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4 Summary 
 

Sustainability and climate protection are keywords for upcoming decades. Bio-based polymers 

can contribute to these ambitious goals and so research is focusing more on these types of 

polymers (Chapter 6).1–4 This thesis shall contribute to the further development and 

understanding of bio-based polymers. The main focus of this thesis is the terpene-based 

polymer poly(limonene carbonate) (PLimC) with its high glass transition temperature 

(Tg = 130 °C). PLimC was first discovered by COATES et al.5, who investigated the alternating 

copolymerization of limonene oxide (LO) and CO2. Both monomers are non-food-based and 

non-crop-based, so competition for resources with the food industry is not present with these 

monomers. This makes PLimC an excellent candidate as an alternative to bisphenol-A 

polycarbonate (PC). By masking impurities within the monomer LO, the molecular weight of 

PLimC could be increased drastically (<100.000 Da).6 PLimC has excellent properties and 

tuning possibilities for practical applications, so the interest in further development of PLimC 

is given.6–8 Key factor for practical applications is processing via injection molding or hot-

pressing, but neat PLimC is hard to process due to its high viscosity in the melt 

(η0 = 0.89 MPa‧s), the high onset of the viscous flow (~ T = 167 °C) and its low degradation 

temperature (~ T = 180 °C).  

The main objective of this thesis is to show ways to process PLimC despite the aforementioned 

processing obstacles for PLimC. Additives, blending, or copolymerization can be used as 

effective tools to achieve the processability of PLimC. 

Additives 

The first investigated way involves a bio-based plasticizer, which allows the processing of 

PLimC without the loss of optically and mechanical properties (Publication 1, Chapter 9.1). 

Ethyl oleate (EtOL) was chosen as a bio-based plasticizer for PLimC due to its nontoxicity. 

EtOL is a fatty acid ester, which displays good plasticizing properties due to its long alkyl 

chains. A loading of 7.5 wt% EtOL reduces the viscosity of PlimC in the melt (η0 = 0.12 MPa‧s) 

and decreases the onset of the viscous flow (T = 136 °C). At the same time, the glass transition 

temperature of PLimC is reduced to 90 °C. By applying EtOL, the narrow process window of 

PLimC can be extended and it can be processed at lower temperatures (~ T = 160 °C). This 

enables PLimC processing without decomposition and with improved mechanical properties. 

The E-modulus (E = 2.1 ± 0.19 GPa) and the elongation at break (εbr = 28 ± 9.3%) are increased 

significantly by the addition of 7.5 wt% EtOL. Higher amounts of EtOL (> 7.5 wt%) do not 
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result in improved mechanical properties. The optical properties of PLimC/EtOL compounds 

are comparable to the neat PLimC. The recyclability of PLimC/EtOL compounds was also 

investigated. It is shown that PLimC/EtOL compounds can at least be recycled once by melt 

reprocessing. 

Blending  

To explore the processing of PLimC even further, blends of PLimC as minority component and 

commodity polymers (e.g., polyamide (PA), polystyrene (PS), or poly(methyl methacrylate) 

(PMMA)) were produced. Blending should showcase the potential of bio-based polymers for 

sustainable applications (Publication 2, Chapter 9.2). The blend morphology was investigated 

by scanning electron microscopy (SEM) and Raman imaging. The difference in viscosity and 

incompatibility are usually leading to phase-separated blends with a bimodal PLimC domain 

distribution. Phase-separation also influences the thermal properties of the blends. Using 

differential scanning calorimetry (DSC), an increased crystallization temperature for PLimC 

could be observed. That is due to the nucleation effects of PLimC domains. Thermogravimetric 

analysis (TGA) of the different blends reveals higher thermal stability for matrix embedded 

PLimC. In terms of mechanical properties, blends of PLimC with polylactide (PLA), 

poly(butylene adipate-co-terephthalate) (PBAT), or copoly(ether ester) (COPE) show the most 

promising properties for applications. The most pronounced effect of PLimC in blends (e.g., 

PBAT or COPE blends) is, that it leads to a strong increased E-modulus, which can be 

interesting for applications. 

Copolymerization 

To improve the performances of phase-separated PLimC/PLA blends, block copolymers of 

PLimC and PLA were synthesized (Publication 3, Chapter 9.3). The produced block 

copolymers can be used as compatibilizers in blends to influence the morphology and 

mechanical properties. In this chapter, the copolymerization of LO, CO2, and lactide (LA) is 

discussed in detail. One-pot ring-opening copolymerization (ROCOP) of (D, L)-lactide and LO 

is performed to investigate the actual polymer architecture in one-pot reactions. Based on TEM 

measurements and 1H-1H-NOESY NMR experiments, a block copolymer structure could be 

identified. To show an active PLimC chain ending, sequential ring-opening copolymerization 

of (L)-lactide was performed to synthesize PLimC/PLLA block copolymers.  Additionally, 

ROCOP was used as an efficient tool for tailoring the mechanical properties of PLimC. In a 

sequential approach, dihexyl-substituted lactides (diHLA) were used as monomers for ROCOP 
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with LO and CO2. These block copolymers of PLimC and Poly(diHLA) (PdiHLA) showed an 

interesting elasticity and transparency for potential applications. 
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5 Zusammenfassung 
 

Nachhaltigkeit und Klimaschutz sind die Schlüsselwörter für zukünftige Jahrzehnte. Bio-

basierte Kunststoffe können zu diesen ambitionierten Zielen beitragen. Auch deshalb fokussiert 

sich die Forschung mehr und mehr auf diese Art von Kunstoffen (Kapitel 6).1–4 Diese Arbeit 

soll zur weiteren Entwicklung und zum weiteren Verständnis über bio-basierte Kunststoffe 

beitragen. Der Hauptfokus dieser Arbeit ist der Kunststoff Poly(limonen carbonat) (PLimC) mit 

seiner hohen Glasübergangstemperatur (Tg = 130 °C). PLimC wurde als erstes von COATES et 

al. entdeckt, der die alternierende Copolymerisierung von Limonenoxid (LO) und CO2 

untersuchte.5 Beide Monomere basieren nicht auf Nahrungsmitteln, sodass es keinen 

Konkurrenzkampf um Ressourcen gibt. Das macht PLimC zu einem exzellenten Kandidaten 

als Alternative zu Bisphenol-A-Polycarbonat (BPA-PC). Indem Hydroxyl-Verunreinigungen 

im Monomer LO maskiert worden sind, konnte das Molekulargewicht drastisch erhöht werden 

(<100.000 Da).6 PLimC besitzt exzellente Eigenschaften und Veränderungsmöglichkeiten für 

praktische Anwendungen, sodass das Interesse an weiteren Entwicklungen zu PLimC gegeben 

ist.6–8 Schlüsselfaktor für praktische Anwendungen ist die Verarbeitbarkeit mittels Spritzgusses 

oder Heißpressens. Reines PLimC ist aufgrund seiner hohen Schmelzviskosität (η0 = 0.89 

MPa‧s), seinem hohen Beginn des viskosen Fließens (~ T = 167 °C) und seiner geringen 

Zersetzungstemperatur (~ T = 180 °C) schwer zu verarbeiten. 

Das Hauptziel dieser Arbeit ist es, trotz der obengenannten Verarbeitungshindernisse mehrere 

Wege aufzuzeigen, um PLimC zu verarbeiten. Additive, Blending oder Copolymerisierung 

können als effektives Werkzeug benutzt werden die Verarbeitbarkeit von PLimC zu erreichen. 

Additive 

Der als erste untersuchte Weg beinhaltet ein bio-basierten Weichmacher, welcher die 

Verarbeitung von PLimC ohne den Verlust von optischen und mechanischen Eigenschaften 

erlaubt (Publikation 1, Kapitel 9.1). Ethyl Oleat (EtOL) wurde aufgrund seiner Ungiftigkeit 

als bio-basierter Weichmacher ausgewählt. EtOL ist ein Fettsäureester, der aufgrund seiner 

langen Alkylketten gute weichmachende Eigenschaften zeigt. Eine Beladung mit 7.5 wt% EtOL 

reduziert die Viskosität von PLimC in der Schmelze (η0 = 0.12 MPa‧s) und verringert den 

Beginn des viskosen Fließens (T = 136 °C). Gleichzeitig wird die Glasübergangstemperatur auf 

90 °C reduziert. Indem man einen bio-basierten Weichmacher verwendet, kann man das enge 

Verarbeitungsfenster von PLimC erweitern und es kann bei niedrigeren Temperaturen 

verarbeitet werden (~ T = 160 °C). Das ermöglicht die Verarbeitung von PLimC ohne 
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Zersetzung und mit verbesserten Eigenschaften. Nachdem man 7.5 wt% EtOL hinzugegeben 

hat, sind das Elastizitätsmodul (E = 2.1 ± 0.19 GPa) und die Bruchdehnung (εbr = 28 ± 9.3%) 

sind signifikant angestiegen,. Größere Anteile von EtOL (> 7.5 wt%) resultieren nicht in 

verbesserten mechanischen Eigenschaften. Die optischen Eigenschaften der PLimC/EtOL-

Komposite sind vergleichbar mit reinem PLimC. Die Recyclbarkeit von PLimC/EtOL-

Kompositen wurde auch untersucht. Es konnte gezeigt werden, dass PLimC/EtOL-Komposite 

durch erneutes Wiederverarbeiten mindestens einmal wieder verwendet werden können.  

Blending 

Um die Verarbeitung von PLimC weiter zu untersuchen, wurden Blends aus technischen 

Polymeren (z.B. Polyamid (PA), Polystyrol (PS) oder Polymethylmethacrylat (PMMA)) mit 

PLimC als Minderheitskomponente hergestellt (Publikation 2, Kapitel 9.2). Das Blenden soll 

das Potenzial von bio-basierten Polymeren für nachhaltige Anwendungen zeigen. Die Blend 

Morphologie wurde mit dem Rasterelektronenmikroskop (SEM) und Raman Imaging 

untersucht. Der Unterschied in der Viskosität und die Unverträglichkeit führt 

gewöhnlicherweise zu phasenseparierten Blends mit einer bimodalen PLimC Domänen 

Verteilung. Die Phasenseparierung beeinflusst auch die thermischen Eigenschaften der Blends. 

Eine erhöhte Kristallisierungstemperatur von PLimC konnte mittels dynamischer 

Differenzkalorimetrie (DSC) beobachtet werden. Dies liegt an den Nukleierungseffekte der 

PLimC Domänen.  Die thermogravimetrische Analyse (TGA) der verschiedenen Blends zeigt 

eine höhere Stabilität für PLimC, welches in eine Matrix eingebettet ist. In Bezug auf 

mechanische Eigenschaften zeigten Blends von PLimC mit Polylactid (PLA), 

Polybutylenadipat-terephthalat (PBAT) oder Copolyetherestern (COPE) die 

vielversprechendsten Eigenschaften für Anwendungen. Der stärkste Effekt von PLimC in 

Blends (z.B. COPE oder PBAT Blends) ist es, dass es zu einem erhöhten Elastizitätsmodul, 

welches für Anwendungen interessant sein könnte, führt. 

Copolymerisierung 

Um die Perfomance von phasenseparierten PLimC/PLA Blends zu verbessern, wurde 

Blockcopolymere von PLimC und PLA synthetisiert (Publikation 3, Kapitel 9.3). Die 

produzierten Blockcopolymere können als Phasenvermittler in Blends verwendet werden, um 

die Morphologie und die mechanischen Eigenschaften zu beeinflussen. In diesem Kapitel wird 

die Copolymerisierung von LO, CO2 und (D,L)-Lactid (LA) im Detail diskutiert. Die ring-

öffnende Eintopf-Copolymerisierung (ROCOP) von LA, CO2 und LO wurde durchgeführt, um 
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die eigentliche Polymerarchitektur tatsächliche Polymerarchitektur von Eintopf-Reaktionen zu 

untersuchen. Basierend auf TEM-Messungen und 1H-1H-NOESY-NMR-Experimenten konnte 

eine Blockcopolymer-Struktur identifiziert werden. Um das aktive PlimC Kettenende zu 

zeigen, wurde eine sequenzielle ROCOP mit L-Lactid durchgeführt, um PLimC/PLLA 

Blockcopolymere zu synthetisieren. Zusätzlich wurde in einem sequentiellen Ansatz dihexyl-

substituierte Lactide (diHLA) für eine ROCOP mit LO und CO2 als Monomere verwendet. 

Diese Blockcopolymere von PlimC und Poly(diHLA) (PdiHLA) zeigten eine interessante 

Elastizität und Transparenz für potenzielle Anwendungen. 
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6 Introduction 
 

6.1 Bio-based polymers in general 
 

Polymers are a part of our everyday life due to the need for clothing, transportation, packaging, 

buildings medical applications, and electronic devices.4 Most of them are petroleum-based, 

which means, that they are relying on finite resources.9,10 The way to achieve sustainability 

concerning plastics and polymers is to replace petroleum-based polymers with inexpensive, 

natural, renewable, biodegradable, and non-toxic materials. There are four renewable raw 

materials: carbon dioxide, terpenes, vegetable oils, and carbohydrates, which feature the 

possibility to create sustainable polymers (Figure 1).4 In an economic view, polymer 

production should be not only sustainable but also highly efficient and inexpensive.  This can 

be achieved by using combinations of raw materials or recycling of waste resources from 

agriculture or industry. Additional characteristics for the produced sustainable polymers should 

complementary or enhanced properties compared with currently available commodity plastics. 

The new “green” polymers should be usable in markets, in which high tonnages are produced 

like for example in the packaging industry.11 Applications as thermoplastic elastomer or rigid 

plastic should be also possible. In terms of sustainability, the life-cycle assessment of polymers 

should be considered.12 Recyclability of bio-based materials13 and biodegradation14 are also 

important aspects for a sustainable green polymer. Sustainable polymers can be divided into 

three different categories.15 The first class deals with naturally derived biomass polymers. Here, 

the direct use of biomass as a polymeric material like for example cellulose, cellulose acetate, 

starches, chitin, modified starch is in the focus. The second category is about bio-engineered 

polymers: Microorganisms and plants are producing monomer materials via bio-synthesis like 

for example (hydroxy alkanoates (PHAs) or poly(glutamic acid). The third category are 

synthetic polymers like for example polylactide (PLA), poly(butylene succinate) (PBS), bio-

polyolefins, bio-poly(ethylene terephthalic acid) (bio-PET).16,17 
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Figure 1. Overview of different bio-based polymers and the corresponding bio-based 

feedstock: (1) CO2 is a renewable carbon resource, which can be copolymerized with propylene 

oxide to produce for example poly(propylene carbonate), (2) carbohydrates from sugar cane or 

maize can be converted to lactide and eventually is polymerized to PLA, (3) unsaturated fatty 

esters from vegetable oils (e.g., soybeans, castor oil or palm tree oil) can be converted into long-

chain aliphatic polyesters, (4) terpenes, which can be extracted from plants such as pine, mint 

or orange peels. Limonene oxide is copolymerized with carbon dioxide to give PLimC (adapted 

from ZHU et al.3 with permission of Springer © 2016).  
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6.2 Petro-based polycarbonates and bio-based polymers based on carbon 

dioxide (CO2) 
 

Polycarbonates (PC), whether they are bio-based or not, are a group of thermoplastic polymers 

containing carbonate groups in their chemical structures. Usually, when the term polycarbonate 

is used, it refers to polycarbonates on bisphenol A (BPA) basis. BPA–PC are possessing 

excellent features for commercial use like for example high durability, respectable mechanical 

properties, high transparency, and good processability. Due to these characteristics, it is applied 

in the automotive, electronics, and construction sector.18 There are two main methods for the 

synthesis of petroleum-based polycarbonates: Interfacial (solvent-based) and melt condensation 

polymerizations.19 Phosgene, aqueous sodium hydroxide, catalytic amine (e.g., triethylamine 

or pyridine), and BPA are used for the interfacial-based method (Figure 2). As solvent usually 

dichloromethane (DCM) is used.20 Phenols (e.g., p-t-butylphenol or p-cumylphenol) are also 

applied to adjust the molecular weight. Melt polymerization of BPA-PC usually involves 

diphenyl carbonate (DPC). In this process, BPA reacts with DPC in the presence of a minimal 

amount of basic catalyst (e.g., NaOH/LiOH) at a high temperature.20 The problematic factor in 

the reaction is not only toxic phosgene but also BPA. It is assumed to promote cancer in humans 

like for example breast cancer as shown by SOTO et al.21 Safety concerns were also declared by 

MAIA et al., who investigated the release of BPA from PC baby bottles.22 But not only the health 

aspects of BPA-PC are to mention, but also the environmental aspect like for example increased 

plastic pollution or fossil fuel depletion are important factors to consider. So, it is unavoidable 

to use natural feedstocks to prepare bio-based PC that possesses similar properties to petro-

based polycarbonates. One of these naturally occurring materials for the synthesis of bio-based 

polycarbonates is the greenhouse gas carbon dioxide (CO2). A lot of research has been 

conducted to make use of this source as a C1 building block.23–25 For example, LEE et al. are 

using carbon dioxide as a monomer to form poly(propylene carbonate)-diols, which gives 

access to polyurethanes (PU).26 Mechanistic aspects of the copolymerization of CO2 and 

epoxides were investigated by REN et al., who showed the effective use of thermally stable 

cobalt(III) complexes, which show high activity and selectivity for polymer formation during 

CO2/propylene oxide polymerization (PO).27 Highly isotactic polycarbonates, which were 

produced by enantioselective β-diiminate catalysts using CO2 and meso-epoxides were 

investigated by ELLIS et al. 28  



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

17 | P a g e  
 

 

Figure 2. Synthesis of petro-based and bio-based polycarbonates. Petroleum-based 

polycarbonates are made from bisphenol A (BPA) and phosgene. Bio-based polycarbonates are 

based on carbon dioxide and epoxides (adapted from CUI et al.18 and ZHU et al.3 with permission 

of Springer © 2016 and Elsevier © 2019).  

 

6.3 Bio-based polymers analogous to conventional petro-based polymers 
 

6.3.1 Bio-based poly(ethylene) (bio-PE)  

 

Bio-poly(ethylene) (bio-PE) can be synthesized using ethylene, which is obtained by the 

catalytic dehydration of ethanol.29 The major advantage of using bio-PE is the fact that its 

optical and mechanical characteristics are similar to conventional petro-based poly(ethylene) 

(PE). Additionally, all types of PE are also available for bio-based PE like for example bio-

HDPE with a low degree of short-chain branching or bio-LLDPE with a high degree of short-

chain branching.30 Another advantage is that the complete infrastructure for processing and 

recycling of PE is already available for bio-PE. The disadvantages are on the one side the 

competition on the market with conventional PE due to the low cost of shale gas. The 

disadvantage of PE despite the potential bio-based synthesis is the long-term stability of PE, 

which persists in the environment and is not practical to recycle.4 
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6.3.2 Bio-based poly(ethylene terephthalate) (bio-PET)  

 

Another important source for bio-based monomers is cellulose, sugar, or starch, which comes 

from plants like sugar cane (Saccharum officinarum), wheat (Triticum spp.), or sugar beet (Beta 

vulgaris).3,31 These monomers are the basis of many commercially available polymers: For 

example, ethylene glycol from starch is used as a monomer substitute in bio-poly(ethylene 

terephthalate) (bio-PET). There is also the possibility to produce PET that is fully derived from 

biomass as shown by PANG et al. It is based on ethylene glycol and terephthalic acid.32 ZHANG 

et al. showed in a review the literature, which is available for the dehydration process of ethanol. 

This process can be effectively used for the synthesis of poly(ethylene) (PE).33 In comparison 

to PE, PET is more sustainable due to the existing bottle recycling.34 For PET not only 

mechanical recycling is possible, but also chemical recycling due to organic depolymerization 

as shown by FUKUSHIMA et al.35 Not only ethylene glycol from starch is a source for bio-based 

polymers, but also sugar from polysaccharides is another option to produce monomers for 

polymerization reactions.  

 

6.3.3 Bio-based poly(ethylene furanoate) (PEF) 

 

Polyethylene furanoate (PEF) is an interesting candidate for future applications. It shows a 

melting temperature of Tm = 210 °C and a glass transition temperature of Tg = 80 °C.36,37 The 

decomposition of PEF starts at around 300 °C.38 PEF is brittle and rigid with an elongation at 

break of 4%.39 The synthesis on a laboratory scale is done in three major steps: 1. Fructose is 

produced from corn starch 2. The conversion of fructose into Furanics is performed 3. The 

oxidation to the monomer 2,5-furandicarboxylic acid (FDCA) and polymerization with 

ethylene glycol (EG) into PEF is carried out.40 During the process side reactions (e.g., levulinic 

acid) can happen, which hinders an efficient process. BURGESS et al. found a way to overcome 

this limitation to gain access to more stable hydroxymethyl furfural (HMF) ethers, which can 

be oxidized to FDCA.41 PEF is then synthesized by polycondensation of ethylene glycol and 

FDCA. Both processes PET and PEF synthesis are quite similar to each other, so an easier 

switch to a more sustainable PEF manufacturing can be achieved.41 
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6.4 Bio-based polymers from polysaccharide 
 

6.4.1 Polylactide (PLA) 

 

Polylactide (PLA) is a bio-based polymer, which is already commercially available (e.g., from 

NatureWorks®) and it is produced from fermented plant starch such as from corn or sugar beet 

pulp.42 To produced PLA for demanding markets, the production of the monomer source lactic 

acid must be improved. Nowadays usually bioprocess techniques facilitated by wild-type and/or 

engineered microbes are used to produce lactic acid in a microbial fermentation process.43 There 

are also alternative production approaches based on a direct zeolite-based catalytic process, 

which converts lactic acid into lactide, which is shown by DUSSELIER et al.44 Glycerol, 

agricultural waste, and algae-produced carbohydrates can also be used as a source of lactide.43 

Homogeneous and heterogeneous catalysis as part of chemocatalytic approaches show also a 

potential to produce lactic acid and other α-hydroxy acids.45 After obtaining lactide 

polymerization reactions can be carried out. The so produced PLA is a growing alternative as a 

packaging material, according to a review of AURAS et al.46 It can also be used as fiber material 

as shown by INKINEN et al.47 Using selective polymerization techniques to enable sterecomplex 

formation between enantiomeric PLA. This can help to increase the thermal stability of PLA 

and also widen the application area.48 A broader application area for PLA is also possible 

because the bio-based polymer shows recycling properties and compostability.3 The resulting 

lactic acid from composting can be degraded by microbes. A life cycle assessment of the 

manufacture of lactide and PLA biopolymers from sugarcane in Thailand shows a decrease of 

< 40% in greenhouse-gas emissions and < 25% in non-renewable-energy use for PLA compared 

with petrochemical-derived polymers such as polyethylene or PET.49,50 The life cycle 

assessment of PLA was also described by several groups.12,51,52 One drawback of PLA 

production is the extended use of water and fertilizer for the cultivation of plants, which would 

influence the environment. Problematic is also the replacement of natural plants with 

lignocellulosic or leftover biomass.3 PLA is based on lactic acid (LA), which is a 2-

hydroxycarboxylic acid with a chiral carbon atom and exists in two optically active 

stereoisomers: L-lactic acid and D-lactic acid, which are enantiomers.53 These variants are 

usually produced via bacteria fermentation (e.g., with Lactobacillus, Streptococcus, 

Pediococcus, Aerococcus, Leuconostoc, and Coryne species). Racemic DL-lactide acid is 

another important lactic acid variant, but rather with bacteria fermentation this variant is 

synthesized chemically.53 The dimer of two lactic acid molecules is called lactide (LA) and 
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consists of different stereoisomeric lactic acid units. L-lactide is based on two L-lactic acid 

molecules, whereas D-lactide is made of two D-lactic acid molecules. The other variant meso-

lactide consists of one L-lactic acid molecule and one D-lactic acid molecule. Racemic lactide 

(rac-lactide) is an equimolar mixture of L-lactides and D-lactides (Figure 3). L-lactides and D-

lactides are showing a melting temperature of 95-98 °C, whereas meso-Lactide is displaying a 

melt temperature of 53-54 °C. rac-lactide is displaying a higher melting temperature with 122–

126 °C.53 For the polymerization of PLA high monomer purity is necessary because impurities 

interfere with the course of reaction and reduce the quality of polymer. As impurities water or 

hydroxyl and carboxylic functionalities are regarded. Initiator formation, chain transfer, and 

transesterification are induced by hydroxyl impurities. This could lead to a change in 

polymerization rate or to a lower molecular weight alongside a broader molecular weight 

distribution. Carboxylic impurities are affecting the polymerization differently. They lead to a 

deactivation reaction by making a complex with the catalyst and reduce the rate of 

polymerization.54 PLA is accessible by using different polymerization routes like for example 

polycondensation or ring-opening polymerization (ROP) (Figure 3).55–57 Usually these 

techniques are based on four different routes, especially in industrial synthetic procedures 

(Figure 4). By using ring-opening polymerization (ROP) high molecular weight PLA can be 

produced (Figure 4A), whereas direct polycondensation gives PLA with a tendency to lower 

molecular weight (Figure 4B).42,58 For ROP of lactide different polymerization methods and 

mechanisms are available. The three main techniques are anionic, cationic, or coordination 

polymerization. Anionic and cationic polymerization are usually showing some disadvantages 

in comparison to coordination polymerization. By using anionic polymerization undesirable 

reactions like for example racemization, back-biting reaction or other side reactions can occur. 

The highly active anionic reactants can interfere with chain propagation. Cationic 

polymerization also favors undesirable side reactions and racemization, because of nucleophilic 

attacks on the activated monomers and the propagating species. Coordination polymerization 

with metal catalysts (mostly alkoxides) can overcome these limitations and produce high 

molecular weight polymers with high optical purity. For the tin-catalyzed polymerization of 

lactide DUDA and PENZEK proposed a comprehensive polymerization scheme based on the 

insertion-coordination mechanism (Figure 3).59 
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Figure 3. Ring-opening polymerization (ROP) of lactide by using Sn(Oct)2 as catalyst 

according to KIMURA et al.53 The polymerization scheme is based on the insertion-coordination 

mechanism of DUDA and PENZEK et al.59  

To manage the drawbacks of low molecular weight PLA by polycondensation, solvent-assisted 

polycondensation and melt polycondensation followed by solid-state polycondensation (SSP) 

can be applied (Figure 4C).42 This process consists of two steps: First, a prepolymer with a 

molecular weight of 20.000 Da is prepared by melt-polycondensation and then crystallized by 

heat-treatment at around 105 °C. Subsequently, it is heated at 140-150 °C for 10–30 h for 

polycondensation reaction. PLA with molecular weights over >500.000 Da can be obtained 

with this method.60 Azeotropic condensation polymerization can also be used for the direct 

synthesis of high molecular weight PLA starting from lactic acid (Figure 4D). AJIOKA et al. 

demonstrated this way by overcoming the problem of water removal during polymerization by 

manipulating the equilibrium between monomer and polymer in organic solvents, so lactic acid 

is directly polycondensed into a high molar mass polymer.61 Regarding the physical and 

mechanical properties of PLA, a strong impact of stereochemistry can be observed. There are 

two major forms of the homopolymer PLA with different stereochemistry, namely PLLA and 

PDLA. PLLA and PDLA are synthesized from mixtures of pure L- or D-lactic acid. The 
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copolymer PDLLA is obtained from the racemic mixture. These different types of PLA 

displaying different thermal and mechanical properties due to their stereochemistry. PLLA or 

PDLA are semi-crystalline polymers, which are showing a melting peak (Tm= 170 - 200 °C), 

whereas PDLLA shows amorphous behavior and no melting. The crystallinity of PLA is also 

significantly influenced by the thermal and mechanical history. The glass transition temperature 

of PLA shows values in the range of 45 - 60 °C for all types of PLA. Mechanical properties of 

PLA are strongly influenced by molecular weight, crystallinity, processing, or the testing 

procedure, so mechanical values are displayed in ranges.62 Typical mechanical values for PLA 

are for example: σ = 21–60 MPa, E-modulus = 0.35 – 0.5 GPa, ϵ = 2.5 – 6 %.63 The crystallinity 

of PLA strongly determines physical and mechanical properties (e.g., hardness, modulus, 

tensile strength, stiffness, and melting points). If the content of PLLA is high (>90 %) the 

polymer displays semicrystalline features, whereas lower content leads to amorphous behavior. 

Also, the density is influenced by crystallinity. Crystallinity also influences the solubility of 

PLA. Crystalline PLLA cannot be dissolved in acetone, ethyl acetate, or tetrahydrofuran. 

