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Abstract In this paper, we study the convergence rate of the gradient (or
steepest descent) method with fixed step lengths for finding a stationary point
of an L-smooth function. We establish a new convergence rate, and show that
the bound may be exact in some cases, in particular when all step lengths
lie in the interval (0, 1/L]. In addition, we derive an optimal step length with
respect to the new bound.

Keywords L-smooth optimization · Gradient method · Performance
estimation problem · Semidefinite programming

1 Introduction

We consider the non-convex unconstrained optimization problem

min
x∈Rn

f(x), (1)
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where f : Rn → R is bounded from below, and let a real number f? denote
a lower bound of problem (1). In addition, we assume throughout the paper
that f has an L-Lipschitz gradient, that is

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rn, (2)

for some (known) Lipschitz constant L > 0. Following the notation used by
Nesterov [10], we let C1,1

L (Rn) denote functions with L-Lipschitz gradient.
Problem (1) arises naturally in many applications including machine learn-

ing, signal and image processing, to name but a few [1,9]. One of the historic
solution methods for problem (1) is the gradient method, proposed by Cauchy
in 1847 [4].

The gradient method with fixed step lengths may be described as follows.

Algorithm 1 Gradient method with fixed step lengths

Set N and {tk}Nk=1 (step lengths) and pick x1 ∈ Rn.
For k = 1, 2, . . . , N perform the following step:
1. xk+1 = xk − tk∇f(xk)

Nesterov [10, page 28] gives the following convergence rate (to a stationary
point) for Algorithm 1 when tk ∈ (0, 2

L ), k ∈ {1, . . . , N}:

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ ( f(x1)− f?∑N

k=1 tk(1− 1
2Ltk)

) 1
2

.

In the special case tk = 1
L , k ∈ {1, . . . , N}, the last bound becomes

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ (2L(f(x1)− f?)

N

) 1
2

.

Recently, semidefinite programming performance estimation have been em-
ployed as a tool for the worst-case analysis of first-order methods [5,6,8,12,14].
In this method, the worst-case convergence is cast as a quadratic program
with quadratic constraints and the problem is then solved by semi-definite
programming methods. By employing the performance estimation method,
Taylor [11, page 190], without giving a proof, states the following convergence
rate:

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ (4L(f(x1)− f?)

3N

) 1
2

, (3)

for tk = 1
L , k ∈ {1, . . . , N}. Drori [7, Corollary 1 in Appendix] considers

the case that all step lengths are smaller than 1
L , and proves the following

convergence rate

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ ( 4(f(x1)− f?)∑N

k=1 tk(4− Ltk)

) 1
2

. (4)
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It can be observed that when the step lengths are the same for each iteration
and tend to 1

L , the bound (4) reduces to Taylor’s convergence rate.
In this paper, we investigate the convergence rate of Algorithm 1 further.

By using the performance estimation method, we provide a converge rate,
which is tighter than all aforementioned bounds. For example, as a part of our
main result in Theorem 2, we improve on (4) by showing, for any choice of
tk ∈ (0, 2/L) (k ∈ {1, . . . , N}), that

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ ( 4∆∑N

k=1 min(−L2t3k + 4tk,−Lt2k + 4tk) + 2
L

) 1
2

. (5)

As a consequence, we also prove and improve on (3) by showing, in the special
case where all tk = 1/L (k ∈ {1, . . . , N}), that

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ ( 4L(f(x1)−f?)

3N+2

) 1
2
.

In addition, we construct an L-smooth function that attains the given bound
in Theorem 2 for certain step lengths. We also propose an optimal step length

that minimizes the right-hand-side of the bound (5), namely tk =

√
4/3

L for all
k ∈ {1, . . . , N}.

Outline

The paper is organized as follows. We describe the performance estimation
technique in Section 2. In Section 3, we study the convergence rate by using
performance estimation. Finally, we conclude the paper with a conjecture.

