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Abstract

Many real-world voting systems consist of voters that occur in just two dif-
ferent types. Indeed, each voting system with a “House” and a “Senat” is of
that type. Here we present structural characterizations and explicit enumeration
formulas for these so-called bipartite simple games.
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1 Introduction

Consider voting systems where each player or voter can either agree or disagree to a
given proposal. The resulting group decision then is to either accept or to dismiss
the proposal. The common mathematical model is that of a simple game, which is
a monotone Boolean function, see Definition 1. Simple games where all players are
homogeneous have a rather simple structure and are studied in [12]. Also the cases
where the players come in just two different types, called bipartite simple games, are
quite common in real-world voting systems, see e.g. [2, 13]. Indeed, each voting system
with a “House” and a “Senat” is of that type. In general those games are not weighted
as they are in the homogeneous case. However, rather weak additional assumptions
are sufficient to imply weightedness [8], see also [3]. Weighted games with two types
of voters admit a unique minimum integer representation [6]. For the characterization
and enumeration of so-called complete simple games with two types of voters we refer
to e.g. [10] and the references mentioned therein, see also [4, 5] for variations. The first
subclasses of bipartite simple games were recently enumerated in [7]. Here we complete
the analysis by resolving the open cases and conjectures, see Section 4. Especially, we
give an explicit formula for the number of non-isomorphic simple games with n players
and two equivalence classes of players. In [7] simple games with two equivalence classes
of players were parameterized using a matrix notation based on the corresponding
minimal winning vectors. In Section 3 we extend this result to general simple games,
i.e., simple games with t ≥ 1 equivalence classes of players. First we have to introduce
some notation in Section 2.
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2 Preliminaries

Let N = {1, 2, ..., n} be a finite set of voters or players. Any subset S of N is called a
coalition and the set of all coalitions ofN is denoted by the power set 2N = {S | S ⊆ N}.

Definition 1. A simple game is a mapping v : 2N → {0, 1} that satisfies v(∅) = 0,
v(N) = 1, and v(S) ≤ v(T ) for all ∅ ⊆ S ⊆ T ⊆ N , where the finite set N is called the
player set or set of players.

Let v be a simple game with player set N . A subset S ⊆ N is called winning
coalition if v(S) = 1 and losing coalition otherwise. A winning coalition S ⊆ N is
called minimal winning coalition if all proper subsets T ( S of S are losing. Similarly,
a losing coalition S is called maximal losing coalition if all proper supersets T ) S of
S are winning. For an extensive introduction to simple games we refer to [13].

Example 1. For player set N = {1, 2, 3} let v be the simple game defined by v(S) = 1
iff w(S) :=

∑
i∈S wi ≥ 3 and v(S) = 0 otherwise for all S ⊆ N , where w1 = 3, w2 = 2,

and w3 = 1.

The winning coalitions of the simple game from Example 1 are given by {1}, {2, 3},
{1, 2}, {1, 3}, and {1, 2, 3}. Only {1} and {2, 3} are minimal winning coalitions.

Definition 2. Let v be a simple game with player set N . Two players i, j ∈ N are
called equivalent if v(S ∪ {i}) = v(S ∪ {j}) for all ∅ ⊆ S ⊆ N\{i, j}.

In the simple game v from Example 1 the players 2 and 3 are equivalent while
player 1 is neither equivalent to player 2 nor to player 3. In general being equivalent is
an equivalence relation, i.e., N is partitioned into t ≥ 1 equivalence classes N1, . . . , Nt

such that all pairs of players in such an equivalence class Ni are equivalent while two
players from two different equivalence classes are not equivalent. In our example we
have the equivalence classes N1 = {1} and N2 = {2, 3}. Note that the numbering of
the equivalence classes is arbitrary while their number t is not. We remark that simple
games with just one equivalence class, i.e. t = 1, have a pretty simple structure: For a
given number n of players there exists an integer 1 ≤ q ≤ n such that each coalition is
winning iff it has cardinality at least q. So, there are exactly n simple games with n
players and t = 1. One aim of this paper is to deduce an exact formula for the number
of simple games with n players and t = 2 equivalence classes of players.

