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Abstract

Switching options can be deployed in various complex switching problems such as tolling agreements and

the offshoring-backshoring problem. Closed form solutions to valuing switching options are not only hard,

but also computationally intensive when solving numerically. We develop a new computational method to

value switching options based on the moving boundary method. We show how the free boundary problem

arising from switching options can be converted into a sequence of fixed boundary problems. We formulate the

problem, and solve the optimal switching problem in two regimes over a finite time horizon. We establish the

theoretical guarantees for this method (maximum principles, uniqueness and convergence). We demonstrate

this with a numerical example and show the sensitivity of the solution with respect to problem parameters.

Keywords: switching options, moving boundary, optimal policy

1. Introduction

Managerial problems typically boil down to answering the following question: “What action should be

taken, and when?”. Such decision problems can be characterized as optimal-switching problems, a larger class

of problems that encompass optimal-stopping problems. Optimal-switching problems are best explained in

the context of optimal-stopping problems. An optimal-stopping problem involves the determination of a

single optimal stopping time to take a single action. For example, a typical optimal-stopping problem is

the problem of exercising an American option. The decision maker, the option holder in this instance, is

presented with a single action, exercising the option, and must decide when to take this action. The optimal

time to exercise the option is known as the optimal stopping time. Optimal-switching problems, on the

other hand, present the decision-maker with a multitude of actions. The decision maker needs to determine

when to take an action (switching times) and select an associated action from the available set of actions.

Switching options can be defined as a sequence of transactions where the exercise of the option creates one or

more additional options. These problems are very commonly observed, such as in tolling agreements, where

one has to decide when to turn the power generator on and off, and in the offshoring-reshoring problem

where a firm has to decide when to onshore and offshore its production. In the tolling agreement example,
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when the manager decides to turn on the power generation, she receives a new option to turn it off, and

so on. Given the frequency with which these decision-making problems occur in practice, and the impact

that some of these decisions could have, managers would benefit by knowing the switching times and the

associated optimal actions. Such decision rules are obtained by solving optimal-switching problems. Solving

these optimal-switching problems is akin to valuing switching options, a variant of the American option

described above. The optimal value of the switching option is the discounted expected net benefit that the

firm can accrue.

The problem of valuing switching options gives rise to a free-boundary problem characterized by a system

of Quasi-Variational inequalities (QVIs). Solving this system of QVIs yields both the optimal value functions

and the optimal control (i.e., a policy that dictates when a switch should be made and to which state).

Explicit solutions exist for certain infinite horizon problems, such as those shown by Brekke and Oksendal

(1994), Duckworth and Zervos (2001) and Yushkevich (2001), but place severe restrictions on the state

dynamics and other problem parameters. For most of the problems, an analytical or closed-form solution

rarely exists thus necessitating the need for numerical solutions. Several methods are outlined in Broadie

and Detemple (2004) in their application to pricing American options. Non-PDE based methods such as the

Monte-Carlo simulation approach are also used to solve these problems. However, these numerical solutions

are harder to obtain due to high computational resource needs, and exacerbated by the multiple curses of

dimensionality.

In this paper, we show a numerical scheme that leverages upon the ‘moving-boundary’ framework devel-

oped by Muthuraman (2008) for a two-regime switching problem. We focus our attention on the two-regime

switching problem, because while a manager may theoretically be faced with selecting one action from a set

of two or more actions, practically, a substantial number of managerial decisions can be cast as real options

with two possible actions. For example, Brekke and Oksendal (1994) and Brennan and Schwartz (1985)

consider natural resource extraction problems where an operator decides when to open or close a field/mine

for resource extraction, incurring fixed opening and closing costs. Dixit (1989) considers the problem of

when to invest in an asset, and when to abandon it. Carmona and Ludkovski (2008) and Deng and Xia

(2006) focus on tolling agreements where an operator decides when a power generating plant that has been

leased should be operated as the spread between the input price (of natural gas) and the output price (of

electricity) fluctuates. The valuation of energy storage facilities is also based on two decisions facing an

operator, to withdraw or inject the commodity as seen in Carmona and Ludkovski (2010). All of these

problems are quite difficult to solve, and require extensive computational efforts. The moving boundary

method in Chockalingam and Muthuraman (2011) is shown to be accurate as well as demonstrably faster

than other existing methods in solving similar problems.

We first formulate a 2-regime switching problem that can be solved using an extension of the earlier

moving boundary method developed by Chockalingam and Muthuraman (2011). Our contributions in this

research are two-fold, (i) we develop this moving boundary computational method to solve a switching
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problem in two regimes over a finite time horizon, and (ii) we provide the necessary theoretical guarantees

(maximum principles, uniqueness and convergence) for our proposed computational method. Additionally,

we provide some numerical insights into the behavior of our method for a specific case.

The rest of the paper is organized as follows. In Section 2, we briefly review the current literature.

The model formulation is presented in Section 3. In Section 4, we develop our generalization of the earlier

Moving-Boundary method, which is used to solve optimal switching problems. In Section 5, we provide some

numerical studies. And finally in Section 6 we introduce two applications of switching options from the real

world that could be solved using our methodology, and make concluding remarks.

