

Tilburg University

Sparse PCA for Multi-Block Data

de Schipper, N.C.

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
de Schipper, N. C. (2021). Sparse PCA for Multi-Block Data. [s.n.].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/879bb693-b87b-4050-8908-07a265007199

Sparse PCA for Multi-Block Data

Proefschrift ter verkrijging van de graad van doctor aan Tilburg University

op gezag van de rector magnificus, prof. dr. W.B.H.J. van de Donk,

in het openbaar te verdedigen ten overstaan van een

door het college voor promoties aangewezen commissie in de

Aula van de Universiteit op vrijdag 21 mei 2021 om 10:00 uur

door

Niek Cornelis de Schipper,

geboren te Eindhoven

Promotor: prof. dr. J. K. Vermunt (Tilburg University)
Copromotor: dr. K. Van Deun (Tilburg University)

leden promotiecommissie: dr. K. De Roover (Tilburg University)
prof. dr. E. Ceulemans (KU Leuven)
prof. dr. M.E. Timmerman (RU Groningen)
prof. dr. P.J.F. Groenen (Erasmus Universiteit Rotterdam)
prof. dr. A.G. de Waal (Tilburg University)

Colophon

Printing was financially supported by Tilburg University.

Printed by: printenbind

Cover photo by: Shifaaz Shamoon on Unsplash

Licence: CC-BY 4.0

https://www.printenbind.nl/
https://unsplash.com/@sotti
https://unsplash.com

Table of Contents

Table of Contents 1

1 Introduction 5

1.1 Background . 5

1.2 Aim and outline of the thesis . 7

2 Revealing the joint mechanisms in traditional data linked with Big

Data 11

2.1 Introduction . 12

2.2 Methods . 13

2.2.1 Notation and description of linked data 13

2.2.2 Model description of PCA and SCA 14

2.2.3 Common and distinctive components 15

2.2.4 Sparse common and distinctive components 16

2.2.5 Finding sparse common and distinctive components 17

2.2.6 Model selection . 18

2.2.7 Related methods . 19

2.3 Empirical data examples . 22

2.3.1 500 Family Study . 22

2.3.2 Alzheimer study . 28

2.4 Simulation studies . 31

2.4.1 Recovery of the model parameters under the correct model 32

2.4.2 Finding the underlying common and distinctive structure of

the data . 36

2.5 Discussion . 39

2.6 Appendix . 40

2.6.1 Specifics of the simulation study 40

2.6.2 Description of algorithm . 41

3 Model selection techniques for sparse weight based PCA 49

3.1 Introduction . 50

3.2 Sparse PCA for single and multi-block data 52

3.3 Model selection procedures for sparse PCA 54

3.4 Simulation studies . 57

3.4.1 Single block data . 57

3.4.2 Multi-block data . 59

3.5 Empirical Example: Herring data 63

3.6 Conclusion . 67

3.7 Appendix . 70

3.7.1 Description of algorithm . 70

3.7.2 Data generation . 73

4 Cardinality constrained weight based PCA 75

4.1 Introduction . 76

4.2 Methods . 77

4.2.1 Sparse PCA with the elastic net penalty by Zou et al., 2006 . 78

4.2.2 Sparse PCA with cardinality constraints 79

4.3 Simulation Study . 81

4.3.1 Overall quality of the estimation of the weights 82

4.3.2 Mean absolute bias, mean variance & mean MSE of the weights 85

4.4 Conclusion . 85

4.5 Appendix . 86

4.5.1 Description of algorithm . 86

4.5.2 Data generation . 88

5 sparseWeightBasedPCA: An R package for regularized weight based

SCA and PCA 89

5.1 Introduction . 90

5.2 Theoretical background . 90

5.2.1 Principal Component Analysis 90

5.2.2 Simultaneous Component Analysis 91

5.2.3 Content of the sparseWeightBasedPCA package 91

5.3 Models of the sparseWeightBasedPCA package 92

5.3.1 Regularized SCA with sparse component weights using con-

straints . 92

5.3.2 Regularized SCA with sparse component weights using the

group LASSO . 93

5.3.3 PCA with sparse component weights using cardinality con-

straints . 95

5.4 The implementation in R of the sparseWeightBasedPCA package . . 96

5.4.1 Core estimation procedures 96

2

5.4.2 Model selection procedures 99

5.4.3 Additional tuning functions for mmsca 100

5.5 Detailed examples of SCA and PCA with the sparseWeightBasedPCA
package . 103

5.5.1 Example of SCA with scads 104

5.5.2 Example of SCA with mmsca 110

5.5.3 Example of PCA with ccpca 116

5.6 Conclusion . 121

6 Epilogue 123

6.1 A note on model selection . 124

6.2 Computational feasibility . 125

6.3 Sparse weights versus sparse loadings models 126

References 129

Summary 140

Dankwoord 142

Chapter 1

Introduction

1.1 Background

Researchers are sometimes faced with a situation where they can supplement

their data with other data types for the same individuals. For example, besides

having questionnaire data, researchers might also have say experience sampling

data, online behavior data, or genetic data on the same subjects. We refer to each

of the different data types as a data block. Linking multiple data blocks together

holds promising prospects as it allows studying relationships as the result of the

concerted action of multiple determinants. For example, having both question-

naire data on eating and health behavior and data on genetic variants for the

same subjects holds the key to finding how genes and environment act together

in the emergence of eating disorders. Indeed, for most psycho-pathologies and

many other behavioral outcomes, it holds that these are the result of a genetic

susceptibility in combination with a risk provoking environment (Halldorsdottir

and Binder, 2017). Thus, analyzing multiple data blocks together could provide

us with crucial insights into the complex interplay between the multiple factors

that determine human behavior.

A powerful way of gaining insight into such data sets consisting of multiple

blocks is by means of latent variable modelling techniques. One of such techniques

is simultaneous component analysis, which is the main approach discussed in this

thesis. But, let us first consider the single block version, principal component

analysis (PCA; Jolliffe, 1986), for a data set consisting of I rows or individuals

and J columns or variables. A PCA with Q components decomposes the I×J data

block X as follows:

X = XWPT + E

= TPT + E. (1.1)

5

Chapter 1

X1 X2 · · · XK

1

1

1 1J1 J2 JK

I

XC =

Figure 1.1. Example of linked data set: K data blocks concatenated together where

each data block Xk contains Jk variables for the same I subjects

Here, T is the I × Q matrix with component scores, W the J × Q (with J ≫ Q)

component weight matrix, P the J×Q loading matrix, and E the I×J matrix with

residuals. PCA is usually defined with PTP = I as identification constraint, which

is, however, not sufficient to uniquely define P because there is still rotational

freedom. Note that in the above formulation of PCA, the component scores T are

written explicitly as a linear combination of the variables. Let tiq be the component

score of subject i on a component q, then tiq =
∑J

j=1 xijwjq, which clearly shows

that the component scores are a linear combination of the variables scores. Insight

into the relationships within data set concerned can be gained by deriving meaning

to the components; that is, an interpretation for tq can be directly inferred from

inspecting the weights wq. For example, if only variables related to depression

symptoms have substantial weights, then tq can be interpreted to be a depression

related component.

The PCA decomposition can be extended to the case where the data set of

interest consists of linked blocks. Assume we have K data blocks Xk for k =

1 . . . K with in each block Jk variables for the same I subjects. The resulting

linked data sets with in total
∑

k Jk variables which depicted in Figure 1.1 is called

a multi-block data set (Tenenhaus and Tenenhaus, 2011). The PCA decomposition

presented above can also be applied to all data blocks Xk jointly by treating the

multi-block data set as one big matrix with
∑

k Jk columns (variables). That is,

[
X1 . . .XK

]
=
[
X1 . . .XK

][
WT

1 . . .WT
K

]T [
PT

1 . . .PT
K

]
+
[
E1 . . .EK

]
(1.2)

6

Introduction

or in shorthand notation,

XC = XCWCP
T
C + EC

= TPT
C + EC .

(1.3)

This model is referred to as the simultaneous component (SC) model (Kiers and

ten Berge, 1989). In the SC model the component score tiq of subject i on compo-

nent q is tiq =
∑K

k=1

∑Jk
jk=1 xijkwjkq which is a linear combination of the variables

scores of all data blocks. Valuable insight in the relationships between multiple

blocks can be gained by inspecting in what way the variables from the different

blocks are weighted together to form the component scores.

1.2 Aim and outline of the thesis

There are two problems associated with the SC model:

1. Because the component scores in Equation (1.3) are a linear combination

of variables of all blocks, all blocks contribute to all components. This is

not particularly insightful as it obscures components that are not shared

by all data blocks. In order to alleviate this problem, the common sources

of variation need to be separated from the distinctive sources of variation.

This serves two purposes: first, it increases efficiency of the estimation of

the common components (Acar et al., 2014; Lock et al., 2013; Trygg and

Wold, 2002), and second, it may be instructive (substantively) to detect such

unique sources of variation (Alter et al., 2003; Van Deun et al., 2012). Our

strategy will be to model the unique sources of variation by a weight vector

containing zero(s) for all blocks except the block for which the component

is unique. This imposes absence of the component in all blocks, except for

the one for which it is unique. This approach has been shown to have a clear

interpretational advantage compared to methods that fail to control such

absence (Schouteden et al., 2013; Van Deun et al., 2013).

2. Besides not accounting for the multi-block structure, the formulation in

Equation (1.3) does not imply sparsity into the weights; that is, there is

no guarantee that a large portions of the weights gets values (close to) zero.

Sparse weights are important for the interpretation of the results, which is

especially helpful with data sets consisting of a (very) large number of vari-

ables, where a solution with many non-zero weights would be very difficult

to interpret. This issue has been addressed in the context of single-block

data by penalty based approaches such as the elastic net penalty (Zou et al.,

7

Chapter 1

2006), but the problem has not yet been tackled in conjunction with identi-

fying common and distinctive source of variation in the SC model.

This thesis aims at providing solutions to the above two problems. Chapter

2 explores an exhaustive approach which combines constraints imposed on the

weights in a block-wise manner to force common and distinctive sources of varia-

tion with a sparseness penalty. Chapter 3 explores a more general penalty-based

approach for finding common and distinctive sources of variation and, moreover,

examines various model selection techniques needed to decide on the parameters

of these models. The findings obtained in this chapter apply to both SCA and PCA.

Chapter 4 focusses on the analysis of single block data with PCA, meaning that it

deviates somewhat from the main theme of the thesis. In this chapter, we present

an alternative way of obtaining sparse weights, i.e., by means of cardinality con-

straints instead of penalties. In Chapter 5, we present the software created for

applying the methods developed in the other chapters, which is a freely available

package created using the R programming language.

Below, we introduce the content of the different chapters in greater detail. It

should be noted that the thesis chapters are written in the form of separate journal

articles. This led to some overlap, repetition and possibly also inconsistencies in

notation across the chapters.

Chapter 2 In Chapter 2, we take a closer look at multi-block analysis with SCA.

We argue that the current practice of analyzing multi-block data by merging all

data and apply methods developed for a single block of data, is an inappropriate

approach that does not guarantee the discovery of the shared processes (shared

variation) between blocks. Each block is dominated by specific information that

is typical for the kind of processes it measures (e.g., behavioral processes and re-

sponse tendencies in questionnaire data, biological processes in the genetic data)

resulting in higher associations between the variables within a block than between

blocks. Hence, an analysis that does not account for the multi-block data structure

is highly unlikely to find the linked variables underlying the subtle joint mecha-

nisms at play. In order to tackle this problem, we propose a simultaneous compo-

nent approach (Kiers, 2000; Van Deun et al., 2009) that introduces both proper

constraints and regularization terms, including the LASSO, to account for the pres-

ence of dominant block-specific sources of variation and to force variable selection.

The usage of this novel approach is illustrate by applying it to publicly available

data from the 500 Family Study (Schneider and Waite). Furthermore, we show

its potential by comparing it to sparse PCA (Zou et al., 2006), which is the single

block alternative that does not account for the presence of dominant block-specific

sources of variation.

8

Introduction

Chapter 3 In order to get sparse weights in either PCA or SCA models, values for

the hyper-parameters of the penalty terms need to be selected, which is a delicate

process. Choose a value that is too small, and too many coefficients will be se-

lected making the interpretation of the models difficult. Choose a value that is too

high, and you might miss important relationships within and between data blocks.

In Chapter 3, we compare various model selection procedures with respect to their

ability of finding the hyper-parameter values yielding the correct structure of the

data; i.e., selecting the right set of variables both in the single block setting and in

the multi-block setting with common and distinct variation. The model selection

procedures investigated are cross-validation with the Eigenvector method (Bro

et al., 2008), BIC (Guo et al., 2010; Croux et al., 2013), Convex Hull (Wilderjans

et al., 2012), and the Index of Sparseness (Gajjar et al., 2017; Trendafilov et al.,

2017), which are readily available methods from the existing literature on the es-

timation of meta-parameters for the weight-based PCA model. For sparse PCA and

sparse SCA, we examine these model selection procedures in a simulation study

with a single block of data and multi-block data, respectively. In the multi-block

case, we assess whether the model selection procedures produce a final model that

correctly identifies the joint and individual structure of the components. In order

to inform the analysis about the block structure of the variables, we implemented

the group LASSO penalty in a block-wise fashion, aiming at either selecting or

canceling out data blocks in an automated way.

Chapter 4 In Chapter 4, we present a sparse PCA method relying on cardinality

constraints instead of penalties. A well-documented disadvantage of using penal-

ties for introducing sparsity into the coefficients is that these penalties are not in-

tended to find the best subset of variables. That is, these penalties introduce bias

in the estimates while reducing their variance. The resulting variable selection

process increases the efficiency of the estimators, but it is not designed to recover

the true underlying set of variables. To overcome this problem, we present a car-

dinality constrained alternative to PCA. Instead of penalizing the coefficient in the

model, we solve the problem of finding the optimal subset given a number of non-

zero coefficients using a surrogate function. For this purpose, we use cardinality

constrained regression, which has the sole aim of identifying the true underlying

subset of variables. In this chapter, we compare this cardinality constrained PCA

to sparse PCA (Zou et al., 2006) estimated with the LARS algorithm.

Chapter 5 In Chapter 5, we introduce an R package to perform regularized SCA

and PCA with sparsity on the component weights. This package also includes

model selection procedures. The procedures developed are based on the work

9

Chapter 1

presented in the Chapter 2, 3, and 4. The main parts of the computational code

has been written in C++ to provide maximal efficiency of the underlying numeri-

cal computations. The chapter is written as a tutorial with the aim of making the

methods developed in this thesis accessible to potential users. It starts with a short

introduction to PCA and its multi-block extension SCA, followed by a substantia-

tion of the models that the procedures in this package estimate. After that the R
implementation of the package is discussed, followed by detailed examples of data

analysis and model selection.

10

Chapter 2

Revealing the joint mechanisms in traditional data

linked with Big Data

Abstract

Recent technological advances have made it possible to study human behavior by linking novel
types of data to more traditional types of psychological data, for example, linking psychological
questionnaire data with genetic risk scores. Revealing the variables that are linked throughout
these traditional and novel types of data gives crucial insight into the complex interplay between
the multiple factors that determine human behavior, for example, the concerted action of genes
and environment in the emergence of depression. Little or no theory is available on the link
between such traditional and novel types of data, the latter usually consisting of a huge number
of variables. The challenge is to select – in an automated way – those variables that are linked
throughout the different blocks, and this eludes currently available methods for data analysis. To
fill the methodological gap, we here present a novel data integration method.

Keywords: Linked Data, Variable Selection, Component Analysis, Big Data

Niek C. de Schipper & Katrijn Van Deun (2018). Zeitschrift für Psychologie. 226(4)212231.

11

2
Chapter 2

2.1 Introduction

In this era of big data, psychological researchers are faced with a situation

where they can supplement the data they are accustomed to with novel kinds of

data. For example, besides having questionnaire data also other types of data like

experience sampling data, online behavior data, GPS coordinates, or genetic data

may be available on the same subjects. Linking such additional blocks of informa-

tion to the more traditional data holds promising prospects as it allows to study

human behavior as the result of the concerted action of multiple influences. For

example, having both questionnaire data on eating and health behavior together

with data on genetic variants for the same subjects holds the key to finding how

genes and environment act together in the emergence of eating disorders. Indeed,

for most psycho-pathologies and many other behavioral outcomes, it holds that

these are the result of a genetic susceptibility in combination with a risk provoking

environment (Halldorsdottir and Binder, 2017). Thus, analyzing these traditional

data together with novel types of data could provide us with crucial insights into

the complex interplay between the multiple factors that determine human behav-

ior.

Revealing the joint mechanisms in these integrated or linked data, such as

the interplay between genes and environments, is challenging from a data analysis

point of view because of the complex structure of the data. First, there is the novel

kind of data that are very different from the traditional data we are used to work

with: Instead of consisting of a limited number of targeted measurements, they

consist of a huge amount of variables that have been collected without a specific

focus. A typical example is so-called genome wide or omics data consisting of

several thousands up to several millions of variables, but it is also the case with

naturally occurring data like tweets, web page visits, or GPS signals (Paxton and

Griffiths, 2017). As there is very little theoretical knowledge about the link be-

tween traditional and novel types of data, one is faced with a variable selection

problem meaning that a data analysis method is needed that can reveal the rele-

vant variables in an automated way. Such variable selection methods have been a

very active research topic in statistics during the last years and led to approaches

like lasso regression (Tibshirani, 1996) and sparse component analysis (Zou et al.,

2006). Second, the data consist of multiple blocks of data, and interest is in find-

ing shared or joined mechanisms; this means revealing the sets of variables that

are linked throughout the blocks. Current practice is to merge all data and apply

methods developed for a single block of data, for example, state-of-the-art vari-

able selection techniques such as lasso regression and sparse principal component

analysis (PCA). This is an inappropriate approach that does not guarantee that

12

2
Revealing the joint mechanisms in traditional data linked with Big Data

variables from each of the blocks will be selected in case of joined mechanisms.

First, usually the variables in the novel types of data outnumber those in the tradi-

tional data by far. Second, the blocks are dominated by specific information that is

typical for the kind of processes they measure (e.g., behavioral processes and re-

sponse tendencies in questionnaire data, biological processes in the genetic data)

resulting in higher associations between the variables within blocks than between

blocks. Hence, analyses that do not account for the multi-block structure of the

data are highly unlikely to find the linked variables underlying the subtle joint

mechanisms at play.

This paper proposes a novel data integration method that tries to overcome

both of these challenges. It presents a significant extension of sparse PCA to the

case of linked data, also called multi-block data. A simultaneous component ap-

proach (Kiers, 2000; Van Deun et al., 2009) is taken, and proper constraints and

regularization terms, including the lasso, are introduced to account for the pres-

ence of dominant block-specific sources of variation and to force variable selection.

The remainder of this paper is structured as follows: First, we will present the

method as an extension of PCA to the multi-block case, and we will introduce an

estimation procedure that is scalable to the setting of (very) large data. Second,

using empirical data with three blocks of data on parentchild interactions, the

substantive added value of singling out block-specific from common sources of

variation and of sparse representations will be illustrated. Third, as a proof of

concept, we will evaluate the performance of the method in a simulation study

and compare it to the current practice of applying sparse PCA. We conclude with

a discussion.

2.2 Methods

In this section, first, the notation and data will be introduced; then the

model, its estimation, model selection, and some related methods will be dis-

cussed.

2.2.1 Notation and description of linked data

In this paper, we will make use of the standardized notation proposed by

Kiers (2000): Bold lower- and uppercases will denote vectors and matrices, re-

spectively, superscript T denotes the transpose of a vector or matrix, and a running

index will range from 1 to its uppercase letter (e.g., there is a total of I subjects

where i runs from i = 1 . . . I).

The data of interest are linked data, where for the same group of subjects,

several blocks of data are analyzed together. A block of data is defined here as a

13

2
Chapter 2

group of variables that are homogeneous in the kind of information they measure

(e.g., a set of items, a set of time points, a set of genes). Formally, we have

K blocks of data Xk for k = 1 . . . K with in each block scores of the same I

subjects on the Jk variables making up the linked data set (see Figure 2.1). Such

data are called multi-block data (Tenenhaus and Tenenhaus, 2011) and are to be

distinguished from multi-set data where scores are obtained on the same set of J

variables but for different groups of subjects. Note that this paper is about multi-

block data and does not apply to multi-set data. Furthermore, it is assumed that

all data blocks consist of continues variables.

X1 X2 · · · XK

1

1

1 1J1 J2 JK

I

XC =

Figure 2.1. Example of linked data set: K data blocks concatenated together where

each data block Xk contains Jk variables for the same I subjects

2.2.2 Model description of PCA and SCA

A powerful method for finding the sources of structural variation is principal

component analysis (PCA; Jolliffe, 1986). Applied to a single block of data, PCA

decomposes the data of an I × Jk data block Xk into,

Xk = XkWkP
T
k + Ek

= TkP
T
k + Ek,

(2.1)

where Wk denotes the Jk ×Q component weight matrix and Pk denotes the Jk ×
Q loading matrix and Ek denotes the error matrix. PCA is usually defined with

PT
kPk = I as identification constraint. In this formulation of PCA the component

scores are written explicitly as a linear combination of the variables. Let tiq be the

component score of subject i on a component q, then tiq =
∑Jk

jk=1 xijkwjkq which

clearly shows that the component scores are a linear combination (weighted sum)

of the variables scores. The PCA decomposition can also be applied to all Xk jointly

14

2
Revealing the joint mechanisms in traditional data linked with Big Data

by treating the multi-block data as one big matrix of
∑

k Jk variables,

[
X1 . . .XK

]
=
[
X1 . . .XK

][
WT

1 . . .WT
K

]T [
PT

1 . . .PT
K

]
+
[
E1 . . .EK

]
(2.2)

or in shorthand notation,

XC = XCWCP
T
C + EC

= TPT
C + EC . (2.3)

This model is the simultaneous component (SC) model (Kiers and ten Berge,

1989). An important property of SC models is that the same set of component

scores underlies each of the data blocks: Xk = TPk + Ek for all k. Note that

these component scores are a linear combination of all the variables contained

in the different blocks. Simultaneous components analysis (SCA) as defined in

(2.3) does not account for block-specific components nor does it imply variable

selection. Therefore, we further extend it.

To account for the presence of block-specific components and to induce vari-

able selection, we introduce particular constraints on the component weights WC

in the SC model; see model equation (2.3). First, we will discuss the constraints to

control for the presence of strong block-specific variation in the linked data, then

we will discuss the sparseness constraints.

2.2.3 Common and distinctive components

Consider the following example with two data blocks and three components

with imposed blocks of zeroes,

T =
[
X1 X2

]


W1

W2

 =
[
X1 X2

]



0 w112 w113

...
...

...

0 wJ12 wJ13

w121 0 w123

...
...

...

wJ21 0 wJ23


. (2.4)

(Note that the variable subscripts in (2.4) have their own subscript to denote

the block they belong to; for example w111 is the weight of the first variable in

the first block on the first component while w121 is the weight of the first vari-

able in the second block on the first component). Due to the zero constraints, the

scores on the first component only depend on the variables in the second block:

15

2
Chapter 2

ti1 =
∑J1

j1=1 xij1wj11 +
∑J2

j2=1 xij2wj21 =
∑J2

j2=1 xij2wj21. Likewise, the scores on the

second component only depend on the variables in the first block. Because these

components only incorporate the information of one particular type of data, we

call them distinctive components as they reflect sources of variation that are par-

ticular for a block. These are examples of distinctive components that are formed

by a linear combination of variables from one particular data block only. The third

component t3 is a linear combination of the variables from both data blocks X1

and X2. Hence it reflects sources of variation that play in both data blocks. We

call these components common components. If there are more than three blocks

the distinction between common and distinctive components can get blurred, for

a detailed discussion see Smilde et al. (2017).

Usually the most suitable common and distinctive structure for WC given

the data is not known. Further on, in Section 2.2.6, we will discuss a strategy that

can be used to find the most suitable common and distinctive weight structure for

the data at hand.

2.2.4 Sparse common and distinctive components

The component weight matrix in (2.4) has non-zero coefficients for all weights

related to the common component and also for the non-zero blocks of the distinc-

tive components. For the common component, for example, this implies that it

is determined by all variables; no variable selection takes place. To accomplish

variable selection we impose sparseness constraints on the component weight ma-

trix WC , in addition to the constraints that impose distinctiveness in (2.4), for

example,

T =
[
X1 X2

]



0 w112 0

0 0 w213

...
...

...

0 0 wj13

...
...

...

0 wJ12 0

0 0 w123

w221 0 0
...

...
...

0 0 wj23

...
...

...

wJ21 0 0



. (2.5)

16

2
Revealing the joint mechanisms in traditional data linked with Big Data

In this example model, the common component is a linear combination of some in-

stead of all variables; the same holds for the distinctive components. The number

and position of the zeroes are assumed to be unknown. Next, we will introduce

a statistical criterion that implies automated selection of the position of the ze-

roes. How to determine the number of zeroes, or the degree of sparsity, will be

discussed in the section on model selection (Section 2.2.6).

2.2.5 Finding sparse common and distinctive components

To find the desired model structure with sparse common and distinctive com-

ponents, the following optimization criterion is introduced:

argmin
WC ,PC

L(WC ,PC) = ∥XC −XCWCP
T
C∥22 + λ1∥WC∥1 + λ2∥WC∥22

s.t. PT
CPC = I, λ2, λ1 ≥ 0 and zero block constraints on WC ,

(2.6)

with the notation ∥.∥22 denoting the squared Frobenius norm, this is the sum of

squared matrix elements, e.g., ∥X∥22 =
∑

i,j x
2
ij and ∥.∥1 denoting the sum of the

absolute values of the matrix elements, e.g., ∥X∥1 =
∑

i,j |xij|. The first term

in the optimization criterion is the usual PCA least-squares optimization criterion

and implies a solution for WC and PC with minimal squared reconstruction error

of the data by the components. The second and the third term are, respectively,

the lasso and ridge penalty imposed on the component weight matrix WC . Both

penalties encourage solutions with small weights, this is shrinkage towards zero

(to minimize (2.6) not only a good fit is needed, but also weights that are as

small as possible). The lasso has the additional property of setting weights exactly

to zero (Tibshirani, 1996), introducing variable selection. The ridge penalty is

needed in addition to the lasso penalty, because it leads to stabler estimates for

WC and eases the restriction that only I coefficients can be selected, which is

the case when only the lasso penalty is used (Zou and Hastie, 2005). The tuning

parameters λ1 and λ2 are the costs associated with the penalties, a larger value for

the tuning parameter means that having large weights is more expensive, and thus

imply more shrinkage of the weights or — in case of the lasso — also more zero

component weights. The ridge and lasso regularization together with the common

and distinctive component weight constraints, can lead to the desired component

weight estimates as outlined in (2.5). Note that the function in (2.6) also includes

the special cases of PCA (when λ1 = 0 and λ2 = 0 and there are no constraints

on WC) and of sparse PCA as presented by Zou et al. (2006) (when there are no

constraints WC).

We call this novel approach of finding sparse common and distinctive com-

ponents by minimizing (2.6), SCaDS, short for: sparse common and distinctive

17

2
Chapter 2

SCA. In order to find the estimates WC and PC of SCaDS given a fixed number of

components, values for λ1, λ2, and zero block constraints for WC , we make use

of a numerical procedure that alternates between the estimation of WC and PC

until the conditions for stopping have been met. Conditional on fixed values for

WC there is an analytic solution for PC , see for example ten Berge (1993) and

Zou et al. (2006); for the conditional update of WC given fixed values for PC we

use a coordinate descent procedure (see for example Friedman et al. (2010)). Our

choice for coordinate descent is motivated by computational efficiency, meaning

that it can be implemented in a way that it is a very fast procedure and scalable

to the setting of thousands or even millions of variables without having to rely

on specialized computing infrastructure. Another advantage is that constraints on

the weights can be accommodated in a straightforward way because of the fact

that each weight is updated in turn, conditional upon fixed values for the other

weights; hence, weights that are constrained to have a set value are not updated.

The derivation of the estimates for the component loadings and weights is detailed

in Appendix 2.6.2.

The alternating procedure results in a non-increasing sequence of loss values

and converges1 to a fixed point, usually a local minimum. Multiple random starts

can be used. The full SCaDS algorithm is presented in Appendix 2.6.2 and its

implementation in the statistical software R (R Core Team, 2020) is available from

https://www.github.com/trbKnl.

2.2.6 Model selection

SCaDS runs with fixed values for the number of components, their status

(whether they are common or distinctive), and the value of the lasso and ridge

tuning parameters. Often these are unknown and model selection procedures are

needed to guide users of the method in the selection of proper values.

In the component and regression analysis literature, several model selection

tools have been proposed. The scree plot, for example, is a popular tool to decide

upon the number of components (Jolliffe, 1986) but also cross-validation has been

proposed (Smilde et al., 2004). Given a known number of components, Schout-

eden et al. (2013) proposed an exhaustive strategy that relies upon an ad hoc

criterion to decide upon the status (common or distinctive) of the components.

Finally, tuning of the lasso and ridge penalties is usually based on cross-validation

(Hastie et al., 2009a).

Here, we propose to use the following sequential strategy. First, the num-

ber of components is decided upon using cross-validation, more specifically the
1Under mild conditions that hold in practice. An example where there is no convergence is

starting from WC = 0.

18

https://www.github.com/trbKnl

2
Revealing the joint mechanisms in traditional data linked with Big Data

Eigenvector method. In a comparison of several cross-validation methods for de-

termining the number of components, this method came out as the best choice

in terms of accuracy and low computational cost; see Bro et al. (2008). Briefly,

this method leaves out one or several samples and predicts the scores for each

variable in turn based on a model that was obtained from the retained samples:

for one up to a large number of components the mean predicted residual sum

of squares (MPRESS) is calculated and the model with the lowest MPRESS is re-

tained. Second, a suitable common and distinctive structure for WC is found using

cross-validation: in this case, the MPRESS is calculated for all possible common

and distinctive structures. Also in this case we propose to use the Eigenvector

method detailed in Bro et al. (2008). In a third and final step, the lasso and ridge

parameters λ1 and λ2 are tuned using the Eigenvector cross-validation method

on a grid of values, chosen such that overly sparse and non-sparse solutions are

avoided.

An alternative to the sequential strategy proposed here, is to use an exhaus-

tive strategy in which all combinations of possible values for the components, their

status, and λ1 and λ2 are assessed using cross-validation and retaining the solution

with lowest MPRESS. However, there are known cases where sequential strate-

gies outperform exhaustive strategies (Vervloet et al., 2016) and, furthermore,

sequential strategies have a computational advantage as the number of models

that needs to be compared is much larger in the exhaustive setting. This num-

ber is already large in the sequential setting because all possible common and

distinctive structures are inspected, these are in total
(
(2K−1)+Q−1

Q

)
possible model

structures2. For example, with K = 2 data blocks and Q = 3 components there

are
(
(22−1)+3−1

3

)
= 10 possible common and distinctive structures to examine.

2.2.7 Related methods

The method introduced here, builds further on extensions of principal com-

ponent analysis. These include sparse PCA (Zou et al., 2006), simultaneous com-

ponents with rotation to common and distinctive components (Schouteden et al.,

2013), and sparse simultaneous component analysis (Gu and Van Deun, 2016;

Van Deun et al., 2011).
2The number of possible common and distinctive structures for a single component weight

vector is equal to 2K − 1, because each of the K data block segments can either be constrained to
be equal to zero or can be unconstrained; the case where the component is constrained to be equal
to zero everywhere is not considered, hence the minus 1. For each of the Q components, one of
these structures can be picked (with replacement meaning that two components can be of the same
type, e.g., two common components) where the order of the components is of no importance.

19

2
Chapter 2

Sparse PCA In practice, multi-block data are analyzed by treating them as a

single block of variables. The problem of selecting the linked variables may then

be addressed by using a sparse PCA technique. Zou et al. (2006) proposed a PCA

method with a lasso and ridge penalty on the component weights. As previously

discussed, this is a special case of the method we propose here (see equation

(2.6)). The drawback of this approach is that it does not allow to control for

dominant sources of variation.

SCA with rotation to common and distinctive components Schouteden et al.

(2013) proposed a rotation technique for multi-block data that rotates the compo-

nents resulting from the simultaneous component analysis toward common and

distinctive components: A target matrix is defined for the loading matrix that con-

tains blocks of zeros for the distinctive components (similar to the model structure

in Equation 2.4 and remains undefined for the remaining parts). In general, the

rotated loadings will not be exactly equal to zero and may even be large. To

decide whether the components are indeed common or distinctive after rotation,

Schouteden et al. (2013) propose to inspect the proportion of variance accounted

for (%VAF) by the components in each of the blocks: A component is considered

distinctive when the %VAF is considerably higher in the block(s) underlying the

component than in the other blocks; it is considered common when the %VAF is

approximately the same in all blocks. This introduces some vagueness in defining

the common and distinctive components. Furthermore, no variable selection is

performed. An often used strategy in the interpretation of the loadings is to ne-

glect small loadings. This corresponds to treating them as zeros and performing

variable selection. As shown by Cadima and Jolliffe (1995), this is a suboptimal

selection strategy in the sense that they account for less variation than optimally

selected variables. At this point, we would also like to point out that the definition

in terms of %VAF is not useful when the zero constraints are imposed on the com-

ponent weights as the %VAF by a distinctive component can still be considerable

for the block that does not make up the component. This is because the %VAF is

determined by the component scores and loadings with zero weights not implying

(near) zero loadings.