Notation

The n-dimensional Euclidean space is denoted by Rn. We use 〈·, ·〉 and ‖ · ‖
to denote the Euclidean inner product and norm, respectively. For a matrix
A, Aij denotes its (i, j)-th entry, and AT represents the transpose of A. The
notation A � 0 means the matrix A is symmetric positive semi-definite.

2 Performance estimation

Computation of the worst-case convergence rate for a given iterative method
and a given class of functions is an infinite-dimensional optimization problem.
In their seminal paper [8], Drori and Teboulle take advantage of this idea,
called performance estimation, and introduce some relaxation method to deal
with this infinite-dimensional optimization problem. Performance estimation
has been used extensively for the analysis of first-order methods [5,6,8,12,14].
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Similar to problem (P) in [8], the worst-case convergence rate of Algorithm
1 may be formulated as the following abstract optimization problem,

max

(
min

1≤k≤N+1

∥∥∇f(xk)
∥∥)

s. t. f(x1)− f? ≤ ∆
xN+1, xN , . . . ., x2 are generated by Algorithm 1 w.r.t. f, x1 (6)

f(x) ≥ f? ∀x ∈ Rn

f ∈ C1,1
L (Rn)

x1 ∈ Rn,

where ∆ ≥ 0 denote the difference between the given lower bound, f?, and
the value of f at the starting point. In problem (6), f and x1 are decision
variables. This is an infinite-dimensional optimization problem with infinite
number of constraints, and consequently intractable in general. In what fol-
lows, we provide a semidefinite programming relaxation for the problem.

Definition 1 [12, Definition 3.8.] Let L ≥ 0. A differentiable function f :
Rn → R is called L-smooth, if it satisfies the following condition,

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L
2 ‖y − x‖

2 ∀x, y ∈ Rn. (7)

The following proposition states a well-known characterization of L-smooth
functions that follows, e.g., from [10, Lemma 1.2.3], [10, Theorem 2.1.5] and
[12, Lemma 3.9].

Proposition 1 Let L ≥ 0. f : Rn → R is L-smooth, if and only if it has an
L-Lipschitz gradient.

The following well-known result is a fundamental property of gradient de-
scent for L-smooth functions, if the step length 1/L is used.

Proposition 2 If f : Rn → R is L-smooth, and x ∈ Rn, then

f

(
x− 1

L
∇f(x)

)
≤ f(x)− 1

2L
‖∇f(x)‖2.

The following theorem plays a key role in our analysis. Indeed, it provides
necessary and sufficient conditions for the interpolation of L-smooth functions.
Using this theorem, we will formulate problem (6) as a finite dimensional
optimization problem.

Theorem 1 ( [12, Lemma 3.9.], [7, Theorem 7 in Appendix]) Let
{(xi; gi; f i)}i∈I ⊆ Rn × Rn × R with a given index set I and L > 0. There
exists an L-smooth function f with

f(xi) = f i,∇f(xi) = gi i ∈ I, (8)
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if and only if

1
2L

∥∥gi − gj∥∥2 − L
4

∥∥xi − xj − 1
L

(gi − gj)
∥∥2 ≤ f i − fj − 〈gj , xi − xj〉 i, j ∈ I. (9)

In addition, if the triple {(xi; gi; f i)}i∈I satisfies (9), then there exists L-
smooth function f for which (8) holds and minx∈Rn f(x) = mini∈I fi− 1

2L‖g
i‖2.

Moreover, letting i∗ ∈ arg mini∈I fi− 1
2L‖g

i‖2, a global minimizer of this func-

tion is given by x? = xi∗ − 1
Lg

i∗ .

Another proof of the first part of Theorem 1 may be found in [15, Theorem
2, Page 148]. By virtue of Theorem 1, problem (6) may be reformulated as
follows,

max

(
min

1≤k≤N+1

∥∥gk∥∥)
s. t. 1

2L

∥∥gi − gj∥∥2 − L
4

∥∥xi − xj − 1
L (gi − gj)

∥∥2 ≤ f i − f j−〈
gj , xi − xj

〉
i, j ∈ {1, . . . , N + 1}

xk+1 = xk − tkgk k ∈ {1, . . . , N} (10)

fk ≥ f? k ∈ {1, . . . , N + 1}
f1 − f? ≤ ∆.