2. Literature Review

Stochastic control problems are problems where a controller attempts to control a system governed

by an evolving stochastic process with the aim of optimizing an objective functional. Due to the costs

involved in controlling and making changes to the underlying system, the controller needs an optimal control

policy that will dictate the actions necessary to optimize the controller’s objective functional. The cost

structure determines the type of stochastic control problem facing the controller. There are several types

of stochastic control problems such as optimal stopping problems, singular control problems, and impulse

control problems. The more classical setup of these problems is continuous control, where a continuous

control action is possible between successive impulses (see Bensoussan and Lions (1975)). The theory of

optimal stopping is concerned with the problem of choosing a time to take a particular action- like exercising

an American option, in order to maximize an expected reward or minimize an expected cost. Singular

stochastic control problems are those problems in which the system controller can change the state of the

system instantaneously by paying just the proportional cost, while in impulse control problems there is a

fixed cost associated with each state change. Hence, when the control has proportional cost, the problem

is called singular control wherein the optimal control only makes infinitesimal changes in states, but when

the cost contains fixed component as well, the problem is called impulse control, and it is usually optimal

for the controller to bring about non-infinitesimal changes to the state (there can be an impulse in singular

control problems at the outset, to reach the boundary if the state is in the interior of the action region).

Singular control problems have been extensively studied in literature, see (Merton 1992, Karatzas and Shreve

1998). When positive fixed control costs are present, the problem is called impulse control. The classical

method to solve this problem has been shown in the fundamental work of Bensoussan and Lions (1984). In

Constantinides and Richard (1978), the authors show an optimal policy for an infinite horizon discounted

cost cash management problem using impulse control. They obtain analytic expressions for the optimal

policy for a special case. A special case of the impulse control problem described above is considered in

Sulem (1986) where a classic stochastic inventory control problem is solved. Recent work by Bensoussan and

Chevalier-Roignant (2019) consider strategic capacity expansions in a continuous-time setting with fixed costs

by employing the impulse control methodology. Guo and Tomecek (2008) establish a theoretical connection
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between singular control problems and optimal switching problems. Many of these impulse control problems

are solved using verification theorems by assuming a priori the smooth fit property through the action and

continuation regions, although verification theorems without assuming the smooth fit property also exist.

These regularity properties and smooth fit properties are shown in (Guo and Wu 2009).

Using dynamic programming arguments, stochastic control problems typically involve solving a system of

differential equations, either ordinary or partial. The domains over which these systems of equations are to

be solved are unknown a priori, therefore resulting in free-boundary problems. Closed-form solutions rarely

exist for such problems. Numerical solutions are then needed to determine the optimal value functions and

policies. The Moving-Boundary method is a numerical scheme that can be used to solve a certain class

of such free-boundary problems. The method transforms the free-boundary problem into a sequence of

fixed-boundary problems that are easier to solve.

Kumar and Muthuraman (2004) applied Moving-Boundary method for the first time to solve singular

control problems. They combine finite element methods that numerically solve partial differential equations

with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-

Jacobi-Bellman equations associated with the stochastic control problem. Following this, Muthuraman and

Kumar (2006) provide a computational study of the problem of how to optimally allocate wealth among

multiple stocks and a bank account to maximize the infinite horizon discounted utility of consumption.

They consider the situation where the transfer of wealth from one asset to another involves transaction costs

that are proportional to the amount of wealth transferred. Their model allows for correlation between the

price processes, which in turn gives rise to interesting hedging strategies. This results in a stochastic control

problem with both drift-rate and singular controls, which can be recast as a free boundary problem in partial

differential equations. Adapting the finite element method and using an iterative procedure that converts

the free boundary problem into a sequence of fixed boundary problems, Kumar and Muthuraman (2004)

provide an efficient numerical method for solving this problem. Muthuraman (2008) develops the variant

of their method for optimal stopping problems. Interestingly, at that time he showed that the Moving-

Boundary idea also worked for optimal stopping problems, in particular for pricing American options. Apart

from providing an efficient methodology to solve the free boundary problem in American option pricing,

he extends the Moving-Boundary approach to solve an optimal stopping problem, thereby taking a modest

step in making the Moving-Boundary method more general. Chockalingam and Muthuraman (2011) apply

the Moving-Boundary method to price American options under stochastic volatility. First, they develop a

transformation procedure to compute the optimal-exercise policy and option price and provide theoretical

guarantees for convergence. Second, using this computational tool, they explore a variety of questions that

seek insights into the dependence of option prices, exercise policies, implied volatilities on the market price

of volatility risk and correlation between the asset and stochastic volatility. They compare the speed and

accuracy of the procedure against existing methods such as the PSOR method outlined by Cryer (1971) and

others shown in Ikonen and Toivanen (2008). The authors in Chockalingam and Muthuraman (2011, 2010,
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2015) show that the moving boundary method is faster than these methods while being just as accurate.

Feng and Muthuraman (2010) extend the Moving-Boundary method in stochastic impulse control problems.