Amorphous PLA is soluble in dioxane, acetonitrile, chloroform, methylene chloride, 1,1,2-

trichloroethane, and dichloroacetic acid. Thermal and mechanical treatment can alter properties 

as shown by CARRASCO et al. in the case of PLA degradation.64 The mechanical and thermal 

properties of PLA can also be tuned by the addition of plasticizer65,66 Blending is another 

possibility for improving the mechanical properties of PLA.67 For blending two options are 

possible for PLA: On the one side, PLA can be blended with a biodegradable polymer or on the 

other side with a non-biodegradable polymer like polyethylene, polypropylene, polystyrene, 

poly(ethylene terephthalate), or polycarbonates.68 PLA composites are another option for 

influencing the mechanical properties of PLA (e.g., addition of reinforcing fibers, micro- and/or 

nanofillers, and selected additives).69 Blending of PLLA with PDLA leads to the formation of 

stereocomplexes, which exhibit higher melting temperature (or heat resistance), mechanical 

performance, and hydrolysis resistance compared to those of pure PLLA and PDLA.70 

Stereocomplexed PLA (sc-PLA) not only improves mechanical properties but also thermal 

properties like the thermal stability of PLA. A sc-PLA film can also be obtained from a 

compression-induced sterecomplexation at air−water interface according to YAN et al.71 One 

remarkable property of sc-PLA is its high melting temperature (Tm = 230 °C), which 50 °C high 

than the melting temperature of pure PLLA. Complex molecular architectures can also be made 

by using different PLA topologies like for example star-branched or long-chain branched.72 

Block copolymers of PLA are also well known like polyethylene glycol-co-polylactic acid 
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(PEG-PLA) block copolymer for hydrophilicity tuning or polylactic-co-caprolactone (PLCL) 

block copolmers.73–77  

 

 

Figure 4. Different synthesis methods of poly(lactide acid) (PLA) according to KUMAR et al.54 

and LIN et al.78: (A) Ring-opening polymerization (ROP) by using cyclic dimmers; (B) direct 

polycondensation polymerization starting from lactic acid; (C) Solid state polymerization (SSP) 

by using a prepolymer and controlling process conditions; (D) azeotropic condensation 

polymerization by manipulating the equilibrium between monomer and polymer. 

 

6.4.2 Poly(hydroxyalkanoates) (PHAs) 

 

Polyhydroxyalkanoates (PHAs) are another bio-based polymer group, which is accessible 

through the fermentation of sugar as described by MÜLLER and SEEBACH.79 PHAs are bio-based 

polyesters, which are build up from hyroxylalkonates monomers. PHAs also occur naturally as 

homopolymer (poly(3-hydroxybutyrate) [P(3HB)]) and also as copolymers poly(3-

hydroxybutyrate-co-3-hydroxyvalerate (P(3HB-3HV)). 80 In bacteria, PHAs are used as an 

energy storage medium. In bacteria cells, P(3HB) is in the amorphous state and is present as a 

fluid, whereas after extraction from the cells with organic solvents, P(3HB) shows a highly 

crystalline and brittle behavior.81 There are also efforts to produce P(3HB) not only from 
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bacteria but also from waste organic matter.82 Genetic modification of bacteria and plants 

allows increased sustainable production of PHAs for future bulk applications.83,84 Chemically, 

PHAs can be synthesized via ring-opening polymerization (ROP) of the corresponding lactone 

via metal catalysis or enzymatic routes.85 For bacterial synthesized PHAs, REN et al. revealed 

that all monomeric units of PHA are enantiomerically pure and in R-configuration.86 In 

comparison to that HAYWOOD et al. showed that if pure (S)-methyl 3-hydroxybutyrate is used 

as feedstock for the production of PHAs, the corresponding (S)-configuration polymer is 

generated.87 In Figure 5, the biological synthesis of PHA is depicted. The synthesis involves 

sugars, which are converted into acetates, which are subsequently complexed to coenzyme A 

(CoA) and to form acetyl coenzyme A (acetyl CoA). Afterward, this compound is dimerized to 

acetoacetyl CoA, which is followed by a reduction to hydroxyl butyryl CoA and subsequent 

polymerization to PH3B.15 There are different types of PHAs like for example short-length 

PHAs (sCL-PHAs), which consist of 4–14 carbon atoms in the monomer unit. Another well-

known PHA is for example medium chain length PHA (mCL-PHA).88 The chain length 

influences the thermal properties of PHAs. A longer polymer chain leads to a decreased melting 

temperature. PH3B shows a melting temperature of Tm = 160 °C and a glass transition 

temperature of Tg = 4 °C.15 The glass transition temperature is decreasing with an increased 

PHA chain length. In terms of processing, PHAs show a problematic behavior due to the low 

degradation temperature of 180 °C and the optimum processing temperature in the same region. 

High shear forces during processing cause a high internal heat, which leads to degradation, a 

decrease of molecular weight, and discoloration. Therefore, high precision and good monitoring 

are necessary to ensure an unbroken polymer. Low durability and insufficient crystallinity are 

also challenging factors during processing.15 Some PHAs show degradability and physical 

properties comparable to polyalkenes, which is advantageous for commercial use. The 

biosynthesis with bacteria is also quite cheap and might be up scalable in the future.89  

6.4.3 Succinate Polymers 

 

Succinate polymers are based on succinic acid (SA), which can be derived from the 

fermentation of agricultural carbohydrates or can be obtained from bacteria like Escherichia 

coli.90,91 Poly(butylene succinate) (PBS) and its copolymers are a group of biodegradable 

polymers, which are showing biodegradability, thermoplastic processability, and balanced 

mechanical properties. It can be directly synthesized by direct polycondensation of succinic 

acid and butanediol (BD) (Figure 5).92 Another interesting polymer from the succinate family 

is poly(ethylene succinate) (PES), which displays biodegradability and could be obtained from 



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

25 | P a g e  
 

a bio-based feedstock.93 It shows promising film applications due to its good oxygen 

permeability and its high elongation at break. Several copolymers of succinic acid and other 

dicarboxylic acids have been synthesized like for example poly(butylene succinate-co-butylene 

adipate)94, poly(butylene succinate‐co‐butylene terephthalate)95, or poly(butylene succinate-co-

butylene furandicarboxylate).96 In terms of thermal and mechanical properties succinate 

polymers show soft properties due to the long alky chains they possess. This makes them 

excellent candidates for a bio-based alternative in the packing industry.15 

 

 

Figure 5. Synthesis of bio-based polymers based on polysaccharides: (1) Poly(ethylene 

terephthalate) (PET) (2) Polyethylene furanoate (PEF) (3) Polylactide (4) Polybutylene 

succinate (PBS) (5) Polyhxdroxyalkanoates (PHAs) (adapted from NAKAJIMA et al.97 and 

WILLIAMS et al.3 with permission of Springer © 2016). 
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6.5 Bio-based polymers based on terpenes and terpenoids 
 

Terpenes and terpenoids are also a class of pre-monomers, which can be useful for the synthesis 

of bio-based polymers. These substances are based on the structure of isoprene and are 

obtainable from essential oils.98 In nature plants are utilizing terpenes for defense and 

frightening herbivores. These terpenes can also be chemical modified and functionalized, which 

results in terpenoids. Terpenoids mainly originate from oxidation, hydrogenation, or 

rearrangement of the carbon skeleton.15 Natural rubber is one of the most used polyterpenes. It 

is largely produced with over 10 megatons per year.3 Other terpenes are investigated less for 

polymer production in comparison to natural rubber, but still, there is potential to find. For 

example, turpentine, which is extracted from pine trees (Pinus spp.) and it consists mainly of α-

pinene (45–97%) and β-pinene (0.5–28%). Also, limonene, which is extracted from the peel of 

citrus fruits shows huge potential as a pre-monomer.99 These terpenes are produced in moderate 

quantities and are available for polymer synthesis. In 2013, about 0.3 kilotons of turpentine100 

and about 0.7 kilotons of limone101 were produced.3 The produced terpenes and terpenoids are 

mostly used in essential oils and fragrances for perfumes, cosmetics, and pharmaceuticals. The 

possibility for terpene polymerization is extensively studied during the last decade due to the 

need for polymers from a natural feedstock (Figure 6).102 A major disadvantage of terpene-

based polymers is their low molecular weight, but this can be overcome by using for example 

cationic polymerization of β-pinene followed by hydrogenation as shown by SATOH et al.103 

Polymers, which based on β-pinene or α-phellandrene, show a high glass transition temperature 

of > 130 °C, high transparency, and amorphous character. This makes them ideal candidates 

for potential applications.103–105 In comparison to this cationic polymerization methods, radical 

polymerization can also be applied to the more predominant α-pinene, as also shown by SATOH 

et al.106 In comparison β-pinene, the more predominant α-pinene is difficult to polymerize into 

high molecular weight polymers, because of the large steric hindrance around the trisubstituted 

C=C bond. Due to that reason, the α-pinene is polymerized via pinocarvone to a bio-based 

polyketone.106 This polymer shows a relatively high glass transition temperature (Tg > 160 °C). 

Another terpene, which is produced in higher quantities (57.000 t a−1)107, is limonene. Limonene 

is a cyclic terpene, which exhibits the typical smell of citrus fruits. Not only commercial 

applications in the food or pharmaceutical industry are possible for limonene, but also the use 

as a monomer might be possible. SINGH et al. polymerized limonene radically with benzoyl 

peroxide (BPO) as a starter to produce poly(limonene) with a high glass transition temperature 

(Tg = 116 °C).108  Copolymers of limonene and N-vinyl pyrrolidone with azobisisobutyronitrile 
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(AIBN) as a starter were synthesized by SHARMA et al.109 It is also possible to generate partial 

bio-based polymers like for example copolymers of terpenes and petrochemical-derived vinyl 

monomers, which was also investigated by SHARMA et al.110,111 Copolymerization of limonene 

and CO2 is also possible as shown by KLEIJ et al.112 Stereocomplexity of poly(limonene 

carbonate) (PLimC) was investigated by COATES et al. in several publications.5,113,114 GREINER 

et. al improved the synthesis method of PLimC by masking hydroxyl impurities in the monomer 

mixture to produce a high molecular weight polymer with high transparency and good 

mechanical properties.6 Another bio-based terpene monomer, which was investigated by 

GREINER et al. for polymerization reactions is menthol.  Copolymerization of menth-2-ene 

oxide derived from menthol and CO2 was carried out to give in high molecular weight 

poly(menth-2-ene carbonate) (PMen2C) with high thermal stability (~T5%
 = 300 °C).115 The 

monoterpene myrcene is also interesting as a bio-based monomer. It can be readily obtained 

from plants116 or from the pyrolysis of pinene.117 HILLMAYR et al. investigated the synthesis of 

diene 3-methylenecyclopentene from the naturally occurring monoterpene myrcene by ring-

closing metathesis using Grubbs second generation catalyst. Radical, anionic, and cationic 

polymerizations of this cyclic diene monomer were carried out to produce amorphous polymers 

with low glass transition temperatures (Tg = -4 - 11 °C).118 Rubbery copolymers from β-myrcene 

and dibutyl itaconate were investigated by BHOWMICK et al. for biobased elastomer 

applications.119 A problem, which restricts the commercial use of terpene-based polymers is 

their high cost in comparison to petro-based polymers. A common use for polymers is their 

application as thermoplastic elastomers, which should be focused in future for terpene-based 

polymers as well. Petro-based polymers are produced in large quantities (> 3.5 mega tons per 

year) and show good mechanical properties for their use car suspension systems, window seals, 

coatings of household goods or electronics, shoe soles, or medical devices.120 It is also possible 

to produce renewable ABA triblock copolymers by sequential polymerization of the plant-

based monomers menthide or myrcene to gain access to terpene-based thermoplastic 

elastomers.121,122 These thermoplastic elastomers can have moderate mechanical properties like 

for example a high E-modulus (6 MPa). This is comparable to commercial polystyrene-

butadiene-styrene (SBS). The drawback of these terpene-based polymers is the relatively high 

glass transition temperature (Tg = 170 -190 °C) or lower elongation at break values (< 1000%) 

in comparison to commercially available polymers. In terms of mechanical properties, terpene-

based polymers are still improvable compared to petro-based polymers.3 
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Figure 6. Synthesis of bio-based polymers based on terpenes and terpenoids: (1) poly(limonene 

carbonate)5, (2) poly(menth-2-ene carbonate)115, (3) poly(β-pinene)103, (4) poly((-)-α -

phellandrene)104, (5) bio-based polyketone106, (6) hydrogenated poly(β-pinene)103, (7) (bio-

based) polymers based on β-myrcene118,119, (8) bio-based polymers based on Tulpipalin A121. 
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6.6 Bio-based polymers based on vegetable oils 
 

Vegetable oils can also be used as a source for monomers.123 Triglycerides for example can be 

obtained from soybean (Glycine max), oil palm (Elaeis), oilseed rape (Brassica napus), and 

sunflower (Helianthus) and they are produced on a bigger scale due to the demand of the food 

industry. Parts of the produced vegetable oils are not only used in the food industry, but also as 

biofuels or as chemical feedstocks.3,124 Resins, coatings, and paints are the main applications 

for epoxidized oils like for example linoleum, which is obtained from linseed oil. Castor oil is 

also an important vegetable oil because it can be used to produce PA 11, PA 6.10, or PA 4.10 

(commercial name: Nylon®). It is harvested from the seeds of the castor oil plant (Ricinus 

communis). These bio-based polyamides (Figure 7) can have interesting properties for 

commercial applications like for example low water absorption, high chemical resistance, high-

temperature stability, and a lack of long-term aging as shown by STEMPFLE et al.124 The 

drawback of these polymers is the used castor oil, which contains impurities like for example 

hydroxyl groups that promote depolymerization reactions. Also, the cost factor of castor oil is 

to consider for the use of these castor oil-based polymers. The price of palm oil or rapeseed oil 

is twice as cheap as the price of castor oil.3 The use of triglycerides is also limited due low 

amount in soybeans or other plants. Usually, only 20 wt% of triglycerides can be harvested 

from these plants.3 The chemical composition of the obtained triglycerides within the plant is 

also problematic. It has a huge variety of different fatty-acid groups that are linked together 

through ester bonds to a glycerol unit, which has to be split by transesterification reactions to 

produce fatty esters and glycerol. The side product glycerol can be applied in resin production, 

epichlorohydrin synthesis, or in conversion to lactic acid.125,126 Fatty acid-based thermoplastics, 

which are based on long alkyl chains (C12–C22), show the highest potential for applications 

because their properties and characteristics are lying in-between polyalkenes, such as 

polyethylene and more polar short-chain polyesters. Several polymerization techniques are 

using fatty acids to produce polymers. Despite the nonuniform content of unsaturated fatty 

esters (about 20–60 wt%) in plants oils, there are approaches to increase the number of fatty 

esters ( e.g., oleic acid) within soybean lines by targeted mutagenesis as shown by HAUN et 

al.127 This would be quite useful for the production of bio-based polymers. There is a variety of 

methods and techniques (i.e, thiol-ene reaction, acyclic diene metathesis, epoxidation, and 

radical or thermal crosslinking reactions), which allows the use of alkene groups of fatty acids 

to form polymers as shown in a review of MEIER et al.128 Another approach to produce bio-

based polymers based on unsaturated fatty acids from plant or algae oils are isomerizing 
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functionalization reactions that convert the internal double bonds of unsaturated fatty acids to 

a terminal functional group. The produced α,ω-diesters or α,ω-diols can be used for 

condensation polymerizations to yield bioderived polyesters or polyamides, if α,ω-diamides are 

used as monomers. The major disadvantage of this method is that only about half of the fatty 

acids are used in the process. Additionally, unwanted side products are generated.129 To 

overcome these problematic issues, the use of selective chemical catalysis to isomerize the 

internal alkene group to the chain is necessary. Furthermore, an alkoxycarbonylation process is 

unavoidable to enable near-quantitative production of the desired α,ω-difunctionalized 

monomers. This was demonstrated by STEMPFLE and WITT et al.130,131 Bio-based polymers can 

also be produced by standard polycondensation process as shown based on methyl ω-

hydroxytetradecanoic acid, a monomer available by a fermentation process using Candida 

tropicalis bacteria.132 Enzyme catalysis to form polymers is also possible as a review of GROSS 

et al. showcases.133 Despite the variety of possibilities to make use out of vegetable oil-based 

polymers the low cost of petrochemical-derived polyethylene is still hard to compete with.3 

 

Figure 7. Synthesis of bio-based polymers based on vegetable oils. Long-chain aliphatic 

polyesters can be synthesized by using triglycerides.132 Starting from fatty acids also 

polyamides are accessible.131 
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6.7 Blends 
 

6.7.1 Blends in general 

 

To enhance the mechanical properties of polymers (e.g., PLA), two or more polymers can be 

mixed to create a new material with improved physical properties. Typically, polymer blends 

are divided into five groups: thermoplastic–thermoplastic blends, thermoplastic–rubber blends, 

thermoplastic–thermosetting blends, rubber–thermosetting blends, and polymer–filler 

blends.134 Additionally, polymer blends can be categorized into homogenous (miscible) and 

heterogenous (immiscible blends).135 Examples for miscible blends are (PS)–poly(2,6-

dimethyl-oxide) (PPO) and poly(styrene-acrylonitrile) (SAN)–poly(methyl methacrylate) 

(PMMA) blends. Examples of immiscible blends are poly(propylene) (PP)–PS and 

polypropylene–polyethylene (PE) blends.134 Compatibility between the polymer phases is also 

an important aspect to consider for blend production because it determines the properties of a 

heterogenous blend. The Flory-Huggins theory describes the polymer-polymer interactions in 

terms of miscibility and can predict properties of homogenous or heterogenous blends.136,137 

The advantage of polymer blends lies in the inexpensive production and reduce the time to 

commercialization.138 By choosing the right blending partners, the properties can be changed 

specifically according to requirements.139 This enables the application of polymer blends in 

several everyday products (e.g., household plastic products, automotive components, 

biomedical devices, and aerospace applications).139  

 

6.7.2 Miscibility and compatibility 

Miscibility and compatibility are important key factors for polymer blends because they 

influence largely morphology, properties, and performance. Miscible blends are homogenous, 

mechanical properties of their components are average (ΔGm < 0) and they show a single glass 

transition temperature. Partially miscible blends are partially phase-separated, mostly keep their 

mechanical properties of individual component polymers (ΔGm > 0) and they show two glass 

transition temperatures, which are intermediate to the component polymers. Immiscible blends 

show a complete phase separation, mechanical properties are determined by a polymer-polymer 

interface (ΔGm > 0) and they show two glass transition temperatures of the component 

polymers.140 
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Hydrogen bonding, Van-der-Waals interaction, or dipole-dipole interactions are the main 

forces, which are important in polymer blends, whereas covalent bonds are mainly occurring in 

copolymers. In comparison to polymer blends, copolymers are polymers, which are made of at 

least two different monomers. There are different types of copolymers like for example 

alternating copolymers, random copolymers, block copolymers, or graft polymers. Alternating 

copolymers are described as polymers in which the different monomer units are alternating. 

Random copolymers are characterized as copolymers, in which the monomers are repeated 

randomly. Block copolymers are a combination of repeating blocks of different monomer units. 

Graft copolymers show structurally different side chains than the main chain. These different 

structural arrangements of different monomers mainly determine the thermal properties (e.g., 

glass transition temperature or melting temperatures) or the mechanical properties like for 

example the E-modulus or tensile strength. In a random copolymer, these properties are 

averaged, whereas block copolymers show properties of both polymers.141 

One way to describe the polymer miscibility profoundly is to use the “Mean Field Theory” 

(MFT), which explains the dissolving process of a polymer in a given solvent. Based on the 

lattice fluid theory, it explains the miscibility of low molar mass liquids.142 Lattice chain theory, 

which is the simplest version of this, is called Flory–Huggins solution theory (Figure 8). 

Using this two-dimensional lattice model allows to describe a system consisting of n sites, with 

each site occupied by the solvent or a polymer repeating unit. Double occupancy and a vacancy 

are excluded in this system, so the volume of the polymer (Vp) is described as: 

𝑉𝑝 =
𝑛 ∙ 𝛷

𝑁
 

In this equation, φ is the volume fraction of the polymer and N is the number of sites occupied 

by a linear polymer with N-1 number of bonds. The volume occupied by the solvent molecules 

can be described:  

𝑉𝑠 = 𝑛 ∙ (1 − 𝛷) 

FLORY is using this mathematical description to calculate the entropy of mixing by counting the 

number of possible arrangements for the polymer in the molten state and solution. The mixing 

of two polymers usually leads to a system with complete phase separation due to repulsive 

interactions between the blend components.143 If the thermodynamic equation for the GIBBS 

energy change (ΔGm) at constant temperature and pressure is fulfilled miscibility can be 

realized:  

(1) 

(2) 
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𝛥𝐺𝑚 = 𝛥𝐻𝑚 − 𝑇𝛥𝑆𝑚 < 0 

where ΔGm is the free energy of mixing, and ΔHm and ΔSm are the enthalpy and entropy of 

mixing at temperature T. A stable one-phase system is described as:  

𝛥𝐺𝑚 < 0 , (
𝛿2𝛥𝐺𝑚

𝛿𝛷2
)

𝑇,𝑃

> 0 

If the free Gibbs energy change is negative and the domain size is comparable to the domain 

size of the macromolecular statistical segment (homogenous even on the molecular level), the 

polymer blend can be regarded as a miscible polymer blend. A combination of entropy of 

mixing, interaction energy, free volume, and specific interactions such as hydrogen bonding is 

mainly responsible for polymer miscibility. Using the FLORY-HUGGINS equation the blend 

miscibility for nonpolar polymers can be calculated:  

ΔGm

RT
= (

Φ1

N1
lnΦ1 +

Φ2

N2
lnΦ2 + Φ1 ∙ Φ2 ∙ χ12) 

where the indices representing each component, ϕ the volume part of each component, R the 

ideal gas constant, T the temperature. and χ the FLORY-HUGGINS interaction parameter 

calculated using the Hildebrand solubility parameter. The first two logarithmic terms in this 

equation representing the combinatoric mixing entropy. The third term in the equation is 

representing the mixture entropy. Because polymers have a big volume, the first term becomes 

nearly 0, and the miscibility is mainly influenced by the enthalpy term. The consequence is, 

that in a homogenous blend hydrogen bonding, dipole-dipole, ionic, van-der-Waals- or π-π 

interactions are responsible for miscibility.140  

 

 

 

 

(3) 

(4) 

(5) 
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Figure 8. The lattice model according to mean-field theory for solvent molecules (A), polymer 

molecules (B), a low molar mass compound in a solvent (C), and a polymer in a solvent (D). 

The blue spheres represent the positions occupied by the solvent molecules. The orange spheres 

represent the positions occupied by a low molar mass compound. The red spheres represent the 

positions occupied by a polymer compound (adapted from THOMAS et al.140 with permission of 

Elsevier © 2014).  

A phase diagram can be created by applying the thermodynamic equation for the GIBBS energy 

change, which displays three different regions with different degrees of miscibility. The 

miscibility of polymers is also a function of temperature and also the interaction of each 

polymer must be considered.143 PS-PPO blends are an excellent example of miscible polymer 

blends, which have high toughness, heat resistance, and show inflammability.144 The thermal 

analysis of this polymer reveals a single glass transition temperature intermediate between those 

of the individual components. Important phenomena occur if two polymers are mixed at low 

temperatures and then phase separate on heating. This critical point is called lower critical 

solution temperature (LCST). Another effect happens if two polymers remain phase-separated 

at ordinary temperatures and form a single phase at high temperatures. This is called upper 
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critical solution temperature (UCST) (Figure 9). Mathematical, it can be described that the heat 

of mixing must balance the product of entropy of mixing and absolute temperature at the critical 

temperature:140  

(
𝛿3ΔGm

δ𝛷3
)

𝑇,𝑃

= 0 

 

Figure 9. The phase diagram is showing the typical behavior and regions of a binary polymer 

blend. The lower critical solution temperature (LCST) and the upper critical solution 

temperature (UCST) are highlighted (adapted from KALOGERAS et al.145 with permission of 

John Wiley and Sons © 2016). 

6.7.3 Morphology of polymer blends  

 

The morphology of a polymer blend system is mainly determined by the miscibility of each 

component, the interfacial tension between the two polymer phases, and as well by surface 

tension (energy) of the two polymers.146 Polymers are usually high molecular weight molecules 

and so they have negligible entropy of mixing. If the enthalpy of mixing is positive if there is 

no specific interaction and the result of this fact is the immiscibility of polymers. For some 

deployments, it is necessary to have immiscible blends because the properties of immiscible 

blends suit more the application. An example of this would be PS and polybutadiene (PBD or 

BR) blends, which are sold commercially under the name high-impact polystyrene (HIPS).147 

PS is a rather brittle material but blending with PBD leads to improved properties due to the 

rubber properties of PBD. PBD can absorb more energy under stress, so the immiscible blend 

(6) 



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

36 | P a g e  
 

is more robust. It is used in the housings of computers, televisions, fridges, or telephones. 

Different blend morphologies of binary blends and their tuning potential are displayed in 

Figure 10. An emulsion form of immiscible polymer blends is often used to modify mechanical 

properties such as toughness and stiffness (Figure 10A). Mechanical loading and stress can be 

easier tolerated by polymer blends in their emulsion form, because of their broad space 

distribution. The laminar form of polymer blends can be used for example in packaging 

applications, in which barrier properties are important (Figure 10C). For load-bearing 

applications, oriented structures are interesting due to their increased stability in this direction. 

Continuous structures can be used for example to enable electrical conductivity (Figure 

10E).148  

Interfacial tension and surface tension are the key characteristics in terms of immiscible 

polymer blends and their properties.149 Improving mechanical properties usually involves 

manipulating interface adhesion of immiscible polymer blends. This can be achieved for 

example by using compatibilizers. On the one hand, compatibilizers allow to decrease the 

interfacial tension, decrease the size of the dispersed phase or interfere in the dynamic or static 

coalescence processes. On the other hand, compatibilizers can increase the adhesion between 

phases and therefore achieve microstructure stabilization.150–152 There two main ways to 

improve polymer miscibility. The addition of a copolymer that is mixable or highly compatible 

with one of the individual polymer components of the blend or to use a compatibilizer during 

reactive processing. Regarding the first option (addition of copolymer), diblock copolymer, 

three-block copolymer, branched, or judged copolymers can be used to increase interface 

adhesion and tune mechanical properties of the corresponding polymer blend system.153 The 

other possibility for tune compatibility of polymer blends is to apply a third component that has 

functional groups, which can react with both phases on the interfaces of the polymer blend. The 

third component can also have a tail compatible with one of the phases and a functional group 

that can react with the second phase. On a molecular level, the use of a compatibilizer allows 

to position molecules on the interface and this, therefore, reduces the interconnected free energy 

of the system. Oversaturation of compatibilizer is possible if too much compatibilizer is used 

so that interface adherence between each polymer cannot be influenced anymore. High amounts 

of compatibilizer lead to micelles in the system.148 The correlation between morphology and 

mechanical properties is important for modifying blend properties and ultimately for practical 

applications.146,154 Composition, rheological and physical characteristics of the components, 

relative compatibility, and the nature and intensity of the mixing are features of polymer blends, 

which have to be considered when tuning blend properties.  
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Figure 10. An overview over different morphologies of immiscible polymer blends and their 

potential tuning abilities is displayed: A: drops (toughness and surface modification), B: double 

emulsion (toughness and stiffness), C: laminar (barrier), D: fibers (strength and thermal 

expansion), E: concontinous (high flow, electrical conductivity, toughness, stiffness) and F: 

ordered microphase (adapted from VUKSANOVIĆ and HEINEMANN et al.148 with permission of 

Elsevier © 2020). 

It is also possible to use different mixers and/or changing mixing parameters to control the 

phase morphology of an immiscible blend.155,156 Morphology evolution during processing of 

granulate/pellets or powder particles is also possible as shown by THOMAS et al.157 

Understanding of mechanisms and kinetics is key for generating suitable mixing procedures. 

The blend morphology is forming during processing due to stretching into treads or due to the 

formation of small droplets.157 On the one side, decomposition is not influenced by the content 

of the dispersed phase, but on the other side, coalescence is strongly influenced by the 

composition of the mixture.157,158 Several publications are dealing with the combination of these 

factors and the corresponding morphology.159,160 Not only the mixing process has a strong 

influence on the blend morphology, but also fillers can have a serious impact on the structure. 

