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On the unification of centralized and decentralized

clearing mechanisms in financial networks

Martijn Ketelaars1,2 Peter Borm2

Abstract

We analyze clearing mechanisms in financial networks in which
agents may have both monetary individual assets and mutual lia-
bilities. A clearing mechanism prescribes mutual payments between
agents to settle their mutual liabilities. The corresponding payments,
summarized in a payment matrix, are made in accordance with agent-
specific claims rules that stem from the vast literature on claims prob-
lems. We show that large classes of centralized and decentralized clear-
ing mechanisms all prescribe the same payment matrix under the con-
dition that the underlying claims rules satisfy composition; a property
satisfied by the proportional rule that is often applied in insolvency
proceedings. This payment matrix is the one that contains the min-
imal amount of payments required to clear the network. In fact, we
show that composition guarantees unification of clearing mechanisms
in which agents pay simultaneously and clearing mechanisms in which
agents pay sequentially in any arbitrary order. Therefore, for a given
financial network, each clearing mechanism gives rise to the same trans-
fer allocation. Moreover, we provide an axiomatic characterization of
the corresponding mutual claims rule on the basis of five axioms: scale
invariance, equal treatment of equals, composition, path independence
and consistency. This characterization extends the analogous charac-
terization for claims rules as given by Moulin (2000).

Keywords: Clearing mechanisms, decentralization, financial networks
and contagion, mutual claims rules, composition.
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1 Introduction

Unlike classical bankruptcy situations in which claimants claim from a single
bankrupt entity, bankruptcy situations in a network setting are more intri-
cate because of the interdependence between agents. Exogenous or endoge-
nous shocks can disrupt a financial system and can cause agents to default
which may trigger default of other agents or systems. This phenomenon
is known as financial contagion; see Glasserman and Young (2016) for an
overview. Although the network perspective became increasingly impor-
tant as a result of the global financial and banking crises between mid 2007
and early 2009, the recent COVID-19 pandemic stresses the importance of
studying bankruptcy situations in the network setting once more.

Our model of a financial network follows the seminal paper of Eisenberg
and Noe (2001). A financial network comprises a finite set of agents and
is characterized by a non-negative estates vector containing each agent’s
monetary estate and a non-negative claims matrix containing mutual right-
ful claims between pairs of agents. The unilateral setting is characterized
by a single agent’s estate and a vector of rightful claims on the estate. A
bankruptcy problem arises if this agent is insolvent and we need to allocate
the available estate among the claimants. After the early work of O’Neill
(1982) on bankruptcy problems, many so-called claims rules have been in-
troduced; see Thomson (2003, 2013, 2015) for an overview. A claims rule
provides, for each bankruptcy problem, an allocation of the estate among
the claimants. In essence, claims rules are clearing mechanisms in the uni-
lateral setting, and thus naturally form the basis for clearing mechanisms
in the network setting. We follow this convention, but want to emphasize
that clearing mechanisms without underlying claims rules can be analyzed
as well; see, e.g., Ketelaars (2020).

In this paper, we study clearing mechanisms and their corresponding
allocation mechanisms in financial networks. A clearing mechanism pre-
scribes mutual payments between agents to settle their mutual liabilities.
The corresponding payments, summarized in a payment matrix, are made
in accordance with claims rules. Most of the literature on financial con-
tagion follows Eisenberg and Noe (2001) and uses the proportional rule as
the underlying payment mechanism. This is in line with current insolvency
proceedings where payments are in accordance with the pari passu principle
— Latin for “equally and without preference”. However, the proportional
rule does not fully encompass insolvency proceedings in, for instance, the
United States and the European Union. In practice, claimants in insol-
vency proceedings are partitioned into priority classes and within each class
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there is pari passu treatment.1 Moulin (2000) provides an axiomatic char-
acterization of such priority claims rules in bankruptcy problems. Since we
want to take such priority claims rules and the individuality of agents into
account, we allow for general agent-specific claims rules like Csóka and He-
rings (2018). Nevertheless, contrary to Csóka and Herings (2018) but in line
with all research on financial contagion, we consider financial networks in
the perfectly divisible setup.

The goal of this paper is to unify centralized and decentralized clearing
mechanisms. In centralized clearing mechanisms, an independent authority
is in charge of the clearing process. In accordance with the literature on
financial contagion, we characterize a payment matrix of a centralized clear-
ing mechanism by a fixed point (equilibrium) of an appropriate mapping.
We call payment matrices corresponding to centralized clearing mechanisms
φ-transfer schemes, where φ is a vector of claims rules. A φ-transfer scheme
satisfies three criteria. First, payments are made in accordance with claims
rules. Second, the total payment by an agent cannot exceed the amount
he has to his disposal; a limited liability requirement. Third, each agent
either pays off all his debts, or everything he has to his disposal is paid
to his claimants; an absolute priority of debt over equity requirement. The
set of φ-transfer schemes is a complete lattice so that there exists a bottom
φ-transfer scheme and a top φ-transfer scheme; see, e.g., Csóka and He-
rings (2018). Despite the existence of (infinitely) many φ-transfer schemes,
Groote Schaarsberg, Reijnierse, and Borm (2018) show that any two φ-
transfer schemes lead to the same transfer allocation. A transfer allocation
is a redistribution of the estates vector according to a payment matrix.
The literature on contagion is concerned with computing the top φ-transfer
scheme. For example, Eisenberg and Noe (2001) and Rogers and Veraart
(2013) propose efficient algorithms to compute the top φ-transfer scheme,
where φ comprises proportional rules. We, on the other hand, focus on the
bottom φ-transfer scheme. We propose a recursive procedure that generates
a monotonically increasing sequence of payment matrices that converges to
the bottom φ-transfer scheme. This procedure need not terminate in a finite
number of steps, but, in practice, converges rather quickly and stable.

The reason we consider the bottom φ-transfer scheme is because it pro-
vides a direct connection with decentralized clearing mechanisms. In de-
centralized clearing mechanisms, agents as individuals are in charge of the
clearing process. One advantage of such mechanisms is that it relies only on

1We refer to Kaminski (2000) and Chapter 4 of Wessels and Madaus (2017) for more
details.
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local information. As far as we know, there exist two decentralized clearing
mechanisms in the literature that adhere to the same three aforementioned
criteria.

The first one is the φ-based individual settlement allocation procedure
(ISAP) put forward by Ketelaars, Borm, and Quant (2020). In each step
of this recursive procedure, each agent pays the other agents by allocating
his current estate on the basis of his own claims rule. As a result of these
payments, there is a redistribution of the individual estates and a reduction
in the mutual liabilities. Such a procedure need not be finite, but has a
corresponding limiting payment matrix nonetheless.

The second one is the class of φ-based decentralized clearing processes
put forward by Csóka and Herings (2018), but in a discrete setup. We first
generalize this process for a perfectly divisible setup. In each step of this
recursive procedure, exactly one agent is selected that communicates to the
other agents what he would pay according to his own claims rule based on
what he currently has to his disposal. The amount each agent has to his
disposal in a step is his initial estate plus provisional payments from the
other agents. The selection process need not be deterministic. In general,
the selection process can be history dependent, stochastic or both. Csóka
and Herings (2018) show that in the discrete setup any φ-based decentralized
clearing process terminates in a finite number of iterations and converges
to the bottom φ-transfer scheme. In the perfectly divisible setup, a φ-based
decentralized clearing process need not be a finite process but we show that it
still converges to the bottom φ-transfer scheme, irrespective of the selection
process. The actual payments that take place in a φ-based decentralized
clearing process are thus those with respect to the bottom φ-transfer scheme.

In addition to the two above decentralized clearing mechanisms, we in-
troduce one that is a variation on φ-based ISAP, a procedure in which agents
pay simultaneously in each step. Now, exactly one agent is selected in each
step that pays the other agents by allocating his current estate on the ba-
sis of his own claims rule. Notice that such a mechanism differs from a
φ-based decentralized clearing process since actual transfers between agents
take place in each step.

Our main result is one of unification: the centralized clearing mechanism
based on φ-transfer schemes and all existing decentralized clearing mecha-
nisms prescribe the bottom φ-transfer scheme under the condition that the
underlying claims rules satisfy composition. Composition (Young, 1988) is a
property that pertains to situations in which an agent allocates a provisional
estate value but later learns that the true value is larger than expected. If a
claims rule satisfies composition, then, for any bankruptcy problem, allocat-
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ing the surplus value and adding this to the initial allocation is equivalent
to simply reallocating the actual (larger) value.

We want to emphasize that our main result has applications beyond
finance. One example is the distribution of COVID-19 vaccines. Here, the
network consists of governments, pharmaceutical companies and health care
institutions such as hospitals, where agents have mutual (rightful) claims on
each other in the form of vaccine doses. However, currently, the number
of vaccine doses available in the network, which are owned by individual
agents, falls short of meeting the demand. There could be several reasons for
a shortage in the number of vaccine doses. One can think about disruptions
to the production process, like technical or upscaling issues, or disruptions to
the underlying supply chain. In other words, vaccine doses become available
in stages. Consequently, composition is a desirable property as it guarantees
invariance of clearing and allocating in stages.

Finally, our main result enables us to extend the axiomatic characteriza-
tion for claims rules as given by Moulin (2000). To this end, we build on the
literature on mutual claims problems and mutual claims rules introduced
by Groote Schaarsberg et al. (2018). Mutual claims problems generalize
bankruptcy problems in the sense that insolvency of (some of the) agents
calls for an allocation of the total estate among the agents. A mutual claims
rule prescribes, for each mutual claims problem, an allocation of the total
estate among the agents. For our purpose, we consider two types of such
rules: φ-based mutual claims rules corresponding to the centralized mech-
anism based on φ-transfer schemes, and recursive φ-based mutual claims
rules corresponding to φ-based ISAP. Both types of rules prescribe a trans-
fer allocation based on payments with respect to φ that follow from its
respective clearing mechanism. Moreover, we provide adequate extensions
of the properties that Moulin (2000) considers: scale invariance, composi-
tion, path independence and consistency. While Moulin (2000) leaves out
the equal treatment of equals axiom, we include it since then exactly three
claims rules remain: the proportional, equal-awards and equal-losses rules.
In the literature, these three rules are otherwise known as the three muske-
teers (Herrero & Villar, 2001). We show that under the extensions of these
five properties exactly 3n (recursive) φ-based mutual claims rules remain,
where n is the number of agents in the network. There are 3n of such rules
because each coordinate of the vector of claims rules φ can be one of the
three musketeers.

