p, j xp +ρ

T (sT
p, j)

2 yp

�
.

Next, we consider the constraint types. Let M1, M2 and M3 denote the set of
maximum point dose, DVH and mean dose constraints, respectively. For the OAR cor-
responding to constraint m, let nm denote the number of voxels in the OAR, ρm denote
the inverse α/β ratio for the OAR, and sm

i, j be the dose sparing factor of voxel j in the
OAR for treatment modality i.

Maximum point dose constraints

A maximum point dose constraint on OAR m states that no voxel in the OAR may
receive a dose higher than dose Dm

max if delivered in N m fractions. This tolerance dose
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corresponds with a BED of

BEDm
max = Dm

max

�
1+ρm

Dm
max

N m

�
.

Thus, the constraint reads

sm
γ, j xγ +ρ

m(sm
γ, j)

2 yγ + sm
p, j xp +ρ

m(sm
p, j)

2 yp ≤ BEDm
max, ∀ j = 1, . . . , nm, m ∈ M1.

DVH constraints

For a DVH constraint on OAR m, no more than a fraction F m of the OAR volume V m may
receive a dose higher than Dm

dvh if given in N m fractions. This tolerance is equivalent to
a BED of

BEDm
dvh = Dm

dvh

�
1+ρm

Dm
dvh

N m

�
.

The constraint now reads

sm
γ, j xγ +ρ

m(sm
γ, j)

2 yγ + sm
p, j xp +ρ

m(sm
p, j)

2 yp ≤ BEDm
dvh +M(1 − um

j ),

∀ j = 1, . . . , nm, m ∈ M2,

where M ∈ � is a sufficiently large positive number, and um
j are binary decision vari-

ables for ∀ j = 1, . . . , nm. Let u denote the stacked vector of all binary variables for
∀m ∈ M2. A value um

j = 1 implies that voxel j in the OAR corresponding to constraint
m receives a BED lower than or equal to BEDm

dvh and um
j = 0 implies that voxel j re-

ceives a BED higher than BEDm
dvh. Because volume V m is discretized into nm voxels, we

add extra constraints that at least nm − �F mnm� voxels must receive a BED lower than
BEDm

dvh:

nm∑
j=1

um
j ≥ nm − �F mnm�, ∀m ∈ M2,

um
j ∈ {0, 1}, ∀ j ∈ Nm, ∀m ∈ M2.

Mean dose constraints

A mean dose constraint on OAR m states that a mean dose of Dm
mean over all voxels is

tolerated if given in N m fractions. This constraint can be formulated as

1
nm

nm∑
j=1

�
sm
γ, j xγ +ρ

m(sm
γ, j)

2 yγ + sm
p, j xp +ρ

m(sm
p, j)

2 yp

�≤ BEDm
mean.
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For the mean dose tolerance, we note that there is a difference between the BED of the
mean dose and the mean BED, due to the influence of the spatial distribution of the
dose. In Perkó et al. (2018) this effect is captured for a single modality by a parameter
named the dose shape factor. The dose shape factorϕm for the photon dose distribution
in the OAR corresponding to constraint m is given by

ϕm =
nm
∑nm

j=1 s2
γ, j�∑nm

j=1 sγ, j
�2 ,

and similar for the proton dose distribution. For more details, see Perkó et al. (2018).

Final optimization problem

All put together, the optimization problem reads:

max
xγ,yγ,xp ,yp ,u

1
nT

nT∑
j=1

�
sT
γ, j xγ +ρ

T (sT
γ, j)

2 y + sT
p, j xp +ρ

T (sT
p, j)

2 yp

�
,

s.t. sm
γ, j xγ +ρ

m(sm
γ, j)

2 yγ + sm
p, j xp +ρ

m(sm
p, j)

2 yp ≤ BEDm
max,

∀ j = 1, . . . , nm, ∀m ∈ M1,

sm
γ, j xγ +ρ

m(sm
γ, j)

2 yγ + sm
p, j xp +ρ

m(sm
p, j)

2 yp ≤ BEDm
dvh +M(1 − um

j ),

∀ j = 1, . . . , nm, ∀m ∈ M2,

nm∑
j=1

um
j ≥ nm − �F mnm�, ∀m ∈ M2,

um
j ∈ {0, 1}, ∀ j = 1, . . . , nm, ∀m ∈ M2,

1
nm

nm∑
j=1

�
sm
γ, j xγ +ρ

m(sm
γ, j)

2 yγ + sm
p, j xp +ρ

m(sm
p, j)

2 yp

�≤ BEDm
mean,

∀m ∈ M3,�
yγ ≤ xγ ≤�Nγ yγ,�
yp ≤ xp ≤�Np yp,

xγ ≥ 0, yγ ≥ 0, xp ≥ 0, yp ≥ 0.

(6.3a)

(6.3b)

(6.3c)

(6.3d)

(6.3e)

(6.3f)

(6.3g)

(6.3h)

(6.3i)

Constraints (6.3g) and (6.3h) model the relations between decision variables xγ and
yγ, and xp and yp, respectively. In Appendix 6.D it is shown that (6.3) is equivalent
to (6.D.5), i.e., the optimization problem in terms of the original dose-per-fraction
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vectors dγ ∈ �Nγ
+ and dp ∈ �Np

+ . Compared to the single modality model in Saberian
et al. (2015) (also detailed in Appendix 6.B), the main difficulty is found in the DVH
constraints, as there is no a-priori ordering of the voxels in terms of BED. To overcome
this we developed the algorithm described below.

Optimization algorithm

To solve problem (6.3) we make use of the following variable transformation:

θ =
xγ

xγ + xp
, vγ =

x2
γ

yγ
, vp =

x2
p

yp
. (6.4)

Variable θ can be interpreted as the fraction of photon dose to total dose. Variables
vγ and vp are, when rounded up, equal to the number of used photon and proton
fractions, respectively. The new set of variables is {xγ, u,θ , vγ, vp}. Let f and F denote
the objective function and feasible set of (6.3) in terms of the new variable set.

We split the new variables set into two sets: {xγ, u} and {θ , vγ, vp}. In Appendix 6.E.1
it is described how for fixed variables {θ , vγ, vp} we can (exactly) compute the optimal
values of {xγ, u}. The described procedure eliminates the (large number of) binary
variables u and requires only a sorting algorithm to compute the optimal value for xγ.
Hence, this procedure is very fast. Denote these optimal values by x∗

γ
(θ , vγ, vp) and

u∗(θ , vγ, vp). Then we can concisely represent problem (6.3) as

max
θ ,vγ,vp

f (x∗
γ
(θ , vγ, vp), u∗(θ , vγ, vp),θ , vγ, vp),

s.t.
�

x∗
γ
(θ , vγ, vp), u∗(θ , vγ, vp),θ , vγ, vp

� ∈ F ,

(6.5a)

(6.5b)

which is a problem of only three variables, as (θ , vγ, vp) are all scalar variables. We
solve (6.5) via a Generalized Pattern Search (GPS) algorithm (Audet and Dennis Jr.,
2003). GPS is an optimization algorithm that does not require a gradient, nor does it
require the objective function to be continuous. To improve performance, we take a
multi-start approach, details of which are provided in Appendix 6.E.2.

This separation into two variable sets also enables setting an additional constraint
on the dose per fraction values. Specifically, it allows us to set a minimum dose per
fraction value dmin and a maximum dose per fraction value dmax. This may be clini-
cally interesting, as it avoids treatments that could be considered unrealistic in current
practice, with too high or negligibly small dose per fraction values.

Implementation

All computations were performed on a 2.6GHz Intel-Core i5 PC with 8GB RAM, using
the software package MATLAB R2017b (Mathworks, Natick, MA, US). The MATLAB
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toolbox CERR (Deasy et al., 2003) is used to visualize and analyze patient data, and to
transfer the data to the MATLAB environment. For all patients we solve problem (6.3)
using the MATLAB function for all combinations of Nγ and Np such
that Nγ + Np = 15, so the total number of allowed fractions is 15. The single modality
proton optimal fractionation problem (see Appendix 6.B) is also solved. During the
optimization procedure, we set a minimum and a maximum dose per fraction of dmin =
1 Gy/fx and dmax = 10 Gy/fx, respectively.

Patient data

The data set is a subset of the data set used in Perkó et al. (2018), consisting of actual
patient data (in DICOM format) from 17 patients who were treated at Massachusetts
General Hospital, and was provided by physicians collaborating with the physics re-
search group. All patients in the data set are liver patients and were treated with
passively scattered protons in practice, in 5 or 15 fractions. All proton plans incor-
porated compensator smearing and are adjusted for relative biological effectiveness
(RBE) by setting RBEproton = 1.1. Next to the clinically used proton plans, the treat-
ment planners also derived photon plans for these patients, taking into account all
proper clinical measures to deal with uncertainties. For the proton plans, a planning
target volume (PTV) margin was addedmanually. For more details on patient selection
and how uncertainties were handled we refer to Perkó et al. (2018).

Patients with liver tumors are interesting for combined modality treatments, due to
the large number of neighboring healthy tissues, and the different constraints on the
tissues that are in the paths of the beams. Our patient cohort well reflected that proton
distributions are not necessarily superior in terms of the high dose area: due to larger
motion uncertainty they typically used larger margins. Although the used proton plans
are passive scattering plans, even in IMPT larger margins could be present than in their
photon counterparts.