Electronics, magnets, optics, and photonics are sectors, in which the development of 

nanomaterial is essential.161 Polymer characteristics (e.g., mechanical properties) can be 

improved by the use of fillers, which was shown for example by AVCI et al. In the case of glass 

fibers.162 Fillers can also be applied in polymer blends with two or more components as shown 

by ZHANG et al.163 The downside of applying fillers is the negative effect on the E-modulus. It 

is usually decreased, which is revealed by Ying et al. with the example of PMMA/Ethyl vinyl 
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acetate/silica composites.164 The dispersion of fillers in polymer blend is an interesting subject 

as well. LE et. al showed that the reciprocated stress of the filler and the relationship to each 

blend component is a key factor in how the filler is dispersed.165  Additionally, the filler affects 

the blend morphology itself. Several factors determine the distribution of fillers inside a 

polymer blend (e.g., type of polymer, interaction of polymer fillers, or the mixing process).146 

The morphology of immiscible polymer blends is mainly determined by their composition, the 

properties of individual components, and their corresponding phase structure.146 For 

improvement and prediction of mechanical properties the evolution of the phase structure of 

blend preparation and processing is an essential factor to consider.166 Rheological properties 

(viscosity ratio) of the blend of the partner, the composition of the mixture, interfacial tension, 

and the processing conditions also important key factors in terms of blend morphology as shown 

by NAMHATA et al.167 and BÄRWINKEL et al.168 The use of block or graft copolymer can help to 

control the morphology of polymer interfaces.169 Compatibilizers like block or graft copolymer 

can increase the degree of dispersion and can further stabilize morphology (Figure 11). These 

compatibilizers must be prepared before or can also be prepared in situ by reactive processing. 

Controlling the size and shape of the dispersed polymer phase of immiscible blends is rather 

difficult, but very important to achieve desirable properties. 170,171 The complex flow and 

temperature fields developed during melt processing, the process of droplet elongation, 

breakdown, and coalescence, or the viscoelastic nature of the phase factors, which make it hard 

to adjust the blend morphology.172 Immiscible blends usually showing two major forms of 

morphology. Either a droplet or a cocontinuous morphology can be observed. A droplet 

morphology is described as the dispersion of the minor component into the other component in 

the form of spherical droplets. In the other version, the cocontinuous morphology is displayed 

by two polymers, which are fully interconnected.172 Cocontinuity is usually observed for two 

immiscible polymers with a 50/50 composition. This cocontinuity can be tuned using block 

copolymers. Applying block copolymers reduces the interfacial tensions and enables an easier 

formation of cocontinuous morphologies as shown by DEDECKER et al. in the case of polyamide 

6 (PA6)/ PMMA.173 GALLOWAY et al. revealed that tapered block copolymer can stabilize the 

blend morphology compared to pure block copolymers.174 This effect was explained by the 

gradual composition change in the middle of the polymer chains, which are better 

corresponding to the composition at the interface between the homopolymers. This offers better 

stabilization during annealing than pure triblock copolymers. Reduced conformational 

constraints at the interface are the explanation for this better stabilization. TAYLOR et al.158 and 

GRACE et al.175 showed that the size of the dispersed phase of immiscible liquids is determined 
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by viscosity ratio λ = ηd/ηm. In this equation, ηd is the viscosity of the dispersed phase and ηm 

is the viscosity of the phase of the matrix. A value close to one increases the probability of a 

finely dispersed droplet structure. A deviation from this rule was found by WILDES et al., who 

showed that the average particle size for blends compatibilized with a SAN–amine polymer 

was approximately half that of uncompatibilized blends and was relatively independent of 

viscosity ratio and dispersed phase composition.176 Coalescence or interfacial coarsening are 

two additional factors, which influence the blend morphology according to TUCKER et al.177 As 

a third-factor micro- and nanoparticles can improve mechanical properties and stabilize the 

morphology.148 

 

Figure 11. SEM of neat PLA/PLimC blends and compatibilized blend. A, B) neat PLA/PLimC 

= 70/30 w/w. C, D) PLA/PLimC = 70/30 w/w with PLimC-PLA block copolymer (PLimC/PLA 

= 2/1 n/n%) as compatibilizer (unpublished results, SIMON NEUMANN). 

 

6.7.4 Blends based on bio-based and petro-based polymers 

 

Hybrid blends of bio-based and petro-based polymer are quite interesting because they reduce 

the environmental footprint and at the same time mechanical and optical properties of 

packaging material could be preserved. Usually, bio-based materials are largely affected by 
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moisture and show therefore not sufficient gas barrier properties. This can be overcome with 

hybrid materials.178 Another important factor for using hybrid materials is that the cost of bio-

based polymers is higher than conventional petro-based materials, so combing both products is 

advantageous. Recyclability is also one important factor to consider. Newly developed bio-

based plastics could also interfere with established recycling systems.179–182 Compostable 

bioplastics could hinder the stream of recycled conventional petro-based plastics (PP, PE, PET, 

etc.). Nevertheless, introducing bio-based materials reduce recyclability when compared to 

conventional petro-based polymers.183,184 There is a variety of bio-based polymers and 

materials, which can be used for blending with petro-based polymers.  

Blends based on starch 

Blends of starch and artificial polymers (e.g., PCL, PA, etc.) show potential applications as 

packaging material.185,186 Also, chitosan-based polymer blends are interesting due to the 

nontoxicity, biodegradability, and biocompatibility of chitosan. Blends of chitosan and PVA or 

PE were investigated by KAUSAR et al.187 It was shown that chitosan-based blends have 

potential applications in membrane technology, dye removal, packaging materials, drug 

delivery, tissue engineering, and biochemical relevance despite the high moisture absorption, 

low processing temperature, low heat stability and low flame resistance of chitosan-based 

blends.  

Blends based on cellulose 

Cellulose is also a polysaccharide, which can be used for blends. Advantages of cellulose and 

its derivatives, (hydroxyl-ethyl, cellulose acetate, and hydroxyl-ethyl cellulose) are 

commercially available treated celluloses with good toughness, transparency, flexibility, and 

resistance to fats and oils.188 For example, methylcellulose/PCL blends showed improved 

properties. By adding methylcellulose, PCL lowered the water vapor permeability and increases 

the puncture resistance.189 Also the usage of cellulose in combination with PET shows positive 

results. The rate of crystallization of PET could be decreased by 30 %, which results in an 

improved extrusion process.190  

Blends based on PHB 

PHB as a blending material shows the same disadvantages like for example high degree of 

crystallinity and thermal instability, but it could increase biodegradation like for example in 

blends PE.191 For PHB/PET blends DIAS et al., found similar melting temperatures without any 

significant interaction between them.192 Investigation of blends of LDPE/PHB blends was also 
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performed and revealed cylinder-like fibrils of PHB.193 Thermal, mechanical and 

morphological properties of PHB and PP blends were investigated by PACHEKOSKI et al. who 

found out that PHB/PP blends show better mechanical properties than pure PHB and a tendency 

for lower crystallinity and stiffness of the polymer matrix PHB.  Similar degradation pure PHB 

and blends with 90% PHB and 10% PP.194  

Blends based on PLA 

PLA is also a polymer, which is based on polysaccharides. Therefore, its blends with 

commercial polymers are also interesting. Blends of PLA and poly(ethylene glycol) (PEG) 

blends were investigated by MCCARTHY et al.195 It was found out that PLA/PEG blends range 

from miscible to partially miscible. With an increasing amount of PEG, higher elongations at 

break and lower E-moduli values are observed. Above 50 % PEG, the crystallinity of PEG 

influences the blend morphology and the mechanical properties. The trend is reversed in that 

case. Blends of PLA and PVA are also miscible and shown an increased tensile strength and 

elongation at break if low contents of PVA are added to PLA.196 Regarding blends of PLA and 

polyolefins (PP or PE) poor mechanical properties were observed due to the difference in 

polarity between PLA and polyolefins. Also, LEE et al. used the same principle to improve 

properties of PLA.197 Compatibilizers can be applied to overcome these limitations as shown 

by HILLMYER et. al.198 PLA/polystyrene (PS) blends are also showing a high incompatibility.199 

Polymethacrylates and PLA show miscibility according to SHEN et al.200 Also, FERNANDEZ-

BERRIDI et al. performed a miscibility study.201 Drawn films of PMMA/PLA blends are 

transparent and have high elongation. For blends of PLA and PET, reduced mechanical 

properties were observed due to PET's high processing temperature (∼260–300 °C), which 

results in a degradation of PLA chains. Additionally, two polymers are not miscible, which was 

also observed with small amounts of PLA (5wt%).202 This makes them unappealing for 

industrial use.203 Also, the different polarity of PLA and polyolefins is problematic. This results 

in lesser compatibility. Usually, plasticizers and additives have to be used to overcome this 

characteristic.204 PLA and PA blends were investigated to integrate the toughness of PLA into 

PA.205,206   

Blends based on PBS 

Blends on PBS could make use of the biodegradability of PBS in combination with PET, but 

the mechanical properties of PBS are not sufficient, and immiscibility of PBS/PET blends was 

found by THREEPOPNATKUL et al.207 Tensile strength, E-modulus, and elongation at break are 



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

42 | P a g e  
 

decreased by the addition of PBS. In comparison to PBS/PET blends, blends of PE and PBS 

showing slightly better mechanical properties due to similarities in mechanical properties of the 

homopolymer according to AONTEE et al.208 Blends of PVC and PBS are also known an increase 

in the impact strength, elongation at break, and inclination to biodegrade when compared to the 

neat PVC.209 

Blends based on PBAT 

Blends of PBAT and commercially available polymers could be interesting due to the thermal 

and mechanical characteristics of the homopolymer like low gas diffusion, chemical resistance, 

or good transparency. Films of PBAT and PET were investigated by higher PBAT content led 

to the increment of elongation at break with the sacrifice of modulus of PET thin films by 

THREEPOPNATKUL et al. that a higher PBAT content leads to the increment of elongation at 

break of modulus of PET thin films.210 
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6.8 Additives and plasticizers 
 

6.8.1 Additives and plasticizers in general 

 

Another way to improve mechanical properties besides blending is additive adding. Neat 

polymer material usually is not possessing suitable properties for a wide range of commercial 

applications, so additives can be used for tailoring the properties and for influencing processing 

positively.211 One of the first effective uses of additives is the use of sulfur as additives for 

natural rubber in a process called vulcanization by Charles Goodyear in 1839.212 Additives can 

be employed in several forms (e.g., solid or liquid). The appearance of the additives depends 

also on the production method (e.g., extrusion, pelletizing, grinding, spraying, or flaking). 

Nowadays, a strong environmental shift to more “greener” and safer additives can be 

observed.213 Also, the use of additive masterbatches has increased significantly. The advantages 

of additive masterbatches are better dosability, simplified handling, homogeneous mixing, 

safety aspects, additive protection, and improvement of performance.211 The combination of 

polymer and additive can be performed independently of the production step (e.g., during the 

manufacturing step of the raw material or directly applied to the finished product).214 

Plasticizers are additives, which can create flexibility, improved processing of certain materials 

(e.g., polymers).215 They can decrease the glass transition temperature of polymers, reduce the 

melt viscosity or lower the elastic modulus of the polymer.211 One prominent polymer, which 

is widely used in combination with a plasticizer is poly(vinyl chloride) (PVC). di(2-ethylhexyl) 

phthalate (DEHP) is mostly used as a plasticizer for PVC.216 Plasticizers can be divided into 

two groups: internal plasticizers and external plasticizers.217 An internal plasticizer lowers the 

glass transition temperatures and produces flexibility through grafting or copolymerization of 

softer monomer units. External plasticizers (e.g., DEHP) are mixed with the polymer and do 

not form covalent bonds.215 This effect allows the use of PVC as electrical cable insulation, 

inflatable products, or in packaging.211 The advantage of external plasticizers is the higher 

flexibility, easier tunable, no chemical reaction is necessary, and it is usually inexpensive.  
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6.8.2 Lubricity theory 

 

There are different theories, which describe the mechanisms of plasticization. The most 

prominent theories are for example lubricity theory, gel theory, free volume theory, or 

mechanistic theory.211,218 

The concepts of lubricity theory were developed by KRIKPATRICK
219, CLARK

220, and 

HOUWINK
221. KRIKPATRICK describes the plasticization process as solvent interaction, 

lubrication of plastic micelles, and a combination of both. He explains that some of the 

plasticizer molecules are attached to the polymer, whereas other plasticizer molecules are not 

attached and act as lubricants between polymer chains. For this theory to work, the presence of 

groups, which show attractive forces, and the proper orientation of these groups is necessary. 

Also, the shape of the plasticizer molecule itself is important for this kind of interaction. CLARK 

explains the plasticization process by plasticizer molecules, which are filling voids in molecular 

space lattice. Small plasticizer molecules are acting as a lubricant in molecular space lattice so 

that the planes can glide over one another more easily. HOUWINK supported the concept of 

gliding planes and plasticizer/polymer polarities and focused on the dissolving and swelling 

process during plasticization. He postulated two possibilities of gliding in his work: Gliding 

planes are in the bulk of the plasticizer or at the surface of the polymer (Figure 12). In the first 

case, plasticizer molecules stick to the polymer chains and enable that plasticizer molecules are 

gliding over each other. In the second case, plasticizer molecules and polymer chains are 

repelling each other, which results in gliding planes at the surface of the polymer chains. This 

approach strongly emphasis on the amount of swelling, which depends on the polarities of 

polymer and plasticizer molecules.218 

6.8.3 Gel theory 

 

The gel theory was established mainly by AIKEN based on plasticized PVC.222 He used different 

types of plasticizers (e.g., phosphates, phthalates, etc.) to find correlations between plasticizer 

effectiveness and softening, compatibility, and molecular structure.218 In his theory, polar 

groups in the plasticizer and the polymer are arranging themselves to form solvating dipoles on 

the polymer chain. Non-polar tails, which are incompatible with PVC, would gather to form 

small clusters. This results in a large amount of unshielded polar polymer chains, which can 

form strong polymer-polymer interactions. This intermediate state between solid and liquid is 

called gel state and is the basis of this theory. Plasticizer molecules, which are located around 

the polymer chains are responsible for the micro-Brownian motion, according to AIKEN. To 
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explain polymer flexibility, he used the concept of a three-dimensional gel network structure, 

which is formed by attachments of the macromolecules along their length (Figure 12). The 

stiffness of a polymer is the result of weak interactions of interlocked segments along the 

polymer chains. These points of gel are close together and therefore permitting little movement 

and represent elastic resistance. Plasticizer molecules reducing the rigidity of a polymer due to 

the reduced number of polymer-polymer interactions. Van der Waals forces, hydrogen bonding, 

or crystalline structure of plasticizers and polymers are the origins of these gel sites.223 By 

separation of the polymer chains the polymer molecules can move more freely and thus 

increasing their elasticity and mechanical properties.218 

6.8.4 Free volume theory 

 

A third approach to explain plasticizer and polymer interaction is the free volume theory 

(Figure 12).224 It was developed after lubricity and gel theory after different properties of 

polymers as a function of temperature were described in the literature (e.g., specific volume, 

thermal expansion coefficients, or viscosity).225–227 A well-known application for this theory is 

the explanation of the glass transition temperature decline with increasing the plasticizer 

content. It was first postulated by FOX and FLORY and it is still used to describe the viscoelastic 

properties of polymers nowadays.228,229 The glass transition temperature characterizes the range 

over the gradual and reversible transition in amorphous materials from a hard and relatively 

brittle "glassy" state into a viscous or rubbery state as the temperature is increased. FOX and 

FLORY also identified a limiting lower shear viscosity of polymers at their glass transition 

temperature (µg = 1‧1012 Pa‧s)230 in their work.228 This applies to all polymers, independently 

from their chemical structure.228 Based on this postulate, the viscosity of polymers was 

correlated to the volume between polymer molecules. Afterward, it was shown by WILLIAMS, 

LANDEL, and FERRY that the physical state where all materials show the same “fractional free 

volume” is the glass transition temperature of a polymer.231 The specific volume of polymers 

decreases linearly with the temperature until the glass transition temperature is reached. After 

this point, the decline is happening at a smaller rate according to FOX and FLORY. UEBERREITER 

revealed the correlation that all the volume-temperature curves of the liquid state above the 

transition temperature intersect at absolute zero temperature after they are extrapolated.227,232 

This volume is the extant space, where is no moving between atoms and molecules is occurring. 

It was suggested by KANIG that the volume, which can be detected at absolute zero temperature 

and the volume measured at the transition temperature were constant for all polymers 

(ρ = 0.0646 cm3/g).227 This space in amorphous is available for oscillations. Based on these 
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results, it could be shown that between atoms and molecules there is nothing but the free volume 

and so the free volume theory can explain polymer flexibility as the difference between the 

observed volume at absolute zero and the volume measured at a selected temperature.227 The 

Williams-Landel-Ferry model (WLF) is usually used for polymer melts or other fluids that have 

a glass transition temperature and assumes a linear dependence of the fractional free volume on 

temperature.231 

log (𝑎𝑇) =
−𝐶1(𝑇 − 𝑇0)

𝐶2 + (𝑇 − 𝑇0)
 

where at describes the shift factor, T0 the reference temperature, T the arbitrary temperature, 

and C universal constants, which are varying from polymer to polymer.233 SEARS and DARBY 

summarized the key characteristics of plasticization by indicating that plasticization is 

increasing the free volume of a polymer system.234 Different aspects influence the free volume 

of polymers (e.g., the motion of chain ends, the motion of side chains, or the motion of the main 

chain) and consequently, plasticization can be achieved by several methods: 

1. increasing for example the number of end groups, which can be implemented by using 

lower molecular weight polymer.218  

2. increasing the number or the length of side chains, which acts as internal 

plasticization.218 

3. inclusion of segments of low steric hindrance and low intermolecular attraction, which 

acts as internal plasticization.218  

4. insertion of a compatible compound of lower molecular weight218 

5. increasing the temperature218 

 

By using these principles, plasticization can be explained by the increase in free volume caused 

by plasticizer molecules. Consequently, the glass transition temperature is lowered. Based on 

this theory, it can be assumed for example that a branched plasticizer is more efficient than the 

linear one (considering the same molecular weight) because there is more free volume produced 

with the branched plasticizer. Also, increasing the molecular size of the plasticizer leads to more 

free volume, which results in a stronger plasticization.218 Different mathematical models were 

established by using free volume theory (e.g., KANIG
232, WOOD

235, or GORDON and TAYLOR
236).  

A famous equation, which is based on the work of GORDON and TAYLOR, is the FLORY–FOX 

equation237, which describes how a low molecular weight additive (e.g., plasticizer) increases 

(6) 
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the free volume of a system and afterward lowers the glass transition temperature, therefore 

allowing for rubbery properties at lower temperatures:  

1

𝑇𝑔
=

𝑤1

𝑇𝑔1
+

𝑤2

𝑇𝑔2
 

where Tg is the glass transition temperatures of the mixture and Tg1/Tg2 are the individual glass 

transition temperatures of polymer and plasticizer, respectively. w1, w2 represents the weight 

fractions of the polymer and the plasticizer, respectively. The FLORY–FOX equation is widely 

used to predict the glass transition temperature in miscible polymer blends and statistical 

copolymers.238  

(7) 
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Figure 12. Overview of different plasticizer theories. Lubricity theory of KRIKPATRICK
219, 

CLARK
220, and HOUWINK

221: Flexible polymer chains (blue) interact with plasticizer molecules 

(orange). Two possibilities for gliding are depicted according to HOUWINK. Gel theory of 

AIKEN
222: Polymers are formed by an internal three-dimensional structure. The plasticizer 

molecules reduce the polymer-polymer interaction by getting in between the chains and enable 

more flexibility. Free volume theory of FOX and FLORY: Sources of free volume for 

plasticization are (1) chain end motion, (2) side chain motion, (3) main chain “Crankshaft”, (4) 

external plasticizer motion. The void size is controlled by plasticizer content and 

species.234,239,240 (adapted from MARCILLA and BELTRÁN et al.241 with permission of Elsevier © 

2012). 
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6.8.5 Bio-based plasticizers 

 

Due to the high awareness of sustainability in society and the need for bio-based materials, the 

interest in bio-based plasticizers is also increasing.242,243 Bio-based plasticizers should usually 

possess those characteristics: They should be non-toxic and should not harm the environment. 

Additionally, it should have good miscibility with the polymer. The efficiency of the plasticizer 

should also be similar to conventional petro-based plasticizers. Furthermore, it should not leach 

from the polymer and it should be inexpensive.223 Natural plasticizers can also be obtained from 

a bio-based feedstock like bio-based polymers (Figure 13).244  

Plasticizers based on starches and cellulose 

The basis of polysaccharides and cellulose-based plasticizers starch and cellulose. Starches can 

be obtained from rice, wheat, maize, and potatoes, whereas cellulose comes from straws and 

cotton fibers. Monosaccharides like for example mannose, glucose, fructose, sorbitol can be 

used to make starch films stronger and more stretchable according to HAN et al.245 Also, 

glycerol, xylitol, and sorbitol showing positive effects on the physical and mechanical 

properties of potato starch-based films.246 Hydroxypropyl Methylcellulose−Beeswax coatings 

have the potential to extend the shelf life of plums and showing the potential applications of 

bio-based plasticizers in the food industry.247 After chemical modifications sugar alcohols or 

isosorbide can be obtained from monosaccharides.  

Plasticizers based on sugar alcohols 

Sugar alcohols are bio-based polyols, which also can be used for starch plasticization. 

ADHIKARI et al. for example used glycerol and xylitol to either enhanced or reduced water 

migration fluxes in low-amylose starch.248 The study showed that the additional hydroxyl 

groups of xylitol lead to a better plasticization than glycerol because they can form strong 

hydrogen bonds with starch molecules. KROCHTA et al. investigated glycerol and sorbitol 

plasticized whey protein edible films and found out that glycerol films showed significantly 

higher oxygen permeability with the drawback of a lower elongation at break.249  
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Plasticizers based on isosorbide esters 

Another interesting bio-based plasticizer is isosorbide, which is non-toxic, biodegradable, and 

thermally stable. Isosorbide can be synthesized via double dehydration of sorbitol, which itself 

is available by hydrogenation of glucose. Isosorbide, isomannide, and isoidide are the different 

isomers, which are based on the chirality of the hydroxyl group.223 Yin et al. used three different 

isosorbide esters (oligo(isosorbide adipate) (OSA), oligo(isosorbide suberate) (OSS), and 

isosorbide dihexanoate (SDH)), which showed potential applications as PVC plasticizers.250 

The isosorbide derivatives lead to PVC films with higher glass transition temperature, lower 

tensile strain at break, and higher tensile stress at break compared to conventional phthalate 

plasticizers like diisooctyl phthalate (DIOP). Also, ZHU et al. found out that isosorbide dioctoate 

was a potential plasticizer to replace phthalate plasticizer.251 BATTEGAZZORE et al. investigated 

isosorbide as a plasticizer for thermoplastic starch that does not retrograde.252 A major 

disadvantage of isosorbide plasticizer is the hydrophilicity, which can lead to water absorption 

of the plasticized polymer.223 

Glycerol and its derivates as plasticizers   

Glycerol can be obtained and produced from several bio-based sources like for example from 

biodiesel production or microbial fermentation.253,254 It consists of three hydroxyl groups, 

which are responsible for its water solubility. It is used in food-, cosmetic- and pharmaceutical 

industry due to its properties and its non-toxicity. Additionally, it is approved as a food additive 

by the FDA (Food and Drug Administration). Glycerol shows good physical and thermal 

properties for use as a plasticizer like for example a high-temperature tolerance and 

nonvolatility.255 Blends of glycerol and starch are commonly used in the food industry due to 

the three hydroxyl groups, which are creating strong hydrogen bonds.256 Starch gelatinization 

in the presence of glycerol was described by FAVIS et al.257 Glycerol influences the onset of 

gelatinization positively and as well it increases flexibility.258 Several applications were 

developed using glycerol as a plasticizer.259–261  Glycerol ester can also be used as plasticizers 

for PVC, as shown by RINCON et al.262 SAHU et al. also investigated the biodegradation of  rosin-

glycerol ester derivative and showed that rosin glycerol ester undergoes biodegradation and 

follows surface erosion mechanism.263 
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Plasticizers based on vegetable oils 

Vegetable oils, which are available from soybean, linseed, palm, or castor bean can also be 

applied as bio-based plasticizers (Figure 13). An example of this would be tall oil, which is a 

side product of the kraft process (paper production). Triglycerides or triacylglycerols, which 

are made of glycerol and various fatty acids, are the main components of vegetable oils. These 

vegetable oils have two major advantages for their use as plasticizers. Due to the long alky 

chains, vegetable oils can increase intermolecular space and bring mobility to polymer chains. 

The other advantage is that the ester groups can interact with polymer chains (via van der Waals 

interactions) and increase compatibility between plasticizer and polymer. The ester groups and 

the double bonds are also areas, where chemical modifications are possible. To increase the 

compatibility of polymer and plasticizer these modifications are necessary. These modifications 

can be for example trans‐esterification of ester groups. By modifying functionalities, glycerol 

and fatty esters can be used as plasticizers. Epoxidation is another chemical modification, which 

can be helpful for practical applications. The epoxide structure can absorb released hydrogen 

chloride, which is produced by poly(vinyl chloride) (PVC) due to light or thermal exposure. 

Epoxidized esters of palm kernel oil as a plasticizer for PVC would be an example of that.264 

Another example would be epoxidized rice bran oil (ERBO) as a plasticizer for PVC.265 

Another advantage of epoxidized plasticizers is their low toxicity, which makes them ideal for 

packing, medical and industrial applications.266,267 A very important bio-based plasticizer for 

PVC is epoxidized soybean oil (ESO). According to FERRER al. different amounts of ESO can 

increase compatibility and thermal stability.268 The thermal properties of epoxy resins can also 

be influenced by ESO, as shown by PARK et al.269 Glass transition temperature and thermal 

stability of the resins are decreasing due to ESO. The explanation for this effect lies in the 

decreased density of the epoxy network. QU et al. investigated the mechanical and thermal 

properties of epoxidized soybean oil plasticized PBS blends and found out that the addition of 

ESO leads to an improved elongation at break (15 times bigger than neat PBS).270 The use of 

ESO as a plasticizer for PLA has also been studied by QU et al.271 It could be shown that 9 wt% 

ESO increases the elongation at break of PLA by around 63%. Rheological properties of ESO 

plasticized PLA was also investigated by QU et al. and showed that the blends of PLA/ESO had 

a higher melt flow index (MFI) than pure PLA.272 Castor oil or tung oil can also be used as 

plasticizers for PVC.273–275 BEPPU et al. revealed that natural polymeric plasticizer obtained 

through polyesterification of rice fatty acid showed similar properties like commercially 

available plasticizers.276 Cardanol is the main component of cashew nutshell liquid, which is a 

byproduct of cashew nut processing. Based on cardanol several plasticizers can be produced. 
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Cardanol derivates can be used for the replacement of classical phthalate plasticizers like di-2-

ethylhexyl phthalate (DOP). Derivates of cardanol can be synthesized by substitution and 

epoxidation reactions.277 Epoxidation of cardanol leads to a plasticizer, which shows similar 

properties to DOP. Additionally, cardanol-derivatives increases the thermal stability of PVC. 

Furthermore, it shows no toxicity in comparison to DOP.278 

Plasticizers based on citric acid 

The use of citric acid and its derivatives as plasticizers is favorable because they are safe, non-

toxic, and show precipitation resistance. Citric acid derivatives can be synthesized by 

esterification of citric acid, which is obtained from citrus fruits, sugarcane, and beetroots. Due 

to three carboxylic functionalities, several derivatives can be synthesized. The main advantage 

of this group of bio-based plasticizers is that they are approved by the FDA as a food additive, 

so no harm is expected from them.279 A major disadvantage is the price of citric acid ester. It is 

three times higher than conventional phthalate-based plasticizers.278 Nevertheless, the health 

aspects can overcome the cost like in the case of red blood cells in PVC bags. Citric acid esters 

can be used as a safe alternative and replacement for DEHP. Also, in food applications, the use 

of citric acid esters can be useful. Tributyl citrate for example can be used for food-wrapping 

films because it is thermally stable and does not cause the products to discolor.280 Cellulose 

acetate can also be plasticized with triethyl citrate and acetyl triethyl citrate to increase the 

mechanical properties like for example the elongation at break. The addition of citrate-based 

plasticizers also increased the biodegradation of cellulose acetate.281 WESSLÉN et al. 

investigated the use of tributyl citrate and triacetin for PLA films and recognized a change in 

crystallinity for PLA.282 20 wt% of plasticizer is needed to decrease the glass transition 

temperature and improve the ductility of PLA. Drug delivery with bio-based citric acid 

derivatives is also possible. SADEGHI et al. used 20% of triethyl citrate to plasticize copolymer 

of ethyl acrylate, methyl methacrylate, and low content of methacrylate with quaternary 

ammonium groups to develop a drug delivery system.283 Citric acid ester can also use with low-

molecular-weight PVC as a plasticizer.284 Another interesting bio-based plasticizer based on 

citric acid is itaconic acid. The esters of itaconic acid are called itaconates and can be 

synthesized by esterification. They also can be used as plasticizers for PVC, as shown by 

BATZEL et al. BROWN et al. displayed the possibility to use itaconate esters in a 

copolymerization reaction with allyl starch to obtain films with enhanced flexibility and 

toughness.223 
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Figure 13. Overview of different petro-based plasticizers and potential bio-based alternatives. 