As far as we know, there exist two other axiomatic characterizations of
mutual claims rules in the literature on clearing in financial networks. First,
Groote Schaarsberg et al. (2018) provide an axiomatic characterization of a
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φ-based mutual claims rule on the basis of the concede-and-divide principle
and consistency. In this characterization, φ is the Talmud rule (Aumann &
Maschler, 1985). Second, Csóka and Herings (2021) provide an axiomatic
characterization of the proportional rule in financial networks.

The paper is organized as follows. In Section 2, we review existing claims
rules such as the three musketeers. Section 3 contains our main result on
the unification of the centralized clearing mechanism based on φ-transfer
schemes and the decentralized clearing mechanism based on φ-based ISAP.
In Section 4, we introduce extensions of five properties of claims rules and
correspondingly provide the extension of the axiomatic characterization of
Moulin (2000). In Section 5, we extend our main result by considering
decentralized sequential clearing mechanisms. Section 6 concludes.

2 Claims rules

A claims problem is modeled by a pair (e, c) ∈ R+×RN+ where N is a finite
set of claimants, e is an estate and c = (ci)i∈N is a vector of rightful claims
on the estate. The class of all claims problems on N is denoted by CN and
the class of all claims problems with arbitrary but finite N is denoted by C.
A subclass of claims problems on N where the sum of claims exceeds the
value of estate, i.e.,

∑
i∈N ci > e, is the class of bankruptcy problems and is

denoted by BN .
A claims rule ϕ : CN → RN prescribes how the estate in each claims

problem will be allocated among the claimants. For all (e, c) ∈ CN , the
allocation vector ϕ(e, c) satisfies

(i) 0 ≤ ϕi(e, c) ≤ ci for all i ∈ N ,

(ii)
∑
i∈N

ϕi(e, c) = min{e,
∑
i∈N

ci}.

The second condition (ii) boils down to
∑

i∈N ϕi(e, c) = e in bankruptcy
problems. On the other hand, if the estate can cover all claims, then condi-
tions (i) and (ii) imply ϕ(e, c) = c.

From the outset we assume that a claims rule satisfies estate monotonic-
ity, which requires that no claimant should receive less than what he did
receive initially when it turns out there is more to be allocated.

Definition 2.1. A claims rule ϕ satisfies estate monotonicity if for all
(e, c) ∈ CN and (ẽ, c) ∈ CN with e ≤ ẽ it holds that ϕ(e, c) ≤ ϕ(ẽ, c).2

2Note that the inequality here is a vector inequality, i.e., for two vectors x, y ∈ RN
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Estate monotonicity implies another desirable property, namely estate
continuity.

Definition 2.2. A claims rule ϕ satisfies estate continuity if for all (e, c) ∈
CN and for any sequence of non-negative estates {ek}∞k=1 that converges to
e, the sequence {ϕ(ek, c)}∞k=1 converges to ϕ(e, c).

The following three claims rules are well known in the literature on claims
problems. For an extensive survey on claims rules, see Thomson (2003, 2013,
2015). The proportional rule PROP prescribes a proportional allocation of
the estate on the basis of the proportion of a claimant’s claim to the total
amount of claims. For all (e, c) ∈ BN , it is defined by

PROPi(e, c) =
ci∑
j∈N cj

e

for all i ∈ N .
The constrained equal-awards rule CEA interprets equality in terms of

gains. It allocates the estate among the claimants as equal as possible pro-
vided that no claimant receives more than he claims. For all (e, c) ∈ BN , it
is defined by

CEAi(e, c) = min{ci, α}

for all i ∈ N , with α ≥ 0 such that
∑

j∈N min{cj , α} = e.
The natural dual of the constrained equal-awards rule is the constrained

equal-losses rule CEL in the sense that it interprets equality in terms of losses
with respect to the claims. The losses are incurred as equal as possible by
the claimants provided that no claimant’s loss exceeds his claim. For all
(e, c) ∈ BN , it is defined by

CELi(e, c) = max{0, ci − β}

for all i ∈ N , with β ≥ 0 such that
∑

j∈N max{0, cj −β} = e. We adopt the
terminology of Herrero and Villar (2001) and refer to the three above rules
as the three musketeers.

Likewise, we complement these three rules with a fourth rule which plays
the role of d’Artagnan: the Talmud rule TAL (Aumann & Maschler, 1985).

with N being a finite set, we have x ≤ y if and only if xi ≤ yi for all i ∈ N . We have
x < y if and only if x ≤ y and xi < yi for at least one i ∈ N .
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For all (e, c) ∈ BN , it is defined in terms of CEA as follows:

TAL(e, c) =


c− CEA(

∑
j∈N

cj − e,
1

2
c) if

∑
j∈N

cj ≤ 2e,

CEA(e,
1

2
c) if

∑
j∈N

cj ≥ 2e.

Finally, Young (1988) introduces a large class of so-called equal sacrifice
methods. We consider one such method which will be used in an example
later on. The equal sacrifice methods rule ESM is, for all (e, c) ∈ BN defined
by

ESMi(e, c) =
ci

1 + λci

for all i ∈ N , with λ ≥ 0 such that
∑

j∈N
cj

1+λcj
= e.

3 Clearing and allocation mechanisms

Mutual claims problems generalize claims problems by allowing for multiple
estates and mutual claims. A mutual claims problem is modeled by a pair
(E,C) ∈ RN+ × RN×N+ where N is a finite set of agents, E = (ei)i∈N is an
estates vector and C = (cij)i,j∈N is a claims matrix. Each coordinate ei
of E represents the estate belonging to agent i ∈ N . The claims matrix C
represents mutual liabilities between agents. Each cell cij of C represents
the rightful claim of agent j ∈ N on agent i ∈ N . Row i in C thus captures
creditors of agent i, while column i of C captures debtors of agent i. By
assumption, agents have no claim on themselves, so, for all i ∈ N , cii = 0.
No additional conditions are imposed on the claims matrix, in particular,
there is no condition on the relation between claims cij and cji for i 6= j.
We denote the i-th row of C by c̄i = (cij)j∈N .

The class of all mutual claims problems on N is denoted by LN and the
class of all mutual claims problems with arbitrary but finite N is denoted by
L. A mutual claims rule µ : LN → RN prescribes how the total estate value
in the network will be allocated among its agents. For all (E,C) ∈ LN , the
allocation vector µ(E,C) satisfies

(i) µi(E,C) ≥ 0 for all i ∈ N ,

(ii)
∑
i∈N

µi(E,C) =
∑
i∈N

ei.
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Condition (i) is a non-negativity condition and condition (ii) implies that a
reallocation of the estates neither generates nor destroys value.

In the definition of a mutual claims rule, we do not specify how the re-
allocation of the total estate value, in the form of transfers (e.g. payments)
between agents, should take place. One way to pin down the clearing mech-
anism is to impose that transfers between agents constitute a φ-transfer
scheme which then gives rise to a transfer allocation. We will elaborate on
this in the next section on transfer schemes.

3.1 Transfer schemes

All mutual claims rules analyzed in this paper rely on an underlying payment
matrix. A payment matrix is a non-negative matrix P = (pij)i,j∈N where cell
pij indicates the payment of agent i to agent j. A (bilateral) transfer scheme
is a specific type of payment matrix that contains feasible and reasonable
(bilateral) payments.

Definition 3.1. Let (E,C) ∈ LN . The payment matrix P = (pij) ∈ RN×N+

is called a transfer scheme for (E,C) if,

(i) for all i ∈ N , pii = 0,

(ii) for all i, j ∈ N , 0 ≤ pij ≤ cij ,

(iii) for all i ∈ N ,
∑
m∈N

pim ≤ ei +
∑
m∈N

pmi.

The set of all possible transfer schemes for (E,C) is denoted by P(E,C).

Condition (i) is a normalization assumption; condition (ii) bounds the pay-
ment of agent i ∈ N to agent j ∈ N by zero and the claim of agent j on
agent i; condition (iii) is a limited liability assumption in the sense that the
total payment by agent i ∈ N cannot exceed the amount agent i has to his
disposal.

A transfer scheme can directly be translated into a transfer allocation,
where the allocation to each agent equals his initial estate plus his net pay-
ments.

Definition 3.2. Let (E,C) ∈ LN and let P ∈ P(E,C). The vector αP ∈
RN is a transfer allocation if, for all i ∈ N ,

αPi = ei +
∑
j∈N

pji −
∑
j∈N

pij . (3.1)
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Note that condition (iii) of a transfer scheme implies that the transfer allo-
cation is non-negative.

In contrast to Groote Schaarsberg et al. (2018) and Ketelaars et al.
(2020), we allow for agent-specific claims rules. Formally, we let φ = (ϕi)i∈N
be a vector of claims rules, where ϕi is the claims rule associated with agent
i ∈ N . Correspondingly, a payment matrix is called a φ-transfer scheme if φ
forms the basis for a payment matrix with the additional requirement that
payments satisfy an equilibrium condition.

Definition 3.3. Let (E,C) ∈ LN and let φ = (ϕi)i∈N be a vector of claims
rules. The payment matrix P = (pij) ∈ RN×N+ is called a φ-transfer scheme
for (E,C) if, for all i, j ∈ N ,

pij = ϕij(ei +
∑
m∈N

pmi, c̄i). (3.2)

The set of all possible φ-transfer schemes for (E,C) is denoted by Pφ(E,C).

One of the main results of Groote Schaarsberg et al. (2018) is that any
two φ-transfer schemes lead to the same transfer allocation. Note that in
Groote Schaarsberg et al. (2018) agents share a common claims rule, i.e.,
φ = (ϕi)i∈N with ϕi = ϕ for all i ∈ N . It is readily verified that the result
carries over to the situation with agent-specific claims rules.

