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Kurzdarstellung

Die vorliegende Arbeit beschäftigt sich experimentell mit granularer Materie, wobei
der Fokus auf Monolagen liegt.

Die Experimente beleuchten im ersten Schritt das Verhalten eines einzelnen Teil-
chens in Abhängigkeit von dessen Partikelform. Hierbei werden Scheiben in einem
flachen Container unter vertikaler Anregung betrachtet, deren Umriss als regulä-
res Polygon mit drei bis acht Ecken systematisch variiert wird. Dabei zeigen sich
qualitativ verschiedene Winkelgeschwindigkeitsverteilungen für gerade und unge-
rade Eckenzahl, sowie eine Kopplung zwischen lateraler Bewegung und Rotation.
Die charakteristische Winkelgeschwindigkeit wird näherungsweise mit einem ma-
thematischen Modell beschrieben, welches kontinuierliche Präzession annimmt
und die stetige Abhängigkeit von der Containerhöhe im Experiment erfasst. In der
Translation zeigt sich eine sprunghafte Mobilitätszunahme oberhalb einer kritischen
Containerhöhe, welche das Modell allerdings nicht zu erklären vermag. Die Schei-
ben legen zudem ein „Gedächtnis“ bezüglich ihrer Rotationsrichtung an den Tag,
welches von ihrer Form abhängt.

Das kollektive Verhalten wird im zweiten Schritt anhand einer horizontalen Mono-
lage von regulären Sechskantscheiben experimentell untersucht. Dabei werden zwei
stationäre Nichtgleichgewichtszustände näher betrachtet, welche an die Rotator-
Phase eines plastischen Kristalls bzw. an eine Flüssigkeit erinnern. Zwischen diesen
zeigt sich in Abhängigkeit von der Anregungsfrequenz ein abrupter Übergang. Es
deutet sich an, dass unter Umständen auch das Steigern der Vibrationsamplitude
zum „Schmelzen“ führen kann. Zu dessen Quantifizierung wird eine verbesserte
Version des bond orientational order parameters sowie die Paarverteilungsfunktion
herangezogen.

Ein besonderes Augenmerk liegt auf zwei Strategien, die Interaktion in einem
Granulat gezielt über die reine Kontaktwechselwirkung zwischen den Teilchen hin-
aus auszudehnen. Für den Ansatz des teilweise nassen Granulats wird untersucht,
inwieweit ein handelsüblicher Tintenstrahldruckkopf eine präzise Kontrolle der
Wasserverteilung ermöglicht. Für den Ansatz eines magnetischen Granulats wird
ausblickend demonstriert, wie sich eine besonders schnell abfallende magnetische
Interaktion technisch realisieren lässt, indem die Teilchen aus je acht Kugelmagneten
geformt werden.

Abschließend wird ein Schlaglicht auf vier bemerkenswerte Auswertetechniken
geworfen. Drei Interpolationsalgorithmen für die Ergebnisse einer diskreten Fourier-
transformation werden anhand von Messdaten verglichen. Für die Darstellung von
Wahrscheinlichkeitsdichten wird der optimale Einsatz eines Kerndichteschätzers
diskutiert. Im Fall der Kreisdetektion in Kamerabildern mittels der Hough Trans-
formation wird ein Fallstrick bei der Leistungsoptimierung hervorgehoben. Für die
konsistente Auswertung lokaler Größen wird die Bedeutung der Mengen-Voronoi-
Zerlegung am Beispiel eines stäbchenförmigen Granulats illustriert. Darüber hinaus
wird die im Rahmen der vorliegenden Arbeit entstandene Software-Bibliothek vorge-
stellt, welche die Berechnung der Mengen-Voronoi-Zerlegung für den experimentell
besonders häufigen zweidimensionalen Fall ermöglicht.
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Abstract

This thesis is concerned with experiments on granular matter and focuses on mono-
layers.

The experiments examine in the first step the behavior of a single particle in
dependence on its shape. Disks, whose shape is varied systematically as regular
polygon with three to eight edges, are confined to a flat container and subjected to
vertical vibrations. Qualitatively distinct distributions of the angular velocity are
found for even and odd numbers of edges as well as a coupling between lateral
translation and rotation. The characteristic angular velocity is approximated using a
mathematical model which assumes constant precession and captures the continuous
dependence on the container height found experimentally. For the translation an
abruptly increased mobility is observed above a critical container height which
can not be explained by the model. The disks exhibit a “memory” regarding their
direction of rotation which depends on their shape.

The collective behavior is investigated experimentally in the second step using a
horizontal monolayer of regular hexagon disks. A closer look is taken at two non-
equilibrium stationary states which resemble the rotator phase of a plastic crystal
and a fluid, respectively. Between them, an abrupt transition in dependence on
the excitation frequency appears. In some circumstances increasing the vibration
amplitude can lead to a “melting” as well. For the quantification, an improved bond
orientational order parameter and the radial distribution function are used.

Particular attention is given to two strategies for extending the interaction in a
granulate beyond pure contact forces. For the approach of a partially wet granulate,
it is investigated to which extend a common inkjet printhead offers precise control of
the water distribution. For the approach of a magnetic granulate, it is demonstrated
how an eminently fast decay of the magnetic interaction can be realized technically
by forming particles of eight spherical magnets each.

Finally, four remarkable analysis techniques are highlighted. Three interpolation
algorithms for the results of a discrete Fourier transform are compared based on
measured data. For the visualization of probability densities, the optimal usage of a
kernel density estimator is discussed. For the circle detection in camera images by
means of the Hough transform, a pitfall in the performance optimization is pointed
out. For a consistent analysis of local properties, the significance of Set Voronoi
tessellation is illustrated using the example of a rod-like granulate. Furthermore, a
software library developed in the course of the present work is presented which facil-
itates the calculation of the Set Voronoi tessellation in the experimentally particularly
common two dimensional case.
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1 Introduction

Even though non-equilibrium systems are ubiquitous — all life happens far from
thermal equilibrium —, to unveil universal concepts for describing them is still a
major challenge (Cross & Greenside, 2009).

To tackle this problem experimentally, granular matter has emerged as a model
system in the last decades. With particle sizes on the macroscale, it became ex-
perimentally easily accessible thanks to nowadays high resolution digital imaging
techniques (Amon et al., 2017). Furthermore, it has proven to be helpful for studying
collective behavior (Aranson & Tsimring, 2006). In this context tuning the two essen-
tial ingredients, namely single particle behavior and particle-particle interaction, is
desired.

This work considers two fundamentally different approaches to tune the particles’
interaction: introducing a wetting liquid between granules and letting the particles
interact via magnetic fields.

Adding water introduces an interaction which can be isotropic in case of round
particles. Moreover, it might allow the realization of a patchy interaction if the
particle shape is chosen accordingly. The interaction can be influenced by controlling
the added liquid volume (Baur & Huang, 2017, and references therein).

Magnetism on the other hand is intrinsically anisotropic, as the basic building
blocks are dipoles. Thus, achieving patchy interaction is straightforward. By creating
magnetic clusters (see, e. g., Taheri et al., 2015) of several dipoles, higher order
interactions can be achieved (publication 4). Here, tuning the interaction requires a
change of the internal arrangement within one cluster.

Restricting experiments to a monolayer is favorable for practical reasons. A two-
dimensional system requires significantly less particles than a three-dimensional one
for becoming accessible to continuum descriptions. Furthermore, the individual par-
ticle remains experimentally directly accessible even for hundreds of particles. These
experimental advantages have already enabled a variety of insights. For example, an
analogue of surface melting has been found in a two-dimensional granular “crystal”
of wet spheres (May et al., 2013). Optical contact force measurements in a monolayer
of cylindrical disks (Majmudar & Behringer, 2005; Daniels et al., 2017) allowed to
verify predicted scalings in the vicinity of the jamming transition (Majmudar et al.,
2007). In addition, the launch of interdisciplinary conferences such as Traffic and
Granular Flow in 1995 emphasizes the benefits of transferring techniques developed
for granular monolayers to socioeconomic systems (Zuriguel et al., 2020).
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2 Single Particle Behavior of a
Vibrated Polygonal Disk

Aiming at experiments with monolayers, disks are an obvious choice as particle. A
single circular disk, e. g., a coin, spun on a table, already exhibits very intriguing
dynamics (Olsson, 1972; Leine, 2008) and has become known as Euler’s disk (Moffatt,
2000).

Disks on a vertically vibrating surface tend to tilt and exhibit a behavior reminis-
cent of the settling motion of an Euler’s disk. Apart from the vibrated container, the
systematic departure from rotational symmetry is a second notable difference of the
experiments presented here to the settling coin problem. Regular polygons with n
corners (n-gons) are chosen as disk outline, as they offer a systematic deviation from
a circle with a natural step size. In publication 1, particles with 3 ≤ n ≤ 8 have been
investigated. This range includes disks with regular hexagons (n = 6) as outline,
as used by Baur & Huang (2017). Before studying their collective behavior in the
next chapters, this chapter outlining publication 1 concentrates on the behavior of
a single particle. Here, we briefly summarize the control parameters tuning the
dynamics of a single disk and a comparison to equilibrium systems.

As shown in publication 1, shape is a crucial parameter for the dynamics of a
vibrated polygonal disk. The “memory” of a single particle regarding its direction of
rotation decreases with decreasing n, even if the incircle diameter is kept constant, as
revealed by Fig. 8 of publication 1. Furthermore, the particle’s behavior sensitively
depends on whether its number of corners is even or odd, as illustrated by Figs. 3
and 4 of publication 1.

Another important control parameter for the particle’s dynamics is the vertical
confinement, which is employed to guarantee a quasi two-dimensional situation in
the many particle case discussed in the next chapters. It influences the characteristic
angular velocity of the particle in a monotonous and continuous fashion, as shown
in Fig. 5 of publication 1. In addition, the coupling between translation and rotation
changes abruptly, depending on the vertical confinement. A steep increase of trans-
lational mobility above a critical confinement height is found (Fig. 6 of publication 1).
Furthermore, this abrupt change is accompanied by a jump in the relative phase of
rotational and translational motion, as shown in Fig. B1 of publication 1.

A question often associated with non-equilibrium systems inquires about equiva-
lents of principles known from equilibrium thermodynamics, such as equipartition.
No equipartition is found for rotational and translational degrees of freedom, as ex-
pected due to the strong dissipative character of the system. An interesting relation
appears nevertheless temporarily in Fig. 6 of publication 1: The energy contributions
in the observed degrees of freedom (two translational and one rotational) tend to
equal each other for low container heights in the first half of a vibration period.
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2 Single Particle Behavior of a Vibrated Polygonal Disk

Remarkably, different fixed ratios between rotational and translational kinetic
energy contributions have been reported for two previous experiments on granular
rods, although for different numbers of observed degrees of freedom in each case.
While Daniels et al. (2009) reports almost equipartition, Harth et al. (2013) reports a
ratio from translational to rotational energy of 2:1. In contrast, we temporarily find
the ratio 1:2. Harth et al. (2013) supposes that stronger coupling between rotation
and translation, due to a substantially higher filling fraction and 2D confinement,
causes equipartition in the experiment of Daniels et al. (2009). Publication 1 shows
that a 2D confinement can lead to strong coupling between rotation and translation
already for a single particle. Even though we tune the coupling via the confinement
height, we do not find equipartition.

Phenomenologically, the angular velocity distribution of a single vibrated polygo-
nal disk can be captured by a sum of multiple Gaussians symmetrically arranged
with respect to zero, as illustrated in Fig. 4 of publication 1. Here, clockwise and
counter-clockwise rotation are a priori equally likely due to the achirality of both, a
regular polygon itself and the driving through vibration.

Breaking this symmetry in a controlled way could be a focus of future investiga-
tions. Figure 2.1 shows two chiral disks that were derived from a regular hexagon of
edge length l. Its edges have been replaced by radial straight lines and arcs starting
in tangential direction. By varying the curvature radius ρ of the arcs, the deviation
from a regular polygon and the level of chirality can be tuned systematically. This
way, the gap to the so-called “vibrots” popularized by Altshuler et al. (2013) could
be closed, which are sophisticated particles with chirally arranged legs. They are
designed to preferably rotate in a fixed direction upon vibration. Their angular
velocity distribution has the shape of a single Gaussian with non-zero mean (Scholz
& Pöschel, 2017) and they are reported to self-organize (Scholz et al., 2018).

(a) (b)

l

ρ

d

(c)

Figure 2.1: (a) Photograph and (b) camera image from the experimental setup after
background removal of chiral, gear shaped disks with a regular hexagon
as convex hull. (c) Illustration of the construction defining the parameters.
Edge length l = 5 mm, curvature radius ρ = 8.66 mm and core hole
diameter d = 6 mm. Apart from the outline, physical properties are the
same as for the particles in publication 1.

6



3 Collective Behavior of Dry Polygonal
Disks

A particle’s shape is an important control parameter for the single particle behavior,
as discussed in the preceding chapter. Even though for all regular polygons the
moment of inertia is isotropic along axes perpendicular to the symmetry axis as
detailed in section 7.6, their shape is anisotropic. For convex anisotropic particles in
thermal equilibrium, their favored crystal lattice for dense packings can be predicted
based on a scalar sphericity measure and their coordination number in a dense fluid
(Damasceno et al., 2012). Furthermore, the broken rotational symmetry allows new
mesophases to emerge, as known from liquid crystals. Far from thermal equilibrium,
nematic order has been demonstrated in a monolayer of granular rods (Müller et al.,
2015). This raises the question to which extent universal aspects exist that apply to
thermal and athermal systems alike (Müller, 2015).

Extracting meaningful local information from arrangements of anisotropic parti-
cles requires special care. Publication 2 points out that classical Voronoi tessellation
based on a single point per particle is insufficient for obtaining consistent informa-
tion on an arrangement of anisotropic particles. Using a monolayer of granular rods
as an illustrative example, it clarifies that even supposedly simple order parame-
ters like the local packing fraction (given by the area of a particle to the are area
accounted to the particle) are impacted severely by the shortcomings of the classical
Voronoi tessellation (Figs. 4 and 5 of publication 2). A Set Voronoi approach, as
put forward by Schaller et al. (2013), resolves these issues reliably. To conduct Set
Voronoi tessellations in 2D efficiently, a Python library has been developed in the
course of the present work which is discussed in section 7.5 in detail.

The polygonal disks discussed in the preceding chapter become asymptotically
isotropic as their number of corners n approaches infinity. For almost isotropic
particles, Damasceno et al. (2012) predict hexagonal packing upon crystallization in
three dimensions. For thermal equilibrium in two dimensions, a hexatic phase has
been predicted for isotropic particles (Halperin & Nelson, 1978). Remarkably, Baur
& Huang (2017) report a non-equilibrium stationary state with hexagonal structure
for a vibrated monolayer of wet hexagonal disks. This raises the question whether
the observed ordering is unique to a wet granulate, which is the focus of the rest of
this chapter.

To quantify hexatic order in two dimensions, Halperin & Nelson (1978) propose
an order parameter which correlates the angles between lines joining the centers of
neighboring particles. Steinhardt et al. (1983) suggest a generalization which has
become known as the ql bond orientational order parameter (BOOP). Mickel et al.
(2013) point out that the traditional BOOP has severe shortcomings arising from
the discrete nature of the neighborhood concept and a free choice of its definition.
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3 Collective Behavior of Dry Polygonal Disks

They advocate to weight the contributions of neighboring particles (as defined
by Delaunay edges) based on the common Voronoi cell border and introduce an
improved BOOP q′l . To account as well for the particle’s anisotropy, we choose as
weight the fraction of the Set Voronoi cell perimeter A separating the particle of
interest from its neighbor i, denoted as Ai

A . This yields

q′l =

√√√√ 4π

2 l + 1 ∑
m=−l...l

∣∣∣∣∣ ∑
neighbors i

Ai

A
·Ylm

(π

2
, φ
)∣∣∣∣∣

2

. (3.1)

Here, Ylm(θ, φ) denotes the spherical harmonics of the “bonds” (Delaunay edges)
and it has been exploited that all bonds lie within the monolayer, resulting in a fixed
polar angle θ = π

2 .
With these analysis tools at hand, the collective behavior of a monolayer of regular

hexagonal disks upon vertical vibration is investigated experimentally. The follow-
ing results have been presented in talks at the Spring Meeting 2018 of the German
Physical Society (DPG) in Berlin (Völkel & Huang, 2018) as well as the Sino-German
symposium 2019 on granular “phase transitions” in Kloster Banz (Völkel & Huang,
2019) and are in preparation for publication.

The collective behavior of N = 420 hexagonal disks (parameters n = 6, h = 2 mm,
D = 6 mm, and d = 4 mm in the nomenclature of publication 1) is investigated
using the experimental setup of publication 1. The container is subjected to vertical
vibrations. The particles arrange differently depending on container height H and
vibration frequency f , provided sufficiently strong vibration that allows the particles
to be lifted off. The frontispiece and the inner side of the back cover each feature a
background removed snapshot with the disks exhibiting hexagonal order or not.

To highlight the transition from a hexagonally ordered state to a liquid-like state
without order, the improved BOOP is rescaled to

q̃′6 =
q′6 − q′6,rnd

q′6,hex − q′6,rnd
(3.2)

using the values obtained for a perfect planar hexagonal lattice, q′6,hex ≈ 0.7408,
and for points in a plane drawn from a homogeneous random distribution, q′6,rnd =
0.5. Consequently, melting a perfect hexagonal lattice to a random arrangement is
expected to result in q̃′6 declining from unity to zero.

As the bulk behavior is of interest, only the central region is considered. The
central region is found by discarding the outermost shells of particles. All particles
whose Set Voronoi cell contains points outside the convex hull of all particle centers
are defined to belong to the outermost shell k = 0. The k + 1-outermost shell then
consists of all particles which are not part of the 0, 1, . . . , k-outermost shells but
share an Set Voronoi cell border with an particle belonging to the k-outermost shell.
For the following analysis, shells up to k = 5 were discarded. This results in a
central region of interest (ROI) of approximately half the diameter of the convex hull
(mimicking the ROI choice of Müller et al. (2015), which is a concentrical circle of
half the container’s radius) and on average 85 particles for which q̃′6 is evaluated.
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Figure 3.1: Transition between hexagonally ordered and liquid-like state as measured
by the improved BOOP q̃′6. The average for all sweeps with increasing
frequency (filled symbols) and decreasing frequency (empty symbols)
and the over-all average (solid lines) are displayed respectively. The
standard deviation is indicated by the shaded regions. As a guide to the
eye, monotone piecewise cubic interpolation (Fritsch & Carlson, 1980)
is used between the data points. For H = 3.0 mm, three sweeps, for
H = 3.9 mm, two sweeps per direction are averaged.

Figure 3.1 shows frequency sweeps in the range f = 40 Hz to 200 Hz for differ-
ent container heights. The shaded regions indicate the standard deviation of the
distribution. A driving signal of constant amplitude is applied, resulting in a di-
mensionless acceleration of Γ = 5 to 9 (see section 7.2 for a detailed discussion of
the frequency response curve of the setup). No hysteresis is found, indicating that
the waiting time of one minute is sufficient for the system to rearrange after a 10 Hz
step. The systematically lower q̃′6 value for decreasing frequency at H = 3.0 mm can
be attributed almost completely to a single sweep deviating significantly from the
others.