In the above formulation, xk, gk, fk, k ∈ {1, . . . , N + 1}, are decision vari-
ables. Note that in the above formulation, the constraints f(x) ≥ f? for each
x ∈ Rn are replaced by fk ≥ f?, k ∈ {1, . . . , N + 1}. These constraints do
not necessarily impose a given L-Lipschitz function f with

f(xi) = f i,∇f(xi) = gi i ∈ {1, . . . , N + 1} ,

which has the lower bound f?. Therefore, the optimal value of (6) and (10)
may not be equal in general. However, if an optimal solution of problem (10)
satisfies f? = min1≤k≤N+1 f

k− 1
2L‖g

k‖2, the formulation will be exact; see the
second part of Theorem 1. By Proposition 2, we have f(x)− 1

2L‖∇f(x)‖2 ≥ f?
for x ∈ Rn. Hence, we replace the constraint fk ≥ f? by fk − 1

2L‖g
k‖2 ≥ f?

and consider the following problem:

max

(
min

1≤k≤N+1

∥∥gk∥∥)
s. t. 1

2L

∥∥gi − gj∥∥2 − L
4

∥∥xi − xj − 1
L (gi − gj)

∥∥2 ≤ f i − f j−〈
gj , xi − xj

〉
i, j ∈ {1, . . . , N,N + 1}

xk+1 = xk − tkgk k ∈ {1, . . . , N + 1} (11)

fk − 1
2L‖g

k‖2 − f? ≥ 0 k ∈ {1, . . . , N + 1}
f1 − f? ≤ ∆.
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From the constraint xk+1 = xk − tkg
k, we get xi = x1 +

∑i−1
k=1 g

k, i ∈
{2, . . . , N}. By using this relation to eliminate the xi (i ∈ {2, . . . , N + 2}),
problem (11) may be written as follows:

max `

s. t. f i − fj − 1
2L

∥∥gi − gj∥∥2 + L
4

∥∥∥∥∥∥−
i−1∑
k=j

tkg
k + 1

L
(gi − gj)

∥∥∥∥∥∥
2

+

〈
gj ,

i−1∑
k=j

tkg
k

〉
≥ 0 i > j

f i − fj − 1
2L

∥∥gi − gj∥∥2 + L
4

∥∥∥∥∥∥
j−1∑
k=i

tkg
k − 1

L
(gi − gj)

∥∥∥∥∥∥
2

−
〈
gj ,

j−1∑
k=i

tkg
k

〉
≥ 0 i < j

fk − 1
2L
‖gk‖2 − f? ≥ 0 k ∈ {1, . . . , N + 1} (12)

f? − f1 +∆ ≥ 0∥∥∥gk∥∥∥2 − ` ≥ 0 k ∈ {1, . . . , N + 1} ,

where ` is an auxiliary variable to convert problem (11) into a quadratic
program. Problem (12) is a non-convex quadratic program with quadratic
constraints. In the following proposition, we show that the optimal values of
problems (6) and (11) (or equivalently problem (12)) are the same for step
lengths in the interval (0, 1

2L ).

Proposition 3 If tk ∈ (0, 2
L ), k ∈ {1, . . . , N}, then problems (6) and (11)

(or equivalently problem (12)) share the same optimal value.

Proof. Clearly, problem (11) is a relaxation of problem (6). Therefore, we only
need to show that, for any feasible solution of (11), say {(x̄i; ḡi; f̄ i)}N+1

1 , there
exists an L-smooth function f with

f(x̄i) = f̄ i, ∇f(x̄i) = ḡi, 1 ≤ i ≤ N + 1,

and minx∈Rn f(x) ≥ f?. The existence such of a function follows from Theorem
1, as all assumptions of Theorem 1 are satisfied.