They develop a methodology that converts the free-boundary problem into a sequence of fixed boundary

problems. They show that the arising sequence has monotonically improving solutions and that the sequence

converges. Provided the converged solution is continuous and once differentiable (C1), they show that it is

the optimal solution and that the optimal policy takes the form of a control band policy which has a simple

and intuitive representation. They also provide an ε-optimality result that provides an upper bound on the

error when the sequence is terminated after convergence to within a tolerance. There are several differences

in their approach as compared to ours. They work in an infinite horizon setting and the controller is able

to change the state of the system, and the policy is independent of time. In our work, we focus on a finite

horizon setting where the optimal policy is independent of the state but it is time dependent.

Switching options are another kind of stochastic control problems which have found diverse applications in

operations management and finance such as Tolling agreements. Ludkovski (2005) defines a tolling agreement

as any temporary contract between the permanent owner and another agent that allows the latter to claim

ownership and management of the output, subject to pre-specified exercise rules. The holder of the tolling

agreement can gain the benefits or suffer the losses depending on commodity prices and operational costs.

Limited operational flexibility is also a feature of tolling agreements such that the manager may not be

allowed to scale production up or down in a way that is most advantageous. This is where optimal switching

is of particular interest in that it addresses the question when it is optimal for an investor to enter, or

exit the market or adjust the investment. The pioneering work of Brekke and Oksendal (1994) considers

the problem of finding the optimal sequence of opening and closing times of a multi-activity production

process, given the costs of opening, running, and closing the activities and assuming that the state of the

economic system is a stochastic process. They formulated the problem as an extended impulse control

problem over an infinite time horizon and solved using stochastic calculus. Duckworth and Zervos (2001)

address the problem of determining in an optimal way the sequence of times at which a firm can enter

or exit an economic activity. They consider an investment model which involves production scheduling as

well as a sequence of entry and exit decisions over an infinite time horizon. The pricing of an investment

using this model gives rise to a stochastic impulse control problem that they explicitly solve. They do not

assume additional costs associated with scaling production up or down, as long as this does not involve a

complete shut-down. They assume the profit function is upper semi-continuous however, and impose further

constraints to justify their analysis. Ly Vath and Pham (2007) consider the problem of determining the

optimal sequence of stopping times for a diffusion process subject to regime switching decisions. They use

a viscosity solution approach combined with the smooth-fit property, and explicitly solve the problem in

the two-regime case when the state process is Geometric Brownian in nature. The results of their analysis

take several qualitatively different forms, depending on model parameter values. They focus on two cases:

one when the underlying dynamics are unaffected by the switching regime, but the profit functions are
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different; and another when the profit functions are identical, but the underlying dynamics depend on the

switching regime. Djehiche et al. (2009) consider a finite time horizon and two production regimes. They use

backward stochastic differential equations and Snell envelopes to solve completely the starting and stopping

problem when the dynamics of the system are a general adapted stochastic process. Ludkovski (2005) allow

multiple production regimes. However, the number of allowed switches is limited. They propose a new

method of numerical solution based on Monte Carlo regressions. The scheme uses dynamic programming to

simultaneously approximate the optimal switching times along all the simulated paths.

3. The Switching Model

Consider an operational process that can run under 2 different regimes or states - ‘ON’ (or state 1) and

‘OFF’ (or state 0). A firm has to run this process switching between these regimes over a finite time horizon

0 < T < ∞. The output of this process is a product that sells in the market for the price Xt at time t.

Our model setup is similar to that in Ludkovski (2005), Carmona and Ludkovski (2008), and Djehiche et al.

(2009). Let the dynamics of this price be an Ito diffusion process represented by

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (1)

where Wt is a one-dimensional Brownian motion. The model primitives µ(·) and σ(·) are locally Lipschitz,

implying that the solution to Eq 1 exists and is unique. Let h(t,Xt,mt) denote the instantaneous profit

generated at time t by the operational process in the regime mt and selling the output at the price Xt. This

profit function is assumed to be continuous and locally Lipschitz. However, in practice h is usually increasing

in X and profit is higher in the ‘ON’ state for higher values of X compared to the ‘OFF’ state, i.e. it is

better to operate the process in the ON state at high values of X and in the OFF state for low values of

X. The profit function could also be set to represent the utility of the firm that consumes the revenue by

running this process. Let Kij > 0 denote the cost of switching from regime i to j, i 6= j and {i, j} ∈ {0, 1}.

Let (τn)n≥1 be a sequence of non-decreasing stopping times such that only a finite number will occur in any

bounded interval with probability one. A management policy ν is defined as

ν = (τ1, ζ1; τ2, ζ2; · · · ; τk, ζk; · · · ) (2)

where the action (ζn)n≥1 taking values in {0, 1} represents the regime the process is switched to, i.e. at τn

for n ≥ 1, the process is switched from its current state ζn−1 to ζn. The regime in which the operational

process starts (ζ0) is deterministic. For a given policy the expected profit over the time horizon [0, T ] is

Jx,a(ν) = E

[∫ T

0

h(s,Xs,ms)ds−
∑
n

Kζn−1,ζn(τn)

]
, (3)

where we set X(0) = x and ζ0 = a. The objective is to maximize the expected profit over the time horizon

[0, T ] and we thus arrive at the following stochastic control problem:

V (x) = sup
ν
Jx,a(ν) (4)
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The value function properties and verification theorems are shown by Ludkovski (2005), Carmona and

Ludkovski (2010), Djehiche et al. (2009). The first two articles assume continuity of the value function, and

this gap is bridged in (Djehiche et al. 2009). Let the operator L (infinitesimal generator of Xt) be defined as

L =
∂

∂t
+ µ(t, x)

∂

∂x
+ σ2(t, x)

∂

∂x2
(5)

Without the continuity assumption (that the value function is C2), we could use the weak version of the

Ito’s Lemma (see Revuz and Yor (2013)) which allows the differentiability of the function to be somewhat

relaxed to being C1 at certain coordinates. In our case, these will be the boundaries. We would then assume

that the value function is at least C1 at the boundaries and C2 elsewhere.