Toxic and petro-based phthalates (e.g., DEHP) represent 80% of all plasticizers production. 

Bio-based plasticizers like epoxidized vegetable oils or glycerol esters could be a replacement 

(adapted from LAPINTE et. al.223 with permission of John Wiley and Sons © 2015).  
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8 Synopsis 
 

8.1 Aim and motivation 
 

The focus of this thesis is the bio-based polymer PLimC and its further development. It was 

first discovered by COATES et. al.5 and further improved by GREINER et al.6 Methyl iodide was 

used to mask hydroxyl groups impurities within the monomer LO and so the molecular weight 

of PLimC could be increased significantly (~ 100.000 Da).6 KLEJI et al. demonstrated PLimC 

synthesis with other catalytic systems besides [(BDI)Zn-(µ-OAc)] like for example Al(III)-

Amino-trisphenolate complexes.112,285 GREINER et al. found also a way to modify the properties 

of PLimC by using the exocyclic double bond of PLimC with polymer analogous reactions.8 

Applications like a breathing glass are also possible with PLimC.7,286 Block copolymerization 

of cyclohexene oxide (CHO) and LO was performed also performed by GREINER et al.287  

Despite possessing excellent properties and a broad modification range for applications, it is 

only usable when it is cast as a film from solvents. Processing of neat PLimC is rather difficult 

and leads to polymer with poor mechanical and optical properties.288 The reason for this 

processing problems lies in its high viscosity in the melt (η0 = 0.89 MPa‧s), its high onset of the 

viscous flow (~ Tonset = 167 °C), and its low degradation temperature (~ Tdegr = 180 °C). 

The motivation for this thesis is to overcome these processing issues and to find suitable ways 

to process PLimC. Processing and property modifications of bio-based polymers are key 

necessities for sustainable applications and a “greener” future. In this thesis three different ways 

are pursued to enable PLimC processing and property tuning: Additives, blending, and 

copolymerization (Figure 14).  

Additives 

Additives are an easy and cost-efficient method for tuning polymer properties. A well-known 

example of that are phthalate-based plasticizers in PVC (e.g., DEHP, DOP). They are acting as 

softening agents and improve mechanical properties. The same approach can also be transferred 

to PLimC. However, commercially available plasticizers are petro-based and causing health 

issues. This can be avoided by applying a bio-based and non-toxic plasticizer. In this thesis, 

ethyl oleate (EtOL) is used as a low-cost, bio-based plasticizer for PLimC (Chapter 9.1). EtOL 

is a fatty acid ester, which displays good plasticizing properties due to its long alkyl chains. 

EtOL reduces the viscosity in melt and the onset of the viscous flow of PLimC efficiently. So, 

PLimC/EtOL compounds can be processed at lower temperatures and without decomposition. 
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Also, the addition of 7.5 wt% EtOL improves the mechanical properties of PLimC significantly 

so that processed PLimC can now be used for sustainable applications. Additionally, 

PLimC/EtOL compounds can also be recycled at least once by melt reprocessing, which also 

leads to more sustainability and applicability for PLimC/EtOL compounds.  

Blending 

Another way to reduce the environmental footprint and to process PLimC lies in blending. 

Blending is also a cost-efficient and already applied method in the industry. The main objective 

of blending in this thesis is to reduce the amount of petro-based polymers in use and to 

investigate the properties of PLimC in blends (Chapter 9.2). Interesting blending partners for 

PLimC are commodity polymers like for example PS, PA, or PMMA because they are applied 

in large quantities in the industry, and so a partial replacement with bio-based PLimC seems 

reasonable in terms of sustainability. The produced hybrid blends of bio-based and petro-based 

polymers are usually phase-separated and showing moderate mechanical properties. However, 

in the case of PLimC/COPE or PLimC/PBAT blends a strong increase in the E-modulus could 

be observed due to PLimC. This could be interesting for practical and sustainable applications. 

Copolymerization 

PLimC and PLA are bio-based polymers, which provide an interesting potential for sustainable 

applications. Also, blends of PLimC and PLA could be appealing for applications. The 

mechanical properties of PLimC/PLA blends are quite moderate due to the phase separation 

(Chapter 9.2). To improve the performance and properties of these promising sustainable 

blends, compatibilizers can be applied. Compatibilizers interact with the two phases of the 

blend to make the morphology more homogenous. This could lead to better mechanical 

properties. In the case of PLimC/PLA blends, block copolymers of PLimC and PLA could be 

employed. The advantage of block copolymers of PLimC and PLA lies again in their bio-based 

origin and their tunability. Because of these interesting aspects, copolymerization of PLimC 

and PLA was explored (Chapter 9.3). One-pot and sequential reactions were investigated to 

understand the polymerization behavior of PLimC and PLA in detail. The so obtained block 

copolymers can be applied as sustainable and tunable compatibilizers. SEM measurements of 

compatibilized PLimC/PLA blends showed an influence on the morphology, which could be 

an indicator for a better performance (Figure 11). For improving the performance of PLimC, 

also lactide derivatives (e.g., diHLA) are interesting because their polymerizability gives access 

to rubber-like polymers (e.g., poly(diHLA)). Poly(diHLA) is a bio-based and biodegradable 
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polymer with a low glass transition temperature (Tg = -30 °C). The rubber-like properties of 

poly(diHLA) could be advantageous for improving the properties of PLimC (e.g., processing, 

impact strength, or elongation at break). In this thesis, PLimC/PdiHLA block copolymers with 

high transparency and elastic properties were synthesized. These flexible block copolymers 

could find a potential use for example in the packaging industry. Due to the feasibility of the 

copolymerization of PLimC and lactide derivatives, the synthesis of bio-based thermoplastic 

elastomers (TPE) based on PLimC and lactide derivatives seems also possible now.  

8.2 Individual aspects of each publication 

 

Additives 

In the first publication (Chapter 9.1) the difficult processing behavior of neat PLimC is 

discussed.  PLimC possesses relatively poor stability at higher temperatures (> 180 °C). 

Additionally, the high zero-shear viscosity (η0 = 0.89 MPa‧s) and the onset of the viscous flow 

(T = 167 °C) of PLimC make injection molding or hot-pressing problematic. To overcome these 

limitations additives can be used to tune the processing behavior. This additive should be bio-

based, non-toxic, and environmentally friendly to strengthen the “green” character of PLimC. 

One suitable candidate for that role is ethyl oleate (EtOL), which is the ω-9-fatty acid ester of 

oleic acid. Adding EtOL to PLimC has certain positive effects on the processing behavior and 

as well on mechanical properties. PLimC compounds with EtOL show lower glass transition 

temperatures (Tg) than neat PLimC (Tg = 130 °C). This is the effect is induced by EtOL, which 

possesses two long alky chains to influence the entanglement of the PLimC polymer chains. By 

adding different amounts of EtOL (2.5 - 25 wt%) to PLimC the glass transition temperatures 

can be varied over a broad area (Tg = 130 °C – 30 °C). PLimC/EtOL compounds with contents 

of below 7.5 wt% could not be processed in the desired temperature window (~ T = 170°C), so 

PLimC/EtOL compounds with > 7.5 wt% EtOL were further investigated. In terms of 

rheological properties, PLimC/EtOL compound with 7.5 wt% EtOL showed a reduced zero-

shear viscosity (η0 = 0.12 MPa‧s) and the reduced onset of the viscous flow (T = 136 °C). 

Increasing the EtOL content (15 wt%) leads to lower a lower value for zero-shear viscosity (η0 

= 0.07 MPa‧s) and onset of the viscous flow (T = 125 °C), respectively. PlimC/EtOL compounds 

are showing improved mechanical properties in comparison to neat PLimC. For compounds 

with 7.5 wt% EtOL the E-modulus (E = 2.1 ± 0.19 GPa) and the elongation at break 

(εbr = 28 ± 9.3%) are drastically increased in comparison to neat PLimC. Regarding optical 

properties of PLimC/EtOL compounds (7.5 wt%), a high transmission (90 ± 0.5 %) and high 
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clarity (85 ± 0.3 %) can be observed. This is comparable with commercially available bisphenol 

A polycarbonate (BPA-PC). To take the term sustainability even more into account, the 

recycling properties of PLimC/EtOL compounds were investigated. The observed values for E-

modulus (E = 1.94 ± 0.10 GPa) and tensile strength (σmax = 22 ± 8.0 MPa) are very close to the 

values observed for the one-time processed compound. However, the elongation at break 

decreased to 9 ± 15%. This can be explained by defects, which were introduced by hot pressing 

the used tensile specimens for a second time. No significant shift of the respective GPC trace 

to lower molecular weights could be observed after recycling PLimC/EtOL compounds 

(7.5 wt% EtOL), so chain degradation can be excluded. 

Blending 

Processing of PLimC is also a strong objective in the second publication (Chapter 9.2). The 

second publication is about the blending process of commodity polymers and PLimC to form 

binary blends with PLimC as the minority component. Using PLimC as a blending partner 

increases the sustainability of commercially available polymers. For the blending process, 

polymers with a similar structure to PLimC were chosen to confirm a good combability (e.g., 

poly (L-lactic acid) (PLA), polyamide 12 (PA12), poly(butylene adipate-co-terephthalate) 

(PBAT, EcoFlex®) or a segmented polyether ester (COPE, Arnitel EM400®). PLimC was also 

blended with commodity plastics with a similar glass transition temperature (e.g., poly(methyl 

methacrylate) (PMMA) or polystyrene (PS)), but the blends showed either high brittleness or 

high incompatibility and were not investigated further. The investigated blends were 

characterized by their thermal properties, their morphology, and as well by their mechanical 

properties. All produced blends showed opaque strands, which indicates the formation of phase-

separated blends. This was confirmed by SEM and Raman imaging. For PLimC/PLA blends a 

monomodal distribution of spherical PLimC domains was identified, whereas PLimC/PBAT, 

PLimC/COPE, and PLimC/PA12 blends are showing a bimodal distribution of PLimC. The 

explanation for lies in the high incompatibility and the huge difference in zero shear viscosity 

of PLimC and the blending partner. PLimC possesses a quite high zero shear viscosity (η0 = 

890 kPa‧s), whereas the zero shear viscosity of the blending partners is three orders of 

magnitudes below PLimC, so the shear forces during processing are not sufficient to deform or 

split the domains further, which resulted in a bimodal distribution. Regarding thermal 

properties, all investigated blends showed no change in glass transition temperature by the 

addition of PLimC but blending usually leads to an increased crystallization temperature (Tc) 

of the matrix polymer due to the nucleation effect of PLimC domains. Comparison of 
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thermogravimetric measurements (TGA) show an increased stability of PLimC (~ T5% = 250 

°C) within the matrix polymer compared to neat PLimC (T5% = 230 °C). In terms of mechanical 

properties, the most pronounced effect of PLimC in blends is the strong increase of E-modulus, 

as it was observed in the case of PLimC/PBAT or PLimC/COPE blends. Blending with 30 wt% 

PLimC increases the E-modulus of PBAT four times (from 0.06 MPa to 0.25 MPa).  However, 

the elongation at break is suffering, but still acceptable for applications (~ εbr = 200 %).  

Copolymerization 

Also, in the third publication, the processing is an extended aim. To improve the mechanical 

properties of PLimC/PLA blends for applications, PLimC/PLA block copolymers were 

synthesized (Chapter 9.3).  These can be applied as compatibilizers in immiscible PLimC/PLA 

blends and can enhance the blend performance in terms of mechanical properties. Lactides (LA) 

and their derivatives are suitable candidates as comonomers for LO because the corresponding 

polymers (e.g., PLA or PdiHLA) are also bio-based, show biodegradability, and displaying 

interesting mechanical properties. Due to all these reasons, living ring-opening 

copolymerization (ROCOP) of LO, and CO2, and LA was investigated in detail. First, 

polymerizations of LO, CO2, and D,L-lactide (DLLA) were performed to clarify the polymer 

architecture in one-pot reactions. The successful copolymerization was identified by observing 

characteristic protons for PLimC (5.06 ppm) and (PDLLA) (5.20 ppm) with 1H NMR 

spectroscopy. Also, 13C NMR reveals the formation of PLimC and poly((D/L))-lactide acid) 

(PDLLA). By comparing feed composition (LO: DLLA) and polymer composition with 1H-

NMR, a fast polymerization rate of DLLA in presence of LO could be observed. High molecular 

weight (~ Mn = 70 – 80 kDa) polymers with two distinctive glass transition temperatures (Tg = 

122 °C and Tg = 50 °C) were obtained from one-pot reactions. Observing two glass transition 

temperatures would lead to the assumption, that either homopolymers or block copolymers are 

forming. TGA measurements of copolymers are showing a mainly PLimC dominated 

degradation for all the different copolymer compositions (~ T5% = 228 °C). To differentiate 

between homopolymers and block copolymers, 2D NMR spectroscopy (1H-1H NOESY NMR) 

was used to identify cross-peaks of PLimC and PDLLA. To confirm block copolymer structure 

the morphology of the copolymers was studied by transmission electron microscopy (TEM). A 

mixture of spherical, cylindrical, hexagonally perforated lamellar structure and lamellar 

morphology was observed for PLimC/PLA copolymers. This indicates the formation of PLimC 

and PLA copolymers with different chain lengths. The reactivity of a PLimC terminated 

polymer chain was demonstrated by sequential polymerization of LO, CO2, and L-lactide (LLA) 
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to form PLimC-block-poly((L)-lactide acid). To improve mechanical properties of PLimC 

without the use of additives or plasticizers, sequential ROCOP of LO, CO2, and dihexyl-

substituted lactide (diHLA) was performed to give PlimC-block-PdiHLA block copolymers. 

PdiHLA as a soft block should influence elongation at break and impact strength positively due 

to its flexible chains. That toughness of brittle rigid polymer can be improved by block 

copolymerization is well-known and demonstrated by styrene-butadiene-styrene block 

copolymers or epoxy-polycaprolactone thermosetting block copolymers.289 Using diHLA as a 

monomer possesses also other advantages. It is based on non-food and bio-based materials like 

for example heptaldehyde, which can be obtained from castor oil or ricinoleic acid ester.290 

Additionally, it shows biodegradability and can be used drug delivery system. Three different 

block copolymers with different ratios of PLimC and PdiHLA were synthesized. 1H-NMR 

spectroscopy confirms the synthesis by showing the characteristic protons for PLimC (5.06 

ppm) and PdiHLA (5.20 ppm). Moderate molecular weights (~ Mn = 35.000 Da) and low glass 

transition temperatures (~ Tg = - 39 °C) were obtained. The decomposition of PLimC-block-

PdiHLA copolymers (~ T5% = 225 °C) is occurring in the same temperature region as PLimC-

block-PLA copolymers. By using ROCOP of diHLA and LO a window for PLimC modification 

can be opened.    

Figure 14. Overview of the different aspects of this thesis: Additives, blending, and 

copolymerization. Additives like EtOL can influence the processing behavior of PLimC 

significantly (marked in red). Blending of PLimC and commodity polymers (e.g., PBAT, PA12) 

can reduce the environmental footprint of petro-based polymers (marked in yellow). The 

copolymerization of LO, CO2 and LA derivatives results in block copolymers, which have 

potential use as compatibilizers in blends or can be used for property tuning. 
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8.3 Individual contribution to joint publications 
 

Several MCII scientists under the supervision of Holger Schmalz, Seema Agarwal, and Andreas 

Greiner contributed to this thesis and the corresponding manuscripts and publications. In this 

chapter, the individual contributions of all authors are given. 
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ABSTRACT 

Poly(limonene carbonate) (PLimC) has a huge potential as a sustainable biobased polymer due 

to its promising property profile and the availability of the raw materials from nonedible 

resources, e.g.,, limonene from orange peel. PLimC and related terpene-based polycarbonates 

have not been processed from the melt state successfully due to their comparably low 

decomposition temperatures. Indeed, melt-processed PLimC samples are brittle and colorized. 

To change the paradigm, we have investigated compounds of PLimC with biobased ethyl oleate 

(EtOL). The glass transition temperature (Tg) and melt viscosity of these compounds can be 

readily controlled by the EtOL content. The melt-processed PLimC/EtOL compounds showed 

improved mechanical properties without significant loss in optical properties as compared to 

neat PLimC. Interestingly, the PLimC/EtOL compounds could be melt-processed a second time 

without significant loss of mechanical and optical properties, which could mark an important 

step toward recyclability. 

KEYWORDS: biobased, poly(limonene carbonate), fatty acid, additive, processing, recycling 

INTRODUCTION 

Biobased polymers are of utmost importance for the sustainable circular economy, which is 

essential for future materials. The importance of biobased synthetic polymers has been 

highlighted in several excellent reviews.1−3 Polymers from relevant nonfood resources could 

become a cornerstone for sustainability if some inherent problems are solved, which could be 

nicely illustrated by poly(limonene carbonate) (PLimC). PLimC made by ring-opening 

copolymerization (ROCOP) of trans-limonene oxide (LO) and CO2 was introduced by Coates 

et al.4 It has received significant scientific attention but has not yet being applied in technically 

relevant applications due to problems related to melt processing. The versatility of different 

catalysts and reaction parameters for the copolymerization of LO and CO2,
5−7 derivatives of 

PLimC,8−11 block copolymers,12 and applications13−15 were investigated by several teams. The 

production of high-molecular-weight PLimC on a kg scale was achieved by the purification of 

the monomer, which was an important step toward applications. The potential of PLimC for 

applications was shown by Koning et al. for coatings13,14 and by us for membranes.15 

Interestingly, even the evaluation of the availability of limonene16 and life cycle assessments 

of PLimC17,18 gave a promising outlook for the technical application of PLimC. Unfortunately, 

the onset of degradation (T5% = 225 °C, T5% = temperature at 5% weight loss) of PLimC is 

rather close to its glass transition temperature (Tg ≈ 130 °C).7 Additionally, its melt viscosity is 
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very high, which restricts most engineering applications of this promising biobased polymer, 

like compression molding or extrusion. Consequently, melt processing of PLimC results only 

in brittle and colorized samples. If this problem could be resolved by a “green” approach, 

PLimC and many related polymers could be utilized for sustainable engineering applications. 

Recent progress in improving the melt processability of biobased polymers was made by Fu et 

al., who developed a low temperature sintering method for melt processing of stereo complex-

type polylactide or employed polymers with a bimodal melting temperature distribution.19−23 

An alternative method involves the use of polymers with ultrabroad molecular weight 

distribution, as shown by Mülhaupt et al. for high density polyethylene (HDPE) employing a 

reactor blend of nanophase-separated ultrahigh-molecular-weight polyethylene (UHMWPE) in 

a low-molecular-weight PE wax as an additive.24 To improve the melt processability of PLimC, 

we have investigated compounds of PLimC and a low-molecular weight additive with the 

expectation that these compounds will have lower Tg and thereby allow melt processing without 

decomposition. We have selected the biobased ethyl oleate (EtOL) made from ethanol and the 

ω-9-fatty-acid oleic acid due to its chemical similarity (polar ester group, long aliphatic chain) 

to PLimC. Oleic acid based polyesters have for example already been used to improve the melt 

processability of polyethylene and polypropylene.25 In addition, EtOL is nontoxic and is used 

as a regulated food additive (code of federal regulations: 21CFR172.515) and as a solvent for 

intramuscular drug delivery.26 Moreover, some phthalates, which are still commonly used in 

commodity polymers, are suspected to be responsible for several health issues, e.g., they are 

suspected to act as teratogens or endocrine disruptors. Thus, there is an ongoing need to find 

nontoxic alternatives to improve the melt processability of commodities as well as engineering 

polymers. Here, we studied the effect of EtOL on the rheological and mechanical properties of 

melt-processed PLimC/EtOL compounds, as well as on their optical properties and 

recyclability. 
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RESULTS AND DISCUSSION 

 

Scheme 1. Synthesis of PLimC via ring-opening copolymerization (ROCOP) of trans-LO and 

CO2 (10 bar) employing (bdi)Zn(µ-OAc) as catalyst (ca. 30 vol% trans-LO in toluene).  

 

PLimC was synthesized by ring-opening copolymerization (ROCOP) of trans-LO and CO2 

catalyzed by the β-diiminate zinc catalyst (bdi)Zn(μ-OAc) (Scheme 1), following a previously 

published procedure (details of the synthesis can be found in the Supporting Information).7 Gel 

permeation chromatography (GPC; Figure S1) showed a unimodal molecular weight 

distribution, with an apparent number average molecular weight of Mn,app = 50 000 g mol−1 (Đ 

= 1.15). A solvent-related approach with dichloromethane (DCM) was chosen for the 

preparation of PLimC/EtOL compounds to achieve a homogeneous distribution of the additive 

in the polymer matrix, which was proven by Raman imaging (Figure S2). This solvent-related 

approach could be improved in terms of sustainability by, e.g., spray coating of EtOL onto 

PLimC powder employing a more sustainable solvent like ethanol. 

 

Rheological Properties of Neat PLimC 

 

Until now, all attempts to process pure PLimC without decomposition have failed because the 

glass transition temperature (Tg) of PLimC (Tg = 130 °C) is rather close to its decomposition 

temperature of T5% = 225 °C7 (T5% = temperature at 5% weight loss), and it shows gradual 

degradation under isothermal conditions at 180 °C (Figure S3). A processing temperature 

window of 160−170 °C (above Tg, but below decomposition temperature) is too low to induce 

sufficient flow of the sample, and at temperatures above 170 °C, PLimC starts to degrade, 

resulting in brittle, yellowish pellets with bubbles (Figure S4). To gain quantitative data about 



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

83 | P a g e  
 

the processing of PLimC, we first investigated the rheological properties of neat PLimC. The 

temperature ramp (Figure 1A) reveals the onset of viscous flow at about 170 °C (crossover of 

G′ and G″), which is close to the decomposition temperature of 180 °C. In addition, the zero 

shear viscosity of PLimC is rather high at 170 °C (η0 = 0.89 MPa·s, Figure 1B). This results in 

high shear forces required for processing, which also contributes to the degradation of PLimC. 

The zero shear viscosity of PLimC is significantly higher in comparison to the value of 3.4 

kPa·s (at a processing temperature of 270 °C) for the commercial polycarbonate Lexan 141.27 

The small processing window of 170−180 °C combined with the high melt viscosity of PLimC 

makes thermal processing of PLimC impossible. To overcome these limitations, biobased EtOL 

was used to reduce the Tg and to lower the onset of the viscous flow of PLimC. 

 

Figure 1. A) Temperature-dependent dynamic moduli for neat PLimC. B) Frequency sweep 

for neat PLimC at 170 °C. The zero shear viscosity of η0 = 0.89 MPa·s was calculated from 

Gꞌꞌ/ω for the lowest measured frequency. 
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Thermal and Rheological Properties of PLimC/EtOL Compounds 

 

PLimC/EtOL compounds with different weight fractions of EtOL were studied to understand 

the effect of EtOL on the Tg and the rheological properties (Table S1). The EtOL content in the 

compounds was verified by proton nuclear magnetic resonance (1H NMR) spectroscopy 

(Figures S5 and S6 and Table S1) and Tg was determined by differential scanning calorimetry 

(DSC; Figure S7). The Tg of the PLimC/EtOL compounds decreases continuously with the 

EtOL content from 128 °C (neat PLimC) to 32 °C (PLimC/EtOL compound with 25 wt % 

EtOL), which also indicates molecular miscibility of PLimC and EtOL over a wide composition 

range (Figure 2). This effect can be explained by the free volume theory of Fox and Flory. 

Here, the plasticization effect is explained by the introduction of small plasticizer molecules 

into the polymer matrix, which possesses not only a Tg lower than the polymer matrix itself, but 

the small molecules significantly increase the free volume of the system and, thus, diminish the 

Tg and the melt viscosity.28 

 

 

 

Figure 2. Dependence of Tg on the amount of EtOL in PLimC/EtOL compounds. Determined 

by 1H-NMR spectroscopy (CDCl3) and DSC (10 K min-1). 
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Figure 3. Optical appearance of hot pressed PLimC/EtOL compounds with different EtOL 

contents. The respective EtOL contents and processing temperatures are given below the 

images. 

 

PLimC/EtOL compounds with EtOL contents below 7.5 wt% could not be hot-pressed in the 

desired temperature window of 170−180 °C despite their lowered Tg. Temperatures up to 210 

°C were necessary to completely melt the sample, and as a result, the prepared specimens 

showed clear signs of beginning PLimC degradation (brownish color, the formation of bubbles; 

Figure 3). In contrast, compounds with higher EtOL contents (7.5−15 wt % EtOL) were well 

processable already at 160 °C, yielding clear, colorless disks and dog-bone-shaped samples 

(Figure 3). Consequently, PLimC/EtOL compounds with EtOL contents of 7.5, 10, and 15 wt 

% were selected to further study their rheological properties. EtOL has not only an effect on the 

Tg of the PLimC/EtOL compounds but also on the onset of viscous flow, which is one of the 

key factors for processing. The onset of viscous flow is decreased from 167 °C (neat PLimC) 

to 136 °C for an EtOL content of 7.5 wt % (Figure 4A). This widens the small processing 

window of PLimC and, therefore, decomposition during melt processing can be efficiently 

prevented. Furthermore, the zero shear viscosity is lowered by a factor of ≈7 from η0 = 0.89 

MPa·s for neat PLimC to 0.12 MPa·s for the compound with 7.5 wt % EtOL, respectively 

(Figure 4B). Upon further increasing the EtOL content in the compounds, the onset of viscous 

flow and the zero shear viscosity are further shifted to lower values (Figures S8 and S9 and 

Table 1), yielding an onset of viscous flow of 125 °C and a zero shear viscosity of η0 = 0.07 

MPa·s for the compound with the highest EtOL content of 15 wt %, respectively. 
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Figure 4. A) Temperature-dependent dynamic moduli for a PLimC/EtOL compound with 7.5 

wt% EtOL and B) corresponding frequency sweep at 170 °C. The zero shear viscosity η0 = 0.12 

MPa·s was calculated from Gꞌꞌ/ω for the lowest measured frequency. 

 

 

Mechanical and Optical Properties of PLimC/EtOL Compounds 

 

Figure 5 shows the representative stress−strain traces for PLimC/EtOL compounds with 7.5, 

10, and 15 wt % EtOL, and the respective mechanical properties (Young′s modulus, tensile 

strength, and elongation at break) are compared to that of neat PLimC in Table 1. Due to the 

improved melt processability of PLimC/EtOL compounds, a significant enhancement in the 

mechanical performance can be achieved for the compound with 7.5 wt % EtOL. Young′s 

modulus (E = 2.1 ± 0.19 GPa) and elongation at break (εbr = 28 ± 9.3%) are doubled compared 

to the values observed for neat PLimC (E = 0.95 GPa, εbr = 15%)7 and the sample shows a 

Charpy impact strength of 2.10 ± 0.09 kJ m−2. Due to the plasticizing effect of EtOL, the tensile 
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strength is lowered from 55 to 22 ± 8 MPa for the PLimC/EtOL compound. With higher 

amounts of EtOL (10 and 15 wt %; Table 1), a decrease in certain mechanical properties was 

observed. The Young′s modulus as well as elongation at break are lowered to E = 1.60 ± 0.35 

GPa and εbr = 13 ± 7.1%, respectively, for the compound with the highest EtOL content of 15 

wt %. In contrast, the tensile strength is not significantly altered and the Charpy impact strength 

is more than doubled (4.90 ± 0.03 kJ m−2). This effect can again be explained by the free volume 

model of Fox and Flory.28 The addition of EtOL results in a significant increase in the free 

volume of the system. Consequently, the interactions between the PLimC chains are reduced 

and, thus, chain mobility is increased, as manifested in the decreased melt viscosity of 

PLimC/EtOL compounds (Table 1). This, on one hand, is the prerequisite for melt processing 

of PLimC/EtOL compounds, as otherwise, the high melt viscosity requires high processing 

temperatures resulting in decomposition of PLimC. On the other hand, polymer−polymer 

interactions that hold the polymer chains together are increasingly reduced upon the addition 

of EtOL. As a result, there is an optimum EtOL content of 7.5 wt %, where melt processing is 

enhanced without significantly deteriorating mechanical properties, like Young′s modulus and 

elongation at break. Similar results in terms of mechanical properties were found with 

epoxidized vegetable oils as additives for polylactide30 and poly(vinyl chloride).31 

 

 

 

Figure 5. Representative stress-strain curves of PLimC/EtOL compounds with different EtOL 

contents. 
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With respect to optical properties (Table 1), high transmission and clarity of about 90 and 85%, 

respectively, can be reached even for the compound with 15 wt % EtOL, which are comparable 

to those for commercial polycarbonate (BPA-PC, Lexan 141). Besides, the addition of EtOL 

results in an increase in the haze, with values ≤15%. Consequently, PLimC/EtOL compounds 

have performance comparable to that of Lexan 141 in terms of Young′s modulus and optical 

transparency but still show some limitations with respect to elongation at break and impact 

strength. Processed PLimC/EtOL (7.5 wt % EtOL) was recycled by hot pressing to study the 

impact of repeated processing on mechanical and optical properties (Figure S10 and Table S6). 