Theorem 3.1 (cf. Groote Schaarsberg et al. (2018)). Let (E,C) ∈ LN , let
φ = (ϕi)i∈N be a vector of claims rules and let P, P ′ ∈ Pφ(E,C). Then,
αP = αP

′
.

The above theorem implies that the resulting allocation vector depends only
on φ and not on the underlying φ-transfer scheme.

Definition 3.4. A φ-based mutual claims rule ρφ on L is, for all finite N
and all (E,C) ∈ LN , defined by

ρφ(E,C) = αP ,

where P is a φ-transfer scheme for (E,C).

So far we have not discussed the existence of φ-transfer schemes. For
our specific purposes, we show existence of a φ-transfer scheme by means of
the following recursive procedure, provided that all claims rules in φ satisfy
estate monotonicity.3

3Alternatively, one can define a monotone mapping on a complete lattice and use
Tarski’s fixed-point theorem (Tarski, 1955), see, e.g., Csóka and Herings (2018) or Kete-
laars (2020).
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Let (E,C) ∈ LN . A φ-transfer scheme P = (pij)i,j∈N with respect to
(E,C) can be constructed recursively as follows. Define for all i ∈ N and
k ∈ N,

γi(k + 1) = ei +
∑
j∈N

ϕji (γj(k), c̄j), (3.3)

with γi(1) = ei. Then, for i, j ∈ N , set

pij = lim
k→∞

ϕij(γi(k), c̄i). (3.4)

First, let us verify that the limit in (3.4) exists. Let i ∈ N and note that

γi(1) = ei ≤ ei +
∑
j∈N

ϕji (γj(1), c̄j) = γi(2).

Let k ∈ N and assume that γ(k) ≤ γ(k + 1). Estate monotonicity of the
claims rules in φ then implies that

γi(k + 1) = ei +
∑
j∈N

ϕji (γj(k), c̄j) ≤ ei +
∑
j∈N

ϕji (γj(k + 1), c̄j) = γi(k + 2).

By induction it follows that (3.3) constitutes a monotonically increasing
sequence

γi(1) ≤ γi(2) ≤ γi(3) ≤ . . . ,

that is bounded from above by ei+
∑

j∈N cji. By the monotone convergence
theorem, the sequence {γi(k)}k∈N has a limit.

Now, to verify that P is in fact a φ-transfer scheme, one needs to check
condition (3.2). Let i, j ∈ N , then

pij = lim
k→∞

ϕij(γi(k), c̄i)

= ϕij( lim
k→∞

γi(k), c̄i)

= ϕij(ei + lim
k→∞

∑
m∈N

ϕmi (γm(k), c̄m), c̄i)

= ϕij(ei +
∑
m∈N

pmi, c̄i).

The first equality follows from (3.4), the second equality follows from
estate continuity of ϕi, the third equality follows from (3.3) and the last
equality follows from (3.4).
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Remark 3.1. If one replaces the starting point γi(1) = ei with γi(1) =
ei +

∑
j∈N cji for each i ∈ N , then the recursive procedure generates a

monotonically decreasing sequence of payment matrices that converges to
a φ-transfer scheme as well. However, this φ-transfer scheme need not be
the same as the one defined by (3.4).

A transfer scheme that is constructed as before is henceforth called the
bottom φ-transfer scheme.

Definition 3.5. Let (E,C) ∈ LN and let φ = (ϕi)i∈N be a vector of claims
rules. The payment matrix

¯
P φ = (pij) ∈ RN×N+ is the bottom φ-transfer

scheme if, for all i, j ∈ N ,

pij = lim
k→∞

ϕij(γi(k), c̄i),

where, for all i ∈ N and k ∈ N,

γi(k + 1) = ei +
∑
j∈N

ϕji (γj(k), c̄j),

with γi(1) = ei.

The recursive procedure is illustrated in the following example.

Example 3.1. Consider the mutual claims problem (E,C) ∈ LN given by
N = {1, 2, 3},

E =

2
1
1

 and C =

0 1 2
1 0 1
5 2 0

 .
Let φ = (CEA,CEL,TAL). Initially, we have γ(1) = E = (2, 1, 1). To
determine γ(2), we compute the agents’ payments on the basis of γ(1),
which are given by

CEA(2, (0, 1, 2)) = (0, 1, 1), (Agent 1)

CEL(1, (1, 0, 1)), = (
1

2
, 0,

1

2
), (Agent 2)

TAL(1, (5, 2, 0)) = (
1

2
,
1

2
, 0). (Agent 3)

Hence, γ(2) = (2, 1, 1) + (1, 11
2 , 1

1
2) = (3, 21

2 , 2
1
2). Next, the payments under

γ(2) are given by

CEA(3, (0, 1, 2)) = (0, 1, 2), (Agent 1)
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CEL(2
1

2
, (1, 0, 1)) = (1, 0, 1), (Agent 2)

TAL(2
1

2
, (5, 2, 0)) = (1

1

2
, 1, 0). (Agent 3)

Hence, γ(3) = (2, 1, 1)+(21
2 , 2, 3) = (41

2 , 3, 4). We see that under γ(2) agents
1 and 2 have paid off all their debts, which means that their payments do
not change in subsequent steps. Since agent 3 has not yet paid off all his
debts, his payment will change under γ(3):

CEA(4
1

2
, (0, 1, 2)) = (0, 1, 2), (Agent 1)

CEL(3, (1, 0, 1)) = (1, 0, 1), (Agent 2)

TAL(4, (5, 2, 0)) = (3, 1, 0). (Agent 3)

Hence, γ(4) = (2, 1, 1) + (4, 2, 3) = (6, 3, 4). Note that agent 3 can only
allocate a maximum of 4 since agents 1 and 2 have paid off all their debts.
Therefore, no more updates will take place in subsequent steps. We have
γ(4) = γ(5) = γ(6) = . . . , so that the limit of {γ(k)}k∈N is obtained in a
finite number of steps. The corresponding φ-transfer scheme is given by4

P =

0 1 2
1 0 1
3 1 0

 ;

the transfer allocation is given by

ρφ(E,C) = (2, 1, 1) + (4, 2, 3)− (3, 2, 4) = (3, 1, 0).

4

The following theorem justifies the term bottom φ-transfer scheme.

Theorem 3.2. Let (E,C) ∈ LN and let φ = (ϕi)i∈N be a vector of claims
rules. Then,

¯
P φ ≤ P for all P ∈ Pφ(E,C).

Proof. Let {P k}k∈N be the sequence of matrices where, for each k ∈ N,
P k = (pkij)i,j∈N is given by

pkij = ϕij(γi(k), c̄i),

4If we replace the starting point γi(1) = ei by γi(1) = ei +
∑
j∈N cji for all i ∈ N ,

then we obtain γ(1) = (2, 1, 1) + (6, 3, 3) = (8, 4, 4). Consequently, it is immediate that
γ(k) = (2, 1, 1) + (4, 2, 3) = (6, 3, 4) for all k ∈ {2, 3, . . . } so that the resulting payment
matrix is P as well.
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for i, j ∈ N . Let i ∈ N . Then, as we have seen before,

γi(1) ≤ γi(2) ≤ γi(3) ≤ . . . ,

and, by estate monotonicity of ϕi,

P 1
i ≤ P 2

i ≤ P 3
i ≤ . . . , (3.5)

where, for all k ∈ N, P ki is the i-th row of matrix P k. Then, for the bottom
φ-transfer scheme it follows that

¯
P φ = (limk→∞ p

k
ij)i,j∈N = limk→∞{P k}.

Now, let P ∈ Pφ(E,C) and let, for all i ∈ N , Pi and P φi denote the i-th

rows of P = (pij)i,j∈N and
¯
P φ = (pφij)i,j∈N , respectively. We will prove that

¯
P φ ≤ P .

Assume that
¯
P φ ≤ P does not hold. Then, there exists at least one

agent i ∈ N such that pφij > pij for at least one j ∈ N . Without loss of

generality, let i = 1. If pφ1j > p1j for at least one j ∈ N , then by condition
(3.2) of a φ-transfer scheme

pφ1j = ϕ1
j (e1 +

∑
m∈N

pφm1, c̄1) > ϕ1
j (e1 +

∑
m∈N

pm1, c̄1) = p1j .

Consequently, estate monotonicity of claims rule ϕ1 implies that we must
have

e1 +
∑
m∈N

pφm1 > e1 +
∑
m∈N

pm1,

and thus pφ1j ≥ p1j for all j ∈ N . Equivalently, in vector notation, we have

P φ1 > P1. We know from (3.5) that the sequence {P k1 }k∈N is monotonically

increasing and also converges to P φ1 , so there must exist a K1 ∈ N such that
PK1

1 ≤ P1 < PK1+1
1 , where we take K1 as small as possible. Condition (3.2)

of a φ-transfer scheme states that

P1 = ϕ1(e1 +
∑
m∈N

pm1, c̄1) < ϕ1(e1 +
∑
m∈N

pK1
m1, c̄1) = PK1+1

1 .

Therefore, estate monotonicity of ϕ1 implies that agent 1 has received less
under P than under PK1+1, that is, we have∑

m∈N
pm1 <

∑
m∈N

pK1
m1.
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Hence, pm1 < pK1
m1 for some m ∈ N \ {1}. Without loss of generality, let

m = 2 so that p21 < pK1
21 . This means that pφ21 > p21 so that we can apply

the previous arguments to the case of agent 2. Likewise agent 1, we find
that P φ2 > P2. Therefore, by (3.5), there must exist a K2 ∈ N such that
PK2

2 ≤ P2 < PK2+1
2 , where we take K2 as small as possible. In particular,

since p21 < pK1
21 , K2 + 1 can be at most K1, i.e., K2 < K1. Condition (3.2)

of a φ-transfer scheme states that

P2 = ϕ2(e2 +
∑
m∈N

pm2, c̄2) < ϕ2(e2 +
∑
m∈N

pK2
m2, c̄2) = PK2+1

2 .