6.3 Results for patients for combinedmodality fraction-
ation model with multiple OARs

The objective is tomaximize the BED to the gross tumor volume (GTV). Throughout the
results and discussion the terms GTV and tumor are used interchangeably. Table 6.1
presents the most important constraints for all patients in terms of dose and BED.
In clinical practice, the dose tolerance levels for healthy liver mean dose are not hard
constraints but are used as ‘goals’, meaning that for a given number of fractions a range
of dose tolerances is acceptable. Correspondingly, in our optimization dose tolerance
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values are picked such that the resulting GTV BED is between 50 and 200Gy. This value
is applied consistently in the optimization of the single modality photon and proton
treatments and the combined modality treatment, to allow for a fair comparison. In
clinical practice, the range of dose tolerances for the 5 and 15 fraction regimens are
[13 Gy, 17 Gy] and [23 Gy, 27 Gy], respectively. However, for cases with very small
tumors, the mean GTV BED can take very high values before these liver mean dose
constraints are binding. Hence, we extend these dose tolerance ranges to [8 Gy, 17 Gy]
for the 5 fraction regiment and [16 Gy, 27 Gy] for the 15 fraction regimen.

Constraints

OAR dose fractions constraint typetolerance (Gy)

Liver-CTV 15 5 DVH: sparing > 700cc
10 5 DVH: sparing > 30%

[8, 17] 5 Mean dose (goal range)
[16, 27] 15 Mean dose (goal range)

Stomach {30, 40} {5,15} DVH: violation < 0.5cc
{25, 36} {5,15} DVH: violation < 5cc

Duodenum {30, 40} {5,15} DVH: violation < 0.5cc
{25, 36} {5,15} DVH: violation < 5cc

Small bowel {30, 40} {5,15} DVH: violation < 0.5cc
{25, 36} {5,15} DVH: violation < 5cc

Large bowel {32, 40} {5,15} DVH: violation < 0.5cc
Cord {25, 37.5} {5,15} DVH: violation < 0.5cc

Table 6.1: Most important constraints for the patients in the numerical study. DVH constraints
are formulated either in the largest volume (in cc or %) that may be violated or in the smallest
volume that needs to be spared. Our cases did not have any maximum point dose constraints.

In clinical practice, the healthy liver (liver - clinical target volume (CTV)) con-
straints are either mean dose constraints or DVH constraints, where DVH constraints
are used for cases with large tumors and mean dose constraints are used for cases with
small tumors. In our numerical experiments we use both sets of constraints simultane-
ously, except that the 700cc healthy liver DVH constraint is omitted for those patients
where it was violated clinically, to achieve an adequate tumor dose. Hence, for sev-
eral cases more constraints are included than what was done clinically. We emphasize
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that for every patient, the same set of constraints is used for the single and combined
modality optimization.

To compare the combined modality results to the single modality results, the single
modality proton fractionation scheme is taken as the baseline. For the photon and
the combined modality treatment, we determine the physical dose that is required in
the single modality proton fractionation scheme to obtain the same tumor BED. This
physical dose value is named the BED equivalent dose the treatment, and is used as a
performance measure for a fractionation scheme.

Results indicate that the potential for combined modality solutions is quite sub-
stantial. Out of 17 patients, for 5 patients there is a combined modality treatment
that offers an improvement over the optimal single modality proton treatments. Out
of these 5 patients, for 2 also the single modality photon plan outperformed the proton
plan. This group is discussed in Section 6.3.1. For 3 patients a near-optimal combined
modality solution exists that can reduce the number of required proton fractions; this
is discussed in Section 6.3.2. For the remaining 9 patients combined modality treat-
ments cannot offer any interesting alternative compared to the optimal single modality
proton treatment, because the proton dose distribution is better than the photon dose
distribution for all relevant OARs. This group is discussed in Section 6.3.3. There
are no cases where the single modality photon plan performs better than the optimal
combined modality plan.

6.3.1 Group 1: Combinedmodality treatment offers clear improve-
ment

For five patients, results indicate that a combined modality treatment can give better
results than the single modality proton treatment. Figure 6.2 compares the optimal
single modality proton and photon treatments to the combined modality treatment
that is found via solving (6.3). Above every bar the resulting BED equivalent physical
tumor dose is given and the number of used fractions are reported as (photon fx, proton
fx).

For these five patients, the BED equivalent dose is between 7.2% and 14.8% higher
in the combined modality treatment than in the single modality proton treatment. For
patients P2 and P3 the combined modality optimum uses more proton fractions than
the single modality proton optimum, but for the other three patients the number of
used proton fractions is in fact lower. For patient P1 the photon and proton treatments
yield a similar BED equivalent dose. For patients P2 and P3 the BED equivalent dose of
the proton treatment was higher than that of the photon treatment, and vice versa for
patients P4 and P5.
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Typically, for these patients the two modalities have different binding constraints.
That is, there are competing constraints, which prefer different treatment modalities.
In a combined modality treatment both of these constraints are binding. This will be
discussed in more detail in Section 6.4.

As an additional analysis, we have made slight adaptations to the optimization
algorithm, and minimized the mean liver BED under the restriction that the mean
tumor BED should be at least the mean tumor BED of the optimal single modality
proton treatment. For existence of a combined modality treatment with lower mean
liver BED than the optimal proton treatment, it is necessary for a patient to be in group
1 (in other groups combined modality cannot attain the required tumor BED), but this
is not sufficient. More details on this are provided in Section 6.4.5. Out of the five
patients in group 1, for two patients (P2 and P3) combined modality can reduce mean
liver BED (decrease of 8.0% and 10.2% in BED equivalent dose, respectively).
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Figure 6.2: Results for group 1, with separate bars for the optimal photon (white), proton
(black) and combined modality (dashed) results. Reported doses are in BED equivalent phys-
ical dose, to correct for different fractionation schemes. Above every bar the resulting BED
equivalent dose and the number of used fractions is reported as (photon fx, proton fx).

6.3.2 Group 2: Combined modality treatment offers alternative
with fewer proton fractions

This group consists of three patients. For these patients the optimum is a single modal-
ity proton treatment, which clearly outperforms the single modality photon treatment.
However, there are near-optimal combined modality solutions that use fewer proton
fractions. If we force the use of a number of photon fractions in (6.3), we obtain alter-
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native combined modality treatments. Figure 6.3 compares the optimal single modal-
ity photon and proton treatments to an alternative combined modality treatment.

We emphasize that the reported combined modality treatments in Figure 6.3 are
an example of a combined modality treatment that is optimal if we force the use of
a number of photon fractions (6.3), but this number may be varied. For example,
for patient P6 we forced the use of 8 photon fractions, but a smaller number is also
possible. This yields a BED equivalent GTV dose between that of the (0,15) and the
(8,7) treatment.
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Figure 6.3: Results for group 2, with separate bars for the optimal photon (white) and proton
(black) results and an example of a combined modality alternative treatment (dashed). Re-
ported doses are in BED equivalent physical dose, to correct for different fractionation schemes.
Above every bar the resulting BED equivalent dose and the number of used fractions is reported
as (photon fx, proton fx).

For each of these patients several proton fractions can be replaced by photon frac-
tions without a large decrease in average GTV BED equivalent dose. For example, for
patient P6 going from the (0,15) treatment to the (8,7) treatment gives a decrease
of 1.4 Gy in BED equivalent dose, which is on average −0.175 Gy per replaced frac-
tion. Such an alternative combined modality treatment is interesting if only a limited
number of proton fractions is available, and these must be allocated among a set of
patients.

6.3.3 Group 3: Single modality proton therapy is superior
For the remaining nine patients, the proton plan is significantly better than the photon
plan for all relevant OARs and a combined modality treatment is not very suitable. The
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optimal single modality proton treatments are reported in Table 6.2. For most of these
patients, it may only be optimal to combine proton fractions with photon fractions if
the maximum number of proton fractions that can be allocated is very low. In that case,
the added photon fractions provide the benefit of the fractionation effect. Typically, the
dose distributions for these patients are such that there is only one OAR that restricts
the dose that can be delivered, and the proton plan spares this OAR better than the
photon plan. For illustration, columns 4 and 5 of Table 6.2 give the optimal treatment
if we force the use of at least one photon fraction. For some patients the deterioration
in BED equivalent GTV dose is not very large. However, in all these cases only one
photon fraction with a dose between 1.0 and 1.2 Gy (the lower bound is 1.0 Gy) is
used. Hence, for these patients enforcing the use of a single photon fraction has a
visible negative effect even if the photon fraction uses only a low dose.

Patient Photon optimum Proton optimum Combined modality alternative
Dose (Gy) Fractions Dose (Gy) Fractions Dose (Gy) Fractions

P9 43.0 (3,0) 55.0 (0,15) 54.6 (1,14)
P10 35.0 (15,0) 71.0 (0,15) 70.2 (1,14)
P11 57.6 (15,0) 72.4 (0,15) 71.9 (1,14)
P12 55.7 (4,0) 78.8 (0,15) 78.4 (1,14)
P13 44.3 (15,0) 74.4 (0,15) 73.7 (1,14)
P14 45.0 (4,0) 87.2 (0,9) 86.5 (1,9)
P15 37.8 (3,0) 63.2 (0,15) 62.8 (1,14)
P16 54.4 (15,0) 66.9 (0,15) 66.5 (1,14)
P17 60.8 (15,0) 92.5 (0,15) 91.8 (1,14)

Table 6.2: Results for group 3. The optimal single modality proton and photon solutions are
reported, with doses in BED equivalent dose. The reported combined modality alternatives are
the optimal treatments if we force the use of at least one photon fraction. The used photon
fraction in the combined modality solutions has a dose between 1.0 and 1.2 Gy for all patients.
The number of used fractions is reported as (photon fx, proton fx).