To obtain a tractable form of problem (12), we relax it to a semidefinite
program, in the spirit of [8]. To this end, we define the (N + 1) × (N + 1)
positive semi-definite matrix G as,

G =


(
g1
)T

...(
gN+1

)T
(g1 . . . gN+1

)
=


∥∥g1∥∥2 . . .

〈
g1, gN+1

〉
...

. . .
...〈

g1, gN+1
〉
. . .

∥∥gN+1
∥∥2
 .
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We may now formulate the following semidefinite program,

max `

s. t. f i − f j + tr(AijG) ≥ 0 i 6= j ∈ {1, . . . , N + 1}
fk − 1

2LGkk − f
? ≥ 0 k ∈ {1, . . . , N + 1}

f? − f1 +∆ ≥ 0 (13)

Gkk − ` ≥ 0 k ∈ {1, . . . , N + 1}
G � 0,

where the (N + 1)× (N + 1) matrices Aij , i 6= j ∈ {1, . . . , N + 1}, are formed
according to the constraints (12), and G, `, f i, i ∈ {1, . . . , N + 1}, are decision
variables. Problem (13) is a relaxation of (12), but if n ≥ N + 1 the relaxation
is exact, that is the optimal values of (12) and (13) are the same. Indeed, if
n ≥ N + 1, and G is a feasible matrix in (13), then G is the Gram matrix of
N + 1 vectors in Rn, and these vectors may be identified with g1, . . . , gN+1; a
similar argument is used in [14, Theorem 5].

3 Worst-case convergence rate

In this section, we investigate the convergence rate of gradient method with
fixed step lengths. The next theorem gives the worst-case convergence rate of
Algorithm 1 to a stationary point of an L-smooth function. The technique of
the proof, as is usual for SDP performance estimation, is to use weak duality.
In particular, we will in fact construct a feasible solution to the dual SDP
problem of (13), and thus derive an upper bound for problem (12).

In practice, this dual feasible solution is constructed in a computer-assisted
manner, by solving the primal and dual SDP problems for different fixed values
of the parameters, and subsequently guessing the values of the dual multipliers.
(There is also dedicated software for this purpose, namely ‘PESTO’ by Taylor,
Glineur, and Hendrickx [13].) In the proof of Theorem 2, we simply verify that
these ‘guesses’ are correct.

Theorem 2 Let tk ∈ (0,
√
3
L ) for k ∈ {1, . . . , N}. Consider N iterations of

Algorithm 1 with step lengths tk (k ∈ {1, . . . , N}), applied to some L-smooth
function f with minimum value f?, with the starting point x1 satisfying f(x1)−
f? ≤ ∆, for some given ∆ > 0.

Then, if x1, . . . , xN+1 denote the iterates of Algorithm 1, one has

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ ( 4∆∑N

k=1 min(−L2t3k + 4tk,−Lt2k + 4tk) + 2
L

) 1
2

. (14)

In particular, if tk =

√
4/3

L for k ∈ {1, . . . , N}, we get

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ ( 6

√
3L(f(x1)−f?)

8N+3
√
3

) 1
2
. (15)
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Similarly, if tk = 1
L for k ∈ {1, . . . , N}, one has

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ ( 4L(f(x1)−f?)

3N+2

) 1
2
. (16)

Proof. Let U denote the square of the right-side of inequality (14) and let
B = U

∆ . To establish this bound, we show that U is an upper bound for

problem (12). Consider the feasible point
(
{gk; fk}N+1

1 ; `
)

for problem (12).
Suppose that

αk = B
2 max {2, tkL+ 1} k ∈ {1, . . . , N} .