Therefore, estate monotonicity of ϕ2 implies that agent 2 has received less
under P than under PK2+1, that is, we have∑

m∈N
pm2 <

∑
m∈N

pK2
m2.

Hence, pm2 < pK2
m2 for some m ∈ N \ {1, 2}. Agent 1 is excluded since

p12 ≥ pK1
12 ≥ pK2

12 , which follows from PK1
1 ≤ P1, (3.5) and K1 > K2. The

premise is that we must be able to find an agent that is different from agents
1 and 2. Without loss of generality, let m = 3. By repeatedly applying
the same arguments, we arrive at a contradiction since N is finite, i.e., we
eventually run out of agents to select.

3.2 Individual settlement allocation procedure

In the φ-based individual settlement allocation procedure (ISAP), agents
settle their claims individually on the basis of φ which eventually leads to
a unique redistribution of the estates. Here, the definition of ISAP differs
slightly from Ketelaars et al. (2020) since we allow for agent-specific claims
rules.

Definition 3.6. Let (E,C) ∈ LN and let φ = (ϕi)i∈N be a vector of claims
rules. The individual settlement allocation procedure generates a sequence
of estates vectors {Ek}k∈N, a sequence of claims matrices {Ck}k∈N and a
sequence of payment matrices {Φk}k∈N with Φk = (Φk

ij)i,j∈N in the following
way.

1. Initially, set E1 = (e1
i )i∈N = E and C1 = (c1

ij)i,j∈N = C.

Then, recursively for k = 2, 3, . . .
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2. For each agent i ∈ N the payment to agent j ∈ N in step k − 1 is
equal to

Φk−1
ij = ϕij(e

k−1
i , c̄k−1

i ),

where c̄k−1
i ∈ RN+ is the i-th row of claims matrix Ck−1.

3. Subsequently, update the estates vector to Ek = (eki )i∈N with

eki = ek−1
i +

∑
m∈N

Φk−1
mi −

∑
m∈N

Φk−1
im .

4. Correspondingly, the claims matrix is updated to Ck = (ckij)i,j∈N with

ckij = ck−1
ij − Φk−1

ij .

ISAP is a finite procedure if and only if there exists a step k ∈ N such
that either eki = 0 or c̄ki = 0 for all i ∈ N . Even if ISAP takes an infinite
number of steps, the limit of the sequence of estates vectors it generates
exists.

Theorem 3.3 (cf. Ketelaars et al. (2020)). Let (E,C) ∈ LN be a mutual
claims problem and let φ = (ϕi)i∈N be a vector of claims rules. Then,
the limit of the sequence {Ek}k∈N generated by the individual settlement
allocation procedure exists.

A recursive φ-based mutual claims rule is then defined to be equal to the
limit of the sequence of estates vectors.

Definition 3.7. A recursive φ-based mutual claims rule rφ on L is, for all
finite N and all (E,C) ∈ LN , defined by

rφ(E,C) = lim
k→∞
{Ek},

where {Ek}k∈N is the sequence generated by ISAP for (E,C) ∈ LN with
respect to a vector of claims rules φ = (ϕi)i∈N .

Alternatively, the allocation vector of a recursive φ-based mutual claims rule
can be characterized as a specific transfer allocation.
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Proposition 3.1 (cf. Ketelaars et al. (2020)). Let (E,C) ∈ LN , let φ =
(ϕi)i∈N be a vector of claims rules, and let the payment matrix P = (pij) ∈
RN×N+ be given by

pij =
∞∑
k=1

Φk
ij

for all i, j ∈ N , where {Φk}k∈N with Φk = (Φk
ij)i,j∈N is the sequence of

payment matrices generated by ISAP for (E,C) with respect to φ. Then,
rφ(E,C) = αP .

Ketelaars et al. (2020) stress the importance of the composition principle
in establishing the equivalence between a φ-based mutual claims rule ρφ and
a recursive φ-based mutual claims rule rφ. In fact, we will show that this
equivalence relationship holds for their underlying clearing mechanisms as
well.

Composition (Young, 1988) is a property of a claims rule that pertains
to situations in which an agent allocates a provisional estate value but later
learns that the true value is larger than expected. If a claims rule satisfies
composition, then, for any claims problem, allocating the surplus value ac-
cording to the claims rule and modified claims and adding this to the initial
allocation is equivalent to simply reallocating the actual (larger) value. The
three musketeers satisfy composition, but the Talmud rule and the equal
sacrifice methods rule do not.

Definition 3.8. A claims rule ϕ on C satisfies composition if, for all finite
N , for all (e, c) ∈ CN and (ẽ, c) ∈ CN with e ≤ ẽ it holds that

ϕ(ẽ, c) = ϕ(e, c) + ϕ(ẽ− e, c− ϕ(e, c)).

Using the composition principle we are able to provide an explicit connec-
tion between φ-transfer schemes and the payments made in ISAP. Compo-
sition of the underlying claims rules guarantees that, for any mutual claims
problem, the sequence of cumulative payment matrices generated by ISAP
with respect to φ converges to the bottom φ-transfer scheme.

Theorem 3.4. Let (E,C) ∈ LN , let φ = (ϕi)i∈N be a vector of claims rules
where each claims rule ϕi satisfies composition and let the payment matrix
P be given by P =

∑∞
k=1 Φk, where {Φk}k∈N is the sequence of payment

matrices generated by ISAP for (E,C) with respect to φ. Then, P =
¯
P φ.
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Proof. We first show that P ≤
¯
P φ. Next, we show that P ∈ Pφ(E,C) so

that also
¯
P φ ≤ P (Theorem 3.2) which then implies that P =

¯
P φ.

Let {Ek}k∈N, {Ck}k∈N and {Φk}k∈N be the sequences generated by ISAP
for (E,C) with respect to φ. Set Ek = (eki )i∈N , Ck = (ckij)i,j∈N and

Φk = (Φk
ij)i,j∈N . For all k ∈ N, let P k = (pkij)i,j∈N with pkij =

∑k
`=1 Φ`

ij

for all i, j ∈ N . Here, pkij is the accumulated payment of agent i ∈ N to
agent j ∈ N up to step k ∈ N in ISAP.

Before we start, we show three general characteristics of ISAP which
are stated in (3.6), (3.7) and (3.8). In combination with the composition
principle, this leads to (3.9) which is used frequently later on. Fix some step
k ∈ N and some i ∈ N . First, the estate of agent i at step k is equal to his
initial estate plus his net payments in steps 1, 2, . . . , k − 1, i.e.,

eki = ek−1
i +

∑
m∈N

Φk−1
mi −

∑
m∈N

Φk−1
im ,

which implies that

eki = e1
i +

∑
m∈N

k−1∑
`=1

Φ`
mi −

∑
m∈N

k−1∑
`=1

Φ`
im. (3.6)

Second, in each step of ISAP the payments adhere to the limited liability
requirement. In particular, the accumulated outgoing payments of agent i up
to step k are at most his initial estate plus accumulated incoming payments
up to step k − 1, i.e.,

∑
m∈N

k∑
`=1

Φ`
im ≤ e1

i +
∑
m∈N

k−1∑
`=1

Φ`
mi. (3.7)

Inequality (3.7) follows from combining equation (3.6) and the fact that the
total outgoing payment of agent i at step k is at most his estate at step k,
i.e., ∑

m∈N
Φk
im =

∑
m∈N

ϕim(eki , c̄
k
i ) = min{eki ,

∑
j∈N

ckij} ≤ eki ,

where the first equality follows from the definition of ISAP and the second
equality follows from the definition of a claims rule. Additionally, estate
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monotonicity of ϕi and (3.7) imply that

ϕij

(∑
m∈N

k∑
`=1

Φ`
im, c̄

1
i

)
≤ ϕij(e1

i +
∑
m∈N

k−1∑
`=1

Φ`
mi, c̄

1
i ) (3.8)

for all j ∈ N .

Now, we show that composition of ϕi implies that the left-hand side of
(3.8) is in fact equal to the accumulated payment of agent i to agent j ∈ N
up to step k, i.e., for all j ∈ N , we have

pkij = ϕij

(∑
m∈N

k∑
`=1

Φ`
im, c̄

1
i

)
. (3.9)

To this end, we first show that, for all ` ∈ N, we have

ϕi(
∑
m∈N

Φ`
im, c̄

`
i) = ϕi(e`i , c̄

`
i). (3.10)

Let ` ∈ N and recall that
∑

m∈N Φ`
im = min{e`i ,

∑
j∈N c

`
ij}. If e`i ≤

∑
j∈N c

`
ij ,

then (3.10) is immediate. Otherwise e`i >
∑

j∈N c
`
ij , which means that the

estate at step ` can cover all claims of agent i at step `. Therefore,

ϕi(
∑
m∈N

Φ`
im, c̄

`
i) = ϕi(

∑
j∈N

c`ij , c̄
`
i) = c̄`i = ϕi(e`i , c̄

`
i).

Using composition of ϕi and (3.10), we find that, for all j ∈ N , the left-hand
side of (3.8) can be rewritten as

ϕij

(∑
m∈N

k∑
`=1

Φ`
im, c̄

1
i

)
= ϕij

(∑
m∈N

Φ1
im, c̄

1
i

)
+ ϕij

(∑
m∈N

k∑
`=2

Φ`
im, c̄

1
i − ϕi

(∑
m∈N

Φ1
im, c̄

1
i

))

= ϕij
(
e1
i , c̄

1
i

)
+ ϕij

(∑
m∈N

k∑
`=2

Φ`
im, c̄

1
i − ϕi

(
e1
i , c̄

1
i

))

= ϕij
(
e1
i , c̄

1
i

)
+ ϕij

(∑
m∈N

k∑
`=2

Φ`
im, c̄

2
i

)

=

k∑
`=1

ϕij(e
`
i , c̄

`
i)
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=
k∑
`=1

Φ`
ij

= pkij .

The first equality follows from composition of ϕi; the second equality follows
from (3.10); the third equality follows from the definition of ISAP; the fourth
equality from follows from repeatedly applying the previous arguments; the
fifth equality follows from the definition of ISAP. This finishes our prepara-
tions.