Similar to the preceding chapter, the vertical confinement height proves to have a
strong influence. For the two lower container heights, H = 3.0 mm and 3.2 mm, a
clear and sharp transition from a hexagonally ordered state to an unordered, "liquid-
like" phase is found. The background removed snapshots on the frontispiece and on
the inner side of the back cover correspond to f = 120 Hz and 130 Hz respectively
for H = 3.0 mm. For this confinement height the transition occurs between these
two frequencies, for 3.2 mm it occurs between 100 and 110 Hz.

For the two larger container heights, H = 3.5 mm and 3.9 mm, the situation
is less clear. As the hexagonal ordering is always significantly less pronounced, a
transition is definitely far less incisive. For the largest container height, the maximum
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3 Collective Behavior of Dry Polygonal Disks

encountered q̃′6 value barely reaches the level of the unordered state above the clear
transition for the low container heights. If the transition still occurs, Fig. 3.1 suggests
that the critical frequency continues to decline with increasing container height to
. 85 Hz and < 40 Hz respectively.

The peak acceleration seems to be of minor influence in the case of dry particles,
provided that the particles are sufficiently agitated to reach the container lid. No
striking differences between experiments with Γ fixed at 4 and 8 were found, nor
in preliminary tests exploring the range up to Γ = 20. Mechanical resonances of
the setup should not play a significant role in the frequency range investigated
here either, as discussed in section 7.2. This indicates that an intrinsic timescale
determines the transition from the hexagonally ordered to the liquid-like state in the
dry case.

Qualitatively speaking, a dependence of the transition frequency on the container
height could be reasoned as follows: With increasing container height, the free flying
height of a particle increases. An increased free flying height is paralleled by an
increased free flying time. If the observed order-disorder transition arises from the
free flying time exceeding a certain fraction of the vibration’s period time, this would
explain the observed trend qualitatively. However, the measurements still defy a
quantitative prediction. For a quantitative understanding, further investigation is
required, possibly taking into account different modes of motion below and above
the transition (as suggested by Figs. 7 and B1 of publication 1).

To conclude, even dry hexagonal disks can self-assemble into a non-equilibrium
stationary state which resembles a rotator crystal (Zhao & Mason, 2009). For consis-
tent quantitative results, it is imperative to account for the anisotropy of particles,
e. g., by using Set Voronoi based measures. An order-disorder transition that de-
pends on the vertical confinement is found when varying the vibration frequency
and thus a characteristic time scale.

An additional energy scale is introduced in the problem if a wetting liquid is
added into the container, which will be the focus of the following two chapters.
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4 Collective Behavior of Wet
Polygonal Disks

Adding a wetting liquid, such as water, to granular matter allows liquid bridges to
be formed. These extend the interaction between a particle and its neighbors (or the
container) beyond pure contact forces (Herminghaus, 2005). The forces mediated
by the liquid are attractive, as the wetting liquid tries to minimize its surface area
and thus induces cohesion, at least in the so-called pendular and funicular regime
(Mitarai & Nori, 2006). Here, the surface tension of the wetting liquid gives rise to an
energy barrier that must be overcome by an individual particle in order to rupture a
liquid bridge (Fisher, 1926).

Agitated wet granular matter can exhibit an analogous behavior to melting, if
the energy injection per vibration cycle exceeds the rupture energy of the capillary
bridges (May et al., 2013). Similarly, Baur & Huang (2017) show that the force balance
between driving, gravity, and liquid mediated adhesion to the container bottom
determines the acceleration needed to excite wet hexagonal disks so that they can
form a rotator crystal. Above this first critical acceleration, they report no qualitative
change of the particle order within their experimental range. This raises the question,
whether a second critical acceleration exists above which the rotator crystal “melts”,
comparable to the frequency threshold discussed in the preceding chapter.

A classical technique to detect positional order, that is conceptually simpler than
the locally acquired q̃′6 BOOP, is the radial distribution function g(r), also known
as pair correlation function. In a perfect lattice, only distinct distances are found
between two sites. In this case, g(r) exhibits distinct peaks at characteristic particle-
particle distances r, that can be used to discriminate crystal-like from fluid-like or
gas-like granulate (Straßburger & Rehberg, 2000). For a fluid of rigid spheres, g(r)
jumps from zero to a finite value at the particle radius and rapidly decays with
oscillations to unity for increasing r (Kirkwood et al., 1950).

Figure 4.1a features the radial distribution function for a monolayer of N = 600
wet M2.5 hexagon plain brass nuts (ISO 4032, Würth 0300 25, as shown in Fig. 4.1b).
They differ from a disk with parameters n = 6, D = 5 mm, d = 2.5 mm, and
h = 2 mm only by slightly rounded corners and a thread in the central drilling.
This makes them a readily available substitute for hexagonal disks with halved
lateral extent of the specifically produced particles of Baur & Huang (2017). For
their particles with D = 10 mm, they report the radial distribution function of
N = 150 hexagonal disks to be essentially independent of acceleration in the range
20 < Γ < 43. To match their experimental conditions, H = 3 mm is chosen and
211 µL purified water (LaboStar TWF, conductivity κ = 0.055 µS

cm ) is added as wetting
liquid which corresponds to 1 % of the total particle volume. The number of particles
is chosen such that they occupy the same area fraction of the container, φ ≈ 46 %.
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4 Collective Behavior of Wet Polygonal Disks
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Figure 4.1: (a) Screenshot of the talk presented at the Spring Meeting 2017 of the Ger-
man Physical Society in Dresden (Völkel et al., 2017) showing the radial
distribution function g(r) for an increasing Γ sweep at f = 60 Hz (for clar-
ity, the vertical offset is increased by one for each line) and (b) photograph
of a hexagon nut used as particles here.

For low acceleration, the peaks of the radial distribution function clearly coincide
with the distances expected in a perfect hexagonal lattice with a lattice constant
equal to the first peak. Comparable to Baur & Huang (2017), this first peak coincides
with the circumcircle diameter of the screw nuts.

In Fig. 4.1a, showing data for a vibration frequency of f = 60 Hz, the violet-orange
and green-orange double peak structure vanishes for Γ > 30. This indicates that
the hexagonal order is lost and that a melting of a rotator crystal through stronger
vibrations might be possible. However, repeating the sweep with f = 40 Hz, 50 Hz,
and 70 Hz offers an inconclusive picture: Either no significant decay of the crystalline
structure is found at all for large accelerations or significant hysteresis between
increasing and decreasing the acceleration is found despite otherwise identical
experimental parameters or the structure of g(r) decays within the container radius
only for the measurement of maximum acceleration.

In conclusion, additional investigation is clearly required in order to clarify un-
der which conditions a rotator crystal of wet polygonal disks can be “molten” by
increasing the vibration amplitude.

However, these preliminary experiments reveal three substantial challenges for
in-depth investigations: Repeatability demands high precision control of the added
volume and distribution of the wetting liquid. The sealing of the container must

12



remain tight for prolonged durations (up to several hours) and even for driving
accelerations up to Γ = 44.7. Due to the continuous particle impact coupled with
the presumably required very high driving accelerations, the wear of the container
can become non-negligible, as it is sandblasted by the vibrated particles over time.

The following chapter discussing publication 3 addresses the first challenge and
an experimental solution to it in detail.
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5 Controlling Liquid Content and
Distribution

Mixing sand and water for building sandcastles is very easy, as no precise recipe is
needed to obtain a pasty compound. A granular pile can store a significant amount
of water, up to about 36 % of its volume (Herminghaus, 2005). The volume fractions
which allow building sandcastles span about two orders of magnitude, ranging
roughly from 2 ‰ to 20 % (Pakpour et al., 2012). As shown by Scheel et al. (2008),
it is possible to vary the liquid volume fraction of a wet granulate within a range
spanning one order of magnitude without varying its tensile strength more than
10 %. With increasing liquid content, “granular polymers” emerge, which, seen
individually, are in the funicular regime as their “pores” are filled by the wetting
liquid. As a consequence of this particular self-organized distribution of the wetting
liquid, mechanical properties of the three-dimensional sandpile are remarkably
consistent (Scheel et al., 2008).

A granular monolayer, however, is largely affected by its supporting boundary.
Here, liquid bridges between particles are as important as the bridges between
the particles and the bottom of the container (Baur & Huang, 2017). The latter are
often undesired. With liquid bridges merely between particles, only a significantly
reduced liquid volume can be stored in a 2D granulate. For a rough estimation, it is
expedient to consider the volume that can be kept in a single bridge. Semprebon et al.
(2016) report that 5 % of the spherical volume can be kept in a single bridge using
monodisperse spheres with a contact angle of 5°. With three bridges per particle
in a hexagonal 2D lattice, a sphere can hold at most about 15 % of its volume. This
fraction is also known as liquid content in quasi-2D configurations (May et al., 2013).
A conversion to a total volume fraction as in the 3D case is somewhat arbitrary, as
it is unclear how the total volume of the monolayer should be defined. Using the
diameter of the sphere as the height of the layer results in a maximum total volume
fraction of 9 %.

On a microscopic level, liquid mediated forces between individual particles show
a rich variety (Semprebon et al., 2016): Already for three equally sized spheres
at fixed positions and for a fixed volume of wetting liquid, four different liquid
morphologies resembling local energy minima have been found in simulations.
Changing the morphology of the wetting liquid (i. e. wetting or dewetting of a
neighboring particle) is a discrete event, accompanied by a typically abrupt change
of the liquid-air interface. As each morphology results in a different force between
the wetted particles, the exact distribution of the wetting liquid plays an important
role.

Consequently, experiments on the level of individual particles require suitable
tools for precise control and gentle injection of additional liquid volume. The
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5 Controlling Liquid Content and Distribution

capillary length scale resulting from the competition between gravity and surface
tension limits experiments to length scales of at most a few millimeters (Liu & Kim,
2017). Therefore reproducible volume control in the sub-microliter range is required,
which makes experiments very challenging with standard laboratory equipment
(Francz et al., 2020).

Publication 3 explores the possibility of employing a standard inkjet printhead to
achieve the required resolution in experiments. Using this approach, a volume reso-
lution more than three orders of magnitude finer than standard manual microliter
pipettes is achieved.

Figure 5.1 demonstrates the experimental manipulation of an individual liquid
bridge by injecting a stream of droplets of (22.4± 1.1)pL average volume, produced
by a single nozzle of a commercial inkjet printhead. A detailed investigation needs
to take into account contact angle hysteresis and surface roughness (cf. Fig. 4 of
publication 3), which lead to an asymmetric shape of the bridge in Fig. 5.1. Such
experiments address the pendular regime in the nomenclature of Mitarai & Nori
(2006).

� = 4 mm

Figure 5.1: Adding liquid to a single liquid bridge between two glass spheres using
an inkjet printhead. The bright vertical stripe above the liquid bridge
results from the stream of (22.4± 1.1)pL droplets produced by the inkjet
print head above.

Publication 3 investigates the quasistatic advancing and receding of a wetting
front. In the case of a monolayer of glass spheres residing on a glass slide (Fig. 6
of publication 3), this corresponds to experiments addressing the capillary regime
(Mitarai & Nori, 2006). If not fully constrained by neighbors, the individual particles
are able to reorganize during wetting and dewetting due to the moving liquid-air
interface exerting capillary forces on them. The evolution of the liquid-air interface
in turn depends on the order in which neighboring particles are wetted. As this
is determined by the particular arrangement of the spheres, a very complex and
sensitive system emerges. Nevertheless, the printhead’s drop rate is sufficiently
well controlled and the tiny drop size allows for very gentle injection, yielding high
repeatability.

Excellent repeatability and fine volume resolution makes the setup of publication 3
a very promising candidate for creating and manipulating individual liquid bridges
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in a granular monolayer. Combining it with a motorized linear stage should allow to
tackle the initial wetting liquid distribution challenge, as touched on in the preceding
chapter, successfully. However, creating an exceedingly scattered liquid distribution
might require substantial further engineering and fine-tuning or the use of multiple
printheads. Based on the figures of publication 3, evaporation rates are expected to
be an important issue that needs to be addressed for covering the whole container of
chapters 2 to 4.

Instead of introducing an additional wetting liquid that resides between the par-
ticles, the following chapter discussing publication 4 considers extending their
interaction beyond pure contact forces by embedding in each particle a remarkable
cluster of permanent magnets.
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6 Exotic Magnetic Interaction for
Particles

A way of enabling particles to interact without requiring contact — possibly medi-
ated by an interstitial liquid — is to make them magnetic. While the interaction of
magnetic dipoles can be repulsive or attractive depending on their relative orienta-
tion, an effective central attraction is achieved if they are allowed to reorient, as the
ensemble tries to minimize the magnetic field energy. Magnetic granulate therefore
agglomerates, exhibiting interesting dynamics (Kögel et al., 2018).

Magnetic agglomeration is of interest on very different length scales and in various
environments. They range from astronomic ones, where magnetic grains are consid-
ered to play a decisive role for the formation of certain planet types (Nuth et al., 1994;
Kruss & Wurm, 2018), to particles at the nanoscale, colloidally suspended to form
ferrofluids (Papell, 1965). Magnetic particles can self-assemble into fascinatingly
regular shapes (Taheri et al., 2015). Moreover, magnetic clusters can have surprising
equilibrium solutions which are infinitely degenerate (Schönke et al., 2015).

Publication 4 investigates a magnetic cluster with exceptional properties. For
eight point dipoles placed at the corners of a cube, the ground state is an example
of such an infinitely degenerate equilibrium (Schönke et al., 2015). Publication 4
derives analytically that this exotic ground state is a dotriacontapole (32-pole) whose
far-field decays with the inverse seventh power of the distance. As the force on
a dotriacontapole depends on the fifth derivative of the magnetic field (see, e. g.,
Torres del Castillo & Méndez Garrido, 2006), the mutual attraction of two dotriacon-
tapoles decays with the inverse twelfth power of the distance, impacting the time
scale for agglomeration severely (appendix C of publication 4).

Figure 6.1 sketches the magnetic flux density in z-direction along a face diagonal
in the x-y-plane passing through the center of the cube, as given by Eq. 6 of publi-
cation 4. With r denoting the distance to the center of the cube, the magnetic field
strength first increases with r4, reaches its maximum close to the cube’s surface and
decreases proportional to r−7 for large distances.

This remarkably steep decay of the magnetic field strength is confirmed exper-
imentally (Fig. 2 of publication 4) using spherical neodymium magnets with a
diameter of 19 mm arranged to a cube with edge length L = 39.5 mm. For granular
experiments, miniaturized versions are clearly favorable, preferably embedded in
spherical enclosures, as shown in Fig. 4 of publication 4.

Assembling miniaturized dotriacontapole particles and fixing them in their mag-
netic ground state proves to be a particular challenge (Braun, 2019): First, all magnets
must have the same magnetic moment. Second, for small magnetic spheres, static
friction easily exceeds their mutual torque which makes it hard to reach the ground
state. Permanent lubrication, however, defies the goal of fixing the spheres’ orien-
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log |Bz|

log r

B ∝ r 4

B ∝ r−7

B ∝ r−3
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ii)

Figure 6.1: Magnetic flux density along one axis |Bz| as a function of the distance r
to the center of a dotriacontapole for the ideal case (black) and for a
single dipole deviating (pink and red). The r−3-tail can originate, e. g.,
from (i) one magnetic moment being larger than the ideal one (black), or
(ii) being misoriented.

tation once the ground state is reached. In both cases, a single deviating magnet
leads to a r−3-tail of the magnetic flux density, as sketched in red in Fig. 6.1. The non-
vanishing total dipole moment then dominates the field strength for large distances
and effectively limits the range in which the cluster acts as a dotriacontapole.

Concerning future magneto-granular experiments, the successful experimental
realization of dotriacontapoles poses the question how they interact collectively. As
their name implies, they would provide a particularly patchy granulate. This feature
could lead to interesting dynamics beyond slow agglomeration in the dilute case as
discussed above.

Finally, publication 4 allows to envision a special kind of magnetic granulate
realizing design goals exactly opposite to those discussed at the beginning of this
chapter: Particles interacting with each other (almost) exclusively through collisions
that can nevertheless be driven by external magnetic fields. Small embedded dotri-
acontapoles could be dimensioned such that they barely contribute to the mutual
interaction. Ideally, the magnetic drive would then be realized using highly inhomo-
geneous external fields with non-vanishing fourth or even fifth derivative, leading
to a torque or force on an ideal dotriacontapole. Relying only on a dipole tail due to
imperfections as discussed above would give no advantage over simple permanent
magnets in the far field. Preparatory work towards exciting a monolayer of spheres
with embedded dotriacontapoles magnetically has already been started by Weber
(2019).
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7 Technical Details and Supplements

In this chapter, the most notable algorithmic tools which have been used, adapted
or developed during this thesis are introduced and explained briefly. Furthermore,
additional technical details of the experimental setup are given.

7.1 Improving Amplitude Estimation using DFT
Interpolation

To achieve the desired peak acceleration independent of the load on the electromag-
netic vibrator and the power amplifier’s frequency response curve, the experimental
setup used in publication 1 features a control loop. The function generator setting
is readjusted according to the acceleration signal, which is sampled using a digital
multimeter. The multimeter’s sampling frequency is set only indirectly via the
integration time configuration. Therefore, the time scale of the function genera-
tor is used as reference. As the function generator and digital multimeter are not
phase-locked, they are expected to use slightly different time units and drift. The
measured acceleration curve therefore appears to have a frequency slightly differing
from the set value fvib. Details are provided in the top panel of Fig. 7.1, where fvib is
compared to the apparent frequency ffit, obtained as described below.

For extracting the amplitude of the sinusoidal driving from the noisy acceleration
signal, a standard technique is least squares fitting. Here, however, as the apparent
frequency of the signal is unknown, the fit has to be nonlinear. Convergence is
thus not guaranteed, especially for adverse initial values, and the runtime is not
constant. Consequently, the least squares approach is disadvantageous for a control
loop. Striving for a substitute with constant runtime, this chapter compares three
algorithms based on the deviation of their result from a least squares fit’s result.

The discrete Fourier transform (DFT) permits finding an unknown frequency in
constant time. In the general case, increasing the resolution in the frequency domain
comes at the cost of increasing the recording duration unless additional assumptions
can be made. Here, it is known that the excitation contains a single frequency. In
this case, interpolation approaches have been discussed for more than four decades
(Penhune & Martin, 1965; Rife & Vincent, 1970; Jain et al., 1979; Grandke, 1983; Quinn,
1994, 1997). With the DFT result given, only the ratios of the largest absolute value
(the maximizer) to its two neighboring values need to be considered. To estimate
the frequency with sub-bin resolution, the common strategy is to determine the
direction of the detuning relative to the maximizer and the detuning modulus in
units of the DFT bin spacing.