In addition, we define σ1 and σk, respectively, as follows:

σ1 = B
4 min

{
−Lt21 + 3t1,−L2t31 + 3t1

}
,

σk = B
4 min

{
−Lt2k + 3tk + tk−1,−L2t3k + 3tk + tk−1

}
k ∈ {2, . . . , N},

and σN+1 = 1−
∑N
k=1 σk = B

4L (2 + LtN ). As tk ∈ (0,
√
3
L ) for k ∈ {1, . . . , N},

the σk’s will be non-negative. It is seen that

σk + (2αk −B)
Lt2k
4 −

Btk
2 = B

4 (tk + tk−1) k ∈ {2, . . . , N}.

By using the last equality, one may verify directly through elementary algebra
that

`− U +

N+1∑
k=1

σk

(∥∥gk∥∥2 − `)+B
(
f? − f1 +∆

)
+B

(
fN+1 − 1

2L‖g
N+1‖2 − f?

)
+

N∑
k=1

αk

(
fk − fk+1 − 1

2L

∥∥gk − gk+1
∥∥2 + L

4

∥∥tkgk − 1
L

(
gk − gk+1

)∥∥2
−
〈
gk+1, tkg

k
〉 )

+

N∑
k=1

(αk −B)
(
fk+1 − fk − 1

2L

∥∥gk+1 − gk
∥∥2

+ L
4

∥∥−tkgk − 1
L

(
gk+1 − gk

)∥∥2 − 〈gk,−tkgk〉 ) = −(2α1−B)
4L

∥∥g1 − g2∥∥2
+ Bt1

4

∥∥g1∥∥2 − Bt1
2

〈
g1, g2

〉
+ BtN

4

∥∥gN+1
∥∥2

+

N∑
k=2

(
−(2αk−B)

4L

∥∥gk − gk+1
∥∥2 + B(tk+tk−1)

4

∥∥gk∥∥2 − Btk
2

〈
gk, gk+1

〉)
=

−
N∑
k=1

Qk,

where

Qk =

{
B
4

(
1
L − tk

) ∥∥gk − gk+1
∥∥2 tk <

1
L

0 tk ≥ 1
L .

Since
∑N
k=1Qk is a non-negative quadratic function and the given dual mul-

tipliers are non-negative, we have ` ≤ U for any feasible solution of (12).
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The special step length tk =

√
4/3

L for k ∈ {1, . . . , N} used to obtain (15)
will be motivated later in Theorem 3. Note that (16) gives a formal proof (with
a small improvement) of the bound claimed by Taylor [11, page 190]; see (3).

An important question concerning the bound (14) is its difference with the
optimal value of (6). It is known that the lower bound for Algorithm 1 is of

the order Ω
(

1√
N

)
[2, 3]. In what follows, we establish that the bound (14) is

exact in some cases.

Proposition 4 The value

(
4∆∑N

k=1 min(−L2t3k+4tk,−Lt2k+4tk)+ 2
L

) 1
2

is the optimal value of (6) when all step lengths satisfy tk ∈ (0, 1
L ], k ∈

{1, . . . , N}.

Proof. It suffices for a given N to demonstrate an L-smooth function f and a
point x1 such that

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ =

(
4∆∑N

k=1 min(−L2t3k+4tk,−Lt2k+4tk)+ 2
L

) 1
2
. (17)

Suppose now that tk ∈ (0, 1
L ], k ∈ {1, . . . , N}, and U denotes the right-hand-

side of equality (17). As before, we set tN+1 = 1
L . Let

li = U

(
N+1∑
k=i

tk

)
, f i = ∆− U2

4

(
i−1∑
k=1

−Lt2k + 4tk

)
i ∈ {1, . . . , N + 1} ,

and lN+2 = 0. By elementary calculus, one can check that the function f :
R→ R given by

f(x) =



L
2

(x− l1)2 + U(x− l1) + f1 x ∈
[
1
2

(l1 + l2),∞
)

−L
2

(x− li+1)2 + U(x− li+1) + f i+1 x ∈
[
li+1,

1
2

(li + li+1)
]