Since the continuity has been shown in Djehiche et al. (2009), we proceed assuming this to be true. Using

the dynamic programming principle and Ito’s Lemma, we can arrive at the quasi-variational inequality (QVI)

form of the problem. At a given point in time t when the system exists in regime i and X(t) = x, we have

LV + h(t, x, i) ≤ 0 (6)

V (t, x, i) ≥ V (t, x, j)−Kij (i 6= j) (7)

where only one of the two inequalities needs to be strict at any point in time for a given regime. This tells

us whether it is optimal to switch or stay in the current regime. If Eq (7) is strict, we stay in the current

regime, and when Eq (6) is strict, we switch. Solving the QVI gives us the value function which is used to

easily obtain the optimal policy.

Thus, we have a set of QVI’s for each regime; a PDE for the continuation region for that regime and

another for switching the operating regime. In the continuation region, the firm should continue in its current

regime. The other tells the firm when it should change its operating regime. To characterize these regions,

we can start by conjecturing the shape of the optimal policy. The optimal exercise policy can be represented

by the continuous boundaries u(t) and d(t), associated with the regimes 1 and 0 (on and off) respectively.

The continuation region for regime 1 is the area above and below u(t) up to but not including the boundary

d(t).

C1 =
{

(t, x) ∈ [0, T ]× [0,∞); x > d(t)
}

(8)

C0 =
{

(t, x) ∈ [0, T ]× [0,∞); x < u(t)
}

(9)

These conjectured boundaries help us visualize the optimal policy. Let us say the process is in regime

1 and x ∈ C1. As long as x stays in the continuation region C1, the firm should continue in regime 1.

However, once x hits or crosses the boundary d(t), the firm should switch to the ‘OFF’ regime, i.e. regime

0. Figure 1 shows the shape of this (conjectured) policy schematically. Closer to the start of the time period

the boundaries will be closer and will increase towards maturity T. As we move towards the T, the cost of

switching is higher than any profits from switching which widens the inaction region.

When the firm is in regime 1 and the market price of the product X(t) is high, the probability that

the price will drop to or below the lower boundary d(t) decreases. Hence, the firm will never switch from
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T0

d(t)

u(t)

x(t)

Figure 1: (Conjectured) shape of the optimal policy

this regime to the other. Consequently, the change in the value function with respect to the price is zero,

limx→∞
δV (t,x,1)

δx = 0. A similar condition exists in regime 0 when the price X(t) is too low, since the

probability it will rise to or above u(t) decreases. Hence, limx→0
δV (t,x,0)

δx = 0. We also know that the firm

will end the process at time T , so V (T, x, i) = 0,∀i ∈ [0, 1]. Thus, we can say that V (t, x, 1) and V (t, x, 0)

are the unique solutions to the free boundary problems:

LV (t, x, 1) + h(t, x, 1) ≤ 0, in C1

V (t, x, 1) ≥ V (t, x, 0)−K10

V (T, x, 1) = 0

lim
x→∞

δV (t, x, 1)

δx
= 0

(10)

LV (t, x, 0) + h(t, x, 0) ≤ 0, in C0

V (t, x, 0) ≥ V (t, x, 1)−K01

V (T, x, 0) = 0

lim
x→0

δV (t, x, 0)

δx
= 0

(11)

Note that Problems 10 and 11 are not equivalent to Equations 6 and 7.

4. Method

In this section, we propose a methodology to solve the free boundary problem described in Section 3.

This methodology involves converting the free boundary problem into a sequence of fixed boundary problems

which converges to the optimal solution. We also show and prove the necessary theoretical guarantees.

To begin our search for the optimal policy, we start with an initial guess boundary and compute its

associated value function. This initial guess is chosen with a large inaction region (or the intersection of the

two continuation regions C1 and C0, see Fig 2), such that the lower boundary d is very close to the x-axis

and the upper boundary u is far from the x-axis. Each iteration generates a new boundary that monoton-

ically decreases this inaction region - the lower boundary moves upwards and the upper boundary moves

downwards. Since the space is closed, convergence is guaranteed with an improved speed to convergence.

For any policy (dn, un) and its associated value function V n, the following conditions guarantee that the

current inaction region is a superset of the optimal inaction region (this is because they indicate that the
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current inaction region is too conservative, that switching is beneficial and should take place earlier).

