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ABSTRACT
Web vocabularies (WV) have become a fundamental tool for struc-
turing Web data: over 10 million sites use structured data formats
and ontologies to markup content. Maintaining these vocabular-
ies and keeping up with their changes are manual tasks with
very limited automated support, impacting both publishers and
users. Existing work shows that machine learning can be used
to reliably predict vocabulary changes, but on specific domains
(e.g. biomedicine) and with limited explanations on the impact of
changes (e.g. their type, frequency, etc.). In this paper, we describe
a framework that uses various supervised learning models to learn
and predict changes in versioned vocabularies, independent of their
domain. Using well-established results in ontology evolution we
extract domain-agnostic and human-interpretable features and ex-
plain their influence on change predictability. Applying our method
on 139 WV from 9 different domains, we find that ontology struc-
tural and instance data, the number of versions, and the release
frequency highly correlate with predictability of change. These
results can pave the way towards integrating predictive models
into knowledge engineering practices and methods.

CCS CONCEPTS
• Information systems →Web data description languages; •
Computing methodologies → Ontology engineering.
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1 INTRODUCTION
Increasingly, the Web contains more and more structured data
describing people, organizations, locations, and products, using
standards such as RDF, Microdata, JSON-LD, RDFa, and Microfor-
mats [22]. Structured vocabularies [12], SKOS taxonomies [21] and
OWL ontologies [19] play a crucial role in this process as they pro-
vide terminologies to describe such domains in Knowledge Graphs,
formalizing the semantics of multiple domains, and extending inter-
operability. Concepts are central entities in these vocabularies, and
represent objects with common characteristics. However, as more
and more data populate the Web and its services, these concepts are
continuously subject to change. Consequently, Web vocabularies
(WV) need to change in new versions and adapt to the new reali-
ties. Schema.org [12] and DBpedia [18], e.g., model cross-domain
knowledge and are updated every 1-2 months1. The Historical In-
ternational Standard Classification of Occupations (HISCO) [17] is
a taxonomy of historical occupations since the 16th century perma-
nently accepts additions from its users. The Gene Ontology (GO)
[6] standardizes the representation of gene attributes across species
and datasets and publishes new releases monthly. These updates
are generally a manual, unassisted, and knowledge intensive task.
To adapt their vocabularies to domain changes, data publishers
typically use their expert knowledge to produce new vocabulary
versions. This creates vocabulary version chains: subsequent unique
states of a vocabulary with unique identifiers. These version chains
exacerbate the manual vocabulary management practices of pub-
lishers, who face hard questions on what parts of their vocabulary
needs attention; and users, who are faced with questions on what
version to use and whether the wrong version will make them loose
features. The automatic detection of concept change and shift in
meaning would be a great aid in proactively supporting vocabulary
publishers and users in these challenges.

In previous work, Pesquita and Couto [26] show that feature
engineering [29] can be effective for predicting class enrichment
of biomedical OBO/OWL ontologies. González and Hogan [11] in-
troduce a new algebra over characteristic sets, and use it in eleven
weeks of Wikidata snapshots to predict future changes. However,
these methods have two important pitfalls. First, they have been
evaluated in only one application domain; questions about their
generality and domain independence remain open. Second, they

1https://schema.org/docs/releases.html
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provide no explanations for ensuring good predictability of vocab-
ulary change; e.g., how often versions need to be released, what
types of changes have a deeper impact in change predictability, etc.
Therefore, our interest is to investigate a more generic approach
for predicting when and where a Web vocabulary of any domain
will change; and to explain what specific features make vocabulary
changes more predictable. We build on ([26, 29, 34]) and propose a
generic vocabulary change prediction framework based on feature ex-
traction and supervised learning on past versions of LinkedDatasets.
This framework predicts change in arbitrary schemas (vocabularies,
taxonomies, ontologies) in RDF graphs in a domain-independent
manner; and offers human-understandable explanations for such
changes through human-interpretable features and feature ranking
algorithms. Our research questions are:
RQ1. To what extent can we use past versions to predict concept

change in WV independently of the domain of application?
RQ2. What per-version features in past vocabulary versions have a

greater influence on predicting concept change in WV?
RQ3. What per-chain features in past vocabulary versions have a

greater influence on predicting concept change in WV?
In order to address these, we apply our proposed framework

to 139 different Web vocabulary version chains in RDF, including
the Dutch historical censuses [20], the DBpedia ontology [18], vo-
cabularies from SPARQL endpoints in the Linked Data cloud [33],
and Linked Open Vocabularies used all over the Web. We obtain
solid evaluation performances, with F-measures of 0.84, 0.93 and
0.79 on test data. We explain the datasets in which our approach
works best, and find that features such as dataset size, the number
of versions in the chain, the time gap between each version or the
tree-depth of their hierarchies have an influence in the quality of
the predictive models. Therefore, our contributions are:
• A domain-independent and reusable framework for learning and
predicting concept change in vocabulary version chains; based on
combining, integrating, and leveraging various existing machine
learning building blocks.