Let
¯
P φ = (pφij)i,j∈N . We will show by induction on k that P k ≤

¯
P φ for

all k ∈ N. Clearly, this implies P = limk→∞{P k} ≤
¯
P φ. Let k = 1. Then,

for all i, j ∈ N , it holds that

p1
ij = ϕij(e

1
i , c̄

1
i ) ≤ ϕij(e1

i +
∑
m∈N

pφmi, c̄
1
i ) = pφij .

The inequality follows from estate monotonicity of ϕi and the second equality
follows from

¯
P φ ∈ Pφ(E,C) (see (3.2)). Next, let k ∈ N and assume that

P k ≤
¯
P φ. Now consider k + 1. Then, for all i, j ∈ N , it holds that

pk+1
ij = ϕij(

∑
m∈N

k+1∑
`=1

Φ`
im, c̄

1
i )

≤ ϕij(e1
i +

∑
m∈N

k∑
`=1

Φ`
mi, c̄

1
i )

= ϕij(e
1
i +

∑
m∈N

pkmi, c̄
1
i )

≤ ϕij(e1
i +

∑
m∈N

pφmi, c̄
1
i )

= pφij .

The first equality follows from (3.9); the first inequality follows from (3.8);
the second inequality follows from the induction hypothesis and estate mono-
tonicity of ϕi; the last equality follows from

¯
P φ ∈ Pφ(E,C) (see (3.2)).

Finally, to show that P ∈ Pφ(E,C), we need to show that (see (3.2)),
for all i, j ∈ N ,

pij = ϕij(e
1
i +

∑
m∈N

pmi, c̄
1
i ).
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So let i, j ∈ N . We distinguish between two mutually exclusive cases. Define
the set

B = {p ∈ N : ekp <
∑
m∈N

ckpm for all k ∈ N}

as the set containing agents that never have sufficient funds to pay off their
remaining debts in ISAP.

First, if i ∈ B, then in each step k ∈ N of ISAP agent i allocates his
full estate. That is, for all k ∈ N, we have

∑
m∈N Φk

mi = eki , or equivalently,
using (3.6),

∑
m∈N

k∑
`=1

Φ`
im = e1

i +
∑
m∈N

k−1∑
`=1

Φ`
mi. (3.11)

Consequently, we have

pij = lim
k→∞

pkij

= lim
k→∞

ϕij

(∑
m∈N

k∑
`=1

Φ`
im, c̄

1
i

)

= lim
k→∞

ϕij(e
1
i +

∑
m∈N

k−1∑
`=1

Φ`
mi, c̄

1
i )

= ϕij(e
1
i +

∑
m∈N

(
lim
k→∞

pk−1
mi

)
, c̄1
i )

= ϕij(e
1
i +

∑
m∈N

pmi, c̄
1
i ).

The second equality follows from (3.9); the third equality follows from (3.11);
the fourth equality follows from estate continuity of ϕi.

Second, if i /∈ B, then there exists a K ∈ N such that eKi ≥
∑

m∈N c
K
im

and, as a consequence,
∑

m∈N ΦK
im =

∑
m∈N c

K
im. In other words, agent

i pays off all his remaining debts at time moment K, which means that
Φk
ij = 0 for all k ∈ {K + 1,K + 2, . . . }.

It suffices to prove that pKij = c1
ij . If pKij = c1

ij , then clearly pij = c1
ij since

Φk
ij = 0 for all k ∈ {K + 1,K + 2, . . . }. Moreover, if pKij = c1

ij , we also have

c1
ij = pij = pKij
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= ϕij

(∑
m∈N

K∑
`=1

Φ`
im, c̄

1
i

)

≤ ϕij(e1
i +

∑
m∈N

K−1∑
`=1

Φ`
im, c̄

1
i )

= ϕij(e
1
i +

∑
m∈N

pK−1
im , c̄1

i )

≤ ϕij(e1
i +

∑
m∈N

pim, c̄
1
i )

≤ c1
ij ,

which implies that all inequalities are equalities and therefore, in particular,

pij = ϕij(e
1
i +

∑
m∈N

pmi, c̄
1
i ).

Here, the third equality follows from (3.9); the first inequality follows from
(3.8); the second inequality follows from estate monotonicity of ϕi; the last
inequality follows from the definition of a claims rule.

To show that pKij = c1
ij , we first show that the accumulated payments of

agent i up to K are in fact equal to his total claims. That is, by definition
of ISAP,

∑
m∈N

K∑
`=1

Φ`
im =

∑
m∈N

K−1∑
`=1

Φ`
im +

∑
m∈N

ΦK
im

=
∑
m∈N

K−1∑
`=1

Φ`
im +

∑
m∈N

cKim

=
∑
m∈N

K−1∑
`=1

Φ`
im +

∑
m∈N

(
cK−1
im − ΦK−1

im

)

=
∑
m∈N

K−2∑
`=1

Φ`
im +

∑
m∈N

cK−1
im

=
∑
m∈N

c1
im.

In the second equality we use the fact that i /∈ B which implies that
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∑
m∈N ΦK

im =
∑

m∈N c
K
im as argued before. From this we can conclude that

pKij = ϕij

(∑
m∈N

K∑
`=1

Φ`
im, c̄

1
i

)
= ϕij(

∑
m∈N

c1
im, c̄

1
i )

= c1
ij .

The following corollary is a direct consequence of Proposition 3.1 and
Theorem 3.4. It says that the equivalence relationship between a φ-based
mutual claims rule ρφ and a recursive φ-based mutual claims rule rφ also
holds with agent-specific claims rules, thereby generalizing the main result
of Ketelaars et al. (2020).

Corollary 3.1. Let (E,C) ∈ LN and let φ = (ϕi)i∈N be a vector of claims
rules where each claims rule ϕi satisfies composition. Then,

ρφ(E,C) = α¯
Pφ = rφ(E,C).

4 Joint characterization of the three musketeers

Moulin (2000) shows that the three musketeers PROP, CEA, and CEL are
the only claims rules on C that meet the requirements of the following five
properties: scale invariance, equal treatment of equals, composition, path
independence and consistency.

Theorem 4.1 (cf. Moulin (2000)). The proportional rule, constrained equal-
awards rule and constrained equal-losses rule are the only three claims rules
on C that simultaneously satisfy scale invariance, equal treatment of equals,
composition, path independence and consistency.

We will show that this result for claims rules on C can be extended to
(recursive) φ-based mutual claims rules on L. To this end, we first state the
five properties for claims rules and propose adequate corresponding exten-
sions. Next, we show that the (recursive) φ-based mutual claims rules where
φ is any vector of claims rules in which each coordinate is one of the three
musketeers are the only (recursive) φ-based mutual claims rules on L that
satisfy the specific extensions.
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4.1 The five properties

The extension of Theorem 4.1 is a characterization within the class of (re-
cursive) φ-based mutual claims rules. Hence, formally speaking, we need
only provide extensions of properties that are defined on the class of (recur-
sive) φ-based mutual claims rules. Nevertheless, for the sake of generality,
we provide general extensions of the five properties with the exception of
equal treatment of equals.

Scale invariance is the first of the five main properties that characterizes
the three musketeers and it relates to invariance with respect to a change in
measurement units. The three musketeers, the Talmud rule and the equal
sacrifice methods rule all satisfy scale invariance.

Definition 4.1. A claims rule ϕ on C satisfies scale invariance if, for all
finite N , for all (e, c) ∈ CN and all λ > 0, it holds that

λϕ(e, c) = ϕ(λe, λc).

The extension of scale invariance to the mutual claims problem setting is
straightforward.

Definition 4.2. A mutual claims rule µ on L satisfies scale invariance if,
for all finite N , for all (E,C) ∈ LN and all λ > 0, it holds that

λµ(E,C) = µ(λE, λC).

Equal treatment of equals requires an equal allocation to claimants that
are “equal”. In claims problems, claimants are considered equal if their
claim on the estate is the same. Equal treatment of equals is satisfied by
the three musketeers, the Talmud rule and the equal sacrifice methods rule.

Definition 4.3. A claims rule ϕ on C satisfies equal treatment of equals if,
for all finite N , for all (e, c) ∈ CN and all i, j ∈ N with ci = cj , it holds that

ϕi(e, c) = ϕj(e, c).

Equality of agents in mutual claims problems is defined as them having the
same estate as well as having the same claims on and debts to other agents.
In regard to the class of φ-based mutual claims rules, we additionally impose
that equal agents use the same claims rule.
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Definition 4.4. A φ-based mutual claims rule ρφ on L satisfies equal treat-
ment of equals if, for all finite N , for all (E,C) ∈ LN and all i, j ∈ N with
ϕi = ϕj , ei = ej , cim = cjm and cmi = cmj for all m ∈ N , it holds that

ρφi (E,C) = ρφj (E,C).

Composition for claims rules, as was defined in the previous section,
can in a natural way be extended to mutual claims rules. In the network
setting, an allocation has been prescribed in which (some of) the agents
have underestimated their true estate value. Therefore, there is still an
excess amount to be distributed among the agents with respect to a residual
claims matrix. A residual claims matrix is a matrix containing the remaining
claims of agents after agents received payments that are induced by a mutual
claims rule. In Definition 4.5, a residual claims matrix is given by C − P ,
where P ∈ P(E,C) is a transfer scheme corresponding to the allocation
vector µ(E,C).

Definition 4.5. A mutual claims rule µ on L satisfies composition if, for
all finite N , for all (E,C) ∈ LN and (Ẽ, C) ∈ LN with E ≤ Ẽ there exists
a P ∈ P(E,C) such that µ(E,C) = αP and such that

µ(Ẽ, C) = µ(E,C) + µ(Ẽ − E,C − P ).

We arrive at the path independence principle (Moulin, 1987) if we reason
conversely. Here, an estate value that is larger than expected has been
allocated. Path independence allows us to allocate the actual (smaller)
estate value on the basis of either actual claims or revised claims. In claims
problems, revised claims are the initially prescribed unfeasible allocations
to the claimants. The three musketeers and the equal sacrifice methods rule
satisfy path independence, while the Talmud rule does not.