Quinn (1994) suggests an estimator based solely on the neighbor to maximizer
ratios’ real part. Remarkably, the asymptotic mean standard error of this estimator is
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reported to scale with the same power of the sample size as a least squares fit.
Quinn (1997) discusses an algorithm, based solely on the neighbor to maximizer

ratios’ modulus (i. e. absolute value), he refers to as “the estimator of Rife & Vincent”.
This attribution surprises, as Rife & Vincent (1970) investigate three different inter-
polation methods and their “method 2” leads to the estimator discussed by Quinn
merely for the parameter choice M = 0. Furthermore, Rife & Vincent (1970) explicitly
acknowledge that this special case had been derived and applied by Penhune &
Martin (1965) before. Concededly, this presumably first publication is not publicly
available. The technical report number 378 containing the article ESD-TDR-65-41
cited by Rife & Vincent (1970) is left out in the list of unclassified publications of
Lincoln Laboratory (Hudson, 1966) and appears to be still classified more than half
a century later. Quinn (1997) points out that this established estimator can exhibit a
suboptimal performance in terms of asymptotic variance under certain conditions
(irrational frequency, the modulus of detuning being very small).

Finally, Quinn (1997) introduces a new estimator combining the two preceding
approaches. The direction of the detuning is estimated based on the neighbor to
maximizer ratios’ real parts and the absolute value is used additionally for estimating
the modulus of the detuning. This estimator is consequently referred to as real part
& modulus in the following.

The performance of these three estimators is compared using experimentally
acquired acceleration data as test case in the middle panel of Fig. 7.1. The model
A sin (2π f t) + B cos (2π f t) is fitted via frequency f and the parameters determining
the amplitude of the sinusoidal vibration, A and B. The result of this nonlinear least
squares fit, ffit and Yfit =

√
A2 + B2 respectively, is used as reference for judging

the DFT interpolation estimators. The values indicated by the maximizer without
any interpolation are added for comparison. Due to the experimental parameters,
the spacing between adjacent DFT bins is ∆ fDFT = 5 Hz. Without interpolation,
the closest frequency evaluated by the DFT differs by roughly 1

10 ∆ fDFT from the
apparent vibration frequency, as indicated by squares. When comparing the three
different interpolation techniques based on either the neighbor to maximizer ratios’
modulus ( ), real part ( ) or modulus and real part ( ), they perform all equally
well and determine the detuning to a permille level of the DFT bin spacing. In fact,
the first two estimators give nearly indistinguishable results in this test.

The long established estimator, based solely on the neighbor to maximizer ratios’
modulus, is used in the control loop of the experimental setup, as it is slightly
simpler than the other two. The interpolation is conducted between the maximizer
of the DFT Ym, and its immediate neighbor of larger magnitude Yl . The detuning
modulus is estimated using (Rife & Vincent, 1970, Eq. 109):

δ =
|Yl |

|Yl |+ |Ym|
=

| Yl
Ym
|

1 + | Yl
Ym
|

. (7.1)

Scalloping loss (see, e. g., Lyons, 2010, chap. 3.10) describes the amplitude under-
estimation of the DFT maximizer with respect to the signal’s true amplitude and
occurs if the signal’s frequency does not coincide with a frequency sampled by the
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Figure 7.1: Comparison of three DFT interpolation techniques, based on the neighbor
to maximizer ratios’ modulus, real part or both. Experimental parameters:
3 V peak-to-peak, 50 % gain, fsampling = 10 kHz, N = 2000 samples.

DFT. The squares in the bottom panel of Fig. 7.1 indicate a scalloping loss on the
percentage level for the test case if no interpolation is applied. With the detuning δ
determined, the scalloping loss can be countered using the sinc-shaped magnitude
response curve of a DFT bin. The true amplitude of the sinusoidal vibration is
estimated using (Rife & Vincent, 1970, Eq. 113):

Yest =
2 |Ym|π δ

N sin(π δ)
, (7.2)

where N is the number of samples. This reduces the difference between the least
squares result and the amplitude estimated via DFT interpolation by typically more
than one order of magnitude to a sub-permille level. The estimated amplitude
primarily depends on the preceding frequency estimation. Thus only a single
interpolation result is shown in the bottom panel for the sake of clarity, representative
for all three estimators discussed here.
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Note, that in addition to frequency and amplitude, phase can be inferred as well
in constant time using DFT interpolation (Jain et al., 1979; Rehberg, 1983). Under
certain conditions, these results can be even extended to multitone signals (Jain et al.,
1979). DFT interpolation is thus an extremely valuable tool, especially for control
loops with strict requirements regarding the runtime.

7.2 Mechanical Resonances

The electromagnetic vibrator setup used in the experiments presented in publica-
tion 1 and chapters 3 and 4, is shown in detail in Fig. 7.2. The container consisting of
a lid and bottom plate, each made from 1 cm thick polycarbonate (Bayer Makrolon),
sandwiching a spacer ring which sets the container height H. A diffusing film is
taped to the bottom from below. This sandwich sits on an aluminum base keeping
the LEDs for stroboscopic background illumination at a constant distance. On the
rim of this base plate, the accelerometer (Dytran 3035B2) is screwed. The aluminum
base is mounted on the electromagnetic vibrator’s shaft using an adapter plate made
from 2 cm thick polyvinyl chloride.

container

base

adapter

vibrator accelerometer

lid

spacer

bottom

diffusor

particles

LED stripes

Figure 7.2: Detail view of a container mounted on the vibrator setup

For obtaining the frequency response curve of the experimental setup, a sinusoidal
input signal with constant amplitude of 0.1 V is applied to the vibrator’s driving
circuit, whose power amplifier is set to 50 % gain. The resulting dimensionless
acceleration Γ is measured as a function of the vibration frequency f . Figure 7.3a
shows the result for an empty container. Two clear peaks are found.

The measured frequency response curve can be captured fairly well by considering
the mass-spring-damper model shown in Fig. 7.3b. The adapter, base, and container
are each modeled by a point mass mi (i ∈ 1, 2, 3) connected by a spring with constant
ki and a linear dashpot providing damping λi to the next mass respectively the shaft
of the vibrator. With their coordinates denoted as xi respectively xs for the shaft, this
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Figure 7.3: Frequency response curve (a) of the experimental setup for a sinusoidal
input signal of constant amplitude and mass-spring-damper model (b)
used for the fit (red solid line). The order-disorder transition frequency
discussed in chapter 3 (dashed lines) and the frequency range investi-
gated there (dotted lines) are given as reference.

yields as equations of motion

m1 ẍ1 = −k1(x1 − xs)− k2(x1 − x2)− λ1(ẋ1 − ẋs)− λ2(ẋ1 − ẋ2)

m2 ẍ2 = −k2(x2 − x1)− k3(x2 − x3)− λ2(ẋ2 − ẋ1)− λ3(ẋ2 − ẋ3)

m3 ẍ3 = −k3(x3 − x2) − λ3(ẋ3 − ẋ2) .
(7.3)

The particular solution to the above set of differential equations for a sinusoidal
driving yields the desired frequency response curve. To shorten the notation, the
ratios ω2

i = mi
ki

, δi = λi
ki

, p = k2
k1

, and q = k3
k2

are used in the following. For a
sinusoidal drive xs(t) = x̂s exp(iω t) of frequency ω and amplitude |x̂s|, the ansatz
xi(t) = x̂i exp(iω t) suggests itself. Hence, finding the frequency response boils
down to solving

M




x̂1
x̂2
x̂3


 =




x̂s(1 + iω δ1)
0
0


 , where (7.4)

M =




1 + p− ω2

ω2
1
+ iω(δ1 + δ2 p) −(1 + iω δ2) p 0

−(1 + iω δ2) 1 + q− ω2

ω2
2
+ iω(δ2 + δ3 q) −(1 + iω δ3) q

0 −(1 + iω δ3) 1− ω2

ω2
3
+ iω δ3


 ,

(7.5)
for the (complex) amplitudes x̂i of each mass mi.

As the model maps the bending of container, base and adapter to the springs ki,
the accelerometer is attached to m1 in the model, as it is screwed into the rim of the
aluminum base close to a screw connecting it to the adapter. Applying Cramer’s

25



7 Technical Details and Supplements

rule (Cramer, 1750, pp. 656–659) yields

x̂1 =
x̂s(1 + iω δ1)

((
1 + q− ω2

ω2
2
+ iω(δ2 + δ3 q)

)(
1− ω2

ω2
3
+ iω δ3

)
− (1 + iω δ3)2 q

)

det(M )
(7.6)

with det(M ) additionally depending on ω1 and p.
In principle, the absolute value of Eq. (7.6) can be fitted directly to the measured

frequency response curve to obtain all nine parameters ωi, δi (with i ∈ 1, 2, 3 each),
p, q, and x̂s. In practice, reasonable convergence requires good initial values.

The value of ω1 is determined in an relatively simple independent experiment.
For this purpose, the container and base are removed and the accelerometer gets
attached directly to the rim of the adapter. In the mass-spring-damper model, this
corresponds to m2 = m3 = 0, k2 = k3 = 0, and λ2 = λ3 = 0, yielding the standard
driven harmonic oscillator. The parameter ω1 is thus derived from the frequency
response of this reduced top, which shows a single resonance around 1000 Hz. To
reduce the influence of approximations inherent to the linear point mass model, the
fit is carried out only in the range ≤ 910 Hz, where the resulting amplitude remains
below ten times the driving amplitude, yielding f1 = ω1

2π = (946± 2)Hz.
Figure 7.3a shows the result of a least square fit of Eq. (7.6), with ω1 fixed to the

independently determined value and δ1 = δ2 = 0. This supposes that all damping
happens in the container. As without this restriction the fit returns clearly unphysical
negative damping values for δ1 and δ2, the limits of the simple mass-spring-damper
model are reached. However, the model still correctly predicts the most prominent
resonance peak to be around 600 Hz with no container mounted on the base (i. e. m3,
k3, and λ3 removed).

The frequency range covered in the experiments in chapter 3 is marked by dotted
black lines in Fig. 7.3a. Towards its lower limit at 40 Hz, the frequency response
of the electromagnetic vibrator falls off slightly. This is no mechanical resonance
of the top, as this feature remains if only the accelerometer is mounted (directly)
on the shaft. To compensate the falloff, the control loop described in the preceding
section has been developed and employed for the experiments in publication 1.
The critical frequency, at which the transition between an hexagonally ordered and
liquid-like random distribution of the particle occurs, is indicated by the dashed
lines respectively. No mechanical resonances can be identified in the vicinity of these
frequencies.

7.3 Fast, Accurate and Sub-pixel Resolving Circle Hough
Transform

In this section, some additional details concerning the fast, accurate and sub-pixel
resolving circle Hough transform discussed in the methods part of publication 1 are
given.

The circle Hough transform (Duda & Hart, 1972; Kimme et al., 1975) is a gener-
alization of the original Hough transform (Hough, 1959, 1962) developed for the
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recognition and analysis of straight lines. Their common idea is to transform patterns
in an image to features in parameter space in such a way that a computationally
expensive global detection problem in image space is converted to a simpler local
peak detection task in parameter space (Illingworth & Kittler, 1988).

This parameter space is also known as Hough space and traditionally represented
by an accumulator array (Duda & Hart, 1972) whose dimensionality matches the
number of parameters of the object to be found. During the transform, each cell gath-
ers votes (Illingworth & Kittler, 1988, and references therein): Its value is incremented
for every image pixel that can be explained when assuming that the searched object
has the parameters represented by the respective accumulator cell.

For the problem of finding circles of unknown radius, the corresponding Hough
transform can be phrased as convolution (Merlin & Farber, 1975; Ballard, 1981) of
an edge image with circles of various radii or, when sorting these circles according
to their radius along the third dimension, a (possibly truncated) right circular cone
(Duda & Hart, 1972; Ballard, 1981).

Hollitt (2012) advances the convolutional approach and suggests to exploit the
associativity of convolution by incorporating the edge detection step into a single
convolution kernel. Using computationally efficient 3D FFT algorithms this approach
promises high performance.

However, it is important to note that the inherent restriction to linear edge filters
(otherwise the edge detection step can not be incorporated into the kernel) makes
accurate parameter estimation infeasible: A defining characteristic of a linear edge
filter is that a rising edge and a falling edge (cf. Fig. 7.4c) give exactly opposite
responses, as sketched in Fig. 7.4e. After convolution with the Hough cone, the
left edge countervails the contribution of the right edge at the circle’s center in
Hough space. This cancellation of votes leads to a vanishing vote density at the
circle’s center for an ideal setup. It remains a pronounced feature in experiments,
highlighted by the green dotted circle in Fig. 7.4f, which is nevertheless inexpedient
for accurate parameter estimation, as it is particularly susceptible to noise. In other
words, following the proposal of Hollitt (2012) and using only a linear edge filter
when analyzing images of nearly undisturbed circles defies the original idea of the
Hough transform which is converting the problem of searching a spatially extended
pattern to a local maximum search.

To summarize, an accurate parameter estimation using the Hough transform
requires the usage of a non-linear edge filter, as illustrated in Fig. 7.4g. The typically
more expensive part of the transform can still be performed efficiently using convo-
lution via FFT, but it must necessarily be preceded by a separate edge detection step.
The distinct vote density maximum then makes the correct parameters (to within
the resolution of the accumulator array) evident, cf. Fig. 7.4h.

Sub-pixel resolution can be achieved when using a Hough cone consisting of
blurred circles and subsequently performing a refinement step, as described in
publication 1. Using synthetic images of particles with r = 20.5 px and 21 px which
are shifted systematically between positions with integer coordinates as test case,
the average error in the x- or y-coordinate is 8.3 · 10−3 px and the maximum error
remains below 0.13 px.
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Figure 7.4: Schematic sketch (a) and sample image (b) containing a circle to be found,
together with the brightness (c) and (d) along a line (marked in red)
passing through the circle’s center. Using a linear edge filter (e), the
Hough space slice (f) along that line exhibits a vanishing vote density
(white) due to the cancellation of votes from opposite edges for the circle’s
parameters (x = 67 px, r = 20 px, highlighted by the green dotted circle).
A non-linear edge filter response (g) is required for obtaining in the
Hough space slice (h) a vote density maximum (black) for the correct
parameters.

7.4 Optimal Kernel Density Estimation with Varying
Bandwidth

Kernel density estimation infers a continuous probability density from a finite
number of observations. Roughly speaking, this is achieved by convolving a sum
of delta-distributions centered at the data points with a window function of chosen
bandwidth. The shape of the window function has only a minor effect on the
efficiency of the estimation in the asymptotic mean integrated square error (AMISE)
sense (Epanechnikov, 1969; Scott, 2015). For many practical applications the main
question is thus how to choose the width optimally. This section discusses the
different strategies used in the figures of publications 1 and 2, starting with a
pragmatic approach and advancing to current state of the art techniques.
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Figure 3 of publication 1 employs a kernel density estimate for conveying the local
density of data points in crowded regions of the scatter plot. By coloring the symbols
accordingly, structures can be visualized not only in dilute parts where individual
symbols of reasonable size are still separable, but even in very dense regions where a
continuous patch is formed. This enables an intuitive exploration of the dataset and
highlights striking features such as multimodality. Here, the kernel density estimate
is used primarily to indicate a qualitative trend and not for quantitative analysis.
Optimizing for best visual appearance by manually adjusting the bandwidth is
absolutely sufficient in this case. This pragmatic approach is arguably quicker than
carefully choosing a very sophisticated method if neither quantitative rigor nor
automation is required. A fully automatic procedure must take care not to obscure
features in complicated distributions by oversmoothing the data.

For very “simple” unimodal and approximately Gaussian distributions, such
as the probability density of the local packing fraction obtained with Set Voronoi
depicted in Fig. 4 of publication 2, easy rules of thumb can be used for calculating
the bandwidth that minimizes the AMISE (Scott, 2015). However, the underlying
assumption of known shape has severe implications: With correct a priori knowl-
edge about the shape of the distribution, a fit converges at a faster rate than the
nonparametric estimate (Scott, 2015). With an incorrect assumption, an inherent
flaw arises. The implications range from an internally inconsistent procedure to
arbitrarily bad estimates in adverse cases, e. g., for a mixture of two clearly separable
distributions (Devroye et al., 1997).

Multimodal distributions, as found, e. g., in Fig. 4 of publication 1, clearly require a
different approach. For a robust method, the dependence on assumptions about the
shape of the distribution needs to be relaxed. The “plug-in” procedures put forward
by Park & Marron (1990) and Sheather & Jones (1991) achieve this to some degree.
They assume a specific distribution merely where the second derivative of the to-
be-estimated density is required. While this reduces the impact of the distribution
choice on the optimal bandwidth estimate, it still inherits the same flaw (Devroye
et al., 1997; Botev et al., 2010). A better solution to this chicken-and-egg problem
has been suggested by Botev et al. (2010): By numerically finding a self-consistent
solution, their Improved-Sheather-Jones (ISJ) algorithm avoids the issues inherent in
assuming a specific distribution completely.

While the methods discussed above select a fixed bandwidth with optimal prop-
erties, varying the kernel’s bandwidth can improve the estimate further (Breiman
et al., 1977). To produce an optimal estimate even in regions of low probability, the
width should be adapted depending on the local density. Adapting the bandwidth
inversely proportional to the square root of the to-be-estimated density is optimal
(Abramson, 1982). A straightforward solution is to obtain an optimal pilot estimate
using a kernel of fixed bandwidth (Agarwal & Aluru, 2010). Then only the propor-
tionality constant remains to be optimized. It is advisable to use the ISJ algorithm
for obtaining the optimal pilot estimate and leave-one-out maximum-likelihood
cross-validation (LOO MLCV) for subsequently finding the optimal hyperparame-
ter (Z. Botev, private communication). LOO MLCV (Duin, 1976) gives an optimal
result in the sense that it returns the estimate with the highest likelihood to be the
density underlying the observations (Silverman, 1986). Kernel density estimation
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with optimally varying bandwidth allows for smooth estimates over several orders
of magnitudes. This is especially helpful if the tail of a distribution is of interest, like
in Fig. A1 of publication 1. All in all, this approach is recommended if there is no
prior knowledge about the underlying distribution that can be taken advantage of.

Finally, it is important to note that considering the support (and thus the bound-
aries) of the estimated probability density is at least as important as the bandwidth
choice for an optimal result (Botev et al., 2010; Z. Botev, private communication). To
give an example, the local packing fraction in Fig. 4 of publication 2 is non-negative
per definition. This lower bound at zero can be easily accounted for using the reflec-
tion method (Silverman, 1986). As a symmetric kernel is used, this treatment of the
boundary manifests itself in the derivatives vanishing at the vertical axis. For the
case of finite support, Botev et al. (2010) construct a precise solution, while Silverman
(1986) offers a pragmatic approach including an extension to periodic boundary
conditions.

7.5 Application Example of Set Voronoi in Two
Dimensions

In this section, a minimal application example is given that calculates and displays
a Set Voronoi tessellation in two dimensions. The python source code in listing 7.1
employs the 2D Set Voronoi implementation setvoronoi2d.py which is covered by
publication 2 and has been released as free open source software (Völkel, 2020). As a
test case, a Scene consisting of particles of different size, orientation and shape is
constructed: two straight lines, two rectangles, two regular triangles (n = 3), three
circles and a “wedge”-style particle. The graphical output is shown in Fig. 7.5.