• To the best of our knowledge, the largest and most comprehen-
sive collection of features explaining vocabulary change on a
per-version and per-chain vocabulary basis, along with tools to
compute them. We show that human-engineered features com-
bined with feature selection [15] are very effective in addressing
explainability of vocabulary change models learned from data.

• A large scale, multi-domain evaluation of the performance at
learning and predicting ontology change in 139 versioned on-
tologies from 9 different domains (e.g. academia, government/or-
ganisations, geographic, cultural, etc.).
The rest of the paper is structured as follows. In Section 2, we sur-

vey previous efforts addressing the problem of vocabulary change.
Section 3 describes our approach, pipeline and feature set. In Section
4 we present our evaluation, describing our datasets and experimen-
tal setting. In Section 5 we show our results, and discuss them with
respect to our research questions, before we conclude in Section 6.

2 RELATED WORK
In Machine Learning, changes in the domain are related with the
phenomenon of concept drift [9], which occurs when “the concept
of interest may depend on some hidden context, not given explicitly

in the form of predictive features. (...) Changes in the hidden context
can induce more or less radical changes in the target concept, which
is generally known as concept drift” [31]. Multiple concept drift
detection methods exist [9]. Similarly for ontologies, SemaDrift is
a framework for calculating semantic drift in ontologies [28]. The
authors define various related terms such as semantic drift, change,
and decay but also concept change and drift, a "transformation
of meaning of ontology’s underlying concepts between versions"
[28]. Further, OntoDrift [4] extends the ideas and implementation
of SemaDrift, by considering more aspects of a context. They also
account for additions of new concepts and removal of old ones,
by adding the Jaccard Index to their drift measure [4]. Although
effective for computing pair-wise drifts, SemaDrift and OntoDrift
are heuristic-based and therefore do not scale well to large datasets.

In the SemanticWeb, changes in concepts can be studied through
formal differences between ontologies in Description Logics [10].
[7] propose a method based on clustering similar instances to detect
concept change. [13] focus on semantic drift definition based on
concept signatures within ontologies. The related field of ontol-
ogy evolution deals with “the timely adaptation of an ontology and
consistent propagation of changes to dependent artifacts” [1]. Ac-
cordingly, change is only a step in the evolution process, although
the definition of the goal of ontology change (“deciding the modifi-
cations to perform upon an ontology in response to a certain need
for change as well as the implementation of these modifications
and the management of their effects in depending data, services,
applications, agents or other elements” [8, 13, 16]) suggests that
the overlap between the two fields is considerable.

Predicting changes can also be seen as ontology forecasting, i.e.
predicting which new concepts are going to be added to the ontol-
ogy by only using past knowledge. For this purpose, [3] introduce
the Scientific Innovation Forecast (SIF) model. Their approach out-
performs known baselines when forecasting over 5 years. The field
of graph completion and link prediction is also related [2]. However,
we do not aim at predicting new concepts or links, but rather to
predict where changes are going to occur within an ontology, to
already present concepts. Gonzalez et al. [11] define an algebra
using characteristic sets, which they use on a change learning and
prediction task. They apply it to eleven weeks of data from Wiki-
data, by converting it to characteristic sets and using diffs between
versions to predict the following changes. However, they do not
use version chains and the additional step of conversion makes
it hardly comparable to versioned, human-engineered ontologies.
[24] introduce a new strategy for updating RDF links by predicting
triple-level changes, and using this predictions to identify what RDF
documents to update. However, their focus is not on the change
prediction but rather on the update which follows. Robust learning
algorithms in ontology streams with semantic drift have also been
investigated [5, 25]; however, graph streams demand a much higher
update frequency than the classic ontology versions we study here.

In the closest work to ours [26], authors propose a method based
on supervised learning on past ontology versions to predict en-
richment of classes of biomedical ontologies. Models of change
are learned from data, and features are engineered according to
the guidelines described in [29]. [29] shows evidence that good
vocabulary change predictors are generally related to (a) the struc-
ture of classes, subclasses and properties in an ontology; (b) the
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instances belonging to them; and (c) the usage of classes, proper-
ties and instances in applications. Together with the definitions of
concept change described in [34], [26] and [29] provide an ideal
framework for studying the effectiveness of supervised learning
for Web vocabulary change. These methods have not been applied
in various application domains, questioning their generality; and
provide no explanations nor recommendations for good prediction
results, e.g., how often versions need to be released, what changes
have deeper impacts, etc. This paper addresses these pitfalls.