We remark that for a given set of players, each simple game v is uniquely charac-
terized by either the set of winning coalitions, the set of losing coalitions, the set of
minimal winning coalitions, or the set of maximal losing coalitions. While the number
of minimal winning coalitions is at most at large as the number of winning coalitions, it
can be as large as

(
n
bn/2c

)
; attained by the simple game with n players and t = 1 that is

uniquely described by q = bn/2c. So, our aim is to find a more compact representation
for the set of minimal winning coalitions.
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Definition 3. Let v be a simple game with player set N := {1, . . . , n} and N1, . . . , Nt

be a partition of N into equivalence classes of players. We set n := (|N1|, . . . , |Nt|) ∈ Nt

and for each coalition S ⊆ N we define the vector mS := (|S ∩N1|, . . . , |S ∩Nt|) ∈ Nt.

While for each coalition S ⊆ N there is a unique vector mS, there can be several
coalitions S ′ with mS = mS′

. However, in this case we have that S is a winning coalition
iff S ′ is a winning coalition. Similar statements hold for losing, minimal winning, and
maximal losing coalitions. So, we may speak of winning vectors etcetera. To this end
we define a partial ordering on Nt:

Definition 4. Let x = (x1, . . . , xt) ∈ Nt and y = (y1, . . . , yt) ∈ Nt. We write x � y or
y � x iff xi ≤ yi for all 1 ≤ i ≤ t. We abbreviate the cases when x � y and x 6= y by
x ≺ y. Similarly we write y � x iff y � x and x 6= y. The case when neither x � y nor
x � y holds is denoted by x ./ y and we say that the two vectors are incomparable.

By 0 we denote the all-zero vector whenever the number of entries, i.e., zeroes, is
clear from the context.

Definition 5. Let v be a simple game with player set N := {1, . . . , n} and N1, . . . , Nt

be a partition of N into equivalence classes of players. Let m ∈ Nt be a vector with
0 � m � n and S ⊆ N be an arbitrary coalition with m = mS. We say that

� m is a winning vector iff S is a winning coalition;

� m is a losing vector iff S is a losing coalition;

� m is a minimal winning vector iff S is a minimal winning coalition; and

� m is a maximal losing vector iff S is a maximal losing coalition.

In our example (with fixed equivalence classes N1 = {1} and N2 = {2, 3}) the
minimal winning vectors are given by (1, 0) and (0, 2), while (0, 1) is the unique maximal
losing vector.

3 A parameterization of simple games with t equivalence classes

Our next aim is to uniquely describe each simple game v by the counting vector n
and a list of minimal winning vectors m1, . . . ,mr. First we observe mi ./ mj for all
1 ≤ i, j ≤ r with i 6= j, i.e., different minimal winning vectors are incomparable.
Indeed, each list of pairwise incomparable vectors m1, . . . ,mr with 0 � mi � n for all
1 ≤ i ≤ r defines a simple game v. However, the number of equivalence classes of the
resulting simple game may be strictly smaller than t, i.e., the size of the vectors. If we
e.g. define a simple game by n = (1, 1, 1) and the minimal winning vectors (1, 0, 0) and
(0, 1, 1), then we end up with the simple game from Example 1, which has exactly two
equivalence classes of players.

In order to deduce the extra conditions that guarantee that the number of equiva-
lence classes of the resulting simple game indeed equals t, we consider a simple game v
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with player set N that is partitioned into subsets N1, . . . , Nt such that for all i, i′ ∈ Nj,
where 1 ≤ j ≤ t, the players i and i′ are equivalent. Under which conditions can we
join Nĩ and Nj̃ for ĩ 6= j̃? Given arbitrary players i′ ∈ Nĩ and j′ ∈ Nj̃, we can join
Nĩ and Nj̃ iff player i′ is equivalent to player j′. Otherwise there exists a coalition
S ⊆ N\{i′, j′} such that v(S ∪ {i′}) 6= v(S ∪ {j′}). W.l.o.g. we assume that S ∪ {j′}
is a winning coalition. Since S ∪ {i′} then is a losing coalition, player j′ cannot be a
null player, so that there also exists a coalition S ′ ⊆ S such that S ′ ∪ {j′} is a minimal
winning coalition while S ′ ∪ {i′} ⊆ S ∪ {i′} is a losing coalition. Thus, there exist
a minimal winning coalition {j′} ⊆ T ⊆ N\{i′} such that T\{j′} ∪ {i′} is a losing
coalition, i.e., it is not contained in any minimal winning coalition, where we eventually
have to interchange the roles of j′ and i′. Translating to vector notation directly gives:

Lemma 1. Let n ∈ Nt
>0, n =

t∑
i=1

ni, N = {1, . . . , n}, Ni =

{
i−1∑
j=1

|Nj|+ 1, . . . ,
i∑

j=1

|Nj|

}
for all 1 ≤ i ≤ t and m1, . . . ,mr be pairwise incomparable, where mi ∈ Nt and 0 �
mi � n for all 1 ≤ i ≤ t. For each 1 ≤ i ≤ t we denote by ei ∈ Nt the vector that
has a one at position i and zeroes at all other coordinates. If for each 1 ≤ i, j ≤ t
with i 6= j there exists an index 1 ≤ h ≤ r such that for either m′ := mh + ei − ej or
m′ := mh − ei + ej we have 0 � m′ � n and the vector m′ is losing, i.e. there exists no
index 1 ≤ h′ ≤ r with mh′ � m′, then the simple game v with player set N defined by
v(S) = 1 iff there exists an index 1 ≤ h ≤ r with mS � mh for all S ⊆ N

� has N1, . . . , Nt as its equivalence classes of players and

� the minimal winning vectors of v are given by m1, . . . ,mr.

Example 2. Let n = (4, 2), m1 = (3, 0), and m2 = (2, 1), so that n = 6, N =
{1, . . . , 6}, N1 = {1, 2, 3, 4}, and N2 = {5, 6}. The minimal winning coalitions of the
corresponding simple game v are given by {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5},
{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {1, 2, 6}, {1, 3, 6}, {1, 4, 6}, {2, 3, 6},
{2, 4, 6}, and {3, 4, 6}, so that v indeed consists of the t = 2 equivalence classes of
players N1 and N2.1

Of course, every relabeling of the vectors m1, . . . ,mr yields the same simple game,
so that we will assume that they are lexicographically ordered.

Definition 6. Let x = (x1, . . . , xt) ∈ Nt and y = (y1, . . . , yt) ∈ Nt. We write x ≤ y
or y ≥ x iff there exist an index 0 ≤ j ≤ t such that xi = yi for all 1 ≤ i ≤ j and
xj+1 < yj+1 (if j < n). In words we say that x is lexicographically at most as large
as y. We abbreviate the cases when x ≤ y and x 6= y by x < y. Similarly we write
y > x if y ≥ x and y 6= x. Here the relation is called lexicographically smaller or
lexicographically larger, respectively.

1Note that the simple game v is complete, cf. [9], so that it does not occur in the list of [7, Example
3.4.d].
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So, we describe each simple game with t ≥ 1 equivalence classes of players by
a counting vector n ∈ Nt

>0 and a matrix M ∈ Nr×t consisting of r row vectors mi

satisfying

(I) 0 � mi � n for all 1 ≤ i ≤ r;

(II) mi ./ mj for all 1 ≤ i < j ≤ r;

(III) m1 > · · · > mr; and

(IV) for each 1 ≤ i, j ≤ t with i 6= j there exists an index 1 ≤ h ≤ r such that for
m′ := mh + ei − ej or m′ := mh − ei + ej we have 0 � m′ � n and mh′ 6� m′ for
all 1 ≤ h′ ≤ r.

Note that while the conditions (I)-(IV) already factor out several symmetries for
simple games, interchanging entire equivalence classes of players is not yet considered.

E.g. for n = (4, 2), M =

(
3 0
2 1

)
, n′ = (2, 4), and M′ =

(
1 2
0 3

)
the pairs (n,M) and

(n′,M′) satisfy all requirements while representating isomorphic simple games.
In general we obtain for each representation (n,M) of a simple game v with t equiv-

alence classes of players and each permutation π of {1, . . . , t} another representation
(nπ,Mπ) of v, where

nπ =
(
nπ(1), . . . , nπ(t)

)
and Mπ consists of the row vectors m̂1, . . . , m̂r sorted in decreasing lexicographical
order, where

m̂i =
(
mi
π(1), . . . ,m

i
π(t)

)
for all 1 ≤ i ≤ r. E.g. in our above example we have n′ = nπ and M′ = Mπ for the
permutation π interchanging 1 and 2, which is the only permutation for t = 2 which is
not the identity. Note that the list of representations (nπ,Mπ), that satisfy conditions
(I)-(IV), is exhaustive if we start from an arbitrary representation (n,M) and consider
all t! permutations π of {1, . . . , t}.