Listing 7.1: Application example of setvoronoi2d.py
1 import numpy as np
2 from s e t v o r o n o i 2 d import ∗
3 s cene = Scene ( s amp l i n g d i s t a n c e = 10)
4 s cene . add_l ine s ( np . a r r a y ( [ [ 105 ,0 , 120 ,30 ] , [ −100 ,200 , −50 ,150 ] ] ) )
5 s cene . add_rec tang l e s ( np . a r r a y ( [ [ 1 0 0 , 1 0 0 ] , [ 1 0 0 , 1 5 0 ] ] ) ,

np . a r r a y ( [ np . p i /6 , 0 ] ) , np . a r r a y ( [ 1 0 , 2 0 ] ) , np . a r r a y ( [ 5 , 7 ] ) ,
0)

6 s cene . add_regularNgons ( np . a r r a y ( [ [ 120 , −75 ] , [ 1 2 0 , 7 5 ] ] ) ,
np . a r r a y ( [ 0 , np . p i / 2 ] ) , np . a r r a y ( [ 2 0 , 2 1 ] ) , 3)

7 s cene . a dd_c i r c l e s ( np . a r r a y ( [ [ 0 , 0 ] ] ) , 100)
8 s cene . a dd_c i r c l e s ( np . a r r a y ( [ [ 0 , 2 0 0 ] , [ 1 0 0 , 2 2 0 ] ] ) , 50)
9 s cene . add_po in t s_as_s i ng l e_pa r t i c l e ( np . a r r a y ( [ [ −100 ,100 ] , [ −90 ,95 ] , [ −80 ,100 ] ] ) )

10
11 s e t v o r o n o i = Se t v o r ono i (∗ scene . d i s p a t c h ( ) )
12
13 import s c i p y . s p a t i a l
14 import ma t p l o t l i b . p yp l o t as p l t
15 f i g , ax = p l t . s u b p l o t s ( 1 , 1 )
16 ax . s e t_aspec t (1 )
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17 s c i p y . s p a t i a l . voronoi_plot_2d ( s e t v o r o n o i . c i r c um f e r e n c e v o r o no i ,
ax=ax , show_ve r t i c e s=Fa l s e , p o i n t_s i z e =1.65 , l i n e_w id th =1.5 ,
show_points=True )

18 p l t . show ( )
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Figure 7.5: Graphical output of listing 7.1 showing the Set Voronoi cell borders (black)
alongside with the points (blue) used for obtaining the tessellation.

For convenience, a short discussion of the classes and functions used in listing 7.1
is presented below. For completeness, listing 7.2 at the end of this section details
how to access the full documentation of setvoronoi2d.py.

Scene

A Scene is used to accumulate the points forming the (possibly eroded) circumfer-
ences of particles (possibly of different shapes) such that the Set Voronoi tessellation
can be calculated easily.

Scene(samplingdistance) is the constructor of the class. samplingdistance must
be a scalar, indicating the maximum distance between two neighboring points along
an edge. For precise interpolation the minimum distance is samplingdistance/2. To
force this feature, several functions support an optional argument interpolatePre-
cisely=True. Details can be found in the full documentation (see listing 7.2).

The add_*(...) functions are offered for conveniently composing a Scene by
subsequently adding common and even arbitrary types of particles.

31



7 Technical Details and Supplements

add_lines(linesX1Y1X2Y2) adds multiple straight lines by specifying their end-
points. The argument linesX1Y1X2Y2 must be a np.array of shape (nLines, 4) and
contain along its last axis the coordinates of the endpoints in the order X1 Y1 X2 Y2.

add_rectangles(particlecenters, orientation, l, w, erosiondepth) adds rotated
rectangles by specifying their center, orientation and extent. particlecenters must
be a np.array of shape (nParticles, 2) and contain along its last axis the coordinates
in the order X Y. orientation, l and w must be np.arrays of compatible length and of
shape (length,), i. e. one-dimensional. orientation is measured in radians against
the +x axis and describes the angle of the edges of length l. l and w indicate the
length and width of the rectangles respectively and if applicable before erosion.
erosiondepth is expected to be a scalar. If erosiondepth is positive, the rectangles
effectively feature rounded corners with erosiondepth as radius. Note, that it is
assumed that every rectangle requires all four corners, i. e. all(l - erosiondepth > 0)
and all(w - erosiondepth > 0) evaluate to True.

add_regularNgons(particlecenters, orientation, ccr, ncorners) adds regular n-
gons by specifying their centers, orientation, circum-circle-radius and number of
corners. For particlecenters and orientation, the same requirements apply as de-
scribed for add_rectangles above, however orientation indicates the location of a
corner. ccr indicates the circum-circle-radius of the regular n-gon and can be either
scalar or a np.array of compatible length. ncorners must be a scalar.

add_circles(particlecenters, erodedradius, ncorners=None) adds circles speci-
fied by their center and radius (after erosion). For particlecenters the same require-
ments apply as for the two preceedingly described functions. erodedradius (as well
as ncorners if specified) must be a scalar. If ncorners is not set or is None, the circles
are approximated by a regular n-gon, such that along the arc there is at least one
point per samplingdistance.

add_points_as_single_particle(circumferencepoints, appendCenter=True) is
available for adding a particle of arbitrary shape and interpolation by directly speci-
fying all points lying on the (possibly eroded) circumference. circumferencepoints
must be a np.array of shape (nPoints, 2) and contain along its last axis the coor-
dinates in the order X Y. If this function is used for manually adding a particle,
appendCenter must not be None; if a np.array is passed, it must be of shape (1, 2)
and is directly used as particlecenter, otherwise the center is calculated as mean of
all circumferencepoints.

dispatch() renders the composed Scene and returns the data structures required
by the constructor of the Setvoronoi class.

Setvoronoi

The class Setvoronoi implements the algorithms required for performing the actual
Set Voronoi tessellation.

Setvoronoi(points, particlecenters, particle2points, point2particle) is the con-
structor of the class. These mandatory arguments must have the shape of the
respective return value of dispatch() of a Scene instance. The recommended usage
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is thus setvoronoi = Setvoronoi(*scene.dispatch()). For a description of the op-
tional arguments of the constructor, the reader is referred to the full documentation
(cf. listing 7.2).

Listing 7.2: Accessing the full documentation of setvoronoi2d.py
1 import s e t v o r o n o i 2 d
2 help ( s e t v o r o n o i 2 d )

7.6 Moment of Inertia for Special Cases

In this appendix, the moment of inertia is derived for particles in the style of the
regular n-gon disks discussed in publication 1.

7.6.1 n-fold Symmetry

The fact that the inertia tensor describes an ellipsoid makes it easy to verify that
particles with n-fold symmetry with n ≥ 3 are a symmetric top:

Lemma 1. If there are at least three different axes lying in one plane and intersecting in a
common point C and for these axes the moment of inertia J is equal, it is identical for all axes
lying in this plane and passing through that common point.

Every (unique) axis with equal moment of inertia contributes two points of equal
distance to the origin through which the inertia ellipsoid must pass. From this
argument follows that n-fold symmetry for n = 3 and n ≥ 5 is sufficient to have a
symmetric top. For n = 4 the above argument gives only two distinct or unique
axes. Thus a slightly different argument is needed here:

Lemma 2. If for at least two different pairs of perpendicular axes lying in the same plane
and intersecting in one common point it is known that within each pair of axes the moment
of inertia is equal, it is identical for all axes lying in this plane and passing through the
common point.

We then obtain two sets of four points through which the inertia ellipsoid has
to pass. Due to the symmetry constraints, the only possible solution requires the
eight points to lie on a circle. The spinning top is thus symmetric. Note that the
prerequisite is obviously fulfilled for 4-fold symmetry. Alternatively we could exploit
knowledge about the direction and perpendicularity of the principal axes:

Lemma 3. If it is known for a pair of perpendicular axes that the moment of inertia is equal
and one of these axes is known to be a principal axis, e.g. for symmetry reasons, all axes
lying in the plane of these axes and passing through their crossing point have an identical
moment of inertia.

Thus for particles with n-fold symmetry along z passing through C follows for
n ≥ 3:

Jx,C = Jy,C . (7.7)
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7.6.2 Flat Disk

For flat disks (infinitesimal height in z direction) one of the three triangle inequalities
for the principal moments of inertia degenerates to an equality:

Jx + Jy = Jz . (7.8)

Thus for flat disks with n-fold symmetry with n > 3 follows:

Jx = Jy =
1
2

Jz . (7.9)

Analogous statements hold for the second moment of area I (replace all J by I in
sections 7.6.1 and 7.6.2).

7.6.3 Right Prism

For right prisms of height h (along z-direction) and homogeneous density $, the
second moment of area I and the area A of the base can be used to calculate the
moment of inertia J:

Jx,prism =
∫ h/2

−h/2
dJx,prism(z)

=
∫ h/2

−h/2

[
Ix$dz + z2 A$dz︸ ︷︷ ︸

dm

]

= $Ix

∫ h/2

−h/2
dz + $A

∫ h/2

−h/2
z2dz

= $Ixh +
1

12
$Ah3

= $h︸︷︷︸
$area

(
Ix +

h2

12
A
)

,

(7.10)

or if the axis has the distance r from the center of mass:

Jx,prism(r) = $h
[

Ix +

(
h2

12
+ r2

)
A
]

. (7.11)

For an axis parallel to y the calculation is analogous (replace all subscript x by y).
For an axis parallel to z and with the distance r to the center of mass, the result is
even slightly simpler:

Jz,prism(r) = $h[Iz + r2A] . (7.12)

7.6.4 Flat Regular n-gon

For regular polygons with n vertices, the second moment of area along the axis
of symmetry z can be obtained by considering n isosceles triangles (Morin, 2008,
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pp. 320f). Using the incircle diameter D as characteristic length:

Iz,n-gon =
n
32

D4
(

tan
π

n

) (
cos

π

n

)−2
(

1− 2
3

sin2 π

n

)
. (7.13)

Considering that n-fold symmetry implies a symmetric top and using relation (7.8),
we obtain for axes in the plane of the polygon and passing through the centroid:

Ix,n-gon =
1
2

Iz,n-gon =
n
64

D4
(

tan
π

n

) (
cos

π

n

)−2
(

1− 2
3

sin2 π

n

)
. (7.14)

7.6.5 Regular n-gon Particle with Central Drilling

The prevalent shape of particles used in this work are right prisms of regular n-gons
and with a central drilling of diameter d. Along the axis of symmetry z, the moment
of inertia can be written as:

Jz,n-disk = $h
[
Iz,n-gon − Iz,circle

]

= $h
[

n
32

D4
(

tan
π

n

) (
cos

π

n

)−2
(

1− 2
3

sin2 π

n

)
− π

32
d4
] (7.15)

using the incircle diameter D and particle height h. For an axis lying on the base and
intersecting the axis of symmetry we obtain:

Jx,n-disk,base = $h
[

Ix,n-gon − Ix,circle +

(
h2

12
+

h2

4

)
·
(

An-gon − Acircle
)]

= $h
[

n
64

D4
(

tan
π

n

) (
cos

π

n

)−2
(

1− 2
3

sin2 π

n

)
− π

64
d4

+
h2

12

(
nD2 tan

π

n
− πd2

)]
.

(7.16)

Mass

Using the area of the base Abase = An-gon − Acircle =
1
4

(
nD2 tan π

n − πd2) , the mass
of such a particle can be written as:

mn-disk = $hAbase

= $h
1
4

(
nD2 tan

π

n
− πd2

)
.

(7.17)

Radius of Gyration

When dividing the moment of inertia by the mass of the particle, a purely geometric
quantity remains. The result is the square of the radius of gyration and independent
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of the particle density:

r2
g,z,n-disk =

Jz,n-disk

mn-disk

=
n
8 D4 (tan π

n

) (
cos π

n

)−2 (1− 2
3 sin2 π

n

)
− π

8 d4

nD2 tan π
n − πd2

r2
g,x,n-disk,base =

Jx,n-disk,base

mn-disk

=
n
16 D4 (tan π

n

) (
cos π

n

)−2 (1− 2
3 sin2 π

n

)
− π

16 d4

nD2 tan π
n − πd2 +

h2

3
.

(7.18)

According to the model used in publication 1, the dynamics of a regular n-gon
disk under vertical vibrations is primarily dependent on geometry in general and
the particle’s radius of gyration in particular. The above equations therefore pave
the way for tuning the dynamics of a single regular n-gon disk via tuning its shape.
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Abstract
We investigate experimentally the dynamics of a single polygonal disk (regular n-gon with
3 � n � 8) confined in a closed container under vertical vibrations against gravity. The disks tend
to precess continuously upon vibrations, transferring mechanical energy into rotational and lateral
translational degrees of freedom (DoF). An analysis of the velocity distribution functions in both
DoF suggests that the mobility in both DoF are coupled with each other, exhibiting a characteristic
angular velocity that depends on confinement and disk shape. The characteristic angular velocity
can be captured with an analytical model considering sustainable precession due to continuous
driving. Depending on confinement, translational and rotational kinetic energy fluctuations
within one vibration cycle can be synchronized with each other and there exists a regime where
injected energy is equally distributed in different DoF. Depending on n, the tendency for the disk
to precess varies and there exists a regime (n � 6) where persistent rotation of the disk rarely lasts
longer than one vibration period. Our results suggest the possibility of tuning energy injection into
different DoF in vibrated granular disk mono-layers via shape design and confinement.

1. Introduction

An object driven by mechanical vibrations (e.g., a ball bouncing on a vibrating plate) exhibits rich
nonlinear and chaotic dynamics [1]. From spheres to dimers and trimers [2–5], from self-propelled rods
and polar disks to ‘vibrots’ [6–12], from chiral wires to screw nuts and bolt-like particles [13–15], the
collective behavior of vibrofluidized particles of various shapes has received a growing interest in the past
decades. The dissipative feature characterizes driven granular particles as a model system for a better
understanding of widespread nonequilibrium systems in nature, such as the collective dynamics of bacteria
colonies, migration of birds, and pedestrian flow [16–18]. Depending on the object shape, driving and
confining conditions, the dynamical behavior of a single particle differs, owing to distinct ways of
re-distributing the injected kinetic energy into different DoF. Due to continuous in- and out-flux of energy,
granular systems are driven far from thermodynamic equilibrium. Although fundamental concepts such as
free energy minimization and equipartition cannot be taken as granted in such systems, recent
investigations on the collective behavior of vibro-fluidized granular materials reveal the similarity between
the stationary states in the nonequilibrium model system and the thermally driven atomic and colloidal
systems, such as crystallization, surface melting, phase separation, and liquid-crystal mesophase
[10, 19–24].

In a recent investigation [14], we showed that a monolayer of hexagonal disks sandwiched between two
parallel plates under vertical vibrations against gravity tend to assemble themselves into a state with
positional but without orientational order, reminiscent to plastic crystals composed of hard polyhedra (in
three dimensions) or polygonal disks (in two dimensions) [25, 26]. As any ‘macroscopic’ collective behavior
arises from the mobility of individual building blocks as well as the interactions between them, we focus
here on the dynamics of a single polygonal disk under vertical vibrations. In particular, we investigate how a
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change of particle shape and confinement influences its motion in both translational and rotational degrees
of freedom as well as the coupling in between.

2. Methods

Side and top views of the experimental setup are sketched in figures 1(a) and (b) respectively. N regular
n-gon disks (3 � n � 8 as shown in figure 1(d)) of incircle diameter D and height h are confined to a
cylindrical container of height H and diameter 2R. The horizontally aligned container is observed from
above and vibrated against gravity g. It is driven sinusoidally using an electromagnetic vibrator (Tira
TV50350). The dimensionless acceleration Γ = (2πf )2z0/g with frequency f and amplitude z0 is controlled
via a function generator (Agilent FG33220) and an accelerometer (Dytran 3035B2). The bottom and lid of
the container are made from 1 cm thick polycarbonate (Bayer Makrolon) to provide uniform driving. The
disks are cut from brass (CuZn39Pb5, density � = 8.5 g cm−3) and have a central circular hole of diameter
d, to facilitate fast and precise detection of particle location even in the case of close packing. The triggering
of the camera (Lumenera Lt425M and IDT MotionScope M3) is synchronized to the driving, as is the
stroboscopic LED background illumination used to achieve high contrast (see [10, 27] for additional
details).

The captured raw images are subjected to image analysis. Figure 1(c) shows a sample image after
background removal with particle position and orientation marked. The image analysis procedure is split in
two steps, finding the particle center (x- and y-coordinate) followed by determining its orientation Ψ. For
the rest of this investigation we focus on single particle dynamics. Therefore we place in the container only a
single disk (N = 1) or very few disks (N = 8 to 16) sufficiently apart from each other to avoid interactions,
confine them horizontally to the field of view of the camera (5 cm × 5 cm) using black electrostatic
discharge foam and make sure there is no influence from the boundary.

For finding the particle center, the rotational symmetry of the central drilling is exploited. For particles
lying flat on the imaging plane, finding their centers translates to finding the centers of circles with diameter
d in the image. While agitated, the particles can tilt slightly. In the background-illuminated image the hole’s
edges become two ellipse arcs, which are slightly shifted towards each other. As the particles have a finite
height h, the vertical confinement H limits the maximum tilting angle, e.g. for a disk of circular or n-gon
shape with even n, to

θmax = 2 · arctan
[(

D −
√

D2 + h2 − H2
)

/(h + H)
]

. (1)

Consequently, the maximum distortion from a circle (in radial direction) is within 7% of its radius in the
worst case of the experiments presented here and can be ignored. Finding the centers of circles can be
achieved efficiently using the circle Hough transformation [28–30]. The required processing time can
become independent of the input image complexity (e.g., number of particle edge pixels) if convolutional
approaches are used [31].

The Canny edge filter [32] is used to detect particle contours. As it is a non-linear edge filter, it can not
be combined with the radius search to a single convolution kernel as proposed in [31]. However, the
advantage of the Canny edge filter is that it avoids cancellation of votes in the Hough accumulator3, and
thus enables accurate measurement of disk position with subpixel resolution.

The binary edge image is subsequently convolved with a truncated Hough cone consisting of blurred
circles of different radii r̃ close to the expected value of d/2. In polar coordinates (r, ϕ), the density of

Hough votes can be written as W · 1
r · exp

(
− (r−r̃)2

2 σ2

)
, where σ = 0.5px sets the amount of blurring to

accomodate discrete sampling and W = 3/[2 + max(d/2 − 1px, r̃)/r̃] is an empirical prefactor as a penalty
to circles smaller than the expected ones.

The Hough accumulator resulting from the convolution is then searched for the N highest isolated
peaks, where N is the known number of particles to be found. To speed up this search, values smaller than a
dynamically adjusted limit are thresholded to zero, making the Hough accumulator sparse. After sorting, it
is traversed descendingly and the locations of the N highest isolated peaks are found. The first entry of the
sorted list (a global maximum) is called isolated by definition. Subsequently peaks are isolated by ignoring
Hough space entries within a threshold distance rp to isolated peaks, until N center locations are found.