3 APPROACH
Our proposal builds on previous work in ontology evolution [29],
supervised learning for ontology extension prediction [26], and con-
cept drift detection [34]. We propose a supervised learning frame-
work that generalizes the approach in [26], empirically extends and
concretizes the features in [29], and automatically labels vocabulary
changes according to [34]. In [34], vocabulary changes are defined
by considering the intension (i.e. definition of classes and relations),
extension (i.e. instances of those classes and relations), and labels
(i.e. their identifiers) of concepts/classes. The intension of a concept
𝐶 is the disjoint union of a rigid and a non-rigid set of properties
(𝑖𝑛𝑡𝑟 (𝐶) ∪ 𝑖𝑛𝑡𝑛𝑟 (𝐶)). Identity over time is addressed through rigid
intension equivalency, i.e. 𝑖𝑛𝑡𝑟 (𝐶1) = 𝑖𝑛𝑡𝑟 (𝐶2). Intension, exten-
sion, and label similarity functions 𝑠𝑖𝑚𝑖𝑛𝑡 , 𝑠𝑖𝑚𝑒𝑥𝑡 , 𝑠𝑖𝑚𝑙𝑎𝑏𝑒𝑙 ↦→ [0, 1]
quantify meaning similarity between identical concepts in different
versions of a vocabulary.

To define the task of change prediction, consider an ordered
set, or sequence, of versions of a vocabulary 𝑉 (with or without
instance data), where each version (𝑉1, ...,𝑉𝑛) of 𝑉 is an updated
copy of a previous version with a new timestamp. Based on the
notion of identity defined above, the task of change prediction is to
decide for a concept 𝐶 ∈ 𝑉 in the most current version 𝑉𝑛 whether
𝐶 is a candidate to be changed or not, and if so with what type
of change (intensional, extensional or label change as defined in
[34]). The notion of a "candidate to be changed" is a soft notion,
mimicking the expected behaviour of a knowledge engineer. In our
experiments we will use previous modelling behaviour to evaluate
the quality of our prediction with respect to unseen, future changes.

More specifically, our framework includes: (a) an abstraction
of the input parameters required for the learning process; (b) an
abstraction of features that apply not only to ontologies, but to
other Linked Datasets such as vocabularies and taxonomies; and (c)
a pre-learning optimization technique to merge features of identical
concepts between versions, into single training/test individuals.

3.1 Framework
Figure 1 shows the pipeline of our proposed framework, which
uses as input a set of feature generation and learning parameters, a
change definition, and a set of vocabulary versions (𝑉1, ...,𝑉𝑛); and
returns a list of ranked features and classifier performances.

First, the Feature Generator (FG) generates 𝑘 training datasets
and one test dataset, using the following input elements: (a) a vo-
cabulary version chain (𝑉1, ...,𝑉𝑛) containing 𝑁 versions of a vo-
cabulary 𝑉 in any RDF serialization; (b) various user-set feature
generation parameters, such as ΔFC and ΔTT (see Figure 2) which
establish what vocabulary versions to compare for changes in the

training and test sets, respectively; and (c) a customizable definition
of change that determines the value of the target variable. In our
approach, we use the framework of [34] to automatically estimate
change labels, using an ensemble of intension, extension, and iden-
tifier changes. Once all set, 𝑘 training datasets and the test dataset
are built by the FG as shown in Figure 2. The parameters 𝑁 , Δ𝐹𝐶
and Δ𝑇𝑇 determine which versions will play the role of {𝑉𝑡 }, 𝑉𝑟
and 𝑉𝑒 . {𝑉𝑡 } is the set of training versions, which are used to build
the training dataset. 𝑉𝑟 is the reference version, against which all
versions in {𝑉𝑡 } are compared, using the definition of change pro-
vided as input, to determine whether there is concept change or
not.𝑉𝑒 is the evaluation version and is used to build the test dataset,
following a similar procedure as with {𝑉𝑡 } and 𝑉𝑟 , this time com-
paring 𝑉𝑟 with 𝑉𝑒 . 𝑉𝑒 is set by default to the most recent version.
While extracting the features in Table 1, each concept is labelled
depending on whether change is detected between one version of
the concept and the next, according to the definitions of [34].