So, in order to obtain a unique representative for an isomorphism class of sim-
ple games with respect to relabeling the players, we have to distinguish one of these
(nπ,Mπ). Again we can utilize some kind of lexicographical ordering.

Definition 7. Let X = (xi,j) ∈ Nr×t and Y = (yi,j) ∈ Nr×t. We write X ≤ Y or
Y ≥ X iff x̂ ≤ ŷ (or ŷ ≥ x̂), where

x̂ = (x1,1, . . . , xr,1, x1,2, . . . , xr,2, . . . , x1,t, . . . , xr,t) ∈ Nrt

and
ŷ = (y1,1, . . . , yr,1, y1,2, . . . , yr,2, . . . , y1,t, . . . , yr,t) ∈ Nrt.

In words we say that X is lexicographically at most as large as Y . We abbreviate the
cases when X ≤ Y and X 6= Y by X < Y . Similarly we write Y > X if Y ≥ X
and Y 6= X. Here the relation is called lexicographically smaller or lexicographically
larger, respectively.
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So, we might choose the representation (nπ,Mπ) as “the” representative whereMπ

is lexicographically largest. Having the algorithmic complexity in mind, we instead
assume that the entries of n are weakly decreasing and only consider those permutations
π of {1, . . . , t} that fix n for the determination of the lexicographical maximum:

Theorem 1. The isomorphism classes of simple games with n ≥ 1 players and t ≥ 1
equivalence classes of players are in one-to-one correspondence to pairs (n,M), where
n ∈ Nt

>0 and M∈ Nr×t with row vectors m1, . . . ,mr, for some integer r ≥ 1, satisfying

(a) n1 ≥ n2 ≥ · · · ≥ nt > 0,
∑t

i=1 ni = n;

(b) 0 � mi � n for all 1 ≤ i ≤ r;

(c.1) mi ./ mj for all 1 ≤ i < j ≤ r;

(c.2) m1 > · · · > mr;

(d) for each 1 ≤ i, j ≤ t with i 6= j there exists an index 1 ≤ h ≤ r such that for
m′ := mh + ei − ej or m′ := mh − ei + ej we have 0 � m′ � n and mh′ 6� m′ for
all 1 ≤ h′ ≤ r; and

(e) M≥Mπ for every permutation π of {1, . . . , t} with n = nπ.

For the special case t = 2 the conditions (a)-(e) can be simplified or made more
explicit at the very least:

(a’) n1 ≥ n2 > 0, n1 + n2 = n;

(b’) 0 � mi � n for all 1 ≤ i ≤ r (or 0 ≤ mi
j ≤ nj for all 1 ≤ i ≤ r, 1 ≤ j ≤ t);

(c’) mi
1 > mi+1

1 and mi
2 < mi+1

2 for all 1 ≤ i ≤ r − 1;

(d’) there exists an index 1 ≤ h ≤ r such that for m′ := mh + (−1, 1) or m′ :=
mh + (1,−1) we have 0 � m′ � n and mh′ 6� m′ for all 1 ≤ h′ ≤ r; and

(e’) (m1
1, . . . ,m

r
1) ≥ (mr

2, . . . ,m
1
2) if n1 = n2.

Only the conversions from (c.1), (c.2) to (c’) and from (e) to (e’) need a little discussion.
If mi

1 = mj
1 for some 1 ≤ i, j ≤ r with i 6= j, then we cannot have mi ./ mj, which is

requested in (c.1). Thus, (c.2) implies mi
1 > mi+1

1 for all 1 ≤ i ≤ r − 1, which is the
first part of (c’). The second part of (c’) is then implied by using mi ./ mi+1. It can be
easily checked that (c’) implies (c.1) and (c.2). For condition (e) we remark that the
unique permutation π that is not the identity interchanges 1 and 2, so that n = nπ is
only possibly if n1 = n2. Moreover we have

Mπ =

m
r
2 mr

1
...

...
m1

2 m1
1

 ,
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so that M≥Mπ is equivalent to (m1
1, . . . ,m

r
1) ≥ (mr

2, . . . ,m
1
2).