As the last step of locating the particles, subpixel refinement is performed for each identified particle
position. The subpixel shift Δ of the peak location along the x-, y- and r-axis of the Hough accumulator is
estimated with Δ = 0.5 px − σ̃2/1 px · ln(p/q), where p is the value of an isolated peak and q its highest

3 Note that cancellation of votes in the Hough accumulator is a problem inherent to all linear edge filters, making accurate parameter
estimation infeasible.
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Figure 1. (a) Sketch of the set-up with various definitions (see text for details) in side and (b) top view. (c) Zoom-in view of an
image after background removal with markers showing the position and orientation of individual disks, obtained with image
analysis. (d) n-polygon particles with 3 � n � 8 but the same incircle diameter D = 6 mm and height h = 2 mm.

Figure 2. Determination of the vertical position of the container using a top view camera.

neighbor along the corresponding axis. The shape of the peak is assumed to be a Gaussian of width σ̃ = 2σ

for x and y and σ̃ = 2
√

2σ for r respectively.
For determining the orientation of each particle, a Fourier analysis of its outer contour is performed.

Here, the longest contour C of the binary edge image within a circular mask of inner radius ri and outer
radius ro (with the particle center as origin) is transformed to polar coordinates (r, ϕ). C(r, ϕ) is
approximated using the 0th, 1st, 2nd and nth Fourier mode, corresponding to the mean radius of the
contour, a shift of the detected center with respect to the outer contour, a tilting of the particle, and the
corners or the particle respectively. The phase angle of the nth Fourier mode of C(r, ϕ) indicates (modulo
2π/n) the desired orientation Ψ of the regular n-gon.

As sketched in figure 2(a), the viewing angle of the container bottom varies with its vertical position.
Stepping further than a previous investigation [33], we obtain the third-dimensional information
quantitatively from the top view images. The apparent length L̃ in the top view image figure 2(b) changes
slightly when using a conventional entocentric lens. By tracing the positions of two fixed segments of the
container wall with subpixel resolution, we obtain the relative vertical position of the container, which is
subsequently scaled to an absolute vertical displacement using the accelerometer reading. As illustrated
below in section 5, a spatial resolution down to a few hundredths of a pixel can be achieved.

Finally, the particle motion is traced based on the image analysis results, assuming every particle moves
to the closest position of a particle in the next frame. This assumption is checked for plausibility by
verifying that the mapping between particles in two consequent frames is always bijective. After identifying
the same particle in consequent frames, its orientation is traced, assuming that the sampling rate fulfills the
Nyquist criterion. This assumption is reasonable as the change of orientation between two consequent
frames is typically more than an order of magnitude smaller than 2π/n.

3. Coupling between translational and rotational motion

Based on the tracing results, the average velocity between two consecutive frames is obtained. Figure 3
shows scatter plots of angular ω vs translational v velocities of the particle center for n = 6 and 5. These
plots are representative for all results obtained with an even or odd number of corners explored here. For
polygonal particles with even n, three clusters of points (cf figure 3(a)) whereas for odd n only two distinct
clusters are found (cf figure 3(b)). We note that in both cases the position, shape and density of the clusters
are symmetric with respect to zero on the ω axis. This suggests that the rotation mechanism has no
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Figure 3. Scatter plot of the angular velocity ω with respect to the particle’s center vs its horizontal velocity v obtained from
consequent top view images sampled at a rate of 1000 Hz over 45 s for a single (a) hexagonal (n = 6, N = 10) and (b) pentagonal
(n = 5, N = 12) disk. Parameters: f = 50 Hz, Γ = 7, H = 3.9 mm, h = 2 mm, D = 6 mm. The color code corresponds to the
local area density of data-points obtained with a Gaussian kernel density estimator using the bandwidths 2.9 mm s−1 and
0.073◦ m s−1 in (a) and 2.4 mm s−1 and 0.06◦ m s−1 in (b).

preferential direction so that clockwise and counterclockwise rotation have equal likelihood. For even n (cf
figure 3(a)), the central cluster around ω = 0 is typically very prominent and represents a clapping motion
(clattering mode) of the disk [34]. For off-centered clusters, the typical translational velocity lies
significantly higher than for the clapping motion. This suggests that disks in different rotational modes, i.e.
clattering or precessing, tends to have different v, indicating a coupling between rotational and translational
DoF. For odd n (cf figure 3(b)), only the two off-centered clusters are found, meaning that polygons with
odd n have a significantly higher tendency to precess than with even n. This can be easily understood, as for
odd n each side of the polygon faces a corner on the opposite side, so that small perturbations due to
roughness quickly make the clapping motion unstable.

The position of the clusters changes with the confinement and particle shape. The translational velocity
distribution is investigated in detail in appendix A where we show that at timescales longer than half a
vibration period the particle effectively diffuses in the lateral direction. In the following section we
concentrate on the rotational motion for a quantitative analysis.

4. Characteristic angular velocities

Figure 4 shows the probability density Pω of the angular velocity ω for the same parameters as in figure 3.
For the hexagonal disk (cf figure 4(a)) the distribution shows three peaks and can be described fairly well by
a sum of three Gaussian distributions N symmetrically arranged around ω = 0:

ω ∼
1∑

k=−1

N (k ωr, σk) · pk, (2)

where ωr is the characteristic angular velocity to be obtained. During fitting we fix σ−1 = σ+1 as the
variations in ω do not appear to depend on its sign. We allow p−1 �= p+1 due to the finite observation
period. For the central peak around ω = 0 only the standard deviation σ0 is fitted as p0 = 1 − p−1 − p+1 is
fixed due to the normalization of Pω . By fitting the remaining five free parameters (ωr, σ0, σ+1, p−1, p+1),
the characteristic angular velocity ωr is determined. Its dependence on the confinement is discussed below.

In the case of the pentagonal disk (cf figure 4(b)), two additional Gaussians around ±2ωr have to be
added for a reasonable fit:

ω ∼
2∑

k=−2

N (k ωr, σk) · pk. (3)

Remarkably, we find that the peaks at 2ωr have in good approximation the doubled width of the inner ones
and appear to have the same relative probabilities. By exploiting this observation, we reduce the number of
degrees of freedom without decreasing the quality of the fit visibly. More precisely, by fixing
p+2/p−2 = p+1/p−1 and prescribing σ+2 = σ−2 = 2σ+1 = 2σ−1 only a single additional degree of freedom,
p+2, is added. The presence of two peaks per side suggests that there exist different ways of injecting energy
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Figure 4. Kernel density estimate (black solid line) for the probability density Pω of the angular velocity ω of the (a) hexagonal
and (b) pentagonal disk shown in figure 3. Fit (red dashed line) with a summation of three (a) and five (b) symmetrically
arranged normal distributions (see equation (2) and equation (3) for more details). Parameters used for fitting are sketched in
blue. The Gaussian kernel’s bandwidth is chosen optimally using the improved Sheather-Jones algorithm [35] to 0.030◦ m s−1

and 0.019◦ m s−1 respectively.

Figure 5. Left: dependency of a hexagonal particle’s characteristic angular velocity ωr on the vertical confinement H, compared
to equation (5) with different restrictions for θ. N = 1, other experimental parameters are the same as in figure 3(a). Shaded
regions indicate the standard deviation σi of the corresponding normal distributions of ω shown in figure 4(a) for rotating (blue)
and clapping (green) motion. The uncertainty of ωr is estimated from σ1 assuming independent measurements after 100
vibration cycles. The ratio of the inner and outer radius of the data points, indicated by the thickness of the data points,
corresponds to the probability for the particle to be classified as precessing according to the fit illustrated in figure 4. Right: side
view of a polygonal disk with various definitions.

into the rotational DoF. Note that the second peak arises not only for disks with odd number of edges as it
is also observed for n = 4. In general this feature appears to be more prominent for lower n. For instance,
the ratio p+2/p+1 for n = 6 is an order of magnitude smaller than in the case of n = 5.

Based on ωr obtained in figure 4(a), we explore systematically the influence of confinement H on
particle mobility. As shown in figure 5, the angular velocity increases monotonically with H. This is in
agreement with a model considering that rotation arises predominately from the precession of the disk
([14], and references therein).

More specifically, the model considers a circular disk (i.e., the case of n → ∞) with a radius of r0 and
height h. Similar to a coin spinning on a rigid surface, there exists a coupling between precession and
rotation for the case of rolling without sliding. As the contact point of the disk draws a circle of radius
rc < r0, the disk rolls actually over a distance larger than 2πrc during one precession period 1/Ω. With a
certain confinement H, the maximum tilting angle is limited by θmax of equation (1) with D = 2r0. The
model assumes θ = θmax and therefore the angular velocity varies with confinement H. In addition to the
influence of gravity, as considered in existing literature, see e.g. [36–38], here the additional influence from
the vibrating plate (e.g., torque induced by the force F for the case of colliding with the container lid) has to
be considered. Consequently, the precession rate can be estimated with [14]:

Ω =

√
Gr0(1 + 2Γ)

Ir,P sin θ
, (4)
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where G is the gravity of the disk, Γ is the maximum dimensionless acceleration and Ir,P is the moment of
inertia along the radial direction passing through contact point P. Here, the value for a regular n-gon disk is

used, Ir,P = �h
[

n
64 D4

(
cos π

n

)−2 (
1 − 2

3 sin2 π
n

)
tan π

n − π
64 d4 + h2

12

(
nD2 tan π

n − πd2
)]

. It is calculated by

considering n isosceles triangles, subtracting the circular hole, taking advantage of the perpendicular axis
theorem and using the parallel axis theorem when integrating along the third dimension [39]. To match the
experimental conditions, we use the parameters for the hexagonal disk (n = 6, h = 2 mm, D = 6 mm,
d = 2 mm) to estimate the characteristic rotation speed of the disk viewed from top using

ωr = (1/ cos θ − 1)Ω . (5)

Figure 5 compares the experimental data to this precession model using the largest value of θ compatible
with corner contacts (dotted line) and edge contacts (dashed line) at bottom and lid.

In reality, the rolling motion of the disk is always accompanied with energy dissipation arising from air
drag, sliding, rolling friction, etc. The frequent collisions between the disk and the vibrating plates also lead
to frequent detachment between the disk and the container. Although the simplified model does not
consider the details described above, it provides nevertheless a reasonable estimation of the characteristic
angular velocity ωr and its dependence on H without any fit parameters, as shown in figure 5.

The fraction of time spent by the particle in different modes of motion is captured by the coefficients pk

in equations (2) and (3). The hexagonal particle is classified as precessing 98 4 to 72 percent of the time as H
grows (see figure 5). For H < 2.8 mm the shaded areas indicate that σ0 and σ1 overlap at least partially. This
could give a hint why ωr seems to be systematically overestimated for low confinement heights compared to
the model: as ωr is extracted from ‘shoulders’ of a central clattering mode, a lower signal-to-noise ratio has
to be expected here than for high H where the modes are clearly separable.

5. Energy fluctuations within one vibration cycle

In order to investigate the dynamics within one vibration period T0 = f−1 we average the kinetic energy at
fixed phase over more than 2200 vibration periods, which is shown in figure 6. Note that a sufficient
sampling rate is needed for the following analysis, as the translational velocity distribution can be
qualitatively different if the sampling rate is reduced, as shown in appendix A.

The upper panel of figure 6 compares the vertical position of the container during one vibration cycle to
the induced sinusoidal vibration and shows an excellent agreement for all H. Even though the apparent
container size varies only by less than 1.2px, the total harmonic distortion of the signal as defined in [40] is
THDR = 4(2)%.

The lower panel of figure 6 shows the fluctuations of the kinetic energy of a hexagonal disk within one
vibration period for different vertical confinement H. Here, only the lateral movement and rotation in the
container plane (as detected by the top view camera) are considered. The squares and filled circles break
down the translational and rotational contributions to the kinetic energy, Ekin,lat = m v2/2 and

Ekin,rot = Inω
2/2 respectively, where In = �h

[
n
32 D4 tan π

n

(
cos π

n

)−2 (
1 − 2

3 sin2 π
n

)
− π

32 d4
]

denotes the

moment of inertia of the n−gon particle with respect to its symmetry axis. The thickness of the solid lines
indicates the respective standard error assuming statistical independence of the consecutive vibration
periods used for averaging, which is justified according to the following analysis in section 6.

For all confinement heights H, Ekin,rot shows two peaks per vibration period, suggesting that both
collisions with the lid and with the container bottom lead to a similar kinetic energy injection into the
rotational DoF. The average value of Ekin,rot rises continuously with increasing H in agreement with the
growth of ωr predicted by the model, although the probability for the disk to precess decreases as H grows
(see the change of data point thickness in figure 5).

In contrast, the lateral translational kinetic energy Ekin,lat shows a qualitatively different behavior: The
peak in the second half of a vibration period is clearly suppressed as H decreases. In the case of
H < 3.2 mm, only one peak can be clearly distinguished. This qualitative difference arises presumably from
the way of energy injection: Torque induced precession always leads to rotation upon collisions with the
container, while force applied vertically on the tips or edges of the disk will not necessarily lead to
translational motion in the horizontal direction.

Remarkably, as H decreases, there is a tendency for Ekin,lat and Ekin,rot in the observed DoF (i. e., two
translational DoF perpendicular to g and one rotational DoF around g) to overlap with each other in the

4 This corresponds to the two lowest confinement heights where the standard deviations of the clockwise and the counterclockwise
precession mode overlap each other significantly, impacting the reliability of the classification.
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Figure 6. Top: vertical position z of the container within one vibration cycle obtained from top view images. Bottom: average
lateral translational Ekin,lat (�) and rotational kinetic energy Ekin,rot (•) of the hexagonal disk of figure 5 within one vibration cycle
for various confinement H. The gray dashed line is a guide to the eyes highlighting the phase-shift of the maximum kinetic
energy.

first half of the vibration cycle. Note that this is different from a previous observation of vibrofluidized
granular rods under microgravity condition [41], where the kinetic energy in one translational DoF and
two observed rotational DoF was found to be equal with each other. The mechanism behind such apparent
‘equipartition’ deserves further investigation in the future as it helps constructing nonequilibrium model
systems with granular particles. However, we find Ekin,lat < Ekin,rot in the second vibration half period.
Furthermore, these differences within one vibration period apparently disappear abruptly for larger H.
For H � 3.2 mm, Ekin,lat exceeds Ekin,rot by more than a factor of two on average. Note that the relative
amount of energy injection into the different DoF changes with H, as the vertical confinement drives
rotation arising from precession and yet tends to hinder a horizontal translation of the vibrated
particle.

Finally, the phase-shift of the maximum for each kinetic energy contribution when changing H
constitutes another prominent feature in figure 6, as highlighted by the gray dashed line. With increasing H
the maxima shift to later times. This trend is expected as the traveling distance of a disk from container
bottom to the lid (and vice versa) increases. The phase-shift applies to both rotational and translational
DoF, as they are coupled with each other. For small H, the first peak for the kinetic energy of either
translational or rotational DoF overlaps with each other. For H � 3.2 mm, the peak of Ekin,lat lags slightly
behind Ekin,rot. Such a difference suggests that the coupling between different DoF as well as the distribution
of energy injection can be tuned by confinement. This abrupt phase-shift tuned by H and the related
transition between different coupling modes is further illustrated by means of the cross-correlation function
in appendix B.

In short, the above analysis suggests that confinement plays an essential role in determining the
distribution of energy injection in different DoF as well as coupling in between.

6. Shape tuned ‘memory’ effect

Finally, we address the influence of n on the ‘memory’ of the system, which is characterized by the
autocorrelation function. After collision, the disk tends to keep its motion, i.e., retains a certain level of
‘memory’, while frequent collisions with the container lead to the loss of ‘memory’. Using autocorrelation
functions of the disk motion in both DoF, we analyze the influence of particle shape on this effect.

Figure 7 compares the autocorrelations rv,v , rω,ω and r|ω|,|ω| of the lateral velocity v, the angular velocity
ω and its absolute value |ω| respectively for two different container heights H in the case of a pentagonal
disk. In alignment with the periodicity of lateral velocity shown in figure 6 for a hexagonal disk, rv,v peaks at
multiples of T0 and T0/2 for the case of H = 3 mm and 3.9 mm, respectively, suggesting the influence of
collisions with container bottom and lid. For low H, the autocorrelation of the absolute angular velocity
r|ω|,|ω| also oscillates around zero, showing clearly a periodic behavior. This is not surprising as both DoF are
coupled with each other. As H increases, the magnitude of the peaks for rv,v drop dramatically, suggesting a
stronger influence from the randomness due to strong impacts with the container. Note that different H
leads to different modes. For the signed value of the angular velocity (instead of its absolute value), the
autocorrelation function shows a clearly different trend. No clear periodicity can be found and rω,ω decays
exponentially, as shown in the insets of figure 7.
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Figure 7. Normalized autocorrelation of velocity v (blue), angular velocity ω (red) and its absolute value |ω| (black) of a
pentagonal disk (n = 5) for H = 3 mm (left) and H = 3.9 mm (right). Other experimental parameters are the same as in
figure 3(b). The insets highlight the exponential decay of the autocorrelation function of ω. The decay time is extracted by fitting
a straight line (orange), the dashed lines indicate the uncertainty.

Figure 8. Decay time of the angular velocity autocorrelation function at various n for two container heights.
N = 8, 12, 12, 10, 16, 16 for n = 3, 4, 5, 6, 7, 8 respectively. Other parameters are the same as in figure 7.

As shown in figure 4, the disk may rotate in either direction with the same probability. Qualitatively
speaking, the change of r due to |.| suggests a frequent change of rotations due to collision. The periodicity
of driving becomes visible when considering the kinetic energy scale or absolute value of the angular
velocity. The fact that rω,ω does not show a clearly periodic behavior suggests that change of rotation speed
(i.e., torque applied while colliding) itself tends to persist after collision. This provides an opportunity for us
to quantitatively investigate the ‘memory’ carried by the agitated disk through the characteristic decay time
τω,ω , which is defined as the time scale for rω,ω, to decay from 1 to e−1.

Figure 8 plots the decay time for various n and two different H. In comparison to confinement, the
number of corners has the more dramatic effect on the ‘memory’ of the disk: the closer the disk shape is to
a circle, the longer the autocorrelation decay time. Qualitatively, this can be understood as the chance for a
disk to keep its rotation increases as n increases, as the corresponding potential energy barrier is smaller.
Quantitatively, the decay time tends to stay within one vibration period for n � 6, meaning that the
‘memory’ is lost after each vibration cycle, and the influence from H is weak. This suggests that samples
collected at a rate lower than the driving frequency can be considered independent of each other. As n = 7
or higher (the disk shape getting closer to a circle), the decay time grows monotonically and the influence
from H becomes prominent, suggesting a higher probability for persistent rotation.

7. Conclusions and outlook

To summarize, we characterize systematically the influence of confinement (i.e., height of the container)
and shape on the motion of a single regular n-gon disk in both translational and rotational degrees of
freedom under vibrations. Generally speaking, a vibrated polygonal disk tends to rotate due to precession
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induced by gravity as well as collisions with the container and the rotation speed is tuned by the
confinement height H. For a disk with even number of edges, there exists an additional clattering mode
with zero angular velocity.

By means of circular Hough transformation and Fourier analysis of the contour, we analyze the coupling
between rotational and translational degrees of freedom of the polygonal disk quantitatively and find that
the probability for a disk to rotate can be decomposed into symmetrically arranged normal distributions
peaked at a characteristic angular velocity.