6.4 Discussion
This section provides a detailed discussion of the results of Sections 6.3.1 and 6.3.2, by
analyzing the results for two patients: patient P1 (Section 6.4.1) and P6 (Section 6.4.3).
Additionally, Section 6.4.2 discusses the results for OAR sparing.
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6.4.1 Illustration of Group 1
Patient P1 was clinically treated with 15 proton fractions. The location of the GTV in the
liver is indicated in Figure 6.4, which displays two computed tomography (CT) slices
for both the photon and the proton dose distribution. For the most relevant constraints
see Table 6.1. The clinical plan violated the 700cc constraint, which is omitted here as
well.

For this patient the dose tolerances for the healthy liver mean constraints are 17
Gy in 5 fractions and 27 Gy in 15 fractions. Table 6.3 shows the results for the optimal
combinedmodality treatment and the optimal singlemodality treatments. The optimal
combined modality treatment delivers an average GTV BED of 72.5 Gy10, and uses 3
photon fractions and 12 proton fraction. The corresponding BED equivalent GTV dose
(in 15 fractions) is 53.5 Gy. The optimal single modality proton treatment delivers an
average GTV BED of 61.0 Gy10 in 15 fractions; the corresponding BED equivalent dose
is 46.6 Gy. Therefore, the combined modality treatment gives an improvement in BED
equivalent dose of 14.8% compared to the optimal single modality proton treatment.

Single modality photon Single modality proton Combined modality

GTV BED 61.0 Gy10 61.0 Gy10 72.5 Gy10

BED equivalent dose 46.5 Gy 46.6 Gy 53.5 Gy

Photon fractions 10 fx (4.2 Gy/fx) - 3 fx (4.7 Gy/fx)1 fx (1.0 Gy/fx)

Proton fractions - 15 fx (3.1 Gy/fx) 12 fx (3.2 Gy/fx)

Table 6.3: Results for patient P1. The optimal combined modality treatment delivers a higher
BED equivalent dose to the GTV than the single modality treatments. For this patient the
optimal single modality photon and proton plans perform similarly.

In the single modality proton case the 0.5cc duodenum DVH constraint is binding,
and in the single modality photon case the (17 Gy in 5 fractions) liver-CTV mean dose
constraint is binding (technically, the 30% liver-CTV DVH constraint is also binding).
Note that single modality photon is the only treatment that has non-constant dose per
fraction. the optimal single modality proton treatment has constant dose per fraction,
and the optimal combined modality treatment has constant dose per fraction within
eachmodality. Restricting the singlemodality photon case to constant dose per fraction
as well, the optimal treatment delivers an average GTV BED of 60.9 Gy10, using 10
fractions of 4.3 Gy/fx. This is only marginally worse than the optimal non-constant
dose per fraction single modality photon treatment.
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(a) Photon, CT slice 1 (b) Proton, CT slice 1

(c) Photon, CT slice 2 (d) Proton, CT slice 2

Figure 6.4: Spatial dose distribution in photon and proton plans of patient P1 in two slices.
The GTV, liver-CTV and duodenum are delineated.

If both photon and proton fractions are used, the GTV BED can be increased (com-
pared to the single modality cases) such that both the liver mean dose constraint and
the duodenum constraint are binding, while the 30% liver-CTV DVH constraint is also
satisfied.

As seen on the CT slices in Figure 6.4b, a small portion of the duodenum volume
extends to the center of the high dose region of the proton beam. The photon dose to
this area is much lower. The only way for protons to protect the duodenum is to keep
the dose per fraction relatively low, consequently the dose per fraction in the single
modality proton plan is only 3.1 Gy/fx (see Table 6.3). In comparison, using photons
allows mild hypofractionation, until the liver mean dose constraint becomes binding.
The combined treatment allows us to deliver some of the proton dose using photons,
which are less restrictive for the duodenum. Therefore, we can increase the GTV BED
until the liver mean dose constraint also becomes binding. Essentially, some of the
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proton fractions are omitted to give a hypofractionated photon dose boost.
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Figure 6.5: DVH for proton and combined modality plans for patient P1. Dashed lines are
the optimal single modality proton solution, solid lines the optimal combined modality solu-
tion. The combined modality solution attains a higher average GTV BED while satisfying all
constraints, but at the cost of increased dose to several OARs, most notably the healthy liver.

Figure 6.5 shows the DVH of the combinedmodality optimal solution and the single
modality proton optimal solution for the GTV and some relevant OARs, in terms of BED
equivalent physical dose in 15 fx. Clearly, the GTV dose is significantly larger in the
combined modality plan than in the single modality proton plan. This does come at
the cost of a larger dose to several OARs: in particular, larger volumes of the liver and
the stomach receive a low to medium dose instead of no dose, due to the photon dose
distribution. However, all OAR constraints are naturally still satisfied.

6.4.2 Demonstration of OAR sparing
From Figure 6.5 it may seem that simply allowing higher OAR doses for a single modal-
ity proton plan could yield similarly large tumor BED values as the combined modality
plan. This is in general not the case. To show this we performed additional analysis for
patient P1 by minimizing healthy liver BED for both single modality proton and com-
bined proton-photon treatments, subject to the constraint that the tumor BED should
be at least 72.5 Gy10 (the mean GTV BED value in the optimal combined plan when
GTV BED was maximized). All other OAR constraints are omitted. The resulting DVH
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Figure 6.6: DVH for proton and combined modality plans for patient P1 for mean liver BED
minimization. Mean tumor BED is constrained to be at least 72.5 Gy10. Dashed lines are the
optimal single modality proton solution, solid lines the optimal combined modality solution.
The healthy liver dose distribution is comparable, while the single modality proton solution
violates the duodenum 0.5cc DVH constraint.

is displayed in Figure 6.6, where also the optimal combined modality plan is displayed.
The resulting proton plan uses 15 fractions of 3.6 Gy. The resulting liver dose distribu-
tions are comparable, however by not using proton fractions alone combined modality
is better able to spare the duodenum. As given in Table 6.1, at 15 fractions the duode-
num volume that receives more than 40 Gy should be at most 0.5cc, but as indicated
in Figure 6 this volume in the proton plan is in fact 1.3cc. This result indicates that,
even if combined modality is not able to reduce mean liver BED compared to single
modality proton (see Section 6.3.1), combined modality plans may still yield benefits
in terms of OAR sparing for other OARs than healthy liver.

As mentioned in Section 6.3.1, for 2 patients (P2 and P3) combined modality treat-
ment was found to be able to lower healthy liver mean dose. In case of mean tumor
BED maximization, for patient P2 the binding constraint in the single modality proton
and photon treatments are the 0.5cc small bowel DVH constraint and the mean liver
dose constraint, respectively. For P3, the situation is similar, the only difference being
that the binding constraint for single modality proton is the 0.5cc stomach DVH con-
straint. For the mean healthy liver BED minimization, the lower bound on the GTV
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mean BED is set at the GTV BED of optimal single modality proton treatment. For
patients P2 and P3 single modality proton attains the maximum GTV BED using fewer
than the maximum of 15 fractions. For the combined modality treatment it is easier to
get to this GTV BED, because it can better spare the second OAR (small bowel or stom-
ach) than the single modality proton treatment. Hence, it can exploit the fractionation
effect better for OAR sparing. Furthermore, although the photon dose distribution has
a higher mean healthy liver dose than the proton dose distribution, the locations of
their healthy liver high dose areas need not be the same. Hence, a combined treat-
ment may deliver the healthy liver dose more homogeneously, leading to a lower dose
shape factor (Perkó et al., 2018) and a lower healthy liver BED.

6.4.3 Illustration of Group 2
Patient P6 was also clinically treated with 15 proton fractions. Two CT slices are dis-
played in Figure 6.7, visualizing the dose distributions for both photons and protons.
The relevant organs are the liver, the stomach, and the cord (see Figures 6.7c and 6.7d
showing the lower CT slice). The dose tolerances for the healthy liver mean dose con-
straint are 17 Gy in 5 fractions and 27 Gy in 15 fractions, for the other constraints see
Table 6.1. The clinical plan violated the 700cc constraint, which is omitted here as
well.

The optimal GTV BED is 92.6 Gy10 and is obtained at 15 proton fractions, see
column 3 of Table 6.4. The corresponding physical dose to the GTV is 64.7 Gy. There
are no combined modality treatments that yield a higher average GTV BED, the reason
for this is shown in Figure 6.7. As seen in the CT slices of Figure 6.7a and Figure 6.7b,
both the proton and the photon high dose region fall almost entirely inside the liver,
so the healthy part of the liver gets a large average dose in both modalities. However,
the tumor is very close to a small extension of the stomach, and protons spare this part
slightly better than photons, making single modality proton treatments optimal.

In the single modality proton plan the binding constraint is the (17 Gy in 5 frac-
tions) mean dose constraint on the liver, while the 0.5cc stomach DVH constraint is
almost binding. In the single modality photon plan this is reversed; the stomach con-
straint is binding, while the liver mean dose constraint is almost binding. Similar to
patient P1, we check the influence of restricting the single modality photon case to con-
stant dose per fraction: the optimal treatment delivers an average GTV BED of 82.7
Gy10, using 6 fractions of 7.8 Gy/fx, again a negligible difference (compared to column
1 in Table 6.4).

Using the results reported in Table 6.4, let us compare the optimal single modal-
ity proton solution to the combined modality alternative that uses 7 proton fractions
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(a) Photon, CT slice 1 (b) Proton, CT slice 1

(c) Photon, CT slice 2 (d) Proton, CT slice 2

Figure 6.7: Spatial dose distribution in photon and proton plans of patient P6 in two slices.
The GTV, liver-CTV, stomach and cord are delineated. CT slice 1 is the higher of the two slices.

and 8 photon fractions. The average GTV BED of this combined modality solution is
90.1 Gy10, and the corresponding BED equivalent physical GTV dose is 63.3 Gy. This
is a decrease of 1.4 Gy in BED equivalent GTV dose for a substitution of 8 fractions.