Similarly, the conditions (I)-(IV) can be rephrased to

(I’) n1 ≥ n2 > 0, n1 + n2 = n;

(II’) 0 � mi � n for all 1 ≤ i ≤ r (or 0 ≤ mi
j ≤ nj for all 1 ≤ i ≤ r, 1 ≤ j ≤ t);

(III’) mi
1 > mi+1

1 and mi
2 < mi+1

2 for all 1 ≤ i ≤ r − 1; and

(IV’) there exists an index 1 ≤ h ≤ r such that for m′ := mh + (−1, 1) or m′ :=
mh + (1,−1) we have 0 � m′ � n and mh′ 6� m′ for all 1 ≤ h′ ≤ r.

for the special case t = 2.

4 Enumeration results

In [10, Theorem 4] the number of complete simple games with n players and two equiva-
lence classes of players was determined using generating functions.2 The parameteriza-
tion of complete simple games with t equivalence classes from [1] and the reformulation
of the conditions in terms of integer points in a polyhedron, see [10, Lemma 1], were
the essential steps for this approach. Since we have provided a parameterization in
Section 3 or can use the formulation for t = 2 and non-complete simple games in [7],
going along the same lines is feasible. For technical reasons we will start to enumerate
the pairs (n,M) satisfying conditions (I’)-(IV’) first, before we apply these results to
those pairs (n,M) that satisfy the conditions (a’)-(e’).

Lemma 2. Each simple game with t = 2 equivalence classes of players and r ≥ 2
minimal winning vectors given by n = (n1, n2) ∈ N2

>0 and

M =

m
1

...
mr


satisfying the conditions (I’)-(III’) can be written as

n =

(
z1 + r − 1 +

r∑
j=1

xj z2 + r − 1 +
r∑
j=1

yj

)
(1)

2The formula was also proven using more direct adhoc methods.
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and

M =



r − 1 +
r∑
j=1

xj 0 + y1

r − 2 +
r−1∑
j=1

xj 1 + y1 + y2

...
...

r − i+
r−i+1∑
j=1

xj i− 1 +
i∑

j=1

yj

...
...

1 + x1 + x2 r − 2 +
r−1∑
j=1

yj

0 + x1 r − 1 +
r∑
j=1

yj



(2)

where x1, . . . , xr, y1, . . . , yr, z1, z2 are non-negative integers fulfilling

r∑
i=1

xi +
r∑
i=1

yi + z1 + z2 = n+ 2− 2r. (3)

Proof. For one direction, we only have to check the conditions (I’)-(III’). For the other
direction, we state that one can recursively determine the xh, yi, and zj via

x1 = mr
1

xh = mr−h+1
1 −mr−h+2

1 − 1 for h = 2, . . . , r

y1 = m1
2

yi = mi
2 −mi−1

2 − 1 for i = 2, . . . , r

z1 = n1 − (r − 1)−
r∑
j=1

xj, and

z2 = n2 − (r − 1)−
r∑
j=1

yj.

Verifying xh, yi, zj ≥ 0 finishes the proof.

Directly from Equation (3) and the non-negativity of the x-, y-, and z-variables we
conclude 2 ≤ r ≤ bn/2c+ 1 (and n ≥ 2). The number of non-negative integer solutions
of Equation (3) is given by(

(n+ 2− 2r) + (2r + 2)− 1

(2r + 2)− 1

)
=

(
n+ 3

2r + 1

)
,

so that the total number of cases is given by

bn/2c+1∑
r=2

(
n+ 3

2r + 1

)
= 2n+2 −

(
n+ 3

1

)
−
(
n+ 3

3

)
. (4)
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Next we consider the cases where condition (IV’) is violated. These cases are charac-
terized by

� x2 = · · · = xr = 0;

� y2 = · · · = yr = 0;

� y1 = 0 ∨ z1 = 0; and

� x1 = 0 ∨ z2 = 0, i.e., there are

4 +
n+2−2r∑
i=1

4 = 4 + 4(n+ 2− 2r)

such cases for each 2 ≤ r ≤ bn/2c+ 1.3 Additionally for the case r = bn
2
c+ 1 and n is

even, it remains to add another term,4 so that the total number of cases is given by:
4(n−

⌊
n
2

⌋
− 1)

⌊
n
2

⌋
if n is odd

4(n−
⌊
n
2

⌋
− 1)

⌊
n
2

⌋
+ 1 if n is even

which is exactly
(n− 1)2 (5)

for each n ≥ 2.
The case r = 1 is treated separately:

Lemma 3. For t = 2, r = 1, and each n ≥ 1 the number of pairs (n,M) satisfying
conditions (I’)-(IV’) is given by

n3 + 6n2 − 13n+ 6

6
. (6)

Proof. We write n =
(
n1 n2

)
and M =

(
a b

)
. The conditions (I’)-(IV’) are satisfied

if

� 1 ≤ n1 ≤ n− 1, so that 1 ≤ n2 ≤ n− 1 for n2 = n− n1;

� 0 ≤ a ≤ n1;

� 0 ≤ b ≤ n2 = n− n1;

� (a, b) 6= (n1, n2) and (a, b) 6= (0, 0).