Tensile strength (σmax = 22 ± 13 MPa) and Young′s modulus (E = 1.94 ± 0.10 GPa) are very 

close to the values observed for the one-time processed compound (σmax = 22 ± 8.0 MPa, E = 

2.10 ± 0.09 GPa; Table 1). The elongation at break, however, dropped to 9 ± 15%. This might 

be explained by defects, which were introduced by hot pressing the used tensile specimens for 

a second time. The elongation at break is very sensitive to small defects in the tensile specimens. 

For the recycling test, the used tensile specimens were cut into small pieces for compression 

molding (Figure S10). In contrast, the initial test specimens were prepared by compression 

molding of a powderlike sample, which ensures a much more homogeneous melt. It is noted 

that chain degradation is not a major issue, as no significant shift of the respective GPC trace 

to lower molecular weights could be observed after recycling (Figure S11). Concerning the 

optical properties of the recycled PLimC/EtOL compound, no significant changes induced by 

recycling could be observed (Table S6). 
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Table 1. Summary of rheological, mechanical and optical properties of pure PLimC, 

PLimC/EtOL compounds and the commercial polycarbonate Lexan 141. 
 Unit PLimC 

neat 

PLimC 

7.5 wt% 

EtOL 

PLimC 

10 wt% 

EtOL 

PLimC 

15 wt% 

EtOL 

Lexan 141 Method 

Thermal/rheological 

Glass transition 

temperature 
°C 128/131 86/91 78/70 58/62 150/n.d.29 

DSC/Rheo-

metera 

Zero shear 

viscosity 
MPa s 0.89 0.12 0.12 0.07  0.003427 Rheometerb 

Onset of 

viscous flow 
°C 167 136 130 125 n.d. Rheometera 

Mechanical        

Tensile strength MPa 557 22 ± 8.0 21 ± 2.2 19 ± 2.1 49 ± 5.8 
Tensile 

testerc 

Elongation at 

break 
% 157 28 ± 9.3 11 ± 10 13 ± 7.1 61 ± 46 

Tensile 

testerc 

E-modulus GPa 0.957 2.10 ± 0.19 1.70 ± 0.18 
1.60 ± 

0.35 

1.80 ± 

0.20 

Tensile 

testerc 

Charpy impact 

strength 
kJ m-2 n.d. 2.10 ± 0.09 n.d. 

4.90 ± 

0.03 

12.0 ± 

1.10 

Impact 

strength 

testerd 

Optical        

Transmission % 945 90 ± 0.5 85 ± 1.2 91 ± 0.5 92 ± 1.2 Haze meter 

Haze % 0.755 13 ± 0.4 15 ± 1.1 14 ± 0.4 5.0 ± 1.4 Haze meter 

Clarity % 99.87 85 ± 0.3 97 ± 1.5 85 ± 0.4 89 ± 1.3 Haze meter 

a DSC: Tg was determined from the second heating traces (scanning rate 10 K min-1, Figure S7); rheology: Tg 

und onset of viscous flow (cross over of Gꞌ and Gꞌꞌ) were determined from temperature ramp tests at 2 K min-1 

employing a frequency of 1 Hz. 
b Zero shear viscosities were determined from frequency sweeps at 170 °C and were calculated from Gꞌꞌ/ω at the 

lowest measured frequency. 
c A test speed of 0.5 mm min-1 was used to determine the Young´s modulus and 2.0 mm min-1 for tensile 

strength and elongation at break, respectively. Given values (standard deviations in brackets) correspond to 

average value of 9-10 samples. Experimental data for single measurements can be found in the supporting 

information (Tables S2-S5). 
d Impact strength was measured according to ISO 179-2 
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EXPERIMENTAL SECTION 

Materials. R-Limonene (97%), N-bromosuccinimide (NBS) (97%), sodium hydride (60% 

dispersion in mineral oil) and iodomethane (99%, stabilized with silver) were used as received. 

Carbon dioxide (5.0, Linde Gase) was dried by passing through a column packed with 

molecular sieves (pore size 3 Å). trans-Limonene oxide (LO) was synthesized from R-limonene 

via the endo-cyclic bromohydrin formed by the reaction with N-bromosuccinimide (NBS) and 

conversion to the corresponding epoxide in the presence of aqueous sodium hydroxide. LO was 

further reacted with sodium hydride and methyl iodide to mask the OH groups of impurities 

that act as chain-transfer agents during polymerization. The β-diiminate zinc catalyst (bdi)Zn(μ-

OAc)4 and PLimC7 were synthesized according to literature procedures. In short, PLimC was 

prepared by ring-opening copolymerization (ROCOP) of LO and CO2, employing (bdi)Zn(μ-

OAc) as a catalyst in toluene. The obtained PLimC was purified by several precipitations from 

methanol. Ethyl oleate (98%, mixture of isomers, clear liquid, maximum acid content of 0.5 mg 

KOH g−1) was used as received from Acros Organics. Dichloromethane (DCM) was supplied 

by Carl Roth Chemicals and distilled prior to use. Polycarbonate Lexan 141 was supplied by 

Sabic. 

PLimC/EtOL Compounds 

The preparation of a PLimC/EtOL compound with 15 wt % EtOL is given as a representative 

procedure for all of the prepared PLimC/EtOL compounds. Five hundred milligrams of PLimC 

were dissolved in 20 mL of DCM until a clear solution was generated. To this solution, 0.058 

mL of EtOL were added. After 30 min, the DCM was removed using a rotary evaporator. The 

obtained PLimC/EtOL compound was dried under high vacuum (2·10−2 mbar) for 16 h and 

characterized by 1H NMR and DSC measurements. 

 

Melt Processing of PLimC/EtOL Compounds. 

A hot press from Carver (model 2518) with a temperature setting of 160−210 °C was used for 

processing. Powderlike samples of the respective PLimC/EtOL compounds were filled in a 

metal frame (13 cm × 13 cm) with a thickness of 1.0 mm and hot-pressed for 5 min by applying 

a force of 10 kN. After obtaining the hot-pressed polymer plates, dogbone-shaped specimens 

were punched for tensile testing according to DIN53504S3A, employing a Coesfeld Material 

punching machine (model 951617). 
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METHODS 

NMR spectra were recorded on a Bruker Avance-300 NMR spectrometer operating at 300 

MHz, using deuterated chloroform (CDCl3) as a solvent. Chemical shifts δ are indicated in parts 

per million (ppm) with respect to residual solvent signals. Differential scanning calorimetry 

(DSC) was performed on a Mettler Toledo DSC 3+ Star systems using a scanning rate of 10 K 

min−1 under N2 atmosphere. For GPC analyses an Agilent 1200 system equipped with a SDV 

precolumn (particle size 5 μm; PSS Mainz), a SDV linear XL column (particle size 5 μm, PSS 

Mainz) and a refractive index detector (G1362A, Agilent Technologies) was used. CHCl3 (high-

performance liquid chromatography (HPLC) grade) was used as a solvent at a flow rate of 0.5 

mL min−1 at room temperature. The calibration was done with narrowly distributed polystyrene 

standards (PSS calibration kit) and toluene (HPLC grade) was used as the internal standard. 

Raman imaging was performed with a WITec Alpha 300 RA+ imaging system equipped with 

an UHTS 300 spectrometer and a back-illuminated Andor Newton 970 EMCCD camera. The 

measurement was conducted with an excitation wavelength of λ = 352 nm and an integration 

time of 0.6 s per pixel using a laser power of 15 mW (100× objective, NA = 0.9, step width 100 

nm per pixel). All spectra were subjected to a cosmic ray removal routine and baseline 

correction using the WITec project 5.2 software. The spatial distribution of the components was 

extracted from the Raman imaging data employing the Raman spectra of the neat components, 

employing the True Component Analysis in the WITec project 5.2 software. An Anton Paar 

MCR 302 rheometer equipped with a parallel-plate Peltier device and a Peltier hood was used 

for rheological studies, employing a plate−plate geometry with D = 12 mm. Prior to the 

measurements, a strain sweep was conducted to ensure that the measurements were performed 

in the linear viscoelastic regime. Glass transition temperatures (Tg) were determined from the 

maximum of tan δ. The onset of the viscous flow was determined from the crossover of G′ and 

G″. Zero shear viscosities were calculated from G″/ω, using the lowest frequency measured. A 

Gardner Haze-Gard Plus haze meter was used for testing the optical properties. A tensile tester 

(Instron 5565) with 0.5 and 2 mm min−1 test speeds and a 10 kN load cell was used for tensile 

testing. Charpy impact properties were tested with a Zwick 5113 testing machine/50 J Hammer 

according to ISO 179-2. 
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CONCLUSIONS 

In this contribution, we introduced a concept for meltprocessable, biobased PLimC employing 

biobased ethyl oleate (EtOL) as an additive. EtOL was selected as a suitable additive because 

it is readily available, inexpensive, nontoxic, and shows chemical similarity to PLimC. Neat 

PLimC suffers from decomposition during thermal processing starting at 180 °C according to 

our thermogravimetric analysis (TGA) study. Taking into consideration that the viscous flow 

starts at around 170 °C for pure PLimC, processing is not possible without decomposition of 

the polymer. The addition of the biobased, nontoxic EtOL lowers the Tg and melt viscosity, 

which significantly widens the accessible temperature window for processing without thermal 

degradation and reduces shearinduced degradation of PLimC. Additionally, the mechanical 

properties improved significantly without colorization or a significant loss of transparency of 

the samples. It should be mentioned that the addition of larger amounts of EtOL could lead to 

compounds with too low Tg for engineering applications. Interestingly, the compounds could 

be meltprocessed a second time without a significant change of the mechanical and optical 

properties. This could be an important step toward melt recycling and displays a highly relevant 

alternative to the already published chemical recycling of PLimC. The promising results of this 

investigation could pave the way toward sustainable engineering and application of PLimC and 

unlock the important class of terpene-based polycarbonates for real-world applications. 
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CHCl3-GPC trace of neat PLimC 

 

 

 

Figure S1. CHCl3-GPC trace of the employed PLimC (Mn, app = 50 000 g/mol, Ð = 1.15). 
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Raman imaging on a PLimC/EtOL compound 

 

A) 

 

 

B) 

 

Figure S2. A) Raman spectra of PLimC (red) and EtOL (blue). B) Raman x,y-imaging on a 

PLimC/EtOL compound with 15wt% EtOL (λ = 532 nm, step width 100 nm pixel-1 , 100x 

objective with NA = 0.9): PLimC distribution (left image); ethyl oleate distribution (middle 

image); ratio between PLimC and ethyl oleate (right image). A homogenous distribution of 

ethyl oleate in the polymer matrix could be detected in the limit of lateral resolution for the 

employed 100x objective (ca. 350 nm). 
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TGA of PLimC 

 

Figure S3. TGA isotherms of PLimC at two different temperatures (170 °C and 180 °C, 

measured under nitrogen). 
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Melt processability of neat PLimC 

 

 

 

Figure S4. Melt processability of neat PLimC at different temperatures. Digital images of 

samples compression molded at 160 °C (A) and at temperatures above 170 °C (B). 
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1H-NMR of PLimC/EtOL compounds 

 

 

 

Figure S5. 1H-NMR spectrum (CDCl3, 300 MHz) of PLimC with 15 wt% EtOL. The EtOL 

content in mol% was calculated by using the characteristic quartet of the methylene group of 

EtOL (marked in red). The reference proton for PLimC is marked in blue. The methylene group 

of EtOL represents two protons, whereas the reference proton for PLimC is one, resulting in 10 

mol% EtOL. Using the molar masses of EtOL and the repetition unit of PLimC, respectively, 

the weight fraction of EtOL in PLimC was then calculated to 14.9 wt%. For all other 

PLimC/EtOL compounds the same procedure was used. 
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Figure S6. 1H-NMR spectra (CDCl3, 300 MHz) of PLimC/EtOL compounds with different 

EtOL contents from 2.5 wt% – 25 wt%. The increasing amount of EtOL can be identified in 

the characteristic quartet of the methylene group (marked in red) or in the methyl group of 

EtOL (marked in yellow). 
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DSC of PLimC/EtOL compounds 

 

Figure S7. DSC thermograms of PLimC with different EtOL contents. The displayed traces 

correspond to the second heating curve measured at 10 K min-1. 
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Figure S8. A) Temperature-dependent dynamic moduli for a PLimC/EtOL compound with 

10% EtOL and B) corresponding frequency sweep at 170 °C. The zero shear viscosity η0 = 0.12 

MPa s was calculated from Gꞌꞌ/ω for the lowest measured frequency. 
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Figure S9. A) Temperature-dependent dynamic moduli for a PLimC/EtOL compound with 15 

wt% EtOL and B) corresponding frequency sweep at 170 °C. The zero shear viscosity η0 = 0.07 

MPa s was calculated from Gꞌꞌ/ω for the lowest measured frequency. 
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Figure S10. Fragments of the dog bone-shaped tensile specimens of the PLimC/EtOL 

compound with 7.5 wt% EtOL (A) were put into a frame (6 cm x 1.5 cm x 1mm) for recycling 

(B). The sample was again compression molded at 160 °C, yielding a clear and transparent 

recycled PLimC/EtOL plate (C). 
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Figure S11. CHCl3-GPC traces of the PLimC/EtOL compound with 7.5 wt% EtOL after hot 

pressing for one (black) and two times (red). 
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Table S1. Composition of PLimC/EtOL compounds  

Sample PLimC  

[mg] 

EtOL 

[mg] 

EtOL 

[ml] 

DCM 

[ml] 

EtOL loading 

[wt%] 

EtOL content 

[wt%] a 

EtOL content 

[mol%]a 

Tg 

[°C]b 

Reference 500.0 0 0 0 0 0 0 128 

1 527.1 8.7 0.010 15 2.5 3.1 2.0 116 

2 502.3 25 0.029 15 5.0 5.4 3.5 97 

3 500.0 37.5 0.043 15 7.5 8.4 5.5 86 

4 513.7 50 0.058 15  10.0 10.6 7.0 78 

5 499.8 75 0.086 15 15.0 14.9 10.0 58 

6 502.0 100 0.115 15 20.0 19.8 13.5 53 
7 509.3 125 0.144 15 25.0 24.4 17.0 32 

a Determined by 1H-NMR spectroscopy.  
b The glass transition temperature (Tg) was determined by DSC from the second heating traces 

measured at 10 K min-1. 

 

 

 

 

Table S2. Mechanical properties of PLimC/EtOL compounds (7.5 wt% loading)  

 Uni

t 

Sampl

e 1 

Sampl

e 2 

Sampl

e 3 

Sampl

e 4 

Sampl

e 5 

Sampl

e 

6 

Sampl

e 

7 

Sampl

e 

8 

Sampl

e 9 

Sampl

e 10 

Avera

ge ø 

Standar

d 

Deviati
on σ 

Length mm 3.9 4 4 4 4 4 4 4 4 4   

Width mm 15 15 15 15 15 15 15 15 15 15   

Thicknes

s 

mm 1.13 1.16 1.19 1.12 1.09 1.17 1.1 1.11 1.11 1.13   

              

Tensile 
strength 

MP
a 

10 20 29 27 28 5 29 22 22 28 22 8 

Elongati

on at 
break 

% 16 35 19 32 19 20 20 39 39 40 28 9 

E-

modulus 

MP

a 

2148 2181 2499 2197 1966 1738 2138 1946 2163 2146 2113 189 

              

0.5 mm min-1 test speed was used to measure the elastic modulus. 2.0 mm min-1 test speed was 

used for tensile strength and elongation at break determination. 
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Table S3. Mechanical properties of PLimC/EtOL compounds with 10.0 wt% EtOL 

 Uni

t 

Sampl

e 1 

Sampl

e 2 

Sampl

e 3 

Sampl

e 4 

Sampl

e 5 

Sampl

e 

6 

Sampl

e 

7 

Sampl

e 

8 

Sampl

e 9 

Sampl

e 10 

Avera

ge ø 

Standar

d 

Deviati
on σ 

Length mm 15 15 15 15 15 15 15 15 15 15   

Width mm 3.9 3.91 3.92 3.9 3.9 3.92 3.9 3.88 3.92 3.87   

Thicknes

s 

mm 1.16 1.19 1.06 1.17 1.1 1.08 1.08 1.07 1.14 1.07   

              

Tensile 

strength 

MP

a 

18 20 21 25 20 23 17 20 20 21 21 2 

Elongati

on at 
break 

% 7 1 26 2 4 15 11 6 6 34 11 10 

E-

modulus 

MP

a 

1799 1756 1867 1981 1562 1774 1337 1528 1723 1889 1722 184 

              

0.5 mm min-1 test speed was used to measure the elastic modulus. 2.0 mm min-1 test speed was 

used for tensile strength and elongation at break determination. 

 

Table S4. Mechanical properties of PLimC/EtOL compounds (15 wt% loading)  

 Un

it 

Sampl

e 1 

Sample     

2 

Sample     

3 

Sample    

4 

Sample    

5 

Sample    

6 

Sampl

e   7 

Sample    

8 

Sampl

e 9 

Avera

ge ø 

Standar

d 
Deviati

on σ 

Length m

m 

4 4 4 4 4 4 4 4 4   

Width m

m 

15 15 15 15 15 15 15 15 15   

Thickne

ss 

m

m 

1.16 1.16 1.13 1.08 1.16 1.22 1.28 1.27 1.27   

             

Tensile 

strength 

M

Pa 

20 19 25 20 20 18 17 18 19 19 2 

Elongat
ion at 

break 

% 13 8 9 12 14 29 6 19 5 13 7 

E-

modulu
s 

M

Pa 

1969 1650 1880 1920 1675 1745 716 1631 1661 1650 351 

             

0.5 mm min-1 test speed was used to measure the elastic modulus. 2.0 mm min-1 test speed was 

used for tensile strength and elongation at break determination. 
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Table S5. Mechanical properties of polycarbonate Lexan 141 (Sabic)  

 Uni

t 

Sampl

e 1 

Sampl

e 2 

Sampl

e 3 

Sampl

e 4 

Sampl

e 5 

Sampl

e 6 

Sampl

e 7 

Sampl

e 8 

Sampl

e 9 

Sampl

e 10 

Avera

ge ø 

Standar

d 
Deviati

on σ 

Length mm 4 4 4 4 4 4 4 4 4 4   

Width mm 15 15 15 15 15 15 15 15 15 15   

Thicknes
s 

mm 1.54 1.55 1.88 1.88 1.4 1.79 1.54 1.47 1.57 1.75   

              

Tensile 

strength 

MP

a 

38 50 46 45 46 56 47 55 55 54 49 6 

Elongati
on at 

break 

% 5 10 100 6 7 98 93 92 97 99 61 46 

E-
modulus 

MP
a 

1813 1955 1608 2225 1771 1711 1531 1681 1944 1842 1808 200 

              

0.5 mm min-1 test speed was used to measure the elastic modulus. 2.0 mm min-1 test speed 

was used for tensile strength and elongation at break determination. 

 

Table S6: Mechanical and optical properties of recycled PLimC-EtOL  

 Unit Sample    

1 

Sample     

2 

Sample     

3 

Sample    

4 

Sample    

5 

Average 

ø 

Standard 

Deviation 

σ 

Mechanical         

Tensile 

strength 

MPa 32 7 5 33 31 22 13 

Elongation at 

break 

% 2 1 2 3 39 9 15 

E-modulus MPa 2030 1762 2011 1874 2004 1936 103 

Optical         

Transmission % 93 92 94 - - 93 1 

Haze % 18 17 16 - - 17 1 

Clarity % 93 92 93 - - 93 1 

0.5 mm min-1 test speed was used to measure the elastic modulus. 2.0 mm min-1 test speed 

was used for tensile strength and elongation at break determination. 

 

 

 

 

 

 

 

 

 



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

113 | P a g e  
 

9.2 Blends of bio-based poly(limonene carbonate) with commodity polymers 
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ABSTRACT 

In this study, blends of the biobased poly(limonene carbonate) (PLimC) with different 

commodity polymers were investigated in order to explore the potential of PLimC toward 

generating more sustainable polymer materials by reducing the amount of petro- or food-based 

polymers. PLimC was employed as minority component in the blends. Next to the morphology 

and thermal properties of the blends the impact of PLimC on the mechanical properties of the 

matrix polymers was studied. The interplay of incompatibility and zero-shear melt viscosity 

contrast determined the blend morphology, leading for all blends to a dispersed droplet 

morphology for PLimC. Blends with polymers of similar structure to PLimC (e.g., 

aliphatic/aromatic polyester) showed the best performance with respect to mechanical 

properties, whereas blends with polystyrene or poly(methyl methacrylate) were too brittle and 

polyamide 12 blends showed very low elongations at break. In blends with Ecoflex 

(poly(butylene adipate-co-terephthalate)) and Arnitel EM400 (copolyetherester) with 

poly(butylene terephthalate) hard and polytetrahydrofuran soft segments) a threefold increase 

in E-modulus could be achieved, while keeping the elongation at break at reasonable high 

values of about 200%, making these blends highly interesting for applications.  

 

1. INTRODUCTION 

Based on the limitation of fossil resources, the development of bio-based and sustainable 

polymers and their corresponding blends is a highly relevant and intensively studied field of 

research.[1] Several bio-based synthetic polymers are made from naturally derived monomers 

and show biodegradability, like poly(hydroxy alkanoates) (PHAs), poly(butylene succinate) 

(PBS) or poly(L-lactic acid) (PLA).[2] CO2 is one of the interesting candidates as a sustainable 

C1 building block for polymers, because it is non-toxic, cheap, and highly available. It can react 

with epoxides via alternating ring-opening copolymerization (ROCOP) to polycarbonates.[3, 4] 

Limonene oxide (LO) is next to menth-2-ene oxide (Men2C) one of the few bio-based epoxides 

and can be directly produced by oxidizing naturally occurring limonene (main component from 

citrus oil) to yield bio-based polycarbonates via ROCOP with CO2.
[5, 6] About 57000 t/a[7] of 

citrus oil are gathered as side product from the orange juice production, representing a 

significant non-food based feedstock for LO production.[4] Synthesis of poly(limonene 

carbonate) (PLimC) by ROCOP of trans-limonene oxide (trans-LO) and CO2 was first 

introduced by Coates et al.[8], employing a β-diiminate zinc complex ([(bdi)Zn(µ-OAc)]. 

Further on, in 2015 Kleij et. al. developed an Al(III) aminotriphenolate complex for the 
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synthesis of PLimC.[9, 10] In the last 5 years, lot of research efforts have been focused on 

PLimC.[9, 10, 11] The synthesis of high molar mass PLimC (Mn ~ 100 kg∙mol-1) by using 

[(bdi)Zn(µ-OAc)] as catalyst was achieved by masking hydroxyl impurities in trans-LO, as 

demonstrated by Hauenstein et al.[6] This high molar mass PLimC features a high glass 

transition temperature (Tg = 130 °C), high transparency (99.8%), high light transmission (95%) 

and Young´s modulus (E = 0.95 GPa). PLimC has also a high gas permeability for oxygen and 

CO2, which can be made use of in “breathing glass” applications.[12] A highly versatile and 

efficient route for PLimC modification is based on thiol-ene click chemistry, which allows to 

tailor properties like solubility, Tg or subsequent crosslinking for coating applications.[13] 

Moreover, the living character of ROCOP catalyzed by [(bdi)Zn(µ-OAc)] allows the synthesis 

of well-defined PLimC-block-poly(cyclohexene carbonate) diblock copolymers, showing an 

interesting phase behaviour with a rather broad stability range for the HPL (hexagonal 

perforated lamella) morphology.[14] The market potential of PLimC has been recently assessed 

by Parrino et al.[15] and Zhang et al.[16] They show that PLimC can be an useful non-toxic, bio-

based alternative for bisphenol A based polycarbonates (BPA-PC), which use highly toxic 

monomers, such as phosgene and bisphenol A. According to Zhang et al., PLimC is a potential 

replacement for fossil based polystyrene (PS), because the production costs of both polymers 

are quite similar (ca. $1.36-$1.51 kg−1).[16] An easy and cost-efficient method to produce 

materials with new properties is blending. The currently technically used bio-based polymers, 

such as PLA, are mainly used in the form of blends (e.g. in blends with polyglycols[17], 

poly(vinyl acetate)[18], polypropylene[19] or styrene resins[20]). Also blends of biodegradable 

poly(butylene adipate-co-terephthalate) (PBAT, EcoFlex®) and PLA with improved 

mechanical properties were established.[21] The importance of PAH[22] and PBS[23] blends as 

well as bio-based blends in general have been highlighted in several publications and 

reviews.[24] One advantage of employing PLimC in blends, next to its sustainability, is its high 

glass transition temperature (Tg = 130 °C), which can lead to blends with increased heat 

resistance. Besides, due to its high glass transition temperature neat PLimC is usually rather 

brittle and exhibits a comparably low elongation at break. Together with the high melt viscosity 

of PLimC, which is inherently attributed to its stiff polymer backbone, melt processing of neat 

PLimC usually requires the use of additives like bio-based ethyl oleate.[25] Hence, the use of 

bio-based PLimC as minority component in polymer blends represents an elegant method to 

harness its high glass transition temperature without encountering difficulties in melt processing 

due to its high melt viscosity and the need to use additional additives.  
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In this contribution PLimC blends (10 – 30 wt% PLimC) with engineering or commodity 

plastics have been explored with the aim to gain an basic understanding of PLimC blends which 

could lead to future sustainable polymer materials. As matrix polymers for blending with 

PLimC we considered polymers with similar structure, like aliphatic/aromatic polyesters and 

polyamides, to ensure a good combability (e.g., PLA, PBAT, polyamide 12 (PA12), segmented 

copoly(ether ester)s (COPE, Arnitel EM400®). Additionally, commodity plastics with similar 

glass transition temperatures (e.g., poly(methyl methacrylate) (PMMA) or PS) were also 

employed. The different blend systems were investigated with respect to their morphology, 

thermal and mechanical properties. The outcome of the basic understanding of the present 

PLimC blends with selected commodity polymers should be the starting point for future 

developments for tuning of blends properties towards more sustainable und useful polymer 

materials. 

 

2. RESULTS AND DISCUSSION  

2.1 Selection and specifications of blend components 

Poly(L-lactic acid) (PLA), polyamide 12 (PA12), poly(butylene adipate-co-terephthalate) 

(PBAT, EcoFlex®) and a segmented copoly(ether ester) (COPE, Arnitel EM400®) were 

selected as matrix polymers for PLimC blends because of their similar chemical structure 

(polyesters, polyamides) to PLimC. PS (Tg = 100 °C) and PMMA (Tg = 117 °C) were chosen 

as polymers with glass transition temperatures close to that of PLimC (Tg = 130 °C). 

Compatibility of the used polymers with PLimC can be estimated by comparing the polymer 

solubility parameters (δ). As the solubility parameters are significantly different from PLimC 

(Table 1), phase separation is expected for all blend systems. Melt viscosity and molecular 

weight of the investigated polymers are also playing a significant role in the blending process, 

because PLimC has by far the highest zero-shear melt viscosity (Table 1). Consequently, at the 

employed weight fractions (10 – 30 wt%) PLimC is expected to form the dispersed phase in the 

blend and the matrix will be formed by the polymer with the lower melt viscosity. 

Characteristics of the employed polymers and processing parameters for blending are 

summarized in Table 1. 
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Table 1. Characteristics of the employed polymers and processing conditions for blend 

preparation. 