Sparse SCA An extension of sparse PCA to the multi-block case was proposed by

Van Deun et al. (2011). This approach allows for sparse estimation of the compo-

nent weights using penalties that do not account for the multi-block structure like

the ridge and lasso penalty but also using penalties that are structured at the level

of the blocks like the group and elitist lasso (Yuan and Lin, 2006; Kowalski and

Torrésani, 2009). The group lasso operates like the lasso at the block level, mean-

20

2
Revealing the joint mechanisms in traditional data linked with Big Data

ing that it sets whole blocks of coefficients equal to zero. The elitist lasso performs

selection within each of the blocks, setting many but not all coefficients within

each block equal to zero. Although sparse SCA allows for block-specific sparsity

patterns, no distinction can be made between common and distinctive components

because the penalties are defined at the level of the blocks (i.e., the same penalty

for all components). Furthermore, the proposed algorithmic approach is not scal-

able to the setting of a (very) large number of variables: The procedure becomes

slow and requires too much memory with a large number of variables.

SCA with penalized loadings Recently Gu and Van Deun (2016) developed an

extension to sparse SCA by penalizing the loading matrix in a componentwise fash-

ion, hence allowing for both common and distinctive components. The main dis-

tinguishing characteristic of this paper is that it penalizes the component weights

and not the loadings. This raises the question whether this is very different, and if

so, when to use penalized loadings and when to use penalized weights.

In regular unrotated PCA, loadings and weights are proportional or even ex-

actly the same in approaches — such as the one taken here and by Zou et al.

(2006) — that impose orthogonality on the matrix of weights or loadings (Smilde

et al., 2004, p. 54). In case of penalties and sparsity constraints, however, load-

ings and weights take very different values and careful consideration should be

given to their interpretation. Let us first consider the component weights. These

are the regression weights in the calculation of the component scores and make

the component scores directly observable. Sparseness of the component weights

implies that the component scores are based on a selection of variables. An exam-

ple where such a weight based approach may be most useful, is in the calculation

of polygenic risk scores (Vassos et al., 2017). The loadings, on the other hand,

measure the strength of association or correlation between the component and

variable scores and give a more indirect or latent meaning to the components.

From an interpretational standpoint there is also an important difference be-

tween the component weights and the component loadings. As ten Berge (1986)

and references therein point out, the component weights convey how the compo-

nents depend on the variables, whereas the component loading matrix conveys

the relationship between the component and the variables. The component load-

ings can only be interpreted if the meaning of the components are more or less

understood (if the components are not understood you are inspecting the correla-

tion between an observed item and something unknown, which is not insightful),

in order to discover the meaning of the components, it necessary to inspect the

component weights first. To conclude, when the aim is to automatically detect

the linked variables throughout different data blocks in order to reveal common

21

2
Chapter 2

mechanisms at play (e.g., a risk score based on genetic as well as environmental

risk), in a situation where the components are not yet understood, sparseness of

the weights is warranted.

Besides these differences in interpretation, there are also other differences

between a sparse loading and a sparse weight approach. These include differ-

ences in reconstruction error, with the reconstruction error of a sparse loading

approach being much larger, and differences in the algorithmic approach with al-

gorithms for sparse weights being computationally more intensive and less stable

than algorithms for sparse loadings.

2.3 Empirical data examples

We will now provide two empirical data examples illustrating SCaDS. The

purpose of these examples is twofold: one, to show how the analysis of linked data

would go in practice when using SCaDS and two, to showcase the interpretational

gain of common and distinctive components for multi-block data and of sparseness

in general.

2.3.1 500 Family Study

For the first data example, we will make use of the 500 Family Study (Schnei-

der and Waite). This study contains questionnaire data from family members of

families in the United States and aims to explore how work affects the lives and

well-being of the members of a family. From this study, we will use combined

scores of different items from questionnaires collected for the father, mother, and

child of a family. These scores are about the mutual relations between parents,

between parents and their child, and items about how the child perceives itself;

see Table 2.3 for an overview of the variable labels. In this example, the units of

observation are the families, and the three data blocks are formed by the variables

collected from the father, the mother and the child. The father and the mother

block both contain eight variables while the child block contains seven variables.

There are 195 families in this selection of the data.

In this section we will discuss the key steps in the analysis of linked data with

SCaDS: pre-processing of the data, selecting the number of components, iden-

tifying the common and distinctive structure, the tuning of the ridge and lasso

parameters, and the interpretation of the component weights.

Pre-processing of the data In this example, the linked data blocks have been

scaled and centered, meaning that all variables have a variance of one and a mean

of zero. This is common practice in PCA and SCA and has been done to give

22

2
Revealing the joint mechanisms in traditional data linked with Big Data

all variables equal weight in the analysis. The blocks have not been individually

weighted because they contain (almost) exactly the same number of variables.

●

●

●

●

●

●

●

●

●

●

0.80

0.85

0.90

1 2 3 4 5 6 7 8 9 10

Components

M
P

R
E

S
S

Figure 2.2. The MPRESS and standard error of the models with estimated with dif-

ferent number of components. The model estimated with seven components was

the model with the lowest MPRESS, the model with six components was chosen

for the final analysis

Selecting the number of components To find the number of components to re-

tain, we made use of 10-fold cross-validation with the Eigenvector method. Figure

2.2 shows the MPRESS and the standard error of the MPRESS of the SC models

with one up to ten components. The seven component solution is the solution

with the lowest MPRESS; however, the solution with six components is within one

standard error of the seven components solution. Relying on the one standard

error rule, we will retain six components as this strikes a better balance between

model fit and model complexity (Hastie et al., 2009a).

Identifying the common and distinctive structure To find the common and

distinctive structure of the component weights that fits best to the data, we per-

formed 10-fold cross-validation with the Eigenvector method. Hence, we have six

components and three data blocks, so there are a total of
(
(23−1)+6−1

6

)
= 924 possi-

ble component weight structures to evaluate; the model with the lowest MPRESS

23

2
Chapter 2

was retained for further analysis; see Table 2.1. This is a model with one father-

specific component (i.e., a component which is a linear combination of items from

the father block only), one mother-specific component, one child-specific compo-

nent, two parent (mother and father) components, and a common family compo-

nent (a linear combination of items from all three blocks).

Table 2.1

The common and distinctive structure that resulted in the model with the lowest
MPRESS out of the 924 possible models.

w1 w2 w3 w4 w5 w6

F: Relationship with partners 1 0 1 1 0 1
F: Argue with partners 1 0 1 1 0 1
F: Childs bright future 1 0 1 1 0 1
F: Activities with children 1 0 1 1 0 1
F: Feeling about parenting 1 0 1 1 0 1
F: Communication with children 1 0 1 1 0 1
F: Argue with children 1 0 1 1 0 1
F: Confidence about oneself 1 0 1 1 0 1
M: Relationship with partners 0 1 1 1 0 1
M: Argue with partners 0 1 1 1 0 1
M: Childs bright future 0 1 1 1 0 1
M: Activities with children 0 1 1 1 0 1
M: Feeling about parenting 0 1 1 1 0 1
M: Communication with children 0 1 1 1 0 1
M: Argue with children 0 1 1 1 0 1
M: Confidence about oneself 0 1 1 1 0 1
C: Self confidence/esteem 0 0 0 0 1 1
C: Academic performance 0 0 0 0 1 1
C: Social life and extracurricular 0 0 0 0 1 1
C: Importance of friendship 0 0 0 0 1 1
C: Self Image 0 0 0 0 1 1
C: Happiness 0 0 0 0 1 1
C: Confidence about the future 0 0 0 0 1 1

Note. The items starting with an D, M or C belong to the father mother or child block. Zero
indicates a constraint component weight constraint to zero and one indicates a non zero
(free) component weight. The first component is a father component, the second compo-
nent is a mother component, the third and the fourth are mother and father components,
the fifth is a child component and the sixth is a common component

24

2
Revealing the joint mechanisms in traditional data linked with Big Data

●●●
●●

●●●●●
●

●
●

●●●●●●●●●●

●●●●●●●
●●

●
●

●●

●

●●

●●

●
●

●●●●
●●●

●●●●
●

●●●
●●●●

●●●
●

●
●

●●●
●

●●●
●

●
●

●

●

●●
●

●●
●●

●
●●

●●
●●●

●●●●

●●●●
●●●●

●
●●

●●
●

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0

Lasso

M
P

R
E

S
S

Figure 2.3. The MPRESS and standard error of the models for different values

of the lasso parameter estimated with six components. The models below the

dashed line are all models within one standard error of the model with the lowest

MPRESS. The solid line indicates the lasso value that was picked for further anal-

ysis

Tuning of the ridge and lasso parameters To further increase the interpretabil-

ity of the components, we will estimate the component weights with the common

and distinctive component weight structure resulting from the previous step but

including sparseness constraints on the weights. This requires choosing values for

the ridge and lasso tuning parameters λ1 and λ2. In this example, the solution is

identified because we have more variables than cases; therefore we do not need

the ridge penalty term; thus the ridge penalty is set to 0. The optimal value for λ1

was picked by performing 10-fold cross-validation by the Eigenvector method for

a sequence of λ1 values that results in going from no sparsity at all to very high

sparsity in WC . The MPRESS and the standard error of the MPRESS of the models

with the different values for the lasso parameter λ1 can be seen in Figure 2.3; the

one standard error rule was used to select the value for λ1.

Interpretation of the component weights We subjected the data to a SCaDS

analysis with six components, with zero constraints as in Table 2.1 and λ1 = 0.17.

The estimated component weights are displayed in Table 2.2. For comparison, we

25

2
Chapter 2

also included component weights resulting from SCA followed by Varimax rota-

tion in Table 2.3, and SCA followed by thresholding of the weights after rotation

to the common and distinctive structure in Table 2.1. We will discuss the compo-

nent weights from SCaDS first, after which we will compare these results to the

alternative methods.

The six columns in Table 2.2 show the component weights obtained with

SCaDS. In total, these components account for 50.3% of the variance. As im-

posed, the first component is father-specific, the second mother-specific, the third

is a parent component, the fifth is child-specific, and the sixth component is a com-

mon family component. The fourth component was constrained to be a parent

component but, as a result of the lasso penalty, became a second mother-specific

component with nonzero loadings only from variables belonging to the mother

block. Interestingly, the shared parent component is formed by the variables “ac-

tivities with children”, "communication with children" of the father block, and

“activities with children” of the mother block. The variable descriptions tell us

that this component could be a parentchild involvement indicator. Large compo-

nent weights for the common component are: “child’s bright future” in the mother

and father block, and “self-confidence/esteem” and “academic performance” in the

child block. This component indicates that a child’s self-confidence and academic

performance is associated with both parents believing in a bright future for their

child.

For comparison we included in Table 2.3 the component weights of the six

components obtained using SCA with Varimax rotation, this is an unconstrained

analysis with maximal VAF. In total, the six components explain 55.2% of the

variance in the data; this is a bit more than the 50.3% obtained with SCaDS.

Even this example with rather few variables is not straightforward to interpret

because all variables contribute to each of the component. In this case, a more

fair comparison is to rotate the component weights resulting from the SCA to the

common and distinctive structure displayed in Table 2.1 and to threshold the small

(in absolute value) coefficients as is often done in practice. We thresholded such

that the same number of zero coefficients was obtained for each component as

for SCaDS. The results of this analysis can be seen in Table 2.4. The first thing

that strikes is that the variance accounted for drops to 41.9%. This confirms the

observation made by (Cadima and Jolliffe, 1995) that the practice of thresholding

is a flawed way to perform variable selection when the aim is to maximize the VAF.

Also the meaning of the components changed, although the main patterns found

in SCaDS can still be observed.

Concluding, these results illustrate well that identifying the common and dis-

tinctive structure in multi-block data eases the interpretation substantially, while

26

2
Revealing the joint mechanisms in traditional data linked with Big Data

Table 2.2

Component weights for the family data as obtained with SCaDS

w1 w2 w3 w4 w5 w6

F: Relationship with partners 0 0 0 0 0 0
F: Argue with partners -0.57 0 0 0 0 0
F: Childs bright future 0 0 0 0 0 0.56
F: Activities with children 0 0 0.61 0 0 0
F: Feeling about parenting -0.12 0 0 0 0 0
F: Communication with children 0 0 0.39 0 0 0
F: Argue with children -0.45 0 0 0 0 0
F: Confidence about oneself -0.45 0 0 0 0 0
M: Relationship with partners 0 1.00 0 0 0 0
M: Argue with partners 0 0 0 -0.31 0 0
M: Childs bright future 0 0 0 0 0 0.53
M: Activities with children 0 0 0.42 0 0 0
M: Feeling about parenting 0 0 0 -0.26 0 0.04
M: Communication with children 0 0 0 -0.44 0 0
M: Argue with children 0 0 0 -0.61 0 0
M: Confidence about oneself 0 0.26 0 -0.18 0 0
C: Self confidence/esteem 0 0 0 0 -0.27 0.13
C: Academic performance 0 0 0 0 0 0.36
C: Social life and extracurricular 0 0 0 0 0 0.00
C: Importance of friendship 0 0 0 0 -0.41 0
C: Self Image 0 0 0 0 -0.56 0
C: Happiness 0 0 0 0 -0.45 0
C: Confidence about the future 0 0 0 0 -0.15 0.06

%VAF: per component 0.08 0.07 0.07 0.09 0.10 0.09
%VAF: total 50.3

Note. The items starting with an F, M or C belong to the father mother or child block

still retaining a high variance accounted for.

An advantage of interpreting the component weights directly is that the re-

searcher exactly knows the composition of the component. In some cases, the

components themselves are used in subsequent analysis for example as predictors

in a regression model. For the interpretation of that model, it is certainly useful to

have a good grasp on what the predictors represent. Another advantage is that if

the weights already have been estimated, then computing new component scores

27

2
Chapter 2

for new units of observation is straightforward. Because these component weights

are sparse, only the items with nonzero component weights have to be measured

to predict the component score of a new observed unit. This could greatly reduce

the costs of predicting component scores for newly observed units.

Table 2.3

Component weights for the family data resulting from SCA with Varimax rotation

w1 w2 w3 w4 w5 w6

F: Relationship with partners 0.05 0.57 -0.02 0.03 -0.03 -0.09
F: Argue with partners 0.04 0.15 -0.03 -0.06 0.05 -0.47
F: Childs bright future -0.06 -0.08 0.15 0.47 0.01 -0.20
F: Activities with children 0.10 -0.03 0.04 -0.08 -0.63 -0.08
F: Feeling about parenting -0.06 -0.15 0.06 0.06 -0.12 -0.40
F: Communication with children -0.01 -0.01 -0.08 0.05 -0.49 -0.07
F: Argue with children -0.11 -0.11 -0.06 -0.04 0.04 -0.53
F: Confidence about oneself 0.15 0.22 0.03 0.07 -0.08 -0.43
M: Relationship with partners -0.07 0.60 0.06 0.01 0.06 0.03
M: Argue with partners -0.27 0.16 -0.04 -0.26 0.06 -0.14
M: Childs bright future -0.38 -0.02 0.18 0.37 0.06 0.03
M: Activities with children -0.27 -0.01 0.09 -0.10 -0.44 0.13
M: Feeling about parenting -0.37 0.06 0.03 0.10 -0.01 -0.03
M: Communication with children -0.42 -0.05 -0.03 -0.02 -0.16 0.05
M: Argue with children -0.39 -0.14 -0.07 -0.15 0.17 -0.14
M: Confidence about oneself -0.35 0.31 -0.07 -0.08 0.01 0.12
C: Self confidence/esteem -0.18 -0.10 -0.31 0.23 0.01 -0.01
C: Academic performance -0.02 -0.03 -0.12 0.42 0.11 -0.04
C: Social life and extracurricular 0.08 0.12 0.01 0.37 -0.03 0.09
C: Importance of friendship 0.11 0.06 -0.37 0.23 -0.05 0.07
C: Self Image -0.04 -0.02 -0.56 -0.07 0.01 -0.01
C: Happiness 0.02 -0.01 -0.55 -0.11 0.01 -0.04
C: Confidence about the future -0.01 0.13 -0.19 0.27 -0.24 0.07

Variance Accounted For (%) 55.2

Note. The items starting with an F, M or C belong to the father mother or child block

28

2
Revealing the joint mechanisms in traditional data linked with Big Data

2.3.2 Alzheimer study

For the second data example we will use the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) data3. The purpose of the ADNI study is “to validate biomark-

ers for use in Alzheimers disease clinical treatment trials” (Alzheimers Disease

Neuroimaging Initiative, 2017).

The ADNI data is a collection of datasets from which we selected a dataset

with items measuring neuropsychological constructs, and a dataset with gene ex-

pression data for genes related to Alzheimers disease. The neuropsychological

data block consists of 12 variables containing items from a clinical dementia scale

assessed by a professional and from a self-assessment scale relating to everydays

cognition. The gene data block contains 388 genes. For a group of 175 partici-

pants, complete data for both the genetic and the neuropsychological variables is

available. This is an example of a high-dimensional dataset where the number of

variables exceeds the number of cases.

In this specific case, it would be interesting to see whether there is an as-

sociation between particular Alzheimer-related genes and items from the clinical

scales or whether the two types of data measure different sources of variation.

Pre-processing of the data As in the previous example, the linked data blocks

have been scaled and centered. Furthermore, as one block is much larger than the

other, the blocks have been scaled to equal sum of squares by dividing each block

by the square root of the number of variables in that block. In this way, the larger

block does not dominate the analyses (see Van Deun et al. (2009), for a discussion

of different weighting strategies).

Selecting the number of components The number of components has been

selected making use of 10-fold cross-validation with the Eigenvector method. This

resulted in a four-component solution (see Figure 2.4).

Tuning of the ridge parameter This linked dataset contains more variables than

cases, therefore we included a ridge penalty (this is λ2 ̸= 0) to make the solu-

tion stable. To tune the value of the ridge paramter, we performed 10-fold cross-

validation with the Eigenvector method on a sequence of values. The resulting
3The ADNI was launched in 2003 as a public-private partnership, led by Principal Investiga-

tor Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychologi- cal assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimers disease (AD). For up-to-date information, see
www.adni-info.org.

29

2
Chapter 2

●

●

●

●

●
●

●
● ●

●0.0032

0.0036

0.0040

1 2 3 4 5 6 7 8 9 10

Factors

M
P

R
E

S
S

Figure 2.4. The MPRESS and standard error of the models with estimated with

different number of components. The model estimated with four components was

the model with the lowest MPRESS

MPRESS statistics and standard errors thereof are shown in Figure 2.5. The value

within one standard error of the lowest MPRESS was retained for further analyses.

Identifying the common and distinctive structure To find the common and

distinctive structure of the component weights which fits best to the data, we

performed 10-fold cross-validation with the EigenVector method on all possible

structures. In this example we have four components and two data blocks, so

there are a total of
(
(22−1)+4−1

4

)
= 15 possible component weight structures to

evaluate. After cross-validation we found the model with the lowest MPRESS to

be a model with four distinctive components: two for each block; see Figure 2.6

for the MPRESS and standard error of the MPRESS of all the 15 models.

Tuning of the lasso parameters A final step in selecting a suitable model for the

ADNI data, is the tuning of the lasso parameter to obtain sparsity in the component

weights beyond the zeroes resulting from the imposed common and distinctive

structure. The value of the lasso parameter was determined with 10-fold cross

validation (EigenVector method). The MPRESS of the models for different values

of the lasso parameter can be seen in Figure 2.7; the largest value of λ1 within one

30

2
Revealing the joint mechanisms in traditional data linked with Big Data

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

0.0030

0.0035

0.0040

0.0045

0.0 0.5 1.0 1.5 2.0

Ridge

M
P

R
E

S
S

Figure 2.5. The MPRESS and standard error of the models estimated with four

components for different values of the ridge parameter. The models below the

dashed line are all models within one standard error of the model with the lowest

MPRESS. The solid line indicates the ridge value that was picked for further anal-

ysis

standard error of the lowest MPRESS was retained for the final SCaDS analysis.

Interpretation of the component weights The component weights of the final

analysis with the chosen meta-parameters are summarized in a heat plot in Fig-

ure 2.8. The first two components contain only items from the gene expression

block, and the third and the fourth component only contain items from the neu-

ropsychological data block. Notably, the third component mainly contains items

of the self-assessment scale while the fourth component mainly contains items of

the dementia scale assessed by the clinician.

Concluding, this particular example shows that SCaDS can also be applied in

the setting of (many) more variables than observation units. Whether the obtained

results also make sense from a neuropsychological perspective needs further inves-

tigation.

31

2
Chapter 2

●

●●

●●●

●

●●●

●

●

●●●

0.0030

0.0035

0.0040

0.0045

C
 C

 C
 C

D
1

C
 C

 C

D
1

D
1

C
 C

D
1

D
1

D
1

C

D
1

D
1

D
1

D
1

D
1

D
1

D
1

D
2

D
1

D
1

D
2

C

D
1

D
1

D
2

D
2

D
1

D
2

C
 C

D
1

D
2

D
2

C

D
1

D
2

D
2

D
2

D
2

C
 C

 C

D
2

D
2

C
 C

D
2

D
2

D
2

C

D
2

D
2

D
2

D
2

Model

M
P

R
E

S
S

Figure 2.6. The MPRESS and standard error of all 15 models with different com-

mon and distinctive structures of the linked data set from the ADNI study. Model

"D1 D1 D2 D2" is the model with the lowest MPRESS. D1 denotes a distinctive

component for the first block, D2 denotes a distinctive component for the second

block, and C denotes a common component

2.4 Simulation studies

We tested the performance of SCaDS in finding back a sparse common and

distinctive model structure in a controlled setting using simulated data. First of

all, we were interested to see whether accounting for the presence of block-specific

components in WC would result in improved estimates compared to a sparse PCA

analysis of the concatenated data. If there is no improvement of the estimated

weights by SCaDS over sparse PCA, sparse PCA can be used for the analysis of

multiblock data and there is no need for SCaDS. Second, we tested the perfor-

mance of the cross-validation method in finding back the right common-distinctive

structure given the correct number of components.

32

2
Revealing the joint mechanisms in traditional data linked with Big Data

●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

0.0030

0.0035

0.0040

0.0045

0.0050

0.000 0.025 0.050 0.075 0.100

Lasso

M
P

R
E

S
S

Figure 2.7. The MPRESS and standard error of the models for different values of

the lasso parameter, with four components and the picked ridge tuning parameter.

The models below the dashed line are all models within one standard error of the

model with the lowest MPRESS. The solid line indicates the lasso value that was

picked for further analysis

2.4.1 Recovery of the model parameters under the correct

model

The data in the first simulation study were generated under a sparse SCA

model with two data blocks and three components, of which one component is

common and two are distinctive (one distinctive for each data block; see Equation

(2.5) for such a model structure). The size of the two data blocks was fixed to 100

rows (subjects) and 250 columns (variables) per block.

We generated data under six conditions, resulting from a fully crossed design

determined by two factors. A first factor was the amount of noise in the generated

data with three levels: 5%, 25%, and 50% of the total variation. The second factor

was the amount of sparsity in WC with two levels: a high amount of sparsity (60

% in all three components) and almost no sparsity (2 % in the common component

and 52 % in the distinctive components) in the component weight matrix WC . In

each condition 20 data sets were generated. We refer the reader to Appendix 2.6.1

for the details on the procedure we used to generate data with the desired model

33

2
Chapter 2

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1: PTGS21: PTK2B1: PVRL21: RAB7A1: RBFOX11: RCAN11: RD31: RELN1: RPH3AL1: RPS6KB21: RUNX11: RXRA1: S100B1: SAMSN11: SDC21: SEL1L1: SERPINA11: SERPINA31: SETX1: SGPL11: SH3PXD2A1: SIGMAR11: SIRT21: SLC19A11: SLC24A41: SLC2A141: SLC2A91: SLC6A31: SLC6A41: SNCA1: SNTG11: SNX11: SNX31: SOAT11: SOD11: SOD21: SORCS11: SORCS21: SORCS31: SORL11: SOS21: SP11: SREBF11: SST1: STAR1: STH1: TAP21: TAPBPL1: TARDBP1: TBX31: TF1: TFAM1: TFCP21: TGFB11: THEM51: TLR21: TLR41: TLR91: TMPRSS151: TNF1: TNK11: TOMM401: TP531: TP631: TP731: TRAF21: TRAK21: TREM21: TREML21: TRIP41: TRPC4AP1: TTBK11: TTR1: UBD1: UBE2D11: UBE2I1: UBQLN11: UCHL11: UNC5C1: VDR1: VEGFA1: VLDLR1: VSNL11: WWC11: XBP11: YWHAQ1: ZCWPW11: ZNF6282: Sum_Memory2: Sum_Lang2: Sum_Visspat2: Sum_Plan2: Sum_Organ2: Sum_Divatt2: CDMEMORY2: CDORIENT2: CDJUDGE2: CDCOMMUN2: CDHOME2: CDCARE

1: LIPC1: LMNA1: LPL1: LRP11: LRP21: LRP61: LRP81: LRPAP11: LRRK21: LRRTM31: LY6E1: MAGI21: MALRD11: MAOA1: MAPK8IP11: MAPT1: MBL21: MCM3AP1: MEF2A1: MEF2C1: MEFV1: MEIS21: MEOX21: MME1: MMP11: MMP31: MPO1: MS4A4A1: MS4A6A1: MS4A6E1: MTHFD1L1: MTHFR1: MTR1: MTRR1: MX11: MYH131: MYH81: MYLK1: MZF11: NAT21: NCAM21: NCAPD21: NCSTN1: NEDD91: NGB1: NGF1: NGFR1: NINJ21: NLRC31: NLRP11: NLRP31: NME81: NOS11: NOS31: NPC11: NPC21: NPHP11: NQO11: NR1H21: NRXN31: NTF31: NTRK11: NTRK21: NUBPL1: NXPH11: OGFRL11: OGG11: OLR11: OTC1: PAICS1: PARP11: PCDH11X1: PCED1B1: PCK11: PEMT1: PGBD11: PICALM1: PIK3R11: PIN11: PLA2G31: PLA2G4A1: PLAU1: PLD31: PLXNA41: PNMT1: PON11: PON21: PON31: POU2F11: PPARA1: PPARG1: PPAT1: PPP1R3B1: PPP2R2B1: PRND1: PRNP1: PRUNE21: PSEN11: PSEN21: PSENEN

1: DDX181: DGKB1: DHCR241: DLD1: DLST1: DNM21: DNMBP1: DNMT3B1: DOPEY21: DPH61: DPYS1: DRD41: DYRK1A1: EBF31: ECE11: EFNA51: EIF2AK21: EIF4EBP11: EPC21: EPHA11: EPHA41: ESR11: ESR21: EXOC21: EXOC3L21: F13A11: FAS1: FCER1G1: FDPS1: FERMT21: FGF11: FRMD4A1: FRMD61: FSHR1: FTO1: GAB21: GALP1: GAPDH1: GAPDHS1: GBP21: GNA111: GNB31: GOLM11: GPX11: GREM21: GRIN2B1: GRIN3A1: GRN1: GSK3B1: GSTM31: GSTO11: GSTO21: GSTP11: GSTT11: HBG21: HCRTR21: HFE1: HHEX1: HLAA1: HLADQB11: HLADRA1: HLADRB51: HMGCR1: HMGCS21: HMOX11: HPCAL11: HSD11B11: HSPA51: HSPG21: HTR2A1: HTR61: ICAM11: IDE1: IGF11: IL101: IL12A1: IL12B1: IL181: IL1A1: IL1B1: IL1RN1: IL23R1: IL331: IL41: IL61: IL6R1: INPP5D1: IREB21: IRS11: ISL11: KANSL21: KCNJ61: KIAA10331: KIF111: KLC11: KNDC11: LCK1: LDLR1: LHCGR1: LIPA

1: A2M1: AASDH1: ABCA11: ABCA21: ABCA71: ABCC21: ABCG11: ABCG21: ACAN1: ACE1: ADAM101: ADAM121: ADRA2B1: ADRB11: ADRB21: ADRB31: AGER1: AHSG1: ALDH21: ALOX51: ANK21: APBB11: APBB21: APBB31: APH1A1: APH1B1: APOA11: APOA41: APOC11: APOD1: APOE1: APP1: AR1: ARC1: ARMS21: ARSB1: ARSJ1: ATF71: ATP7B1: ATXN11: BACE11: BACE21: BCHE1: BCR1: BDNF1: BIN11: BLMH1: CADPS21: CALHM11: CAMK2D1: CAND11: CARD81: CASR1: CASS41: CAV11: CBS1: CCL21: CCL31: CCNT11: CCR21: CD141: CD2AP1: CD331: CD361: CD441: CDH111: CDK11: CDK51: CDK5R11: CDKN2A1: CELF11: CELF21: CETP1: CFH1: CH25H1: CHAT1: CHRNA31: CHRNA41: CHRNB21: CLOCK1: CLSTN21: CLU1: CLUAP11: COL11A11: COL25A11: COMT1: COX101: COX151: CR11: CST31: CTNNA31: CTSD1: CTSS1: CYP11B11: CYP19A11: CYP46A11: DAOA1: DAPK11: DBH1: DCHS2

Component

A
bs

ol
ut

e
co

m
po

ne
nt

 w
ei

gh
t

0

2

4

6

8

value

Figure 2.8. A heat plot of the absolute values of the component weights table

of the final analysis for the ADNI data example. The variable names with prefix 1

denotes variables belonging to gene expression block, names with prefix 2 denotes

variables belonging to the neuropsychological block. The table has been broken

row wise into four pieces to fit the page.

structure.

All data sets were analyzed using both the SCaDS method introduced here

and the sparse PCA analysis introduced by Zou et al. (2006) and implemented in

the elasticnet R package (Zou and Hastie, 2018). SCaDS was applied with cor-

rect input for the zero-block constraints on the component weight matrix, this is

with input of the common and distinctive structure that underlies the data. Sparse

PCA was applied with input of the correct number of zero component weights

in WC and this for each component (sparse PCA can be tuned to yield exactly

a given number of zero coefficients because it relies on a LARS estimation pro-

cedure (Tibshirani et al., 2004)). Using sparse PCA with the correct number of

zero component weights is equal to supplying the analysis with a perfectly tuned

lasso parameter. In order to achieve a perfectly tuned lasso parameter for SCaDS,

we used an iterative scheme based on the bisection method for root finding. The

34

2
Revealing the joint mechanisms in traditional data linked with Big Data

method boils down to estimating the model with a certain lasso value, after which

depending on the number of non zero weights in ŴC compared the the number

of non zero weights in WC , the lasso is increased or decreased. This process is

repeated until the number of non zero component weights in ŴC is within 0.01%

of the number of non zero component weights in WC . The ridge parameter λ2 was

tuned for one particular data set in each of the six conditions with cross validation

and picked according to the one standard error rule. (The ridge was not tuned for

each individual data set because of computational constraints.)

In order to quantify how well the component weight matrix WC can be re-

covered by SCaDS and sparse PCA of the concatenated data, we calculated Tucker’s

coefficient of congruence between the model structure WC and its estimate ŴC as

resulting from SCaDS and sparse PCA. Tucker’s coefficient of congruence (Lorenzo-

Seva and ten Berge, 2006) is a standardized measure of proportionality between

two vectors, calculated as the cosine of the angle between two vectors. Note that

WC and ŴC are vectorized first before they are compared. A Tucker congruence

coefficient in the range from 0.85 to 0.95 corresponds to fair similarity between

vectors, while a Tucker congruence coefficient of > 0.95 correspond to near equal

vectors (Lorenzo-Seva and ten Berge, 2006). Furthermore, we also calculated the

percentage of correctly as (non-)zero classified component weights.

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

High levels of sparsity Low levels of sparsity

SCaDS SPCA SCaDS SPCA
0.6

0.7

0.8

0.9

Estimation method

Tu
ck

er
 c

on
gr

ue
nc

e

Error ratio

5%

25%

50%

Figure 2.9. Tucker congruence coefficients between WC and ŴC , where I = 100

and J = 500. Each condition is based on 20 replications, the dashed line indicates

a Tucker congruence coefficient of 0.85

Box plots of Tucker’s coefficient of congruence between WC and ŴC are

shown in Figure 2.9, both for the estimates obtained with our SCaDS method and

with sparse PCA. The two panels correspond to the two levels of sparseness; within

panels the box plots differ with respect to the method used to estimate the weight

matrix and the noise level. In all conditions, SCaDS has on average higher con-

35

2
Chapter 2

gruence than sparse PCA. This indicates that controlling for block specific sources

of variation results in a better recovery of the model coefficients (given the correct

model). Furthermore, the bulk of Tucker congruence coefficients obtained when

using SCaDS are above the threshold value of 0.85 thus indicating fair similarity of

the estimated component weights to the model component weights. Sparse PCA,

on the other hand, has almost all solutions below the 0.85 threshold. The ma-

nipulated noise and sparseness factors had some influence on the size of Tucker’s

congruence. First, as one may expect, congruence decreased with an increasing

level of noise. Second, comparing the left panel (high level of sparsity) to the right

panel (low level of sparsity), Tucker congruence was higher for the low level of

sparsity.

●

●

●

●●●

●
●

●●● ●●

High levels of sparsity Low levels of sparsity

SCaDS SPCA SCaDS SPCA

0.6

0.7

0.8

0.9

Estimation method

C
or

re
ct

ly
 c

la
ss

ifi
ed

Error ratio

5%

25%

50%

Figure 2.10. Percentage of correctly classified zero and non zero weights between

WC and ŴC , where I = 100 and J = 500. Each condition is based on 20 replica-

tions.