Since versions can only be compared pairwise, the FG produces 𝑘
training datasets. To preserve the identity of the training instances,
the Identity Aggregator (IA) matches concepts that are identical
in the 𝑘 training datasets and merges their features, modifying the
dataset dimensionality accordingly. We use a simple instance-based
matching, based on string similarity of resource identifiers (URIs)
with a tolerance to namespace changes and minimal typing errors.
The training and test datasets are then passed to the Normalizer
module (Norm), which adjusts feature value ranges, normalises
features across versions, and discards potential outliers.

The training datasets are then fed into the Machine Learning
Interface (MLI) for the feature selection and classification tasks.
Here, we build on top of the machine learning algorithms provided
by the WEKA API [14] (dashed arrow in Figure 1). The learning
parameters (bottom left of Figure 1) are used here for a domain-
independent customization of change learning, and contain: (a)
a feature selection algorithm (Relief [15]) to rank features; (b)
a relevance threshold 𝑡 to filter selected features; and (c) the list
of WEKA classifiers to be trained. The MLI uses then the normal-
ized feature datasets to perform feature selection, train the chosen
machine learning classifiers, and evaluate the trained models.

3.2 Feature Set
We use two types of features, identifying locally and globally im-
portant features according to the literature [29] and experimental
datasets (Section 4.1). The first set are per-version features. These
features are calculated for every specific version in a version chain,
yielding multiple values, depending on how many versions there
are. The second are per-chain features, which characterise an en-
tire chain, not each version separately. They focus on changes and
average characteristics of the vocabularies. Table 1 summarizes all
the features in our approach. We propose sets of concept structural
features and membership features. Structural features measure the
location and the surrounding context of a concept in the schema,
such as children, siblings, depth of a concept (i.e. distance to the
leaves), etc. Since WV are graphs in general and may contain cycles,
these properties are defined with a𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ threshold that indi-
cates the maximum level at which the property will be calculated
(e.g. direct children, children at depth one, two, etc.).
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Figure 1: Pipeline of our approach. Arrows show the data flow through the modules.

ID Scope Description

dirChildren Per-version Number of directly connected concepts via skos:broader, rdfs:subClassOf, etc.
dirChildrenD Per-version I.d. with direct children at 0 ≤ 𝑑𝑒𝑝𝑡ℎ ≤𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

parents Per-version Number of concepts this concept descends from
siblings Per-version Number of concepts that share parents with this concept
dirArticles Per-version Number of typed instances or user-defined membership properties linking the concept with an instance (e.g. rdf:type)
dirArticlesChildrenD Per-version I.d. with children at 0 ≤ 𝑑𝑒𝑝𝑡ℎ ≤𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

ratioArticlesChildren Per-version Ratio of instances per number of direct children
ratioArticlesChildrenD Per-version I.d. with children at 0 ≤ 𝑑𝑒𝑝𝑡ℎ ≤𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

totalSize Per-chain Total size of the vocabulary chain in number of triples
nSnapshots Per-chain total number of vocabulary versions
avgGap Per-chain Average time gap (in days) between the versions
avgSize Per-chain Average size of the vocabulary across all versions in number of triples
nInserts Per-chain Average number of inserted new statements from one version to the next
nDeletes Per-chain number of deleted statements from one version to the next
nComm Per-chain number of common statements across versions
isTree Per-chain (True or false) Indicates whether the vocabulary is a tree (without cycles) or a graph (with cycles)
maxTreeDepth Per-chain maximum tree depth among versions (i.e., highest depth level of chained subconcept relations)
avgTreeDepth Per-chain Average of previous, across all versions
totalInstances Per-chain Total number of typed entities, i.e. instances belonging to a class through a membership property
ratioInstances Per-chain 𝑟𝑎𝑡𝑖𝑜𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠/𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒
totalStructural Per-chain Total number of structural statements, indicating the relationship between two vocabulary concepts
ratioStructural Per-chain 𝑟𝑎𝑡𝑖𝑜𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 = 𝑡𝑜𝑡𝑎𝑙𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙/𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒

Table 1: All features for vocabulary change considered in our approach, including per-version (i.e. one timestamped vocabulary
snapshot) and per-chain (i.e. including all versions) features.

Figure 2: AWeb vocabulary version chain. Training and test
datasets for 𝑁 = 7, Δ𝐹𝐶 = 1 and Δ𝑇𝑇 = 2.

4 EVALUATION
The source code implementing our proposed approach in Figure
1 and datasets are available online.2 We apply our approach on
139 different vocabularies, describe the properties of their version
chains, the experiment setup and the evaluation criteria.

4.1 Datasets
We use the following 139 RDF vocabulary version chains:

2Code & results: http://goo.gl/rASX6S. Data: https://zenodo.org/deposit/5585701

• 1 version chain of the DBpedia ontology [18] (8 versions), with
community-curated classes and properties describing DBpedia
content. Instances are DBpedia resources with a rdf:type of
some class in this ontology and some rdfs:label label.