Polymer Grade Supplier Mn / 

Đa) 

δb) 

 

η0
c) Processing 

temperature 

   [kDa] / 

- 

[MPa1/2] [kPa∙s] [°C] 

PLimC - - 65/1.1 17.6[14] 890[25] - 

PLA Inego 

4060D 

Nature 

Works 

64/1.7 20.7[26] 4.2[27] 190 

PBAT EcoFlex, BASF F Blend 

A1200 

BASF SE 45/1.3 22.3[28] 2.7[29] 180 

COPE Arnitel EM400 DSM 75/1.5 19.2[30] 0.275[31] 200 

PA12 Vestamid Typ L1600 Evonik 

Industries 

40/1.4 20.8[30] 0.390[32] 185 

PMMA PLEXIGLAS® 8N Evonik 

Industries 

57/1.6 18.6[33] 0.071[34] 180 

PS BASF 143E BASF SE 121/2.0 18.7[33] - 180 

a) Number average molecular weight (Mn) and dispersity (Đ) were determined by CHCl3-GPC and HFIP-GPC, 

calibrated with narrowly distributed PS (CHCl3-GPC) and PMMA (HFIP-GPC) standards. 
b) Solubility parameter. 
c) Zero-shear melt viscosity. 

 

Blends with PS and PMMA were found to be inhomogeneous and/or very brittle and, thus, were 

not pursued further. An overview of these blend systems and their mechanical data can be found 

in the supporting information (Figure S1, Table S1). In the following, the morphology and 

thermal/mechanical properties of the other blend systems will be discussed starting with PLA 

(aliphatic polyester), followed by PBAT (aromatic/aliphatic polyester), Arnitel EM400 

(segmented aromatic copoly(ether ester)) and PA12 (aliphatic polyamide). 

 

2.2 Blends with poly(L-lactic acid) (PLA, aliphatic polyester) 

The effect of blending PLA with bio-based PLimC is addressed in the following. PLA/PLimC 

blends are opaque in comparison to neat PLA, which is transparent (Figure S2), indicating 

phase-separation in PLA/PLimC blends. Morphology investigation with scanning electron 

microscopy (SEM) reveals a homogenous dispersion of spherical PLimC droplets in the PLA 

matrix for blends with 10 and 30 wt% PLimC, respectively (Figure 1). PLimC is forming the 

dispersed phase, because it is the minority component and the melt viscosity of PLimC (η0 = 
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890 kPa‧s)[25] is significantly higher compared to that of PLA (η0 = 4.2 kPa‧s)[27] (Table 1). As a 

result, the shear forces during melt processing are not sufficient to deform or split the PLimC 

droplets further. From SEM measurements, an average PLimC droplet diameter of D = 3.6 ± 

3.9 µm (PLA/PLimC = 90/10 w/w) and D = 6.0 ± 6.1 µm (PLA/PLimC = 70/30 w/w) from 

surface fractures can be extracted (Table 2, Figure S3). For the calculation of the droplet size, 

the area of each PLimC droplet was measured using the ImageJ software.[35] Then, assuming 

that droplets are fully spherical particles and the fracture have gone through the middle of each 

droplet, the diameter corresponding to the area was back calculated. Of course, these 

assumptions cannot be 100% fulfilled, hence resulting in the relatively high standard deviations. 

PLimC and PLA can be nicely distinguished based on their Raman spectra (Figure S4), which 

enables the use of Raman imaging for morphological studies. Comparing SEM with Raman 

imaging shows values for the PLimC droplet diameters in the same order of magnitude 

(PLA/PLimC = 90/10 w/w: D = 2.8 ± 3.0 µm, PLA/PLimC = 70/30 w/w: D = 7.1 ± 7.2 µm). 

The corresponding domain size distributions are presented in the Supporting Information 

(Figure S5, Table S2). 

 

 

Figure 15. SEM and Raman imaging of PLA/PLimC blends: A, C) PLA/PLimC = 90/10 w/w; 

B, D) PLA/PLimC = 70/30 w/w. In C, D) the domains coloured in blue represent PLimC 

droplets that are embedded in the PLA matrix (coloured in red). The Raman spectra of each 

component are given in Figure S4. 
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Thermal properties of PLA/PLimC blends (Table 2, Figure 2) were investigated by differential 

scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Comparing the glass 

transition temperatures (Tg) of PLA in PLA/PLimC blend systems with neat PLA shows similar 

values at around 60 °C, as it would be expected from a phase-separated blend. The Tg of PLimC 

(Tg = 128 °C, Figure S6) could not be recognized, because Tg is superimposed with the cold 

crystallization of PLA at Tcc ≈ 120 °C (Figure 2A) and the PLimC fraction is very low, so the 

sensitivity limit of the DSC is reached.  

 

Figure 16. A) DSC second heating and B) cooling traces of PLA/PLimC blends (scanning rate 

10 K∙min-1). C) TGA of PLA/PLimC blends. PLA/PLimC = 100/0 w/w (black); PLA/PLimC = 

90/10 w/w (red); PLA/PLimC = 70/30 w/w (blue); PLA/PLimC = 0/100 w/w (orange). 
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Table 2. PLimC droplet sizes and thermal/mechanical properties of the produced blends. 

 PLimC droplet sizesa) 

SEM/Raman imaging 

Thermalb) 

 

Mechanicalc) 

 

 Domain 

area 

Equivalent 

diameter 

Tg Tcc Tm Tc T5% m br E-modulus 

 [µm2] [µm] [°C] [MPa] [%]  [MPa] 

PLimC 

(neat) 

- - 130 - - - 230 42 ± 0.37 15 ± 4 972 ± 95 

   PLA blends    

PLA 

(neat) 

- - 61 - - - 335 58 ± 3 2.7  

± 0.2 

3520  

± 112 

10 wt% 

PLimC 

10.3 ± 6 / 
6.2 ± 13 

3.6 ± 3.9 / 
2.8 ± 3.0 

 

60 116 170 - n-d. 57 ± 0.3 2.1  
± 0.1 

3454  
± 22 

30 wt% 

PLimC 

28 ± 24 / 

40 ± 14 

6.0 ± 6.1 / 

7.1 ± 7.3 

61 117 172 100 250/

335 

36 ± 1 1.39  

± 0.1 

3050  

± 56 

   PBAT blends    

PBAT 

(neat) 

- - -30 - 122 42 370 36 ± 3.0 1376  
± 103 

92 ± 19 

10 wt% 

PLimC 

1.9 ± 2.4 / 

1.4 ± 1.0 

1.6 ± 1.7 / 

1.3 ± 1.9 

-28 - 128 84 n.d. 17 ± 1.2 659  

± 43 

99 ± 3.0 

30 wt% 

PLimC 

1.0 ± 0.7 /  

0.6 ± 0.5 

1.1 ± 1.8 / 

0.90 ± 1.8  

-28 - 131 89 253/

370 

10 ± 0.19 184  

± 50 

247 ± 12 

   COPE blends    

COPE 

(neat) 

- - -72 - 0.9/ 
197 

-30/ 
122 

377 25 ± 1.5 1013  
± 111 

34.3  
± 5.8 

10 wt% 

PLimC 

0.1 ± 0.1 / 

0.3 ± 0.2 

0.4 ± 1.3/ 

0.6 ± 1.8 

-70 - 4.9/ 

200 

-28/ 

173 

n.d. 21 ± 0.70 930  

± 76 

49.7  

± 5.4 

30 wt% 

PLimC 

1.9 ± 3.8 / 
0.49 ± 0.25 

1.5 ± 1.7 / 
0.8 ± 1.9 

-70 - 5.5/ 
199 

-30/ 
178 

250/
377 

14 ± 1.2 193  
± 44 

146  
± 11 

   PA12 blends    

PA12 

(neat) 

- - 53 - 180 148 420 36 ± 1.0 223 ± 85 1170  

± 37 

10 wt% 

PLimC 

9.8 ± 5.1 / 

0.39 ± 0.29 

3.5 ± 3.8 / 

0.7 ± 1.0 

53 - 179 155 n.d. 32 ± 2.0 11 ± 1.7 1143  

± 50 

30 wt% 

PLimC 

39 ± 23/ 
4.3 ± 3.8 

7.1 ± 7.2/ 
2.3 ± 2.4 

53 - 179 154 250/
420 

19 ± 4.0 1.5 ± 0.3 1580 
± 109 

a) SEM (top values): Average area (µm2) was calculated from min. 100 domains (Table S2).  

Raman (bottom values): Average area (µm2) was calculated from min. 60 domains (PA12 blends ca. 30 domains) 

(Table S2). The given diameters correspond to the area of an equivalent circle. For bimodal distributions only 

the average values for smaller droplets are given, values for larger droplets are presented in Table S2. 
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Interestingly, PLA/PLimC blends show cold crystallization (Tcc ≈ 120 °C) and melting (Tm ≈ 

170 °C) in the second heating runs (Table 2, Figure 2A), whereas pure PLA displays these 

characteristics only in the first heating trace (not shown). In the corresponding cooling traces a 

weak exothermic peak at Tc ≈ 100 °C can be detected (Figure 2B), which can be attributed to 

a partial crystallization of PLA and is also in the same range where cold crystallization (Tcc ≈ 

120 °C) was observed in the second heating traces. This might point to a nucleation effect of 

the PLimC droplets on PLA crystallization, an effect that has also been observed for the matrix 

of the other blend systems studied (see discussion in following sections). Strong nucleation 

effects were also found by Rizzuto et al., who investigated PLA/poly(ε-caprolactone) (PCL) 

blends.[36] TGA shows a distinct two-step degradation, with temperatures at 5% mass loss of 

T5% = 250 °C for PLimC and T5% = 335 °C for PLA, respectively (Figure 2C). Mass loss at 

each stage correlates with the weight percentages of the respective polymers in the blend. In 

PLA/PLimC blends T5% for PLimC is significantly higher than in neat PLimC (T5% = 230 °C), 

whereas the T5% of the PLA matrix is hardly influenced (Table 2). Here, the assumption is that 

the PLA matrix protects the encapsulated PLimC, resulting in an increased thermal stability of 

the dispersed PLimC phase. The E-modulus of heterogenous blends with a dispersed droplet 

morphology can be estimated by the well-established series model (E-1 = Φ1/E1 + Φ2/E2, Φi = 

volume fraction of blend components), which describes the lower limit of the modulus, and the 

parallel model (E = Φ1E1 + Φ2E2), describing the upper limit, respectively.[37] Representative 

stress-strain curves for neat PLA and PLA/PLimC blends are shown in Figure 3A. The results 

from tensile testing show that the E-moduli are more predictable using the parallel model than 

the series model, but still higher than the parallel model would suggest (Figure 3B, Table 2). 

Tensile strength (m = 36 ± 1 MPa) and elongation at break (br = 2.7 ± 0.2 %) were slightly 

decreased by the addition of PLimC, but still acceptable in comparison to neat PLA. 
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Figure 17. A) Representative stress-strain curves for neat PLA (black) and PLA/PLimC blends 

(PLA/PLimC = 90/10 w/w (red), PLA/PLimC = 70/30 w/w (blue). B) E-moduli of PLA/PLimC 

blends (solid) in dependence of the volume fraction of PLimC and estimated E-moduli of the 

blends employing the series (dashed) and parallel (dotted) model, respectively. 

 

A possible reason for the comparably hight E-moduli of the blends could be transesterification, 

which occurred during the blending process and increased the adhesion between PLimC and 

PLA. Gel permeation chromatography (GPC) of the produced blends showed on the one hand 

a significant broadening with a shift of the molar mass distribution towards both smaller and 

higher molar masses (especially in the blend with 30 wt% PLimC) in comparison to the GPCs 

of the pure blend components (Figure S7). This indicates transesterification reactions and, thus, 

the formation of block-type copolymer structures during melt processing. Similar results were 

found by Wacharawichanant et al., who investigated PLA/poly(ethylene-co-methyl acrylate) 

(EMAC)/clay blends.[38] The E-modulus of PLA/EMAC blends increased significantly by the 

addition of clay, whereas tensile strength was slightly decreased. An increased adhesion 

between PLA and EMAC due to the clay was suggested as an explanation. 
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2.3 Blends with poly(butylene adipate-co-terephthalate) (PBAT, aliphatic/aromatic 

polyester) 

The produced PBAT/PLimC blends show opaque strands after processing, which points again 

to phase-separated, immiscible blends (Figure S8), which is confirmed by morphological 

studies. SEM and Raman imaging show the presence of dispersed PLimC droplets with a 

bimodal size distribution, consisting of small PLimC droplets in the µm-range and significantly 

larger PLimC domains with diameters of D > 10 µm (Figure 4, S10). The respective histograms 

for PLimC droplet size distributions are given in Figure S9. For the smaller PLimC droplets 

average diameters of D = 1.6 ± 1.7 µm (from SEM) and D = 1.3 ± 1.9 µm (from Raman imaging) 

were determined for the PBAT/PLimC = 90/10 w/w blend, and D = 1.1 ± 1.8 µm (from SEM) 

and D = 0.9 ± 1.8 µm (from Raman imaging) for the PBAT/PLimC = 70/30 w/w blend, 

respectively (Table 2). The bimodal size distribution of PLimC droplets can be explained by 

the high melt viscosity contrast between both polymers (PLimC: η0 = 890 kPa‧s,[25] PBAT: η0 = 

2.7 kPa‧s[29]) in combination with the significantly stronger incompatibility (difference in 

solubility parameters PBAT:   =  22.3 MPa1/2 [28], PLimC:   = 17.6 MPa1/2 [14]) between 

PBAT/PLimC with respect to PLA/PLimC (Table 1). Consequently, the shear forces during 

compounding are not high enough to break up the PLimC droplets effectively, resulting in the 

observed bimodal size distribution.  
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Figure 18. SEM (PLimC appears bright) and Raman imaging (PLimC domains are coloured in 

blue) of PBAT/PLimC blends: A, C) PBAT/PLimC = 90/10 w/w, B, D) PBAT/PLimC = 70/30 

w/w. The corresponding Raman spectra of each component are given in Figure S4. 

 

The observed phase separation is also reflected in the thermal properties of the blends (Figure 

5A, B, Table 2), showing a glass transition temperature for the PBAT matrix of Tg = - 28 °C, 

being almost identical to that of neat PBAT (Tg = - 30 °C). The Tg of pure PLimC is 128 °C 

(Figure S6) and is hidden underneath the melting transition of PBAT. The crystallization 

temperature of neat PBAT (Tc = 42 °C) is increased significantly in PBAT/PLimC blends (~ Tc 

= 84 °C). The same behaviour was observed for PLA/PLimC blends and might be attributed to 

a nucleating effect of the interface between PLimC and the matrix polymer. TGA also reveals 

an increased stability of PLimC (T5% = 253 °C) in the PBAT matrix, like it was observed for 

PLA/PLimC blends (Figure S11).  



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

125 | P a g e  
 

 

Figure 19. A) DSC second heating and B) cooling traces (scanning rate 10 K∙min-1), and C) 

representative stress-strain curves for neat PBAT (black) and PBAT/PLimC blends 

(PBAT/PLimC = 90/10 w/w (red), PBAT/PLimC = 70/30 w/w (blue)). D) E-moduli of 

PBAT/PLimC blends (solid) in dependence of the volume fraction of PLimC. Estimated E-

moduli of the blends employing the series (dashed) and parallel (dotted) model, respectively. 

 

Focusing on the mechanical properties of PBAT/PLimC blends, the influence of PLimC on the 

E-modulus is most pronounced (Figure 5C, D, Table 2). Blending PBAT with 30 wt% PLimC 

increases the E-modulus about three times from E = 92 ± 19 MPa for neat PBAT to E = 247 ± 

12 MPa for the blend. At the same time, elongation at break is decreased, but still shows 

reasonably high values of br ≈ 200 %. This combination of an increased E-modulus with high 

elongation at break makes PBAT/PLimC blends interesting for applications, despite their 

inhomogeneous blend morphology with a bimodal PLimC droplet distribution. In general, the 

E-moduli of the blends are close to the prediction from the series model (Figure 5D). This is 

reasonable, because the E-modulus of the PBAT matrix is substantially lower compared to that 

of the dispersed PLimC phase and due to the incompatibility of the blend partners the interfacial 

interactions are expected to be rather weak.  
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2.4 Blends with Arnitel EM400 (copoly(ether ester), COPE) 

Arnitel EM400 is a copoly(ether ester) with PBT hard segments and PTHF soft segments 

(PBT/PTHF = 40/60 w/w), which shows similarities in structure to PBAT and of all investigated 

polymers its solubility parameter is closest to that of PLimC (Table 1). SEM and Raman 

imaging clearly show that the produced COPE/PLimC blends (optical photographs in Figure 

S12) are phase-separated with a bimodal distribution of PLimC domains dispersed in the COPE 

matrix, e.g., similar to the morphology observed for the PBAT/PLimC blends. This is quite 

reasonable, because COPE and PBAT have similarities in structure. The small PLimC domains 

are finely distributed over the whole COPE matrix, showing average diameters of D = 0.4 ± 1.3 

µm (COPE/PLimC = 90/10 w/w) and D = 1.5 ± 1.7 µm (COPE/PLimC = 70/30 w/w) as 

determined by SEM (Figure 6, Figure S13, S14). It is noted that PLimC droplet size of the 

COPE blend with 10 wt% PLimC is smaller compared to that of the respective PBAT/PLimC 

blend, which might be attributed to the higher compatibility (smaller difference in solubility 

parameters). Raman imaging confirms the measured values with an average size of D = 0.6 ± 

1.8 µm (COPE/PLimC = 90/10 w/w) and D = 0.8 ± 1.9 µm (COPE/PLimC = 70/30 w/w). The 

larger PLimC domains show sizes of D ≈ 10 µm, being slightly lower compared to that in 

PBAT/PLimC blends. Despite the better compatibility of COPE and PLimC a bimodal size 

distribution can be found. This is due to the greater viscosity contrast between PLimC and 

COPE (Table 1).  
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Figure 20. SEM (PLimC appears bright) and Raman imaging (PLimC domains are coloured in 

blue) of COPE/PLimC blends: A, C) COPE/PLimC = 90/10 w/w, B, D) COPE/PLimC = 70/30 

w/w. The corresponding Raman spectra of each component are given in Figure S4. 

 

The investigation of thermal properties of neat COPE and COPE/PLimC blends revealed 

similar glass transition temperatures for the PTHF soft segment (Tg ≈ -70 °C) (Figure 7A). The 

influence of PLimC on Tc and Tm of the PTHF soft segment was negligible, whereas Tc of the 

PBT hard segment (Tc ≈ 175 °C) was significantly increased in comparison to neat COPE (Tc 

≈ 122 °C) (Figure 7B, Table 2). This might again be attributed to a nucleation effect of the 

COPE/PLimC domain interface. In line with the TGA results of the above discussed blends 

PLimC showed an increased temperature stability (T5% = 253 °C) in COPE/PLimC blends 

(Figure S15).  
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Figure 21. A) DSC second heating and B) cooling traces of COPE/PLimC blends (scanning 

rate 10 K∙min-1). C) Representative stress-strain curves for neat COPE (black) and 

COPE/PLimC blends (COPE/PLimC = 90/10 w/w (red); COPE/PLimC = 70/30 w/w (blue). D) 

E-moduli of COPE/PLimC blends (solid) in dependence of the volume fraction of PLimC. 

Estimated E-moduli of the blends employing the series (dashed) and parallel (dotted) model, 

respectively. 

 

Due to similarities in structure of PBAT and COPE and the respective blend morphologies 

comparable mechanical properties were observed (Figure 7C, D, Table 2). The E-modulus 

showed a fourfold increase from E = 34 ± 5.8 MPa for neat COPE to E = 146 ± 11 MPa for the 

COPE/PLimC = 70/30 w/w blend, while the elongation at break decreased but still stayed in an 

acceptable range for applications (br ≈ 200 %). The E-moduli of the blends are closer to the 

values predicted from the series model rather than the parallel model, in analogy to 

PBAT/PLimC blends (Figure 5D). This might be ascribed to the rather high difference in E-

modulus of both homopolymers (Table 2) and a weak interfacial adhesion between the blend 

partners.  
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2.5 Blends with polyamide 12 (PA12, aliphatic polyamide) 

The last explored blend partner, the aliphatic polyamide PA12, shows a fundamentally different 

chemical structure than the above investigated polyesters, so different results for PA12/PLimC 

blends might be expected (optical photographs of the produced blends are displayed in Figure 

S16). Morphology investigations with SEM and Raman imaging revealed a bimodal size 

distribution also for this type of blend system (Figure 8, S17, S18). However, the average 

PLimC domain sizes were significantly higher compared to that of the other blend systems 

studied (Table 2, S2). For PA12 blends with 10 wt% PLimC average PLimC droplet sizes of 

D = 3.5 ± 3.8 µm and D = 11 ± 11 µm were obtained from SEM image evaluation, and D = 7.1 

± 7.2 µm and D = 20 ± 20 µm for the blend with 30 wt% PLimC, respectively. Raman imaging, 

where mostly the small droplets were probed, e.g., the lower size fraction of the bimodal 

distribution, showed PLimC droplets in the same order of magnitude (D = 0.7 ± 1.0 µm for 

PA12/PLimC = 90/10 w/w and D = 2.3 ± 2.4 µm for PA12/PLimC = 70/30 w/w). The 

comparably broad bimodal size distribution in PA12/PLimC blends most likely originates from 

the low melt viscosity of PA12 in combination with its rather high incompatibility (large 

difference in solubility parameters, Table 1) to PLimC. Consequently, the shear forces during 

processing might be not high enough to split the PLimC droplets further, resulting in larger 

PLimC domains. The strongly phase-separated structure of the blends is also manifested in the 

thermal properties, revealing similar glass transition temperatures for PA12 in the PA12/PLimC 

blends with respect to neat PA12 (Tg ≈ 53 °C, Table 2). It is noted that in this case glass 

transition temperatures could only be detected in the first heating run (Figure S19A). The 

crystallization temperature is only slightly increased by 7 °C from Tc = 148 °C for neat PA12 

to Tc = 155 °C for the PA12/PLimC blend with 30 wt% PLimC, whereby the PA12 melting 

temperature is hardly influenced (Figure 9A, B). This indicates that the nucleation effect of the 

PLimC domains, respective the PA12/PLimC interface, is not as strong as in PLA, PBAT or 

COPE blends. TGA analysis also shows the stabilizing effect of the polymer matrix on PLimC 

with an observed increase in T5% (PLimC) by about 20 °C (Figure S19B).  

 



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

130 | P a g e  
 

 

Figure 22. SEM (PLimC appears bright) and Raman imaging (PLimC domains are coloured in 

blue) of PA12/PLimC blends. A, C) PA12/PLimC = 90/10 w/w, B, D) PA12/PLimC = 70/30 

w/w. The corresponding Raman spectra of each component are given in Figure S4. 
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Figure 23. A) DSC second heating and B) cooling traces of PA12/PLimC blends (scanning rate 

10 K∙min-1). C) Representative stress-strain curves for neat PA12 (black) and PA12/PLimC 

blends (PA12/PLimC = 90/10 w/w (red); PA12PLimC = 70/30 w/w (blue).  

 

As the E-moduli of both blend components (PA12 and PLimC) are quite similar (~ 1000 MPa), 

no significant effect of composition on the E-modulus of the blends is expected and also 

predicted by both the series and parallel model (Figure S19C). The observed deviation in the 

E-modulus of the PA12/PLimC = 70/30 w/w blend, which showed a much higher value than 

predicted, can be attributed to the very inhomogeneous blend morphology giving rise to a very 

high standard deviation for this blend composition. The stress-strain traces presented in Figure 

9C clearly show that the addition of PLimC has a detrimental effect on the elongation at break, 

which was drastically reduced down to br ≈ 2% for the PA12/PLimC = 70/30 w/w blend. This 

in turn makes this blend system rather unattractive for applications. 
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3. EXPERIMANTAL SECTION 

3.1 Materials and blend processing 

The used PLimC (Mn = 65 kDa, Đ = 1.09) was synthesized according to literature procedures.[6] 

In general, the blends were produced as follows. Polymers were pre-dried at 0.1 mbar and 80 °C 

for 16 h.  In a double screw compounder (DSM Micro 15cc Twin Screw Compounder, 

Company: Xplore) 8 g - 14 g polymer were processed to form binary blends. Blending was 

performed at 50 rpm for 4 min. PLimC was used as minority blend component with contents of 

10 wt% and 30 wt%. The neat blending partners (matrix polymers) were also processed as a 

reference. Specifications of the employed matrix polymers and the processing parameters, like 

rotational speed or processing time can be found in Table 1. The solubility parameter of Arnitel 

EM400 was calculated from the composition of the copoly(ether ester): PBT/PTHF 40/60 w/w 

(PBT 22.7[30], PTHF 16.8[30]).  

 

3.2 Methods  

Scanning electron microscopy (SEM) images were taken with a Zeiss LEO 1530 (FE-SEM with 

Schottky-field-emission cathode and In-lens detector) using an accelerating voltage of 3-10 kV. 

Small fragments of the samples were mounted on a standard sample holder by conductive 

adhesion graphite-pad (Plano) for SEM examination. For cyro-microtomy of polymer blends a 

Leica EM VC7 microtome was used. The ultrathin sections were treated with OsO4 vapour 

overnight in order to selectively stain the PLimC domains (appear bright in the SEM 

micrographs). SEM was performed on microtome cuts and as well on the surface of small 

sample fragments.  

The average domain sizes were determined by measuring at least 100 (SEM) and 30 (Raman 

imaging) particles using ImageJ software (1.52a).[35] Detailed overview over all analysed 

particles can be found in the supporting information. For the calculation of the particle 

diameters, the area of each PLimC domain was measured using the ImageJ software. Then, 

assuming that droplets are fully spherical particles and the cuts have gone through the middle 

of each droplet, the diameter corresponding to the area was back calculated. Of course, these 

assumptions cannot be 100% fulfilled, hence resulting in the relatively large standard 

deviations. 
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Differential scanning calorimetry (DSC) was performed on a Netzsch 204 F1 Phoenix using a 

scanning rate of 10 K∙min -1 under N2 atmosphere. Glass transition temperature (Tg), cold 

crystallization temperature (Tcc), melting temperature (Tm) and crystallization temperature (Tc) 

were determined from the 2nd heating or cooling traces (scanning rate 10 K‧min- 1 under 

nitrogen) except for PA12, where the 1st heating trace was used. 

Thermogravimetric analysis (TGA) was conducted on a Netzsch TG 209 F1 Libra at a scanning 

rate of 10 K∙min-1 under N2 atmosphere. Temperature at 5% weight loss (T5%) was determined 

by TGA measurements at 10 K min-1 under nitrogen. In Table 2, the first value refers to PLimC, 

whereas the second value refers to the matrix polymer. 

For CHCl3-GPC analyses an Agilent 1200 system equipped with a SDV precolumn (particle 

size 5 µm; PSS Mainz), a SDV linear XL column (particle size 5 µm, PSS Mainz) and a 

refractive index detector (Agilent Technologies 1260 Infinity) was used. Toluene (HPLC grade) 

was used as internal standard and CHCl3 (HPLC grade) was used as solvent at a flow rate of 

0.5 mL∙min-1 at room temperature. Calibration was based on narrowly distributed PS standards. 

HFIP-GPC was conducted with an Agilent 1200 system equipped with a SDV precolumn 

(particle size 7 µm; PSS Mainz), a SDV linear XL column (particle size 7 µm, PSS Mainz) and 

a refractive index detector (RI, Gynotek SE-61, Agilent Technologies). Toluene (HPLC grade) 

was used as internal standard. Calibration was done with narrowly distributed poly(methyl 

methacrylate) standards from the company PSS Mainz. HFIP with potassium trifluoroacetate 

(c = 8 g L-1) was used as solvent at a flow rate of 0.5 mL∙min-1 at room temperature. 

For Raman imaging a WITec alpha 300 RA+ imaging system equipped with an UHTS 300 

spectrometer and a back‐illuminated Andor Newton 970 EMCCD (electron multiplying charge-

coupled device) camera was employed. The measurements were conducted with an excitation 

wavelength of λ = 352 nm and a typical integration time of 0.35 s pixel‐1 using a laser power of 

10 mW (100x objective, NA = 0.9, step size 100 nm pixel-1). All spectra were subjected to a 

cosmic ray removal routine and baseline correction using WITec project 5.2. The spatial 

distribution of the components was extracted from the Raman imaging data employing the 

Raman spectra of the neat components (Figure S4), employing the True Component Analysis 

in WITec project 5.2.  

Samples for mechanical testing were prepared from extruded polymer strands, which were 

filled in a metal frame (13 cm × 13 cm) with a thickness of 1.0 mm and hot-pressed for 5 min 

by applying a force of 10 kN. After obtaining the hot-pressed polymer plates, dogbone-shaped 
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specimens were punched for tensile testing according to DIN53504S3A, employing a Coesfeld 

Material punching machine (model 951617).  