When substituting some proton fractions in the single modality proton treatment
with photon fractions, the remaining space in the 0.5cc stomach DVH constraint is
used as well. This is because protons damage the part of the stomach that is close
to the tumor slightly more than photons. Consequently, both the 0.5cc stomach DVH
constraint and the liver mean dose constraint become binding. However, as protons
spare the liver a bit better, the attainable average GTV BED decreases. The BED to the
cord also increases significantly compared to the single modality proton plan, where
it received almost no dose. Nevertheless, the tolerance level of the 0.5cc cord DVH
constraint is not violated.
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Single modality photon Single modality proton Combined modality

GTV BED 82.8 Gy10 92.6 Gy10 90.1 Gy10

BED equivalent dose 59.3 Gy 64.7 Gy 63.3 Gy

Photon fractions 5 fx (8.7 Gy/fx) - 8 fx (3.7 Gy/fx)1 fx (1.0 Gy/fx)

Proton fractions - 15 fx (4.3 Gy/fx) 7 fx (4.8 Gy/fx)

Table 6.4: Results for patient P6. The reported combined modality treatment is an alternative
to the single modality proton treatment. It delivers a slightly lower BED equivalent dose to the
GTV, but uses fewer proton fractions.
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Figure 6.8: DVH for proton and combined modality plans for patient P6. The dashed lines
are the optimal single modality proton solution, the solid lines are the alternative combined
modality solution. The combined modality solution yields a slightly lower average GTV BED,
while using 8 fewer proton fractions.

Figure 6.8 shows the DVH for the GTV, healthy liver, stomach, cord and duodenum,
in terms of BED equivalent dose. The dashed lines are the optimal single modality
proton plan which uses 15 proton fractions, and the solid lines are the alternative
combined modality plan which uses 7 proton fractions and 8 photon fractions. We
see that indeed the BED equivalent average GTV dose is slightly higher for the single
modality proton plan than for the combined modality plan. Furthermore, the low
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dose volumes for the liver, stomach and cord increase. At the same time, the high dose
volume for the liver decreases.

6.4.4 Connection to clinically used NTCP models
In the Netherlands a model based approach is used to determine proton therapy el-
igibility (Blanchard et al., 2016; Widder et al., 2016; Bijman et al., 2017). Patients
are eligible for protons if normal tissue complication probability (NTCP) models show
that protons offer a significant improvement over photons. As NTCP models are often
BED distribution based models (Perkó et al., 2018), our work fits this procedure nicely.
Our approach can show that when using a combined modality approach we can get a
higher tumor BED for the same BED constraint, or alternatively for a given tumor dose
we can decrease OAR BED. This takes the current Dutch approach to the next level, not
only making binary decisions between photons or protons, but instead looking into the
correct combination of proton and photon fractions for complication minimization.

6.4.5 Clinical aspects and limitations
We do not have a precise measure of the robustness of the combined proton-photon
plans that are obtained via the approach of Section 6.2.2. However, any combined
proton-photon plan that is obtained via our approach is essentially a weighted aver-
age of the input clinical proton and photon plans. As discussed in Section 6.2.2 and
Perkó et al. (2018), for all used plans proper clinical measures were taken to handle
uncertainties. Therefore, as in any fraction either (a scaled version of) the proton or
photon plan is delivered, the combined proton-photon treatment is also robust against
the same uncertainties.

As the approach of Section 6.2.2 takes the proton and photon dose distribution as
an input, whether or not combined modality is optimal for a patient depends on these
initial proton and photon plans. As such, different plans may yield different results.
The proton and photon plans used in the numerical study in Section 6.3 were however
either clinically used plans, or plans that were derived under clinical circumstances, as
if they were to be delivered. This implies that under the same clinical circumstances,
our results are representative of the realistic clinical benefit of combined modality
treatments.

Our approach excludes spatiotemporal optimization, and simply scales the given
proton and photon dose distributions. Since in spatiotemporal optimization of a com-
bined proton-photon treatment the individual dose spatial distributions are also opti-
mized, this may improve on our methodology. However, the results from spatiotem-
poral optimization can only yield a larger benefit for combined modality treatments
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compared to what is presented in Section 6.3. That is, the presented results for indi-
vidual patients should be seen as a ‘lower bound’ on the benefit of a combined modal-
ity treatment for the patient, reinforcing our main conclusions. Furthermore, although
spatiotemporal optimizationmay yield better results, the presented approach has some
practical advantages. Planning, reviewing and quality assurance procedures are well
established for single modality treatment plans and these could be seamlessly used
for our combined modality approach, as either modality can be separately dealt with.
In fact, this is exactly how currently combined treatments are used in the clinic (e.g.,
in case of a proton machine breakdown when patients are redirected to photon treat-
ments for the remainder of their treatment).

We have only tested our approach on liver patients, thus we cannot make any state-
ments about the potential of combined proton-photon treatment schemes in other tu-
mor sites. Nevertheless, the mathematical approach of Section 6.2.2 does not make
any assumptions on the specific tumor site, and is applicable to any case where both a
proton and photon dose distribution are available. The reasons why combined modal-
ity may be optimal, as demonstrated in Section 6.2.1, can also occur in other tumor
sites, particularly those where there are multiple OARs in proximity to the tumor.

In our numerical experiments the objective is tomaximize themean BED to the GTV
(a general recommendation for liver patients is to not expand the GTV to a larger CTV
(Dawson et al., 2012)). However, we also performed experiments with maximizing
mean CTV BED, indicating that the difference in results from maximizing mean GTV
BED is very little. The protocol (Dawson et al., 2012) also recommends the mean liver
dose to be calculated on the liver-GTV, whereas we considered liver-CTV (volume that
is healthy with high likelihood). This difference is not expected to influence results
either (as the CTV-GTV volume receives very similar doses from both protons and
photons).

We also show that minimizing OAR BED can lead to optimal combined modality
treatments for the same reasons. First, Appendix 6.A.3 discusses the simplistic ana-
lytical model to show why also for OAR dose sparing combined modality may be of
use. Second, the numerical experiments have shown that, for the patients in Group
1 (Section 6.3.1), combined modality may also achieve lower healthy liver BED. Sec-
tion 6.4.1 discusses these numerical results and additionally shows an example of lower
duodenum dose due to difference in spatial dose distribution.
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6.5 Conclusion
Proton therapy has several advantages over conventional photon therapy. However,
in current clinical practice protons are not better for all organs in all cases, especially
not when larger margins are needed for large motion uncertainty. Consequently, this
work analyzed the benefit of combined modality treatments. It is demonstrated both
via theoretical results and real patient case studies that combined modality treatments
can result in superior dosimetric treatment plan quality. One reason for this is that in
case of multiple constraints, one constraint may be more restrictive for one treatment
modality, while the other is more restrictive for the other. A second reason is that even
in situations where the proton plan is superior in terms of physical dose, using photon
fractions can result in treatment plans that are better, due to the fractionation effect.

Results from the case study on real data from patients treated at Massachusetts
General Hospital show that for 5 out of 17 patients indeed combined modality treat-
ments outperform the single modality proton treatment, with improvements of up to
14.8% in BED equivalent physical dose. For these patients in our cohort the single
modality photon and proton treatments have different binding constraints, while their
combination is binding in the optimal combined modality solution, corresponding well
with theoretical results. For 2 out of these 5 patients, also the single modality photon
plan yields a higher BED equivalent physical dose than the proton plan.

For several other patients combinedmodality treatments are near-optimal while us-
ing fewer proton fractions. Especially because of the price tag and the limited availabil-
ity of proton fractions, such alternatives that put less pressure on the proton machine
of a certain treatment facility may be very interesting. In conclusion, the potential for
combined modality treatments is considerable.
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6.A Mathematical derivation of optimality of combined
modality treatments

This section discusses the simplified geometry of Figure 6.1 in Section 6.2.1, and formulates
several mathematical models that demonstrate the benefit of combining photons with protons
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instead of using only protons. The optimization is based on the BEDmodel, which is introduced
in Section 6.2, and in Section 6.2.1 the setting is described. For this demonstration we make
two assumptions. Note that these assumptions are strictly only made for this analytical exercise
highlighting why combined modality can be optimal, and not for the general methodology or
any of the real patient cases in the chapter.

Assumption 6.1. The protons dose distribution has a larger high dose but smaller low dose region
than the photon dose distribution.

Assumption 6.2. For a fixed tumor dose, the proton dose distribution delivers lower mean dose
to OAR 1 than the photon dose distribution.

Parameters f H
i and f L

i denote the high and low dose volume fraction of OAR 1 for modality
i, respectively, where i = γ denotes photons and i = p denotes protons. Let w denote the high
dose volume fraction of OAR 2 for the proton beam. Assumption 6.1 mathematically implies
that f H

γ < f H
p and f L

γ > f L
p . Let DT

γ , the mean tumor dose for photons, and DT
p , the mean tumor

dose for protons, be the decision variables (superscript T refers to the tumor). For the OARs,
the low dose can be expressed as Dlow

i = si D
T
i , where si ∈ [0,1] is the dose sparing factor of

modality i for the low dose region. The high dose areas are assumed to receive the full tumor
dose, so Dhigh

i = DT
i . The mean dose in OAR 1 due to modality i can be written as a function

of mean tumor dose due to modality i:

DOAR1
i (DT

i ) = si f L
i DT

i + f H
i DT

i = (si f L
i + f H

i )D
T
i .