• 1 version chain of the Dutch historical censuses dataset [20],
(CEDAR, 8 versions), a SKOS taxonomy of historical occupa-
tions (HISCO). Instances are census observations with a HISCO
cedar:occupation concept and some skos:prefLabel.

• 3 version chains from ontologies in the Linked Open Data cloud
[33] (LODC, 3+ versions), returning 49,379 ontologies of which
we filter all having at least two chained owl:priorVersion
which are de-referenceable and parseable; this results in in 3
ontology chains (geonames, fao and lingvoj).

• 134 version chains from Linked Open Vocabularies [32] (LOV, 3+
versions), a well-known collection of Semantic Web vocabularies
(e.g. schema.org, PROV, DCAT, Bio, FOAF, etc.) that covers 9
broad domains: metadata/datasets (31.3%), government (14.9%),
cultural (13.4%), academic (12.7%), geographic (12.7%), linguistic
(7.5%), biomedical (3.0%), IoT (3.0%), and technical (1.5%).

Each version within these chains consists of (a) schema infor-
mation expressed using vocabularies like SKOS [21], RDF Schema
[23] and OWL [19]; (b) instance data making use of such schema;
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and (c) labels describing the nodes of the schema and the instances.
A detailed breakdown of these 4 groups, the 139 version chains
and their characteristics is available online.3. The selection of these
specific datasets is due to multiple reasons. First, they cover dif-
ferent levels of semantic expressivity, from SKOS taxonomies to
OWL ontologies. Second, the temporal gap between each version
varies from a minimum of 6 days (LOV), 10–12 months (DBpedia),
4.5 years (LOV) to 10 years (CEDAR). Third, the selection contains
both manually and automatically created datasets: the DBpedia on-
tologies have a mixed automatic/manual maintenance [18], while
the CEDAR data is a totally manually maintained dataset. Fourth,
DBpedia data is born-digital, open, and still evolving (2007–), whilst
the CEDAR dataset is historical legacy, non born-digital, and tem-
porally closed (1849–1930). The LOV dataset includes a brought
range of sizes, on avarage 1K triples. LOV versions chains are on
average considerably smaller than DBpedia and CEDAR, which
have 10 million and over 2 million triples respectively. The three
chains in LODC are of sizes 22K, 16.5K, and 1.5K triples each. LOV
covers the range of small KOS starting at 19 triples for the smalles
and ending at 18.6K triples for the largest. Conclusively, DBpedia,
CEDAR, LOV and LODC cover a wide range of different KOS in
various aspects such as size, ageing, and construction.

4.2 Experimental Setup
In accordance to our research questions our evaluation process is
three-fold. First, we use selected features for supervised learning,
and evaluate the quality of the resulting classifiers on predicting
concept change (RQ1). To evaluate the resulting models, we use
10-fold cross-validation on all datasets and report the performance.
In addition, we use the long chains, and abundance of instance data,
of DBpedia and CEDAR to compare the predictions with the actual
changes in a next dataset version. To do this, we use the dataset 𝑉𝑒
produced after setting the parameter Δ𝑇𝑇 , and we compare predic-
tions with unseen labeled data. Since more versions are available
in the chains of CEDAR and DBpedia, we execute several learning
tasks adding more past versions to {𝑉𝑡 } incrementally. We study
how this impacts prediction of change in 𝑉𝑖 . To measure model
performance we use precision, recall, F-measure, and area under
the ROC curve. We report the best of the 10-fold cross-validation;
in DBpedia and CEDAR, we also use the unseen 𝑉𝑒/𝑉𝑖 version for
testing. Second, we assess the quality of our features as concept
change predictors, choosing the most performing ones via feature
selection. Feature selection is executed by the Relief algorithm
[15], whose results will answer RQ2. Third, we use linear and mul-
timodal logistic regression on the learning results to explain what
characteristics of versioned vocabularies make their changes more
predictable. With this part of our evaluation, we answer RQ3.

Parameter tuning. For our framework parameters, we train
models with all permutations regarding the number of ontology
versions, the and parameters, and the values of structural, instance
and label properties; and select the one with the best performance.
For the ML hyperparameters, we rely on the default experimental
values provided by the WEKA interface. Parameters are set at 𝑡 =
0.8 (experimentally) for the relevance threshold; 𝑀 = 1, 𝐷 = 1,
𝐾 = 10 for Relief; and 𝑇 = 0.05, 𝑁 = 1 for the ranker.