V n(t, dn+, 1)− V n(t, dn, 1) < V n(t, dn+, 0)− V n(t, dn, 1)−K10 (12)

V n(t, un+, 0)− V n(t, un, 0) < V n(t, un+, 1)− V n(t, un, 0)−K01 (13)

We start with the initial guess policy (d0, u0). If this does not satisfy the above conditions, we need to

start with smaller d0 and/or a larger u0. After solving the fixed boundary problem to compute V 0, we begin

our iteration with n = 0, (dn, un) and V n. We define dn+1 by

dn+1(t) = sup
{
x ∈ (dn(t),∞)

∣∣
V n(t, x0+, 1)− V n(t, x0, 1) ≤ V n(t, x0+, 0)− V n(t, x0, 1)−K10

∀ x0 ∈ [dn(t), x)]
}

(14)

and un+1 by

un+1(t) = inf
{
x ∈ (0, un(t))

∣∣
V n(t, x0+, 0)− V n(t, x0, 0) ≤ V n(t, x0+, 1)− V n(t, x0, 0)−K01

∀ x0 ∈ (x, un(t)]
}

(15)

Inaction region 

𝑢𝑛  

𝑢𝑛+1  

𝑑𝑛  

𝑑𝑛+1  

𝑡 

𝑥
 

Figure 2: Moving Boundary

These policy updates are devised with the following intuition. The update for d looks for the largest x

such that switching to the ‘OFF’ regime increases the value more than continuing in the ‘ON’ regime. This
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is done while maintaining the inaction region a superset of the optimal inaction region and leaving us with

the necessary superset condition Eq 12 to iterate further. Similarly, the update for u looks for the smallest

x such that switching to the ‘ON’ regime yields a higher value than continuing in the ‘OFF’ regime. Again,

the new inaction region is a superset of the optimal inaction region leaving us with the necessary superset

condition Eq 13 to iterate further (see Fig 2).

Using the updated policy (dn+1, un+1), we solve the fixed boundary problems 10 and 11 to obtain the

associated value function V n+1. To show convergence, we need to show the following results. First, we need

to show that the updated policy is better, i.e. show that V n+1 ≥ V n. Next, we need to ensure that the

superset conditions Eqs 12 and 13 hold true for both V n and V n+1 to allow for repetitive improvements.

Since the space is closed, convergence is guaranteed, but we still need to show that the converged policy is

the optimal policy.

The rest of this section establishes the theoretical guarantees for the method. Lemmas 1 and 2 establish

the maximum principles, i.e. show that the optima lie on the boundaries. These two Lemmas correspond

to the two continuation regions of the optimal policy, and the difference between them lies in the limit (i.e.

as x → ∞ or x → 0) in Problems 16 and 17. Using these, we show in Theorem 3 that the solutions to

the Problems 10 and 11 are unique. In Theorem 4 we show that the optimal condition can be violated by

superset conditions, and in Theorem 5 we show that the value function improves at each iteration as well as

show the convergence of the method.

Lemma 1. For a given function G(t), a continuous c(t) > 0 and a T ′ ∈ (0,∞) let us define the region
CT ′ = {(t, x) ∈ (0, T ′)× R+ | x > c(t)}. Let ∂O represent the boundary (0, x) for x ∈ (c(0),∞) and let ∂C
represent the boundary (t, c(t)) for t ∈ [0, T ′). Let f be the solution of

Lf = 0, in CT ′
f(t, c(t)) = G(t), t ∈ [0, T ′)

f(T ′, x) = 0

lim
x→∞

fx(t, x) = 0

(16)

where Lf = ft + µ(t, x)fx + 0.5σ2(t, x)fxx with the subscripts representing the partial derivatives. If G(t) >
0 ∀t then the maxima of f are attained only on the boundary ∂C and the minimum value of f is 0 and is
attained on (T ′, x). If G(t) = 0 ∀t then f(t, x) = 0 for all (t, x) ∈ CT ′ .

Proof. We show that the maxima of f is attained only on the boundary ∂C. To do so we rule out any other

possibilities. Let’s say that an internal maxima exists attained at some (t′, x′). When we have G(t) > 0,

then this maxima must be greater than f(t, x) for all (t, x), meaning that f(t′, x′) ≥ maxt∈[0,T ′)G(t) > 0.

From the required conditions for maxima, we have fx = 0, ft = 0, and fxx < 0, which on substitution in

Lf = 0 yields a contradiction. Next say that the maxima of f is attained at (0, x′) ∈ ∂O. Then it must be

true that f(0, x′) ≥ maxt∈[0,T ′)G(t) > 0 and with fx = 0, ft ≤ 0, and fxx < 0, which on substitution in

Lf = 0 yields a contradiction. Hence the maxima is attained on ∂C.

Similar arguments and reasoning as above will yield that the minima of f is 0 and is attained on (T ′, x).

When G(t) = 0 for all t, the above arguments directly show that f(t, x) = 0 for all (t, x) ∈ CT ′ . �
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Lemma 2. For a given function G(t), a continuous c(t) > 0 and a T ′ ∈ (0,∞) let us define the region
CT ′ = {(t, x ∈ (0, T ′)×R+ | x < c(t)} and let ∂O represent the boundary (0, x) for x ∈ (c(0),∞) and let ∂C
represent the boundary (t, c(t)) for t ∈ [0, T ′). Let f be the solution of

Lf = 0, in CT ′
f(t, c(t)) = G(t), t ∈ [0, T ′)

f(T ′, x) = 0

lim
x→0

fx(t, x) = 0

(17)

If G(t) > 0 ∀t then the maxima of f is attained only on the boundary ∂C and the minimum value of f is 0
and is attained on (T ′, x). If G(t) = 0 for all t then f(t, x) = 0 for all (t, x) ∈ CT ′ .