Assumption 6.2 implies that for a fixed tumor dose the mean proton dose to OAR 1 is smaller
than the mean photon dose to OAR 1, i.e., sγ f L

γ + f H
γ > sp f L

p + f H
p . For notational convenience,

we introduce the parameters

rγ = sγ f L
γ + f H

γ , qγ = s2
γ f L
γ + f H

γ ,

rp = sp f L
p + f H

p , qp = s2
p f L

p + f H
p ,

(6.A.1a)

(6.A.1b)

which provide a linear and quadratic mapping from tumor dose to OAR dose. Using this nota-
tion, Assumption 6.2 implies rγ > rp.

The first model (related to reason 1 in Section 6.2.1) does not take into account fractiona-
tion, and sets a mean dose constraint on OAR 1 and a DVH constraint on OAR 2. In the second
model (related to reason 2 in Section 6.2.1) we allow for a fractionation effect in OAR 1 but
not in the tumor, and we set a mean BED constraint on OAR 1 (OAR 2 is not taken into ac-
count). In Appendix 6.C, a third model is discussed, which is an extension of the second model
also allowing for fractionation effects in the tumor. In Appendix 6.A.3 we take an alternative
approach, and minimize OAR BED subject to a prescribed tumor dose.
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6.A.1 Reason 1 - Mathematical model
To maximize the dose delivered to the tumor, while satisfying all constraints set on the OARs,
we rescale the dose distributions, increasing or decreasing the dose in the OARs and the tumor
simultaneously. That is, DT

γ and DT
p are the decision variables.

We set a mean dose constraint on OAR 1 and a DVH constraint on OAR 2. Let Dtol
mean denote

the largest average dose that OAR 1 can tolerate, as determined by the physician. Suppose the
DVH constraint states that no more than a fraction k of the volume of OAR 2 may receive a
higher dose than Dtol

dvh. This constraint can potentially be more restrictive for the proton dose
distribution than for the photon dose distribution. In the photon plan OAR 2 receives only low
dose. If k < w, the total dose to the proton high dose volume w must not exceed the tolerance
level Dtol

dvh. OAR 2 receives only photon low dose. Therefore, volume w receives a dose of
sγD

T
γ + DT

p in the combined modality plan, which must be below the DVH tolerance dose Dtol
dvh.

The optimization problem with both a mean dose constraint and a DVH constraint reads

max
DT
γ , DT

p

DT
γ + DT

p ,

s.t. rγD
T
γ + rpDT

p ≤ Dtol
mean,

sγD
T
γ + DT

p ≤ Dtol
dvh,

DT
γ ≥ 0, DT

p ≥ 0.

(6.A.2a)

(6.A.2b)

(6.A.2c)

(6.A.2d)

In the problem described by (6.A.2) it does not necessarily have to hold that using only pho-
tons or only protons is optimal. Problem (6.A.2) is a linear programming problem with two
variables. The feasible region of (6.A.2b) is illustrated in Figure 6.A.1. It can easily be verified
that the vertices of the feasible region are

C1 =
�
0,0
�
, C2 =

�
min
	Dtol

mean
rγ

,
Dtol
dvh
sγ



, 0
�
,

C3 =
�
0,min
	Dtol

mean
rp

, Dtol
dvh


�
, C4 =

�Dtol
mean − Dtol

dvhrp

rγ − sγrp
,

rγD
tol
dvh − sγD

tol
mean

rγ − sγrp

�
.

Linear programming theory states that the optimal solution is attained in one (or more) of
these vertices. Vertex C1 is clearly not optimal because the corresponding objective value is
0. Vertices C2 and C3 comprise single modality solutions and C4 is the combined modality
solution. Vertex C4 is only a feasible vertex if both coordinates are positive. It readily follows
that this leads to the following condition:

rp <
Dtol
mean

Dtol
dvh
<

rγ
sγ

. (6.A.3)
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In Figure 6.A.1a this condition holds, so all vertices C1, C2, C3 and C4 are feasible. In Fig-
ure 6.A.1b condition (6.A.3) does not hold, and the horizontal coordinate of C4 is negative. In
this situation, the mean dose constraint (6.A.2b) is binding at any feasible vertex. In case the
vertical coordinate of C4 is negative, DVH constraint (6.A.2c) is binding at any feasible vertex.

We are interested in conditions under which C4 is optimal, in case it is feasible (the situation
in Figure 6.A.1a), rather than the single modality solutions (vertices C2 and C3). In (6.A.2a)
the coefficients for DT

1 and DT
2 are both 1, so the objective function is a straight line with slope

−1. Due to Assumption 6.2 the mean dose to OAR 1 is lower for the proton dose distribution
than for the photon dose distribution. Therefore, in the mean dose constraint (6.A.2b) the
coefficient for proton dose is smaller than that for photon dose, implying that the slope for the
mean dose constraint is smaller than −1. If the slope of the DVH constraint (6.A.2c) is larger
than −1, combined modality is optimal. This reduces to sγ < 1, which holds by definition.
Hence, combined modality is always optimal as long as the solution candidate C4 is feasible,
which holds if the dose tolerances satisfy condition (6.A.3).

For example, let f L
γ = 0.82, f H

γ = 0.18, sγ = 0.32 be the parameters for the photon dose
distribution, and let f L

p = 0.37, f H
p = 0.23 and sp = 0.38 be the parameters for the proton dose

distribution. Then the proton high dose area is larger than the photon high dose area, while
the photon mean dose to OAR 1 is larger than the proton mean dose to OAR 1. Condition
(6.A.3) reads

0.37<
Dtol
mean

Dtol
dvh
< 1.38,

which is satisfied by for example Dtol
mean = 20 Gy and Dtol

dvh = 35 Gy.

6.A.2 Reason 2 - Mathematical model
We extend the previous model to allow for a fractionation effect in OAR 1. For this model, OAR
2 is ignored to demonstrate that even with a single OAR combined modality treatments can be
optimal. Let ρ denote the inverse α/β -ratio of OAR 1. With ri and qi defined by (6.A.1), one
can verify that the mean BED to OAR 1 due to modality i is

BEDOAR1
i (di , Ni) = ri

Ni∑
ti=1

di,ti
+ρqi

Ni∑
ti=1

d2
i,ti

.

We assume that the α/β -ratio in the tumor is very large so that we can neglect the fractionation
effect in the tumor. That is, we are interested in the physical tumor dose

DT = DT
γ + DT

p =
Nγ∑

tγ=1

dγ,tγ +
Np∑

tp=1

dp,tp
.
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Figure 6.A.1: Feasible region (grey) of (6.A.2), which is the convex hull of (some of) the
vertices C1 – C4. The feasible region is constrained by a DVH constraint (on OAR2) and a mean
dose constraint (on OAR1).

We aim to maximize the total tumor dose while constraining mean OAR BED below a fixed
value BEDtol. The optimization problem looks as follows:

max
dγ, dp

Nγ∑
tγ=1

dγ,tγ +
Np∑

tp=1

dp,tp
,

s.t. rγ

Nγ∑
tγ=1

dγ,tγ +ρqγ

Nγ∑
tγ=1

d2
γ,tγ
+ rp

Np∑
tp=1

dp,tp
+ρqp

Np∑
tp=1

d2
p,tp

≤ BEDtol,

dγ,tγ ≥ 0, tγ = 1, . . . , Nγ, dp,tp
≥ 0, tp = 1, . . . , Np.

(6.A.4a)

(6.A.4b)

(6.A.4c)

Our decision variables are dγ ∈ �Nγ
+ and dp ∈ �Np

+ . In (6.A.4), Nγ and Np are considered fixed
parameters, and treatment plans with fewer than Nγ photon or Np proton fractions can be
found by setting the corresponding elements of dγ and dp at zero. In other words, Nγ and
Np are parameters indicating an upper bound on the number of photon and proton fractions,
respectively.
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In Appendix 6.D it is shown that the following problem is equivalent to (6.A.4):

max
xγ, yγ, xp , yp

xγ + xp,

s.t. rγxγ +ρqγ yγ + rp xp +ρqp yp ≤ BEDtol,�
yγ ≤ xγ ≤�N1 yγ,�
yp ≤ xp ≤�N2 yp,

xγ ≥ 0, yγ ≥ 0, xp ≥ 0, yp ≥ 0.

(6.A.5a)

(6.A.5b)
(6.A.5c)
(6.A.5d)
(6.A.5e)

For a fixed dose to (part of) the OAR, the BED to (that part of) the OAR will be lower if this
dose is administered over multiple fractions. Because in this problem the number of fractions
does not influence the damage to the tumor (fractionation in the tumor is ignored), the optimal
solution will always use the maximum number of allowed fractions. Therefore, it will always
hold that xγ =

�
Nγ yγ and xp =

�
Np yp. Plugging this in (6.A.5b) gives an optimization

problem with only decision variables xγ and xp. Furthermore, at optimality (6.A.5b) will hold
with equality, because the total physical dose to the tumor is increased until the OAR BED
tolerance is reached. Therefore, we can rewrite (6.A.5b) in terms of xγ and eliminate variable
xp as well.

The resulting optimization problem reads
max

xp
f (xp),

s.t. 0 ≤ xp ≤ xU
p ,

where

f (xp) = xp +
Nγ

2ρqγ

�− rγ +
�
r2
γ − 4

ρqγ
Nγ
(rpz +

ρqp

Np
x2

p − BEDtol)
� 1

2
�
,

xU
p =

Np

2ρqp

�− rp +
�
r2

p + 4
ρqp

Np
BEDtol
� 1

2
�
.