3For a = n + 2 − 2r we have the four cases (x1, y1, z1, z2) ∈{
(a, 0, 0, 0), (0, a, 0, 0), (0, 0, a, 0), (0, 0, 0, a)

}
and for each 1 ≤ i ≤ a − 1 we have the four cases

(x1, y1, z1, z2) ∈
{

(i, 0, a− i, 0), (i, 0, 0, a− i), (0, i, a− i, 0), (0, i, 0, a− i)
}

.
4With n even, for a = n + 2− 2(bn2 c+ 1) = 0 we have the case (x1, y1, z1, z2) = (0, 0, 0, 0).
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Thus, there are

n−1∑
n1=1

(
n1∑
a=0

n−n1∑
b=0

1 − 2

)
=

n−1∑
n1=1

(
(n1 + 1) · (n− n1 + 1)− 2

)
=
n3 + 6n2 − 13n+ 6

6

cases.

Adding (6) to the right hand side of (4) and subtracting the right hand side of (5)
yields:

Proposition 1. For each n ≥ 2 the number of pairs (n,M) satisfying conditions (I’)-
(IV’) is given by

2n+2 − n2 − 3n− 4. (7)

The enumeration formula in Proposition 1 is only an auxiliary result and our actual
aim is a corresponding enumeration formula for the number of pairs (n,M) satisfying
conditions (a’)-(e’). To this end we have a look at condition (e’) again and repeat our
observation that for t = 2 the unique permutation π of {1, 2} that is not the identity
interchanges 1 and 2. Given an arbitrary pair (n,M) we can have

(i) n1 ≥ n2, n
π
1 ≤ n2

π, and M >Mπ;

(ii) n1 ≤ n2, n
π
1 ≥ n2

π, and M <Mπ; and

(iii) n1 = n2, n
π
1 = n2

π, n = nπ, and M =Mπ.

Proposition 1 counts the cases falling in categories (i)-(iii) while we actually only want
to count the cases falling in category (i) or (iii). In order to be more precise, let us
denote the corresponding counts by ci, cii, and ciii, respectively. Since (nπ)π and (Mπ)π

we have ci = cii, so that

ci + ciii =
2ci + 2ciii

2
=

(
ci + cii + ciii

)
+ ciii

2
, (8)

i.e., we need a counting formula for ciii.
5

Lemma 4. For each n ≥ 2 we have ciii = 0 if n is odd and

ciii = 2m+1 − 2m− 2 (9)

if n is even, where m = n/2.

5While our derivation of Equation (8) is rather adhoc and elementary, we remark that for the
general case t ≥ 2 we can apply Burnside’s lemma, which is sometimes also called Burnside’s counting
theorem, the Cauchy-Frobenius lemma, or orbit-counting theorem.
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Proof. We count the number of pairs (n,M) falling in category (iii). First we note
that n1 = n2 implies that n is even, so that we assume that n is even in the following.
We will go along the same lines as in the derivation of the enumeration formula in
Proposition 1. SinceMπ =M, where π is the permutation swapping 1 and 2, we have
(m1

1, . . . ,m
r
1) = (mr

2, . . . ,m
1
2). In the context of Lemma 2 this is equivalent to xi = yi

for all 1 ≤ i ≤ r and z1 = z2. Equation (3) then simplifies to

2
r∑
i=1

xi + 2z1 = n+ 2− 2r,

which is equivalent to
r∑
i=1

xi + z1 = m+ 1− r,

so that we have
(
m+1
r

)
non-negative integer solutions for each 2 ≤ r ≤ m+ 1 and

m+1∑
r=2

(
m+ 1

r

)
= 2m+1 −

(
m+ 1

1

)
−
(
m+ 1

0

)
= 2m+1 −m− 2 (10)

solutions in total. The number of cases where condition (IV’) is violated is given by 2
for each 2 ≤ r ≤ m and by 1 for r = m + 1, so that the total number of cases is given
by

1 +
m∑
r=2

2 = 2(m− 1) + 1 = 2m− 1. (11)

For r = 1 we proceed as in the proof of Lemma 3. Here we have n1 = n2 = m and
a = b, so that the number of cases is given by

m−1∑
a=1

1 = m− 1. (12)

Subtracting the right hand side of (11) from the right hand side of (10) and adding the
right hand side of (12) yields the stated formula.