3http://bit.ly/kos-change

5 RESULTS AND DISCUSSION
We introduced a change predictionmethod based on concept change
of previous versions. In this section, we report on our results, pro-
viding evidence for all our research questions evaluating: (RQ1)
general performance using a concept change method to predict
future changes in a domain-independent setting, aiming at generic-
ity; and in order to understand and explain this genericity, (RQ2)
the performance of the per-version feature set based on seman-
tics (see Section 3.2) and structure of vocabularies; and (RQ3) the
performance of the per-chain features leading to best change predic-
tions and specific model choices (see Section 3.2). We also discuss
the results in connection with each research question separately.
We find: (RQ1) strong change prediction ML models for almost all
datasets with >90% performance (Section 5.1); (RQ2) highly ranked
per-version features dealing with the structure and instances of a
concept and its neighbourhood (e.g. siblings, parents, dirArticlesChil-
drenD2) (Section 5.2); and (c) high correlations between per-chain
explanatory variables such as nSnapshots and avgGap, and perfor-
mance of change prediction (Section 5.3).

We emphasise that change prediction, just like link prediction or
graph completion methods, comes with its own challenges when
evaluating for accuracy. True predictions are penalised for not being
present in the dataset and assumed to be false. Therefore, the true
performance cannot really be known [2, 26].

5.1 Change Prediction
Table 2 shows precision, recall, F-measure, and ROC scores after
executing our proposed framework in all datasets described in
Section 4.1. Predictions for DBpedia and CEDAR are reported for
the newest version, for LODC and LOV we report CV results. The
three chains in LODC (fao, geonames, lingvoj) are listed separately.
As LOV is made of 134 different version chains, Table 2 shows
the average over all of them. Predictive models for DBpedia and
CEDAR achieve F-measures of 0.98 and 0.91 respectively. Figure 3
shows these results in more detail, running our approach six times
on DBpedia and CEDAR to account for their long version chains.
ROC areas show that models are robust using cross-validation in
almost all datasets. Precision and recall are balanced and contribute
equally to good F-measures. We observe how the non-overfitting
tendency of NaiveBayes is an advantage if the classifier is trained
with more past versions: e.g. MultilayerPerceptron predicts better
with less data (F-measures from 0.82 to 0.30), but with more versions
NaiveBayes performs better (0.72 to 0.84). Overall, CV results across
all 4 datasets, DBpedia (0.98), CEDAR (0.91), LODC (0.736) and LOV
(0.922) are encouraging, and show that high performance (>90%)
ML models for vocabulary change prediction can be learned using
domain-agnostic features.

However, the availability of sufficient structural and instance
data can severely affect these results, as shown in e.g. geonames
(0.527). This might be especially true when using these models
to predict the unseen 𝑉𝑒 versions, where performances can drop
significantly (0.67 in CEDAR and 0.36 in DBpedia). In CEDAR/DB-
pedia (Figure 3), we see a decreasing performance when the time
gap increases; i.e. 𝑉𝑒 is harder to predict when it is farthest away
in the future. A plausible explanation for this is that past versions
contain valuable knowledge for change prediction only to an extent;
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DBpedia CEDAR fao
(LODC)

geonames
(LODC)

lingvoj
(LODC)

LOV (avg.)

Precision .98 .93 .751 .438 .95 .895
Recall .98 .90 .765 .662 .947 .951
F-measure .98 .91 .744 .527 .937 .922
ROC area .81 .84 .844 .5 .792 .566
Best ML model Random Forest Simple Logistic Hoeffding Tree SGD Multilayer Perceptron Bayes Net

Table 2: Best 10-fold CV training scores in the version chains from DBpedia (𝑉𝑒 = 2003), CEDAR (𝑉𝑒 = 1930), the three LOD
SPARQL endpoints (LODC), and average over LOV. Scores are between 0 (worst) and 1 (best). For LOV, BayesNet was chosen as
the algorithm building the best models in the majority of chains.

Precision Recall F−measure ROC area
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Figure 3: Best change prediction performance in the CEDAR and DBpedia refinement experiment with 6 incremental learning
runs. The y-axis is the appropriate value for precision, recall, F-measure and ROC. The x-axis is a snapshot identifier.

after this, past knowledge would become noise if the vocabulary
concepts have changed too abruptly in the last version 𝑉𝑒 . We ob-
serve that CV results are generally worse in the LODC data (0.744,
0.527, 0.792). This can be due to the fact that datasets in SPARQL
endpoints are generally less consistent, include less vocabulary
descriptions, and are not always available [33]. Due to the unavail-
ability of sufficient versions, LODC and LOV are only evaluated
through 10-fold CV, with F-measures of 0.744, 0.527 and 0.937 for
the LODC vocabularies (fao, geonames, lingvoj) and 0.922 for LOV.
ROC areas show that models are robust using CV in all datasets,
except for geonames (0.5).