Function f (xp) is concave, because it is a composite function of a nondecreasing concave func-
tion and a concave function (Boyd and Vandenberghe, 2004). Hence, it follows that a single
modality photon treatment is optimal if f ′(0) ≤ 0, a single modality proton treatment is opti-
mal if f ′(xU

p )≥ 0, and combined modality is optimal otherwise. The derivative of the objective
function is

f ′(xp) = 1+
�− rp − 2

ρqp

Np
xp

��
4
ρqγ
Nγ
(BEDtol − xp(rp +

ρqp

Np
xp)) + r2

γ

�− 1
2
. (6.A.6)

From (6.A.6) the following easily follows:
• Single modality photon is never optimal;

• Combined modality is optimal if BEDtol >
Np(r2

γ − r2
p)

4ρqp
;

• Single modality proton is optimal otherwise.
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Thus, there is a threshold for BEDtol beyond which the benefit of fractionation outweighs
the worse OAR sparing properties of the photons in terms of physical dose. Using basic algebra
the optimal dose per fraction values can be calculated for both situations.

6.A.3 Minimization of OAR BED
To show that the optimality of combined modality treatments is not restricted to the previously
presented models, we analyze a model where we do not maximize tumor dose but minimize
OAR BED, while delivering a prescribed dose D̂ to the tumor. We immediately apply the map-
ping from tumor dose to OAR dose defined by (6.A.1), and the reformulation provided in
Appendix 6.D. The optimization problem looks as follows:

min
xγ, yγ, xp , yp

rγxγ +ρqγ yγ + rp xp +ρqp yp,

s.t. xγ + xp = D̂,�
yγ ≤ xγ ≤�Nγ yγ,�
yp ≤ xp ≤�Np yp,

xγ ≥ 0, yγ ≥ 0, xp ≥ 0, yp ≥ 0.

Similar to Appendix 6.A.2 the optimal solutionwill always use themaximumnumber of allowed
fractions. Therefore, it will always hold that xγ =

�
Nγ yγ and xp =

�
Np yp. This leads to a

problemwith four variables and three equality constraints, which can be simplified to a problem
with one variable. Making the substitution z =

�
yp leads to

min
z

�
ρqγ

Nγ
Np
+ρqp

�
z2 +
�
(rp − rγ)

�
Np − 2ρqγD̂

�
Np

Nγ

�
z +
�
pγD̂+ρ

qγ
Nγ

D̂2
�
,

s.t. 0 ≤ z ≤ D̂�
Np

.

(6.A.7a)

(6.A.7b)

The first order condition, i.e., zero-derivative, gives

ẑ =
(rγ − rp)Nγ

�
Np + 2ρqγ

�
NpD̂

2ρ(qpNγ + qγNp)
.

Because rγ > rp, it holds that ẑ > 0, so a single modality solution using only photons cannot
be optimal. It is easily verified that ẑ satisfies (6.A.7b) if D̂ ≥ D∗, where

D∗ =
(rγ − rp)Np

2qpρ
.

In this case, we can write xγ = D̂ − xp = D̂ −�Npẑ, from which it follows that if D̂ > D∗
holds we have xγ > 0 (and thus yγ > 0). This implies a combined proton-photon fractionation
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scheme. On the other hand, if D̂ ≤ D∗, then the optimal solution to (6.A.7) is

xp =
D̂�
Np

.

Because �yp = xp, we obtain xp = D̂, xγ = 0 and yγ = 0. Summarizing, we find that two
situations can be distinguished with regard to a single modality or combinedmodality solution:�

D̂ ≤ D∗ A single modality solution using only protons is optimal,
D̂ > D∗ A combined modality solution is optimal.

Using basic algebra the optimal dose per fraction values can be calculated for both situ-
ations. Similar to Appendix 6.A.2, combined modality is optimal if a threshold is exceeded,
although there the threshold is in terms of OAR BED tolerance while here it is in terms of the
prescribed tumor dose. Nevertheless, the intuition for the current result is analogous to the
intuition ‘reason 2’ presented in Section 6.2.1.

6.B Single modality optimal fractionation problem

Let ρT be the inverse α/β ratio for the tumor, let M denote the set of constraints and let ρm

denote the inverse α/β ratio for constraint m ∈ M. In Saberian et al. (2015) it is shown that
the single modality optimal fractionation problem with maximum point dose constraints, DVH
constraints and mean dose constraints can be formulated as

max
x , y

r x +ρT q y,

s.t. σm x +ρm(σm)2 y ≤ Bm, ∀m ∈ M,

y ≤ γ∗x ,

c∗x ≤ y,

x ≥ 0, y ≥ 0,

(6.B.1a)

(6.B.1b)
(6.B.1c)
(6.B.1d)
(6.B.1e)

where r, q, and σm, Bm, ∀m, are parameters. Furthermore,

γ∗ = min
m∈M

−1+
�

1+ 4ρmBm

2σmρm
,

c∗ = min
m∈M

−1+
�

1+ 4ρmBm/N
2σmρm

,

where N is the maximum allowed number of fractions. Variables x and y denote the dose
and sum of squared doses. Problem (6.B.1) is a 2-variable linear programming problem and is
easily solved.
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6.C Optimality with full fractionation and sensitivity
analysis

The model of Appendix 6.A.2 is extended to allow for a fractionation effect in the tumor as
well. This will make the problem more interesting, as it is not immediately clear how many
fractions of each modality should be used. The optimization problem will be formulated such
that the objective is to maximize the average tumor BED, under a constraint on the mean BED
in the OAR. In addition to the existing notation, let ρT denote the inverse α/β -ratio of the
tumor. The optimization problem now reads

max
xγ, yγ, xp , yp

xγ +ρ
T yγ + xp +ρ

T yp,

s.t. rγxγ +ρqγ yγ + rp xp +ρqp yp ≤ BEDtol,�
yγ ≤ xγ ≤�Nγ yγ,�
yp ≤ xp ≤�Np yp,

xγ ≥ 0, yγ ≥ 0, xp ≥ 0, yp ≥ 0.

(6.C.1a)

(6.C.1b)
(6.C.1c)
(6.C.1d)
(6.C.1e)

The objective and the BED tolerance constraint are linear, but the problem is nonconvex due
to the constraints �yγ ≤ xγ and

�
yp ≤ xp. Therefore, it is much harder to derive analytical

solutions. However, due to the small scale of the problem good solutions can be obtained nu-
merically using solvers such as the MATLAB function (MATLAB R2017b, Mathworks,
Natick, MA, US).

Problem (6.C.1) is solved using realistic data from an example patient (Patient P4 from our
data set). The clinical photon and proton dose distributions were available, from which the
mean OAR and mean tumor doses were obtained. For simplicity we assume that the liver, i.e.,
the OAR that contains the tumor, is the only relevant OAR. Let the high dose region be the
region where the OAR receives more than 80% of the average tumor dose. From DVH statistics
it is estimated that for the photon plan this is 18% of the OAR volume, and for the proton plan
it is 23%. From these statistics the dose sparing factors sγ and sp can be computed. The 3D
dose distribution, of which a slice is depicted in Figure 6.C.1, shows that the high dose region of
the proton plan is indeed encapsulated in the high dose region of the photon plan. Therefore,
the clinical plans indeed satisfy Assumption 6.1. Table 6.C.1 summarizes the most important
statistics for both distributions.

The values for the maximum number of allowed proton fractions, Np, the OAR fractiona-
tion sensitivity parameter ρ and the tolerance value of the mean dose constraint, BEDtol, are
varied. For comparison, the single modality proton problem is solved as well via the linear pro-
gramming formulation developed in Saberian et al. (2015), see also Appendix 6.B. The tumor
fractionation sensitivity parameter ρT is set at 1

10 and the number of allowed photon fractions
Nγ is set at 10.
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(a) Photon dose distribution (b) Proton dose distribution

Figure 6.C.1: 3D dose distribution of patient P4. The high dose region of the photon dose
distribution is encapsulated in the high dose region of the proton dose distribution.

Photon Proton

Dose sparing factor (si) 0.324 0.380
Volume fraction no dose 0% 40%
Volume fraction low dose ( f L

i ) 82% 37%
Volume fraction high dose ( f H

i ) 18% 23%

Table 6.C.1: Statistics on the photon dose distribution and the proton dose distribution and
the reference plans for patient P4.

Furthermore, the base values of the parameters are Np = 10, ρ = 1
4 and BEDtol = 20 Gyα/β .

In Figure 6.C.2a the value of ρ is varied, in Figure 6.C.2b the value of Np is varied and in
Figure 6.C.2c the value of BEDtol is varied. In each figure, the average tumor BED is measured
on the left vertical axis and the number of used fraction is measured on the right axis. In every
scenario, the number of used proton fractions is equal for both the single modality proton
treatment (squares) and the combinedmodality treatment (circles). The used photon fractions,
displayed with a grey circle, are used only in the combined modality treatment.

In Figure 6.C.2a parameter ρ is changed from 1
4 to 1

3 ,
1
6 ,

1
8 and 1

12 , respectively. A lower ρ
value yields an optimal solution with less photon dose. At ρ = 1

6 no photons are used anymore
and the optimal solution uses 10 proton fractions. Decreasing ρ even further gives solutions
that use hypofractionation instead of hyperfractionation. A lower ρ means that fractionation
is less beneficial, so adding extra photon fractions mainly leads to worse OAR sparing.

In Figure 6.C.2b the maximum number of allowed proton fractions is varied. As expected,
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(a) Varying the value of ρ in problem (6.C.1)
and the single modality proton LP. For higher
values of ρ it is optimal to use a combined
modality treatment, for lower values single
modality proton treatments are optimal. The
higher ρ, the more proton fractions are used.
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(b) Varying the value of Np in problem (6.C.1)
and the single modality proton LP. In all sce-
narios, all available fractions are used. The
higher Np, the smaller the difference in tumor
BED between the combined modality treat-
ment and the single modality proton treat-
ment.
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(c) Varying the value of BEDtol in problem
(6.C.1) and the single modality proton LP.
In all cases, all available fractions are used.
The larger BEDtol, the larger the difference
in tumor BED between the combined modal-
ity treatment and the single modality proton
treatment.