In order to explore particle motion within one vibration cycle, we develop an algorithm that can
successfully obtain the container position from tiny changes (1.2 pixel) of the container’s width upon
vibration along the viewing direction. Consequent analysis on the kinetic energy fluctuations within one
vibration period shows a clear dependence on the confinement and a tendency of equal energy distribution
in both observable DoF at small confinement.

The time scale associated with the dynamics of the disks is characterized by means of the autocorrelation
function. We find that the decay time of rω,ω increases monotonically with n. The fact that it becomes
smaller than the vibration period for n � 6 indicates the loss of ‘memory’ in rotational DoF and
consequently velocities sampled once per vibration period can be considered as independent of each other.

In the future, a more quantitative understanding of the critical confinement and influence of edge
number is needed, as the two control parameters provide a pathway to design preferred trajectories of
individual polygonal disks as well as the kinetic energy input into different DoF. Note that an assembly of
granular ‘walkers’ with equipartition of energy injection could serve as a perfect model system for extending
statistical mechanics tools to investigate widespread active matter.
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Appendix A. Translational velocity distribution

Figure A1 shows a comparison of the lateral velocity distribution obtained with different sampling rates;
twice (black) or 20 times (red) per vibration period (the same as in figure 3).

The outer panels display the distributions as probability densities Pv , estimated using a Gaussian kernel
density estimator of variable bandwith [42]. The limited support due to v > 0 is accounted for using the
reflection method [43]. The hyperparameter is optimized using leave-one-out maximum-likelihood
cross-validation [44, 45]. The shift towards lower velocities for the lower sampling rate is very prominent.
When sampling ten times as often, the mean of the distribution differs by a factor of 2.2 for both the
hexagonal (figure A1(a)) and the pentagonal (figure A1(b)) disk. The lower mean for rarer sampling
confirms that the disks change the direction of their translational motion within the timeframe of half a
vibration period.

The insets show the corresponding cumulative distribution function F(x) =
∫ x

−∞ P(x′)dx′ to avoid any
visualization parameters. Here, the tail of the distribution is highlighted by plotting the empirical
complementary cumulative distribution function 1 − Fv2 on a logarithmic axis. As the black curve is close
to a straight line, the coarser sampled lateral velocity distribution is close to the Maxwell–Boltzmann
distribution in two dimensions. The particle thus effectively diffuses in the lateral direction at long
timescales. This is reminiscent of the rotational random walk found in [14] and raises the question to which
extend random motion in the rotational and translational DoF are coupled. The velocity fluctuations within
one vibration cycle are discussed in more detail in section 5.
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Figure A1. Horizontal velocity distribution for the (a) hexagonal and (b) pentagonal disk when sampling the particle position
20 times per vibration cycle (red), or two times per vibration cycle (black). Other parameters are the same as in figure 3. Note
that sampling 20 times per vibration cycle corresponds to 1000 Hz as previously. Outer panels: probability density Pv estimated
using the optimal Gaussian kernel density estimator of variable bandwith (see text for details). Insets: complementary cumulative
distribution function of the squared velocity.

Appendix B. Confinement controlled coupling

The coupling between translational and rotational DoF is characterized using the zero mean normalized
cross-correlation of v2 and ω2, shown in figure B1 for different H with the time lag Δt in units of T0. For
better visibility of the underlying structure, bilinear interpolation is used between the sampling points.

For all container heights H, the cross-correlation peaks at zero time lag and shows a regular pattern
otherwise. The global maximum at Δt = 0 indicates an overall in phase coupling between rotation and
translation. However, as all aperiodic contributions accumulate in this central peak (similarly to the
noise-polluted zero time lag peak in autocorrelations), the periodic response of the system should be instead
inferred from the off-center maxima. Their distance of T0/2 indicates collisions with both lid and bottom in
a similar manner (for at least one of v or ω), as also indicated in figure 6. For H < 3.0 mm, the off-center
maxima occur at integer multiples of T0/2, indicating zero phase-shift between rotation and translation for
the periodic response of the system, which we call synchronous mode. For H > 3.0 mm, the off-center
maxima are shifted. Here, rotation precedes the translation by roughly T0/8, giving rise to the asynchronous
mode. Taking into account that, according to figure 6, v2 and ω2 peak twice per vibration period T0 we
observe a phase-shift close to 90◦ between the two contributions to the total kinetic energy here.

For the case of rolling without sliding, rotation of an Euler’s disk is expected to be coupled to the center
of mass movement and consequently the kinetic energy in the translational DoF. This expectation is
compatible with our observations for small container heights. At H ≈ 3.0 mm however, the coupling
between rotation and translation changes fundamentally, leading to the transition into the asynchronous
mode. Note that the phase lag between v2 and ω2 as a function of H exhibits a stepwise dependence,
reminiscent of the scenario of forced oscillation with a driving dependent phase-shift.

The characterization of the cross-correlation function rv2,ω2 indicates that, depending on confinement,
there exists an abrupt transition from the ‘synchronous’ mode where the energy peaks of the translational
and rotational motion are at the same phase to the ‘asynchronous’ mode where a phase-shift between
different DoF arises.
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Figure B1. Normalized cross-correlation of lateral translational and rotational contributions to the kinetic energy for the same
experimental parameters as in figure 5. The white dashed lines are guides to the eyes highlighting the location of off-center
maxima of the cross-correlation for low and high container heights H.
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Set Voronoi Tessellation for Particulate Systems
in Two Dimensions

Simeon Völkel and Kai Huang

Abstract Given a countable set of points in a continuous space, Voronoi tessella-
tion is an intuitive way of partitioning the space according to the distance to the
individual points. As a powerful approach to obtain structural information, it has
a long history and widespread applications in diverse disciplines, from astronomy
to urban planning. For particulate systems in real life, such as a pile of sand or a
crowd of pedestrians, the realization of Voronoi tessellation needs to be modified to
accommodate the fact that the particles cannot be simply treated as points. Here, we
elucidate the use of Set Voronoi tessellation (i. e., considering for a non-spherical
particle a set of points on its surface) to extract meaningful local information in
a quasi-two-dimensional system of granular rods. In addition, we illustrate how it
can be applied to arbitrarily shaped particles such as an assembly of honey bees
or pedestrians for obtaining structural information. Details on the implementation
of this algorithm with the strategy of balancing computational cost and accuracy
are discussed. Furthermore, we provide our python code as open source in order to
facilitate Set Voronoi calculations in two dimensions for arbitrarily shaped objects.

1 Introduction

Particulate systems are ubiquitous in nature, industry and our daily lives, ranging
from active ones like pedestrians or animals, as in Fig. 1, to passive ones such as
athermal granules. They all share the characteristics that the macroscopic behavior
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Fig. 1 Carniolan honey bees
on a partially sealed hon-
eycomb. The Set Voronoi
tessellation (black) is based
on multiple points (white) per
bee.

1 cm

depends on the arrangement of individual particles relative to each other. Prominent
collective effects regarding the dynamics of granular materials, such as the solid-
liquid-like transition [1, 2, 3, 4, 5, 6, 7, 8] and pattern formation [9, 10, 11], are
typically triggered by the mobility of individual particles. Moreover, there also
exists evidence showing that the strain field associated with local rearrangement
of particles can be used to obtain the local stress field, which in turn can provide
indispensable hints on the establishment of local force networks during jamming
transition [12, 13, 14]. Investigations on granular systems thus often rely on accurate
measurements of properties such as local volume fraction, neighborhood, etc. For
defining these quantities, it is expedient to attribute to every particle a portion of the
available space, that “belongs to” or “is occupied” by a single particle.

2 Limitations of the classical Voronoi tessellation

The honeycomb in Fig. 1 can be seen as an example of a naturally formed tessellation,
optimized to have a fair distribution of space for individual larvae of bees to grow
inside. Motivated by such self-organized processes in nature, the concept of spatial
tessellation was established long time ago [15, 16, 17, 18] in order to analyze
structures of various systems in diverse disciplines, from the structure of the universe
in astronomy [15] through positioning public schools or post offices in urban planning
[19] to characterizing topological aspects of molecular structures [20, 21, 22].

A generic, parameterless approach to attribute space based on a single point per
object (typically its center) is the Voronoi tessellation (VT), also known as Dirichlet
tessellation, Thiessen polygons or Wigner-Seitz cells [16, 17, 23, 24].

For mono-disperse spherical particles (as well as point-like particles), classical
VT based on the particle centers is applicable and delivers intuitive results (see
Fig. 2a). This, however, is not the case for polydisperse packings (see Fig. 2b)

Fig. 2 Comparison of clas-
sical VT based on the center
(red) of particles and Set VT
(black) considering the border
of the two particles (blue).

a) b) c)
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or non-spherical particles (see Fig. 2c). Here, part of the particle on the left lies
outside of the Voronoi cell, contributing to an obvious source of error. To overcome
this, various weighted Voronoi diagrams have been proposed (see, e. g., [18] for an
overview) and implemented in physics and material science [25, 26].

Problems due to applying classical VT to a glass composed of differently sized (but
spherical) atoms have already been discussed [26]. Here, we highlight the problems
arising from applying classical VT to equally sized, but elongated particles.

3 Set Voronoi algorithm and implementations

A generic way to attribute space to both differently sized particles and non-spherical
particles is to tessellate space according to the distance to the closest surface (as
opposed to center). This can be seen as the limiting case of a classical VT, when
considering for each particle the set of points marking its surface. Therefore it is
also referred to as Set Voronoi diagram [27]. The resulting, intuitive cell-borders of
the examples in Fig. 2 are depicted in black. Note that the Set Voronoi border for
nonoverlapping monodisperse spheres (or circular discs in two dimensions) like in
Fig. 2a coincides with the classical Voronoi cell border. Voronoi diagrams with lines
and arcs as generators have been studied systematically since the late 1970s [18].
Nevertheless, their importance in the realm of granular physics was rarely realized
until the past decade [28, 27, 29, 30].

Recently, Weis & Schönhöfer [31] provided a program based on the Voro++
library [32] to calculate the Set VT, targeting reconstructed CT-scans of three-
dimensional (3D) packings of non-spherical granular particles [30]. However, an
urgent demand for a solution in two dimensions remained, as it is computationally
not economic to apply the 3D algorithm directly to two-dimensional (2D) systems
[33]: Adding dimensions to the problem inevitably increases the computational
cost for obtaining the tessellation, letting aside the efforts now required to treat the
borders in the added dimension(s). Considering as well the fact that many particulate
problems of practical interest (e. g., dynamics of pedestrians, flocks or monolayers of
granulates) can be treated (quasi-) two-dimensionally and very often data is acquired
using 2D imaging techniques, we implemented the Set VT strategy based on discrete
points put forward by Schaller et al. [27] in 2D. Our implementation uses the python
scripting language together with scipy/numpy libraries [34], relying on VT routines
provided by the Qhull library [35]. It is available as free open source software [36].

4 Granular rod monolayer as a test case

As an example, we demonstrate the advantages of Set VT using a monolayer of
monodisperse granular rods of length ; = 15 mm and diameter 3 = 3 mm. They
are confined in a horizontal cylindrical container of diameter � = 19 cm, which is
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subjected to sinusoidal vibrations against gravity with oscillation frequency 5 and
dimensionless acceleration Γ as two control parameters to keep the rods mobilized.
More details on the experimental set-up and image analysis procedure can be found
in [37]. Depending on the packing density, the rods may organize themselves into
an uniaxial nematic state with two-fold rotational symmetry or tetratic state with 4-
fold symmetry. For analyzing the disorder-order transition quantitatively, an accurate
determination of the local packing density is desired. For amorphous media, such as
a random packing of granular particles, (Set) VT provides a direct route to the local
area or volume fractions of individual grains [38, 39, 27].

Fig. 3 compares the outcome of classical and Set VT based on a snapshot recon-
structed from the positions and orientations obtained experimentally in [37]. This
particular snapshot is chosen, as it consists of both dense and dilute regions. The
classical VT does not include walls and leads to cells cutting the walls of a container
(red solid lines crossing the gray area in Fig. 3a) or even extending to infinity (red
dashed lines in Fig. 3a). These problems can be easily and consistently avoided using
Set VT, as the container can be included as an additional ‘particle’, naturally lim-
iting the cells of all contained particles (see Fig. 3b). Additionally Set VT delivers
a much more reasonable tiling in the sense that no particle cuts its cell’s border,
as the container lid prohibits the ‘hard’ rods from overlapping. Quantitatively, the
local packing density q = �p/�c derived from the projected area of the particles
�p = ; · 3 and the area of the corresponding cell �c obtained from the space tiling
also demonstrates the difference clearly: Cells with ‘impossible’ q > 1 (see color
code) disappear and large fluctuations of q for rods aligned with each other in a
similar local configuration diminish as Set VT is implemented.
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Fig. 3 VT (a) and Set VT (b) of partly ordered granular rods in quasi-two-dimensions. The
parameters are: particle number # = 400, driving frequency 5 = 50 Hz and dimensionless
acceleration Γ = 6.26. The color code indicates the local packing fraction q according to the
different tessellations: classical VT considering the particle centers (red, upper panel) vs. Set VT
(black, lower panel) including the container rim as additional particle.
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Fig. 4 Probability density %q of the local packing fraction q for different numbers of particles #
in the container, obtained from kernel density estimation. Light red and dark gray curves correspond
to classical and Set VT, respectively. The peak acceleration is kept in the range Γ ∈ [1.94; 20.59]
and 5 = 50 Hz is fixed. Other experimental parameters are the same as in Fig. 3. The reflection
method [41, 42] has been used to correct for q being non-negative by definition, and the bandwidth
of the Gaussian kernel is chosen according to Scotts rule [43] as f · =−1/5 proportional to the
standard deviation f of the distribution and dependent on the number of rods = (here 1.7 × 105 to
5.3 × 105 per stacked plot). Captured frames with detection problems (particles (partially) outside
of the container, overlapping or of zero size) were skipped to avoid bias.

Fig. 4 compares the local packing density distribution obtained from VT (red)
and Set VT (black) for different global packing densities. For Set VT, the probability
density %q shows a clear trend of an increasing local packing density with the global
one. This feature is much less obvious for the classical VT. There, the most striking
observation is the tail of the distribution towards large q becoming more prominent.
The dashed line at q = 1 marks the upper bound for hard particles and a reasonable
tiling. All red curves clearly exceed this limit. This manifests again the importance
of observing the applicability of each tessellation technique.

5 Why Set Voronoi is essential for elongated particles

To analyze quantitatively the maximal error introduced by applying the classical
VT to elongated particles, we consider a perfect, dense packing of identical “hard”
rectangles. With no space left between the non-overlapping rectangles, a constant
local packing fraction equal to the global packing fraction of unity is expected.

Fig. 5 gives an example for such a dense packing of rectangleswithwidth-to-length
ratio Y. ClassicalVT (red lines) gives the expected value for the local packing fraction,
as indicated by the color code, if all neighboring particles are aligned in the same
direction (cf. particles a and a’ in Fig. 5) but fluctuates significantly where rectangles
of different orientation come together. Here, local packing fractions up to qVT,max =
2/(1 + Y) are obtained, e. g., for particle b in Fig. 5. This overestimation is thus a



16 Simeon Völkel and Kai Huang

Fig. 5 Local packing fraction
(see color code) according to
classical VT (red lines, based
on particle centers) in a dense
packing of rectangles with
Y = 1/8 exhibiting tetratic
ordering.
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first order effect in terms of Y. It can reach a remarkable error of 100 % for vanishing
width-to-length ratio, even when letting aside any experimental inaccuracies or
elasticity of the particles. At the same time, the local packing fraction for neighboring
particles c and c’ in Fig. 5 is underestimated, up to an equally dramatic extent as
Y → 0. Even for a dense packing of hard particles (global packing fraction of unity)
and without boundary effects, classical VT can indicate vanishing local packing
fraction, deviating disastrously from the expected value!

On the contrary, Set VT gives consistent local packing fractions. It delivers a
value of qSet VT = 1 for every rectangle in Fig. 5 within the numerical uncertainty
arising from the approximation of the surface through a finite number of points.

6 Performance vs. quality trade-off via erosion

For closely spaced particles special care is required to identify their surface properly
before applying the Set VT. For rounded particles with a finite minimal curvature
radius Ac, Schaller et al. [27] show that it is highly beneficial to consider the maxi-
mally eroded surfaces, having the constant minimal distance Ac to the original ones:
Using the eroded surface, dramatically fewer points suffice for obtaining the same
Set VT and accuracy. In addition, erosion can resolve slight particle overlap. This
is particularly helpful for densely packed particles close to jamming [44] and is
expected to make investigations of deformable particles feasible [27].

For the granular rods discussed above, the rectangles seen by the camera have
sharp corners. In other words, Ac = 0, preventing a ‘lossless’ erosion. Accurately
capturing the sharp corners commands a vanishing erosion depth, which in turn
dictates a very close spacing of the discretization points on the eroded surface. As
describing a surface with a larger number of points inevitably increases the com-
putational costs, a compromise between accuracy and speed has to be found. Here,
we erode the rods by one pixel to remove slight overlap due to finite experimental
resolution, detection accuracy and finite elasticity of the particles. Setting the maxi-
mum distance between discretization points to the erosion depth delivers satisfactory
results and we recommend this as a rule of thumb.

For many systems, however, the situation is more pleasant, especially if the
most important property is the elongation, while the dimensions along the other
direction(s) are equal and the exact shape of each particle only plays a tangential role,
like in the case of the bees shown in Fig. 1. In such a case, it is typically acceptable
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to approximate the particle as spherocylinder. This approximation paves the way to
a very efficient representation of the particle when using Set VT: The maximally
eroded ‘surface’ of each particle is then just its medial axis, a one-dimensional line
segment. Furthermore, according to the rule of thumb, one discretization point per
radius of the spherocylinder A suffices for satisfactory results even at high packing
densities. For the bees on the honeycomb, this translates to a single digit number
of discretization points, each depicted as a white dot in Fig. 1. Nevertheless, this is
sufficient for resolving the most prominent and important effects due to the elongated
shape of the individual bee, as the black Set Voronoi cell borders illustrate.

As similarly sized rod-shaped particles represent a diverse class of systems, from
liquid crystal molecules at a microscopic scale to pedestrians viewed from the top
(i. e., when taking their shoulders into account), the above analysis demonstrates that
it is essential to employ Set VT for elongated particles.

7 Conclusion

Using dynamics of a granular rod monolayer as an example, we demonstrate that
Set VT provides a more meaningful tiling of space in comparison to the classical
VT that relies on the center of particles. From polydisperse systems to irregularly
shaped or even deformable particles, the Set VT algorithm is expected to be sub-
stantially more consistent in characterizing the geometric and topological features
of particulate systems, many of which can be approximated as elongated particles.