Comparison with other methods. Some of these results are
similar or outperform the state of the art [26] (on average f-measure
of 0.79); simultaneously, they are very hard to compare to similar
methods, especially SemaDrift [28] and FCA [11]. Comparing our
results with [26], we observe that for DBpedia and CEDAR we
clearly outperform in the 10-fold CV and the pure test results are
also slightly higher or comparable. In the case of LOV biological
ontologies, our 10-fold CV results match the performance of [26].
Additionally, we need to stress, that our task is not completely the
same as [26]. We also found that our datasets are much smaller
than GO. However, we do achieve similar and even better results
with smaller datasets and shorter version chains. This indicates
that our approach can be used without such an extensive evolution

as seen with GO in [26], which is a positive finding. Additionally,
our richer feature sets could also account for the better results.
They make our approach more usable and explainable, because
they are more general, do not restrict in the domain of application,
and can be easily interpreted (e.g. see Table 3). At this point, we
are unable to compare our results to those of SemaDrift [28] and
FCA [11]. SemaDrift [28] is purely used for measuring concept
drift between two concepts (not entire ontologies), but not for
learning or predicting change; however we leave experimenting
with SemaDrift’s change metrics for future work. On the other
hand, FCA [11] learns a new representation of the ontology and
not a model of the changes which will occur. Another difference
is the examined timeframes: [11] uses only a few weeks of data,
where our dataset versions can be much further apart. They found
that adding more data was beneficial to the performance of their
model however, we found that forgetting too old versions increased
our performance. Because of the different task, [11] old data is
beneficial, whereas in our model older content can possibly include
a shift in meaning making our performance worse.

5.2 Per-version Features
Table 3 shows the ranking of selected per-version features accord-
ing to their feature score in Relief [15]. Structural features are
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CEDAR DBpedia LODC & LOV

siblings dirChildren parents
dirArticlesChildrenD2 siblings siblings
ratioArticlesChildren dirChildrenD2 ratio3
dirArticles dirChildrenD3 dirChildren
dirArticlesD1 dirChildrenD4 ratio0
dirArticlesD2 dirArticlesChildrenD2 ratio

Table 3: Ranked features in CEDAR and DBpedia by Relief
[15]. The ranking for LODC and LOV features is averaged
from the rankings in specific vocabularies.

consistently ranked high across all datasets (e.g. siblings), while
instance features are consistently important for the datasets that
have them (e.g. dirArticles, dirArticlesChildrenD2).4 In CEDAR, in-
stance membership features (dirArticles, dirArticlesChildren) are
more often selected. Conversely, in DBpedia structural properties
are more often selected (dirChildren, dirChildrenD, siblings). In this
same line, structural features are also preferential for LODC and
LOV: parents, siblings and dirChildren rank higher, and seem to
have more weight closer to the concept (siblings) than at higher
depths (e.g. dirChildrenD4).

The availability of sufficient instance and schema data could
explain the majority of the most influential per-version features.
CEDAR, a taxonomy with instance data for almost every class,
displays a preference for mixing both structural and instance fea-
tures. DBpedia, is rich in both, but the complexity of the DBpedia
ontology [30] might explain the preference for features about onto-
logical relationships between classes and subclasses. The absence
of instance data for LODC and LOV makes the choice for struc-
tural features preferential as the main signal for change prediction.
The unavailability of instances in LODC and LOV seem to indicate
the importance of structural features.An explanation could be that
vocabularies in LODC and LOV are generally more flat and hence
changes generally have an impact on specific, sparse concepts.

A qualitative evaluation on specific vocabulary changes supports
these hypotheses. In CEDAR, cedar:hisco-06, the class of “medi-
cal, dental, veterinary and related workers”, is a concept correctly
predicted to change. Most of its structural features present high
stability across versions, e.g. number of children (4) and siblings (9);
but those related to its instances vary, e.g. number of instances (841,
68, 143, 662, 110). In DBpedia, the concept dbpedia:CollegeCoach
is also expected to change, with the number of Wikipedia articles
pointing to it (instance feature) increases linearly (2787, 3520, 4036,
etc.). Structurally, however, its siblings remain stable (21, 21, 23, 23)
until it gets a new parent and its siblings suddenly explode (23, 344).
This shows that both types of features can be deciding in terms of
change, and the importance of feature engineering for generating
human-understandable explanations.

Therefore, instance features are ranked higher to predict change
in datasets that have rich information on them (CEDAR); while
structural features are preferential in datasets with more structural
(LODC, LOV) and hybrid (DBpedia) information. In other words,
selected features and classifiers depend on the kind of data available;
however, when both are present (e.g. DBpedia), structural features
continue to be more defining of change than instance ones.