Proof. Similar to Lemma 1. �

The following theorem shows that the solutions to Eq (10) and Eq (11) are unique.

Theorem 3. The solutions to the initial value problems

LV n(t, x, 1) + h(t, x, 1) = 0, in Cn1
V n(t, u(t), 1) = V n(t, u(t), 0)−K10, t ∈ [0, T )

V n(T, x, 1) = 0

lim
x→∞

Vx(t, x, 1) = 0

and

LV n(t, x, 0) + h(t, x, 0) = 0, in Cn0
V n(t, d(t), 0) = V n(t, d(t), 1)−K01, t ∈ [0, T )

V n(T, x, 0) = 0

lim
x→0

Vx(t, x, 0) = 0

are unique.

Proof. Suppose not, and that there exist two solutions fa and fb for V n(t, x, 1). Then V̄ = fa − fb solves

LV̄ = 0, in C1

V̄ (t, u(t), 1) = 0, t ∈ [0, T ′)

V̄ (T ′, x, 1) = 0

lim
x→∞

V̄x(t, x, 1) = 0

Now from Lemma 1, V̄ is uniformly zero in C1 and the results follow. One can easily show the same for

V n(t, x, 0). �

The following theorem shows that the optimal condition can be violated by superset conditions. This

is very important for the initial policy, because the algorithm should start from a boundary at which the

superset conditions Eq (12) and Eq (13) are violated.
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Theorem 4. If d0(t)− < d(t) for all t ∈ (0, T ), then

V 0(t, d0(t)+, 1)− V 0(t, d0(t), 1) < V (t, d0(t)+, 0)− V 0(t, d0(t), 1)−K10

and if u0(t)− > u(t) for all t ∈ (0, T ), then

V 0(t, u0(t)+, 0)− V 0(t, u0(t), 0) < V (t, u0(t)+, 1)− V 0(t, u0(t), 1)−K01

Proof. Consider the region C0
1\C1 = {(t, x) : d0(t) < x < d(t)}. This is the region in which it is strictly

optimal to switch but the policy d0 chooses not to. Therefore for any x and x+ in this region

V 0(t, x, 1) < V (t, x, 1) = V (t, x, 0)−K10

and

V 0(t, x+, 1) < V (t, x+, 1) = V (t, x+, 0)−K10

means that at any point in C0
ON\CON , we have

V 0(t, x+, 1)− V 0(t, x, 1) < V (t, x+, 0)− V 0(t, x, 1)−K10

V 0(t, d0(t)+, 1)− V 0(t, d0(t), 1) < V (t, d0(t)+, 0)− V 0(t, d0(t), 1)−K10

giving us our results. The same argument follows to show the condition for u. �

Finally, the following two theorems show that the value improves at each iteration, and that the method

converges to the optimal boundaries, i.e. we show that the value function is monotonically increasing in each

iteration and eventually converges to its maximum.

Theorem 5. If V n(t, x, 1) is the solution to the initial value problem

LV n(t, x, 1) + h(t, x, 1) = 0, in Cn1
V n(t, dn(t)−, 1) = V (t, dn(t)−, 0)−K10, t ∈ [0, T )

V n(T, x, 1) = 0

lim
x→∞

V nx (t, x, 1) = 0

and
V n(t, dn(t)+, 1)− V n(t, dn(t), 1) < V (t, dn(t)+, 0)− V n(t, dn(t), 1)−K10

for all t ∈ (0, T ) then dn+1− from Eq 14 is well defined. Moreover, V n+1(t, x, 1) (the solution to initial value
problem with boundary dn+1−) is such that V n+1(t, x, 1) > V n(t, x, 1) and

V n+1(t, dn+1(t)+, 1)− V n+1(t, dn+1(t), 1) < V (t, dn+1(t)+, 0)− V n+1(t, dn+1(t), 1)−K10 ∀t ∈ (0, T ).

Proof. Since V n(t, dn(t)+, 1)−V n(t, dn(t), 1) < V (t, dn(t)+, 0)−V n(t, dn(t), 1)−K10 and limx→∞ V nx (t, x, 1) =

0, we have from continuity of V n(t, x, 1) in Cn1 , the existence of dn+1−. Moreover since V n(t, x+, 1) −

V n(t, x, 1) < V (t, x+, 0)− V n(t, x, 1)−K10 for x ∈ (dn−, dn+1(t)−), then the following condition holds:

V n(t, dn+1(t)−, 1)− V n(t, dn(t)−, 1) < V (t, dn+1 − (t), 0)− V n(t, dn(t)−, 1)−K10

12



This implies that

V n(t, dn+1(t)−, 1) < V (t, dn+1 − (t), 0)−K10

V n(t, dn+1(t)−, 1) < V n+1(t, dn+1(t)−, 1)

Now consider the function P (t, x, 1) = V n+1(t, x, 1)− V n(t, x, 1) in the region Cn+1
1 . We have

LP (t, x, 1) = 0

P (t, dn+1(t)−, 1) > 0

P (T, x, 1) = 0

lim
x→∞

Px(t, x, 1) = 0

Now directly from Lemma 1, P (t, x, 1) is positive in Cn+1
1 .