The box plots in Figure 2.10 show the percentage of correctly classified com-

ponent weights for both estimation procedures in each of the six conditions. An

estimated component weight is counted as correctly classified if it has non zero

status in WC as well as in ŴC or if it has zero status in WC as well as in ŴC . Not

surprisingly, SCaDS does far better compared to sparse PCA, this because SCaDS

makes use of true underlying structure of the data. More importantly, these re-

sults show that if the data do actually contain an underlying multi-block structure,

sparse PCA is not able to find this structure by default, too much weights are in-

correctly classified. For good recovery of the component weights it necessary to

take the correct block structure into account.

Concluding, this simulation study shows that a multi-block structure is not

picked up by sparse PCA by default. Furthermore, the simulation results shows

that to have satisfactory component weights estimates the correct multi-block

36

2
Revealing the joint mechanisms in traditional data linked with Big Data

structure needs to be taken into account. In practice, the underlying multi-block

structure of the data is unknown. Hence, model selection tools that can recover

the correct model are needed.

2.4.2 Finding the underlying common and distinctive

structure of the data

In the previous section, we concluded that in order to have good estimation,

the correct underlying multi-block structure needs to be known. In this section, we

will explore to what extent 10-fold cross-validation with the Eigenvector method

can be used to identify the correct underlying block structure of the data, assuming

the number of components is known. We will consider both a high- and a low-

dimensional setting.

In the high-dimensional setting, data were generated under the same condi-

tions as the previous simulation study but analyzed without input of the correct

common-distinctive model structure. Instead, for each of the generated data sets,

we calculated the MPRESS and its standard error for all possible combinations of

common and distinctive components, this is 10 possible models for each generated

dataset (2 data blocks 3 combinations). The models are estimated without a lasso

penalty (this is λ1 = 0), and with the same value for the ridge parameter as in the

previous simulation study.

●

● ●

high sparsity, 5% error high sparsity, 25% error high sparsity, 50% error

C
 C

 C
D

1
C

 C
D

1
D

1
C

D
1

D
1

D
1

D
1

D
1

D
2

D
1

D
2

C
D

1
D

2
D

2
D

2
C

 C
D

2
D

2
C

D
2

D
2

D
2

C
 C

 C
D

1
C

 C
D

1
D

1
C

D
1

D
1

D
1

D
1

D
1

D
2

D
1

D
2

C
D

1
D

2
D

2
D

2
C

 C
D

2
D

2
C

D
2

D
2

D
2

C
 C

 C
D

1
C

 C
D

1
D

1
C

D
1

D
1

D
1

D
1

D
1

D
2

D
1

D
2

C
D

1
D

2
D

2
D

2
C

 C
D

2
D

2
C

D
2

D
2

D
2

0.02750

0.02775

0.02800

0.02825

0.02850

0.02875

0.0092

0.0093

0.0094

0.0095

0.00139

0.00141

0.00143

0.00145

Model

M
P

R
E

S
S

% of zeroes

● 0

0.17

0.33

0.5

Figure 2.11. The MPRESS and standard error of the MPRESS of all common and

distinctive structures in three conditions. % of zeroes refers to the amount of

zeroes in the common and distinctive structure. "D1 D2 C" is the data generating

structure. D1 denotes a distinctive component for the first block, D2 denotes a

distinctive component for the second block, and C denotes a common component

37

2
Chapter 2

We illustrate the results obtained for the first three generated data sets in

the high sparsity condition in Figure 2.11. The correct model used to generate the

data is the model labeled “D1 D2 C” (representing a model with one distinctive

component for each block and one common component). The plots show that the

most complex model (this is the unconstrained “C C C” model) always has the

lowest MPRESS. Furthermore, the plots show that model fit decreases for mod-

els with more imposed zeroes. This means that 10-fold cross-validation with the

Eigenvector method favors models that are overfitted (i.e. models with too many

non-zero coefficients). To remedy this situation, the one standard error rule has

been proposed (Hastie et al., 2009a). Here, this means that the model with the

lowest complexity (or, the highest number of zeroes) is chosen that still falls within

one standard error of the model with the lowest MPRESS; if this is more than one

model, the model with lowest MPRESS is chosen. The results in 2.11 suggest that

this may lead to the correct model in a number of cases (the two panels at the

right).

The results of the full simulation study are summarized in Table 2.5. The

column labeled “Best model” shows the proportion of cases where the true model

was selected based on choosing the model with lowest MPRESS. This strategy

never results in selecting the correct model. Upon closer inspection of the results

(e.g., Figure 2.11) the model with lowest MPRESS often was the unconstrained

model. Whether the correct model would be selected when applying the one

standard error rule (this is, choosing the model with the highest MPRESS but

within one standard error of the model with the lowest MPRESS) can be seen in

the column labeled “One Std Error rule”. Unfortunately this does not seem to be

the case very often, in only about 10% of the cases the correct model was chosen

based on this heuristic. Clearly, cross validation as a method for selecting the

true common-distinctive model structure does not work in the high-dimensional

setting.

We also included results of a second simulation study to see how 10-fold

cross-validation would perform in the low dimensional case: data were generated

as previously but with 195 cases and 20 variables. Figure 2.12 includes results

of three specific generated data sets. Still cross validation based on selecting the

model with the lowest MPRESS is biased towards more complex models with fewer

zero constraints. However, using the one standard error rule, often the correct

model is selected. A full summary of the results can be seen in Table 2.6.

Concluding, 10-fold cross validation with the Eigenvector method and using

the one standard error rule does seem to work for selecting the correct common-

distinctive model structure in the low-dimensional setting. However, in the high-

dimensional setting overly complex models are chosen even when using the one

38

2
Revealing the joint mechanisms in traditional data linked with Big Data

●
●

●

high sparsity, 5% error high sparsity, 25% error high sparsity, 50% error

C
 C

 C
D

1
C

 C
D

1
D

1
C

D
1

D
1

D
1

D
1

D
1

D
2

D
1

D
2

C
D

1
D

2
D

2
D

2
C

 C
D

2
D

2
C

D
2

D
2

D
2

C
 C

 C
D

1
C

 C
D

1
D

1
C

D
1

D
1

D
1

D
1

D
1

D
2

D
1

D
2

C
D

1
D

2
D

2
D

2
C

 C
D

2
D

2
C

D
2

D
2

D
2

C
 C

 C
D

1
C

 C
D

1
D

1
C

D
1

D
1

D
1

D
1

D
1

D
2

D
1

D
2

C
D

1
D

2
D

2
D

2
C

 C
D

2
D

2
C

D
2

D
2

D
2

0.12

0.13

0.14

0.15

0.030

0.035

0.040

0.045

0.020

0.025

0.030

Model

M
P

R
E

S
S

% of zeroes

● 0

0.17

0.33

0.5

Figure 2.12. The MPRESS and standard error of the MPRESS of all common and

distinctive structures in three conditions. % of zeroes refers to the amount of

zeroes in the common and distinctive structure. “D1 D2 C” is the data generating

structure. D1 denotes a distinctive component for the first block, D2 denotes a

distinctive component for the second block, and C denotes a common component

standard error rule. Clearly other model selection tools have to be tested, also tak-

ing into account that here only one model selection step was isolated. Although we

suggested a sequential strategy to reduce the computational burden, simultaneous

strategies may be needed in order to find the correct model.

2.5 Discussion

In this era of big data, researchers in psychology often have novel types of

data available to supplement the more traditional types of data they are accus-

tomed to. This opens the avenue to a more informed understanding of the human

behavior system; the different types of data usually probe different components of

the behavioral system and by integrating them a more complete view is obtained.

To get this deeper understanding that goes beyond a fragmented view, it is cru-

cial that the following questions can be answered: How do the components of

the human behavior system interact and what do they contribute independently

from the other components? As we argued in this paper, this means disentangling

joint sources of variation from specific sources of variation present in the data.

A further complicating factor in the analysis of linked traditional and novel data

resides in the often untargeted collection of the novel data: This not only leads to

a very large number of variables but also to the collection of variables that may

or may not be relevant for the problem under study. On the side of data analysis,

39

2
Chapter 2

this requires methods that are computationally efficient and capable of automated

variable selection. To address these issues, we introduced SCaDS, a novel variable

selection method that is suitable to detect the common and specific mechanisms

at play. In this paper, we proposed the SCaDS model, a procedure to estimate

the model parameters and an implementation of the algorithm in the freely avail-

able statistical software R. Importantly, the proposed implementation of SCaDS

can handle a large number of variables including cases where the total number of

variables exceeds the number of observations.

We illustrated how to use SCaDS using publicly available data from the 500

Family Study (Schneider and Waite) using a block of data for father, for mother,

and for their child. The interpretational advantage of using a sparse common

and distinctive model structure was clearly shown. Furthermore, support for the

superior performance of SCaDS compared to sparse PCA of the concatenated data

in estimating back the model parameters was convincingly shown in a simulation

study. Especially in situations where the number of variables was large compared

to the number of observation units, SCaDS outperformed the approach of applying

sparse methods for a single block of data while ignoring the multi-block structure.

In this paper we used cross-validation as a tool to determine the meta-

parameters of the SCaDS method, namely the number of common and distinctive

components and the level of sparsity. For data generated in the low-dimensional

setting satisfactory results were obtained; yet, in the high-dimensional setting we

observed a bias towards overly complex models. More research needs to be done

— including the use of simulation studies — to investigate if cross-validation in-

deed recovers the correct number of common and distinctive components and the

degree of sparseness. Other alternatives that have been proposed in the litera-

ture need to be explored as well, including the convex hull method (Wilderjans

et al., 2012; Timmerman et al., 2016). Of particular interest are model selection

tools that are less computationally intensive than cross-validation like the index of

sparseness (Trendafilov, 2013).

To conclude, SCaDS is a promising method for the analysis of multi-block

data that yields insightful representations of linked data: Intricate relations be-

tween very different sources of information on human behavior are revealed, even

in presence of irrelevant variables. Here, the methodology was introduced and

show-cased on data with a modest number of variables. The implementation pro-

posed here is scalable to the high-dimensional case of very large sets of variables

but more work is needed to study the performance of SCaDS in such settings using

both simulated and empirical data.

40

2
Revealing the joint mechanisms in traditional data linked with Big Data

2.6 Appendix

2.6.1 Specifics of the simulation study

As a starting point for the generation of data in the simulation study, initial

data matrices were generated according to x
(1)
i ∼MVN (0, 3I), where x

(1)
i ∈ R500

for i = 1 . . . 100 subjects. The variables in the resulting dataset X(1) were stan-

dardized to have zero mean and unit variance. Let UDVT be the singular value

decomposition of the standardized matrix X(2). Then, the standard PCA decom-

position can be obtained by setting the loading matrix P(1) equal to the first three

columns of V and setting W(1) also equal to the first three columns of V (note that

the basis PCA model with orthogonality of the loadings indeed has equal weights

and loadings). As a next step, we imposed the common and distinctive sparse

structure on W(1) as follows: First, a non-sparse common and distinctive structure

was obtained by setting — for the distinctive components — all those component

weights that correspond to the variables of a particular block equal to zero (see

Equation (2.4)); next, sparseness of the common component and of the non-zero

parts of the distinctive component was imposed by setting all coefficients with an

absolute value lower than some threshold to zero. The threshold was taken such

that the level of sparseness defined by the condition was attained. The resulting

matrix of component weights W is the model structure. Subsequently, the model

structure for P was obtained by setting the loadings equal to solution of the least

squares problem argminP ∥X(2) − X(2)WP(1)∥2 conditional on W, see Appendix

2.6.2. Finally, the data X∗ that were used as the input to the SCaDS and sparse

PCA analyses were obtained by adding noise,

X∗ = X(2) + cE, (2.7)

where E is a random error matrix where the rows are generated fromMVN (0, I),

and where c is a scalar that controls the signal to noise ratio (SNR) in X∗. The

SNR is calculated as follows.

SNR = 1− V̂ar(X(2))

V̂ar(X∗)
. (2.8)

To obtain the scalar c to get the desired SNR, substitute the SNR (in the simulation

study these 0.05, 0.25, 0.5) into Equation 2.8 and solve for c. No multiple starts

were used in the simulation study, the algorithm was started with a "warm" start

by initializing W with first three columns of V from X∗= UDVT .

41

2
Chapter 2

2.6.2 Description of algorithm

In order to obtain a solution for WC with SCaDS the following objective

function needs to be minimized given selected values for the tuning parameters:

λ2, λ1, the number of components and a common distinctive component weight

structure,

argmin
WC ,PC

L(WC ,PC) = ∥XC −XCWCP
T
C∥22 + λ1∥WC∥1 + λ2∥WC∥22,

s.t. PT
CPC = I, λ2, λ1 ≥ 0 zero block constraints on WC ,

(2.9)

where XC ∈ RI×
∑

k Jk , WC ∈ R
∑

k Jk×Q, PC ∈ R
∑

k Jk×Q and I, Jk and Q denote

the number of cases, variables in block k and components respectively. For ease of

notation we will drop the subscript C and let
∑

k Jk = L where l = 1 . . . L.

A solution to (2.9) can be obtained using an alternating least squares ap-

proach. Meaning, estimates for P can be obtained by minimizing (2.9) conditional

on W and vice versa. The alternating least squares minimization is repeated until

the convergence criterion has been reached. First, we will discuss the optimiz-

ing equation (2.9) with respect to P conditional on W, then we will discuss the

optimization of W conditional on P.

The loading matrix P which minimizes equation (2.9) conditional on W has

an analytic solution given PTP = I. The solution is given by P = UVT , where

U and V are the left and right singular vectors of XTXW (ten Berge, 1993; Zou

et al., 2006).

In order to obtain the component weight matrix W that minimizes equa-

tion (2.9) conditional on P, we implemented a coordinate descent optimization

procedure. In order to use coordinate descent to get estimates for W we rewrite

equation (2.9) as follows,

argmin
W

L(W) = ∥X−XWPT∥22 + λ1∥W∥1 + λ2∥W∥22

= ∥vec(X)− (P⊗X)vec(W)∥22 + λ1∥vec(W)∥1
+ λ2∥vec(W)∥22,

(2.10)

where (P⊗X) ∈ RIL×QL denotes the Kronecker product between the factor load-

ing matrix P and the data X and where vec(X) denotes the column vector repre-

sentation of X. In the Kronecker product each entry of P is multiplied with X and

42

2
Revealing the joint mechanisms in traditional data linked with Big Data

put together in one big matrix. An example of (P⊗X) and vec(X) is given by:

(P⊗X) =


p11X . . . p1QX

...

pJK1X . . . pJKQX

 , vec(X) =



x11

...

xI1

x12

...

xI2

x1J

...

xIJ



.

This optimization problem can be recognized as an elastic net regression problem

(Zou and Hastie, 2005), to demonstrate this let vec(X) be the outcome variable y,

let (P⊗X) be the matrix X∗ and let vec(W) be the coefficient vector β. For clarity

we index the rows and columns of X∗ by m and n respectively. To find estimates

for β we will use a coordinate descent procedure (Friedman et al., 2010). This is

an iterative procedure for which the solution to each successive approximation of

βn is given by,

βn :=
S(1

M

∑
m x∗

mn(rm + x∗
mnβ̃n), λ1)

1
M

∑
m x∗

mnx
∗
mn + λ2

, (2.11)

where S(z, γ) denotes the soft-thresholding operator: sign(z)(|z| − γ)+ and (α)+

denotes the positive part function, β̃n denotes the current estimate of βn and rm

denotes the current residual ym −
∑

n x
∗
mnβ̃n. The coefficients get updated until

a convergence criterion has been reached. The component weights constraint by

the common and distinctive structure are skipped by (2.11) and therefore stay

zero. A minimum of (2.6) can be found by successively alternating between the

estimation of P and W until the convergence criterion has been reached. Note

that this optimization problem is not convex, meaning that a minimum of (2.6)

does not have to be the global minimum. Note that P conditional on W and vice

versa, have global optima because they are convex optimization problems.

The coordinate descent procedure in (2.11) in its current form is infeasible

to work with and has to be rewritten in order for it the be useable in practice. This

has two reasons, first, the procedure relies on dot products with X∗, this Kronecker

product can get very large which may result into memory problems and makes the

procedure slow. Second, r needs to be calculated every time βn has been updated,

this is costly as r = y −X∗β. In order to make the coordinate descent procedure

efficient, the kronecker product needs to be avoided. This can be done by noting

43

2
Chapter 2

some properties of
∑

m x∗
mnx

∗
mn. First, let us focus on the dot product of two

columns of X∗ where each entry in those columns is multiplied by p•q carrying the

same index q, (index numbers with a • follow from the context) then because of

the orthonormality of P recognize that
∑

m x∗
m•x

∗
m• can be rewritten as follows,

M∑
m

x∗
m•x

∗
m• = x∗T

• x∗
• =

∑
l

(plqx•)
T (plqx•)

=
∑
l

p2lqx
T
• x• = xT

• x•. (2.12)

This means that the dot product of two columns of X∗ multiplied by the same

p•q, is the same as the dot product of the corresponding columns from the original

data. The inner product of two columns from X∗ multiplied by p•q and p•z where

q ̸= z results in
∑

l plqplzx
T
• x• = 0. Secondly, recognize that in (2.11),

M∑
m

x∗
mnrm = x∗T

n r = x∗T
n (y −X∗β̃)

=
∑
l

(pl•x•)
Txl −

∑
l

(pl•x•)
TX∗β̃

=
∑
l

(pl•x•)
Txl −

∑
n

∑
l

(pl•x•)
T (pl•xn)β̃n

=
∑
l

(pl•x•)
Txl −

∑
l

xT
• xlw̃l•

=
∑
l

xT
• xl(pl• − w̃l•)

= xT
•X(p• − w̃•). (2.13)

Making use of (2.12) and (2.13) the updating equation (2.11) can be rewritten

as,

wl• :=
S(1

M
(xT

l X(p• − w̃•) + xT
l xlw̃l•), λ1)

1
M
xT
l xl + λ2

, (2.14)

which does not rely on the kronecker product. Note that each time a coefficient

gets updated, the vector X(p•−w̃•) needs to be calculated again, this matrix vector

product can be partially avoided by calculating X(p• − w̃•) before the updating

of the weights in wq starts. If during the updating wlq is put to zero, the vector

xjw̃lq gets added back to X(p• − w̃•), and if wlq gets updated to a new value,

the difference xj(w̃lq − wlq) is added back to X(p• − w̃•). The coordinate descent

algorithm is given by Algorithm (1) and the full SCaDS algorithm is given by

Algorithm (2).

44

2
Revealing the joint mechanisms in traditional data linked with Big Data

Algorithm 1: Coordinate descent algorithm for the component weights
1 CoorDes ;

Input : X,W,P, λ2, λ1, ϵ, fixed structure for W
Output: Ŵ

2 c = empty array of length I
3 while convergence criterion ϵ is not satisfied do
4 for q = 1 to Q do
5 c = X(pq − w̃q)
6 for l = 1 to L do
7 if wlq is not constraint 0 then
8 w̃lq = wlq

9 a = 1
I
(xT

l c+ w̃jqx
T
l xl)

10 b = sign(a)(|a| − λ1)+
11 wlq =

b
1
I
xT
l x+λ2

12 if |a| < λ1 then
13 wjq = 0
14 c = c+ w̃lqxl

15 else
16 c = c+ xl(w̃jq − wjq)

17 end
18 end
19 end
20 end
21 return Ŵ;

Algorithm 2: Algorithm for SCaDS
1 SCaDS ;

Input : X, Q, λ2, λ1, ϵ1, ϵ2, fixed structure for W
Output: Ŵ, P̂

2 initialize W ∈ RJ×Q

3 while convergence criterion ϵ1 is not satisfied do
4 store U,VT from SVD(XTXW)
5 P = UVT

6 W = CoorDes(X,W,P, λ2, λ1, ϵ2, fixed structure for W)
7 end
8 return Ŵ, P̂;

45

2
Chapter 2

Table 2.4

Component weights for the family data resulting from thresholded SCA with rotation
to the common and distinctive structure

w1 w2 w3 w4 w5 w6

F: Relationship with partners 0 0 -0.41 0.36 0 0
F: Argue with partners -0.43 0 0 0 0 0
F: Childs bright future 0 0 0 0 0 0.43
F: Activities with children 0 0 0.42 0.4 0 0
F: Feeling about parenting -0.4 0 0 0 0 0
F: Communication with children 0 0 0 0 0 0
F: Argue with children -0.45 0 0 -0.28 0 0
F: Confidence about oneself -0.47 0 0 0 0 0
M: Relationship with partners 0 0 -0.46 0.33 0 0
M: Argue with partners 0 0 0 0 0 -0.26
M: Childs bright future 0 0 0 0 0 0.38
M: Activities with children 0 0 0 0 0 0
M: Feeling about parenting 0 0 0 0 0 0
M: Communication with children 0 0.42 0 0 0 0
M: Argue with children 0 0 0 -0.31 0 0
M: Confidence about oneself 0 0.41 0 0 0 0
C: Self confidence/esteem 0 0 0 0 -0.37 0
C: Academic performance 0 0 0 0 0 0.32
C: Social life and extracurricular 0 0 0 0 0 0.38
C: Importance of friendship 0 0 0 0 -0.43 0
C: Self Image 0 0 0 0 -0.50 -0.26
C: Happiness 0 0 0 0 -0.48 -0.29
C: Confidence about the future 0 0 0 0 -0.29 0

%VAF: per component 0.08 0.06 0.06 0.05 0.11 0.06
%VAF: total 41.9

Note. The items starting with an F, M or C belong to the father mother or child block.
Small absolute components weights have been set to zero in order to get just as much
sparsity in the component weights as in the SCaDS solution in Table 2.2.

46

2
Revealing the joint mechanisms in traditional data linked with Big Data

Table 2.5

Results of the simulation study for finding the underlying common and distinctive
structure with 10-fold cross validation in the high dimensional setting

Sparsity Noise Best modela One Std Error ruleb

high 5% 0 0.05
high 25% 0 0.35
high 50% 0 0.15
low 5% 0 0.20
low 25% 0 0.05
low 50% 0 0.05

Note. aThe proportion of cases where the model with the true structure is the model with
the lowest MPRESS. bThe proportion of cases the model with the true structure is selected
based on the one standard error rule. The results are based on 20 replications in each
condition.

Table 2.6

Results of the simulation study for finding the underlying common and distinctive
structure with 10-fold cross validation in the low dimensional setting

Sparsity Noise Best modela One Std Error ruleb

high 5% 0 0.60
high 25% 0 0.95
high 50% 0 0.85
low 5% 0 0.65
low 25% 0 1.00
low 50% 0 0.85

Note. a: The proportion of cases where the model with the true structure is the model
with the lowest MPRESS. b: The proportion of cases the model with the true structure is
selected based on the one standard error rule. The results are based on 20 replications in
each condition.

47

2

Chapter 3

Model selection techniques for sparse weight based

PCA

Abstract

Many studies make use of multiple types of data that are collected for the same set of samples,
resulting in so-called multi-block data (for example multi-omics studies). A popular analysis frame-
work is sparse principal component analysis (PCA) of the concatenated data. The sparseness in
the component weights of these models is usually induced by penalties. A crucial factor in the use
of such penalized methods, is a proper tuning of the regularization parameters used to give more
or less weight to the penalties. In this paper we examine several model selection procedures to
tune these regularization parameters for sparse PCA. The model selection procedures include cross-
validation, BIC, Index of sparseness, and the convex Hull procedure. Furthermore, to account for
the multi-block structure, we present a sparse PCA algorithm with a group LASSO penalty added
to it, to either select or cancel out blocks of data in an automated way. Also the tuning of the group
LASSO parameter is studied for the proposed model selection procedures. We conclude that when
the component weights are to be interpreted, cross-validation with the one standard error rule is
preferred; alternatively, if the interest lies in obtaining component scores using a very limited set
of variables, the convex Hull, BIC, and index of sparseness are all suitable.

Keywords: Sparse PCA, Model Selection, Multi-block Data

Niek C. de Schipper & Katrijn Van Deun (2020). Journal of Chemometrics. e3289.

49

3

Chapter 3

3.1 Introduction

Many studies make use of multiple types of data that are collected for the

same set of samples, resulting in so-called multi-block data Tenenhaus and Tenen-

haus (2011). Examples include multi-omics studies in which the same set of

samples are profiled using different molecular assays such as mRNA expression,

DNA methylation, DNA copy number, and somatic mutation data; see Wang et al.

(2014) for a multi-omics study of breast cancer and Reinke et al. (2018) for a joint

analysis of six different data blocks collected from 22 individuals from an asthma

cohort. Another example are multi-modal studies that use different MRI modali-

ties (e.g., anatomical, diffusion, and resting state functional magnetic resonance),

e.g., to study the same group of Alzheimer patients (Schouten et al., 2016). Each

of the data blocks gives a partial view of the complex system under study. A full

understanding of how the system works, requires to understand both the drivers

of the system that operate independently and those that operate only by concerted

action. At the level of the data, this means that insight is needed in the relations

between variables both within and between the data blocks: Components of the

system that work independently will show up as variation that is determined by

the variables of a single block only while those components that work by con-

certed action will show up as variation that is determined jointly by variables

linked throughout the blocks. A particular challenge in studying the jointly and

individually determined variation is the need to automatically select variables that

are of interest; not only to ease interpretation but also because data are often col-

lected in an untargeted way and one of the primary aims of the data analysis is to

hint at variables that may be key players in the process under study (Rasmussen

and Bro, 2012). This is of particular relevance when using high-throughput ap-

proaches resulting in thousands of measured variables.

Following the strong rise of multi-block data in many disciplines, several

integrative methods for exploratory data analysis have been put forward includ-

ing clustering and dimension reduction techniques and combinations thereof, see

for example the review by Meng et al. (2016). Among the dimension reduction

techniques, a number of methods that model joint and individual variation, also

called common and distinctive latent variables or components, have been pro-

posed (Smilde et al., 2017; Shu et al., 2019). Some of these methods perform

variable selection (Lock et al., 2013; Gu and Van Deun, 2016; de Schipper and

Van Deun, 2018) by adding a least absolute shrinkage and selection operator

(LASSO) penalty to the objective function (Tibshirani, 1996). This penalty has

the property to shrink the estimates to zero, some exactly with the implication

that that variable does not contribute (e.g., a zero regression weight means that

50

3

Model selection techniques for sparse weight based PCA

the predictor does not contribute to the prediction and a zero component weight

does mean that the variable does not contribute to the component). The use of

such penalties that introduce zeros in the estimates is the current state-of-the-art

in variable selection. The main reasons for the popularity of penalties over subset

selection methods such as best subset selection, are better stability of the penal-

ized regression model (Tibshirani, 1996) and their computational efficiency (e.g.,

compared to calculating the solutions for all possible subsets of variables (Bertsi-

mas et al., 2016)). A popular framework for the analysis of multi-block data is

sparse principal component analysis (PCA) (in the multi-block case also known as

sparse simultaneous component analysis, SCA; see Van Deun et al. (2011)) this

framework will be the focus of the current paper.

A crucial factor in the use of penalized methods, is the tuning of the regular-

ization parameters used to give more or less weight to the penalties. In practice,

the amount of sparseness in the data and the number of common and distinct

components are not known beforehand. Hence, to make good use of penalized

PCA approaches, model selection tools are needed to determine the strength of

the LASSO and group LASSO penalties. In the context of sparse PCA a few meth-

ods have been put forward to address this issue: these include popular solutions

such as cross-validation (e.g.,Bro et al. (2008)) and the bayesian information cri-

terion (BIC) (Guo et al., 2010; Croux et al., 2013) but also less known alternatives

such as the Index of Sparseness (Gajjar et al., 2017; Trendafilov et al., 2017) and

the Convex Hull (CHull) procedure (Timmerman et al., 2016; Wilderjans et al.,

2012). A comparison of these methods in the context of sparse PCA misses.

In this paper we will discuss and evaluate several existing model selection

procedures to select proper values of the tuning parameters used in sparse PCA.

Furthermore we will extend sparse PCA with a group LASSO penalty (Yuan and

Lin, 2006) to model the common and distinct variation, by selecting at the level of

the data blocks. The main focus of the paper will be on comparing several model

selection procedures with respect to finding those values of the tuning parameters

that yield the correct structure of the data; this is, selecting the right set of vari-

ables both in the single block setting and in the multi-block setting with common

and distinct variation. The following model selection procedures, and adaptations

thereof, will be discussed: Cross validation with the Eigenvector method (Bro

et al., 2008), BIC (Guo et al., 2010; Croux et al., 2013), Convex Hull (Wilder-

jans et al., 2012) and the Index of Sparseness (Gajjar et al., 2017; Trendafilov

et al., 2017). We will examine these model selection procedures because they are

readily available from the existing literature and can be used to estimate meta-

parameters for the weight based PCA model with little to no modification of the

original propositions. For sparse PCA we will examine these model selection pro-

51

3

Chapter 3

cedures in a simulation study with a single block of data (the most common case

where all variables are assumed to represent one unit of interest). For sparse SCA

we will examine the procedures making use of multi-block data (several sets of

variables are available for the same cases with variables within one set represent-

ing a unit of interest). In the multi-block case we will assess whether the model

selection procedures produce a final model that correctly identifies the joint and

individual structure of the components. In order to inform the analysis of the

block structure of the variables, we implemented the group LASSO penality in a

blockwise fashion, to either select or cancel out blocks of data in an automated

way.

The remainder of the paper is structured as follows: First, we will intro-

duce sparse PCA with the LASSO penalty and its extension to the multi-block set-

ting including a group LASSO penalty. Second, we will discuss several existing

or adapted model selection procedures for tuning the LASSO and group LASSO

penalty in sparse PCA. Third, we will examine these model selection procedures

in case of single and multi-block data in a simulation study. Lastly, we conclude

with a discussion.

3.2 Sparse PCA for single and multi-block data

In this section we will introduce the notation and give a brief introduction

to sparse PCA. Then we will discuss the extension to the multi-block setting and

introduce the group LASSO penalty to account for common and distinct variation.

We will make use of the standardized notation proposed by Kiers (2000):

Bold lower- and uppercases will denote vectors and matrices, respectively; the

superscript "T " denotes the transpose of a vector or matrix, and a running index

will range from 1 to its uppercase letter (e.g., there is a total of I cases where i

runs from i = 1, . . . , I).

Given is a data matrix X that contains the scores for I observations on J

variables; we follow the convention to present the J variable scores of observation

i in row i and thus X has size I ×J . PCA decomposes the data into Q components

as follows,
X = XWPT + E

subject to PTP = I,
(3.1)

where W is a J × Q component weight matrix, P is a J × Q loading matrix, and

E is a I × J residual matrix. Often the model is presented using the notation T

for the component score matrix that results from the linear combinations shown

explicitly in XW. In this type of representation of the PCA model, interpretation is

usually based on the loadings. Yet, an attractive property of the PCA formulation

52

3

Model selection techniques for sparse weight based PCA

in (3.1) is that it explicitly shows how the variables contribute to the construction

of the components: the meaning of the components scores tiq =
∑

j xijwjq can be

derived by inspecting what variables are weighted together to form the compo-

nents; see de Schipper and Van Deun (2018) for a further discussion of weights

versus loadings. Automatic selection of variables that contribute to the compo-

nent scores can be obtained by penalizing W in the least squares problem that is

typically solved to obtain suitable estimates for the component weights and load-

ings. This leads to the following penalized least squares problem: minimize with

respect to W and P

L(W,P) = ∥X−XWPT∥22 + λL∥W∥1 + λR∥W∥22
subject to PTP = I

(3.2)

with ∥W∥1 =
∑

j,r |wjq| the LASSO penalty - tuned by λL ≥ 0 - and ∥W∥22 =∑
j,r w

2
jq the ridge penalty, also known as Tikhonov regularization - tuned by λR ≥

0. The objective function in Equation (3.2) has been popularized by Zou et al.

(2006). As pointed out there, the inclusion of a ridge penalty is needed in the

high dimensional setting, this is having J > I; the combination of LASSO and

ridge is known as the elastic net.

The decomposition in (3.1) can be extended to the case of multi-block data

by taking X = [X1 . . .XK]; this is concatenating the K data blocks composed of

different sets of variables for the same observation units. The decomposition of

X has the same block structured decomposition with W = [WT
1 . . .WT

K]
T and

P = [PT
1 . . .PT

K]
T . This multi-block formulation of PCA is known as simultaneous

component analysis (Van Deun et al., 2009). Also in the multi-bock case W can be

penalized to obtain sparse weights, we will call this variant sparse SCA. When ana-

lyzing multi-block data with sparse SCA, we can search for blockwise structures in

the component weights that tell us whether a component is uniquely determined

by variables from one single data block (distinctive component), or whether it is

a component that is determined by variables from multiple data blocks (common

component). In other words, a distinctive component is a linear combination of

variables of a particular data block only, whereas a common component is a linear

combination of variables of multiple data blocks. An example of common and dis-

tinctive components in the situation with two data blocks is given below. The first

two components are distinctive components, the third component is a common

53

3

Chapter 3

component,

T =
[
X1 X2

]W1

W2

 =
[
X1 X2

]


0 w112 w113

0 w212 w213

0 w312 w313

w121 0 w123

w221 0 w223

w321 0 w223


.

In total there are
(
(2K−1)+Q−1

Q

)
possible combinations of common and distinctive

components. There are 2K − 1 states for each component (minus one to exclude

components with only zero weights) and each of these specific states can be as-

signed to each of the components where the ordering does not matter. Therefore

counting all possible common and distinct configurations for Q components takes

on the form of unordered sampling with replacement.

In the work of de Schipper and Van Deun (2018) the challenge of finding the

right sparse block structure for the component weight matrix was handled by an

exhaustive approach, examining all possible common and distinctive structures.

If the number of components and blocks is not too large, calculating all possible

models is feasible. However, if the number of blocks and components is large it

is not and can be expected to yield highly variable results (as is the case with the

best subset selection method for variable selection). Another option to perform

selection at the level of the blocks, is to add a group LASSO penalty to the PCA

objective; see Jenatton et al. (2010), Van Deun et al. (2011), and Erichson et al.