A Zwick/Roell Z0.5 tensile tester was used for tensile testing. The pre-load for all blends was 

0.02 MPa. A test speed of 0.5 mm∙min-1 was used to determine the tensile strength (m), 

elongation at break (br) and E-modulus of all blends besides PBAT. For PBAT a test speed of 

40 mm∙min-1 was employed to determine tensile strength and elongation at break, respectively. 

Given values correspond to the average of 3 measurements.   

 

4. CONCLUSION 

In this paper, blends of various commodity polymers with PLimC as minority component (10 

– 30 wt%) were investigated. Blends with PS and PMMA (similar glass transition temperature 

to PLimC) were very brittle and blends with PA12 showed very low elongation at break. The 

most promising results were obtained for blends with polymers exhibiting a similar chemical 

structure to PLimC, e.g., PLA, PBAT and COPE (aliphatic/aromatic polyester). The most 

homogeneous morphology was observed for PLA/PLimC blends, probably due to 

transesterification and formation of PLA/PLimC block-type structures during processing 

(acting as compatibilizers). In terms of mechanical properties PBAT and COPE blends were 

the most promising, as they combine a comparably high E-modulus (to pure PBAT and COPE) 

with reasonably high elongations at break up to 200%.  These results show the potential of 

PLimC for the production of more sustainable polymer blends via blending with petrol- or food-

based polymers, having similar chemical structures compared to PLimC. For the other polymers 

the use of compatibilizers like block copolymers could improve the phase connectivity. Besides, 

the observed increased thermal stability of PLimC in the investigated blends together with the 

nucleation effect of the matrix/PLimC interface for semicrystalline matrix polymers (increase 

in crystallization temperature) can add additional benefits to PLimC blends, resulting for 

example in lower cycle times for PLA/PLimC blends due to improved PLA crystallization. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Poly(methyl methacrylate) (PMMA) and polystyrene (PS) blends 

 

 

 

Figure S24. Digital photographs of the produced PMMA/PLimC and PS/PLimC blends. A) 

PMMA/PLimC = 90/10 w/w; 190 °C, 2 min, 50 rpm. B) PS/PLimC = 90/10 w/w; 180 °C, 2 

min, 50 rpm. 
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Table S3. Mechanical properties of PMMA/PLimC and PS/PLimC blends.*                            

Sample Processing 

temperature  

E-modulus  Tensile strength  Elongation at break  

 [°C] [GPa] [MPa] [%] 

PMMA 190 1.47 ± 0.01 60.17 ± 3.36 5.07 ± 0.42 

PMMA +10 wt% 

PLimC 

190 1.27 ± 0.02 25.65 ± 0.70 2.67 ± 0.26 

PS 180 1.31 ± 0.06 29.80 ± 2.78 2.7 ± 0.33 

PS +10 wt% PLimC 180 1.41 ± 0.07 15.24 ± 3.03 1.47 ± 0.26 

* Samples were processed at the given temperature for 2 min at 50 rpm. A test speed of 5.0 mm∙min- 1 was used 

for tensile tests. 
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Aliphatic polyester (poly(L-lactic acid), PLA) blends 

 

 

 

Figure S25. Digital photograph of the produced PLA/PLimC blends. A) PLA/PLimC = 100/0 

w/w, B) PLA/PLimC = 90/10 w/w, C) PLA/PLimC = 70/30 w/w. All blends were processed 

for 4 min at 190 °C and 50 rpm. 
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Figure S26. SEM images of A, B) PLA/PLimC = 90/10 w/w and C, D) PLA/PLimC = 70/30 

w/w blends in different magnifications. 
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Figure S27. Raman spectra of neat PLimC (black), PLA (red), PBAT (blue), COPE (green) 

and PA12 (pink). 
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Figure S28. Histograms of PLimC domain sizes in PLA/PLimC blends determined by SEM: 

A) PLA/PLimC = 90/10 w/w; B) PLA/PLimC = 70/30 w/w and Raman imaging: C) 

PLA/PLimC = 90/10 w/w; D) PLA/PLimC = 70/30 w/w. 
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Table S4. Average PLimC domain areas and corresponding PLimC droplet sizes for the 

investigated PLimC blends. 

PLimC Average area Average 

diametera 

Domainsb Method 

[µm2] [µm]   

PLA Blends 

10wt%  10.3 ± 5.9 3.6 ± 3.9 102 SEM 

10wt% 6.2 ± 5.4 2.8 ± 3.0 70 Raman 

30wt%  28 ± 24 6.0 ± 6.1 112 SEM 

30wt%  39.5 ± 30.4 7.1 ± 7.3 80 Raman 

PBAT Blendsc 

10wt% 1.9 ± 2.4 1.6 ± 1.7 114 SEM 

10wt%  170 ± 149 15 ±29 40 SEM 

10wt% 1.4 ± 0.9 1.3 ± 1.9 64 Raman 

30wt%  0.9 ± 0.7 1.1 ± 1.8 127 SEM 

30wt%  137 ± 137 13 ± 13 33 SEM 

30wt%  0.6 ± 0.3 0.9 ± 1.8 10 Raman 

COPE Blendsc 

10wt%  0.14 ± 0.05 0.4 ± 1.3 102 SEM 

10wt%  44 ± 26 7.5 ± 10 32 SEM 

10wt%  0.26 ± 0.17 0.6 ± 1.8 112 Raman 

30wt%  1.9 ± 3.8 1.5 ± 1.7 

 
121 SEM 

30wt%  88 ± 56 11 ± 11 32 SEM 

30wt%  0.49 ± 0.24 0.8 ± 1.9 124 Raman 

PA12 Blendsc 

10wt% 9.8 ± 5.1 3.5 ± 3.8 

 
114 SEM 

10wt% 93 ± 67 11 ± 11 40 SEM 

10wt%  0.38 ± 0.28 0.7 ± 1.0 64 Raman 

30wt% 39 ± 23 7.1 ± 7.2 116 SEM 

30wt% 311 ± 366 20 ± 20 30 SEM 

30wt% 4.32 ± 3.76 2.3 ± 2.4 28 Raman 

a Diameter was calculated from the area of an equivalent circle. 

b Number of PLimC domains used for area calculation. 
c Bimodal PLimC droplet distribution, given values from SEM represent average values for the lower and higher 

domain area distributions, respectively. 
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Figure S29. DSC heating trace of neat PLimC (2nd heating, scanning rate: 10 K∙min-1). 
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Figure S30. CHCl3-GPC traces of neat PLA (red), neat PLimC (black), PLA/PLimC = 90/10 

w/w (green) and PLA/PLimC = 70/30 w/w (blue).  Toluene (HPLC grade) was used as internal 

standard and calibration was based on narrowly distributed PS standards. 
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Aliphatic/aromatic polyester (poly(butylene adipate-co-terephthalate), 

PBAT) blends 

 

Figure S31. Digital photographs of the produced PBAT/PLimC blends. A) PBAT/PLimC = 

90/10 w/w, B) PBAT/PLimC = 70/30 w/w. All blends were processed for 4 min at 180 °C and 

50 rpm. 
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Figure S32. Histograms of PLimC domain sizes in PBAT/PLimC blends determined by SEM: 

A) PBAT/PLimC = 90/10 w/w, B) PBAT/PLimC = 70/30 w/w and Raman imaging: C) 

PBAT/PLimC = 90/10 w/w, D) PBAT/PLimC = 70/30 w/w. Smaller PLimC domains are 

depicted in red and larger PLimC domains in black. 
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Figure S33. SEM images of A-D) PBAT/PLimC = 90/10 w/w and E-H) PBAT/PLimC = 

70/30 w/w blends in different magnifications. 
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Figure S34. TGA traces of neat PLimC (blue), neat PBAT (black) and a PBAT/PLimC 70/30 

w/w blend (red), measured under nitrogen at 10 K∙min-1. 
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Copoly(ether ester) (Arnitel EM400, COPE) blends 

 

Figure S35. Digital photographs of the produced COPE/PLimC blends. A) COPE/PLimC = 

90/10 w/w, B) COPE/PLimC = 70/30 w/w. All blends were processed for 4 min at 200 °C and 

50 rpm. 

 

 

 

 

 

 

 

 

 

 

 



POLY(LIMONENE CARBONATE): COMPOSITES AND COPOLYMERS  
 

154 | P a g e  
 

 

Figure S36. Histograms of PLimC domain sizes in COPE/PLimC blends determined by SEM: 

A) COPE/PLimC = 90/10 w/w, B) COPE/PLimC = 70/30 w/w and Raman imaging: C) 

COPE/PLimC = 90/10 w/w, D) COPE/PLimC = 70/30 w/w. Smaller PLimC domains are 

depicted in red and larger PLimC domains in black. 
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Figure S37. SEM images of A-D) COPE/PLimC = 90/10 w/w and E-H) COPE/PLimC = 

70/30 w/w blends in different magnifications. 
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Figure S38. TGA traces of neat PLimC (blue), neat COPE (black) and a COPE/PLimC 70/30 

w/w blend (red), measured under nitrogen at 10 K∙min-1. 
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Aliphatic polyamide (polyamide 12, PA12) blends 

 

Figure S39. Digital photographs of the produced PA12/PLimC blends. A) PA12/PLimC = 

90/10 w/w, B) PA12/PLimC = 70/30 w/w. All blends were processed for 4 min at 185 °C and 

50 rpm. 
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Figure S40. SEM images of A-D) PA12/PLimC = 90/10 w/w and E-H) PA12/PLimC = 70/30 

w/w blends in different magnifications. 
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Figure S41. Histograms of PLimC domain sizes in PA12/PLimC blends determined by SEM: 

A) PA12/PLimC = 90/10 w/w, B) PA12/PLimC = 70/30 w/w and Raman imaging: C) 

PA12/PLimC = 90/10 w/w, D) PA12/PLimC = 70/30 w/w. Smaller PLimC domains are 

depicted in red and larger PLimC domains in black. 
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Figure S42. A) First heating runs for PA12/PLimC blends, measured under nitrogen at 10 

K∙min-1 (PA12/PLimC = 100/0 w/w (black), PA12/PLimC = 90/10 w/w (red), PA12/PLimC = 

70/30 w/w (blue)). B) TGA comparison of neat PLimC (blue), neat PA12 (black) and a 

PA12/PLimC 70/30 w/w blend (red), measured under nitrogen at 10 K∙min-1. C) E-moduli of 

PA12/PLimC blends (solid) in dependence of the volume fraction of PLimC and estimated E-

moduli of the blends employing the series (dashed) and parallel (dotted) model, respectively. 
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ABSTRACT 

Poly(limonene carbonate) (PLimC) is a bio-based, non-food-based polymer produced by 

copolymerization of limonene oxide (LO) with carbon dioxide (CO2). It can be a potential 

candidate for the replacement of toxic state-of-the-art polycarbonates only after improvement 

of its mechanical properties. An elegant way to tune and improve the mechanical properties of 

PLimC lies in copolymerization. For this, we present the basic studies regarding the 

copolymerization behaviour of LO/CO2 with the lactide monomer and its derivatives using a 

catalyst [(BDI)Zn-(µ-OAc)]. The simultaneous copolymerization of LO/CO2 with lactide in 

one pot did not provide a random copolymer. Advanced characterization methods were used to 

study the polymer structure, and it was proved to be a block copolymer (poly(limonene 

carbonate)- block-poly(lactide) (PLimC-b-PLA)) with inhomogeneous macromolecular chain 

compositions. A sequential living ring-opening copolymerization method provided precise 

block copolymers. The mechanical characteristics could be altered by the use of lactide 

derivatives with a low glass transition temperature. The use of lactide with long hexyl alkyl 

chains during sequential copolymerization provided block copolymers with polyester soft 

blocks with a very low glass transition temperature (Tg = −38 °C) showing rubber-like behavior. 

Upscaling of the method, processing and detailed characterization of the mechanical properties 

will be carried out in the future based on the present work. 

 

 

INTRODUCTION 

Sustainability is one of the keywords of our decade. Many types of research show the interest 

in bio-based polymers.1 Poly(limonene carbonate) (PLimC), discovered by Coates et al. when 

he used a µ-bis-diiminato zinc complex catalyst for the polymerization of limonene oxide 

(LO),2 is one of the interesting and potentially useful bio-based polymers.3 It is based on the 

monomer trans-limonene oxide, which can be directly produced by oxidizing naturally 

occurring limonene as the main component from citrus oil. 57 000 t a−1 of citrus oil is collected 

from orange juice production.4 The polymerization method was modified by Hauenstein et al., 

who increased the molecular weight of PLimC to was demonstrated by Kleij et al., who further 

developed the synthesis.7 PLimC features excellent properties when it is cast as a film. High 

optical transparency (99%) and strong tensile strength of 40 MPa are characteristics of PLimC.5 

PLimC can also be modified by thiol click chemistry for adjusting the properties.8 Also, block 

copolymerization with cyclohexane oxide is possible.9 PLimC can also be used as a coating 
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material or as a breathing glass due to its high gas permeability.10 The life cycle assessment of 

limonene and the economic potential of PLimC were shown by several groups.11 Due to the 

economic potential, PLimC offers an interesting perspective for applications as thermoplastic 

polymer. One of the disadvantages of PLimC is its low impact and mechanical properties. 

Recently, the improvement in the mechanical properties of PLimC has been shown by the use 

of additives (e.g., ethyl oleate).12 Although simple to use, the additive approach is 

disadvantageous due to the leaching of the additive with time. Copolymerization is one of the 

oldest methods of polymer property improvement. Depending upon the origin of the 

comonomer (petro-based/bio-based), either complete or partly bio-based copolymers can be 

prepared by this method. Recently, Williams et al. published a study on the modification of 

PLimC using bio-based cyclic ester ε-decalactone as a comonomer to selectively form 

thermoplastic ABA elastomers (A = high Tg polycarbonate, B = low Tg polyester), which can 

improve the mechanical properties of PLimC.13 The synthesis of triblock copolymers required 

two different catalysts to cope with the different reactivities of comonomers in two different 

step ringopening polymerization (ROP) of lactone, chain-end-modification and then ring-

opening copolymerization of limonene oxide (LO) and carbon dioxide (CO2) carried out 

sequentially. Other cyclic diesters, such as lactide and its derivatives, are interesting 

comonomers for property modification as they can provide PLimC copolymer segments with 

different glass transition temperatures and, therefore, different mechanical characteristics 

dependent upon either the stereospecificity or the side chain. Two variants of PLA are well 

known: poly(L-lactide) (PLLA) and poly(D/L-lactide acid) (PDLLA) prepared by ring-opening 

polymerization.14 They are created with different stereospecific monomers of lactide. L,L-

Lactide is a bio-based cyclic ester prepared by the fermentation of plants, such as corn or sugar 

beet pulp.15 PDLLA is an amorphous polymer,15 whereas PLLA shows semi-crystallinity.16 The 

crystallinity of PLLA is advantageous in terms of mechanical properties, but amorphous 

PDLLA shows better biodegradability in aqueous systems. Its derivatives, such as 

dihexyllactide (diHLA), can easily be prepared by a condensation reaction of 2-

hydroxyoctanoic acid.18–20 The starting material heptaldehyde is a bio-based material.17 

Therefore, in the present study, we focused on one-pot and sequential ring-opening 

copolymerization (ROCOP) of LO/CO2 with lactide and its derivative, dihexyllactide (diHLA), 

using a single monozinc catalyst [BDI-Zn-µ-OAc] for the formation of an AB-type block 

copolymer, which complements nicely the recently published work of Williams et al. using a 

two-catalyst system for ABA block copolymer formation.13 We study the details of 

copolymerization, both in one pot by the simultaneous addition of the monomers and by the 
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sequential addition of the monomers without changing the catalyst. Detailed microstructure 

characterization of the polymers, thermal properties and phase-separation behavior of the 

polymers was performed to prove the polymer architecture. 

 

RESULTS AND DISCUSSION 

Terpolymerziation of trans-limonene oxide, (D/L)-lactide and CO2 (one-pot ROCP) First, one-

pot reactions of (D/L)-lactide (DLLA), trans-limonene oxide (LO), and CO2 in the presence of 

a catalyst [(BDI)Zn-(µOAc)] were investigated to clarify the polymer structure in onepot 

reactions (Scheme 1). The feed ratio (LO/DLLA) was varied to explore the polymerization 

behaviour of lactide (DLLA) in the presence of LO (Table S1†). The polymer structure in 

onepot reactions was identified by 1H-NMR spectroscopy (Fig. S1 and S2†). The NMR 

spectrum shows characteristic peaks from both types of repeat units. The peak at 5.06 ppm is 

distinct for the proton close to the carbonate group, marked in the red circle in Fig. S2†, 

originating from the ring opening of LO (r-LO). The multiplet at 5.20 ppm indicates the 

presence of ring-opened DLLA units (r-DLLA) in the copolymer. Determination of LO/LA 

conversion would need CO2 pressure release and repressurizing, which would influence onepot 

reactions due to the highly sensitive reactants and the vulnerable catalytic system, so the 

polymer composition was focused upon. The polymer composition was determined by using 

the peak ratio of these two peaks. For DLLA/LO = 9/91 mol% in the feed, a polymer with the 

composition of 21 mol% r-DLLA and 79 mol% r-LO was identified by 1H-NMR spectroscopy. 

A copolymer prepared from a feed molar ratio of DLLA/LO = 17/83 mol% and a polymer with 

39 mol% r-DLLA and 61 mol% r-LO could be obtained. Increasing the amount of DLLA in the 

feed increased the corresponding r-DLLA in the product. A systematic study by varying the 

feed molar ratio of the two components, DLLA and LO, also revealed that the amount of r-

DLLA in the product was always higher than the amount used in the feed (Table 1, Fig. S2†). 

13C-NMR also reveals the presence of both r-DLLA and r-LO units in the product (Fig. S3†). 
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Scheme 1 (1) PLimC is synthesized by using LO, CO2, and the catalyst [(BDI)Zn-(µ-OAc)]. 

(2) DLLA and LO are reacted to synthesize a PLimC-b-PDLLA block copolymer in a one-pot 

reaction. 

 

GPC measurements reveal high-molecular-weight polymers (∼Mn = 70–80 kDa) for all 

different polymer compositions (Table 1). All copolymer compositions show a small shoulder 

at higher molecular weights (Fig. S4†). This is due to the expected formation of a faster catalytic 

species of [(BDI)Zn-(µ-OAc)] that shows the typical expected GPC of PLimC.15 The 

copolymerization product showed low molar mass dispersity. Thermogravimetric analysis 

(TGA) of copolymers reveals similar degradation steps for all the different copolymer 

compositions (∼T5% = 228 °C) except for polymers with 100 mol% PDLLA (∼T5% = 280 °C) 

(Fig. S5†). Focusing on differential scanning calorimetry (DSC) measurements for 

copolymerization products, all polymers showed two glass transition temperatures (Tg), close 

to the respective Tg values of neat PLimC and PDLLA of around 122 °C and 50 °C, respectively 

(Table 1, Fig. S6†). The observation of two glass transition temperatures would lead to the 

assumption that during the one-pot reaction, either two homopolymers or incompatible PLimC 

and PDLLA block copolymers are formed. 2D NMR spectroscopy provided a way to 

distinguish between the two scenarios: formation of homopolymers or copolymers (Fig. 1). 1H–

1H-NOESY NMR analysis of the copolymer with a feed ratio of DLLA/LO = 34/ 66 mol% 

shows evidence for the formation of copolymers. The methyl group of PDLLA (H14) shows 

cross-peaks with PLimC related groups. In the lower field region, cross-peaks with  
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Table 1 Overview of the synthesized copolymers by one-pot simultaneous polymerization of 

DLLA, LO and CO2 in terms of feed ratio, polymer composition, molecular weight, and thermal 

properties. 

Sample Feed Ratio 

DLLA:LO 

 

Copolymer 

Compositiona 

r-DLLA/r-LO 

Mn
b 

 

Ðb Tg1
c Tg2

c T5%
d 

 

Tmax,1
d 

 

 [mol%] [mol%] [kDa]  [°C] [°C] [°C] [°C] 

1 9/91 21/79 75 1.18 122 - 225 - 

2 17/83 39/61 75 1.18 124 48 235 257 

3 23/77 41/59 77 1.19 123 49 232 260 

4 29/71 54/46 80 1.24 124 50 224 257 

5 34/66 60/40 72 1.26 121 51 222 257 

6 77/23 99/1 45 1.64 - 48 229 254 

7 91/9 100/0 75 1.18 - 46 280 - 

adetermined via integration of characteristic r-LO and r-DLLA protons (CDCl3, 300 MHz) bGPC: Mn and Ð were 

determined by CHCl3-GPC, calibrated with narrowly distributed polystyrene standards. cDSC: Tg was determined 

from the second heating trace (scanning rate 10 K min−1 under N2 atmosphere). dTGA: T5% was determined with a 

heating rate of 10 K min-1 under N2 atmosphere. eTGA: Tmax,1 and Tmax,2 were determined from the 1st derivative of 

the TGA trace. 

characteristic PLimC protons (H5 and H8) can be identified. In the higher field region, cross-

peaks with the PLimC ring system (H1, H2 and H5) can be observed. Also, the methyl group 

(H10) close to the carbonate interacts with the methyl group of the PDLLA block (Fig. 1). The 

observation of cross peaks is a strong hint for the bonding of PLimC and PDLLA units. A 

second experiment was performed to prove the formation of block copolymers. PLimC and 

PDLLA show different solubilities in THF. PLimC is not soluble in THF, whereas PDLLA 

shows good solubility. By using THF and multiple centrifugation steps, it should be possible to 

separate homopolymers from each other. After multiple centrifugation cycles, a 43 wt% THF-

soluble fraction and a 57 wt% THF-insoluble fraction from crude polymers with a feed ratio of 

DLLA/LO = 34/ 66 mol% were obtained. The 1H-NMR analysis (Fig. S7†) of the two fractions 

shows peaks from both r-DLLA and r-LO in both fractions. As expected, the content of r-LO 

was higher in the THF-insoluble fraction (PDLLA/PLimC = 18 : 82 mol%), whereas the THF-

soluble fraction showed more r-DLLA (PDLLA/PLimC = 87 : 13 mol%). DSC analysis (Fig. 

S8†) of the two fractions reveals a glass transition temperature (∼Tg =50 °C) close to that of the 

crude sample, which shows the presence of PDLLA in both fractions. Thermal investigation 

with TGA reveals mainly PLimC-dominated thermal degradation for the THF-insoluble  
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Fig. 1 Two-dimensional 1H–1H-NOESY NMR spectra of copolymers with a feed ratio of 

DLLA/LO = 34 : 66 mol% in CDCl3. (A) High-field region (2.8–1.0 ppm) and (B) low-field 

region (4.4–5.5 ppm). The crosspeaks (marked in blue) are assigned to the corresponding 

protons (marked in black). Cross-peaks of ring-opened LO and DLLA are circled in red and 

highlighted with an arrow. 

fraction, whereas the THF-soluble fraction is mainly dominated by the thermal degradation of 

PDLLA (Fig. S9†). The CHCl3-GPC trace of the THF-insoluble fraction displays a monomodal 

curve with a small shoulder at a higher molecular weight (Fig. S10†). This resembles the 

CHCl3-GPCtraces of the crude sample with a feed ratio of DLLA/LO = 34/66 mol%. The THF-

soluble fraction shows a broad monomodal curve, which shows similarities to the copolymer 

with a nearly 100 mol% PDLLA content. Summarizing the obtained results leads to the 

conclusion that the formation of block copolymers during a one-pot reaction has happened. 

Using the knowledge of all experiments and the fact that the copolymer composition always 
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shows r-LO less in the copolymers compared to the feed, the presence of different types of 

copolymer chains with long and short sequences of PLimC can be confirmed in the product 

(Fig. 2). For the terpolymerization of (rac)- β-butyrolactone (BBL), cyclohexene oxide (CHO), 

and carbon dioxide utilizing a Lewis acid BDICF3-Zn-N(SiMe3)2 catalyst, the tendency of 

polycarbonate formation by the reaction of an epoxide with CO2 over polyester formation was 

shown by Kernbichl et al.21 In our case, most probably, the polymerization started by the ring 

opening of LO and its copolymerization with CO2 for the formation of PLimC. As we used an 

excess of CO2, it would lead to a carbonato chain end by the insertion of CO2 into the Zn–O 

bond. Carbonato chain-ends, although weak like alkali carboxylate, can start ROP of lactide, as 

demonstrated by Kernbichl et al.21 

 

 

Fig. 2 Schematic illustration of the mechanism of a one-pot ring-opening copolymerization of 

LA and LO. 

 

In our case, most probably, the polymerization started by the ring opening of LO and its 

copolymerization with CO2 for the formation of PLimC. As we used an excess of CO2, it would 

lead to a carbonato chain end by the insertion of CO2 into the Zn–O bond. Carbonato chain-

ends, although weak like alkali carboxylate, can start ROP of lactide, as demonstrated by 

Kernbichl et al.21 Once lactide starts polymerizing, it seems that the Zn–O–CH(CH3)– chain-

end does not support ring opening of LO.5 Furthermore, the morphology of the copolymers was 

studied by transmission electron microscopy (TEM). According to the difference in their 

structures, PLimC and PDLLA should show incompatibility, and so microphase separation is 

expected for PLimC/PDLLA block copolymers. To address and emphasize the incompatibility 

of PLimC and PDLLA blocks, the Hansen solubility parameters (δ) of both blocks employing 

the group contribution method of Hoftyzer–van Krevelen (HVK)22 were used, which resulted 

in δ = 17.6 MPa1/2 for PLimC and δ = 20.7 MPa1/2 for PDLLA. For morphological investigation, 
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we chose PLimC-b-PDLLA block copolymers with a composition of PDLLA/PLimC = 41/59 

mol% and PDLLA/PLimC = 54/46 mol% because with a more symmetric composition, a 

lamellar morphology is predicted by the theoretical phase diagram23 and mean-field theory.24 

The TEM samples were prepared by slowly casting thin films (thickness ca. 1 mm) of the 

copolymers from dichloromethane over 6 days, followed by vacuum drying at room 

temperature for 1 day. PLimC was selectively stained with OsO4 vapor so that PDLLA (not 

stained by OsO4) appeared bright in the dark, showing a PLimC matrix. Analysis of the TEM 

samples shows a mixture of spherical, cylindrical, hexagonally perforated lamellar structures 

and lamellar morphologies (Fig. 3, Fig. S11–S14†). To avoid the influence of the sample 

preparation, the samples were annealed to 140 °C for 3 days under nitrogen and measured again 

to verify a stable morphology. Crystallization of the lactide part can be excluded due to the use 

of PDLLA, which is amorphous and shows no melting/crystallization peaks in DSC (Fig. S6†). 

A mixture of different morphologies appears because different block copolymers of PLimC and 

PDLLA with different chain lengths are formed. With an increasing volume fraction of PDLLA 

(fPLA), the morphology changes from a spherical to a lamellar morphology. This indicates the 

formation of block copolymers during a one-pot reaction with different chain lengths. 

Investigation of samples with a feed ratio with a higher amount of DLLA (PDLLA/PLimC = 

60/40 mol%) also shows spherical, cylindrical, and lamellar morphologies and confirms the 

formation of block copolymers (Fig. S14†). 
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Fig. 3 TEM micrographs of PLimC-b-PDLLA block copolymers (PLimC/ PDLLA = 59/41 

mol%). The different morphologies are magnified and highlighted in color. PLimC is 

selectively stained with OsO4 vapor. 

 

Sequential terpolymerziation of trans-limonene oxide, (L)- lactide and CO2  

To confirm the reactivity of chain-ends as observed during terpolymerization above in one pot, 

sequential living ringopening copolymerization (ROCOP) of LO, CO2 and (L)-lactide (LLA) 

was investigated (Scheme 2). First, LO was copolymerized with CO2 in toluene to produce a 

block of PLimC. Afterward, (L)-lactide in toluene was added to produce the polymer, as 

investigated by 1H-NMR, and the corresponding second block of poly(L-lactide acid) (PLLA). 

The obtained protons for PLimC and PLLA could be identified (Fig. 4). The characteristic 

quartet for PLLA is located at 5.17 ppm. 13C-NMR spectroscopy also reveals the formation of 

PLimC and PLLA units in the copolymers (Fig. S15†). These experiments showed that block 

copolymerization of lactide is possible in sequential living ROCOP. GPC analysis of the 

obtained polymers showed high molecular-weight copolymers with ∼Mn = 50.000 Da (Fig. 