Combined BED
Combined modality proton fractions
Combined modality photon fractions

Single modality proton BED
Single modality proton fractions

Figure 6.C.2: Results of solving problem (6.C.1) and the single modality LP as formulated in Saberian
et al. (2015) for the data in Table 6.C.1. The average tumor BED is measured on the left vertical axis and
the number of used fractions is measured on the right axis. In every scenario, the number of used proton
fractions is equal for both the single modality proton treatment and the combined modality treatment.
The displayed photon fractions for every scenario are used only in the combined modality treatment.
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a higher number of allowed proton fractions means there is less need to use the extra photon
fractions. Hence, the total physical dose delivered via photon fractions is lower. In the case
with Np = 20 the photon fractions deliver a dose of 1.5 Gy in 10 fractions. This is clinically not
desirable, and in such a situation one would simply omit these fractions.

In Figure 6.C.2c the BED tolerance level of the mean dose constraint is varied. First of all,
we note that an increase of 10 Gyα/β results in an average tumor BED increase of 20 Gyα/β .
Furthermore, we find that a higher BEDtol yields optimal solutions wheremore dose is delivered
via photon fractions. This corresponds with the analytical results derived for the model of
Appendix 6.A.2.

6.D 4-Variable reformulations
The following lemma extends the results of Saberian et al. (2015) for the single modality case
to the combined modality case.

Lemma 6.3. Let f : �Nγ×Np
+ �→ � and g : �4 �→ � such that

f (dγ,dp) = g(d�
γ e, d�

γ dγ, d�
p e, d�

p dp), (6.D.1)

holds, where e denotes the all-ones vector. Furthermore, let u ∈ �r , and X ⊆ �4+r , such that
X �= �. Then the optimization problem

min
dγ, dp , u

f (dγ,dp),

s.t.
�
d�
γ e, d�

γ dγ, d�
p e, d�

p dp, u
� ∈ X ,

dγ ≥ 0, dp ≥ 0,

(6.D.2a)

(6.D.2b)

(6.D.2c)

is equivalent to

min
xγ, yγ, xp , yp , u

g(xγ, yγ, xp, yp),

s.t. (xγ, yγ, xp, yp, u) ∈ X ,�
yγ ≤ xγ ≤�Nγ yγ,�
yp ≤ xp ≤�Npw,

xγ ≥ 0, yγ ≥ 0, xp ≥ 0, yp ≥ 0.

(6.D.3a)

(6.D.3b)
(6.D.3c)
(6.D.3d)
(6.D.3e)

Proof. First, we show that from any feasible solution to (6.D.2) a feasible solution to (6.D.3)
can be obtained. Then we show the reverse statement.
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1. Let (dγ,dp, u) be a feasible solution to (6.D.2). Define

xγ = d�
γ e, yγ = d�

γ dγ, xp = d�
p e, yp = d�

p dp. (6.D.4)

Due to (6.D.2c), it holds that (xγ, yγ, xp, yp) satisfies (6.D.3e). Due to (6.D.2b) it holds
that (xγ, yγ, xp, yp, u) satisfies (6.D.3b). Also, due to the Cauchy-Schwartz inequality:

yγ = d�
γ dγ ≤ (d�

γ e)2 = x2
γ ,

x2
γ = (d

�
γ e)2 ≤ Nγd

�
γ dγ = Nγ yγ,

so xγ and yγ satisfy (6.D.3c). Similarly it can be shown that xp and yp satisfy (6.D.3d).
Therefore, (xγ, yγ, xp, yp, u) is feasible for (6.D.3). Due to (6.D.1) and (6.D.4), it holds
that f (dγ, dp) = g(xγ, yγ, xp, yp).

2. Let (xγ, yγ, xp, yp, u) be a feasible solution to (6.D.3). Then�yγ ≤ xγ ≤�Nγ yγ. There

is an integer value N̂γ = 1, . . . , Nγ such that
�
(N̂γ − 1)yγ ≤ xγ ≤�N̂γ yγ. Define

d low
γ =

xγ −
�
(N̂γ − 1)(N̂γ yγ − x2

γ)

N̂γ
,

dhigh
γ =

xγ +
�
(N̂γ − 1)−1(N̂γ yγ − x2

γ)

N̂γ
.

Note that d low
γ ≥ 0 and dhigh

γ ≥ 0. Let dγ be a vector with one entry d low
γ , (N̂γ−1) entries

dhigh
γ and (Nγ − N̂γ) zeros. Then dγ ∈ �Nγ

+ , and we find

d�
γ e = d low

γ + (N̂ − 1)dhigh
γ = xγ,

where the last equality follows from elementary calculus. Similarly it can be shown that
d�
γ dγ = y. Using the same method we can construct a vector dp ∈ �N2

+ for which it holds
that d�

p e = xp and d�
p dp = yp. Therefore,�

d�
γ e, d�

γ dγ, d�
p e, d�

p dp, u
� ∈ X ,

so (dγ,dp, u) is feasible for (6.D.2). Due to (6.D.1) and xγ = d�
γ e, yγ = d�

γ dγ,
xp = d�

p e, yp = d�
p dp, it holds that f (dγ,dp) = g(xγ, yγ, xp, yp).

It remains to show that an optimal solution to (6.D.2) defines an optimal solution to (6.D.3)
and vice versa. This is trivial. The procedures (i) and (ii) provide feasible solutions that have
equal objective value. Therefore, procedures (i) and (ii) map optimal solutions of one problem
to optimal solutions of the other problem, and (6.D.2) and (6.D.3) are equivalent.
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This result covers the equivalence of (6.A.4) and (6.A.5) in Appendix 6.A.2. Furthermore,
it implies that problem (6.3) in Section 6.2.2 is equivalent to the following:

max
dγ,dp ,u

1
nT

nT∑
j=1

�
sT
γ, j

Nγ∑
tγ=1

dγ,tγ +ρ
T (sT
γ, j)

2
Nγ∑

tγ=1

d2
γ,tγ
+ sT

p, j

Np∑
tp=1

dp,tp
+ρT (sT

p, j)
2

Np∑
tp=1

d2
p,tp

�
,

s.t. sm
γ, j

Nγ∑
tγ=1

dγ,tγ +ρ
m(sm

γ, j)
2

Nγ∑
tγ=1

d2
γ,tγ
+ sm

p, j

Np∑
tp=1

dp,tp
+ρm(sm

p, j)
2

Np∑
tp=1

d2
p,tp

≤ BEDm
max, ∀ j = 1, . . . , nm, ∀m ∈ M1,

sm
γ, j

Nγ∑
tγ=1

dγ,tγ +ρ
m(sm

γ, j)
2

Nγ∑
tγ=1

d2
γ,tγ
+ sm

p, j

Np∑
tp=1

dp,tp
+ρm(sm

p, j)
2

Np∑
tp=1

d2
p,tp

≤ BEDm
dvh +M(1 − um

j ), ∀ j = 1, . . . , nm, ∀m ∈ M2,

nm∑
j=1

um
j ≥ nm − �F mnm�, ∀m ∈ M2,

um
j ∈ {0, 1}, ∀ j = 1, . . . , nm, ∀m ∈ M2,

1
nm

nm∑
j=1

�
sm
γ, j

Nγ∑
t1=1

dγ,tγ +ρ
m(sm

γ, j)
2

Nγ∑
tγ=1

d2
γ,tγ
+ sm

p, j

Np∑
tp=1

dp,tp
+ρm(sm

p, j)
2

Np∑
tp=1

d2
p,tp

�
≤ BEDm

mean, ∀m ∈ M3,

dγ,tγ ≥ 0, tγ = 1, . . . , Nγ, dp,tp
≥ 0, tp = 1, . . . , Np.

(6.D.5a)

(6.D.5b)

(6.D.5c)

(6.D.5d)

(6.D.5e)

(6.D.5f)

(6.D.5g)

6.E Details on optimization algorithm of Section 6.2.2

6.E.1 Solve for fixed {θ , vγ, vp}
Using the transformation (6.4) we reformulate model (6.3) in terms of {xγ,u,θ , vγ, vp}. It turns
out that, for given {θ , vγ, vp} the resulting problem is easy to solve. It is given by

max
xγ,u

1
nT

nGTV∑
j=1

�
sT
γ, j + sT

p, j
1 − θ
θ

�
xγ +
�
ρT
(sT
γ, j)

2

vγ
+ρT
�1 − θ
θ

�2 (sGT V
p, j )

2

vp

�
x2
γ ,

s.t.
�
sm
γ, j + sm

p, j
1 − θ
θ

�
xγ +
�
ρm
(sm
γ, j)

2

vγ
+ρm
�1 − θ
θ

�2 (sm
p, j)

2

vp

�
x2
γ

≤ BEDm
max, ∀ j ∈ nm,∀m ∈ M1,

(6.E.1a)

(6.E.1b)
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�
sm
γ, j + sm

p, j
1 − θ
θ

�
xγ +
�
ρm
(sm
γ, j)

2

vγ
+ρm
�1 − θ
θ

�2 (sm
p, j)

2

vp

�
x2
γ

≤ BEDm
dv +M(1 − um

j ), ∀ j ∈ Nm, m ∈ M2,

nm∑
j=1

um
j ≥ nm − �F mnm�, ∀m ∈ M2,

um
j ∈ {0,1}, ∀ j ∈ Nm, ∀m ∈ M2,

1
nm

nm∑
j=1

�
sm
γ, j + sm

p, j
1 − θ
θ

�
xγ +
�
ρm
(sm
γ, j)

2

vγ
+ρm(

1 − θ
θ
)2
(sm

p, j)
2

vp

�
x2
γ

≤ BEDm
mean, ∀m ∈ M3,

xγ ≥ 0.