Definition 4.6. A claims rule ϕ on C satisfies path independence if, for all
finite N , for all (e, c) ∈ CN and (ẽ, c) ∈ CN with ẽ ≤ e it holds that

ϕ(ẽ, c) = ϕ(ẽ, ϕ(e, c)).

In mutual claims problems, revised claims are the (excess) payments made
by agents on the basis of estate values that are larger than expected.

Definition 4.7. A mutual claims rule µ on L satisfies path independence
if, for all finite N , for all (E,C) ∈ LN and (Ẽ, C) ∈ LN with Ẽ ≤ E there
exists a P ∈ P(E,C) such that µ(E,C) = αP and such that

µ(Ẽ, C) = µ(Ẽ, P ).
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Finally, consistency is an invariance property with respect to the set
of claimants (agents) which requires that no subset of claimants has an
incentive to reallocate the allocation that was agreed upon. In particular,
a rule is consistent if a reallocation of an amount that (rightfully) belongs
to a subset S — as prescribed by the same rule — coincides with the initial
individual allocations to members of S. In a claims problem (e, c) on N ,
the amount that belongs to S is the initial estate minus the allocations to
agents outside of S.5 The associated restricted claims problem is then given
by (e−

∑
j∈N\S ϕj(e, c), c

S) ∈ CS , where cS = (ci)i∈S . The three musketeers,
the Talmud rule and the equal sacrifice methods rule all satisfy consistency.

Definition 4.8. A claims rule ϕ on C satisfies consistency if for all finite
N , for all (e, c) ∈ CN , for all S ⊆ N and for all i ∈ S it holds that

ϕi(e, c) = ϕi(e−
∑

j∈N\S

ϕj(e, c), c
S).

In a mutual claims problem (E,C) on N , the associated restricted mutual
claims problem with respect to payments made in accordance with a mutual
claims rule µ, i.e., P ∈ P(E,C) with µ(E,C) = αP , is given by (ES,P , CS) ∈
LS , where ES,P = (eS,Pi )i∈S with

eS,Pi = ei +
∑

j∈N\S

pji −
∑

j∈N\S

pij (4.1)

for all i ∈ S, and CS = (cij)i,j∈S . The amount restricted to members in S
is now given by (4.1) and is determined on the basis of payments from and
to agents outside of S. If the total payments of some agent i ∈ S to agents
outside of S exceeds his estate value plus the total incoming payments from
agents outside of S, then eS,Pi < 0 and thus (ES,P , CS) /∈ LS . In this case
no consistency requirement is imposed. The following definition is due to
Groote Schaarsberg et al. (2018).

Definition 4.9. A mutual claims rule µ on L satisfies consistency if for
all finite N and for all (E,C) ∈ LN there exists a P ∈ P(E,C) such that
µ(E,C) = αP and such that for all S ⊆ N with (ES,P , CS) ∈ LS and all
i ∈ S it holds that

µi(E,C) = µi(E
S,P , CS).

5Alternatively, the amount that belongs to S is the total allocation to S prescribed by
ϕ, i.e.,

∑
j∈S ϕj(e, c).
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4.2 Characterization in mutual claims problems

To bridge the gap between claims problems and mutual claims problems,
we will show how a claims problem can be interpreted as a mutual claims
problem. To this end, we introduce an artificial agent, agent zero, with non-
negative estate. If (e, c) ∈ CN is a claims problem with N = {1, 2, . . . , n},
then (e, c) can be associated with a mutual claims problem (E,C) on N̄ =
{0} ∪N given by

E =


e
0
...
0

 , and C =


0 c1 . . . cn
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 . (4.2)

It readily follows that the allocations prescribed by the mutual claims rules
ρφ and rφ for (E,C) on N̄ coincide with the allocation prescribed by the
claims rule ϕ0 of agent zero for the underlying claims problem (e, c) on N .

Proposition 4.1. Let (E,C) be a mutual claims problem on N̄ = {0} ∪N
as defined in (4.2) and let φ = (ϕ0, ϕ1, . . . , ϕn) be a vector of claims rules.
Then, for all i ∈ N ,

(i) ρφi (E,C) = ϕ0
i (e, c),

(ii) rφi (E,C) = ϕ0
i (e, c).

Before stating our characterization result, we point out a useful feature
of the bottom φ-transfer scheme, namely its so-called monotonicity of pay-
ments.

Lemma 4.1. Let (E,C) ∈ LN and (Ẽ, C) ∈ LN with E ≤ Ẽ and let φ =
(ϕi)i∈N be a vector of claims rules. Let

¯
P φ ∈ Pφ(E,C) and

¯
P̃ φ ∈ Pφ(Ẽ, C)

be the corresponding bottom φ-transfer schemes. Then,
¯
P φ ≤

¯
P̃ φ.

Proof. See Appendix A.

For expositional convenience, we let MN denote the set of vectors of
claims rules φ with respect to N in which each coordinate is one of the three
musketeers, i.e., MN = {φ |φi ∈ {PROP,CEA,CEL} for all i ∈ N}. Let
M be the set of all such vectors of claims rules with respect to arbitrary but
finite N .

We now have all ingredients for our axiomatic characterization of the
three musketeers in mutual claims problems.
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Theorem 4.2. The φ-based mutual claims rules with φ ∈M are the only φ-
based mutual claims rules on L that simultaneously satisfy scale invariance,
equal treatment of equals, composition, path independence and consistency.

Proof. See Appendix A.

In the proof of Theorem 4.2, we show that a φ-based mutual claims rule
ρφ satisfies the five properties on L if and only if φ ∈ M. In particular,
we employ the bottom φ-transfer scheme to assert that ρφ satisfies scale
invariance, equal treatment of equals, composition, path independence and
consistency. Clearly, if φ ∈ M, then ρφ = α¯

Pφ = rφ (by Corollary 3.1) so
the recursive φ-based mutual claims rule rφ satisfies scale invariance, equal
treatment of equals, composition, path independence and consistency as
well.6 Using Proposition 4.1, also the arguments in the proof of Theorem
4.2 for the reverse statement can be applied to the class of recursive φ-based
mutual claims rules. This leads to the following corollary.

Corollary 4.1. The recursive φ-based mutual claims rules with φ ∈ M
are the only recursive φ-based mutual claims rules on L that simultaneously
satisfy scale invariance, equal treatment of equals, composition, path inde-
pendence and consistency.

A note of warning however on the difference between the inheritance
of properties with respect to φ-based mutual claims rules and recursive φ-
based mutual rules. The following example illustrates that, even if φ consists
of claims rules that all satisfy path independence on C, the corresponding
recursive φ-based mutual claims rule rφ need not necessarily satisfy path
independence on L. On the other hand, in the proof of Theorem 4.2, we
show that, for any of the five axioms, a φ-based mutual claims rule ρφ

satisfies the axiom on L if all underlying claims rules in φ satisfy the same
axiom on C, independently of the other axioms.

Example 4.1. Consider the mutual claims problem (E,C) ∈ LN given by
N = {1, 2, 3},

E =

1
1
0

 and C =

0 0 1
0 0 1
4 1 0

 .
Assume that each agent uses the equal sacrifice methods rule ESM as his
underlying payment mechanism in φ-based ISAP. This means that φ =

6Recall that the equal treatment of equals axiom was only defined for a φ-based mutual
claims rule ρφ. Its definition for a recursive φ-based mutual claims rule rφ is similar.
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(ESM,ESM,ESM). Note that the equal sacrifice methods rule ESM satisfies
path independence.

In the first step of ISAP, agents 1 and 2 both pay agent 3 an amount of
1, thereby becoming debt free. Subsequently, agent 3 allocates an amount
of 2 among agents 1 and 2 using ESM. ISAP then terminates because
agents 1 and 2 are debt free and agent 3 has an estate of zero. We have
ESM(2, (4, 1, 0)) = (11

3 ,
2
3 , 0), which gives us

P =

 0 0 1
0 0 1

11
3

2
3 0

 .
Hence, the transfer allocation is equal to rφ(E,C) = (1, 1, 0) + (11

3 ,
2
3 , 2) −

(1, 1, 2) = (11
3 ,

2
3 , 0).

Now, suppose that the actual estates vector is given by Ẽ = (0, 1, 0).
Then, it follows that

rφ(Ẽ, C) = (0.1883, 0.8117, 0) 6= (
1

3
,
2

3
, 0) = rφ(Ẽ, P ),

which, together with the fact that P is unique, means that the recursive
φ-based mutual claims rule rφ does not satisfy path independence.

4

5 Sequential clearing mechanisms

In addition to the recursive φ-based clearing mechanisms, there exist two
large classes of φ-based (decentralized) sequential clearing mechanisms for
which payments converge to the bottom φ-transfer scheme (cf. Theorem
3.2 and Theorem 3.4). As a result, the mutual claims rule corresponding
to a such a φ-based sequential clearing mechanism can also be uniquely
characterized by the five properties provided in Theorem 4.2.

In each step of a sequential clearing mechanism, exactly one agent is se-
lected that makes a payment to the other agents on the basis of a claims rule
ϕ. Like the individual settlement allocation procedure, sequential clearing
mechanisms need not terminate in a finite number of iterations. Therefore,
we require that the selection process is such that each agent is in principle
selected an infinite number of times.7 The selection process need not be

7An agent may otherwise never be selected despite receiving payments and being able
to make a positive payment. Consequently, he has not allocated all his incoming payments
which implies that the resulting payment matrix is not a φ-transfer scheme.
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deterministic. In general, the selection process can be history dependent,
stochastic or both. We represent a realization of a selection process by an
ordering of the agents σ : N → N , where σ(k) ∈ N is the agent that is se-
lected to pay at step k ∈ N. The set of all realized orderings σ of N that are
the direct consequence of all possible selection processes with the property
that |{k ∈ N : σ(k) = i}| =∞ for all i ∈ N is denoted by Π(N).