Theorem 2. For each n ≥ 2 the number of simple games with n players and two
equivalence classes is given by

2n+1 − n2+3n+4
2

if n is odd

2n+1 + 2
n
2 − n2+4n+6

2
if n is even

(13)

Proof. As observed, the corresponding number equals the number of pairs (n,M) sat-
isfying conditions (a’)-(e’). So, plugging in the formulas of Proposition 1 and Lemma 4
into Equation (8) yields the stated result.
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So, indeed the number of bipartite simple games with n players is in θ(2n). More
precisely, the number number of bipartite simple games with n players asymptotically
equals 2n+1.

Of course we may also extract explicit formulas for the number of bipartite simple
games with n players and r minimal winning vectors from our intermediate results.
Finally, we remark that for each pair of fixed parameters p and r it is possible to
describe the pairs (n,M) that satisfy the conditions (I)-(IV) as integer points in a
suitable polyhedron. As demonstrated in [10, Section 3.2] for complete simple games,
we can then apply an algorithmic version of Ehrhart theory, see e.g. [11], where software
packages like e.g. Barvinok are available, to explicitly compute a quasi-polynomial
for their number. Being interested in the number of simple games with n players, t
equivalence classes, and r minimal winning vectors, in terms of n, we have to consider
the conditions (a)-(e) instead of the conditions (I)-(IV). As mentioned in Footnote 5, we
can apply Burnside’s lemma to this end and reduce the problem to t! subproblems that
can be treated as described before. To sum up, the computation of explicit formulas
for the number of simple games with t equivalence and r minimal winning vectors in
terms of the number of players n is algorithmically possible but rather messy. Since we
do not expect any “nice” formulas we abstain from going into the details. Maybe there
are more clever ways to at least determine the order of magnitude. However, as far as
we know, even the maximum possible number r of minimal winning vectors given t > 2
equivalence classes of players is unknown.

References

[1] F. Carreras and J. Freixas. Complete simple games. Mathematical Social Sciences,
32(2):139–155, 1996.

[2] D. S. Felsenthal, M. Machover, and W. Zwicker. The bicameral postulates and
indices of a priori voting power. Theory and Decision, 44(1):83–116, 1998.

[3] J. Freixas, M. Freixas, and S. Kurz. On the characterization of weighted simple
games. Theory and Decision, 83(4):469–498, 2017.

[4] J. Freixas and S. Kurz. The golden number and Fibonacci sequences in the design
of voting structures. European Journal of Operational Research, 226(2):246–257,
2013.

[5] J. Freixas and S. Kurz. Enumeration of weighted games with minimum and an
analysis of voting power for bipartite complete games with minimum. Annals of
Operations Research, 222(1):317–339, 2014.

[6] J. Freixas and S. Kurz. On minimum integer representations of weighted games.
Mathematical Social Sciences, 67:9–22, 2014.

12



[7] J. Freixas and D. Samaniego. On the enumeration of bipartite simple games.
Discrete Applied Mathematics, 297:129–141, 2021.

[8] J. Herranz. Any 2-asummable bipartite function is weighted threshold. Discrete
Applied Mathematics, 159(11):1079–1084, 2011.

[9] J. R. Isbell. A class of simple games. Duke Mathematical Journal, 25(3):423–439,
1958.

[10] S. Kurz and N. Tautenhahn. On Dedekind’s problem for complete simple games.
International Journal of Game Theory, 42(2):411–437, 2013.

[11] D. Lepelley, A. Louichi, and H. Smaoui. On Ehrhart polynomials and probability
calculations in voting theory. Social Choice and Welfare, 30(3):363–383, 2008.

[12] K. O. May. A set of independent necessary and sufficient conditions for simple
majority decision. Econometrica, pages 680–684, 1952.

[13] A. D. Taylor and W. S. Zwicker. Simple games: Desirability relations, trading,
pseudoweightings. Princeton University Press, 1999.

13