(6.E.1c)

(6.E.1d)

(6.E.1e)

(6.E.1f)

(6.E.1g)

Next to the binary variables um ∈ {0,1}nm for the DVH constraints, this problem has a single
variable xγ ∈ �. In the remainder of this section we demonstrate that for fixed {θ , vγ, vp} we
can remove the binary variables um and that the resulting problem is easily solved. We consider
a single DVH constraint m. For a single voxel j ∈ Nm, define

am
j (θ , vγ, vp) = ρ

m
(sm
γ, j)

2

vγ
+ρm
�1 − θ
θ

�2 (sm
p, j)

2

vp
, bm

j (θ ) = sm
γ, j + sm

p, j
1 − θ
θ

.

Then the BED in voxel j is given by

BEDm
j (xγ;θ , vγ, vp) = am

j (θ , vγ, vp)x
2
γ + bm

j (θ )xγ. (6.E.2)

The DVH constraint on voxel j reads BEDm
j (xγ;θ , vγ, vp) ≤ BEDm

dv. For at least nm − �F mnm�
voxels this constraint has to be satisfied. Figure 6.E.1 illustrates (6.E.2) for a couple of voxels.

For the single modality case, the ordering of voxels in terms of received BED depends purely
on their dose sparing factors, and not on the dose and/or fractionation scheme. However, for
the combined modality case the BED depends on both the proton and photon dose sparing
factor, and the ordering depends on the dose and fractionation of both modalities. Hence,
there is no ordering in the BEDm

j values that holds for every xγ, and for given (θ , vγ, vp) we
cannot easily see which voxels will receive a low dose and which voxels will receive a high
dose. For example, for two voxels j and k it may be the case that am

j > am
k but bm

j < bm
k .

Consequently, which of these voxels j and k receives the highest dose depends on the value of
xγ. In other words, the lines in Figure 6.E.1 may intersect.

Because the BED tolerance BEDm
dv is known, we can calculate the highest value of xγ for

which the constraint on voxel j is not violated. We can rewrite BEDm
j (xγ;θ , vγ, vp) ≤ BEDm

dv



566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder566061-L-sub01-bw-tenEikelder
Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021Processed on: 3-9-2021 PDF page: 274PDF page: 274PDF page: 274PDF page: 274

262 Optimal combined proton-photon therapy schemes

to

xγ ≤ −bj(θ ) +
�

b2
j (θ ) + 4aj(θ , vγ, vp)BEDm

dv

2aj(θ , vγ, vp)
=: τm

j (θ , vγ, vp).

In Figure 6.E.1, the values τm
j are the horizontal coordinates of the intersection of the functions

BEDm
j with the horizontal line BEDm

dv. Let {τm
j (θ , vγ, vp)}↑ denote the increasing sequence of

τm
j (θ , vγ, vp) values. If we consider only DVH constraint m, the highest attainable value of xγ is

the nm − �F mnm�-th entry of the sequence {τm
j (θ , vγ, vp)}↑. Denote this value by τm

F (θ , vγ, vp).
Then, instead of setting constraints (6.E.1c)-(6.E.1e), we can set the constraints

xγ ≤ τm
F (θ , vγ, vp), ∀m ∈ M2.

10 20 30 40
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τm
j

xγ
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m j
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γ
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γ
,v

p
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Figure 6.E.1: BED to voxels j ∈ Nm for a given DVH constraint m. Each line represents the
BED to a voxel as function of the total tumor photon dose xγ, for given variable set (θ , vγ, vp).
Although the ordering of the voxels in terms of BED depends on xγ, we do know what the
ordering will be when the BED is equal to the tolerance BEDm

dv. The voxels j ∈ Nm can be
ordered according to the xγ value where BEDm

j (xγ;θ , vγ, vp) crosses the dotted line with value
BEDm

dv.

In terms of (sγ, sp) the idea is visualized in Figure 6.E.2. Every voxel j is represented by
the coordinate (sm

γ, j , sm
p, j) in the 2D-plane. For a fixed value of xγ the BED to every voxel j

is known. Therefore, we can draw the line through all pairs (sm
γ, j , sm

p, j) that receive exactly
the tolerated BED. In other words, we determine all (sm

γ, j , s
m
p, j) that solve BEDm

j (xγ;θ , vγ, vp) =
BEDm

dv. This line is drawn in black in Figure 6.E.2. Voxels above the line receive a BED higher
than the tolerated dose, voxels below the line receive a lower BED. The goal is to pick the
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value of xγ such that exactly the required number of voxels is below the line, this value is
denoted by τm

F (θ , vγ, vp). Therefore, the DVH constraint is equivalent to setting the constraint
xγ ≤ τm

F (θ , vγ, vp). The values for variables um
j are obtained by setting um

j = 1 for all voxels j
below the line, and um

j = 0 otherwise. Furthermore, note that because (6.E.1a) is an increasing
function of xγ, we can simply maximize xγ instead.

s1

s2

Figure 6.E.2: Visualization of a DVH constraint for fixed variables (θ , vγ, vp). Every voxel
j is represented by a coordinate (sm

γ, j , sm
p, j). For a given value of xγ, all voxels j for which

BED j(xγ;θ , vγ, vp) = BEDm
dv receive the maximum tolerated BED. Voxels above this curve re-

ceive a higher BED, voxels below the curve receive a lower BED. Increasing or decreasing the
value of xγ scales the curve downward or upward, respectively. The DVH voxel tolerance is
reached if we pick xγ such that exactly the required number of voxels receives at most BED
tolerance level. This is done by setting xγ = τm

F (θ , vγ, vp).

In clinical practice very high or very low dose per fraction is undesirable. Therefore, we set
a minimum and maximum dose per fraction. Due to our reformulation the dose per fraction
is not a variable anymore. Instead, we can enforce that dγ,tγ and dp,tp

are within pre-specified
bounds dmin and dmax by setting the constraints

max
�
lb(dmin, vγ),

θ

1 − θ lb(dmin, vp)
�≤ xγ ≤ min

�
ub(dmax, vγ),

θ

1 − θ ub(dmax, vp)
�
,

where the upper and lower bounds lb(·) and ub(·) are obtained as follows. In the definitions of
d low and dhigh from the methodology of Appendix 6.D, we apply the variable transformations
(6.4), i.e., we replace y = x2/v. Moreover, we note that N = �v . Subsequently, we solve
d low ≥ dmin and dhigh ≤ dmax. This yields:

lb(dmin, v) = �v dmin
−1 −
�
(�v − 1)( �v v − 1)

�v 
v (�v − v − 1)

,

ub(dmax, v) = �v dmax
−1+
�
(�v − 1)−1( �v v − 1)

�v 
v (1 − v)(�v − 1)−1

.
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Combining all of the above, the resulting optimization problem for xγ reads

max
xγ

xγ,

s.t.
�
sm
γ, j + sm

p, j
1 − θ
θ

�
xγ +
�
ρm
(sm
γ, j)

2

vγ
+ρm
�1 − θ
θ

�2 (sm
p, j)

2

vp

�
x2
γ

≤ BEDm
max, ∀ j ∈ nm, ∀m ∈ M1,

xγ ≤ τm
F (θ , vγ, vp), ∀m ∈ M2,

1
nm

nm∑
j=1

�
sm
γ, j + sm

p, j
1 − θ
θ

�
xγ +
�
ρm
(sm
γ, j)

2

vγ
+ρm(

1 − θ
θ
)2
(sm

p, j)
2

vp

�
x2
γ

≤ BEDm
mean, ∀m ∈ M3,

xγ ≤ min
�
ub(dmax, vγ),

θ

1 − θ ub(dmax, vp)
�
,

xγ ≥ max
�
lb(dmin, vγ),

θ

1 − θ lb(dmin, vp)
�
,

xγ ≥ 0.

(6.E.3a)

(6.E.3b)

(6.E.3c)

(6.E.3d)

(6.E.3e)

(6.E.3f)

(6.E.3g)

Also constraints (6.E.3b) and (6.E.3d) can be reformulated to an upper bound on xγ via the
quadratic formula. This means that problem (6.E.3) can be solved analytically. Computation-
ally, solving problem (6.E.3) requires computing τm

j values for all j ∈ Nm and sorting these to
obtain the sequence {τm

j (θ , vγ, vp)}↑.

6.E.2 Multi-start pattern search

In Appendix 6.E.1 it is described how for fixed {θ , vγ, vp} the optimal values x∗(θ , vγ, vp) and
u∗(θ , vγ, vp) are computed. As described in Section 6.2.2, the original problem (6.3) can be
written as (6.5). It is easily verified that this reduces to

max
θ ,vγ,vp

f
�
x∗
γ(θ , vγ, vp),u∗(θ , vγ, vp),θ , vγ, vp

�
,

s.t. 0< θ ≤ 1,

1 ≤ vγ ≤ Nγ,

1 ≤ vp ≤ Np.

(6.E.4a)

(6.E.4b)
(6.E.4c)
(6.E.4d)
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Problem (6.E.4) is solved via a multi-start GPS algorithm. That is, instead of directly applying
the GPS algorithm on (6.E.5), we apply GPS to

max
θ ,vγ,vp

f
�
x∗
γ(θ , vγ, vp), u∗(θ , vγ, vp),θ , vγ, vp

�
,

s.t. 0< θ ≤ 1,

Ñγ − 1 ≤ vγ ≤ Ñγ,

Ñp − 1 ≤ vp ≤ Ñp,

(6.E.5a)

(6.E.5b)
(6.E.5c)
(6.E.5d)

for all feasible (Ñγ, Ñp) pairs. Although GPS provides only a local maximum, numerical exper-
iments have shown that the multi-start approach generally gives good solutions.
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