We will now outline two large classes of sequential clearing mechanisms,
both of which are defined for any σ ∈ Π(N). The first φ-based sequential
clearing mechanism is a variation on the φ-based individual settlement al-
location procedure; a procedure in which agents pay simultaneously in each
step. To accommodate for sequential payments based on a realized ordering
σ ∈ Π(N), we need only change the second component of ISAP of Definition
3.6 in the following way:

2. The payment of agent σ(k − 1) = i to agent j ∈ N in step k − 1 is
equal to

Φk−1
ij = ϕij(e

k−1
i , c̄k−1

i ),

where c̄k−1
i ∈ RN+ is the i-th row of claims matrix Ck−1; for all i 6=

σ(k − 1), it holds that Φk−1
ij = 0 for all j ∈ N .

The other steps in Definition 3.6 remain the same. Correspondingly, given
a selection procedure and a corresponding realized ordering σ ∈ Π(N), we
call such a φ-based sequential clearing mechanism a φ-based asynchronous
ISAP.

Proposition 5.1. If each coordinate of φ is a claims rule that satisfies
composition, then the resulting payment matrix of a φ-based asynchronous
ISAP is the bottom φ-transfer scheme, irrespective of the realized ordering
σ ∈ Π(N).

This statement follows from a direct modification of the proof of Theorem
3.4; the crux of the proof is in establishing (3.9).

The second φ-based sequential clearing mechanism is a variation on
the recursive procedure provided in Definition 3.5 of the bottom φ-transfer
scheme. Given a realized ordering σ ∈ Π(N), the clearing mechanism gen-
erates a sequence of payment matrices {P k}k∈N with P k = (pkij)i,j∈N as

follows. Initially, set P 0 = 0. Define, for all i ∈ N and k ∈ N,

δi(k + 1) = ei +
∑
j∈N

pkji, (5.1)
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with δi(1) = ei, where, for all j ∈ N ,

pkji =

{
ϕji (δj(k), c̄j) if j = σ(k),

pk−1
ji if j 6= σ(k).

(5.2)

Then, define P = (pij)i,j∈N by setting, for all i, j ∈ N ,

pij = lim
k→∞

pkij . (5.3)

In fact, the above φ-based sequential clearing mechanism is the analogue
of a decentralized clearing process introduced by Csóka and Herings (2018)
for the discrete setup.8

Correspondingly, given a selection procedure and a corresponding real-
ized ordering σ ∈ Π(N), we call such a φ-based sequential clearing mecha-
nism a φ-based decentralized clearing process. The process can be interpreted
as follows. Each agent keeps track of the amount to his disposal, i.e., his
initial estate plus the payments he has received so far, as represented by
(5.1). Each time an agent is selected, he makes a (possible) incremental
payment according to his claims rule by allocating what he currently has to
his disposal.

Proposition 5.2. The resulting payment matrix P given in (5.3) of a φ-
based decentralized clearing process is the bottom φ-transfer scheme, irre-
spective of the realized ordering σ ∈ Π(N).

To see this, we first argue that P is a φ-transfer scheme. Since each claims
rule in φ is estate monotone, (5.1) constitutes a monotonically increasing
sequence {δ(k)}k∈N that is bounded from above. Hence, its limit exists
as a result of the monotone convergence theorem. Consequently, estate
continuity of claims rules in φ implies that (5.2) constitutes a monotonically
increasing sequence

P 1 ≤ P 2 ≤ P 3 ≤ . . . ,

which has a limit as well. By construction of a φ-based decentralized clearing
process, it follows that the resulting payment matrix P given in (5.3) is a
φ-transfer scheme, irrespective of the realized ordering σ ∈ Π(N). The

8By using a claims rule ϕ as an underlying payment mechanism, we implicitly require
that payments are maximal in the sense that each agent either allocates all of his available
estate or pays off all his debts. This need not always be the case in a decentralized clearing
process as defined by Csóka and Herings (2018) for the discrete setup.
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assertion that P is the bottom φ-transfer scheme then follows directly from
the proof of Theorem 3.2.

The following example illustrates both types of φ-based sequential clear-
ing mechanisms.

Example 5.1. Reconsider the mutual claims problem (E,C) ∈ LN of Ex-
ample 3.1 given by N = {1, 2, 3},

E =

2
1
1

 and C =

0 1 2
1 0 1
5 2 0

 .
Again, let φ = (CEA,CEL,TAL). Consider the following realized ordering
of the agents σ = (1, 3, 2, 1, 3, 2, . . . ). We will illustrate the corresponding
φ-based asynchronous ISAP and φ-based decentralized clearing process in
conjunction.

Let, for all k ∈ N, P̂ k =
∑k

`=1 Φ` denote the accumulated payments
at step k under φ-based asynchronous ISAP. Furthermore, in regard to the
φ-based decentralized clearing process, let P k be as defined in (5.2) for all
k ∈ N.

Initially, set E1 = E = δ(1) and P 0 = 0. Agent 1 is first selected to pay.
We have CEA(2, (0, 1, 2)) = (0, 1, 1) in both clearing mechanisms, so

P̂ 1 =

0 1 1
0 0 0
0 0 0

 and P 1 =

0 1 1
0 0 0
0 0 0

 .
Hence,

E2 = (2, 1, 1) + (0, 1, 1)− (2, 0, 0) = (0, 2, 2),

and δ(2) = (2, 1, 1) + (0, 1, 1) = (2, 2, 2).

Agent 3 is selected next and pays TAL(2, (5, 2, 0)) = (1, 1, 0) in both mech-
anisms because E2

3 = δ3(2) = 2, so

P̂ 2 =

0 1 1
0 0 0
1 1 0

 and P 2 =

0 1 1
0 0 0
1 1 0

 .
Hence,

E3 = (2, 1, 1) + (1, 2, 1)− (2, 0, 2) = (1, 3, 0),
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and δ(3) = (2, 1, 1) + (1, 2, 1) = (3, 3, 2).

In the third step agent 2 is selected and pays CEL(3, (1, 0, 1)) = (1, 0, 1) in
both mechanisms because E3

2 = δ2(3) = 3, so

P̂ 3 =

0 1 1
1 0 1
1 1 0

 and P 3 =

0 1 1
1 0 1
1 1 0

 .
Hence, E4 = (2, 1, 1) and δ(4) = (4, 3, 3). Moreover, the claims matrix in
step 4 for φ-based asynchronous ISAP is equal to

C4 = C − P̂ 3 =

0 0 1
0 0 0
4 1 0

 .
In subsequent steps, agent 2 will not make any incremental payments since
he is debt free. In the fourth step agent 1 is selected and becomes debt
free by paying CEA(E4

1 , c̄
4
1) = CEA(2, (0, 0, 1)) = (0, 0, 1) under φ-based

asynchronous ISAP and by paying CEA(δ1(4), c̄1
1) = CEA(4, (0, 1, 2)) =

(0, 1, 2) under the φ-based decentralized clearing process. Consequently,

P̂ 4 =

0 1 2
1 0 1
1 1 0

 and P 4 =

0 1 2
1 0 1
1 1 0

 ,
so that E5 = (1, 1, 2) and δ(5) = (4, 3, 4).

Note that the matrices P̂ 4 and P 4 are still equal, however they will be-
come different in the next step. Since agents 1 and 2 have become debt
free, there will be one more payment by agent 3 after which both proce-
dures essentially terminate. Agent 3 is selected in the next step and pays
TAL(E5

3 , c̄
5
3) = TAL(2, (4, 1, 0)) = (11

2 ,
1
2 , 0) under φ-based asynchronous

ISAP and pays TAL(δ3(5), c̄1
3) = TAL(4, (5, 2, 0)) = (3, 1, 0) under the φ-

based decentralized clearing process. Therefore, the limiting payment ma-
trices P̂ 5 = P̂ 6 = · · · = P̂ and P 5 = P 6 = · · · = P are given by

P̂ =

 0 1 2
1 0 1

21
2 11

2 0

 and P =

0 1 2
1 0 1
3 1 0

 ,
respectively. The payment matrix P equals the bottom φ-transfer scheme
obtained in Example 3.1. Note that the Talmud rule does not satisfy compo-
sition and thus the payment matrix P̂ may differ from the bottom φ-transfer
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scheme as is the case here. Correspondingly, the transfer allocations are un-
equal:

αP̂ = (2
1

2
, 1

1

2
, 0) 6= (3, 1, 0) = αP .

4
The previous example illustrates how φ-based (asynchronous) individ-

ual settlement allocation procedures and φ-based decentralized clearing pro-
cesses differ in interpretation. In each step of a φ-based decentralized clear-
ing process, agents essentially communicate what they will pay to each other.
The only transfers between agents that take place are those with respect to
the resulting limiting payment matrix, i.e., the bottom φ-transfer scheme.
This contrasts with φ-based (asynchronous) individual settlement allocation
procedures in which actual transfers between agents take place in each step.

6 Concluding remarks

In this paper, we show that composition of the underlying claims rules is the
cornerstone of the unification of the centralized clearing mechanism based on
φ-transfer schemes, the φ-based individual settlement allocation procedure
and φ-based (decentralized) sequential clearing mechanisms since, for each
mutual claims problem, all of them lead to the bottom φ-transfer scheme and
give rise to the same transfer allocation. Moreover, we provide an extension
of the axiomatic characterization for claims rules as given by Moulin (2000).
The extension to φ-based mutual claims rules is based on newly defined
adequate extensions of the corresponding five axioms: scale invariance, equal
treatment of equals, composition, path independence and consistency.

In Remark 3.1, we note that another φ-transfer scheme can be obtained
by replacing the starting point of the recursive centralized procedure. If
we replace the starting point of a φ-based decentralized clearing process
by the same starting point, then we obtain another φ-based (decentralized)
clearing mechanism that leads to the same φ-transfer scheme. In fact, both
of these resulting φ-transfer schemes are the top φ-transfer scheme. The
corresponding transfer allocation is nonetheless the same as the one following
from the bottom φ-transfer scheme as a result of Theorem 3.1.

Example 4.1 shows that a recursive φ-based mutual claims rule rφ need
not satisfy path independence despite that all of its underlying claims rules
in φ satisfy path independence. In fact, a recursive φ-based mutual claims
rule rφ need not satisfy the extension of estate monotonicity; a condition we
imposed on all claims rules from the outset.
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Definition 6.1. A mutual claims rule µ on L satisfies estate monotonicity
if, for all finite N , for all (E,C) ∈ LN and (Ẽ, C) ∈ LN with E ≤ Ẽ it holds
that µ(E,C) ≤ µ(Ẽ, C).