(2020), for similar proposals. Let w(k)
q denote the component weights of the vari-

ables of block k in component q. To have selection both at the level of the blocks as

well as within blocks, the following penalized least squares criterion can be used:

L(W,P) = ∥X−XWPT∥22 + λL∥W∥1 + λR∥W∥22 + λG

∑
q,k

(
√

Jk∥w(k)
q ∥2)

subject to PTP = I.

(3.3)

Hence the group LASSO is tuned by λG ≥ 0 with sufficiently large values resulting

in components that are based on a linear combination of variables of just one

or a few data blocks. To find estimates that minimize Equation (3.3) under the

constraint of orthonormal component loading vectors, we rely on an alternating

procedure that yields a non-increasing sequence of loss values thus converging —

in practice — to a fixed point. The details of this numerical routine are discussed

in the Appendix (3.7.1). Importantly, the numerical procedure only optimizes with

54

3

Model selection techniques for sparse weight based PCA

respect to the component weights and loadings and thus needs fixed values for the

number of components and the tuning parameters of the penalties. How to obtain

suitable values for λL, λR, and λG is the main topic of this paper.

3.3 Model selection procedures for sparse PCA

In this paper we will discuss several model selection techniques for the se-

lection of the penalty tuning parameters. These methods are Cross validation with

the Eigenvector method (Bro et al., 2008), the BIC (Guo et al., 2010; Croux et al.,

2013), Convex Hull (Wilderjans et al., 2012) and the Index of Sparseness (Gajjar

et al., 2017; Trendafilov et al., 2017). These model selection techniques have been

previously proposed in the context of PCA, some also in the context of sparse PCA

as defined here, this is with penalties on the weights. Application of these meth-

ods to sparse SCA with a group LASSO penalty is novel. A thorough comparison

of these methods -both for sparse PCA as well as SCA - lacks.

Cross validation with the Eigenvector method In the context of PCA, cross-

validation can be applied in several ways; a discussion and comparison with re-

spect to selecting the number of components for the X = TPT model can be found

in Bro et al. (2008). In that comparison, the best performing method was cross-

validation (CV) with the Eigenvector method; de Schipper and Van Deun (2018)

discussed the method in the context of sparse SCA to determine the value of the

LASSO and ridge tuning parameters. Let (−j) denote that (the coefficients of) vari-

able j are removed. Following Bro et al. and de Schipper and Van Deun, given

a number of components Q, to determine the value of a tuning parameter λ the

method then works as follows1:

1. Divide the sample into K folds each of size Ik

2. Leave out the kth fold and calculate Ŵ and P̂ on the remainder given a set

of tuning parameters λ

3. For the left-out samples in the kth fold i = 1 . . . Ik, for variables j = 1 . . . J

a) Estimate the score as t(−j)
i = x

(−j)T
i Ŵ(−j)

b) Estimate xij as x̂ij = t
(−j)
i p̂T

j , where p̂j is the jth row of P̂

c) Find the prediction error of the element xij by taking eij = xij − x̂ij

4. Calculate the mean squared error of the kth fold, M̂SE(λ)k =
1

IkJ

∑Ik
i

∑J
j e

2
ij

1Note that here K is used to denote the number of folds used in the cross-validation procedure
and not the number of data blocks

55

3

Chapter 3

5. Repeat 2 and 3 for each fold and calculate the overall mean squared error,

M̂SE(λ) =
1∑
Ik

K∑
k=1

IkM̂SE(λ)k. (3.4)

The standard error of Equation (3.4) is obtained by taking the sample standard

deviation of M̂SE(λ)1 , . . . , M̂SE(λ)K divided by
√
K (see for example Gordon

et al., 1984). Typically the data is split into K = 10 folds of (approximately)

equal size, which we will also do in the current paper. The attractive features of

CV with the Eigenvector method are that it is relatively fast to perform and that

the estimated data x̂ij are obtained independent of the data used to construct the

model. For more detailed information we refer the reader to Bro et al. (2008).

The model with the lowest MSE, is chosen as the best model. Cross validation

tends to select models that are too complex, therefore the one standard error rule

was developed (Hastie et al., 2009b). The one standard error rule selects the

set of tuning parameters that lead to the least complex model, still within one

standard error of the best model. In this paper we will examine the models chosen

according to the best (this is having lowest MSE) and the one standard error rule.

The BIC criterion Let RV be the residual variance resulting from the PCA de-

composition with Q components,

RV = ∥X−XŴP̂T∥22. (3.5)

Likewise let R̃V denote the residual variance for a given a model with a specific λ

and Q. Following Guo et al. (2010) and Croux et al. (2013) the BIC for a set of

tuning parameters λ and given the number of components Q is then given by,

BIC(λ) =
R̃V

RV
+ df(λ)

log(I)

I
. (3.6)

with df(λ) the number of non-zero weights in Ŵ. The optimal set of λ values is

then defined as the set of λ’s that results in the model with the lowest BIC.

CHull: a convex hull based model selection method CHull (Wilderjans et al.,

2012), also known as L-Curve (see for example, Hansen and OLeary (1993)),

is a generic model selection procedure that aims at striking an optimal balance

between the goodness of fit/misfit and model complexity. As stated by the au-

thors: "The CHull procedure consists of (1) determining the convex hull of the

fit-measure-by-complexity-measure plot of the models under consideration and

(2) identifying the model on the boundary of the convex hull for which it is true

56

3

Model selection techniques for sparse weight based PCA

that increasing the complexity (i.e., adding more parameters) has only a small ef-

fect on the fit measure, whereas lowering complexity (e.g., dropping parameters

from the model) changes the goodness of fit (or, respectively, the misfit) substan-

tially" (Wilderjans et al., 2012, p. 2). In this application of CHull we will use the

variance accounted for (VAF) as a goodness-of-fit-measure:

V AFλ =
∥XŴP̂T∥22
∥X∥22

. (3.7)

This is the goodness-of-fit-measure the authors originally used in their application

of CHull as a method to determine the number of components in PCA. In our

example we will also make use of the M̂SE(λ) as a goodness-of-fit-measure, that is

the MSE values we obtain from the cross-validation procedure as described before,

see Equation (3.4). Our motivation is that V AFλ is subject to overfitting and gives

a downward biased estimate of the error. For the complexity measure we use the

number of non-zero weights in Ŵ. The models are selected using the multichull

package (Vervloet et al., 2017).

Index of Sparseness According to Gajjar et al. (2017) and Trendafilov et al.

(2017), the index of sparseness (IS) given by

IS(λ) = V AFpca × V AFλ ×
df(λ)

JQ
, (3.8)

where df(λ) is defined as previously, the V AFpca is given by Equation (3.7) with

Ŵ and P̂ resulting from the PCA decomposition with Q components and all λ = 0,

and V AFλ is also given by Equation (3.7) but with Ŵ and P̂ resulting from PCA

with Q components and a set of regularization parameters λ ≥ 0. The IS increases

with goodness-of-fit and the sparseness of the solution. The (combination of)

value(s) of the tuning parameter(s) λ that result(s) in the model with the largest

IS is picked as the optimal value(s).

3.4 Simulation studies

The model selection techniques are assessed under different conditions by

means of a simulation study. First we will discuss the case of a single block of data

with an unstructured sparsity pattern, then we will discuss the case of multi-block

data with structured sparsity resulting in common and distinct variation.

57

3

Chapter 3

3.4.1 Single block data

In the simulation study, we kept the number of variables fixed to J = 50 and

the number of components to Q = 3. The study included the following design

factors:

• The number of observation units I: 25, 50 and 100.

• The level of sparseness (percentage of the -in total JQ = 150 weights - that

are equal to zero): 30% and 80%.

• The noise level: 5% and 20%.

The design is fully crossed, resulting in 3 × 2 × 2 = 12 design cells. For each

design cell, 50 data sets were simulated. The generation of the data is detailed

in the appendix, see Section (3.7). The resulting data was analyzed using an

implementation of Algorithm (3) (see the appendix) in the R software for statis-

tical computing (R Core Team, 2020). Algorithm (3) is freely available in R (R

Core Team, 2020) and downloadable from github.com/trbKnl. Each data set was

analyzed using a 50 × 10 grid of LASSO and ridge penalty tuning parameters re-

spectively. For the ridge, a sequence of ten values equally spaced on the interval

ln 0 to ln 500 was used and for the LASSO 50 equally spaced values on the same

interval. Note that the values were back-transformed to the range 0 − 500. For

each obtained (sparse) PCA model, the model selection statistics were calculated

and a best model was obtained for each of the six model selection methods. The

chosen models according to the model selection criterion was then evaluated by

looking at the following performance measures:

• The similarity between the true model matrix W and the estimated Ŵ. We

use Tucker congruence between the vectorized version of W and Ŵ to mea-

sure the similarity. The Tucker congruence (also known as cosine similarity)

is defined as the cosine of the angle between two vectors. If the two vec-

tors share no similarity, they are orthogonal and the Tucker congruence will

be 0. If the vectors are linearly dependent, i.e. perfect similarity, the angle

between these two vectors is 0 and the Tucker congruence will be 1.

• The percentage of correctly identified zero weights, calculated as the per-

centage of zero weights in the true matrix that are recovered as a zero weight

in the estimated matrix.

• The percentage of correctly identified non-zero weights, calculated as the

percentage of non-zero weights in the true matrix that are recovered as a

non-zero weight in the estimated matrix..

58

3

Model selection techniques for sparse weight based PCA

Results The results of the simulation study for the single block data are summa-

rized in Figures 3.1 and 3.2. Figure 3.1)shows the Tucker congruence coefficient

for the different model selection methods. Usually a threshold of .85 is recom-

mended (Lorenzo-Seva and ten Berge, 2006). In the condition where the sparsity

is 80%, only 10-fold CV, 10-fold CV with the 1 standard error rule, and CHull with

the MSE, often attain Tucker congruence values above the threshold-value of ac-

ceptable similarity. Interestingly, CHull with MSE performs well while this is not

the case for the CHull badness-of-fit measure previously used in the literature. In

the conditions were the sparsity is 30%, only 10-fold CV and 10-fold CV with the

one standard error rule, attain Tucker Congruence values above 0.85. This means

that the BIC, IS, and the CHull with VAF procedures result in models where the es-

timated component weights are too dissimilar from the true component weights.

When the true underlying models are very sparse (the conditions with 80% of

sparsity), the procedures in general perform better.

Because the Tucker congruence coefficient is relatively insensitive to whether

the correct status of the weights (i.e., zero or non-zero status) is estimated back,

we also inspect whether the model selection procedures result in models that select

the right subset of variables. The results are summarized in Figure 3.2. Three

patterns can be discerned. First, cross-validation finds almost 100% of the non-

zero weights yet recovers very few of the zero weights; this confirms that cross-

validation is known to yield too complex models. Second, the index of sparseness,

BIC and CHull with VAF, show the opposite behavior and favor very sparse models

which results in good recovery of the zero weights at the expense of recovering

very few of the non-zero weights. Third, cross-validation with the one standard

error rule yields a high percentage of recovery both for the zero and non-zero

weights.

It may seem surprising that most of these model selection techniques per-

form badly while having showed good performance in the literature with sparse

loadings (e.g., Gu et al., 2019). This can be explained by the fact that — for the

reconstruction of the data — the component scores and the loadings matter while

the component weights play an indirect role. The component weights enter in the

construction of the scores: T̂ = XŴ. As long as the scores are recovered well, the

data are reconstructed well. This is the case for the data here: Tucker congruence

between T̂ and T is larger than 0.85 for the bulk of the selected models with each

of the model selection procedures, see Figure 3.3. This in fact means that the com-

ponent scores themselves can be retrieved rather well without the need of having

to estimate that many non-zero weights. Hence model selection procedures that

balance fit with the number of non-zero coefficients result in very sparse models.

This implies that few weights actually need to be estimated in order for the model

59

3

Chapter 3

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●●

● ●●
●

●
●
●

●

●

●

●●●

●

●● ●

●

●

●

●

●●●●
●●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●●●●● ●●●

●

●

●

●

Sparsity 30% Sparsity 80%

E
rror 5%

E
rror 20%

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE

C
H

ul
l V

AF

IS

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE

C
H

ul
l V

AF

IS

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Method

Tu
ck

er
 c

on
gr

ue
nc

e

I

25
50
100

Figure 3.1. The Tucker congruence coefficient between W and Ŵ for the various

model selection procedures. The dashed line indicates a threshold value of 0.85

used as a cut-off for fair similarity. In each condition 50 replicate data sets were

used. The boxplots display the median and upper and lower quartiles.

to attain a good fit.

3.4.2 Multi-block data

In this simulation study we assess the performance of the model selection

criteria for the case of multi-block data that have structured sparsity, this is we

assume the component weights to have a common and distinctive structure. Here,

particular interest will be in evaluating whether the model selection methods re-

cover the common and distinctive structure.

Simulation study design The data that will be analyzed in this simulation study

consist of 2 data blocks (X = [X1 X2]) each with 25 variables. The structure

imposed on the data is Q = 3 components with 2 distinctive components and 1

common component. The study includes the following design factors:

• The number of samples I: 25 and 100.

60

3

Model selection techniques for sparse weight based PCA

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●●●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●●

●●●●●

●

●

●

●●●●

●

●

●

●

●●● ●

●

●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●●●● ●●●●●●●●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●
●
●
●
●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●● ●●●

●

●●

●

●

●●●●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●●●
●
●● ●●●

●
●●
●●
●●●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●

●

●●●●●●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●●●
●
●
●
●

I = 25 I = 50 I = 100
S

parsity 30%
E

rror 5%
S

parsity 80%
E

rror 5%
S

parsity 30%
E

rror 20%
S

parsity 80%
E

rror 20%

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE
C

H
ul

l V
AF

IS

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE
C

H
ul

l V
AF

IS

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE
C

H
ul

l V
AF

IS

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

P
ro

po
rt

io
n

of
 c

or
re

ct
ly

 id
en

tif
ie

d
w

ei
gh

ts

Weights

Non−zero weights
Zero weights

Figure 3.2. The percentage of correctly classified weights in Ŵ, for the various

model selection procedures. For good recovery, both the percentage of correctly

classified non-zero and zero-weights should be high. The boxplots display the

median and upper and lower quartiles.

61

3

Chapter 3

●

●●
●

●

●
●

●●

●

●

●

●
●
●

●●
●●●●●

●

●

●●●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●●●

●

●

● ●

●

●●

●
●
●●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●
●●●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●●●●
●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●
●
●●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●●

●

●

●

Sparsity 30% Sparsity 80%

E
rror 5%

E
rror 20%

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE

C
H

ul
l V

AF

IS

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE

C
H

ul
l V

AF

IS

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

Method

Tu
ck

er
 c

on
gr

ue
nc

e

I

25
50
100

Figure 3.3. The Tucker congruence coefficient between T and T̂ for the various

model selection procedures. The dashed line indicates a threshold value of 0.85

used as a cut-off for fair similarity. In each condition 50 replicate data sets were

used. The boxplots display the median and upper and lower quartiles.

• The level of sparseness in the non-zero blocks in the columns of W: 30%

and 80%.

• The noise level: 5% and 20%.

The design was fully crossed, resulting in 2×2×2 = 8 design cells. For each design

cell 50 datasets were generated. The details of the data generation scheme used

can be found in Appendix Section 3.7. The data were analyzed with Algorithm 3

for a grid of LASSO, group LASSO, and ridge tuning parameters. The sequences of

the ridge, LASSO and group LASSO parameters are given by a sequence from 0 to

500 of length 10 on the natural log scale for each of the three tuning parameters.

The chosen model according to the model selection criteria is then evaluated by

looking at the following performance measures:

• Tucker congruence coefficient.

• Whether the 2 distinctive components are estimated back (i.e. all weights in

the zero segments are estimated as zero),

• Whether the common component is estimated back (i.e. at least one non-

zero weights in each data block).

Results The results of the multi-block simulation study are summarized in Figure

3.4, and Tables 3.1 and 3.2. In Figure 3.4 the Tucker congruence coefficients

are displayed; these mainly show low congruence, this is below the threshold of

62

3

Model selection techniques for sparse weight based PCA

0.85, except for the two cross-validation procedures. Also here, as was the case in

the single block simulation, the low Tucker congruence coefficients are caused by

most model selection procedures having put too many weights to zero, compared

to the actual number of zero weights. Compared to the first simulation, Tucker

congruence is a bit higher because the distinctive components induce higher levels

of overall sparsity, meaning that the true model is more sparse and thus supportive

of selection methods that favor higher levels of sparsity.

We now turn to the question whether the model selection methods recover

the common and distinct components. Table 3.1 summarizes whether the com-

mon component is identified for the different model selection procedures, this is

whether at least one non-zero component weight within each block was retained.

Table 3.2 summarizes whether the distinctive components are identified by the

different model selection procedures (this is, whether all weights of the block

not making up the component are set to zero). Together, these tables show the

same patterns previously observed for the single block simulation study: cross-

validation favors complex models which results in defining most components as

common and not finding the distinctive components; the BIC, CHull-VAF, CHull-

MSE, and the IS estimate models that are too sparse and hence declare most com-

ponents to be distinctive at the expense of the common components; again, only

10-Fold CV with the one standard error rule accurately estimates the sparsity, both

within and between blocks.

To decide on which method is best based on combining the identification

rates for the common and distinct components, we used sum of ranking differ-

ences (SRD) scores and summarized these in a plot. SRD scores is a consensus

decision making tool for situations with multiple optimality criteria (Lourenco

and Lebensztajn, 2018) (for further reading also see Héberger (2010)). Here,

the scores are based on rankings of the model selection procedures on the basis

of the identification rates for common (see Table 3.1) and distinctive (see Table

3.2) components. For further details on how to obtain the SRD score we refer

to Lourenco and Lebensztajn (2018). The SRD scores are summarized in Figure

3.5 with lower scores indicating better overall performance of the method. The

grey solid curve denotes the cumulative distribution of SRD scores based on a ran-

dom ranking of the methods on the different optimality criteria (we relied on an

approximate distribution). In the plot, the score corresponding to the 0.05 small-

est SRD scores for the randomly ranked methods is indicated: this is our chosen

cut off for significance with methods having higher scores being considered to

not perform consistently better on each of the optimality criteria than based on a

random ranking. It can be observed that only 10-Fold CV with the one standard

error rule falls (just) below the cut-off indicating that it is all-round better than the

63

3

Chapter 3

other methods. The other model selection procedures do not consistently perform

relatively better.

For the interested reader we will provide an example of the analysis of multi-

block data making use of Equation (3.3) in the next section.

Table 3.1

Common components identified in percentages
Error 5% Error 20%

I = 25 I = 100 I = 25 I = 100

Sparsity 30% Sparsity 80% Sparsity 30 % Sparsity 80% Sparsity 30% Sparsity 80% Sparsity 30% Sparsity 80%

10-Fold CV 100 98 100 96 100 100 100 100
10-Fold CV 1std error 88 78 100 82 96 82 88 82
BIC 44 12 82 36 58 30 48 20
CHull-MSE 46 86 88 92 66 62 94 70
CHull-VAF 66 44 82 38 82 62 96 68
IS 76 52 82 56 96 76 96 68

Note. The percentages of times the common component was identified (this is at least one
non-zero weight in each data block). The percentages are based upon 50 replicate data
sets.

Table 3.2

Distinctive components identified in percentages
Error 5% Error 20%

I = 25 I = 100 I = 25 I = 100

Sparsity 30% Sparsity 80% Sparsity 30 % Sparsity 80% Sparsity 30% Sparsity 80% Sparsity 30% Sparsity 80%

10-Fold CV 8 2 8 4 0 2 6 6
10-Fold CV 1std error 82 88 98 92 94 70 90 72
BIC 98 100 96 100 98 100 98 100
CHull-MSE 92 70 78 84 84 76 80 82
CHull-VAF 82 94 94 100 68 68 90 100
IS 78 92 92 100 46 48 92 100

Note. The percentages of times the two distinctive components were found (this is no
non-zero weights estimated in the zero data block). The percentages are based upon 50
replicate data sets.

3.5 Empirical Example: Herring data

We will now provide an illustrative example were we analyse a dataset on

salted herring samples using sparse weight based SCA. The dataset on salted her-

ring consists of two blocks, each containing a specific set of variables on 21 herring

samples with the samples corresponding to different ripening conditions; see (Bro

et al., 2002) and (Nielsen et al., 1999) for more information about the data. The

first block contains chemical and physical measurements whereas the second block

consists of sensory variables. For an overview of the variables names see Table 3.3.

The analysis of multi-block data follow three steps:

64

3

Model selection techniques for sparse weight based PCA

●●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

Sparsity 30% Sparsity 80%

E
rror 5%

E
rror 20%

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE

C
H

ul
l V

AF

IS

10
−f

ol
d

C
V

10
−f

ol
d

C
V

1
SE

 ru
le

BI
C

C
H

ul
l M

SE

C
H

ul
l V

AF

IS

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Method

Tu
ck

er
 c

on
gr

ue
nc

e

I

25
100

Figure 3.4. The Tucker congruence coefficient between W and Ŵ for the various

model selection procedures in case of multi-block data. The dashed line indicates

a threshold value of 0.85 indication fair similarity. In each condition 50 replicated

data sets were used. The boxplots display the median and upper and lower quar-

tiles.

• Pre-processing of the data

• Tuning the model; selecting the meta-parameters

• Analysing the final model; interpreting the component weights

We will discuss each of these steps here below.

Pre-processing of the data Pre-processing has a large impact on the final results

of the analysis, and should be done according to the needs of the researchers;

see Van Deun et al. (2009) for an overview. For the herring data here, we first

centered and scaled (to unit variance) the variables as we are not interested in

scale differences. As the two blocks have the same number of variables, no further

block scaling is needed.

Tuning the model Multiple meta-parameters need to be tuned in order to get

to a satisfactory final model. For the sparse PCA method that we use here these

are the number of components and the regularization parameters λL, λG and λR.

65

3

Chapter 3

10−fold CV

10−fold CV 1 SE rule

BIC
Chull MSE

Chull VAFIS

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Observed SRD scores

O
bs

er
ve

d
S

R
D

 s
co

re
s

Figure 3.5. The sum of ranking differences scores of the various model selection

procedures. The solid grey line indicates an approximation of the cumulative dis-

tribution function of random SRD-scores. The vertical dashed lines indicate the

0.05 and 0.95 cut off points. Model selection procedures having an SRD score to

the right of the 0.05 cut are not statistically different, at the .05 level of signifi-

cance, from random rankings.

Also for the selection of the number of components, cross-validation has been rec-

ommended (Bro et al., 2008). Hence, two strategies can be considered, namely

tuning all parameters together or following a sequential strategy. Because of the

computational burden of the simultaneous strategy we opt for the sequential ap-

proach: First, we select the number of components and then, given the selected

number of components, we tune the LASSO and group LASSO parameters. To

determine the number of components we used 10-fold cross-validation with the 1

standard error rule on each block. This resulted twice in three components hence

we analyzed the concatenated data with the maximum number of components

possible, this is six distinctive components.

Also the regularization parameters were tuned using 10-fold cross-validation

with the 1 standard error rule. More specifically, we tuned the LASSO, ridge

and group LASSO regularization parameters on a three dimensional grid with 25,

equally spaced values between 0 to 500 on the log-scale; for the data here this

covers solutions ranging from no sparseness at all to all coefficients being zero.

We chose a log-scale because it tends to do well in practice and has been recom-

mended elsewhere, see Friedman et al. (2010, p. 10). Note that the upper bound

depends on the scale of the data.

66

3

Model selection techniques for sparse weight based PCA

Analysis of the final mode and interpretation of the results The component

weights resulting from the final analysis (this is, using six components and with

the values of the regularization parameters set at those selected under the cross-

validation scheme) are summarized in Table 3.3. Note that in this case there

are 2 distinctive components (components 2 and 5), and 4 common components

(components 1, 3, 4, and 6). The component weights directly relate the compo-

nents to the observed variable asătiq =
∑

j wjqxij. For comparison we included

results from a non-spare PCA analysis of the concatenated data in Table 3.4 where

the weights/loadings 2 are estimated using the singular value decomposition and

subsequently rotated to a simple structure using varimax rotation (Kaiser, 1958).

Strikingly, there is no structuring of the components into common and distinctive

components. Furthermore, components in PCA are a linear combination of all

variables and interpreting these is much more difficult compared to sparse SCA.

Take for example the fifth component, in case of PCA with varimax rotation, the

component is a linear combination of mainly the variable Spice, but other vari-

ables are weighted as well with non-negligible loadings such as TCAIndexB, Malt,

Stockfish smell et cetera. In the case of sparse SCA, the fifth component is just

the variable Salty, making it the unequivocal Salty component. Importantly, the

gain in interpretation obtained by imposing sparseness comes at barely any cost

in terms of the variation accounted for.

As for the meaning of the components, we examine the first and most impor-

tant component in terms of explained variance (42.4% variance explained) from

the sparse SCA analysis. We observe that ProteinB, TCAIndexM, TCAM, TCAB,

from the first block, together with Ripened, Malt, Sweetness, Softness, Toughness

and Watery from the second block make up the first component. In Nielsen et al.

(1999) the authors note that softness (the most important quality indicator used in

the herring industry) correlates with TCAM/B TCAIndexM and ProteinB, which to

them makes sense because: “A correlation between these parameters and softness

may be expected as muscle proteins are broken down during the ripening thus

explaining the increase in low molecular nitrogenous compounds and at the same

time softening of the tissue is encountered. ProteinB is mainly salt soluble muscle

protein diffusing into brine from the muscle. The solubilisation of muscle pro-

teins will therefore also probably affect the texture.” (Nielsen et al., 1999, p. 23).

Furthermore, they note that Softness, Toughness and Watery measure the same

characteristics, and that TCAIndexM, TCAM and TCAB measure the same charac-

teristics. This corresponds to the reported weights for the first component, except

for the small weight of ProteinM. We could view component one as a “quality of

herring” component. The first component obtained with PCA followed by varimax
2Note that the loadings and the weights are the same in PCA when PTP = I

67

3

Chapter 3

rotation is also the most important component (31.9% variance explained) and

we may expect this to also represent “quality of herring”. The weights for this

component in Table 3.4 show a somewhat similar pattern, yet there are some de-

viations and the interpretation is much harder because all variables make up the

first component. Furthermore this component explains less variance compared to

the first component of sparse SCA.

Table 3.3

MM sparse SCA: Estimated component weights for the herring data

Components 1 2 3 4 5 6

pHB 0 -0.148 -0.481 0 0 0.162
ProteinM -0.081 0.228 0 0 0 0
ProteinB 0.148 0 0 0.176 0 0
Water 0 -0.790 0 0 0 0
AshM 0 -0.126 0.595 -0.030 0 0
Fat 0 0.394 0 0 0 0
TCAIndexM 0.320 0 0 0 0 0.484
TCAIndexB 0 0.549 0 0 0 0
TCAM 0.102 0 0 0 0 0.502
TCAB 0.464 0 0 0 0 0

Ripened 0.275 0 0 0 0 0
Rawness 0 0 -0.126 -0.491 0 -0.196
Malt 0.402 0 0 -0.001 0 0
Stockfish smell 0 0.002 0.674 0 0 0
Sweetness 0.289 0 0 0 0 -0.530
Salty 0 0 0 0.855 0 -0.109
Spice 0 0 0 0 1.000 0
Softness 0.355 0 0 0 0 0
Toughness 0.349 0 0 0 0 0
Watery 0.360 0 0 0 0 0

%VAF: per component 42.4 20.0 11.4 9.1 5.5 5.2
%VAF: total 93.9

Note. The first block, corresponding to the first 10 variables (rows), consist of physical
and chemical analyses of the herring samples measured either in brine (B) or fish muscle
(M). The second block contains sensory data on the herring samples. These are the results
are obtained using Algorithm 3 with the chosen tuning parameters.

68

3

Model selection techniques for sparse weight based PCA

Table 3.4

Varimax: Estimated component weights for the herring data

Components 1 2 3 4 5 6

pHB -0.107 -0.214 -0.470 0.053 -0.180 0.372
ProteinM -0.116 0.341 -0.113 -0.036 -0.084 -0.107
ProteinB 0.191 -0.075 0.029 0.264 -0.008 0.097
Water -0.009 -0.483 -0.076 -0.076 0.040 0.079
AshM -0.054 -0.327 0.597 -0.138 0.105 -0.024
Fat 0.025 0.486 0.047 0.019 0.036 0.062
TCAIndexM 0.082 -0.046 -0.000 0.019 0.019 0.481
TCAIndexB 0.032 0.448 -0.027 -0.245 0.115 0.181
TCAM 0.071 0.042 -0.011 0.032 0.009 0.504
TCAB 0.222 0.120 0.080 0.180 0.002 0.160

Ripened 0.281 0.056 0.244 0.064 -0.135 0.070
Rawness 0.105 0.024 -0.110 -0.510 0.018 -0.266
Malt 0.354 0.027 0.006 -0.098 -0.117 0.108
Stockfish smell -0.055 0.106 0.526 0.157 -0.161 0.079
Sweetness 0.502 -0.083 -0.176 0.060 -0.095 -0.353
Salty -0.069 0.053 -0.105 0.709 0.074 -0.254
Spice 0.039 -0.012 -0.044 0.039 0.922 0.046
Softness 0.372 0.008 -0.018 0.004 0.076 0.029
Toughness 0.366 0.036 0.032 0.024 0.060 0.021
Watery 0.353 -0.101 -0.018 -0.023 0.016 0.011

%VAF: per component 31.9 19.9 11.8 12.5 5.0 12.8
%VAF: total 94

3.6 Conclusion

The current paper examined several model selection procedures to select the

penalty tuning parameters of sparse weight based PCA for the unstructured case

of a single block of data and of sparse weights SCA for the multi-block case having

structured sparsity. Most model selection procedures that have been proposed in

the sparse PCA literature did not perform well in terms of finding back the correct

component weights. When analyzing single block data, the procedures led to ei-

ther too complex or too sparse models. When analyzing multi-block data it led to

either identifying most components as common components and not as distinctive,

or not identifying common components as such. The only model selection proce-

69

3

Chapter 3

dure that seems to strike a good balance between model complexity and goodness

of fit in both the single and multi-block case was 10-fold cross-validation with the

Eigenvector method employing the one standard error rule. It has to be noted that

we did not tune the number of components together with the tuning parameters,

this could be addressed in further research.

As discussed in the paper, although the weights are recovered badly, this

barely affects the recovery of the component scores nor the reconstruction of the

data and hints at the fact that the estimation of the weights is an ill-conditioned

problem. Importantly, this means that if the goal is to obtain good estimates of the

component scores, loadings, or data yet with no interest in the estimates of the

component weights, proper tuning of the penalties on the weights is not needed.

In this situation, an economical decision may be to select a very sparse model (e.g.,

as resulting from the IS, BIC, or CHull) as good estimates of the component scores

can be obtained with few variables. Yet, when insight in the processes at play

in the data is needed, our advice is to use cross-validation with the one standard

error rule.

It has to be noted that a good solution for the component weights is in the

eyes of the beholder, a situation where a very sparse solution might be desirable

is when the component scores themselves are of interest and when observing new

data is expensive. For newly observed cases, only the variables with non-zero

component weights have to be observed to compute component scores.

3.7 Appendix

3.7.1 Description of algorithm

In order to obtain the component weights we need to optimize the following

objective function with respect to Wc and Pc,

L(Wc,Pc) =∥Xc −XcWcP
T
c ∥22 + λL∥Wc∥1 + λR∥Wc∥22

+
∑
q,k

(λG

√
Jk∥w(k)

q ∥2 + λE∥w(k)
q ∥1,2)

(3.9)

where Wc = [(W(1))T . . . (W(K))T]T , and w
(k)
q denotes the qth column from the

submatrix W(k). In order to get a minimum for (3.9) we alternate between the

estimation of Wc and Pc. Given Wc we can estimate Pc by using procrustes

rotation (ten Berge, 1993; Zou et al., 2006). Given Pc we can find estimates

for Wc by using the majorization minimization algorithm; for a short review see

Hunter and Lange (2004). To majorize (3.9) we can majorize all individual terms

seperately. First we majorize ∥Wc∥1. For the ease of simplicity let j = 1 . . .
∑

k Jk

70

3

Model selection techniques for sparse weight based PCA

index the rows of Wc and let q = 1 . . . Q index the columns of Wc, then we can

majorize ∥Wc∥1 as follows,

λL∥Wc∥1 = λL

∑
j,q

|wjq| ≤ λL

∑
q,j

(1
2

w2
jq

|w̃jq|
+

1

2
|w̃jq|

)
=

λL

2
vec(Wc)

TD1vec(Wc) + c,

(3.10)

where w̃jq is the current estimate of wjq, vec() denotes the vectorized version of a

matrix, D1 a diagonal matrix of |w−1
jq |, and c contains the terms that do not depend

on wjq and thus can be neglected in solving the optimization problem with respect

to the elements of W. Next we consider a majorizing function for the QK group

LASSO terms,

λG

∑
k,q

√
Jk∥w(k)

q ∥2 = λG

∑
k,q

√
Jk

(Jk∑
j=1

(w
(k)
jq)

2
)1/2

≤ λG

2

∑
k,q

√
Jk
2

(Jk∑
j=1

(w̃
(k)
jq)

2
)1/2

+
λG

2

∑
k,q

√
Jk
2

(Jk∑
j=1

(w̃
(k)
jq)

2
)−1/2

Jk∑
j=1

(w
(k)
jq)

2

=
λG

2

∑
k,q

(w(k)
q)TD

(k,q)
2 w(k)

q + c,

(3.11)

with D
(k,q)
2 being a diagonal matrix containing

√
Jk
2
(
∑Jk

j=1(w̃
(k)
jq)

2)−1/2 on its diago-

nal for a given k and q. The sum of quadratic forms in the marjorizing function in

(3.11) can be rewritten into one quadratic form by arranging the terms,

λG

2

∑
k,q

(w(k)
q)TD

(k,q)
2 w(k)

q =
λG

2
vec(Wc)

TD2vec(Wc) + c. (3.12)

Lastly, we will majorize the QK elitist LASSO penalty terms,

λE

∑
k,q

∥w(k)
q ∥1,2 = λE

∑
k,q

(Jk∑
j=1

|w(k)
jq |
)2

≤ λE

∑
q,k

((Jk∑
j=1

|w̃(k)
jq |
) Jk∑

j=1

(w
(k)
jq)

2

|w̃(k)
jq |

)
= λE

∑
k,q

(w(k)
q)TD

(k,q)
3 w(k)

q ,

(3.13)

71

3

Chapter 3

with D
(k,q)
3 being a diagonal matrix containing on its

(∑Jk
j=1 |w̃

(k)
jq |
)(
|w̃(k)

jq |
)−1 di-

agonal for a given k and q. Equation (3.13) can be rewritten (the same was as

Equation (3.12)) into λEvec(Wc)
TD2vec(Wc) by arranging the terms correctly.