Note that in addition to obtaining the local packing density, VT can also be used to
extract other order parameters, such as determining neighbors of individual particles.
The Delaunay triangulation, which connects particle centers to their neighbors,
follows the natural definition that neighbors share a part of a Voronoi cell border and
is a typical approach after classical VT. The extension of this definition to Set VT is
straightforward and can be used in further characterizations, for instance, using the
bond orientational order parameter [5]. How to extract more meaningful information
from Set VT in addition to the local packing density and the improvements against
the classical VT will be a focus of future investigations.
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Dynamics of wetting explored with inkjet printing

Simeon Völkel1,� and Kai Huang1,��

1Experimentalphysik V, University of Bayreuth, 95440 Bayreuth, Germany

Abstract. An inkjet printer head, which is capable of depositing liquid droplets with a resolution of 22 picoliters
and high repeatability, is employed to investigate the wetting dynamics of drops printed on a horizontal plane
as well as on a granular monolayer. For a sessile drop on a horizontal plane, we characterize the contact angle
hysteresis, drop volume and contact line dynamics from side view images. We show that the evaporation rate
scales with the dimension of the contact line instead of the surface area of the drop. We demonstrate that
the system evolves into a closed cycle upon repeating the depositing-evaporating process, owing to the high
repeatability of the printing facility. Finally, we extend the investigation to a granular monolayer in order to
explore the interplay between liquid deposition and granular particles.

1 Introduction

Granular materials are ubiquitous in nature, industry and
daily lives [1]. Despite intense investigations motivated by
applications in geoscience, chemical and civil engineering,
the physics of granular materials, are still far from being
understood, particularly when they are partially wet [2–4].
The mechanical properties of a granular material change
dramatically as a tiny amount wetting liquid is added, rep-
resenting the formation of capillary bridges between ad-
jacent particles [5, 6]. The enhancement of rigidity leads
to an easily moldable material such as wet sand on the
beach for sculpturing [7, 8]. In the pendular regime [3]
with capillary bridges formed between adjacent particles,
previous investigations showed that the collective behav-
iors of partially wet granular materials, such as clustering,
phase transitions and pattern formation, are related to the
capillary force induced by the wetting liquid [9–13]. How-
ever, as more liquid is added, it is still challenging to un-
derstand how a wetting liquid film advances inside a geo-
metrically heterogeneous granular packing, as well as how
the particles respond to the capillary interactions induced
by the additional wetting liquid.

Wetting is also an ubiquitous phenomenon that has at-
tracted interest from physics, chemistry and engineering
communities over the past decades [14, 15]. More re-
cently, there has been a growing interest in understand-
ing the wetting dynamics on patterned and heterogeneous
surfaces, motivated by a better control of wettability and
liquid transport [16, 17]. Nevertheless, there are still open
questions (e. g. contact angle hysteresis, contact line dy-
namics at the onset of the pinning-depinning transition,
etc.) [18–20].

�e-mail: simeon.voelkel@uni-bayreuth.de
��e-mail: kai.huang@uni-bayreuth.de

Here, we use a commercial inkjet printer head
(HP 51645A) to explore the dynamics of wetting, because
it enables a fine control of the drop volume with high re-
peatability. For both a horizontal plane and a granular
monolayer, repeating the print-evaporate process leads to
reproducible contact line dynamics.

2 Setup

Figure 1 shows a sketch of the experimental setup. An
empty print catridge (HP C6125A) is filled with purified
water (LaborStar TWF, surface tension γ = 0.072Nm−1).
Its printhead is pointing downwards in order to deposit
droplets vertically onto the horizontal substrate [polyte-
trafluoroethylene (PTFE), and a monolayer of glass beads
(SiLiBeads Type S)]. In order to control all nozzles (print-
ing frequency 2.8 kHz) individually, we use a custom mi-
crocontroller board (Microchip PIC18F6722). Two types

cartridge

printhead

LED
substrate

mirror

side-view
camera

bottom-view
camera

reflector

PC μC

Figure 1: Schematic diagram of the experimental setup.
μC stands for microcontroller. A reflector is used to pro-
vide back-light illumination for the bottom view camera.
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of cameras (Lumenera LU135M, Nikon D7000) are used
to take side view and bottom view images.

A computer program (PC) triggers the image acqui-
sition for one experimental cycle Nprint times during the
printing phase, each time after a specific volume Vstep has
been deposited, and Nevap times during evaporation phase,
at a fixed interval Tevap. The ambient temperature is regu-
lated to 20 ◦C. The relative humidity is in the range from
20% to 40%. The average droplet volume is determined
to be 22.4(11) pL by image analysis of side view images.

3 Image analysis

Figure 2 summarizes the image analysis procedure to ob-
tain the geometric properties of the sessile drop. The side
view images are cropped such that the bottom of the rect-
angular region of interest (ROI) separates the drop from
the substrate, and binarized to segment the image.

Figure 2a defines the quantities of the drop. The vol-
ume V is estimated assuming rotational symmetry along
the vertical axis of the drop in each line of the image, as
shown in Fig. 2b. The left and right contact angles φl and
φr as well as the (horizontal) x-coordinates of the associ-
ated contact points xc,l, xc,r are determined with subpixel
resolution by fitting locally a parabola using the standard
least square method to the drop contour. Short1, adjacent
segments of the contour are used, as indicated by Fig. 2c.
As shown in Fig. 2d, the fit is not performed in the lab-
oratory frame (x, y), but in the rotated (x′, y′) coordinate
system set by the first (1) and last point (n) of the contour
segment. This is to circumvent ambiguity problems with
contact angles close to 90◦ as sketched in Fig. 2c and in-
crease both robustness and accuracy. The diameter of the
contact line dc is estimated as the distance between the two
contact points (cf. Fig. 2a).

1For estimating the (vertical) radius of curvature of a sessile drop
close to the contact points, its contour in the side view can be approx-
imated as a part of an ellipse. The short main axis gives a good estimate
independent of the drop volume and contact angle. Here, a contour seg-
ment one order of magnitude shorter is used. Fig. 2c is not to scale.

φl φr

dc

V

xc,l xc,r

(a)

dy

Δh

V = ∑y
π
4 · d2

y · Δh

(b)

x

y

contour segment

(c)

1

n
�a

y′
x′

(d)

Figure 2: Image analysis procedure and definitions of drop
quantities. The red dashed lines indicate the substrate.

4 Results and discussion

Figure 3 shows the development of dc as a function of V
1
3

for six print-evaporate cycles. Starting with an initial drop
(1), its volume is increased by adding water droplets from
above using the inkjet printhead. At first, dc remains con-
stant until the advancing contact angle is reached (2). As
further liquid is added, the drop expands laterally (3), (4).
During evaporation, the drop again first keeps dc con-
stant until the receding contact angle is reached (5). Fur-
ther evaporation lets the drop shrink laterally (6). When
adding some liquid again, the same behaviour recurs. The
overlapping curves for cycles 4–6 illustrate the excel-
lent repeatability of the experimental setup and that the
deposition-evaporation process can be driven into a closed
cycle by just periodically adding a fixed volume with high
precision.

In the limit of small drops (i. e. small Bond-number
Bo = ρ gV

2
3 γ−1, where ρ: fluid density, g: gravitational

acceleration), interfacial tension determines the equilib-
rium shape of a drop and all linear dimensions of the drop
scale with V

1
3 . With growing volume, the relative influ-

ence of gravity increases and finally flattens the drop [21].
The drops (2), (3) and (4) as well as (1), (5) and (6) have
consistent shapes. It is worth noting that both lateral ex-
pansion and shrinking of the drop follow a sloped straight
line in Fig. 3: The sessile drops (Bo < 1.65) are thus small.
However, due to contact angle hysteresis, the shapes of an
expanding and contracting drop differ, which results in two
distinct slopes in Fig. 3.

Figure 4 shows the contact angle at the right edge φr

plotted over dc during the last three print-evaporate cycles.
While the contact line is advancing or receding, the con-
tact angle remains approximately constant. As the contact
angle for the two directions of movement differs, contact
angle hysteresis is clearly visible. In the inset images (1)–
(6) of Fig. 3, the drop expands to his right side, keeping

pri
nti
ng

ev
ap
or
ati
on

2

3

4

5

1 2 3 4

(6)

(5) (4)

(3)

(2)(1)

cycle

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩� �

�

��

�

d c
/m

m

V
1
3 /mm

1
2
3
4
5
6

Figure 3: Scaling of the contact line diameter dc with
the drop volume V for water on PTFE. Six cycles of
Nprint = 120, Vstep = 0.34(2) μL, Nevap = 120, Tevap = 60 s
are shown. The triangles mark the same position on the
substrate. See text for details.
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Figure 4: Contact angle φr of water on PTFE measured
from side view images at the freely moving edge. Coloring
corresponds to Fig. 3.

his left edge at a fixed position. This is due to inhomogen-
ities on the substrate, resulting in a slightly larger contact
angle hysteresis there than for the rest of the contact line.
Thanks to the pinned left side in the experiments shown in
Fig. 4, equal dc results in coincident positions xc,r of the
right edge of the drop. The inset in Fig. 4 magnifies and
highlights a part of the graph. The strong correlation be-
tween subsequent runs reveals that the fluctuations in the
measured contact angles come from the drop’s exploration
of the surface heterogenities. Figure 5 shows that the aver-
age deposition rate of the used printing-protocol exceeds
the evaporation rate by an order of magnitude. While evap-
oration drives the recedence of the contact line, its influ-
ence on the advance is marginal. As a result, the advancing
contact angle in Fig. 4 exhibits a more prominent correla-
tion than the measurements during the receding phase.

As the blue horizontal line in Fig. 5c illustrates, the
evaporation rate scales with the contact line diameter.
Thus we conclude that the drop evaporates mainly through
its three phase line (see [22]) instead of its surface area (see
Fig. 5d for a comparison). The scaling of the evaporation
with the drop geometry reveals that our sessile drop is also
small in this regard.

Having illustrated the repeatability provided by the
setup when using a flat substrate, we now extend our inves-
tigation to a granular monolayer. Concerning wetting in a
granular system, one of the most important challenges is to
understand the interplay between wetting liquid and gran-
ules. The particles are subject to capillary forces if they
are not immersed in liquid. In a loose packing, a move-
ment of the liquid interface can therefore lead to a move-
ment of granules, if they are not fully constrained by their
neighbours. The details of the advancing and receding of
the liquid interface, the involved wetting and dewetting, as
well as rupture events of capillary bridges are strongly de-
pendend on the the configuration of neighboring particles
[23].

For the following experiments, spherical glass beads
of 0.3mm to 0.4mm diameter are put on top of a horizon-

0
20
40
60
80

printing −→(a)

−8

−4

0
←− evaporation

(b)

−2
−1
0

(c)

−0.4
−0.2

0
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V̇
/

nL s
V̇
·d
−1 c
/

nL sm
m

V̇
·A
−1
/

nL
sm

m
2

pinned(d)

V / μL

Figure 5: (a) and (b): Effective printing and evaporation
rate estimated from side view images. (c) and (d): Com-
parison of two scaling laws for the evaporation rate. The
blue line corresponds to −1.1 nL s−1 mm−1 and is a guide
to the eye. See text for details. Coloring corresponds to
Fig. 3.

tal glass slide. By tapping they are brought into a two-
dimensional random packing. Further beads are added un-
til the bottom of a 25 × 25.5mm rectangular enclosure is
filled. After initial reorganization of some particles, the
system again can apparently be driven into a closed cycle
by periodically adding and evaporating water.

Figure 6 compares two subsequent printing-cycles on
this three-dimensionally patterned substrate. After remov-
ing the background by division, the overlaid images are
obtained by putting into their red and blue channels the
image of one cycle and in their green channels the image
of the subsequent one. Qualitatively, Fig. 6 provides the
following features: (i) The contour of a sessile drop on a
granular layer does not exhibit a circular contact line due
to the prominent structure of the substrate. (ii) The devia-
tion from a circle is more than the particle size, especially
if the wettability of the substrate is high. This is partially
due to the fact that the wetting of a neighbouring particle is
a discrete event which leads to an abrupt change of the liq-
uid interface position. (iii) While for drops on an inclined
homogeneous plane the aspect ratio of the bottom view is a
suitable parameter for describing, e. g., the onset of sliding
[20], the irregularly jagged contact line shown here raises
the question: Which shape descriptors are suitable for the
case of a partially wetted granular layer? Finally, the tiny
difference in the shape of the wetted area (see colored re-
gions in Fig. 6) clearly illustrates that, even in this complex
system, this setup offers a high repeability.

5 Summary

In this work, we use a commercial inkjet printer head,
which provides a fine volume control of liquid deposition
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(a) V = 0.56(3) μL (b) V = 1.22(6) μL

(c) V = 1.68(9) μL (d) V = 2.24(11) μL

Figure 6: Overlay of typical bottom view images taken
in two subsequent printing cycles (Nprint = 100, Vstep =

22.4(11) nL, Nevap = 40, Tevap = 30 s). Unsaturated pixels
show regions of identical wetting while green and purple
regions highlight the differences of the wetted area. See,
for example, the region marked by the arrow in (d).

in a well controlled and cost-effective way, to explore the
wetting dynamics of liquid drops on a plane and a granular
monolayer.

For a sessile drop on a plane, we demonstrate the ex-
cellent repeatability of the setup through applying print-
evaporate cycles and monitoring the drop geometry. Con-
tact angle hyteresis is observed. The evaporation rate
is found to scale with the diameter of the drop contact
line, which is in agreement with a previous investiga-
tion [22]. Thanks to the high and adjustable printing rate
(63(3) nL s−1 per nozzle), water evaporation can be eas-
ily compensated by printing in typical experimental con-
ditions.

Remarkably, we find that, even on a discrete substrate
like a granular layer, this print-evaporate protocol leads to
reproducible contour line dynamics. This feature facili-
tates further investigations on the interactions between a
wetting liquid and a granular bed, in order to shed light
on the advance of additive manufacturing as well as other
drop-on-demand applications [24, 25].

References

[1] J. Duran, Sands, Powders and Grains (An Introduc-
tion to the Physics of Granular Materials), 1st edn.
(Springer-Verlag, New York, Inc., 2000)

[2] S. Herminghaus, Adv. Phys. 54, 221 (2005)
[3] N. Mitarai, F. Nori, Adv. Phys. 55, 1–45 (2006)
[4] K. Huang, Habilitation thesis, University of

Bayreuth (2014)
[5] T. Halsey, A. Levine, Phys. Rev. Lett. 80, 3141

(1998)
[6] K. Huang, M. Sohaili, M. Schröter, S. Herminghaus,

Phys. Rev. E 79, 010301 (2009)
[7] M. Scheel, R. Seemann, M. Brinkmann,

M. Di Michiel, A. Sheppard, B. Breidenbach,
S. Herminghaus, Nat. Mater. 7, 189 (2008)

[8] M. Pakpour, M. Habibi, P. Møller, D. Bonn, Sci. Rep.
2 (2012)

[9] K. Huang, K. Roeller, S. Herminghaus, Eur. Phys. J.
Spec. Top. 179, 25 (2009)

[10] K. Huang, I. Rehberg, Phys. Rev. Lett. 107, 028001
(2011)

[11] K. Huang, M. Brinkmann, S. Herminghaus, Soft
Matter 8, 11939 (2012)

[12] C. May, M. Wild, I. Rehberg, K. Huang, Phys. Rev.
E 88, 062201 (2013)

[13] L. Butzhammer, S. Völkel, I. Rehberg, K. Huang,
Phys. Rev. E 92, 012202 (2015)

[14] P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)
[15] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley,

Rev. Mod. Phys. 81, 739 (2009)
[16] C. Semprebon, P. Forsberg, C. Priest, M. Brinkmann,

Soft Matter 10, 5739 (2014)
[17] M. Sbragaglia, L. Biferale, G. Amati, S. Varagnolo,

D. Ferraro, G. Mistura, M. Pierno, Phys. Rev. E 89,
012406 (2014)

[18] U. Thiele, E. Knobloch, Phys. Rev. Lett. 97 (2006)
[19] H.B. Eral, D.J.C.M. ’t Mannetje, J.M. Oh, Colloid

Polym. Sci. 291, 247 (2013)
[20] C. Semprebon, M. Brinkmann, Soft Matter 10, 3325

(2014)
[21] C.W. Extrand, S.I. Moon, Langmuir 26, 11815

(2010)
[22] H. Hu, R.G. Larson, J. Phys. Chem. B 106, 1334

(2002)
[23] C. Semprebon, M. Scheel, S. Herminghaus, R. See-

mann, M. Brinkmann, Phys. Rev. E 94, 012907
(2016)

[24] A. Yarin, Ann. Rev. Fluid Mech. 38, 159 (2006)
[25] B. Derby, Ann. Rev. Mat. Res. 40, 395 (2010)

     
 

DOI: 10.1051/, 09035   (2017) 714009035140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

4



Publication 4

Assembly of eight spherical magnets
into a dotriacontapole configuration

Stefan Hartung, Felix Sommer, Simeon Völkel,
Johannes Schönke, Ingo Rehberg

Physical Review B 98, 214424 (2018)
(DOI: 10.1103/PhysRevB.98.214424)

Reprinted with permission.
©2018 American Physical Society

Stefan Hartung contributed (50 %) the program for controlling the magnetic-flux
density scanner setup, designed and conducted the vast majority of experiments,
supervised the characterization of the magnets, analyzed the data, prepared all
figures and tables and wrote the manuscript.

Felix Sommer characterized the magnets (5 %).
My contribution (20 %) consists in developing a prototype of the setup and fitting

program for quantifying the magnetic moment as well as deviations from a point
dipole approximation based on two dimensional scans and discussing the results.

Johannes Schönke contributed (20 %) the analytical theory.
Ingo Rehberg contributed (5 %) the assembly time estimation and supervised the

research as well as the writing of the manuscript.

77

https://doi.org/10.1103/PhysRevB.98.214424




PHYSICAL REVIEW B 98, 214424 (2018)

Assembly of eight spherical magnets into a dotriacontapole configuration
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The magnetic field of a cuboidal cluster of eight magnetic spheres is measured. It decays with the inverse
seventh power of the distance. This corresponds formally to a multipole named a dotriacontapole. This strong
decay is explained on the basis of dipole-dipole interaction and the symmetry of the ensuing ground state of the
cuboidal cluster. A method to build such dotriacontapoles is provided.

DOI: 10.1103/PhysRevB.98.214424

I. INTRODUCTION

Within the forces determining the interplay of condensed
matter, the dipole-dipole interaction can be considered as
the most important one, because monopoles do not exist for
neutral matter, and pure quadrupole, octopole, or hexadecapol
interaction tends to be masked by induced dipole moments.
While the interaction of quadrupoles is not too exotic [1]
and includes examples from continuum mechanics [2], pure
octopole or even higher order interaction is different. Here we
demonstrate that the combination of eight dipoles in a simple
cubic arrangement leads to a 32-pole or dotriacontapole.

The exploration of the cuboidal dipole arrangement dis-
cussed here is triggered by the investigation of magnetic
nanoparticles, which have been reported to self-assemble into
such configurations [3,4]. The most elementary cluster of
this type contains only eight particles. It can also be assem-
bled macroscopically as a cubic cluster from eight magnetic
spheres, as indicated by the left-hand side inset of Fig. 1, and
described previously [5,6]. The ground state of this arrange-
ment is stable, and an interesting continuum [5,7]. In this state,
the spheres attract each other by the magnetic interaction. The
cuboidal arrangement is an attractor, provided that the spheres
are brought sufficiently close to that configuration and are
allowed to adjust their orientation towards the ground state,
i.e., their mutual friction must not be too large. That is the
reason why the arrangement shown by the left-hand side inset
of Fig. 1 can be assembled without needing a tremendous
amount of dexterity, and in that sense the arrangement can
be considered as almost self-assembled.