4We leave a more formal analysis using feature consistency metrics for future
work.

−3 −2 −1 0 1

avgTreeDepth

log(avgGap)

log(nSnapshots)

log(totalSize)

ratioInserts

ratioInstances

ratioStructural

Estimate

Figure 4: Coefficient values of the best linear regression
model explaining change predictability depending on fea-
tures.

5.3 Per-chain Features
To explain per-chain features (second half of Table 1) that impact
change predictability we use: (a) regression analysis, to understand
which ones are good predictors of high classification performance
(i.e. we use area under the ROC curve as a response variable); and
(b) multinomial logistic regression, to analyse which ones are good
predictors of the best classifier type. The best regression analysis
model is shown in Figure 4. Since we have 137 degrees of free-
dom, at 𝑝 < 0.05 significance level any 𝑟 value above 0.166 denotes
dependency. nSnapshots (0.276) and avgTreeDepth (0.192) hold a
direct dependency on roc, while avgGap (-0.263) holds an inverse
dependency. Larger versions (totalSize, 0.180) with more inserts be-
tween versions (nInserts, 0.166) and more instances (totalInstances,
0.176) explain models with high precision and recall. In summary,
version chains with more versions (snapshots), more frequent re-
leases, with deeper tree structures and with more instance data are
related to better predictive models for vocabulary change. We find
that avgGap is influential at selecting a tree-based classifier instead
of a bayes-based one. According to the results of the multinomial
logistic regression,5 we find that totalSize is influential at selecting
function- and rule-based classifiers instead of bayes-based classi-
fiers. Almost all classifier families will be less likely chosen if the
elapsed time between versions (avgGap) increases; in other words,
more frequent releases will favour most models predicting vocabu-
lary change. Interestingly, ratios on instance and schema data will
influence the best classifier type in an inverse way: more instance
data will favour tree-based and rule-based classifiers; while more
schema data will favour bayes-based classifiers. Finally, multino-
mial logistic regression shows that the most performant classifier is
selected mostly depending on the number of versions in the chain,
the tree depth of these versions, and the ratio of instance data in
each version.

6 CONCLUSIONS AND FUTUREWORK
Changes in WV pose important challenges to publishers and con-
sumers of data, regarding the intensive knowledge-based mainte-
nance of vocabularies and their adequate, up-to-date use in datasets.

5See supplementary material at http://bit.ly/web-vocabulary-change
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We propose to automatically detect which parts of a vocabulary
will undergo change in a forthcoming version, leveraging change
knowledge contained in past versions and using supervised learning
to learn change prediction models. We contribute a customizable
and domain-independent framework based on feature extraction
from vocabulary version chains; these features can be used to pro-
vide human-understandable explanations of change. Regarding our
research questions, we find that concept change can reliably be
predicted with high F-measures (0.98 in DBpedia, 0.91 in CEDAR,
0.73 in LODC, 0.92 in LOV) and independently of the domain of
application (139 multi-domain datasets), generalising previous re-
sults [26] (RQ1). Importantly, major vocabulary revisions and the
availability of instance data have an impact in the usefulness of past
versions for change prediction. Moreover, change prediction evalu-
ations can be biased to already known changes while penalising
false predictions, which could simply be unknown in the dataset
[26, 34]. Thus, we defer studying the usefulness of such change
predictions to future work. We also find that the per-version fea-
tures that have a greater influence on predicting concept change
are the number of instances and class relations of a concept and
its ontological surroundings (RQ2). Looking at per-chain features,
concept change predictions are better when the vocabulary version
history is longer; versions are released more often; and when these
have a deeper subclass hierarchy (RQ3).

In the future, we plan to incorporate and compare directly our
results with other approaches [11, 25, 28]; this comparison was
impossible since these approaches do not focus on version chains
as we do. Specifically, we will apply our framework to ontologies
from the biomedical domain [27] and use the same dataset as [26] to
compare performance more directly. Secondly, we will investigate
how other definitions of concept change [7, 13] can affect predic-
tion performance. Third, we plan to scale up our approach with
larger, streamed datasets such as Schema.org [12] and Web Data
Commons [22], aiming towards real-time change prediction and
incorporating heuristics-based approaches such as SemaDrift [28]
to improve computing time. Fourth, we will investigate the effects
of reasoning in ontology change prediction, potentially bringing in
new predictors and less learning times. Lastly, we will study if the
introduction of predictive models in the practice of knowledge en-
gineers, e.g. using prediction models for change recommendation,
does actually improve efficiency in knowledge engineering tasks.
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