Combining the above results we can majorize Equation (3.9) as follows,

L(Wc,Pc) =∥Xc −XcWcP
T
c ∥22 + λL∥Wc∥1 + λR∥Wc∥22

+
∑
q,k

(λG

√
Jk∥w(k)

q ∥2 + λE∥w(k)
q ∥1,2)

≤ ∥vec(Xc)− (Pc ⊗Xc)vec(Wc)∥22
+ vec(Wc)

TDsupvec(Wc) + c

= Q(Wc,Pc),

(3.14)

with Dsup =
λL

2
D1+

λG

2
D2+λED3+λRI. Because Q(Wc,Pc) is a quadratic function

which can be easily minimized by taking the partial derivatives with respect to the

elements to vec(Wc) and setting them to zero, also see Van Deun et al. (2011),

doing this gives us the following estimates for vec(Wc) ,

vec(Ŵc) = (Dsup + I⊗XT
c Xc)

−1vec(XT
c XcPc), (3.15)

with I being a Q×Q identity matrix. Estimates for vec(Ŵc) can be found relatively

efficiently by making use of the block diagonality of (Dsup + I⊗XT
c Xc), meaning

that the weights can be estimated per component separately,

ŵq = (D(q)
sup +XT

c Xc)
−1aq, (3.16)

with ŵq denoting the estimates of the qth component, D(q)
sup denoting the part of

Dsup corresponding to the qth component and aq denoting the qth column of A =

XT
c XcPc. The computation of the inverse in Equation (3.16) can be costly if

∑
Jk

is large. To make the algorithm well suited to handle a large number of variables,

we can implement a coordinate descent procedure to solve for Wc in Q(Wc,Pc).

For the ease of notation we will drop subscript c and let j = 1 . . . Q
∑

Jk. Then,

the update for an element of vec(Wc) is given by,

vec(Ŵ)j :=
(P⊗X)Tj vec(X)− (P⊗X)Tj (P⊗X)−jvec(W)−j

(P⊗X)Tj (P⊗X)j +Djj

, (3.17)

where subscript j denotes the jth element of a vector or the jth column of a matrix

and −j denotes the object minus the jth element or column. Making use of the

72

3

Model selection techniques for sparse weight based PCA

orthogonality of P and with j = 1 . . .
∑

Jk this simplifies to,

ŵjq :=
pT
q X

Txj − xT
j X−jw−jq

xT
j xj +D

(q)
jj

. (3.18)

With these derivations the estimation of Wc can be summarized in Algorithm 3.

Although different regularizers are implemented in algorithm 3, it is not

advised to combine them all together. For example, it is not advised to combine

the group LASSO and the elitist LASSO as they have opposing goals. A use case

for the elitist LASSO is when common components have to be extracted; this is

imposing zeros on each block in such a way that for each block segment also non-

zero component weights remain.

Algorithm 3: MM algorithm for sparse SCA
1 sparse SCA (Xc, Q, λ);

Input : Xc, Q, initialize Ŵc with the right singular vectors of Xc,
or a random initialization

Output: Ŵc

2 while ∆lossfunction value > ϵ do
3 P̂c ← procruste rotation(Xc,Ŵc)
4 for q ← 1 to Q do
5 if

∑
Jk >> N then

6 for j ← 1 to
∑

Jk do
7 ŵjq ← Eq. (3.18)
8 end
9 else

10 ŵq ← Eq. (3.16)
11 end
12 end
13 return Ŵc;

3.7.2 Data generation

Single block The data for the simulation study was generated from the following

model,

X = XWPT , (3.19)

where W is J×J , WTW = I and W = P. W is manipulated such that it contains

a given level of sparsity. To achieve this, we make use of an iterative procedure

that proceeds as follows. First, a random W matrix is generated with zero weights

in the desired places. After this step orthogonality of the columns is attempted by

applying the gramm-schmidt orthogonalization procedure only on the intersection

73

3

Chapter 3

of the non-zero weights between two columns of W. When W only has sets of

columns that contain non-overlapping sparsity patterns, this immediately results

into orthogonal columns, but when the columns in W have overlapping sparsity

patterns the procedure will not always lead to WTW = I on the first pass. In such

cases multiple passes are needed in order to achieve orthogonality (additional

coefficients might need to be put to zero). Some sparsity patterns are not possible,

for example, an initialization where W does not have full column rank, or an

initial set that degenerates to a linearly dependent set after multiple passes. In

those cases the algorithm fails to converge.

After a suitable W has been obtained, Σ can be constructed by taking Σ =

WΛWT . Here, Λ is a diagonal matrix with eigenvalues of the J components un-

derlying the full decomposition. We specify these eigenvalues such that the first

Q components account for a set amount of structural variance and the remaining

eigenvalues for a set amount of noise variance. The data matrices X having a de-

sired underlying sparse structure and noise level can then be obtained by sampling

from the multivariate normal distribution using Σ and a zero mean vector.

Multi-block The data generation for the multi-block simulation study is the same

as the data generation in the single set simulation study. Except that the data have

been generated with two distinctive components and one common component.

We define a distinctive component as being a linear combination of variables from

a particular data block and a common component as a linear combination of all

data blocks. In order to achieve the desired common and distinctive structure, full

block segments of zeros are inserted in the W matrix.

74

Chapter 4

Cardinality constrained weight based PCA

Abstract

Principal component analysis (PCA) (Jolliffe, 1986) is a widely used analysis technique for dimen-
sion reduction. The components resulting from a PCA are linear combinations of all variables.
This can make their interpretation difficult, especially when the number of variables in a data set
is large. To that end, so-called regularized sparse PCA methods have been developed that aim at
reducing the number of non-zero coefficients by relying on shrinkage penalties implying that only
a subset of the variables makes up the components. The problem that shrinkage methods solve
is not that of finding the best subset of variables optimizing the PCA criterion. In this paper we
present cardinality constraint PCA (CCPCA) to solve the best subset PCA problem by fixing the
number of non-zero coefficients through a cardinality constraint approach. For this purpose, we
propose using the cardinality constraints regression algorithm from Adachi and Kiers (2017) and
Bertsimas et al. (2016). Consistent with results obtained for regression analysis, we found that
CCPCA outperforms sparse PCA based on shrinkage penalties (Zou et al., 2006) when noise levels
are low but not when noise levels are high.

Keywords: Sparse PCA, Cardinality Constraint Regression, Best Subset Selection

Niek C. de Schipper, Anya Tonne & Katrijn Van Deun. To be submitted.

75

4

Chapter 4

4.1 Introduction

Principal component analysis (PCA) (Jolliffe, 1986) is a widely used analy-

sis technique for dimension reduction. The components resulting from PCA are

linear combinations of all variables. This can make their interpretation difficult,

especially when the number of variables in a data set is large. To that end so-called

sparse PCA methods have been developed that aim at reducing the number of non-

zero coefficients in the model, implying that only a subset of the variables make

up the components. These include rotation techniques (such as varimax rotation

(Kaiser, 1958)) and sparse PCA approaches that rely on shrinkage penalties (e.g.,

the least absolute shrinkage and selection operator or LASSO penalty; Tibshirani

(1994)). Such shrinkage penalties steer the PCA coefficients towards (exact) zero.

Penalized PCA approaches with sparsity inducing penalties have been extensively

developed during the last decades (see for example; Zou et al. (2006); Shen and

Huang (2008); Gu and Van Deun (2016); Van Deun et al. (2009) and are a highly

popular tool for the analysis of multivariate data.

The problem that shrinkage methods solve is not that of finding the best

subset of variables optimizing the PCA criterion. As pointed out in the discussion of

Tibshirani (2011) solutions based on the LASSO will, unless under very stringent

conditions, not return the best subset. Why then, one may wonder, isn’t the best

subset problem solved? A first reason for relying on shrinkage methods is of a

computational nature: The best subset problem quickly becomes intractable as it

implies trying out all possible subsets; approximate methods, e.g., based on convex

relaxations such as the LASSO penalty, then offer a computationally attractive

alternative (Tibshirani, 2011). A second reason, already put forward in the context

of the nonnegative garrotte penalty (Breiman, 1995), is of a statistical nature:

shrinkage of the non-zero coefficients avoids inflation and hence a better bias-

variance trade-off of the estimators.

Notwithstanding the computational and statistical advantages of shrinkage

penalties, recently significant progress has been made with respect to solving —

to (near) optimality — the best subset regression problem for a large numbers of

variables (in the order of a few thousands; Bertsimas et al. (2016)). The resulting

algorithmic procedure providing near-optimal solutions has been also presented in

Adachi and Kiers (2017). This opens the venue to develop a best subset sparse PCA

method and to subsequently study the properties of the penalized and constrained

approaches in terms of correctness of selection and the bias-variance trade-off.

In this paper, we propose to solve the best subset PCA problem by fixing

the number of non-zero coefficients through a cardinality constraint approach.

Furthermore we will compare this cardinality constrained PCA to sparse PCA (Zou

76

4

Cardinality constrained weight based PCA

et al., 2006) making use of shrinkage penalties.

The remainder of this paper is structured as follows: First, we discuss the no-

tation, PCA and penalized sparse PCA, and introduce cardinality constrained PCA.

Second, we assess the performance of cardinality constrained PCA in a simulation

study and compare it with the performance of penalized sparse PCA. We end with

a conclusion.

4.2 Methods

Given is a data matrix X that contains the scores for i = 1 . . . I observations

on j = 1 . . . J variables; we follow the convention to present the J variable scores

of observation i in row i and thus X has size I × J . PCA decomposes the data into

Q components as follows,
X = XWPT + E

subject to PTP = I,
(4.1)

where W is a J × Q component weights matrix, P is a J × Q loadings matrix

and E is the I × J matrix of residuals. The component weights matrix W will

be the focus of this paper, where it should be noted that the linear combinations

XW represent the component scores. In PCA the matrices W and P — given

the number of components Q — can be obtained by applying the singular value

decomposition (SVD) to X (Hastie et al., 2009b, p. 535). The resulting solution is

optimal both in the least squares sense, i.e. minimizing

∥X−XWPT∥22 =
∑
i,j

e2ij, (4.2)

as well as in terms of maximizing the variance of the components. In general, the

estimated component weights Ŵ resulting from the SVD will contain J ×Q non-

zero component weights. A disadvantage of PCA is that all estimates are non-zero,

making the interpretation of the components difficult when J is large; there are

simply too many weights to inspect.

To get interpretable component weights, numerous sparse PCA methods have

been developed. In these methods components are estimated that are least-squares

optimal or have maximal variance yet subject to penalties or constraints that put

weights to zero, greatly increasing the interpretability of the components. Finding

the best subset of weights that should be non-zero is a NP-hard problem (Natara-

jan, 1995) and is considered to be computationally intractable when JQ is large.

To circumvent the NP-hard problem the usual approach taken in the literature is

to relax the problem by relying on (convex) shrinkage penalties with variable se-

lection properties (such as the LASSO penalty). Instead, here we will propose

77

4

Chapter 4

a sparse PCA problem that solves the cardinality constrained problem to near-

optimality and with great computational efficiency.

In this section, we first introduce the standard approach to sparse PCA, this

is solving the penalized PCA problem. Next, we introduce a procedure to solve the

cardinality constrained PCA problem as this has not been proposed previously.

4.2.1 Sparse PCA with the elastic net penalty by Zou et al.,

2006

A well known sparse PCA method that relies on the LASSO and ridge penal-

ties has been developed by Zou et al. (2006). It solves the following objective

function:

argmin
W,P

L(W,P) = ∥X−XWPT∥22 + λL∥W∥1 + λR∥W∥22

subject to PTP = I,

(4.3)

with ∥W∥1 =
∑

j,q |wjq| the LASSO penalty (tuned by λL ≥ 0) and ∥W∥22 =∑
j,q w

2
jq the ridge penalty (tuned by λR ≥ 0). The combination of the LASSO

and the ridge is called the elastic net. The LASSO not only shrinks the component

weights to zero but sets some of them exactly to zero. The ridge only shrinks the

coefficients and is included to regularize the problem in the high-dimensional set-

ting (J > I); e.g., to allow for more non-zero coefficients than variables, see also

Zou et al. (2006).

The problem formulated in (4.3) is not that of finding the subset of variables

with smallest loss as defined in (4.2). As discussed in the literature on penalized

regression, the correct subset is only recovered under stringent conditions (see

Bertsimas et al. (2016) and references therein). On the other hand, shrinkage

of all coefficients reduces the variance of the estimated coefficients; hence the

coefficients estimated under a penalized regime may be more accurate than those

obtained with best subset selection Hastie et al. (2017).

Another drawback associated to the penalized sparse PCA approach is the

limited control over the tuning parameter λL. In practice, one would like to tune

the parameter such that it results in a given number of zero coefficients or, when

model selection is of interest, such that a sequence of solutions is obtained with a

controlled range and step size for the number of non-zero coefficients. The effect

of the tuning parameter on the number of non-zero coefficients is not clear, hence

the difficulty in tuning. An exception is formed when W is estimated with the

least-angle regression (LARS) algorithm (Tibshirani et al., 2004). The LARS algo-

rithm provides a piecewise linear solution path, which makes it straightforward

78

4

Cardinality constrained weight based PCA

to choose a model containing exactly the number of desired non-zero coefficients.

Sparse PCA estimated with the LARS algorithm is available in the elasticnet pack-

age (Zou and Hastie, 2018) in R (R Core Team, 2020).

4.2.2 Sparse PCA with cardinality constraints

We propose to directly solve the best subset selection method for PCA and

therefore solve the following cardinality constrained problem:

argmin
W,P

∥X−XWPT∥22

subject to PTP = I and ∥W∥0 = K,

(4.4)

with ∥W∥0 counting the number of non-zero coefficients in W. Hence zeros are

introduced into the solution without the additional shrinkage of the non-zero coef-

ficients. A practical advantage of the Cardinality Constrained PCA (CCPCA) prob-

lem in (4.4) is that there is direct control over K and thus the exact level of

sparsity in W. The cardinality constraints make it straightforward to pick a range

of integers from which a suitable K can be selected.

Algorithm It is not our aim to find the global optimum of the CCPCA problem as

this is an intractable problem for large J . Instead, we aim to reach a solution that is

computationally feasible, also for large J and relying on procedures with proven

good quality. The basic idea is to formulate the PCA problem as a regression

problem, in line with the approach taken by Zou et al. (2006), and to rely on

state-of-the-art optimization tools that have been proposed in the context of the

best subset regression problem.

The parameters of Equation (4.4) are estimated using an alternating itera-

tive procedure, where W is updated conditional upon the current estimate for P

and vice versa. The problem of solving for P given W is a standard problem,

known as the reduced rank Procrustes rotation problem, which has a closed form

expression; we refer the interested reader to the appendix for the details. The con-

ditional problem of solving for the component weight matrix W takes the form of

a cardinality constrained regression problem (Adachi and Kiers (2017), see also

Algorithm (1) in Bertsimas et al. (2016)):

argmin
W

∥vec(X)− (P⊗X)vec(W)∥22

subject to ∥vec(W)∥0 = K.
(4.5)

A numerical procedure that solves this problem was proposed by Adachi and Kiers

(2017) as a special case of a majorize-minimize (Hunter and Lange, 2004) or it-

79

4

Chapter 4

erative majorization (Kiers, 2002) procedure. The same the procedure has been

proposed as a projected gradient descent algorithm Bertsimas et al. (2016). Car-

dinality constrained regression iteratively finds estimates for W by minimizing a

majorizing function for Equation (4.4), which enables the inclusion of cardinality

constraints. Given a fixed P consecutive updates for W are given by:

vec(W) := vec(W̃)− α−1((IQ ⊗XTX)vec(W̃)− vec(XTXP))

with the smallest K absolute values set to zero.
(4.6)

with W̃ being the current estimates of W and α is the maximum eigen value of

XTX. Further details can be found in Section (4.5.1), also on how to fix the car-

dinality per component instead of over all Q components. Hence an approximate

solution to the best subset selection problem is found relying on a procedure where

the main complexity is to sort a J × Q matrix. In Bertsimas et al. (2016) the car-

dinality constrained regression problem is solved by first estimating the regression

coefficients using (4.6) (see Algorithm (1) in Bertsimas et al. (2016)) and then

using these regression coefficients as warm starts in a mixed integer optimization

(MIO) program. This further improves the solution. Note that we do not perform

the MIO step.

We call the full alternating procedure CCPCA; the details are outlined in

Section (4.5.1). CCPCA converges to a stationary point yet is subject to local

optima. We propose to initialize W with the estimates Ŵ from PCA (this is the Q

right singular vectors associated to the Q largest singular values). Another option

is using multiple starts: The procedure is started multiple times with different

initializations of W and the estimates from the analysis with the smallest loss

function value are retained. Multiple starts are more costly, which especially adds

up when K and Q still need to be determined using computationally intensive

model selection procedures such as cross-validation.

Summary We presented two methods for obtaining sparse PCA solutions, one

based on penalizing the PCA problem and a novel one based on solving the car-

dinality constraint or best subset PCA problem to near optimality. Penalized ap-

proaches have been put forward in the statistical literature for reasons of compu-

tational and statistical efficiency. A main drawback is that they in general do not

result in the best subset. Recently, significant progress has been made in optimiz-

ing the best subset selection problem such that solving the problem has become

feasible for a large number of variables. Bertsimas et al. (2016) found cardinal-

ity constrained regression to be superior to LASSO regression not only in terms

of recovering the correct subset of variables but also in terms of predictive perfor-

mance, which is contrary to expectations based on the bias-variance trade-off. As a

80

4

Cardinality constrained weight based PCA

response Hastie et al. (2017) extended the simulations of (Bertsimas et al., 2016)

focussing on prediction accuracy and found that cardinality constrained regression

only outperforms the LASSO when there is high signal to noise ratio. Here we will

study the properties of the penalized and cardinality constrained approaches in

the context of sparse PCA. In the next section we will assess and compare the

performance of CCPCA and sparse PCA with LARS in a simulation study; we will

focus both on the recovery of the true subset of variables and the efficiency of the

weights.

4.3 Simulation Study

To assess the performance of CCPCA we performed a simulation study, in this

simulation study the performance of CCPCA is compared with the performance of

the existing alternative: Penalized sparse PCA estimated with the LARS algorithm.

Two types of performance are of interest: is the correct subset of variables recov-

ered and are the estimates efficient (i.e. do they have lower mean squared error

of estimation)? This will be addressed in two separate simulation studies.

In the simulation studies, we kept the number of variables fixed to J = 50

and the number of components to Q = 3. The study included the following design

factors:

• The number of observation units I: 25, 50 and 100.

• The level of sparseness (percentage of the, in total JQ = 150 weights that

are equal to zero): 30% and 80%.

• The noise level: 5% and 20%. These noise levels are created by manipulating

the eigenvalues in the covariance matrix Σ, in such a way that the Q signal

components account for 95% and 80% of the total variance.

The design is fully crossed, resulting in 3 × 2 × 2 = 12 design cells. For

each design cell, 50 models were generated from which we simulated data. The

generation of the data is detailed in Section (4.5.2). The resulting data were ana-

lyzed using CCPCA with Algorithm (4) programmed in the R software for statistical

computing (R Core Team, 2020) and sparse PCA with LARS using the elasticnet

package (Zou and Hastie, 2018). A single rational start, based on the SVD decom-

position of the data, is used. To estimate W from the generated data sets with

CCPCA and sparse PCA we used oracle information: We supplied the analysis with

the true number components q = 3 and of non-zero weights per column of W. The

ridge penalty for sparse PCA was left at the default value of 10−6. As the CCPCA

and sparse PCA solutions are indeterminate with respect to the sign and order of

81

4

Chapter 4

the component weight vectors wq, we match ŵq to the correct wq based on the

highest cosine similarity taking the sign into account.

In the first simulation study, our interest is mainly in the selection of the

correct subset of variables. For this performance criterion, we expect CCPCA to

outperform the penalized sparse PCA approach as finding the best subset is the

objective of CCPCA but not of penalized sparse PCA. We will also assess the overall

quality of estimation based on the Tucker congruence coefficient (Lorenzo-Seva

and ten Berge, 2006) between Ŵ and W, which equals the cosine of the angle

between two vectors. Typically, a Tucker congruence coefficient above 0.85 is used

as an indication of fair vector similarity.

In the second simulation study we will inspect the bias, variance, and mean

squared error (MSE) of the estimators from both procedures. In this simulation

study we randomly generated one model per condition, from which we created

5000 replicated data sets. We know sparse PCA introduces bias into its weights

because of the LASSO and ridge penalties. We expect that the estimates from

CCPCA will be less biased compared to sparse PCA because there is no shrinkage

of the weights. On the other hand, for noisier data, we expect more variance of

the estimates obtained with CCPCA. Taken together, a better bias-variance trade-

off may be observed for penalized sparse PCA in the (very) noisy conditions.

The estimators of bias, variance and MSE we will use in the simulation study

are slight modifications of the “one parameter” versions because we want to sum-

marize the results of all JQ weights in W together. To assess the bias we will use

the mean absolute bias (MAB) (Willmott and Matsuura, 2006) which is given by,

MAB =
1

JQ

∑
j

∑
q

|ŵjq − wjq|, (4.7)

where ŵjq is the average estimated component weight 1
R

∑
r ŵ

(r)
jq for the r = 1 . . . R

replicated data sets. To quantify the variance of the estimators, we will use the

mean variance of all estimates, given by,

mean VAR =
1

JQ

∑
j

∑
q

1

R

∑
r

(ŵjq − ŵ
(r)
jq)

2. (4.8)

To quantify the MSE, we will use the mean MSE of all estimates,

mean MSE =
1

JQ

∑
j

∑
q

1

R

∑
r

(wjq − ŵ
(r)
jq)

2. (4.9)

82

4

Cardinality constrained weight based PCA

4.3.1 Overall quality of the estimation of the weights

The Tucker congruence coefficients of CCPCA and sparse PCA are given in

Figure (4.1). Both and CCPCA and sparse PCA tend not to do so well when the

sparsity is low (30%), irrespective of the number of objects and the level of noise:

Most Tucker congruence coefficients are below the acceptable threshold of 0.85.

With high sparsity (80%) CCPCA shows acceptable performance, while sparse PCA

only shows acceptable performance in the condition with 20% noise, and shows

poor performance in the condition with 5% noise. In general CCPCA is show-

ing slightly higher Tucker congruence coefficients for all conditions indicating a

slightly better estimation overall. Concluding, if the data generating W is sparse,

component weights can be estimated back fairly well by both methods, where the

edge is given to CCPCA.

Whether CCPCA and sparse PCA identified the correct state of the weights

(non-zero vs zero weights) is summarized in Figure (4.2). In correspondence to

our expectations, Figure (4.2) shows that in all conditions CCPCA has a slightly

higher proportion of correctly identified weights compared to sparse PCA. In all

conditions the identification of the correct state of the weights is substantially

higher compared to random performance (this is the expected number of hits

given that the number of non-zero weights is known beforehand). In case the

underlying model is sparse and the sample size is large enough, the correct state

of the weights can be identified rather well (above 80% percent approximately).

The proportion of correctly identified weights drops as the model gets less sparse

and the sample size decreases. The results of both procedures are both in line

with the “bet on sparsity principal” (Hastie et al., 2009b), which states that you

can better assume the truth is sparse and use a method that works well in that

context, because if not, no method will be able to recover the underlying model

without a large number of observations per parameter.

4.3.2 Mean absolute bias, mean variance & mean MSE of the

weights

In Table (4.1) the MAB, mean variance and mean MSE of the estimators

from CCPCA and sparse PCA are reported. Not surprisingly, the MAB of sparse

PCA is higher than CCPCA (although by a small margin only): approximately

0.010. To give an indication of this difference, the average absolute weight from

the simulation study is 0.112. The mean variance of the CCPCA weights compared

to the mean variance of the sparse penalized PCA weights is approximately equal

when there is little noise on the data (5%). In case of a larger level of noise (20%)

the variance of penalized sparse PCA is lower than that of CCPCA; this is because

83

4

Chapter 4

Sparsity 30% Sparsity 80%

E
rror 5%

E
rror 20%

C
C

PC
A

sp
ar

se
 P

C
A

C
C

PC
A

sp
ar

se
 P

C
A

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Method

Tu
ck

er
 c

on
gr

ue
nc

e

I

25
50
100

Figure 4.1. The Tucker congruence coefficient between W and Ŵ for the various

model selection procedures. The dashed line indicates a threshold value of 0.85

indication fair similarity. In each condition 50 replicated data sets were used.

84

4

Cardinality constrained weight based PCA

25 50 100 Chance
S

parsity 30%
E

rror 5%
S

parsity 80%
E

rror 5%
S

parsity 30%
E

rror 20%
S

parsity 80%
E

rror 20%

C
C

PC
A

sp
ar

se
 P

C
A

C
C

PC
A

sp
ar

se
 P

C
A

C
C

PC
A

sp
ar

se
 P

C
A

C
ha

nc
e

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Method

P
ro

po
rt

io
n

of
 c

or
re

ct
ly

 id
en

tif
ie

d
w

ei
gh

ts

Weights

Non−zero weights
Zero weights
All weights
All weights by chance

Figure 4.2. The proportion of correctly identified weights between W and Ŵ. In

each condition 50 replicated data sets were used. In the chance condition very

low probablities for a certain amount of proportion correct are rounded to zero

85

4

Chapter 4

of the shrinkage effect of the penalties in sparse PCA (bias variance trade-off). The

mean MSE in case of small noise is slightly lower for CCPCA compared to sparse

PCA, while the mean MSE is lower for sparse PCA in case of 20 percent noise and

80 percent sparsity. Concluding, overall CCPCA seems to do a little better in most

of the simulation study, but we also see lower mean MSE for penalized sparse PCA

in the condition with the highest noise level thanks to the bias variance trade-off.

In general the differences between the two procedures are small.

Table 4.1

MAB, mean variance & mean MSE of the estimators from CCPCA and sparse PCA
Error 5% Error 20%

I = 25 I = 100 I = 25 I = 100

Sparsity 30% Sparsity 80% Sparsity 30% Sparsity 80% Sparsity 30% Sparsity 80% Sparsity 30% Sparsity 80%

MAB CCPCA 0.0172 0.0115 0.0177 0.0113 0.0186 0.0115 0.0181 0.0127
Spca 0.0272 0.0221 0.0287 0.0242 0.0275 0.0219 0.0323 0.0179

mean Var CCPCA 0.0066 0.0070 0.0065 0.0047 0.0072 0.0102 0.0071 0.0057
Spca 0.0069 0.0084 0.0071 0.0072 0.0076 0.0062 0.0076 0.0039

mean MSE CCPCA 0.0072 0.0076 0.0071 0.0053 0.0079 0.0108 0.0077 0.0064
Spca 0.0081 0.0109 0.0084 0.0099 0.0090 0.0088 0.0092 0.0056

Note. The estimates are based on 5000 replicated data sets. For each condition a random
model is chosen from which to estimate the bias, variance and MSE. The average absolute
true component weight is 0.112.

4.4 Conclusion

In this paper we presented PCA with cardinality constraints on the compo-

nent weights as an alternative to PCA with shrinkage penalties. We compared it

to the alternative which is sparse PCA estimated with the LARS algorithm. In the

first simulation study we found that CCPCA marginally outperforms sparse PCA

with LARS when comparing the Tucker congruence coefficients between W and

Ŵ, and also in terms of the correct subset found of non-zero weights.

In the second simulation study we found that the MAB of CCPCA was lower

compared to sparse PCA in all conditions, which is favourable when the variance

of the weights is also low. This was the case in the condition with 5% noise.

When the noise level is greater (20%) we observe that in some cases the MSE of

the sparse PCA estimator is lower. As in Hastie et al. (2017), we expect that this

difference will be greater when the noise levels increase.

Concluding, CCPCA and sparse PCA perform relatively similar, where CCPCA

has the edge when the noise levels are low. When noise levels are large, the

bias-variance trade-off can lead to better estimates for sparse PCA, but for our

conditions these differences were marginal. It is important to mention that sparse

86

4

Cardinality constrained weight based PCA

PCA with LARS is computationally more efficient than CCPCA. When X contains

a large number of variables, sparse PCA might be preferred.

4.5 Appendix

4.5.1 Description of algorithm

In order to obtain the component weights, we need to optimize the following

objective function with respect to W and P,

argmin
W,P

∥X−XWPT∥22

subject to PTP = I and ∥W∥0 = K,

(4.10)

In order to get a minimum for (4.10), we can alternate between the estimation of

W and P. Given W we can estimate P by using Procruste rotation (ten Berge,

1993; Zou et al., 2006), P = UVT , where U and V are the left and right singular

vectors of XTXW. Given P we can find estimates for W given the cardinality con-

straints using the cardinality constraint regression algorithm (Adachi and Kiers,

2017) which uses a majorization minimization approach, for a short overview see

Hunter and Lange (2004). We can rewrite Equation (4.10) as a regression problem

as follows,
L(W) = ∥vec(X)− (P⊗X)vec(W)∥22
subject to ∥vec(W)∥0 = K,

(4.11)

Following Kiers (2002) we can majorize Equation (4.11) as follows,

L(W) ≤ m(W) = c+ α∥b− vec(W)∥22, (4.12)

where c is a constant with respect to W, α is the maximum eigen value of XTX

and b is given by b = vec(W̃)−α−1(IQ⊗XTXvec(W̃)−vec(XTXP)) with W̃ being

the current estimates of W. Equation (4.12) given the cardinality constraints of

(4.10) is minimized when vec(W) is set to b with the smallest K absolute values

set to zero. Equation (4.12) can be optimized repeatedly until convergence i.e.

the value of L(W) does not go down anymore. Note that the ridge penalty is not

really needed here, since the problem of estimating W is only high-dimensional

when (P ⊗X) is wide and not long. This is only the case when Q > I, which we

argue is a very rare case.

It can be more useful to specify the cardinality constraints per column of W

as opposed to the full matrix, which leads to more control over the sparsity level

in the weights pertaining to specific components. This can be done as follows by

87

4

Chapter 4

imposing separate cardinality constraints for wq:

L(W) = ∥vec(X)− (P⊗X)vec(W)∥22
subject to ∥wq∥0 = Kq for q = 1 . . . Q,

(4.13)

where Kq denotes the number of non-zero component weights per component.

The updating formula per component becomes,

wq := w̃q − α−1(XTXw̃q −XTXpq)

with the smallest Kq absolute values set to zero.
(4.14)

Note that other constraints can also be freely applied. This leads to the full CCPCA

Algorithm in (4).

Algorithm 4: CCPCA algorithm for sparse PCA
1 CCPCA PCA (X, Q,Kq∀q);

Input : X, Q,Kq∀q, initialize Ŵ

Output: Ŵ
2 while ∆ lossfunction value > ϵ do
3 P̂← Procruste rotation(X,Ŵ)
4 for q ← 1 to Q do
5 wq := w̃q − α−1(XTXw̃q −XTXp̂q)
6 with the smallest Kq absolute values set to zero.
7 end
8 end
9 return Ŵ;

Algorithm (4) is freely available in R (R Core Team, 2020) and download-

able from github.com/trbKnl. This algorithm is susceptible to local minima as it

is a non-convex optimization problem. A way of handling this problem is by ini-

tializing W with the estimates Ŵ from PCA. This “warm” start will nudge the

analysis in the right direction, minimizing the risk that the algorithm will end up

in a greater local minimum. Another safeguard against local minima is by using

multiple starts. The procedure is started multiple times with different initializa-

tions of W, and the estimates from the analysis with the smallest loss function

value are retained. Multiple starts are more costly, which especially adds up when

K and Q still need to be determined using model selection.

88

4

Cardinality constrained weight based PCA

4.5.2 Data generation

The data for the simulation study was generated from the following model,

X = XWPT , (4.15)

where W is J×J , WTW = I and W = P. W is manipulated such that it contains

a given level of sparsity. To achieve this, we make use of an iterative procedure

that proceeds as follows. First, a random W matrix is generated with zero weights

in the desired places. After this step orthogonality of the columns is attempted by

applying the gramm-schmidt orthogonalization procedure only on the intersection

of the non-zero weights between two columns of W. When W only has sets of

columns that contain non-overlapping sparsity patterns, this immediately results

into orthogonal columns, but when the columns in W have overlapping sparsity

patterns the procedure will not always lead to WTW = I on the first pass. In such

cases multiple passes are needed in order to achieve orthogonality (additional

coefficients might need to be put to zero). Some sparsity patterns are not possible,

for example, an initialization where W does not have full column rank, or an

initial set that degenerates to a linearly dependent set after multiple passes. In

those cases the algorithm fails to converge.