Next we need to show that

V n+1(t, dn+1(t)+, 1)− V n+1(t, dn+1(t), 1) < V (t, dn+1(t)+, 0)− V n+1(t, dn+1(t), 1)−K10

To do this, it is sufficient to show that Px(t, x, 1) < 0 ∀t ∈ (0, T ). Suppose not, and say Px(t0, d
n+1(t0), 1) ≥

0 for some t0. Now since P (t0, d
n+1(t0), 1) > 0 and limx→∞ P (t0, x, 1) = 0 this implies that a maxima along

x is attained in the interior of Cn+1
1 contradicting Lemma 1.

Hence Px(t0, d
n+1(t0), 1) < 0, i.e. V n+1

x (t, dn+1(t), 1) < Vx(t, dn+1(t), 1) implies that

V n+1(t, dn+1(t)+, 1)− V n+1(t, dn+1(t), 1) < V n(t, dn+1(t)+, 1)− V n(t, dn+1(t), 1)

and since

V n(t, dn+1(t)+, 1)− V n(t, dn+1(t), 1) = V (t, dn+1(t)+, 0)− V n+1(t, dn+1(t), 1)−K10

we conclude that

V n+1(t, dn+1(t)+, 1)− V n+1(t, dn+1(t), 1) < V (t, dn+1(t)+, 0)− V n+1(t, dn+1(t), 1)−K10

Convergence is achieved when the boundary update dn+1 from Eq 14 is the same as dn. �

Theorem 6. If V n(t, x, 0)is the solution to the initial value problem

LV n(t, x, 0) + h(t, x, 0) = 0, in CnOFF
V n(t, un(t)+, 0) = V (t, un(t)+, 1)−K01, t ∈ [0, T )

V n(T, x, 1) = 0

lim
x→0

V nx (t, x, 1) = 0

and
V n(t, un(t), 0)− V n(t, un(t)−, 0) < V (t, un(t), 1)− V n(t, un(t)−, 0)−K01

for all t ∈ (0, T ) then un+1+ from Eq 14 is well defined. Moreover, V n+1(t, x, 0) (the solution to initial value
problem with boundary un+1+) is such that

V n+1(t, x, 0) > V n(t, x, 0)

and

V n+1(t, un+1(t), 0)− V n+1(t, un+1(t)−, 0) < V (t, un+1(t), 1)− V n+1(t, un+1(t)−, 0)−K01 ∀t ∈ (0, T )

Proof. Similar to Theorem 5. �
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5. Numerical Studies

We now illustrate our Moving-Boundary methodology with a numerical example. Before we move on to

show the example, we make a brief note about the implementation. In order to solve the fixed boundary

problems there are some standard methods. In line with Chockalingam and Muthuraman (2011), we use

the finite difference method in this example. As with other numerical methods, we need to choose a finite

domain and impose boundary conditions on the finite boundaries. As our time horizon is finite, there is no

problem to truncate the time axis; however the truncation of the axis for Xt leads to an approximation, since

the truncation is imposed at a finite boundary rather than at infinity. To reduce this problem, we choose an

X which is sufficiently large.
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Figure 3: Optimal Policy

In this numerical example, we model Xt to follow a simple one-dimensional Brownian Motion driving

process dXt = 0.5dt + 1.4dWt; where X0 = 30 and the time horizon is T = 2. We have two regimes with

continuous reward rates of h(x, t, 0) = 0 and h(x, t, 1) = x − 42, and the switching cost between them is

K01 = K10 = 10.

Our aim in this numerical study is to demonstrate how the iterative procedure presented above computes

the optimal policy and value function. the Figure 3, the area above the orange curve u(t) is the set of prices

where the firm should switch on its production. Conversely, the area below the blue curve d(t) encompasses

all the prices where the firm should switch off its production. The continuation region is the region between

d(t) and u(t). In the continuation region the regime should not change, irrespective of whether the firm’s

current regime is ON or OFF. We see that towards the end of the time horizon the operating regime does not

change as fast as the beginning of the period, because the remaining time may not be sufficient to compensate

the switching costs. Closer to T the boundaries u(t) and d(t) will flatten out mimicking a situation similar
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Figure 4: Value of the switching option when
the firm is in ON state
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Figure 5: Value of the switching option when
the firm is in OFF state

to an infinite horizon problem where these boundaries will be constant.

Figure 4 shows the value function when the firm starts in ON state V (x, t, 1), and Figure 5 shows the

value function when the firm starts in OFF state V (x, t, 0). We see that in both figures that the value

function is sufficiently smooth. The smoothness of the value function is shown in Carmona and Ludkovski

(2008) and in Djehiche et al. (2009). In our case, since we use a numerical method we can say that the value

function is smooth in the continuation region, and at least C1 at the boundary.