For a recursive φ-based mutual claims rule rφ it may happen that some
agents end up receiving strictly more if it turns out that (some of the)
agents have a smaller estate value. We can observe this in Example 4.1,
where Ẽ ≤ E with E = (1, 1, 0) and Ẽ = (0, 1, 0), but rφ2 (Ẽ, C) = 0.8117 >
2
3 = rφ2 (E,C). On the other hand, one can readily verify that a φ-based
mutual claims rule ρφ satisfies estate monotonicity if all claims rules in φ
satisfy estate monotonicity by using Lemma 4.1.
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A Proofs

Proof of Lemma 4.1.
Let

¯
P φ = (pij)i,j∈N and

¯
P̃ φ = (p̃ij)i,j∈N be given by

pij = lim
k→∞

ϕij(γi(k), c̄i),

p̃ij = lim
k→∞

ϕij(γ̃i(k), c̄i),

respectively, where, for all i ∈ N and k ∈ N, γi(k) and γ̃i(k) are defined
according to Definition 3.5.

We first show that γ(k) ≤ γ̃(k) for all k ∈ N. For k = 1 and all i ∈ N ,
we have γi(1) = ei ≤ ẽi = γ̃(1). Proceeding by induction, assume that for
some k ∈ N, we have γ(k) ≤ γ̃(k). Let i ∈ N . Estate monotonicity of the
claims rules in φ and ei ≤ ẽi imply that

γi(k + 1) = ei +
∑
j∈N

ϕji (γj(k), c̄j) ≤ ẽi +
∑
fj∈N

ϕji (γ̃j(k), c̄j) = γ̃i(k + 1).

Hence, estate continuity of ϕi implies that pij ≤ p̃ij for all j ∈ N .

Proof of Theorem 4.2.
The proof comprises two parts. First, we show that ρφ satisfies the five
properties on L if φ ∈ M. Second, we show that φ ∈ M if ρφ satisfies the
five properties on L.

Let N be an arbitrary but finite set of agents and let φ = (ϕi)i∈N ∈MN .
By Theorem 4.1, the three musketeers satisfy the five properties on CN . In
particular, ϕi satisfies the five properties for all i ∈ N . Let (E,C) ∈ LN
and consider the bottom φ-transfer scheme

¯
P φ = (pij)i,j∈N ∈ Pφ(E,C).

Let λ > 0. To show that ρφ satisfies scale invariance, it suffices to show
that λρφ(E,C) = ρφ(λE, λC). We first show that λ

¯
P φ ∈ Pφ(λE, λC). Let

i ∈ N . Scale invariance of ϕi implies that, for all j ∈ N ,

λpij = λϕij(ei +
∑
m∈N

pmi, c̄i) = ϕij(λei +
∑
m∈N

λpmi, λc̄i).

Hence, λ
¯
P φ ∈ Pφ(λE, λC). Consequently,

λρφ(E,C) = λα¯
Pφ (3.1)

= αλ¯
Pφ = ρφ(λE, λC).
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Let i, j ∈ N be such that ϕi = ϕj , ei = ej , cim = cjm and cmi = cmj for
all m ∈ N . To show that ρφ satisfies equal treatment of equals, it suffices to
show that ρφi (E,C) = ρφj (E,C). We first show that pki = pkj and pik = pjk
for all k ∈ N . First, we have cij = cjj = 0 and cji = cii = 0 and, by
assumptions (i) and (ii) of a transfer scheme as given in Definition 3.1, this
implies that pij = 0 = pji. Second, let k ∈ N \ {i, j}. Then, by Definition
3.3 of a φ-transfer scheme, we have

pki = ϕki (ek +
∑
m∈N

pmk, c̄k) = ϕkj (ek +
∑
m∈N

pmk, c̄k) = pkj

where the second equality follows from the fact that cki = ckj and because
ϕk satisfies equal treatment of equals. As a consequence, ei +

∑
m∈N pmi =

ej +
∑

m∈N pmj , and thus also

pik = ϕik(ei +
∑
m∈N

pmi, c̄i) = ϕjk(ej +
∑
m∈N

pmj , c̄j) = pjk.

Here, the second equality follows from the fact that cik = cjk, ϕ
i = ϕj

and the fact that both ϕi and ϕj satisfy equal treatment of equals. Hence,

ρφi (E,C) = α¯
Pφ

i

(3.1)
= α¯

Pφ

j = ρφj (E,C).

Let (Ẽ, C) ∈ LN with E ≤ Ẽ and consider the corresponding bottom
φ-transfer scheme

¯
P̃ φ = (p̃ij)i,j∈N ∈ Pφ(Ẽ, C). To show composition, it

suffices to show that ρφ(Ẽ, C) = ρφ(E,C) + ρφ(Ẽ − E,C −
¯
P φ). First, we

show that (
¯
P̃ φ−

¯
P φ) is a φ-transfer scheme for (Ẽ−E,C−

¯
P φ). Let i, j ∈ N .

Since E ≤ Ẽ and
¯
P φ ≤

¯
P̃ φ (by Lemma 4.1), we have

ei +
∑
m∈N

pmi ≤ ẽi +
∑
m∈N

p̃mi.

Hence,

(p̃ij − pij) = ϕij(ẽi +
∑
m∈N

p̃mi, c̄i)− ϕij(ei +
∑
m∈N

pmi, c̄i)

= ϕij

(
(ẽi − ei) +

∑
m∈N

(p̃mi − pmi), c̄i − ϕi(ei +
∑
m∈N

pmi, c̄i)

)
= ϕij((ẽi − ei) +

∑
m∈N

(p̃mi − pmi), c̄i − p̄i),

where p̄i is the i-th row of
¯
P φ. The first equality and third equality follow

from condition (3.2) of a φ-transfer scheme; the second equality follows from
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composition of ϕi. Therefore, (
¯
P̃ φ −

¯
P φ) ∈ Pφ(Ẽ − E,C −

¯
P φ) (see (3.2))

and thus

ρφ(Ẽ − E,C −
¯
P φ) = α(

¯
P̃φ−

¯
Pφ) (3.1)

= α¯
P̃φ − α¯

Pφ = ρφ(Ẽ, C)− ρφ(E,C).

Let (Ẽ, C) ∈ LN with Ẽ ≤ E and consider the corresponding bottom φ-
transfer scheme

¯
P̃ φ = (p̃ij)i,j∈N ∈ Pφ(Ẽ, C). To show path independence,

it suffices to show that ρφ(Ẽ, C) = ρφ(Ẽ,
¯
P φ). We first show that

¯
P̃ φ ∈

Pφ(Ẽ,
¯
P φ). Let i, j ∈ N . Since Ẽ ≤ E and

¯
P̃ φ ≤

¯
P φ (by Lemma 4.1), we

have

ẽi +
∑
m∈N

p̃mi ≤ ei +
∑
m∈N

pmi.

Hence,

p̃ij = ϕij(ẽi +
∑
m∈N

p̃mi, c̄i) = ϕij(ẽi +
∑
m∈N

p̃mi, ϕ
i(ei +

∑
m∈N

pmi, c̄i))

= ϕij(ẽi +
∑
m∈N

p̃mi, p̄i),

where p̄i is the i-th row of
¯
P φ. The first equality and third equality fol-

low from condition (3.2) of a φ-transfer scheme; the second equality fol-
lows from path independence of ϕi. Therefore,

¯
P̃ φ ∈ Pφ(Ẽ,

¯
P φ) and thus

ρφ(Ẽ, C) = α¯
P̃φ = ρφ(Ẽ,

¯
P φ).

Let S ⊆ N be such that (ES,¯
Pφ , CS) ∈ LS . Denote the i-th row of claims

matrix CS by c̄Si . To show consistency, it suffices to show that ρφi (E,C) =

ρφi (ES,¯
Pφ , CS) for all i ∈ S. We first show that the bottom φ-transfer

scheme
¯
P φ restricted to agents in S, given by PS,φ = (pij)i,j∈S , belongs to

Pφ(ES,¯
Pφ , CS). Let i, j ∈ S. Then,

pij = ϕij(ei +
∑
m∈N

pmi, c̄i)

= ϕij(ei +
∑
m∈N

pmi −
∑

k∈N\S

ϕik(ei +
∑
m∈N

pmi, c̄i), c̄
S
i )

= ϕij(ei +
∑
m∈N

pmi −
∑

k∈N\S

pik, c̄
S
i )
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= ϕij(ei +
∑

m∈N\S

pmi −
∑

m∈N\S

pim +
∑
m∈S

pmi, c̄
S
i )

= ϕij(e
S,

¯
Pφ

i +
∑
m∈S

pmi, c̄
S
i ).

The first and third equality follow from
¯
P φ ∈ Pφ(E,C); the second equality

follows from consistency of ϕi; the last equality follows from (4.1). Therefore,

PS,φ ∈ Pφ(ES,¯
Pφ , CS) and thus ρφi (E,C) = α¯

Pφ

i

(3.1)
= αP

S,φ

i = ρφi (ES,¯
Pφ , CS)

for all i ∈ S.

Next, assume that ρφ, where φ is an arbitrary vector of claims rules,
satisfies the five properties on L. We will argue that φ ∈ M, that is, φ can
can only consist of the three musketeers.

Without loss of generality, letN = {1, 2, . . . , n} and φ = (ϕ1, ϕ2, . . . , ϕn).
Since L contains all mutual claims problems of the form

E =


1 e

2 0
... 0

n 0

, and C =



1 2 . . . n

1 0 c2 . . . cn

2 0 0 . . . 0
...

...
...

. . .
...

n 0 0 . . . 0

,

it follows from Proposition 4.1 that ϕ1 satisfies the five properties on C.
Hence, ϕ1 must be one of the three musketeers due to Theorem 4.1. Using
similar appropriate forms, it follows that, for all i ∈ N \ {1}, ϕi also must
be one of the three musketeers.
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