After a suitable W has been obtained, Σ can be constructed by taking Σ =

WΛWT . Here, Λ is a diagonal matrix with eigenvalues of the J components un-

derlying the full decomposition. We specify these eigenvalues such that the first

Q components account for a set amount of structural variance and the remaining

eigenvalues for a set amount of noise variance. The data matrices X having a de-

sired underlying sparse structure and noise level can then be obtained by sampling

from the multivariate normal distribution using Σ and a zero mean vector.

89

4

Chapter 5

sparseWeightBasedPCA: An R package for regularized

weight based SCA and PCA

Abstract

In this chapter we introduce an R package to perform regularized simultaneous component analysis
(SCA) and principal component analysis (PCA) with sparsity on the component weights. This pack-
age also includes model selection procedures. The procedures developed are based on recent work
by de Schipper and Van Deun, described in Chapters 2, 3, 4. The main procedures of the pack-
age have been written in C++ using Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo
(Eddelbuettel and Sanderson, 2014) to provide maximal efficiency of the underlying numerical
computations. In this chapter we introduce the reader to PCA and its multi-block extension SCA,
followed by a description of the models that the procedures in this package estimate. Thereafter,
the R implementation of the package is discussed followed by detailed examples of data analysis
and model selection.

Keywords: SCA, PCA, R Package, Multi-Block Data

Niek C. de Schipper & Katrijn Van Deun. To be submitted.

91

5

Chapter 5

5.1 Introduction

In this chapter we introduce an R package to perform regularized SCA and

PCA with sparsity on the component weights. This package also includes model

selection procedures. The procedures developed are based on recent work by de

Schipper and Van Deun. The main procedures of the package have been written

in C++ using Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo (Eddel-

buettel and Sanderson, 2014) to provide maximal efficiency of the underlying nu-

merical computations. In this chapter we will introduce the reader to PCA and its

multi-block extension SCA, followed by a description of the models that the pro-

cedures in this package estimate. Thereafter, the R implementation of the package

is discussed followed by detailed examples of data analysis and model selection.

5.2 Theoretical background

5.2.1 Principal Component Analysis

Principal component analysis (PCA) (Jolliffe, 1986) is a widely used anal-

ysis technique for data reduction. It can give crucial insights in the underlying

structure of the data when used as a latent variable model.

Let X be a data matrix that contains the scores for i = 1...I objects on j =

1...J variables, where we follow the convention to present the J variable scores

of observation i in row i, thus X has size I × J . PCA decomposes the data into Q

components as follows,
X = XWPT + E

subject to PTP = I,
(5.1)

where W is a J × Q component weight matrix, P is a J × Q loading matrix and

E is a I × J residual matrix. The component weight matrix W will be of main

interest in this package, where it should be noted that T = XW represent the

component scores.

The advantage of inspecting the component weights instead of the loadings

is that one can directly give meaning to T, this because they express how the

components are a weighted combination of the observed variables. The score on

the qth component for object i is given by tiq =
∑

j wjqxij. Note that in Equation

5.1 the loadings are equal to the weights. This is not the case anymore when

either the weights or loadings are not orthogonal anymore, for example, because

penalties have been applied to them.

92

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

5.2.2 Simultaneous Component Analysis

The decomposition in (5.1) can be extended to the case of multi-block data

by taking Xc = [X1 . . .XK]; this is concatenating the K data blocks composed

of different sets of variables of size Jk for the same units of observation. The

decomposition of Xc has the same block structured decomposition as in (5.1) with

Wc = [WT
1 . . .WT

K]
T and Pc = [PT

1 . . .PT
K]

T . This multi-block formulation of PCA

is known as the simultaneous component model:

[X1 . . .XK] = [X1 . . .XK][W
T
1 . . .WT

K]
T [PT

1 . . .PT
K] + E

subject to [PT
1 . . .PT

K][P
T
1 . . .PT

K]
T = I.

(5.2)

When analyzing multi-block data with simultaneous component analysis (SCA),

identifying meaningful relations between data blocks is of prime interest. In order

to gain insight in how multiple data blocks relate to each other, we can search for

block-wise structures in the component weights that tell us whether a component

is uniquely determined by variables from one single data block (distinctive compo-

nent), or whether it is a component that is determined by variables from multiple

data blocks (common component). In other words, a distinctive component is a

linear combination of variables of a particular data block only, whereas a common

component is a linear combination of variables of multiple data blocks. An exam-

ple of common and distinctive components with two data blocks is given below.

The first two components are distinctive components, while the third component

is a common component, i.e.,

T =
[
X1 X2

]W1

W2

 =
[
X1 X2

]


0 w112 w113

0 w212 w213

0 w312 w313

w121 0 w123

w221 0 w223

w321 0 w223


.

5.2.3 Content of the sparseWeightBasedPCA package

The sparseWeightBasedPCA package provides functions that perform regu-

larized PCA and SCA with regularization on the component weights. Furthermore

the package will provide model selection procedures for the selection of the hy-

per parameters of the models. The core procedures of this package consist of the

following functions:

93

5

Chapter 5

1. scads Regularized SCA with common and distinctive component weights

using constraints

2. mmsca Regularized SCA with common and distinctive component weights

using the group LASSO

3. ccpca PCA with sparse component weights using cardinality constraints

Packages that provide similar functionality to the sparseWeightBasedPCA
are: the elasticnet package (Zou and Hastie, 2018) which provides sparse PCA for

the component weights with ridge and LASSO regularization, the regularized SCA

package (Gu and Van Deun, 2018) which provides procedures for SCA/PCA with

regularization on the loadings instead of the weights, sparse PCA using variable

projection (Erichson et al., 2018) which also provides sparse PCA with regular-

ization on the component weights with ridge and LASSO regularization including

robust sparse PCA, the regularized PCA (Wang and Huang, 2017) for sparse pca

with spatial data, the mixOmics package (Rohart et al., 2017) that provides a

sparse PCA for the loadings with deflation based on work from Shen and Huang

(2008) and the penalized matrix decomposition package (Witten et al., 2009) that

provides a penalized matrix decomposition with an application for sparse PCA.

Note that this list is not exhaustive.

Our package is different from the aforementioned packages in that it pro-

vides functionality for SCA in order to analyze multi-block data for high-dimensional

data with regularization on the component weights, such that common and dis-

tinctive components can be revealed. It also provides procedures for model selec-

tion that can be applied to any sparse SCA/PCA procedure with regularization on

the component weights.

5.3 Models of the sparseWeightBasedPCA package

5.3.1 Regularized SCA with sparse component weights using

constraints

Here we present an approach of performing regularized SCA, with ridge and

LASSO regularization and block wise constraints on Wc by solving,

L(Wc,Pc) =∥Xc −XcWcP
T
c ∥22 + λL∥Wc∥1 + λR∥Wc∥22

subject to PcP
T
c = I,

and λL, λR ≥ 0 and zero block constraints on Wc.

(5.3)

94

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

In order to get a minimum for (5.3) we alternate between the estimation of Wc

and Pc. Given Wc we can estimate Pc by using Procruste rotation (ten Berge,

1993; Zou et al., 2006), P̂c = UVT , where U and V are the left and right singular

vectors of XT
c XcŴc. Given Pc we find estimates for Wc by using a coordinate

descent algorithm that works by soft-thresholding the weights and allows to im-

pose constraints (here: the block-wise zero constraints). For the specifics we refer

the reader to the appendix of Chapter 2. This iterative procedure stops when an

optimum has been found (i.e. the loss function value is not decreasing anymore

beyond a pre-specified tolerance level). The optimization problem in (5.3) is non-

convex meaning that there are local minima. In order to deal with local minima,

multiple random starts can be used with different initializations of Wc, the solu-

tion leading to the lowest evaluation of (5.3) is retained. Typically starting the

algorithm with the SVD of the concatenated data (e.g. the first Q right singular

vectors of Xc) will lead to the smallest loss function value among the multiple

starts.

The main advantage of analyzing multi-block data by using this procedure

is that it is fast and scalable to large data sets thanks to the coordinate descent

implementation. The inclusion of the block-wise constraints on Wc make sure

common and distinctive components are found. The ridge and LASSO regular-

izers are optional and facilitate extra sparsity within the component weights. A

disadvantage of the method is that the common and distinctive structure for Wc

is not known beforehand, thus it needs to be selected using model selection. This

can be computationally demanding depending on the total number of common

and distinctive structures that need to be assessed.

The procedure that finds minimizers to (5.3) has been implemented in the

scads function. This function will be discussed in detail in the next section and

examples will be given outlining the analysis including model selection.

5.3.2 Regularized SCA with sparse component weights using

the group LASSO

Here we present a very flexible approach of performing regularized SCA us-

ing, ridge, LASSO, group LASSO and elitist LASSO regularization by solving:

L(Wc,Pc) =∥Xc −XcWcP
T
c ∥22 + λL∥Wc∥1 + λR∥Wc∥22

+
∑
q,k

(λG

√
Jk∥w(k)

q ∥2 + λE∥w(k)
q ∥1,2)

subject to PcP
T
c = I and λL, λR, λG, λE ≥ 0

(5.4)

95

5

Chapter 5

where Wc = [(W(1))T . . . (W(K))T]T , and w
(k)
q denotes the qth column from the

submatrix W(k). In order to get a minimum for (5.4) we alternate between the

estimation of Wc and Pc. Given Wc we can estimate Pc by using using Procruste

rotation (ten Berge, 1993; Zou et al., 2006), P̂c = UVT , where U and V are the

left and right singular vectors of XT
c XcŴc. Given Pc we can find estimates for Wc

by using the majorization minimization (MM) algorithm. For the specific we refer

the reader to the appendix of Chapter 3. This iterative procedure stops when an

optimum has been found (i.e. the loss function value is not decreasing anymore

beyond a pre-specified tolerance level). The optimization problem in (5.4) is non-

convex and meaning there are local minima. In order to deal with that multiple

random starts can be used with different initializations of Wc, the start leading to

the lowest evaluation of (5.4) is retained. Typically starting the algorithm with the

SVD of the concatenated data (e.g. the first Q right singular vectors of Xc) will

lead to the smallest solution among the multiple starts.

The main advantage of analyzing multi-block data by using this procedure

is that it can automatically look for common and distinctive components by tak-

ing advantage of the properties of the group LASSO. Because the group LASSO

is specified on the colored segments (see below), it will either include a segment

or put all the weights in a segment to zero, uncovering common and distinctive

components. This is especially useful if the number of blocks and the number of

components are substantial and an exhaustive comparison of all possible combi-

nations of common and distinct components is computationally too demanding.

T =
[
X1 X2

]W1

W2

 =
[
X1 X2

]


w111 w112 w113

w211 w212 w213

w311 w312 w313

w121 w122 w123

w221 w222 w223

w321 w322 w223


The inclusion of the LASSO and ridge penalties are optional and facilitate extra

sparsity within the colored segments. The elitist LASSO has a very special use

case, that is, it will include all colored segments and will put weights within each

segment to zero. The elitist lasso can be used to force components to be common.

It is not advised to use the group LASSO and the elitist LASSO together as they

have opposing goals. A disadvantage of using this procedure is that is potentially

slow, this because its implemented using a MM-algorithm which tends to be slow

in convergence.

96

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

The MM-procedure has been implemented in the mmsca function. This func-

tion will be discussed in detail in the next section and examples will be given

outlining the analysis including model selection.

5.3.3 PCA with sparse component weights using cardinality

constraints

Here we present an approach of solving PCA by applying cardinality con-

straints to the component weights by solving:

L(W,P) = ∥X−XWPT∥22
subject to W including K zeros.

(5.5)

In order to get a minimum for (5.5) we will alternate between the estimation of W

and P. Given W we can estimate P by using Procruste rotation (ten Berge, 1993;

Zou et al., 2006), P = UVT , where U and V are the left and right singular vectors

of XTXŴ. Given P we can find estimates for W given the cardinality constraints

using the cardinality constraint regression algorithm; for details see the appendix

of Chapter 4. The optimization problem in (5.5) is non-convex meaning there

are local minima. In order to deal with that, multiple random starts can be used

with different initializations of W, the solution leading to the lowest evaluation of

(5.5) is retained. Typically starting the algorithm with the SVD of the concatenated

data (e.g. the first Q right singular vectors of X) will lead to the smallest solution

among the multiple starts.

The main advantage of solving (5.5) is that this model tries to directly tackle

the problem of finding the underlying subset of weights, in contrast to the usage

of a penalty that shrinks the weights and also induces sparsity such as the LASSO.

This approach can lead to a better selection of the relevant variables and more

precise estimates of the weights compared to LASSO (see Chapter 4). Another

advantage is that one can directly impose cardinality constraints on W. This gives

the user control over the number of zero coefficients. This can be desirable if

there is already an idea about the level of sparsity in the final model. A disadvan-

tage of using this procedure is that is potentially slow, this because the cardinality

constraint algorithm is an MM-algorithm which tends to be slow in convergence.

Another potential downside could be the absence of penalties, since these tend to

shrink the variance of the estimators, leading to more efficiency. In noisy situations

other procedures, such as such as PCA penalized with the lasso might outperform

this procedure.

This model has been implemented in the ccpca function. This function will

be discussed in detail in the next section.

97

5

Chapter 5

5.4 The implementation in R of the

sparseWeightBasedPCA package

The sparseWeightBasedPCA package provides functions for the aforemen-

tioned models. Model selection procedures are also provided in order to tune

the hyper parameters. The main functions, scads, mmsca and ccpca are imple-

mented in C++ using the packages Rcpp (Eddelbuettel and François, 2011) and

RcppArmadillo (Eddelbuettel and Sanderson, 2014). The model selection proce-

dures are implemented in R. The functions of the package will be discussed after

which detailed examples will be given.

5.4.1 Core estimation procedures

The main functions: scads, mmsca and ccpca are all implemented in a similar

way. At the core they perform SCA/PCA with variations depending on the goals

of the user. Here below we give a minimal working example of a typical scads

analysis (note that analyses with mmsca and ccpca are performed in a very similar

way). First we generate some data:

J <- 30

I <- 100

X <- matrix(rnorm(I*J), I, J)

With these data scads can be run with supplied values for the minimal re-

quired arguments. In this example we perform PCA without constraints but with

ridge and LASSO regularization

ncomp <- 3 # The number of components to estimate

constraints <- matrix(1, J, ncomp) # No constraints

res <- scads(X,

ncomp = ncomp,

ridge = 10e-8,

lasso = rep(1, ncomp),

constraints = constraints,

Wstart = matrix(1, J, ncomp),

itr = 10e5)

scads, mmsca and ccpca return a list with the following elements:

• W A matrix containing the component weights
• P A matrix containing the loadings

98

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

• loss A numeric variable containing the minimum loss function value of all

the nStarts starts
• converged A boolean containing TRUE if the algorithm converged, FALSE if

the algorithm did not converge

Detailed examples of data analysis will follow in the next section or can be

obtained within R by looking at the documentation (Execute ?scads within R). The

main functions scads, mmsca and ccpca have a slightly different set of arguments.

See the following lists for the specifics.

Overview of the scads arguments

• X A data matrix of class matrix
• ncomp The number of components to estimate (an integer)
• ridge A numeric value containing the ridge parameter for ridge regulariza-

tion on the component weight matrix W
• lasso A vector containing a lasso parameter for each column of W separately.

To set the same lasso penalty for the component weights W specify: lasso =

rep(value, ncomp)
• constraints A matrix of the same dimensions as the component weights

matrix W (ncol(X) x ncomp). Entries in W can only be constrained to zero.

This by entering a zero in the constraints matrix at the position where the

zero is desired; non-zero entries are treated as unconstrained values and will

be estimated during the scads procedure.
• itr The maximum number of iterations (an integer)
• Wstart A matrix of ncomp columns and nrow(X) rows with starting values

for the component weight matrix W; if Wstart only contains zeros, a warm

start is used: the first ncomp right singular vectors of X
• tol The convergence is determined by comparing the loss function value

after each iteration, if the difference is smaller than tol, the analysis has

converged. The default value is 10e-8.
• nStarts The number of random starts the analysis should perform. The first

start will be performed with the values given by Wstart. The consecutive

starts will be Wstart plus a matrix with values generated from a uniform

distribution times the current start number (the first start has index zero).
• printLoss A boolean: TRUE will print the loss function value after each 10th

iteration.

Overview of the mmsca arguments

• X A data matrix of class matrix
• ncomp The number of components to estimate (an integer)

99

5

Chapter 5

• ridge A vector containing a ridge parameter for each column of W separately.

To set the same ridge penalty for the component weights W, specify: ridge

= rep(value, ncomp), value is a non-negative double
• lasso A vector containing a ridge parameter for each column of W separately.

To set the same lasso penalty for the component weights W, specify: lasso =

rep(value, ncomp), value is a non-negative double
• grouplasso A vector containing a grouplasso parameter for each column of W

separately. To set the same grouplasso penalty for the component weights W,

specify: grouplasso = rep(value, ncomp), value is a non-negative double
• elitistlasso A vector containing a elitistlasso parameter for each column

of W separately. To set the same elitistlasso penalty for the component weights

W, specify: elitistlasso = rep(value, ncomp), value is a non-negative double
• groups A vector specifying the sizes of the blocks that make up X. Example:

c(10, 100, 1000). The first 10 variables belong to the first block, the 100

variables after belong to the second block, etc.
• constraints A matrix of the same dimensions as the component weights

matrix W (ncol(X) x ncomp). Entries in W can only be constrained to zero.

This by entering a zero in the constraints matrix at the position where the

zero is desired; non-zero entries are treated as unconstrained values and will

be estimated during the scads procedure.
• itr The maximum number of iterations (a positive integer)
• Wstart A matrix of ncomp columns and nrow(X) rows with starting values

for the component weight matrix W, if Wstart only contains zeros, a warm

start is used: the first ncomp right singular vectors of X
• tol The convergence is determined by comparing the loss function value

after each iteration, if the difference is smaller than tol, the analysis has

converged. Default value is 10e-8
• nStarts The number of random starts the analysis should perform. The first

start will be performed with the values given by Wstart. The consecutive

starts will be Wstart plus a matrix with values generated from a uniform

distribution times the current start number (the first start has index zero).
• printLoss A boolean: TRUE will print the loss function value after each 10th

iteration.
• coorDes A boolean with the default FALSE. If coorDes is FALSE the estimation

of the component weights W conditional on the loadings P will be estimated

using a matrix inverse, which can be slow for large datasets. If set to TRUE the

weights will be estimated using coordinate descent, in some cases coordinate

descent will be faster
• coorDesItr An integer specifying the maximum number of iterations for the

coordinate descent algorithm, the default is set to 1. You do not have to run

100

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

this algorithm until convergence before turning back to the estimation of the

loadings. The tolerance for this algorithm is hard coded and set to 10-̂8.

Overview of the ccpca arguments

• X A data matrix of class matrix
• ncomp The number of components to estimate (an integer)
• nzeros A vector of length ncomp containing the number of desired zeros in

the columns of the component weight matrix W
• itr The maximum number of iterations (an integer)
• Wstart A matrix of ncomp columns and nrow(X) rows with starting values

for the component weight matrix W, if Wstart only contains zeros, a warm

start is used: the first ncomp right singular vectors of X
• nStarts The number of random starts the analysis should perform. The first

start will be performed with the values given by Wstart. The consecutive

starts will be Wstart plus a matrix with values generated from a uniform

distribution times the current start number (the first start has index zero).
• tol The convergence is determined by comparing the loss function value

after each iteration, if the difference is smaller than tol the analysis has

converged. The default value is 10e-8
• printLoss A boolean: TRUE will print the loss function value after each 10th

iteration.

5.4.2 Model selection procedures

To execute scads, mmsca and ccpca, values for the hyper parameters need

to selected. For example the number of components or values for the lasso ar-

gument. The sparseWeightBasedPCA package provides three procedures for se-

lecting the hyper-parameters of the model: Cross-validation using the EigenVec-

tor method, the Index of Sparseness (IS) and the Bayesian Information Criterion

(BIC); for details see Chapter 3. The procedures are implemented in the functions:

CVforPCAwithSparseWeights, ISforPCAwithSparseWeights and BICforPCAwith-
SparseWeights. They are parametrized as follows: First the arguments specific to

the model selection function are entered, followed by a pointer to the function (In

R that is the function name with no brackets) that does the analysis, followed by

arguments to that function. An example is given here:

J <- 30

I <- 100

X <- matrix(rnorm(I*J), I, J)

With this data, CVforPCAwithSparseWeights using scads works as follows,

101

5

Chapter 5

ncomp <- 3

res <- CVforPCAwithSparseWeights(X = X,

nrFolds = 10,

FUN = scads, # Pointer to scads()

ncomp = ncomp, # Followed by the arguments

ridge = 0,

lasso = rep(0.1, ncomp),

constraints = matrix(1, J, ncomp),

Wstart = matrix(0, J, ncomp),

itr = 10e5,

printLoss = FALSE)

This function returns a list with the following elements:

• MSPE The mean squared prediction error given the tuning parameters
• MSPEstdError The standard error of the MSPE
• nNonZeroCoef The number of non-zero coefficients in the model

Model selection of the hyper-parameters can be based on the model that re-

sults in the lowest mean squared prediction error, or a model can be picked with

the least number of non-zero coefficients still within one standard error of the

model with the lowest mean squared prediction error. The other functions work

similar, see ?BICforPCAwithSparseWeights and ?ISforPCAwithSparseWeights for

more detailed information.

5.4.3 Additional tuning functions for mmsca

The sparseWeightBasedPCA package provides more elaborate model selec-

tion functions for mmsca. Because of the flexibility of mmsca it can be overwhelm-

ing to use the aforementioned tuning functions. Therefore two additional func-

tions for mmsca are provided: mmscaModelSelection and mmscaHyperCubeSelec-
tion. mmscaModelSelection uses a fixed grid of all combinations of the hyper-

parameters to pick the best combination from, whereas mmscaHyperCubeSelec-
tion uses an adaptive grid that zooms in on a good combination of hyper-parameters

until it converges on a certain combination. Note that mmscaHyperCubeSelection
is experimental, it could potentially speed up the process of tuning enormously

but it has not been scrutinized using a simulation study. A basic example of both

is given here:

To perform model selection with mmsca using an exhaustive grid of all com-

binations of the tuning parameters the following can be done:

102

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

J <- 30

I <- 100

X <- matrix(rnorm(I*J), I, J)

out <- mmscaModelSelection(X,

ridgeSeq = seq(0, 1, by = 0.1),

lassoSeq = 0:100,

grouplassoSeq = 0, # No group lasso and no elitist lasso

elitistlassoSeq = 0,

ncompSeq = 1:3,

tuningMethod = "CV", # Indicate the tuning method

nrFolds = 10,

groups = ncol(X), # Arguments for mmsca()

itr = 100000,

nStart = 1,

coorDes = FALSE,

coorDesItr = 100,

printProgress = TRUE)

This function returns a list with two elements:

• results A list with ncomp elements each containing the following elements

– "BIC, IS or MSPE" The index chosen in tuningMethod for all combi-

nations of ridge, lasso, grouplasso and elististlasso
– "bestBIC, bestIS, bestMSPE or bestMSPE1stdErrorRule" The best

index according to the chosen tuning method
– "nNonZeroCoef" The number of nonzero weights in the best model
– "ridge" The value of the ridge penalty corresponding to the best model
– "lasso" The value of the lasso penalty corresponding to the best model
– "grouplasso" The value of the group lasso penalty corresponding to

the best model
– "elististlasso" The value of the elitist lasso penalty corresponding

to the best model
– "ncomp" The number of component that was used for these items
– "ridge1stdErrorRule" In case tuningMethod == "CV", the value of

the ridge penalty according to the 1 standard error rule: the most sparse

model within one standard error of the model with the lowest MSPE
– "lasso1stdErrorRule" In case tuningMethod == "CV", the value of

the lasso penalty according to the 1 standard error rule: the most sparse

model within one standard error of the model with the lowest MSPE
– "grouplasso1stdErrorRule" In case tuningMethod == "CV", the value

of the group lasso penalty according to the 1 standard error rule: the

103

5

Chapter 5

most sparse model within one standard error of the model with the

lowest MSPE
– "elitistlasso1stdErrorRule" In case tuningMethod == "CV", the

value of the elitist lasso penalty according to the 1 standard error rule:

the most sparse model within one standard error of the model with the

lowest MSPE
– "ridge1stdErrorRule" In case tuningMethod == "CV", the value of

the ridge according to the 1 standard error rule: the most sparse model

within one standard error of the model with the lowest MSPE

• bestNcomp The number of components with the best value for the chosen

tuning index

We refer to the package documentation for more details (see ?mmscaModelS-
election). This procedure can be slow because the number of combinations for

the tuning parameters can be large and it takes a lot of time to evaluate them all

in order to pick the best one. To that end we also provide an alternative way of

tuning using mmscaHyperCubeSelection. This function tunes a grid of the tuning

parameters determined by the min and max of their corresponding sequences and

a step size provided by the stepsize argument. It picks the best combination of

that grid, and zooms in on that combination, by making a new, smaller grid around

the previous best combination. This process continues until the average range of

the sequences is less than stopWhenRange (a pre-specified stopping criterion). The

new sequences are determined by taking the minimum value to be: best value -

range, and maximum value by: best value + range, and a pre-specified step size

in stepsize. In order for this procedure to work well, the grid needs to include an

optimal combination of tuning parameters, and it needs a reasonable step size (at

least 3, 5 is better, 2 is too small). This approach assumes that a local optimum

of tuning parameters is good enough to get interpretable results. Note that this

function is experimental and has not been scrutinized using a simulation study.

This procedure can be performed as follows,

out <- mmscaHyperCubeSelection(X,

ncomp = 3, # Only a fixed number of components

ridgeSeq = 0:3,

lassoSeq = 0:10,

grouplassoSeq = 0,

elitistlassoSeq = 0,

stepsize = 5, # Step size of the sequences

logscale = FALSE, # Sequences not on the log-scale

stopWhenRange = 0.01, # stop when average range is < 0.01

method = "CV1stdError", # Tuning method

104

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

groups = ncol(X), # Arguments for mmsca()

nStart = 1,

itr = 100000,

printProgress = TRUE,

coorDes = FALSE,

coorDesItr = 1,

tol = 10e-5,

nrFolds = 10)

This function returns a list with the following elements:

• ridge A vector with ncomp elements all equal to the chosen ridge value
• lasso A vector with ncomp elements all equal to the chosen lasso value
• grouplasso A vector with ncomp elements all equal to the chosen group lasso

value
• elitistlasso A vector with ncomp elements all equal to the chosen elitist

lasso value

For more details see the package documentation.

5.5 Detailed examples of SCA and PCA with the

sparseWeightBasedPCA package

In this section we will give some detailed examples where we analyze multi-

and single block data with SCA and PCA including the model selection process.

We give examples of scads, mmsca and ccpca and the model selection functions.

We will demonstrate these procedures using simulated data, for that purpose the

package includes data generating functions that simulate data according to the

following structure:

X = XWPT , (5.6)

where W is J×J , WTW = I and W = P. W is manipulated such that it contains

a specified level of sparsity in the first Q columns. The covariance matrix of X can

be constructed by taking Σ = WΛWT , the eigenvalues in Λ can be manipulated

to control the variance of the signal components versus the variance of the noise

components. Using the covariance matrix data can be sampled from the multi-

variate normal distribution using mvrnorm from the MASS package (Venables and

Ripley, 2002). Functions for data generation are provided by:

• sparsify to put sparsity in W

• makeVariance to manipulate the eigenvalues in Λ

• makeDat to simulate the data.

105

5

Chapter 5

Check the package documentation for more details. In case own data are

used, preprocessing may be needed: usually this is centering and scaling of each

variable followed by a block scaling. The RegularizedSCA package (Gu and Van

Deun, 2018) provides functionality for this with pre_process, see their documen-

tation for more details.

5.5.1 Example of SCA with scads

Here we will demonstrate data analysis using scads. In this example we

will have 2 data blocks each with 15 variables and 3 components. First we cre-

ate a common and distinctive structure for the component weights to generate

data from, we will use a structure with 2 distinctive components and 1 common

component.

set.seed(1)

ncomp <- 3

J <- 30

comdis <- matrix(1, J, ncomp) # Component weight structure

The first component is distinctive for the first block

comdis[1:15, 1] <- 0

The second component is distinctive for the second block

comdis[16:30, 2] <- 0

Set 20 percent of the 1's to zero

comdis <- sparsify(comdis, 0.2)

Inspect the component weight structure. Weights indicated with a 1

will in the data generating model

comdis

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 1
[3,] 0 1 1
[4,] 0 1 1
[5,] 0 1 1
[6,] 0 1 1
[7,] 0 1 1
[8,] 0 1 1
[9,] 0 1 1
[10,] 0 1 1
[11,] 0 1 0
[12,] 0 1 1

106

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Scree plot of the Eigenvalues X

components

E
ig

en
va

lu
es

[13,] 0 0 1
[14,] 0 1 0
[15,] 0 1 1
[16,] 1 0 1
[17,] 1 0 1
[18,] 1 0 0
[19,] 0 0 0
[20,] 1 0 1
[21,] 1 0 1
[22,] 0 0 1
[23,] 1 0 0
[24,] 0 0 1
[25,] 1 0 1
[26,] 1 0 1
[27,] 1 0 1
[28,] 1 0 1
[29,] 1 0 1
[30,] 1 0 1

Now given this component weight structure we can simulate data as follows,

variances <- makeVariance(varianceOfComps = c(100, 80, 90),

J = J, error = 0.05)

plot(variances, xlab ="components",

ylab ="Eigenvalues", main = "Scree plot of the Eigenvalues X")

dat <- makeDat(n = 100, comdis = comdis, variances = variances)

X <- dat$X

round(dat$P[, 1:ncomp], 3) # The data generating component weight structure

107

5

Chapter 5

[,1] [,2] [,3]
[1,] 0.000 0.000 0.000
[2,] 0.000 0.000 0.072
[3,] 0.000 -0.082 -0.004
[4,] 0.000 0.517 0.149
[5,] 0.000 0.165 0.121
[6,] 0.000 -0.133 -0.226
[7,] 0.000 -0.245 -0.103
[8,] 0.000 -0.343 0.098
[9,] 0.000 -0.313 0.233
[10,] 0.000 -0.460 -0.086
[11,] 0.000 0.340 0.000
[12,] 0.000 0.245 -0.197
[13,] 0.000 0.000 -0.418
[14,] 0.000 0.078 0.000
[15,] 0.000 -0.111 0.334
[16,] 0.054 0.000 0.208
[17,] 0.326 0.000 -0.162
[18,] -0.023 0.000 0.000
[19,] 0.000 0.000 0.000
[20,] 0.441 0.000 0.158
[21,] -0.280 0.000 0.004
[22,] 0.000 0.000 0.365
[23,] 0.019 0.000 0.000
[24,] 0.000 0.000 0.378
[25,] -0.220 0.000 -0.188
[26,] -0.176 0.000 0.055
[27,] -0.264 0.000 -0.177
[28,] 0.295 0.000 0.085
[29,] 0.468 0.000 -0.105
[30,] 0.403 0.000 -0.203

In the scree plot you can see the eigenvalues of the data generating covari-

ance matrix and round(dat$P[, 1:ncomp], 3) prints the data generating compo-

nent weights for the signal components.

Given the generated data set we can perform scads by first looking for the

common and distinctive structure by trying out all structures and finding the best

structure according to a model selection criterion, in this case we will use cross-

validation. To generate all common and distinctive structures we implemented a

function called allCommonDistinctive for more details see the documentation.

Generate all possible common and distinctive structures

allstructures <- allCommonDistinctive(

vars = c(15, 15),

ncomp = 3,

allPermutations = TRUE,

filterZeroSegments = TRUE)

#Use cross-validation to look for the data generating structure

index <- rep(NA, length(allstructures))

108

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

for (i in 1:length(allstructures)) {

index[i] <- CVforPCAwithSparseWeights(X = X,

nrFolds = 10,

FUN = scads, # All parameters SCaDS needs

ncomp, ridge = 0, lasso = rep(0, ncomp),

constraints = allstructures[[i]],

Wstart = matrix(0, J, ncomp),

itr = 100000, nStarts = 1,

printLoss = FALSE, tol = 10^-5)$MSPE

}

winningStructure <- allstructures[[which.min(index)]]

Print the best common and distinctive structure

allstructures[[which.min(index)]]

[,1] [,2] [,3]
[1,] 0 1 1
[2,] 0 1 1
[3,] 0 1 1
[4,] 0 1 1
[5,] 0 1 1
[6,] 0 1 1
[7,] 0 1 1
[8,] 0 1 1
[9,] 0 1 1
[10,] 0 1 1
[11,] 0 1 1
[12,] 0 1 1
[13,] 0 1 1
[14,] 0 1 1
[15,] 1 1 0
[16,] 1 1 0
[17,] 1 1 0
[18,] 1 1 0
[19,] 1 1 0
[20,] 1 1 0
[21,] 1 1 0
[22,] 1 1 0
[23,] 1 1 0
[24,] 1 1 0
[25,] 1 1 0
[26,] 1 1 0
[27,] 1 1 0
[28,] 1 1 0
[29,] 1 1 0
[30,] 1 1 0

Given this common and distinctive structure we can tune the lasso param-

eter in order to get some sparsity inside the weights, for this we will use cross-

109

5

Chapter 5

validation with the one standard error rule. This entails cross validating the model

for different values of the lasso parameter, from which we will select the model

with the most weights at zero still within one standard error of the model with the

lowest mean squared prediction error (MSPE). If there are no models within one

standard error of the best model the step size of the LASSO sequence should be

decreased.