5.1. Convergence in Different Iterations

In Section 4 we have presented the theoretical guarantees for this method. As we mentioned there, our

Moving-Boundary approach converts the free boundary problem into a sequence of fixed boundary problems

which can be solved numerically. This sequence improves the value function and converges to an optimal

policy where the value is maximized. Now we show some iterations to get a better understanding of how the

policy and value functions change in different iterations.
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Figure 6: Policy convergence in different iterations (convergence achieved at iteration 5)

Figure 6 plots the policy in three different iterations. Figure 6(a) is the first iteration after the initial

policy. The initial policy should hold the superset condition where the inaction region is large enough to start
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Figure 7: ON state value convergence (convergence achieved at iteration 5)
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Figure 8: OFF state value convergence (convergence achieved at iteration 5)

the Moving-Boundary algorithm. As we see from Figure 6(a) to Figure 6(c), the inaction region becomes

smaller, and the policy converges to the optimal.

Figure 7 plots the ON state value function convergence in the different iterations. Figure 7(a) shows

the value function associated with the initial policy. As we see in the last iteration (Figure 7(c)), the value

function is sufficiently smooth. Figure 8 plots the OFF state value function at the different iterations.

Convergence is achieved at iteration 5 for this example (for the policy and value functions). As mentioned

before, the continuity of the value functions is quite a technical challenge. We refer the reader to Djehiche

et al. (2009) for the discussion on continuity. In our case with the numerical method, we can say that the

value function is smooth in the continuation region, and at least C1 at the boundary.

5.2. Effect of volatility and switching costs on the Optimal Policy

Volatility is an important risk measure which can affect the optimal policy. We thus seek to investigate

what this effect looks like. Figure 9 plots the optimal policy for different levels of volatility. The inaction

region becomes smaller as volatility increases, meaning that the firm might need to switch more frequently

when the volatility is relatively high. However, note that this change is very small. As the level of volatility

may be difficult to estimate, the robustness of the optimal policy with regard to different levels of volatility

is of significant managerial value.

The reason why volatility does not have such a large effect is because the size of the inaction region is

primarily governed by the switching cost. Figure 10 shows how decreasing the switching cost from 10 to 5
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Figure 9: Influence of volatility on optimal policy

affects the optimal policy. We see that the inaction region decreases substantially. When it is cheaper to

switch between states, the boundaries u(t) and d(t) get closer. This is an important insight for managers

operating switching processes - that changes in switching costs have greater influence on the optimal policies

than the changes in the underlying asset volatility.
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Figure 10: Influence of switching costs on the optimal policy

6. Discussion and Conclusion

Project costs in the energy industry tend to be high, a typical natural gas power plant or an oil refinery

costs hundreds of millions of dollars and may take three to five years to build (Ludkovski 2005). Due

to the capital intensive nature of the industry a few large companies own these power plants and lease

them to operators. The operators, therefore, circumvent the capital intensive side of the business. The

lease agreements between the operator and the owner are termed as tolling agreements. The key decision

facing the lessee is how and when the power plant should be operated, taking into consideration the spread

between the input and output prices. Limited operational flexibility in tolling agreements prevents scaling

the production up or down in all proportions of capacity. Hence, the only choices for the manager are either

to enter the market with full capacity or to exit the market completely, and shut the plant down. The firm
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procures gas at price Gt, using it to generate power that it sells at the price Pt. The revenue from running

the plant is then given by the spread Xt = (Pt −Gt) which pays the difference between the market price of

the power and the market price of gas needed to produce the power. Due to limited operational flexibility

in tolling agreements, managers have the option just either to run the plant (mode ON) or to shut it down

(mode OFF). Managers frequently face such switching problems. Another example is in the offshore dual

sourcing problem, in which firms have located their production plants in two different geographical locations

and consequently switch between the locations as time passes. Such a strategy can create value for firms by

decreasing the cost of production, but relocation incurs substantial costs. This can be modeled as an optimal

switching problem where the firm can choose between two production plants. It is problems like these that

form the managerial decision background for switching options.

In this paper, we formulate a switching problem with two regimes, and develop a numerical scheme

that leverages upon the ‘moving-boundary’ framework developed by Muthuraman (2008) for this switching

problem. Switching problems are quite difficult to solve, and require extensive computational efforts.

Our novel computational method is based on the Moving-Boundary method that can solve the optimal

switching problem in two regimes over a finite time horizon. The idea is to convert a free boundary problem in

to a sequence of fixed boundary problems (as was first developed for singular control problems in Kumar and

Muthuraman (2004)), and then extended it to optimal stopping and impulse control. The optimal switching

problem can be thought of as sequence of optimal stopping problems and has complicating features, making

an extension of the Moving-Boundary method to tackle such problems non-trivial. In this paper, we have

demonstrated that the idea of converting to a sequence of fixed boundary problems is still possible for free

boundary problems arising from switching problems; the specific method, however, is different.

In conclusion, we formulate the 2-regime switching problem and contribute to the existing literature

in two ways: (i) we extend the moving boundary computational method developed by Chockalingam and

Muthuraman (2011) to solve a switching problem in two regimes over a finite time horizon, and (ii) we provide

the necessary theoretical guarantees (maximum principles, uniqueness and convergence) for our proposed

computational method.
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