L
2

(x− li+1)2 + U(x− li+1) + f i+1 x ∈
[
1
2

(li+1 + li+2), li+1

]
L
2
x2 x ∈

(
−∞, 1

2
lN+1

]
(18)

for i ∈ {1, . . . , N}, is L-smooth with the optimal value f? = 0 and the optimal
solution x? = 0. In addition, we have equality (17) for x1 = l1. Indeed,

xi = li i ∈ {1, . . . , N + 1}
∇f(xi) = U i ∈ {1, . . . , N + 1}
f(xi) = f i i ∈ {1, . . . , N + 1} .
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x

f(x)

x1x2x3x4x5

(a) N = 4, ∆ = 2, L = 1

x

f(x)

x1x2x3x4

(b) N = 3, ∆ = 4, L = 2

Fig. 1: Plot of the function f in (18) for different parameters and tk = 1
L .

(Dotted lines denote the endpoints of intervals.)

Figure 1 represents the plot of function f as constructed in the proof of
Proposition 4 for different parameters and the fixed step length tk = 1

L for all
k.

Note that, though we have only shown the exactness of the bound (14) for
step lengths in the interval (0, 1

L ], we also conjecture that the bound (14) is in

fact exact for all step lengths in the interval (0,
√
3
L ).

By minimizing the right-hand-side of (14), the next theorem gives the
‘optimal’ step lengths with respect to the bound.

Theorem 3 Let f be an L-smooth function. Then the optimal step size for
gradient method with respect to bound (14) is given by

tk =

√
4
3
L ∀k ∈ {1, . . . , N} ,

provided that tk ∈ (0,
√
3
L ) for all k ∈ {1, . . . , N}.
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Proof. We minimize the right-hand-side of (14), that is

min
tk∈(0,

√
3
L )

(
4∆∑N

k=1 min(−L2t3k+4tk,−Lt2k+4tk)+ 2
L

) 1
2
,

which is equivalent to maximizing

max

t∈
(
0,

√
3
L

)N
H(t) :=

N∑
k=1

min
(
−L2t3k + 4tk,−Lt2k + 4tk

)
.

Since H is a strictly concave function on
(

0,
√
3
L

)N
and at t̄ given by

t̄k =

√
4
3
L ∀k ∈ {1, . . . , N} ,

we have ∇H (t̄) = 0, which shows that t̄ is the unique maximum solution of

H over
(

0,
√
3
L

)N
.

The step length 1
L commonly is regarded as the optimal step length in the

literature; see [10, Chapter 1]. Due to the example introduced in (18), we see
that the worst-case convergence rate for the step length 1

L cannot be better

than
(

4L(f(x1)−f?)
3N+2

) 1
2

. By our analysis, it follows that, for the step length 2
√
3

3L ,

we get the convergence rate (15), which is better than
(

4L(f(x1)−f?)
3N+2

) 1
2

, since

the constant in the bound improves from ca. 4
3 ≈ 1.333 to 6

√
3

8 ≈ 1.299.

4 Concluding remarks

In this paper, we studied the convergence rate of gradient method for L-
smooth functions and we provided a new convergence rate when the step

lengths belong to the interval (0,
√
3
L ). Moreover, we have shown that this

convergence rate is tight for step lengths in the interval (0, 1
L ]. As mentioned

in the introduction, Algorithm 1 is convergent for the step lengths in the larger
interval (0, 2

L ). Following extensive numerical experiments, where we solved the
semidefinite program (13) for different parameter values, we conjecture that
when tk ∈

(
0, 2

L

)
for k ∈ {1, . . . , N}, we have

min
1≤k≤N+1

∥∥∇f(xk)
∥∥ ≤ ( 4∆∑N

k=1 min (−L2t3k + 4tk,−Lt2k + 4tk)

) 1
2

,

under the same conditions as for Theorem 2. The right-hand-side is again

minimized by the constant step length tk =

√
4/3

L for all k ∈ {1, . . . , N}.
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