Generate candidate lasso values on the log-scale

lasso <- exp(seq(log(0.0000001), log(1), length.out = 100))

MSPE <- rep(NA, length(lasso))

MSPEstdError <- rep(NA, length(lasso))

nNonZeroCoef <- rep(NA, length(lasso))

for (i in 1:length(lasso)) {

res <- CVforPCAwithSparseWeights(X = X,

nrFolds = 10,

FUN = scads,

ncomp, ridge = 0, lasso = rep(lasso[i], ncomp),

constraints = winningStructure,

Wstart = matrix(0, J, ncomp),

itr = 100000, nStarts = 1,

printLoss = FALSE, tol = 10^-5)

MSPE[i] <- res$MSPE # Mean squared prediction error

MSPEstdError[i] <- res$MSPEstdError # Standard error of the MSPE

nNonZeroCoef[i] <- res$nNonZeroCoef # The number of non-zero weights

}

x <- 1:length(lasso)

plot(x , MSPE, xlab = "lasso", ylab = "MSPE",

main = "MSPE with one standard error for different lasso values")

Add error bars to the plot

arrows(x, MSPE - MSPEstdError, x,

MSPE + MSPEstdError, length = 0.05, angle = 90, code = 3)

Select all models within one standard error of the best model

eligibleModels <- MSPE < MSPE[which.min(MSPE)] +

MSPEstdError[which.min(MSPE)]

Selected from those models the models with the

lowest number of non-zero weights

110

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

0 20 40 60 80 100

1.
0

1.
2

1.
4

1.
6

MSPE with one standard error for different lasso values

lasso

M
S

P
E

best <- which.min(nNonZeroCoef[eligibleModels])

Do the analysis with the "winning" structure and best lasso

results <- scads(X = X, ncomp = ncomp,

ridge = 0, lasso = rep(lasso[best], ncomp),

constraints = allstructures[[which.min(index)]],

Wstart = matrix(0, J, ncomp),

itr = 100000, nStarts = 1,

printLoss = FALSE , tol = 10^-5)

Compare results from the analysis with the data generating model

compare <- cbind(dat$P[, 1:ncomp], results$W)

colnames(compare) <- c(paste("True W_", 1:3, sep = ""),

paste("Est W_", 1:3, sep = ""))

rownames(compare) <- paste("Var", 1:30)

round(compare, 3)

True W_1 True W_2 True W_3 Est W_1 Est W_2 Est W_3
Var 1 0.000 0.000 0.000 0.000 0.000 0.005
Var 2 0.000 0.000 0.072 0.000 0.000 0.000
Var 3 0.000 -0.082 -0.004 0.000 0.000 0.000
Var 4 0.000 0.517 0.149 0.000 -0.021 -0.529
Var 5 0.000 0.165 0.121 0.000 -0.138 -0.057
Var 6 0.000 -0.133 -0.226 0.000 0.351 0.032
Var 7 0.000 -0.245 -0.103 0.000 0.046 0.211
Var 8 0.000 -0.343 0.098 0.000 -0.315 0.452
Var 9 0.000 -0.313 0.233 0.000 -0.194 0.382
Var 10 0.000 -0.460 -0.086 0.000 0.261 0.498
Var 11 0.000 0.340 0.000 0.000 0.000 -0.328

111

5

Chapter 5

Var 12 0.000 0.245 -0.197 0.000 0.000 -0.178
Var 13 0.000 0.000 -0.418 0.000 0.604 0.002
Var 14 0.000 0.078 0.000 0.000 0.000 0.000
Var 15 0.000 -0.111 0.334 0.000 -0.276 0.000
Var 16 0.054 0.000 0.208 0.000 -0.279 0.000
Var 17 0.326 0.000 -0.162 0.357 0.000 0.000
Var 18 -0.023 0.000 0.000 0.000 0.000 0.000
Var 19 0.000 0.000 0.000 0.000 0.000 0.000
Var 20 0.441 0.000 0.158 0.446 -0.190 0.000
Var 21 -0.280 0.000 0.004 -0.234 -0.042 0.000
Var 22 0.000 0.000 0.365 -0.157 -0.536 0.000
Var 23 0.019 0.000 0.000 0.000 0.000 0.000
Var 24 0.000 0.000 0.378 -0.189 -0.232 0.000
Var 25 -0.220 0.000 -0.188 -0.237 0.191 0.000
Var 26 -0.176 0.000 0.055 -0.354 0.000 0.000
Var 27 -0.264 0.000 -0.177 -0.164 0.137 0.000
Var 28 0.295 0.000 0.085 0.177 -0.050 0.000
Var 29 0.468 0.000 -0.105 0.479 0.000 0.000
Var 30 0.403 0.000 -0.203 0.423 -0.005 0.000

This concludes the analysis of multi-block data with scads. This procedure

offers lots of flexibility to the user at the cost of a little more complexity (i.e. the

user has to know for-loops and some R basics). Note that the model selection

procedures can be easily sped up making use of parallel versions of the for-loops.

5.5.2 Example of SCA with mmsca

We will now demonstrate data analysis of multi-block data using mmsca. In

this example we will use the same data as in the scads example. We will demon-

strate the use of mmscaHyperCubeSelection as already for this toy-example tun-

ing an exhaustive grid with mmscaModelSelection takes too long. We use cross-

validation with the one standard error rule.

Tune the hyper parameters by looking at an adaptive grid

that zooms in around a plausible combination of values

out <- mmscaHyperCubeSelection(X,

ncomp = 3,

ridgeSeq = 0, # No ridge

lassoSeq = 0:10, # Lasso from 0 to 10

grouplassoSeq = 0:10, # Lasso from 0 to 10

elitistlassoSeq = 0, # No elitist lasso

stepsize = 3,

logscale = FALSE,

stopWhenRange = 0.01, # Stop when average range is < 0.01

groups = c(15, 15),

nStart = 1,

itr = 100000,

112

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

printProgress = FALSE,

coorDes = FALSE,

coorDesItr = 1,

method = "CV1stdError",

tol = 10e-5,

nrFolds = 10)

Inspect the chosen hyper parameters

out

$ridge
[1] 0 0 0
##
$lasso
[1] 6.210938 6.210938 6.210938
##
$grouplasso
[1] 7.460938 7.460938 7.460938
##
$elitistlasso
[1] 0 0 0

Run the analysis with the chosen hyper parameters

results <- mmsca(X = X,

ncomp = ncomp,

ridge = out$ridge,

lasso = out$lasso,

grouplasso = out$grouplasso,

elitistlasso = out$elitistlasso,

groups = c(15, 15),

constraints = matrix(1, J, ncomp),

itr = 1000000,

Wstart = matrix(0, J, ncomp),

nStarts = 1,

printLoss = FALSE)

Compare results from the analysis with the data generating model

compare <- cbind(dat$P[, 1:ncomp], results$W)

colnames(compare) <- c(paste("True W_", 1:3, sep = ""),

paste("Est W_", 1:3, sep = ""))

rownames(compare) <- paste("Var", 1:30)

round(compare, 3)

113

5

Chapter 5

True W_1 True W_2 True W_3 Est W_1 Est W_2 Est W_3
Var 1 0.000 0.000 0.000 0.000 0.000 0.000
Var 2 0.000 0.000 0.072 0.000 0.000 0.000
Var 3 0.000 -0.082 -0.004 0.000 0.000 0.000
Var 4 0.000 0.517 0.149 0.000 -0.091 -0.583
Var 5 0.000 0.165 0.121 0.000 -0.023 -0.086
Var 6 0.000 -0.133 -0.226 0.000 0.161 0.059
Var 7 0.000 -0.245 -0.103 0.000 0.000 0.207
Var 8 0.000 -0.343 0.098 0.000 0.000 0.403
Var 9 0.000 -0.313 0.233 0.000 -0.157 0.345
Var 10 0.000 -0.460 -0.086 0.000 0.000 0.492
Var 11 0.000 0.340 0.000 0.000 0.000 -0.319
Var 12 0.000 0.245 -0.197 0.000 0.010 -0.165
Var 13 0.000 0.000 -0.418 0.000 0.527 0.000
Var 14 0.000 0.078 0.000 0.000 0.000 0.000
Var 15 0.000 -0.111 0.334 0.000 -0.369 0.000
Var 16 0.054 0.000 0.208 0.000 -0.286 0.000
Var 17 0.326 0.000 -0.162 0.313 0.032 0.000
Var 18 -0.023 0.000 0.000 0.000 0.000 0.000
Var 19 0.000 0.000 0.000 0.000 0.000 0.000
Var 20 0.441 0.000 0.158 0.419 -0.129 0.000
Var 21 -0.280 0.000 0.004 -0.223 0.000 0.000
Var 22 0.000 0.000 0.365 0.000 -0.498 0.000
Var 23 0.019 0.000 0.000 0.000 0.000 0.000
Var 24 0.000 0.000 0.378 0.000 -0.533 0.000
Var 25 -0.220 0.000 -0.188 -0.153 0.119 0.000
Var 26 -0.176 0.000 0.055 -0.046 0.000 0.000
Var 27 -0.264 0.000 -0.177 -0.233 0.178 0.000
Var 28 0.295 0.000 0.085 0.328 0.000 0.000
Var 29 0.468 0.000 -0.105 0.544 0.050 0.000
Var 30 0.403 0.000 -0.203 0.483 0.168 0.000

We now demonstrate another interesting use case for mmsca where a researcher

wants to identify common and distinctive components and where an exhaustive

approach might fail because there are too many data blocks and components. We

use multi-block data with 5 blocks and 5 variables per block and 5 components.

Generate the data

set.seed(1)

ncomp <- 5

J <- 30

comdis <- matrix(0, J, ncomp) # Component weight structure

comdis[1:5, 1] <- 1

comdis[6:10, 2] <- 1

comdis[25:30, 3] <- 1

comdis[11:15, 4] <- 1

comdis[0:10, 5] <- 1

comdis[16:30, 5] <- 1

check the generated component weight structure

comdis

114

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 1
[2,] 1 0 0 0 1
[3,] 1 0 0 0 1
[4,] 1 0 0 0 1
[5,] 1 0 0 0 1
[6,] 0 1 0 0 1
[7,] 0 1 0 0 1
[8,] 0 1 0 0 1
[9,] 0 1 0 0 1
[10,] 0 1 0 0 1
[11,] 0 0 0 1 0
[12,] 0 0 0 1 0
[13,] 0 0 0 1 0
[14,] 0 0 0 1 0
[15,] 0 0 0 1 0
[16,] 0 0 0 0 1
[17,] 0 0 0 0 1
[18,] 0 0 0 0 1
[19,] 0 0 0 0 1
[20,] 0 0 0 0 1
[21,] 0 0 0 0 1
[22,] 0 0 0 0 1
[23,] 0 0 0 0 1
[24,] 0 0 0 0 1
[25,] 0 0 1 0 1
[26,] 0 0 1 0 1
[27,] 0 0 1 0 1
[28,] 0 0 1 0 1
[29,] 0 0 1 0 1
[30,] 0 0 1 0 1

Generate data according to that structure

variances <- makeVariance(varianceOfComps = c(100, 80, 90, 50, 60),

J = J, error = 0.05)

dat <- makeDat(n = 100, comdis = comdis, variances = variances)

X <- dat$X

Tune the group lasso parameter

out <- mmscaHyperCubeSelection(X,

ncomp = ncomp,

ridgeSeq = 0, # No ridge

lassoSeq = 0, # No lasso

grouplassoSeq = 0:10, # Lasso from 0 to 10

elitistlassoSeq = 0, # No elitist lasso

stepsize = 3,

logscale = FALSE,

stopWhenRange = 0.01, # Stop when average range is < 0.01

groups = c(5, 5, 5, 5, 5, 5),

115

5

Chapter 5

nStart = 1,

itr = 100000,

printProgress = FALSE,

coorDes = FALSE,

coorDesItr = 1,

method = "CV1stdError",

tol = 10e-5,

nrFolds = 10)

Inspect the chosen group lasso

out$grouplasso

[1] 13.125 13.125 13.125 13.125 13.125

Run the analysis

results <- mmsca(X = X,

ncomp = ncomp,

ridge = out$ridge,

lasso = out$lasso,

grouplasso = out$grouplasso,

elitistlasso = out$elitistlasso,

groups = c(5, 5, 5, 5, 5, 5),

constraints = matrix(1, J, ncomp),

itr = 1000000,

Wstart = matrix(0, J, ncomp),

nStarts = 1,

printLoss = FALSE)

Check results from the analysis

colnames(results$W) <- paste("Est W_", 1:5, sep = "")

rownames(results$W) <- paste("Var", 1:30)

round(results$W, 3)

Est W_1 Est W_2 Est W_3 Est W_4 Est W_5
Var 1 0.228 0.000 0.000 -0.035 0.000
Var 2 -0.065 0.000 0.000 0.042 0.000
Var 3 0.346 0.000 0.000 -0.022 0.000
Var 4 -0.893 0.000 0.000 -0.002 0.000
Var 5 -0.209 0.000 0.000 0.001 0.000
Var 6 0.000 0.000 -0.278 0.000 0.000
Var 7 0.001 0.000 -0.233 0.000 0.000
Var 8 0.000 0.000 -0.103 0.000 0.000

116

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

Var 9 0.000 0.000 0.741 0.000 0.000
Var 10 0.000 0.000 0.558 0.000 0.000
Var 11 0.000 0.000 0.000 0.000 0.516
Var 12 0.000 0.000 0.000 0.000 0.015
Var 13 0.000 0.000 0.000 0.000 0.631
Var 14 0.000 0.000 0.000 0.000 -0.222
Var 15 0.000 0.000 0.000 0.000 0.547
Var 16 0.000 0.000 0.000 0.000 -0.014
Var 17 0.000 0.000 0.000 0.000 0.008
Var 18 0.000 0.000 0.000 0.000 0.009
Var 19 0.000 0.000 0.000 0.000 0.007
Var 20 0.000 0.000 0.000 0.000 -0.001
Var 21 0.012 -0.150 0.000 -0.663 0.000
Var 22 0.005 0.085 0.000 0.363 0.000
Var 23 0.007 -0.034 0.000 -0.464 0.000
Var 24 -0.004 -0.049 0.000 -0.178 0.000
Var 25 -0.014 0.299 0.000 -0.448 0.000
Var 26 0.000 0.231 0.000 -0.051 0.003
Var 27 0.000 0.869 0.000 0.185 -0.003
Var 28 0.000 -0.286 0.000 0.112 -0.002
Var 29 0.000 0.150 0.000 -0.308 0.000
Var 30 0.000 0.031 0.000 -0.432 0.000

You can compare them to the data generating structure

round(dat$P[, 1:ncomp], 3)

[,1] [,2] [,3] [,4] [,5]
[1,] -0.322 0.000 0.000 0.000 -0.089
[2,] 0.094 0.000 0.000 0.000 0.270
[3,] -0.430 0.000 0.000 0.000 -0.025
[4,] 0.821 0.000 0.000 0.000 -0.073
[5,] 0.170 0.000 0.000 0.000 -0.028
[6,] 0.000 -0.285 0.000 0.000 0.095
[7,] 0.000 -0.271 0.000 0.000 -0.063
[8,] 0.000 -0.041 0.000 0.000 -0.015
[9,] 0.000 0.755 0.000 0.000 -0.006
[10,] 0.000 0.524 0.000 0.000 0.026
[11,] 0.000 0.000 0.000 -0.480 0.000
[12,] 0.000 0.000 0.000 0.033 0.000
[13,] 0.000 0.000 0.000 -0.705 0.000
[14,] 0.000 0.000 0.000 0.122 0.000
[15,] 0.000 0.000 0.000 -0.507 0.000
[16,] 0.000 0.000 0.000 0.000 -0.313
[17,] 0.000 0.000 0.000 0.000 -0.061
[18,] 0.000 0.000 0.000 0.000 -0.108
[19,] 0.000 0.000 0.000 0.000 -0.133
[20,] 0.000 0.000 0.000 0.000 -0.012
[21,] 0.000 0.000 0.000 0.000 -0.390
[22,] 0.000 0.000 0.000 0.000 0.240
[23,] 0.000 0.000 0.000 0.000 -0.339
[24,] 0.000 0.000 0.000 0.000 -0.094
[25,] 0.000 0.000 0.432 0.000 -0.252
[26,] 0.000 0.000 0.242 0.000 -0.167
[27,] 0.000 0.000 0.772 0.000 0.381
[28,] 0.000 0.000 -0.221 0.000 0.016

117

5

Chapter 5

[29,] 0.000 0.000 0.269 0.000 -0.278
[30,] 0.000 0.000 0.194 0.000 -0.346

The data generating structure has been estimated back fairly well. Note not

all segments have been recovered. If a segment does not really contribute or only

contributes marginally to the signal variance, it can be put to zero by the group

lasso. One can also notice some small coefficients still being estimated, if the

grouplasso is increased, these small coefficients will be put to zero.

5.5.3 Example of PCA with ccpca

Here we will demonstrate data analysis using ccpca. In this example we will

have just 1 data block with 30 variables and 3 components. Here we demonstrate

the use case for ccpca where the underlying model is rather sparse, and we already

assume the model is sparse and we ballpark the sparsity.

set.seed(1)

ncomp <- 3

J <- 30

comdis <- matrix(1, J, ncomp) # Component weight structure

comdis <- sparsify(comdis, 0.8) # Set 80 percent of the 1's to zero

comdis

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 1 0 1
[4,] 0 1 0
[5,] 0 1 0
[6,] 1 0 0
[7,] 0 0 0
[8,] 0 0 0
[9,] 0 0 1
[10,] 0 0 0
[11,] 0 1 1
[12,] 0 0 0
[13,] 0 1 0
[14,] 0 0 0
[15,] 0 0 0
[16,] 1 0 0
[17,] 0 0 0
[18,] 0 0 0
[19,] 0 0 0
[20,] 1 0 0
[21,] 0 1 0
[22,] 0 0 0
[23,] 0 0 1
[24,] 1 0 0
[25,] 0 0 0

118

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

[26,] 0 1 1
[27,] 0 0 1
[28,] 0 0 0
[29,] 1 0 0
[30,] 0 0 0

variances <- makeVariance(varianceOfComps = c(100, 80, 90),

J = J, error = 0.05)

dat <- makeDat(n = 100, comdis = comdis, variances = variances)

X <- dat$X

round(dat$P[, 1:ncomp], 3) # The data generating component weight structure

[,1] [,2] [,3]
[1,] 0.000 0.000 0.000
[2,] 0.000 0.000 0.000
[3,] 0.766 0.000 0.000
[4,] 0.000 -0.469 0.000
[5,] 0.000 -0.740 0.000
[6,] 0.176 0.000 0.000
[7,] 0.000 0.000 0.000
[8,] 0.000 0.000 0.000
[9,] 0.000 0.000 0.016
[10,] 0.000 0.000 0.000
[11,] 0.000 -0.216 0.837
[12,] 0.000 0.000 0.000
[13,] 0.000 -0.142 0.000
[14,] 0.000 0.000 0.000
[15,] 0.000 0.000 0.000
[16,] 0.238 0.000 0.000
[17,] 0.000 0.000 0.000
[18,] 0.000 0.000 0.000
[19,] 0.000 0.000 0.000
[20,] -0.540 0.000 0.000
[21,] 0.000 0.062 0.000
[22,] 0.000 0.000 0.000
[23,] 0.000 0.000 0.152
[24,] 0.165 0.000 0.000
[25,] 0.000 0.000 0.000
[26,] 0.000 0.402 0.448
[27,] 0.000 0.000 -0.275
[28,] 0.000 0.000 0.000
[29,] -0.079 0.000 0.000
[30,] 0.000 0.000 0.000

We can ballpark the number of zeros and can get pretty good results

results <- ccpca(X = X, ncomp = ncomp,

nzeros = c(20, 20, 20), itr = 10000000,

Wstart = matrix(0, J, ncomp),

nStarts = 1, tol = 10^-8,

printLoss = FALSE)

119

5

Chapter 5

Compare the results

compare <- cbind(dat$P[, 1:ncomp], results$W)

colnames(compare) <- c(paste("True W_", 1:3, sep = ""),

paste("Est W_", 1:3, sep = ""))

rownames(compare) <- paste("Var", 1:30)

round(compare, 3)

True W_1 True W_2 True W_3 Est W_1 Est W_2 Est W_3
Var 1 0.000 0.000 0.000 0.000 0.000 0.000
Var 2 0.000 0.000 0.000 0.000 0.000 0.000
Var 3 0.766 0.000 0.000 -0.749 0.013 -0.014
Var 4 0.000 -0.469 0.000 0.000 0.000 0.541
Var 5 0.000 -0.740 0.000 -0.041 0.000 0.708
Var 6 0.176 0.000 0.000 -0.198 0.000 0.000
Var 7 0.000 0.000 0.000 0.000 0.000 0.000
Var 8 0.000 0.000 0.000 0.000 0.000 0.000
Var 9 0.000 0.000 0.016 0.000 0.000 0.000
Var 10 0.000 0.000 0.000 0.000 0.000 0.000
Var 11 0.000 -0.216 0.837 -0.023 -0.821 0.212
Var 12 0.000 0.000 0.000 0.000 0.000 0.000
Var 13 0.000 -0.142 0.000 0.000 0.000 0.061
Var 14 0.000 0.000 0.000 0.000 0.000 0.000
Var 15 0.000 0.000 0.000 0.000 0.000 0.000
Var 16 0.238 0.000 0.000 -0.264 0.000 0.000
Var 17 0.000 0.000 0.000 0.000 0.000 0.000
Var 18 0.000 0.000 0.000 0.000 0.000 0.000
Var 19 0.000 0.000 0.000 0.000 -0.029 0.000
Var 20 -0.540 0.000 0.000 0.537 -0.010 0.027
Var 21 0.000 0.062 0.000 0.000 0.000 -0.191
Var 22 0.000 0.000 0.000 0.000 0.000 0.000
Var 23 0.000 0.000 0.152 0.000 -0.141 0.000
Var 24 0.165 0.000 0.000 -0.159 0.000 0.000
Var 25 0.000 0.000 0.000 0.000 0.000 0.000
Var 26 0.000 0.402 0.448 -0.009 -0.473 -0.382
Var 27 0.000 0.000 -0.275 0.000 0.283 -0.012
Var 28 0.000 0.000 0.000 0.000 -0.026 0.000
Var 29 -0.079 0.000 0.000 0.139 -0.080 0.066
Var 30 0.000 0.000 0.000 0.000 -0.012 0.000

The estimation results are similar to the data generating model, this shows you

do not have to know the exact number of zero weights beforehand in order to

get interpretable results. That being said, it should preferably in the ballpark of

what it should really be. In order to examine that in more detail we will now

provide an example of model selection with ccpca also in this example we use

cross-validation with the one standard error rule.

Cross validate the number of non-zero weights per component weight vector

Note: we assume the sparsity within the columns of W to be the same

nzeros <- rep(15:29, each = ncomp)

nzeros <- split(nzeros, ceiling(seq_along(nzeros) / ncomp))

120

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

MSPE <- rep(NA, length(nzeros))

MSPEstdError <- rep(NA, length(nzeros))

nNonZeroCoef <- rep(NA, length(nzeros))

for (i in 1:length(nzeros)) {

res <- CVforPCAwithSparseWeights(X = X, nrFolds = 10, FUN = ccpca,

ncomp = ncomp, nzeros = nzeros[[i]], itr = 10000000,

Wstart = matrix(0, J, ncomp), nStarts = 1,

tol = 10^-5, printLoss = FALSE)

Store MSPE for each lasso value

MSPE[i] <- res$MSPE

Store the standard error of the MSPE

MSPEstdError[i] <- res$MSPEstdError

Store the number of non-zero weights

nNonZeroCoef[i] <- res$nNonZeroCoef

}

x <- 15:29

plot(x , MSPE, xlab = "number of zeros", ylab = "MSPE",

main = "MSPE with one standard error for different lasso values")

Add error bars to the plot

arrows(x, MSPE - MSPEstdError, x , MSPE + MSPEstdError,

length = 0.05, angle = 90, code = 3)

Select all models within one standard error of the best model

eligibleModels <- MSPE < MSPE[which.min(MSPE)] +

MSPEstdError[which.min(MSPE)]

eligibleModels

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[13] FALSE FALSE FALSE

Select from those models the models with

the lowest number of non-zero weights

best <- which.min(nNonZeroCoef[eligibleModels])

The number of zero weights per component that was "best"

nzeros[[best]]

121

5

Chapter 5

16 18 20 22 24 26 28

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

MSPE with one standard error for different lasso values

number of zeros

M
S

P
E

[1] 24 24 24

results <- ccpca(X = X,

ncomp = ncomp,

nzeros = nzeros[[best]],

itr = 10000000,

Wstart = matrix(0, J, ncomp),

nStarts = 1,

tol = 10^-8,

printLoss = FALSE)

compare <- cbind(dat$P[, 1:ncomp], results$W)

colnames(compare) <- c(paste("True W_", 1:3, sep = ""),

paste("Est W_", 1:3, sep = ""))

rownames(compare) <- paste("Var", 1:30)

round(compare, 3)

True W_1 True W_2 True W_3 Est W_1 Est W_2 Est W_3
Var 1 0.000 0.000 0.000 0.000 0.000 0.000
Var 2 0.000 0.000 0.000 0.000 0.000 0.000
Var 3 0.766 0.000 0.000 -0.810 0.106 -0.028
Var 4 0.000 -0.469 0.000 0.000 0.000 0.507
Var 5 0.000 -0.740 0.000 0.000 0.000 0.755
Var 6 0.176 0.000 0.000 -0.188 0.000 0.000
Var 7 0.000 0.000 0.000 0.000 0.000 0.000
Var 8 0.000 0.000 0.000 0.000 0.000 0.000
Var 9 0.000 0.000 0.016 0.000 0.000 0.000
Var 10 0.000 0.000 0.000 0.000 0.000 0.000
Var 11 0.000 -0.216 0.837 -0.098 -0.802 0.225

122

5

sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA

Var 12 0.000 0.000 0.000 0.000 0.000 0.000
Var 13 0.000 -0.142 0.000 0.000 0.000 0.000
Var 14 0.000 0.000 0.000 0.000 0.000 0.000
Var 15 0.000 0.000 0.000 0.000 0.000 0.000
Var 16 0.238 0.000 0.000 -0.152 0.000 0.000
Var 17 0.000 0.000 0.000 0.000 0.000 0.000
Var 18 0.000 0.000 0.000 0.000 0.000 0.000
Var 19 0.000 0.000 0.000 0.000 0.000 0.066
Var 20 -0.540 0.000 0.000 0.491 0.000 0.000
Var 21 0.000 0.062 0.000 0.000 0.000 0.000
Var 22 0.000 0.000 0.000 0.000 0.000 0.000
Var 23 0.000 0.000 0.152 0.000 -0.178 0.000
Var 24 0.165 0.000 0.000 -0.248 0.000 0.000
Var 25 0.000 0.000 0.000 0.000 0.000 0.000
Var 26 0.000 0.402 0.448 0.000 -0.480 -0.384
Var 27 0.000 0.000 -0.275 0.000 0.298 0.000
Var 28 0.000 0.000 0.000 0.000 -0.074 0.000
Var 29 -0.079 0.000 0.000 0.000 0.000 0.000
Var 30 0.000 0.000 0.000 0.000 0.000 0.000

Running the model selection procedure gives the user a pretty good idea

what number of zero weights is plausible. The results of the estimation using

cross-validation with the one standard error rule are very similar to the one where

we ballparked the number of zero weights.

5.6 Conclusion

The sparseWeightBasedPCA package provides flexible analysis tools to per-

form SCA and PCA on multi- or single block data with sparsity in the component

weights. Model selection tools are provided to select the hyper-parameters of these

models. Future research should focus on selecting the regularization parameters

together with the number of components. Although doable with this package it is

still too computationally demanding for most practical use cases. For the moment

we recommend to use a sequential strategy where first the number of components

is determined and, next, the common and distinctive structure and/or the regular-

ization parameters are tuned. The selection of the components can be based for

example on scree-plots or using CVforPCAwithSparseWeights. Furthermore this

package includes mmscaHyperCubeSelection, a promising model selection proce-

dure because of its speed and ability to examine an enormous grid of potential

candidate values for the hyper parameter. However, it still needs to be properly

examined using a simulation study in further research.

123

5

6

Chapter 6

Epilogue

This final chapter discusses some closing thoughts on the research reported

previous chapters. I will reflect upon the results presented and give some pointers

for directions that future research could go in.

This thesis presented sparse weight based PCA and SCA procedures for the

analysis of multi-block data. By taking into account the multi-block structure,

these procedures aim at facilitating a better recovery of the underlying processes

than procedures that do not. In Chapter 2, we presented an exhaustive approach

for identifying common and distinctive components1. Compared to sparse PCA

of the concatenated data and thus ignoring the multi-block structure, recovery of

the underlying model turned out to be substantially better when accounting for

the multi-block data structure. This clearly shows the need for specific analysis

tools for multi-block structure. As a follow up, we answered the question whether

a multi-block structure can be discovered when it is not known beforehand. In

Chapter 2, we examined 10-fold cross-validation as a means to automatically de-

tect the multi-block structure of the data set concerned, and concluded that cross-

validation is not well suited as a method for automatically identifying the underly-

ing common and distinctive structure of the data. This lead to Chapter 3 in search

of model selection techniques that might be more successful in discovering the

common and distinctive structure.

In Chapter 3, we tested a variety of readily available model selection tech-

niques in order to examine their applicability in the context of sparse weight based

SCA/PCA. We found 10-fold cross-validation with the one standard error rule to be

the best tool for this purpose. This seems bad news, as we concluded previously,

in Chapter 2, that cross-validation (including the one standard error rule) did not

perform well. However, in Chapter 3 we concluded it is still the best overall. In
1The term common and distinctive is not unambiguous, but in our case we mean structured

sparsity in the weights rather than in the component scores (Schouteden et al., 2013)

125

6

Chapter 6

the next section, I will put these seemingly contradicting results into a broader

perspective.

6.1 A note on model selection

One of the reasons cross-validation (as other model selection techniques)

performed badly is associated with the use of the rather strict definition of common

and distinctive introduced in Chapters 2 and 3. In this definition, for a common

component there should be at least one non-zero weight in each of the blocks, and

for a distinctive component all weights of the distinctive blocks should be zero.

Indeed, according to this definition, it is valid to conclude that, for the most part,

one can not automatically estimate back common and distinctive components us-

ing the investigated model selection rules. However, if one relaxes classification

according to definition by allowing for a certain amount of violation in the esti-

mates in order to meet the definition (i.e., some very small coefficients in distinc-

tive blocks are allowed), it can be seen that common and distinctive components

can be found back rather well, albeit not automatically. This observation implies

a researcher still has to decide upon an inspection of the weights whether some

weights are so small that they probably are not relevant and therefore conclude

that a certain component might be a distinctive one. This can lead to the urge of

setting small coefficients to zero — pretending they are not there — but it would

better to resist this urge and instead increase the value of the tuning parameter in

order to get the preferred result. Concluding, common and distinctive components

cannot be found automatically based on model selection tools investigated here,

but with a little additional effort from the researcher, they can be found.

Another point I want to clarify is the poor performance of the other model

selection techniques, such as the BIC, the IS, and cross-validation without the one

standard error rule. Examining their complexity versus misfit (or goodness-of-fit)

curves shows these procedures yield very similar curves, indicating they contain

similar information about the underlying complexity of the model. However, if you

select a model using the “pick the best index” rule, they differ quite substantially.

For example, it is well known that cross-validation tends to pick overly complex

models, while BIC and IS pick very sparse models. This does not mean that the

indices themselves are useless, but that there is no single best rule for model se-

lection. Cross-validation seemingly has a useful rule to select models with, namely

the one standard error rule, which performed overall the best in our simulation

studies. However, this does not mean it works best in any situation, implying

users should not rely on it blindly. The main reason for its good performance in

our simulation study is its tendency to pick a model that is right on the curve

126

6

Epilogue

where complexity is getting lower while misfit is also still low. But this is not al-

ways the case, since the standard error of the mean squared prediction error can

vary quite substantially as a function of the data and the number of folds, which

in turn influences the model that is picked as the most suitable one, for better or

worse. In order to select a model that strikes the right balance between complexity

and misfit, the C-Hull (or L-curve) method was developed. In Chapter 3, however,

it seemed to perform badly, indicating it is perhaps too difficult for this method

to pick the right point on the curve that strikes an optimal balance between com-

plexity and misfit, or it is not well suited for dealing with these specific kinds of

misfit versus complexity curves. Speculations aside, I argue this might be a case

of the “traveling salesman problem” a problem, which is notoriously hard for an

algorithm to solve, but easy for a human. A human can easily select a solution

that is among the best of the possible solutions. Therefore, I advise the end users

of these models not to hold on too tightly on strict rules for model selection. In

case the results from the automatically chosen models are not satisfactory, one can

always inspect the complexity versus misfit curve, and visually infer a reasonable

value for the tuning parameter.

6.2 Computational feasibility

One of the topics dealt with in this thesis was the tuning of the regularization

parameters. A natural extension of the work presented here would be to study the

tuning of regularization parameters in conjunction with the selection of the num-

ber of components. However, for this research to be even relevant and applicable

in the real world, it should be computationally feasible to do so. What is com-

putationally feasible depends on the computing power at your disposal and your

patience, which, in most cases (as in my case) is some and none, respectively. In

my opinion, estimation should be a matter of seconds for a reasonably sized data

set (say 1000 variables), which is currently not the case for the methods presented

here. It is hard to say what the actual average computational time is as it depends

on a large number of external factors. But, what is clear is that it is (much) more

than a few seconds, implying there is still room for improvements.