S16†). Thermal analysis with DSC reveals two glass transition temperatures as expected for 

block copolymers: PLimC: (Tg = 121 °C) and PLLA: (Tg = 56 °C) (Fig. S17†). A melting peak 

of PLLA can also be identified at Tm = 173 °C. TGA analysis (Fig. S18†) of PLimC/PLLA 

copolymers synthesized by a sequential approach shows a similar decomposition temperature 
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to that observed for PLimC/PDLLA copolymers (∼T5% = 225 °C). The first derivative of the 

TGA trace shows two maxima (∼T5% = 228 °C) besides the polymer with 100 mol% PDLLA 

(∼T5% = 280 °C). The first derivative of the TGA trace shows one maximum that can be 

identified as the decomposition of PLimC (∼Tmax,1 = 257 °C). TEM analysis of PLimC-b-PLLA 

block copolymers reveals a spherical morphology for this block copolymer composition (Fig. 

S19†). This is expected because the content of PLLA (PLLA/PLimC = 29/71 mol%) in the 

block copolymer is lower in comparison with that in PLimC-b-PDLLA block copolymers. The 

sequential polymerization experiment also confirms the mechanism of formation of block 

copolymers in situ in one pot as described in the previous section. 

 

Scheme 1 LLA and LO are reacted to synthesize a PLimC-b-PLLA block copolymer in a 

sequential ring-opening copolymerization. 
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Fig. 4 1H-NMR (300 MHz) of PLimC-b-PLLA block copolymer with PLimC/PLLA = 71/29 

mol% in CDCl3.  

 

Terpolymerziation of trans-limonene oxide, hexyl-substituted lactide and CO2 (sequential 

ROCP)  

The studies were extended to the copolymerization of LO/CO2 with other substituted bio-based 

cyclic esters, such as dihexylsubstituted lactide (diHLA). This served two purposes: first, the 

universality of the reaction of the growing PLimC chains with cyclic esters is confirmed, and 

second, the copolymers with different thermal transitions and physical characteristics could be 

generated. PLimC’s mechanical properties in terms of elongation at break or the impact strength 

can be improved.21 Bio-based additives (e.g.,, ethyl oleate)21 could be used to overcome these 

limitations, though leaching or aging of plasticizers can occur. A way to improve the 

mechanical properties of PLimC without the use of additives or plasticizers would be 

copolymerization, which was investigated by Williams et al. by forming ABA-type block 

copolymers.13 The use of diHLA is expected to provide block copolymers with an incompatible 

high-Tg block of PLimC and low-Tg block of polyester made by ROP of diHLA, improving the 

brittle characteristics. We synthesized dihexyl-substituted lactide (diHLA) according to a 
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procedure of Trimaille et al.17–19 (Scheme 3). The monomer structure was confirmed by 1H-

NMR spectroscopy (Fig. S20†). The copolymerization was carried out by first preparing the 

PLimC block followed by the polymerization of diHLA in a sequential manner. Two different 

copolymerizations were carried out by changing the feed ratios (Table S2†). 1H-NMR 

spectroscopy shows the characteristic peaks originating from both PLimC and PdiHLA (Fig. 5, 

Fig. S21 and S22†). The molecular weight (∼Mn = 35.000 Da) and polydispersity (∼Đ = 1.3) 

are comparable to PLimC-b-PLLA block copolymers (Fig. S23†). Since the GPC curves were 

not unimodal, it is not appropriate to determine Mn or Đ from these curves, but despite the 

nonunimodility and low molar mass, dispersity is indicative of the control over polymerization. 

The copolymer with PLimC/diHLA = 62/38 mol% showed two glass transition temperatures: 

the soft block from polyester at −39 °C and the hard PLimC block at 106 °C (Fig. S24†). The 

decomposition of PLimC-b-PdiHLA copolymers occurs in the same temperature region as that 

of PLimC-b-PLA copolymers (∼T5% = 225 °C). The decomposition temperatures of PLimC 

and PdiHLA (Tmax,1 = 254 °C and Tmax,2 = 300 °C) are analogous to those of PLimC-b-PLA 

copolymers (Fig. S25†). The rubber-like properties and transparency were obtained from 

PLimC-b-PdiHLA block copolymers (Fig. 6). By using block copolymerization of bio-based 

and biodegradable PdiHLA, the mechanical properties of PLimC can be influenced. Also, the 

formation of PdiHLA-PLimC-PdiHLA triblocks seems possible with ROCP. This would also 

allow the synthesis of bio-based thermoplastic elastomers in the future with detailed 

characterization of the physical properties. 

 

Scheme 3 (1) Synthesis of diHLA via condensation reactions starting from 2-hydroxyoctanoic 

acid. (2) Synthesis of poly(limonene carbonate)-block-poly(diHLA). 
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Fig. 5 1H-NMR (300 MHz) spectra of the PLimC-b-PdiHLA block copolymer 

(PLimC/PdiHLA = 50/50 mol%) in CDCl3. 

 

 

Fig. 6 A) PLimC-b-PdiHLA block copolymer (PLimC/PdiHLA/ = 62/38 mol%).  B) PLimC-

b-PdiHLA block copolymer (PLimC/PdiHLA = 29/71 mol%). C) PLimC-b-PdiHLA block 

copolymer (PLimC/PdiHLA = 50/50 mol%). 
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CONCLUSION 

In this work, we demonstrated the living ring-opening copolymerization of lactides, trans-

limonene oxide, and CO2 using a catalyst [(BDI)Zn-(µ-OAc)] to synthesize poly(limonene 

carbonate)-block-poly(lactide) copolymers. Copolymerization studies were carried out by both 

simultaneous and sequential additions of monomers. We investigated the one-pot reaction of 

(D/L)-lactide and trans-limonene oxide and studied the morphology with TEM. We showed that 

block copolymers form in one-pot reactions of trans-limonene and cyclic diesters (e.g., lactide). 

The sequential living ring-opening copolymerization of trans-limonene and (L)-lactide was also 

explored and demonstrated. Additionally, we used living ring-opening copolymerization to gain 

access to poly(limonene carbonate)-block-polyesters with promising rubber-like properties by 

the use of dihexyl-substituted lactides. The use of bio-based and biodegradable polymers is 

unavoidable for a sustainable future in terms of packaging or even everyday applications. 

Poly(limonene carbonate) and polylactide as bio-based materials can contribute to a “greener” 

future, and so, their modification and improvement are essential. With living ring-opening 

copolymerization of trans-limonene and cyclic diesters (e.g.,, lactides), we showed an elegant 

way to modify and tune the properties of poly(limonene carbonate), which would help to make 

poly(limonene carbonate) more relevant for everyday applications. Future studies will be 

devoted towards mechanical and biodegradation characterization. 

 

EXPERIMENTAL 

Materials and methods 

All reactions were carried out under an inert atmosphere (N2 and Ar). The monomer trans-

limonene oxide and the catalyst [(BDI)Zn-(µ-OAc)] were synthesized according to the 

literature procedure.5 D,L-Lactide and L-lactide were purchased from Sigma-Aldrich and 

recrystallized from EtOAc. A procedure of Trimaille et al. was used to synthesize dihexyl-

substituted lactides.18–20 2-Hydroxyoctanoic acid, p-toluenesulfonic acid, and 2-bromoacetyl 

bromide were obtained from TCI. Solvents were obtained from Carl Roth and purified with 

rotary evaporation. THF, triethylamine, and toluene were dried and distilled before use for 

synthesis or polymerization. Differential scanning calorimetry (DSC) was performed with a 

DSC 204 F1 Phoenix system (Netzsch) with a heating rate of 10 K min−1 under a N2 atmosphere. 

For thermogravimetric measurements, a TGA instrument (TG 209 F1 Libra) from Netzsch was 

used at a heating rate of 10 K min−1 under a N2 atmosphere. For CHCl3-GPC analyses of 

polymers, an Agilent 1200 system equipped with an SDV precolumn (particle size 5 µm; PSS 
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Mainz), an SDV linear XL column (particle size 5 µm, PSS Mainz) and a refractive index 

detector (Agilent Technologies 1260 Infinity) was used. Toluene (HPLC grade) was used as an 

internal standard. CHCl3 (HPLC grade) was used as a solvent at a flow rate of 0.5 mL min−1 at 

room temperature. NMR spectra were recorded on a Bruker Avance 300 NMR system operating 

at 300 MHz/75 MHz frequency at RT using deuterated chloroform (CDCl3) as a solvent. 

Chemical shifts δ are indicated in parts per million (ppm) with respect to residual solvent 

signals. TEM measurements were performed with a Zeiss CEM902 (Zeiss Microscopy, 

Jena/Oberkochen, Germany) energy-filtering transmission electron microscope (EFTEM) 

operating at an acceleration voltage of 80 kV. For cryomicrotomy of block copolymers, a Leica 

EM VC7 microtome was used. The ultrathin sections were stained using OsO4. A steel 

autoclave (miniclave steel Typ 3) from Büchi was used for the polymerizations. Megafuge 16R 

from Heraeus was used for centrifugation. 

Synthesis of poly(limonene carbonate-block-poly((D/L)-lactide)) (one-pot ROCP)  

The following procedure should be a general procedure for the synthesis of poly(limonene 

carbonate-block-poly((D/L)-lactide) in a one-pot reaction. An oven-dried steel autoclave with 

a stirring bar was used for the polymerization reactions. In a glovebox, the catalyst [(BDI)Zn-

(µ-OAc)] (24.2 mg, 51.9 µmol) was added to a steel autoclave. Additionally, D,L-lactide (Table 

S1†) was added to the autoclave. Following this, trans-limonene oxide (3 ml) was added. In a 

procedure in which the amount of LA exceeds the 1 : 1 ratio, dried THF was used to dissolve 

the LA completely. Consequently, the autoclave was pressurized with CO2 (25 bar), and the 

reaction mixture was stirred for 24 h. The resulting mixture was dissolved in dichloromethane 

(60 ml) and precipitated in MeOH (600 ml). To purify the resulting polymer, the polymer was 

dissolved again in dichloromethane and precipitated again in MeOH. Afterward, the polymer 

was dried in a vacuum for 24 h. 

 

Synthesis of poly(limonene carbonate)-block-poly(L-lactide) (sequential ROCP)  

The following procedure should be a general procedure for the synthesis of poly(limonene 

carbonate)-block-poly(L-lactide) and poly(limonene carbonate)-block-poly(diHLA) in a 

sequential ROCP. An oven-dried steel autoclave with a stirring bar was used for the 

polymerization reactions. In a glovebox, the catalyst [(BDI)Zn-(µ-OAc)] (19.1 mg, 40.96 µmol) 

was added to a steel autoclave. Following this, trans-limonene oxide (3 ml) was added in 15 ml 

of toluene to the steel autoclave. Consequently, the autoclave was pressurized with CO2 (25 

bar), and the reaction mixture was stirred for 24 h. Subsequently, 650 mg of L-lactide/diHLA 
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in toluene (15 ml) was added to the autoclave under an inert atmosphere (Table S2†). Afterward, 

the reaction mixture was again pressurized with CO2 (25 bar) and then stirred for 24 h. The 

resulting mixture was dissolved in dichloromethane (60 ml) and precipitated in MeOH (600 

ml). To purify the resulting polymer, the polymer was dissolved again in dichloromethane and 

precipitated in MeOH again. Afterward, the polymer was dried in a vacuum for 24 h. 

 

Polymer fractionation  

For the fractionation of polymers, 1 g of the block copolymer mixture with a feed ratio of 

DLLA/LO = 34 : 66 mol% was dissolved in THF (150 mL). The obtained dispersion was stirred 

for 5 d at RT. Afterwards, it was centrifuged (10.000 min−1) for 30 min at RT. The overhanging 

solution was decanted, and the remaining solid was dissolved again in THF. The procedure was 

repeated three times. The THF-soluble and the THF-insoluble fractions were dried in a vacuum 

for 24 h before characterization. 
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Terpolymerziation of trans-limonene-oxide, (D/L)-lactide and CO2 (One Pot 

ROCP) 

 

 
Table S5. Experimental details of one-pot simultaneous polymerization of DLLA, LO and CO2 

using [(BDI)Zn-(µ-OAc)] catalyst. 

Lactide Feed 

ratio 

Polymer 

composition 

Lactide LO Catalyst THF/ 

Toluene 

Yield Yield 

 DLLA/

LO 

r-DLLA 

/r-LO 

m n V n m 

 

   

 mol% mol% mg mmol mL mmol mg % % g 

           

D/L 9/91 21/79 264 1.8 3.0 18 24 - 75  2.76 

D/L 17/83 39/61 538 3.7 3.0 18 24 - 76  2.90 

D/L 23/77 41/59 792 5.5 3.0 18 24 - 79  3.90 

D/L 29/71 54/46 1055 7.3 3.0 18 24 - 82  3.33 

D/L 34/66 60/40 1318 9.1 3.0 18 24 - 82  3.42 

D/L 77/23 99/1 1318 9.1 0.44 2.7 24 12 56 0.66 

D/L 91/9 100/0 1318 9.1 0.15 0.9 24 12 7  0.06  

L 20/80 29/71 650 4.5 3.0 18 19 30 72  2.77 
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Fig. S43 1H-NMR (300 MHz) of copolymer prepared from DLLA:LO = 29/71 mol% (entry 4, 

Table 1) in the feed,  measured in CDCl3. 
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Fig. S2 1H-NMR (300 MHz) spectra of copolymer prepared from different molar ratio of DLLA 

and LO-CO2 in the feed (Table 1), measured in CDCl3. 

 
1H-NMR (300 MHz, CDCl3): δ = 5.15-5.28 (m, 1H, C(13)-H), 5.06 (s, 1H, C(5)-H), 4.71-4.75 

(d, J = 9 Hz, C(8)-H2), 2.21-2.43 (m, 2H, C(1)-H2), 1.86-1.91 (m, 2H, C(4)-H2), 1.75-1.76 (m, 

1H, C(3)-H), 1.69-1.73 (m, 3H, C(10)-H3), 1.56-1.65 (m, 3H, C(14)-H3), 1.50-1.52 (m, 3H, 

C(9)-H3), 1.34-1.44 (m, 2H, C(2)-H2) ppm. 
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Fig. S3 13C-NMR spectra (CDCl3, 75 MHz) of copolymers of DLLA and LO-CO2 with different 

feed ratios. 

 
13C-NMR (300 MHz, CDCl3): δ = 169.13 (C12), 151.92 (C11), 148.63 (C8), 109.3 (C7), 81.83 

(C6), 75.32 (C5), 68.98 (C13), 37.43 (C3), 30.96 (C1), 21.54 (C4), 20.84 (C2), 20.65 (C10),  

20.59 (C9), 16.07 (C14) ppm. 
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Fig. S4 CHCl3-GPC traces of copolymers of DLLA and LO-CO2 with different feed ratios. 

Molecular weight (Mn) and dispersity (Ð) were determined from these curves cannot be taken 

precisely due to the non-unimodal nature of the curves. DLLA:LO = 9/91  mol% (black), 

DLLA:LO = 17/83  mol% (red), DLLA:LO = 23/77 mol% (blue), DLLA:LO = 29/71  mol% 

(green), DLLA:LO = 34/66 mol% (pink), DLLA:LO = 77/23 mol% (yellow), ), DLLA:LO = 

91/9 mol% (orange). 
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Fig. S5 TGA thermograms of copolymers of DLLA and LO-CO2 with different feed ratios, 

measured under nitrogen with 10K/min. DLLA:LO = 9/91  mol% (black), DLLA:LO = 17/83  

mol% (red), DLLA:LO = 23/77 mol% (blue), DLLA:LO = 29/71  mol% (green), DLLA:LO = 

34/66 mol% (pink), DLLA:LO = 77/23 mol% (yellow), ), DLLA:LO = 91/9 mol% (orange). 
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Fig. S6 DSC thermograms of copolymers of DLLA and LO-CO2 with different feed ratios The 

displayed traces correspond to the second heating curve measured at 10 K min-1 under nitrogen. 

DLLA:LO = 9/91  mol% (black), DLLA:LO = 17/83  mol% (red), DLLA:LO = 23/77 mol% 

(blue), DLLA:LO = 29/71  mol% (green), DLLA:LO = 34/66 mol% (pink), DLLA:LO = 77/23 

mol% (yellow), ), DLLA:LO = 91/9 mol% (orange). 
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Fig. S7 1H-NMR spectrum (CDCl3, 300 MHz) of copolymers (DLLA/ LO = 34/66 mol%) 

designated as reference in the figure) and the corresponding 1H-NMR spectra of THF-soluble 

fraction and THF-insoluble fraction. Copolymer composition: DLLA/LO mol%: Reference: 

60/40; THF soluble fraction: 87/13; THF insoluble fraction: 18/82. 
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Fig. S8 DSC thermograms of PLimC-b-PDLLA block copolymers (DLLA/ LO = 34/66 mol%) 

and the corresponding DSC thermograms of THF-soluble fraction (brown) and THF-insoluble 

fraction (violet). The displayed traces correspond to the second heating curve measured at 10 

K min-1. 
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Fig. S9 TGA thermograms of PLimC-b-PDLLA block copolymers (DLLA/ LO = 34/66 mol%) 

and the corresponding TGA thermograms of the THF-soluble fraction and THF-insoluble 

fraction. A) Reference with 40 mol % PLimC/ 60 mol% PDLLA. B) THF-insoluble fraction 

with 82 mol% PLimC/18 mol% PDLLA. C) THF-soluble fraction with 13 mol% PLimC/ 87 

mol % PDLLA. 
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Fig. S10 CHCl3-GPC traces of PLimC-b-PDLLA block copolymers (DLLA/ LO = 34/66 

mol%) and the corresponding CHCl3-GPC traces of the THF-soluble fraction and THF-

insoluble fraction. Molecular weight (Mn) and dispersity (Ð) were determined by CHCl3-GPC, 

calibrated with narrowly distributed polystyrene standards.  
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TEM micrographs of PLimC-b-PDLLA block copolymers 

 

 

  

 
Fig. S11 TEM micrographs of PLimC-b-PDLLA block copolymers (DLLA/ LO = 17/83 mol%) 

with PLimC/PDLLA = 39/61 mol%. 
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Fig. S12 TEM micrographs of PLimC-b-PDLLA block copolymers (DLLA/ LO = 23/77 mol%) 

with PLimC/PDLLA = 59/41 mol%. 
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Fig. S13 TEM micrographs of PLimC-b-PDLLA block copolymers (DLLA/ LO = 29/71 mol%) 

with PLimC/PDLLA = 46/54 mol%. 
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Fig. S14 TEM micrographs of PLimC-b-PDLLA block copolymers (DLLA/ LO = 34/66 mol%) 

with PLimC/PDLLA = 40/60 mol%. 
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Sequential terpolymerziation of trans-limonene-oxide, (L)-lactide and CO2 

 

 

 

 

 
 

Fig. S15 13C-NMR (CDCl3, 75 MHz) spectrum of PLimC-b-PLLA block copolymer (feed ratio: 

LA/LO = 20/80 mol%) with a composition of PLimC/PLLA = 29/71 mol%, measured in 

CDCl3. 
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Fig. S16 CHCl3-GPC traces of PLimC-b-PLLA block copolymer (feed ratio: LA/LO = 20/80 

mol%) with a composition of PLimC/PLLA = 29/71 mol%. Molecular weight (Mn) and 

dispersity (Ð) were determined by CHCl3-GPC, calibrated with narrowly distributed 

polystyrene standards.                                                                                  
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Fig. S17 DSC thermogram of PLimC-b-PLLA block copolymer (feed ratio: LA/LO = 20/80 

mol%) with a composition of PLimC/PLLA = 29/71 mol%. The displayed trace corresponds to 

the second heating curve measured at 10 K min-1 under nitrogen. 
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Fig. S18 TGA thermogram for PLimC-b-PLLA block copolymer (feed ratio: LA/LO = 20/80 

mol%) with a composition of PLimC/PLLA = 29/71 mol%, measured under nitrogen with 

10K/min. 
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Fig. S19 TEM micrographs of PLimC-b-PLLA block copolymer with PLimC/PLLA = 71/29 

mol%. PLimC is selectively stained with OsO4 vapor. 
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Terpolymerziation of trans-limonene-oxide, dihexyl-substituted lactide and 

CO2 (Sequential ROCP) 

 

 
Table S6. Experimental details of sequential polymerization of diHLA, LO and CO2 using 

[(BDI)Zn-(µ-OAc)] catalyst. 

Sample Feed 

Ratio 

Polymer 

Composition 

Lactide LO Catalyst Toluene Yield 

 diHLA/ 

LO 

r-diHLA 

/r-LO 

m n V n m 

 

V  

Unit mol% mol% mg mmol mL mmol mg mL % 

          

10 23/77 29/71 511 1.80 1.0 6.1 33 6 89 

11 13/87 50/50 260 0.91 1.0 6.1 33 11 n.d. 

12 50/50 62/38 993 3.49 0.57 3.5 20 5 74 

 

 

Table S7. Overview of the synthesized PLimC and PdiHLA block copolymers in terms of feed 

ratio, polymer composition, molecular weight, and thermal properties. 

aGPC: Mn and Ð were determined by CHCl3-GPC, calibrated with narrowly distributed polystyrene standards.                                                                                                                      
bDSC: Tg and Tm were determined from the second heating traces (scanning rate 10 K min−1).                                                                                                               
cTGA: T5% was determined with a heating rate of 10 K min-1 under N2 atmosphere.                                                                           
dTGA: Tmax,1 and Tmax,2 were determined from the 1st derivative of the TGA trace. 

 

 

 

 

 

 

 

 

 

 
 

 

Monomer 

Lactide 

Reaction 

Type 

Feed 

Ratio 

diHLA/ 

LO 

r-diHLA 

/r-LO 

Mn
a 

 

Ða Tg
b 

PLimC 

Tg
b 

PE 

Tm
b 

PE 

T5%
c 

 

Tmax,1
d 

PLimC 

Tmax,2
d 

PE 

  mol% mol% kDa  °C °C °C °C °C °C 

diHLA Sequential 23/77 29/71 35 1.40 - -36 - 228 254 329 

diHLA Sequential 13/87 50/50 14 1.20 - -39 - 224 247 299 

diHLA Sequential 50/50 62/38 49 1.40 106 -38 - 229 254 289 
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Fig. S20 1H-NMR spectrum (CDCl3, 300 MHz) of monomer dihexyl-substituted lactide 

(diHLA). 
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Fig. S21 1H-NMR spectrum (CDCl3, 300 MHz) of PLimC-b-PdiHLA block copolymer (feed 

ratio: diHLA/LO = 50/50 mol%) with a composition of PLimC/PdiHLA = 62/38 mol%. 
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Fig. S22 1H-NMR spectrum (CDCl3, 300 MHz) of PLimC-b-PdiHLA block copolymer (feed 

ratio: diHLA/LO = 22/78 mol%) with a composition of PLimC/PdiHLA = 29/71 mol%. 
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GPC traces of PLimC-b-PdiHLA block copolymers 
 

 
 

Fig. S23 CHCl3-GPC traces of PLimC-b-PdiHLA block copolymers. A) PLimC-b-PdiHLA 

(50:50) block copolymer, Mn = 14.210 g/mol, Ð = 1.4. B) PLimC-b-PdiHLA (29:71) block 

copolymer, Mn = 35.070 g/mol, Ð = 1.5. C) PLimC-b-PdiHLA. (62:38) block copolymer, Mn = 

48.980 g/mol, Ð = 1.2.  Molecular weight (Mn) and dispersity (Ð) were determined by CHCl3-

GPC, calibrated with narrowly distributed polystyrene standards.                                                                                  
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DSC thermogram of PLimC-b-PdiHLA block copolymer 
 

 

 
Fig. S24 DSC thermograms of PLimC-b-PdiHLA block copolymers. A) PLimC-b-PdiHLA 

(50:50) block copolymer. B) PLimC-b-PdiHLA (29:71) block copolymer. C) PLimC-b-

PdiHLA (62:38) block copolymer with a heating rate of 10, 30 and 50 °C/min. 
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TGA thermograms of PLimC-b-PdiHLA block copolymer 
 

 

 
 

Fig. S25 TGA thermograms of PLimC-b-PdiHLA block copolymer. A) PLimC-b-PdiHLA 

(50:50) block copolymer, Tonset of PLimC degradation: 226 °C, Tonset of PdiHLA degradation: 

260 °C. B)  PLimC-b-PdiHLA (29:71) block copolymer, Tonset of PLimC degradation: 247 °C, 

Tonset of PdiHLA degradation: 306 °C. C) PLimC-b-PdiHLA (62:38) block copolymer, Tonset of 

PLimC degradation: 226 °C, Tonset of PdiHLA degradation: 260 °C. The displayed traces were 

measured under nitrogen with 10K/min. 
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10 Summary, Conclusion and Outlook 
 

This thesis investigated composites and copolymers of bio-based polymer poly(limonene 

carbonate) (PLimC). PlimC is made from trans-limonene oxide (LO) and the greenhouse gas 

CO2 by ring-opening polymerization (ROP) using catalyst [(BDI)Zn-(µ-OAc)]. Both 

monomers can be obtained from a natural bio-based feedstock. Therefore, PLimC belongs to a 

group of polymers, which have possible applications in near future due to the need for 

replacements for petro-based polymers. PLimC traces back to COATES et al.5, who developed 

the first copolymerization of LO and CO2. It was further developed by Oliver Hauenstein under 

the supervision of GREINER. High molecular weight PLimC (<100.000 Da) with excellent 

optical and mechanical properties was synthesized by masking hydroxyl impurities within the 

monomer LO.6 The problematic factor of neat PLimC is the processability due to its low 

degradation temperature and high viscosity in melt. Neat PLimC can hardly be processed 

without the loss of its mechanical and optical properties, so ways have to be found to overcome 

this issue.  

This thesis solves the problem of processability by using a bio-based additive, namely ethyl 

oleate (EtOL), to modify viscosity in melt so that PLimC can be produced at a lower 

temperature without degradation. The best EtOL loading was to be found with 7.5 wt%. Here, 

a glass transition temperature of 90 °C and improved mechanical properties alongside good 

optical properties could be observed. The elongation at break and the E-modulus could be 

doubled in comparison to neat PLimC by the use of EtOL as a bio-based plasticizer.  Higher 

loadings (>7.5 wt%) are usually leading to a lower glass transition and decreased mechanical 

properties. By adding EtOL, the glass transition temperature of PLimC could be altered in a 

broad range (25 °C - 130 °C). For future projects, different types of plasticizers could be used 

to explore the topic even further. Also, the possibility of self-plasticizing with low-molecular-

weight PLimC should be taken into consideration.  

The blending of two polymers is also an elegant way to tune the properties of a material and to 

achieve processability of PLimC. The thesis showed how PLimC behaves as a blending partner 

binary blends as a minority component. It was shown that PLimC usually forms phase-separated 

blends with most commodity polymers like example polyamide (PA) or polystyrene (PS). 

Blends of PLA/PLimC showed moderate properties, because of their phase-separate 

morphology. However, in some polymers blends like for example with poly(butylene adipate-

co-terephthalate) (PBAT) or Arnitel EM400® (copolyetherester) PLimC increased the E-
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modulus significantly. To improve the compatibility of PLimC with other blending partners 

block copolymers could be used as a compatibilizer to reduce the surface energy of PLimC 

domains. This could lead to improved mechanical properties of PLimC blends. Also, reactive 

processing of PLimC and a blending partner would be an option for future work. 

As above-mentioned compatibilizers can be an option for improving blend properties. For 

PLimC/PLA blends, compatibilizers can be obtained by copolymerization of PLimC and PLA. 

The thesis showed that the catalytic system [(BDI)Zn-(µ-OAc)] not only polymerizes LO and 

CO2 but also lactide (LA), which results in PLimC and PLA copolymers. PLA is an interesting 

polymer because it is bio-based and shows biodegradability as well. This thesis revealed also 

that copolymers of PLimC and PLA derivatives are possible. Long alky chain derivatives of 

lactide (e.g., dihexyl-substituted lactide (diHLA)) show a promising pathway for further PLimC 

modifications. The thesis showed that copolymers of PLimC and PdiHLA have a great elasticity 

and transparancy. To utilize the full potential of lactide and its derivatives, further research has 

to be carried out. Mechanical properties, optical properties and as well the microstructure of 

these copolymers should be investigated in future projects. Also, the development of 

thermoplastic elastomers based on lactide derivatives seems reasonable. Copolymers of PLimC 

and different lactide derivatives (e.g., mandelide) are also possible for future projects. 

In summary, this thesis showed three different approaches to showcase the potential of PLimC 

as a future thermoplastic polymer. Additives, copolymerization, and blending are methods, 

which can be used as effective tools to achieve processability PLimC so that PLimC can pass 

the threshold to become a relevant industrial polymer for a “greener” future. 
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