While the hallmark of a dipole is its field decay with the
third power of the distance, the combination of eight dipoles
could be expected to form a 16-pole or hexadecapole with
a decay according to the sixth power. Amazingly enough, it
turns out that the ground state of a cuboidal cluster of eight
dipoles shows a field decay with the seventh power. This is

*Stefan.Hartung@uni-bayreuth.de
†Johannes.Schoenke@oist.jp
‡Ingo.Rehberg@uni-bayreuth.de

explained by the symmetry of the ensuing ground state which
make all lower-order terms vanish.

II. EXPERIMENTAL RESULTS

For reaching the ground state of the cluster, the eight
spheres should be allowed to rotate freely. For that purpose
it is useful to provide a Teflon® spacer to reduce the friction
of the spheres, as shown in the right-hand side inset of Fig. 1.
Here, the eight neodymium magnets of diameter d = (19 ±
0.05) mm are arranged in a cuboidal configuration by the
holes at the corners of the white Teflon® cube, and kept
at an edge length L = (39.5 ± 0.05) mm by means of the
nonmagnetic Teflon® spacer. A hole is drilled into that spacer
along the face diagonal, the (1,1,0) direction of the cube. This
allows us to move the Hall probe (the black tip) into the
cuboid, down to its center, by means of a stepper motor, using
0.1-mm steps. We adjust the spheres within their continuous
ground state to maximize the measured magnetic-flux density.
This is achieved by manually turning just one sphere around
the space diagonal as rotation axis; the other ones follow
accordingly due to the magnetic interaction.

The measured magnetic-flux density along the (1,1,0)
direction is shown in Fig. 1. It has a maximum at about
r = 28 mm—where the Hall probe is closest to the spheres—
and decays to zero both when approaching the center, and
when increasing the distance from the cube. The solid line
corresponds to a fit of the numerical superposition of the flux
densities of eight accordingly arranged point dipoles, as given
by (1) discussed below.

The most important feature of this cuboidal arrangement
of dipoles is the unusually steep decrease of the magnetic-
flux density outside the cube. To quantify this decrease, Fig. 2
shows the data from Fig. 1 in a logarithmic plot. It becomes
obvious that the magnetic-flux density decays with the inverse
seventh power of the distance. To characterize this magnetic
cluster with an appropriate name, it must be recalled that the
field of dipoles decays with the third power, quadrupoles with
the fourth power, and so on. In that sense, the seventh power
corresponds to a dotriacontapole.

The fact that the field is expected to be zero at that
center of the arrangement is caused by the symmetry of the

2469-9950/2018/98(21)/214424(6) 214424-1 ©2018 American Physical Society
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FIG. 1. Magnetic-flux density as measured along a straight path
through the center of the cuboid. Only every 30th data point is shown.
The solid line corresponds to the numerical superposition of the flux
densities of eight accordingly arranged point dipoles with a magnetic
moment m = 3.48 J T−1. The left-hand side inset shows the principal
cuboidal arrangement of the eight magnetic spheres, and the right-
hand side inset a geometrically similar arrangement, but here with a
white Teflon® spacer. The hole in that spacer allows us to take data
inside the cuboid by means of the Hall probe, which is visible as the
black part above the hole.

ground state. The measured deviations from that value can be
attributed to geometrical and experimental imperfections: The
dipole moments are not mathematically identical; they might
not have reached their ground state due to the finite amount
of friction, and the Hall probe can reach the center of the
arrangement only with a mm precision.

The increase of the flux density with the fourth power is in
agreement with the numerical evaluation of the ground state.
According to that simulation, it even seems to be universal,
i.e., independent of the direction along which the field is
calculated. Compared to the seventh power of the decay this
fourth power seems less exotic. It is somehow reminiscent of
the field near the center of a Helmholtz pair of coils, where

FIG. 2. The magnetic-flux density measured along a path starting
from the center of the cuboid is represented by the circles. Only every
tenth data point is shown at the left-hand side of the maximum, and
every 40th data point at the right-hand side. The solid line is the same
numerically obtained curve as in Fig. 1. The dash-dotted lines are for
comparison with the expected asymptotic slopes. The dashed line
depicts the analytical solution (7) for the far field.

FIG. 3. The position r and the position vectors p� of the dipole
moments m� are taken from the center of the cluster. The orientations
of the dipoles in the continuous ground state are determined by the
angle τ . The dipole configuration is sketched here for τ = 90◦, which
corresponds to the largest negative value of Bz along the (1,1,0)
direction.

the second-order terms vanish at a singular value of the coil
distance.

III. THEORY

The scalar potential φ at position r for a distribution of N

dipoles with position vectors p� and dipole moments m� (see
Fig. 3) is given by

φ =
N∑

�=1

m� · (r − p�)

4π |r − p�|3 . (1)

This equation is expected to describe the cluster field, because
the individual spheres have a pure dipole field, in agreement
with the theoretical expectation for homogeneously magne-
tized spheres [8] and our measurements presented in Ap-
pendix A. The numerical results of this equation correspond
to the gray lines in Figs. 1 and 2.

To explain the behavior of the magnetic-flux density B in
the far field, we perform a multidipole expansion, where the
potential is expanded in a series for |p�| � |r|,

φ =
∞∑

ν=0

1

ν!

N∑
�=1

∂νφ

∂pν
�

∣∣∣∣
p�=0

· (p� ⊗ · · · ⊗ p�︸ ︷︷ ︸
ν times

).

As an example, the quadrupole (second term in the expansion)
reads

φ(2) = 1

4π |r|5
N∑

�=1

[3(m� · r)r − |r|2m�] · p�

= 1

4π |r|5
N∑

�=1

[3 m� ⊗ p� − (m� · p�)I︸ ︷︷ ︸
M2

] · (r ⊗ r),
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with the second-order unit tensor I. The second-order tensor
M2 is the quadrupole moment. Using Cartesian coordinates
p� = (px

� , p
y

� , p
z
� ), m� = (mx

�,m
y

� ,m
z
�) and r = (x, y, z), we

obtain

φ(2) = 1

4π |r|5

⎡
⎢⎢⎢⎢⎢⎣

N∑
�=1

(
2px

� m
x
� − p

y

� m
y

� − pz
�m

z
�

)
︸ ︷︷ ︸

M2
200

x2

+ 3
N∑

�=1

(
px

� m
y

� + p
y

� m
x
�

)
︸ ︷︷ ︸

M2
110

xy + · · ·

⎤
⎥⎥⎥⎥⎥⎦.

M2
ijk are the Cartesian components of the moment M2

with i + j + k = 2. Using the moments, the potential can be
written as

φ =
∞∑

α=1

φ(α) =
∞∑

α=1

1

4π |r|2α+1

∑
i+j+k=α

Mα
ijk xiyj zk. (2)

The cube ground state [5,9] is a highly shielded structure. For
a cube with edge length L and dipole moment magnitudes
|m�| = m we have

(dipole) M1
ijk = 0,

(quadrupole) M2
ijk = 0,

(octopole) M3
ijk = 0, (3)

(hexadecapole) M4
ijk = 0,

(dotriacontapole) M5
311 = C sin(τ + π/3),

M5
131 = C sin(τ + 5π/3), (4)

M5
113 = C sin(τ + 9π/3), (5)

where τ = 0 . . . 2π is the current phase angle [5,9] of
the continuous ground state as indicated in Fig. 3 and
Appendix B, and C = 105

√
3/2 L4m. There are restrictions

for the cube moments following from the symmetries of the
ground state [5]. The potential φ has to be zero in the three
planes, x = 0 , y = 0 , z = 0, as well as on the four volume
diagonals, |x| = |y| = |z|. Together with (2) this leads to
conditions for the nonzero moments Mα

ijk:

i, j, k positive, odd ⇒ α odd, and
∑

i+j+k=α

Mα
ijk = 0.

This explains why the first nonzero moments appear in the
dotriacontapole,

φ(5) = M5
311 x3yz + M5

131 xy3z + M5
113 xyz3

4π |r|11
. (6)

The magnetic-flux density is related to the potential through
B = −μ0∂φ/∂r. We parametrize the measurement along
the direction (1,1,0) with the radius parameter s through

(x, y, z) = (s, s, 0)/
√

2 and obtain the following expression
for the z component of the magnetic-flux density from (3)–(6):

Bz(s, τ ) = −μ0
∂φ

∂z

∣∣∣∣
x=y=s/

√
2, z=0

= −105
√

3/2 μ0L
4m sin τ

16πs7
+ O

(
1

s9

)
. (7)

The next order decays with |B| ∝ 1/s9 because all moments
with even α are zero.

Equation (7) is displayed in Fig. 2 by the dashed line. The
solid lines in Figs. 1 and 2 are obtained numerically from
the exact (1), with τ = 90◦ taken as the phase angle of the
continuous ground state (see Appendix C). It is amazing that
this asymptotic prediction reaches the exact solution already
at a distance of about 50 mm, which can be considered as
sheer luck from an experimental point of view, because the
field is hardly detectable for our equipment at distances larger
than 100 mm. For the measurements shown there, the angle
τ was adjusted manually to obtain the largest signal of the
Hall probe to achieve an optimal signal-to-noise ratio. This
corresponds either to τ = 90◦ or to τ = 270◦.

Note that the shape of the B(r ) curve shown in Figs. 1
and 2 is not universal, it rather depends on the direction of the
line along which the flux density is measured. The 1/r7 decay,
however, is a universal feature for all directions in the far-field
limit, |p�| � |r|.

IV. CONCLUSION AND OUTLOOK

In summary, we have demonstrated that eight spherical
permanent magnets assemble into a configuration which be-
haves like a dotriacontapole. This can be explained by a model
based on pure dipole-dipole interaction. This model is based
on symmetry considerations which are an idealization of the
experimental situation. The measurements make it clear that
the conclusions drawn from the idealization are robust against
(small) distortions, in particular the decay of the magnetic-
flux density with 1/r7—a hallmark for a highly shielded
structure—survives.

This finding implies that storing strong magnets in a cubic
packing might be the optimal way for suppressing their field in
the outer surrounding. Moreover, the extremely steep field de-
cay has remarkable consequences for the clustering dynamics:
If two dipole spheres, initially separated by say ten diameters,
needed one second to collide due to their attractive force, for
dotriacontapoles of comparable strength, this process would
take more than one year (see Appendix B). Thus, dipoles
which manage to arrange themselves in this configuration are
fairly robust against further clustering. This argument is scale
invariant. It applies to macroscopic granules in the early stages
of planet formation [10], but could also shed some light on the
self-assembly dynamics of colloidal nanomagnets [3,4] used
for medical applications [11].

The plastic spheres shown in Fig. 4 demonstrate an attempt
to build a handful of such dotriacontapoles with the help of
a three-dimensional (3D) printer. Each sphere contains eight
magnetic dipoles in a cubic arrangement. This is provided
by three perpendicular walls inside these spheres, indicated
in the left-hand side inset, and eight holes along the space

214424-3



HARTUNG, SOMMER, VÖLKEL, SCHÖNKE, AND REHBERG PHYSICAL REVIEW B 98, 214424 (2018)

FIG. 4. A cluster of 3D-printed dotriacontapoles. The inner part
of these spheres contains three perpendicular walls as indicated by
the left-hand side inset. The colored magnetic spheres of 5 mm
diameter are placed inside these plastic spheres by the eight holes
along the space diagonals, as indicated by the right-hand side inset.

diagonals, as indicated by the right-hand side inset. These
plastic spheres should thus interact with an extremely short-
ranged interaction force, which should asymptotically de-
cay with the inverse 12th power of the mutual distance—
provided that the magnetic dipoles inside a sphere are in
their ground state. Measuring such a short-range interaction
between dipole clusters provides a challenge left to be faced
in future work.
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APPENDIX A: MAGNETIC SPHERES AS DIPOLES

The magnetic spheres (MK-19-C from magnets4you
GmbH) have a diameter of d = (19 ± 0.05) mm. For explain-
ing the experimental findings with a theoretical model based
on pure dipole-dipole interaction, it is crucial to demonstrate
that these spheres can be described as magnetically hard
point dipoles. Thus, we have measured the axial component
of the magnetic-flux density Bx of a single sphere along
the x direction in a 170-mm × 20-mm xy plane, as shown
in the inset of Fig. 5. The flux density is measured by a
Hall probe (HU-ST1-184605, MAGNET-PHYSIK Dr. Stein-
groever GmbH). The 3D positioning of this probe is done
with a stepper motor (High-Z S-400T, with Zero-3 controller
from CNC-STEP), the interface (CNCPod) is programmable
in G-Code, DIN/ISO 66025. A single-board microcontroller
(Leonardo, Arduino) is additionally used for interfacing it to
a PC.

To emphasize deviations from the point dipole approxi-
mation, and to extract the underlying magnetic moment, we
make use of the theoretically expected flux density of a point

FIG. 5. The inset shows Bx(x, y ) measured in a plane, color
coded in red for strong fields to blue for weak ones. The direction
of the x coordinate is chosen to be parallel to the dipole moment m
and forms a horizontal plane with the perpendicular coordinate y. An
estimator for the magnetic moment is obtained from these data with
(A2). The result is displayed as a function of r by the circles. The
dashed line represents the mean value m1 of these data.

dipole [8],

Bx = μ0

4π

m (3 cos2� − 1)

r3
, (A1)

with � = arctan(y/x), r =
√

x2 + y2 measuring the an-
gle between the dipole moment and the position vector,
and the magnetic constant μ0. With the shorthand notation

4π
μ0(3 cos2�−1) = f�, this provides the magnitude of the mag-
netic moment,

m = Bxr
3f�. (A2)

The resulting m as a function of the measured value of
Bx(x, y) is plotted in Fig. 5 as a function of the distance of
the Hall probe from the center of the sphere. The increasing

FIG. 6. Data obtained from the measurements of the magnetic-
flux density Bx of two spheres in contact. The raw data are shown in
the inset, and the solid line shows the calculated superposition of two
dipole fields. Bx scaled with x32π/μ0 is shown in the larger plot. The
horizontal dashed line represents the sum of the magnetic moments
of the isolated spheres. The dashed vertical line represents the origin
at the contact point of the spheres.
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scatter at larger distances r is caused by the fast decay of
the magnetic-flux density. Based on these data, it seems
safe to conclude that the point dipole approximation for the
magnetic-flux density of the sphere is reliable within ±2 %.
The mean value is (3.51 ± 0.18) J T−1, which is well within
the (3.54 ± 0.11) J T−1 claimed by the manufacturer. We have
measured all eight dipoles used in the experiments described
here in a similar way, they differ by an amount of ±3%.

To measure the mutual influence of such magnetic spheres,
we brought them in direct contact as shown in the left-hand
side inset of Fig. 6. The measured flux density along the
axis of the resulting two-dipole cluster is shown as the right-
hand side inset in Fig. 6. The position of the Hall probe
is measured as the distance from the center between the
spheres. The data reveal roughly the typical 1/x3 descent of a
dipole, but deviations from that scaling are hard to judge from
this inset plot. To get a better resolution for the deviations
from the overall 1/x3 decay, the data were multiplied with
x3. After scaling with 2π/μ0 one gets an estimate for the
magnetic moment, which is displayed on the vertical axis
of Fig. 6. These scaled data decay monotonically with the
position x and reach the value of the sum of the two magnetic
moments asymptotically, which is indicated by the dashed
line. The solid line is the theoretical estimation, based on
the superposition of the fields of the individually measured
moments m1 = 3.51 J T−1 and m2 = 3.50 J T−1, with their
mutual distance given by the diameter of the spheres. The
good agreement between this curve and the data indicates
that the magnets are hard ones: Their magnetic moment stays
constant even under the influence of the immediately adjacent
other magnet, at least within the experimental resolution on a
percentage level.

APPENDIX B: DIPOLE ORIENTATION IN THE CUBE
GROUND STATE

The dipole orientation within the ground state of the
cuboidal cluster can be parametrized by a single parameter,
namely the phase angle τ = 0◦ . . . 360◦ [5,9]. The configura-
tion for the angle τ = 90◦ is illustrated in Fig. 3. The source
code of a Python script animating this state together with the
corresponding fields for adjustable values of τ is available
[12]. The exact positions and orientations of the dipoles with
respect to τ are provided by Table I.

APPENDIX C: ASSEMBLY TIME FOR DIPOLES VERSUS
THAT FOR DOTRIACONTAPOLES

The time Tm for two multipoles of diameter d starting at
a distance of 10d to come into contact under the influence of

TABLE I. Description of pi and mi in the cube ground state.

i pi mi · √
3/2/m

1

⎛
⎝ 0.5

0.5

0.5

⎞
⎠

⎛
⎝−sin(τ − 240◦ )

−sin(τ − 120◦ )

−sin(τ )

⎞
⎠

2

⎛
⎝ 0.5

0.5

−0.5

⎞
⎠

⎛
⎝+sin(τ − 240◦ )

+sin(τ − 120◦ )

−sin(τ )

⎞
⎠

3

⎛
⎝ 0.5

−0.5

0.5

⎞
⎠

⎛
⎝+sin(τ − 240◦ )

−sin(τ − 120◦ )

+sin(τ )

⎞
⎠

4

⎛
⎝ 0.5

−0.5

−0.5

⎞
⎠

⎛
⎝−sin(τ − 240◦ )

+sin(τ − 120◦ )

+sin(τ )

⎞
⎠

5

⎛
⎝−0.5

0.5

0.5

⎞
⎠

⎛
⎝−sin(τ − 240◦ )

+sin(τ − 120◦ )

+sin(τ )

⎞
⎠

6

⎛
⎝−0.5

0.5

−0.5

⎞
⎠

⎛
⎝+sin(τ − 240◦ )

−sin(τ − 120◦ )

+sin(τ )

⎞
⎠

7

⎛
⎝−0.5

−0.5

0.5

⎞
⎠

⎛
⎝+sin(τ − 240◦ )

+sin(τ − 120◦ )

−sin(τ )

⎞
⎠

8

⎛
⎝−0.5

−0.5

−0.5

⎞
⎠

⎛
⎝−sin(τ − 240◦ )

−sin(τ − 120◦ )

−sin(τ )

⎞
⎠

their mutual attraction—a characteristic time for the dynamics
of the self-assembly of magnetic clusters [3,4]—is obtained
by integrating over their inverse velocity. When assuming that
these particles are suspended in a viscous fluid, that velocity is
proportional to the attractive force (Stokes’s law). T2 denotes
the pair of dipoles, T32 denotes the pair of dotriacontapoles.
The attracting force of these multipole pairs is assumed to be
the same when they are in contact at the distance of 1d,

T32

T2
=

∫ d/2
5 d

1
v32

dr∫ d/2
5 d

1
v2

dr

v∝F=
∫ d/2

5 d
−(

2 r
d

)12
dr∫ d/2

5 d
−(

2 r
d

)4
dr

= 5

13

1013 − 1

105 − 1
≈ 0.4 × 108.

This ratio turns, e.g., 1s for a dipole pair into 1a for the
corresponding pair of dotriacontapoles: They are fairly robust
against further clustering.
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