A possible way to speed up the algorithms presented in this thesis is to make

use of the fact that the columns of component weight matrix W can be updated

independently from each other. The latter implies the estimation of the columns

in W can performed in parallel, potentially decreasing the computational time

drastically. The algorithms in this thesis have been programmed in C++, allowing

for straightforward integration with OpenMP (Dagum and Menon, 1998), which

supports multi-platform shared-memory multiprocessing programming. Theoret-

127

6

Chapter 6

ically, this will speed up estimation by a factor Q (the number of components)

when implemented in sparseWeightBasedPCA package. Another improvement

that could readily be implemented is to solve the loss function with group lasso

penalty from Chapter 3 with coordinate descent (Yuan and Lin, 2006) instead of

an MM-algorithm, which has slow convergence properties.

Although model selection can still take a long time, the procedure itself can

already be completely parallelized. When computing clusters get more accessible

— and I am certain they will — applied researchers can capitalize on them.

6.3 Sparse weights versus sparse loadings models

The last topic that I would like to address in this chapter is the difference

between sparse weights based SCA/PCA models and sparse loadings SCA/PCA

models. I will discuss them both briefly to shed some light on their differences, as

well as on why a researcher might want to opt for one or the other. In classical

PCA estimated with the singular value decomposition (SVD), the loading matrix P

equals the weight matrix W, entailing the interpretation of the loadings and the

weights can be interchanged, which is convenient.

In classical PCA estimated with the singular value decomposition (SVD), the

loading matrix P equals the weight matrix W, entailing the interpretation of the

loadings and the weights can be interchanged, which is convenient. However,

this equality does no longer hold when either P or W is restricted to be sparse,

implying the interpretation of the weights and the loadings is not interchangeable

anymore. This is a rather common cause of confusion and begs the question why to

pick one approach over the other. In my opinion, the origin of the two approaches

is purely driven by algorithmic convenience, and little thought has been given so

far to the theoretical differences between the two approaches. Therefore, let us

briefly discuss them here.

In the weight based PCA approach, the following loss function is optimized,

L(W,P) = ∥X−XWPT∥22 + p(W)

= ∥vec(X)− (P⊗X)vec(W)∥22 + p(W)

subject to PTP = I,

(6.1)

where p() can be any penalty function. Given P, the problem of finding W can

be recognized as a regression problem and can thus be solved by any (sparse)

regression procedure. Since T = XW, it is straightforward to understand the

meaning of T, namely a linear combination of known entities (the columns of

X). However, when using this approach, P is a non-sparse matrix, implying that

128

6

Epilogue

relating the components back to the original items might be complicated. This is

most likely not going to be an issue, as the goal — understanding the components

— is already attained by inspecting the weights.

The sparse P model is given by,

L(T,P) = ∥X−TPT∥22 + p(P)

= ∥vec(X)− (IJ ⊗T)vec(PT)∥22 + p(P)

subject to TTT = I,

(6.2)

where the identification constraints are on the component scores T. Also in this

instance, given T, a solution to P can be found by using any (sparse) regression

technique. A nice consequence of using this model is that is the predictor ma-

trix IJ ⊗ T is blockwise diagonal and also orthogonal. This means that finding

estimates for pjq equals a simple univariate regression problem in which xj is re-

gressed on tq. That is, since there is no collinearity, the estimates of pjq do not

depend on the other J − 1 variables included in the model, which is a good prop-

erty to have. Such a feature is certainly not present in the sparse W model, where

only its columns can be estimated independently from each other.

Given P, the component scores are estimated by taking T equal to UVT

(Gu and Van Deun, 2018) obtained with a singular value decomposition of XP.

This shows the interpretation from traditional PCA (where we can take T = XP)

does not hold anymore. In this instance, T is given by an orthogonal basis for the

column space of XP times VT , which is not immediately interpretable as T being

a linear combination of unknown entities. An interpretation of the component

scores would have to go indirectly through P, which I believe is a suboptimal way

of interpreting the components.

Theoretical differences aside, future research will have to determine whether

there really is a practical difference between sparse P and W models. For exam-

ple, do these models reveal the same patterns in the data? This research has

to assume a model that applied researchers actually believe is underlying their

data, that is in my opinion the PCA model with X = XPPT with PTP = I and

where P is sparse. The sparseWeightBasedPCA package provides functionality for

generating data according to this model. This comparison should also take the

algorithmic differences between the two implementations into consideration. As

sparse P models are easier to deal with (because TTT = I), this could outweigh

any benefits sparse W models might have.

The next logical step in this line of research would be to develop a sparse

PCA method that estimates sparse P with PTP = I. Such a problem similar to the

sparse singular value decomposition by Yang et al. (2014) or the sparse eigenvalue

129

6

decomposition by Benidis et al. (2016). Naturally, extensions for multi-block data

are needed and should be compared to the current sparse W and P approaches.

130

References

Acar, E., Papalexakis, E. E., Gürdeniz, G., Rasmussen, M. A., Lawaetz, A. J., Nils-

son, M., and Bro, R. (2014). Structure-revealing data fusion. BMC Bioinformat-
ics, 15(1).

Adachi, K. and Kiers, H. A. L. (2017). Sparse regression without using a penalty

function.

Alter, O., Brown, P. O., and Botstein, D. (2003). Generalized singular value

decomposition for comparative analysis of genome-scale expression data sets

of two different organisms. Proceedings of the National Academy of Sciences,
100(6):33513356.

Alzheimers Disease Neuroimaging Initiative (2017). Adni study design. http:
//adni.loni.usc.edu/study-design/#background-container. [Online; ac-

cessed 22-August-2018].

Benidis, K., Sun, Y., Babu, P., and Palomar, D. P. (2016). Orthogonal sparse pca

and covariance estimation via procrustes reformulation. IEEE Transactions on
Signal Processing, 64(23):62116226.

Bertsimas, D., King, A., and Mazumder, R. (2016). Best subset selection via a

modern optimization lens. The Annals of Statistics, 44(2):813852.

Breiman, L. (1995). Better subset regression using the nonnegative garrote. Tech-
nometrics, 37(4):373384.

Bro, R., Kjeldahl, K., Smilde, A. K., and Kiers, H. A. L. (2008). Cross-validation of

component models: A critical look at current methods. Analytical and Bioana-
lytical Chemistry, 390(5):12411251.

Bro, R., Nielsen, H. H., Stefánsson, G., and Skåra, T. (2002). A phenomenological

study of ripening of salted herring. assessing homogeneity of data from different

countries and laboratories. Journal of Chemometrics, 16(2):8188.

Cadima, J. and Jolliffe, I. T. (1995). Loading and correlations in the interpretation

of principle compenents. Journal of Applied Statistics, 22(2):203–214.

131

http://adni.loni.usc.edu/study-design/#background-container
http://adni.loni.usc.edu/study-design/#background-container

Croux, C., Filzmoser, P., and Fritz, H. (2013). Robust sparse principal component

analysis. Technometrics, 55(2):202–214.

Dagum, L. and Menon, R. (1998). Openmp: an industry standard api for shared-

memory programming. Computational Science & Engineering, IEEE, 5(1):46–55.

de Schipper, N. C. and Van Deun, K. (2018). Revealing the joint mechanisms in

traditional data linked with big data. Zeitschrift für Psychologie, 226(4):212231.

Eddelbuettel, D. and François, R. (2011). Rcpp: Seamless R and C++ integration.

Journal of Statistical Software, 40(8):1–18.

Eddelbuettel, D. and Sanderson, C. (2014). Rcpparmadillo: Accelerating r with

high-performance c++ linear algebra. Computational Statistics and Data Anal-
ysis, 71:1054–1063.

Erichson, N. B., Zheng, P., Manohar, K., Brunton, S. L., Kutz, J. N., and Aravkin,

A. Y. (2018). Sparse principal component analysis via variable projection.

Erichson, N. B., Zheng, P., Manohar, K., Brunton, S. L., Kutz, J. N., and Aravkin,

A. Y. (2020). Sparse principal component analysis via variable projection. SIAM
Journal on Applied Mathematics, 80(2):977–1002.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for gen-

eralized linear models via coordinate descent. Journal of Statistical Software,

33(1).

Gajjar, S., Kulahci, M., and Palazoglu, A. (2017). Selection of non-zero loadings

in sparse principal component analysis. Chemometrics and Intelligent Laboratory
Systems, 162:160171.

Gordon, A. D., Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).

Classification and regression trees. Biometrics, 40(3):874.

Gu, Z., de Schipper, N. C., and Deun, K. V. (2019). Variable selection in the

regularized simultaneous component analysis method for multi-source data in-

tegration. Scientific Reports, 9(1):18608.

Gu, Z. and Van Deun, K. (2016). A variable selection method for simultaneous

component based data integration. Chemometrics and Intelligent Laboratory Sys-
tems, 158:187–199.

Gu, Z. and Van Deun, K. (2018). Regularizedsca: Regularized simultane-

ous component analysis of multiblock data in r. Behavior Research Methods,
51(5):22682289.

132

References

Gu, Z. and Van Deun, K. (2018). RegularizedSCA: Regularized Simultaneous Com-
ponent Based Data Integration. R package version 0.5.4.

Guo, J., James, G., Levina, E., Michailidis, G., and Zhu, J. (2010). Principal compo-

nent analysis with sparse fused loadings. Journal of Computational and Graphi-
cal Statistics, 19(4):930946.

Halldorsdottir, T. and Binder, E. B. (2017). Gene Œ environment interac-

tions: From molecular mechanisms to behavior. Annual Review of Psychology,

68(1):215–241.

Hansen, P. C. and OLeary, D. P. (1993). The use of the l-curve in the regular-

ization of discrete ill-posed problems. SIAM Journal on Scientific Computing,

14(6):14871503.

Hastie, T., Tibshirani, R., and Friedman, J. (2009a). The Elements of Statistical
Learning. Springer New York.

Hastie, T., Tibshirani, R., and Friedman, J. (2009b). The elements of statistical

learning. Springer Series in Statistics.

Hastie, T., Tibshirani, R., and Tibshirani, R. J. (2017). Extended comparisons of

best subset selection, forward stepwise selection, and the lasso.

Hunter, D. R. and Lange, K. (2004). A tutorial on mm algorithms. The American
Statistician, 58(1):3037.

Héberger, K. (2010). Sum of ranking differences compares methods or models

fairly. TrAC Trends in Analytical Chemistry, 29(1):101109.

Jenatton, R., Obozinski, G., and Bach, F. (2010). Structured sparse principal com-

ponent analysis. Proceedings of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, 9:366–373.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer New York.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.

Psychometrika, 23(3):187–200.

Kiers, H. A. (2002). Setting up alternating least squares and iterative majorization

algorithms for solving various matrix optimization problems. Computational
Statistics & Data Analysis, 41(1):157170.

Kiers, H. A. L. (2000). Towards a standardized notation and terminology in mul-

tiway analysis. Journal of Chemometrics, 14(3):105–122.

133

Kiers, H. A. L. and ten Berge, J. M. F. (1989). Alternating least squares algorithms

for simultaneous components analysis with equal component weight matrices

in two or more populations. Psychometrika, 54(3):467473.

Kowalski, M. and Torrésani, B. (2009). Sparsity and persistence: mixed norms

provide simple signal models with dependent coefficients. Signal, Image and
Video Processing, 3(3):251–264.

Lock, E. F., Hoadley, K. A., Marron, J. S., and Nobel, A. B. (2013). Joint and indi-

vidual variation explained (jive) for integrated analysis of multiple data types.

The Annals of Applied Statistics, 7(1):523542.

Lorenzo-Seva, U. and ten Berge, J. M. F. (2006). Tuckers congruence coefficient

as a meaningful index of factor similarity. Methodology, 2(2):57–64.

Lourenco, J. M. and Lebensztajn, L. (2018). Post-pareto optimality analysis with

sum of ranking differences. IEEE Transactions on Magnetics, 54(8):110.

Meng, C., Zeleznik, O. A., Thallinger, G. G., Kuster, B., Gholami, A. M., and Cul-

hane, A. C. (2016). Dimension reduction techniques for the integrative analysis

of multi-omics data. Briefings in Bioinformatics, 17(4):628641.

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM
Journal on Computing, 24(2):227234.

Nielsen, H., Bro, R., Stefansson, G., and Skåra, T. (1999). Salting and ripening

of herring: collection and analysis of research results and industrial experience

within the nordic countries. TemaNord, 578.

Paxton, A. and Griffiths, T. L. (2017). Finding the traces of behavioral and cog-

nitive processes in big data and naturally occurring datasets. Behavior Research
Methods, 49(5):1630–1638.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rasmussen, M. A. and Bro, R. (2012). A tutorial on the lasso approach to sparse

modeling. Chemometrics and Intelligent Laboratory Systems, 119:2131.

Reinke, S. N., Galindo-Prieto, B., Skotare, T., Broadhurst, D. I., Singhania,

A., Horowitz, D., Djukanovi, R., Hinks, T. S., Geladi, P., Trygg, J., and

et al. (2018). Onpls-based multi-block data integration: A multivariate ap-

proach to interrogating biological interactions in asthma. Analytical Chemistry,

90(22):1340013408.

134

References

Rohart, F., Gautier, B., Singh, A., and Lê Cao, K.-A. (2017). mixomics: An r

package for omics feature selection and multiple data integration. PLOS Com-
putational Biology, 13(11):e1005752.

Schneider, B. and Waite, L. J. (n.d.). The 500 family study [1998-2000: United

states].

Schouteden, M., Van Deun, K., Pattyn, S., and Van Mechelen, I. (2013). Sca

with rotation to distinguish common and distinctive information in linked data.

Behavior Research Methods, 45(3):822–833.

Schouten, T. M., Koini, M., de Vos, F., Seiler, S., van der Grond, J., Lechner, A.,

Hafkemeijer, A., Möller, C., Schmidt, R., de Rooij, M., and et al. (2016). Com-

bining anatomical, diffusion, and resting state functional magnetic resonance

imaging for individual classification of mild and moderate alzheimers disease.

NeuroImage: Clinical, 11:4651.

Shen, H. and Huang, J. Z. (2008). Sparse principal component analysis via

regularized low rank matrix approximation. Journal of Multivariate Analysis,
99(6):10151034.

Shu, H., Wang, X., and Zhu, H. (2019). D-CCA: A decomposition-based canoni-

cal correlation analysis for high-dimensional datasets. Journal of the American
Statistical Association, 115(529):292–306.

Smilde, A., Bro, R., and Geladi, P. (2004). Multi-Way Analysis with Applications in
the Chemical Sciences. John Wiley & Sons, Ltd.

Smilde, A. K., Måge, I., Naes, T., Hankemeier, T., Lips, M. A., Kiers, H. A. L.,

Acar, E., and Bro, R. (2017). Common and distinct components in data fusion.

Journal of Chemometrics, 31(7):e2900.

ten Berge, J. M. (1993). Least squares optimization in multivariate analysis. DSWO

Press, Leiden University Leiden, The Netherlands.

ten Berge, J. M. F. (1986). Some relationships between descriptive comparisons of

components from different studies. Multivariate Behavioral Research, 21(1):29–

40.

Tenenhaus, A. and Tenenhaus, M. (2011). Regularized generalized canonical cor-

relation analysis. Psychometrika, 76(2):257–284.

Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B, 58:267–288.

135

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), 58(1):267–288.

Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retro-

spective. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 73(3):273–282.

Tibshirani, R., Johnstone, I., Hastie, T., and Efron, B. (2004). Least angle regres-

sion. The Annals of Statistics, 32(2):407499.

Timmerman, M. E., Kiers, H. A., and Ceulemans, E. (2016). Searching components

with simple structure in simultaneous component analysis: Blockwise simplimax

rotation. Chemometrics and Intelligent Laboratory Systems, 156:260–272.

Trendafilov, N. T. (2013). From simple structure to sparse components: a review.

Computational Statistics, 29(3-4):431–454.

Trendafilov, N. T., Fontanella, S., and Adachi, K. (2017). Sparse exploratory factor

analysis. Psychometrika, 82(3):778794.

Trygg, J. and Wold, S. (2002). Orthogonal projections to latent structures (o-pls).

Journal of Chemometrics, 16(3):119128.

Van Deun, K., Smilde, A., Thorrez, L., Kiers, H., and Van Mechelen, I. (2013).

Identifying common and distinctive processes underlying multiset data. Chemo-
metrics and Intelligent Laboratory Systems, 129:4051.

Van Deun, K., Smilde, A. K., van der Werf, M. J., Kiers, H. A., and Van Meche-

len, I. (2009). A structured overview of simultaneous component based data

integration. BMC Bioinformatics, 10(1):246.

Van Deun, K., Van Mechelen, I., Thorrez, L., Schouteden, M., De Moor, B., van der

Werf, M. J., De Lathauwer, L., Smilde, A. K., and Kiers, H. A. L. (2012). Disco-sca

and properly applied gsvd as swinging methods to find common and distinctive

processes. PLoS ONE, 7(5):e37840.

Van Deun, K., Wilderjans, T. F., van den Berg, R. A., Antoniadis, A., and

Van Mechelen, I. (2011). A flexible framework for sparse simultaneous com-

ponent based data integration. BMC Bioinformatics, 12(1):448.

Vassos, E., Di Forti, M., Coleman, J., Iyegbe, C., Prata, D., Euesden, J., OReilly, P.,

Curtis, C., Kolliakou, A., Patel, H., and et al. (2017). An examination of poly-

genic score risk prediction in individuals with first-episode psychosis. Biological
Psychiatry, 81(6):470–477.

136

References

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer,

New York, fourth edition. ISBN 0-387-95457-0.

Vervloet, M., Deun, K. V., den Noortgate, W. V., and Ceulemans, E. (2016). Model

selection in principal covariates regression. Chemometrics and Intelligent Labo-
ratory Systems, 151:26–33.

Vervloet, M., Wilderjans, T., Durieux, J., and Ceulemans, E. (2017). multichull: A
Generic Convex-Hull-Based Model Selection Method. R package version 1.0.0.

Wang, L., Xiao, Y., Ping, Y., Li, J., Zhao, H., Li, F., Hu, J., Zhang, H., Deng, Y., Tian,

J., and et al. (2014). Integrating multi-omics for uncovering the architecture of

cross-talking pathways in breast cancer. PLoS ONE, 9(8):e104282.

Wang, W.-T. and Huang, H.-C. (2017). Regularized principal component analysis

for spatial data. Journal of Computational and Graphical Statistics, 26(1):1425.

Wilderjans, T. F., Ceulemans, E., and Meers, K. (2012). Chull: A generic convex-

hull-based model selection method. Behavior Research Methods, 45(1):115.

Willmott, C. J. and Matsuura, K. (2006). On the use of dimensioned measures of

error to evaluate the performance of spatial interpolators. International Journal
of Geographical Information Science, 20(1):89102.

Witten, D. M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decompo-

sition, with applications to sparse principal components and canonical correla-

tion analysis. Biostatistics, 10(3):515–534.

Yang, D., Ma, Z., and Buja, A. (2014). A sparse singular value decomposition

method for high-dimensional data. Journal of Computational and Graphical
Statistics, 23(4):923942.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(2):301–320.

Zou, H. and Hastie, T. (2018). elasticnet: Elastic-Net for Sparse Estimation and
Sparse PCA. R package version 1.1.1.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analy-

sis. Journal of Computational and Graphical Statistics, 15(2):265–286.

137

Summary

Researchers are sometimes faced with a situation where they can supple-

ment their data with other data types for the same individuals. For example,

besides having questionnaire data, researchers might also have experience sam-

pling data, online behavior data, or genetic data on the same subjects. We refer

to each of the different data types as a data block. Linking multiple data blocks

together holds promising prospects as it allows studying relationships as the result

of the concerted action of multiple determinants. For example, having both ques-

tionnaire data on eating and health behavior and data on genetic variants for the

same subjects holds the key to finding how genes and environment act together

in the emergence of eating disorders. Indeed, for most psycho-pathologies and

many other behavioral outcomes, it holds that these are the result of a genetic

susceptibility in combination with a risk provoking environment (Halldorsdottir

and Binder, 2017). Thus, analyzing multiple data blocks together could provide

us with crucial insights into the complex interplay between the multiple factors

that determine human behavior.

A powerful way of gaining insight into such data sets consisting of multiple

blocks is by means of latent variable modelling techniques. One of such techniques

is simultaneous component (SC) analysis, which is the main approach discussed

in this thesis. There are two problems associated with the SC model:

1. Because the component scores of the SC model are a linear combination

of variables of all blocks, all blocks contribute to all components. This is

not particularly insightful as it obscures components that are not shared

by all data blocks. In order to alleviate this problem, the common sources

of variation need to be separated from the distinctive sources of variation.

This serves two purposes: first, it increases efficiency of the estimation of

the common components (Acar et al., 2014; Lock et al., 2013; Trygg and

Wold, 2002), and second, it may be instructive (substantively) to detect such

unique sources of variation (Alter et al., 2003; Van Deun et al., 2012). Our

strategy will be to model the unique sources of variation by a weight vector

containing zero(s) for all blocks except the block for which the component

is unique. This imposes absence of the component in all blocks, except for

139

the one for which it is unique. This approach has been shown to have a clear

interpretational advantage compared to methods that fail to control such

absence (Schouteden et al., 2013; Van Deun et al., 2013).

2. Besides not accounting for the multi-block structure, the SC model does not

imply sparsity into the weights; that is, there is no guarantee that a large

portions of the weights gets values (close to) zero. Sparse weights are im-

portant for the interpretation of the results, which is especially helpful with

data sets consisting of a (very) large number of variables, where a solution

with many non-zero weights would be very difficult to interpret. This is-

sue has been addressed in the context of single-block data by penalty based

approaches such as the elastic net penalty (Zou et al., 2006), but the prob-

lem has not yet been tackled in conjunction with identifying common and

distinctive source of variation in the SC model.

This thesis aimed at providing solutions to the above two problems.

In Chapter 2, we took a closer look at multi-block analysis with simultane-

ous component analysis (SCA). We argued that the current practice of analyzing

multi-block data by merging all data and applying methods developed for a single

block of data, is an inappropriate approach that does not guarantee the discov-

ery of the joint relationships between blocks. Each block is dominated by specific

information that is typical for the kind of processes it measures (e.g., behavioral

processes and response tendencies in questionnaire data, biological processes in

the genetic data) resulting in higher associations between the variables within a

block than between blocks. Hence, an analysis that does not account for the multi-

block data structure is highly unlikely to find the linked variables underlying the

subtle joint mechanisms at play. In order to tackle this problem, we proposed

a simultaneous component approach (Kiers, 2000; Van Deun et al., 2009) called

SCaDS that introduces both proper constraints and regularization terms, includ-

ing the LASSO, to account for the presence of dominant block-specific sources of

variation and to force variable selection. We illustrated how to use SCaDS using

publicly available data from the 500 Family Study (Schneider and Waite). The

interpretational advantage of SCaDS was clearly shown. Furthermore, support for

the superior performance of SCaDS compared to sparse PCA of the concatenated

data in estimating back the model parameters was convincingly shown in a sim-

ulation study. Especially in situations where the number of variables was large

compared to the number of observation units, SCaDS outperformed the approach

of applying sparse methods for a single block of data while ignoring the multi-

block structure. We used cross-validation as a tool to determine the status of the

components (common or distinctive) and the strength of the LASSO penalty of

140

Summary

the SCaDS method. For data generated in the low-dimensional setting satisfactory

results were obtained; yet, in the high-dimensional setting we observed a bias

towards overly complex models.

In Chapter 3 we examined various model selection procedures that can be

used to select the hyper-parameters in sparse PCA and SCA. In order to get sparse

weights in either PCA or SCA models, values for the hyper-parameters of the

penalty terms need to be selected, which is a delicate process. If one chooses

a value that is too small, too many coefficients will be selected making the inter-

pretation of the models difficult, while choosing a value that is too high might

result in missing the important relationships within and between data blocks. In

Chapter 3, we compared various model selection procedures with respect to their

ability of finding the hyper-parameter values yielding the correct structure of the

data; i.e., selecting the right set of variables both in the single block setting and in

the multi-block setting with common and distinct variation. The model selection

procedures investigated are cross-validation with the Eigenvector method (Bro

et al., 2008), BIC (Guo et al., 2010; Croux et al., 2013), Convex Hull (Wilderjans

et al., 2012), and the Index of Sparseness (Gajjar et al., 2017; Trendafilov et al.,

2017). In order to inform the analysis about the block structure of the variables,

we implemented the group LASSO penalty in a block-wise fashion, aiming at ei-

ther selecting or canceling out data blocks in an automated way. We concluded

that when the component weights are to be interpreted, cross-validation with the

one standard error rule is preferred; alternatively, if the interest lies in obtaining

component scores using a very limited set of variables, the convex Hull, BIC, and

index of sparseness are all suitable.

In Chapter 4, we presented a sparse PCA method relying on cardinality con-

straints instead of penalties. A well-documented disadvantage of using penalties

for introducing sparsity into the coefficients is that these penalties are not in-

tended to find the best subset of variables. That is, these penalties introduce bias

in the estimates while reducing their variance. The resulting variable selection

process increases the efficiency of the estimators, but it is not designed to recover

the true underlying set of variables. To overcome this problem, we presented a

cardinality constrained alternative to PCA. Instead of penalizing the coefficient in

the model, we solved the problem of finding the optimal subset given a number

of non-zero coefficients using a surrogate function. For this purpose, we used

cardinality constrained regression, which has the sole aim of identifying the best

subset of variables. We compared this cardinality constrained PCA (CCPCA) to

sparse PCA with the LASSO penalty (Zou et al., 2006) estimated with the LARS

algorithm. We found that CCPCA and sparse PCA performed relatively similar,

where CCPCA has the edge when the noise levels are low. When noise levels are

141

large, the bias-variance trade-off can lead to better coefficients for sparse PCA,

but for the conditions in this chapter these differences were marginal. It is impor-

tant to mention that sparse PCA with LARS is computationally more efficient than

CCPCA, when the data contains a large number of variables, sparse PCA might be

preferred.

In Chapter 5, we introduced an R package to perform regularized SCA and

PCA with sparsity on the component weights. This package also includes model

selection procedures. The procedures developed are based on the work presented

in the previous chapters. The main parts of the computational code have been

written in C++ to provide maximal efficiency of the underlying numerical compu-

tations. The chapter is written as a tutorial with the aim of making the methods

developed in this thesis accessible to potential users. It starts with a short intro-

duction to PCA and its multi-block extension SCA, followed by a substantiation

of the models that the procedures in this package estimate. After that the R im-

plementation of the package is discussed, followed by detailed examples of data

analysis and model selection.

Concluding, in Chapter 6 we presented some closing thoughts on the previ-

ous chapters, and presented directions future research can go in. Most notably,

we shed some light on the difference between sparse weight based PCA/SCA com-

pared to sparse loadings PCA/SCA, the former being the main interest of this the-

sis.

142

Dankwoord

Dit proefschrift is niet zomaar ineens tot stand gekomen, en ik maak graag

van deze mogelijkheid om een aantal mensen te bedanken.

Allereerst wil ik Katrijn bedanken, zonder jou was dit proefschrift er niet

gekomen. We hebben altijd fijn samengewerkt, je liet me vrij om mijn eigen ideeën

uit te voeren. Het maakte niet uit op wat voor tempo ik dat deed, ik heb alle ruimte

gekregen om me op diverse vlakken in de breedte kunnen ontwikkelen. Ik werd

volledig vertrouwd en dat werkte prettig. Ik kon mijn eigen plan trekken, maar

je was er daarna ook altijd om me te helpen, bijvoorbeeld bij het schrijven van

een introductie. Ik heb daar altijd een hekel aan gehad, ik kreeg nauwelijks meer

dan een enkel kantje op papier, en jij wist er toch altijd een prachtig verhaal van

te maken (ook al vond jij het ook het minst leuke onderdeel van het schrijven).

Daarnaast hebben we de afgelopen vier jaar fijn samen onderwijs gegeven. Je hebt

in die korte tijd mooie cursussen in elkaar gezet, waar je trots op kan zijn!

Daarnaast wil ik Jeroen bedanken. Ik heb me door jou altijd gesteund gevoeld,

ondanks dat we niet veel hebben samengewerkt. Ik weet dat ik op je kon rekenen

mocht ik het nodig hebben gehad, en dat is een prettig gevoel.

Ik wil ook graag de commissie bedanken voor het lezen van mijn proefschrift.

Bedankt dat jullie de tijd hebben genomen om je door die tekst heen te worstelen

en dat jullie al dan niet in persoon bij mijn verdediging aanwezig zijn.

Herbert Hoijtink wil ik ook graag bedanken, jij hebt me overgehaald om in

Utrecht statistiek te gaan studeren, en daar heb ik nooit spijt van gehad. Ik wil

ook Dave Hessen bedanken voor het inspirerende statistiekonderwijs dat je geeft

en hopelijk nog steeds geeft. Ook wil ik mijn studiegenoten, in het bijzonder Pieter

en Wouter, bedanken, jullie waren en zijn een inspiratie voor mij.

Daarnaast wil ik mijn oud-collega’s bedanken. Jules, Eva, Laura en Inga,

bedankt voor alle gezellige wandelingen, we hebben samen plezier en steun aan

elkaar gehad. Bedankt Chris en Robbie, voor de grote hoeveelheid plezier die we

samen hebben gehad, en bedankt voor jullie kundige en inspirerende adviezen op

het gebied van R, Linux en open source software in zijn algemeenheid. Daarnaast

wil ik mijn oud-kamergenoten, Paul, Soogeun en IJsbrand bedanken, voor alle

mooie leuke momenten in kantoor, maar vooral ook buiten kantoor. Ik wil ook

143

graag de andere Collega’s bij MTO bedanken: Michèle, Paulette, Erwin, Mattis,

Ghislaine, Elise, Leonie, Hilde, Joris, Mihai, Amir, Olmo, Esther, Damiano en Felix

en alle andere (Ex)-PhD’s die ik nu vergeet en uiteraard ook de senior staff.

Last but not least! Wil ik onze lab groep de cool people club, bedanken:

Pia, Davide, Zhengguo, Soogeun, Shuai, Rosember and Edoardo, voor alle mooie

momenten die wesamen hebben gehad. Dat jullie nog maar veel mooi onderzoek

mogen doen.

Ook wil ik mijn vrienden bedanken, Bas Bas en Wouter, voor het geven

van het goede voorbeeld, zonder jullie zat ik nu huilend koffie te drinken op het

gemeentehuis. Jan, Job, Tycho, Tito, Kiki, Elles, Raphael, Ouren, Arjun, Michel,

Jip, Kevin en Sean, bedankt voor alle gezelligheid en steun. Ook mijn O.G. vrien-

den uit Eindhoven en Nijmegen bedankt, dat we nog veel mooie dingen met elkaar

mogen beleven.

Lieve familie, jullie hebben me altijd gesteund. Bedankt voor alle liefde,

dankzij jullie ben ik uiteindelijk zindelijk geworden. Dat is vrij praktisch gebleken,

in de trein, maar ook op kantoor. Ook mijn schoonfamilie bedankt, jullie hebben

me met open armen ontvangen en altijd gesteund.

Als laatste wil ik de belangrijkste persoon in mijn leven bedanken. Lieve

Roos, dankjewel voor alle fijne jaren samen en alle jaren die nog komen gaan.

144

	Table of Contents
	Introduction
	Background
	Aim and outline of the thesis

	Revealing the joint mechanisms in traditional data linked with Big Data
	Introduction
	Methods
	Notation and description of linked data
	Model description of PCA and SCA
	Common and distinctive components
	Sparse common and distinctive components
	Finding sparse common and distinctive components
	Model selection
	Related methods

	Empirical data examples
	500 Family Study
	Alzheimer study

	Simulation studies
	Recovery of the model parameters under the correct model
	Finding the underlying common and distinctive structure of the data

	Discussion
	Appendix
	Specifics of the simulation study
	Description of algorithm

	Model selection techniques for sparse weight based PCA
	Introduction
	Sparse PCA for single and multi-block data
	Model selection procedures for sparse PCA
	Simulation studies
	Single block data
	Multi-block data

	Empirical Example: Herring data
	Conclusion
	Appendix
	Description of algorithm
	Data generation

	Cardinality constrained weight based PCA
	Introduction
	Methods
	Sparse PCA with the elastic net penalty by Zou et al., 2006
	Sparse PCA with cardinality constraints

	Simulation Study
	Overall quality of the estimation of the weights
	Mean absolute bias, mean variance & mean MSE of the weights

	Conclusion
	Appendix
	Description of algorithm
	Data generation

	sparseWeightBasedPCA: An R package for regularized weight based SCA and PCA
	Introduction
	Theoretical background
	Principal Component Analysis
	Simultaneous Component Analysis
	Content of the sparseWeightBasedPCA package

	Models of the sparseWeightBasedPCA package
	Regularized SCA with sparse component weights using constraints
	Regularized SCA with sparse component weights using the group LASSO
	PCA with sparse component weights using cardinality constraints

	The implementation in R of the sparseWeightBasedPCA package
	Core estimation procedures
	Model selection procedures
	Additional tuning functions for mmsca

	Detailed examples of SCA and PCA with the sparseWeightBasedPCA package
	Example of SCA with scads
	Example of SCA with mmsca
	Example of PCA with ccpca

	Conclusion

	Epilogue
	A note on model selection
	Computational feasibility
	Sparse weights versus sparse loadings models

	References
	Summary
	Dankwoord

