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1 Introduction 

The 2UP model was developed by PBL Netherlands Environmental Assessment Agency for 

spatially explicit simulation of the future growth of cities and population at a global scale (van 

Huijstee et al., 2018). The model describes urban land use and population at a fine 30” spatial 

resolution equivalent to approximately 1x1km near the equator. The model combines scenario-

based projections of urban area and population development with local suitability constraints to 

generate future urban area and population grids. The local suitability for urban development is 

dynamically generated according to a parameterized suitability model. An initial version of the 

suitability model was calibrated using logistic regression analysis explaining the global 2014 urban 

land-use patterns with a limited set of spatially explicit data sets (Andrée and Koomen, 2017). As a 

follow-up, the current report documents several efforts to improve that initial calibration.  

First, the statistical analysis is now performed separately for different continents to allow for a more 

heterogeneous response of the spatially explicit drivers of urban development. Second, the set of 

variables capturing the most important drivers of urban spatial expansion has been supplemented 

to include distance to freshwater (rivers and lakes, potentially important in dry climates), distance 

to different types of roads, presence of protected natural areas, and exposure to various natural 

hazards. Third, we have explored more sophisticated regression techniques, including down-

sampling, to better deal with the unbalanced data, including a very small amount of urban relative 

to non-urban observations. Finally, we now also explain where urban land use developed between 

1990 and 2014. The latter analysis can be used to explicitly specify suitability for new urban 

development based on recent growth patterns only. In this report, we reflect on the applicability of 

this approach as compared to specifying suitability based on analysing urban patterns in a single 

year, dubbed as the static approach in this report. 

An extensive discussion of the rationale and performance of these improvements is provided in the 

Master thesis in which they were first tested (Ferdinand, 2020). This short report documents the 

results of the revised calibration analysis that are used to specify the suitability for urban 

development in the adapted version of the 2UP model. The performance of the revised settings 

(validation) will be discussed in the scientific paper that VU is preparing in cooperation with PBL. 
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2 Methods  

2.1 Data pre-processing  

2.1.1 Continent-specific calibration and dependent variables 

The analysis was carried out for each continent separately to improve the calibration and account 

for continent-specific urban growth patterns. The primary calibration dataset, containing the 

dependent variables (urban area in 2014 and newly developed urban between 1990 and 2014) and 

independent variables capturing the essential spatial driving forces, was split into seven continent-

specific datasets. Data for Australia and Oceania have been combined because Oceania alone had 

too few urban cells to fit and validate a proper model.  

Table 1 shows the total number of observations (non-urban and urban cells) for each continent for 

the two analyses after NoData values have been dropped. Note that the cells that became urban 

between 1990 and 2014 overlap with all cells that were urban in 2014. This overlap ranges between 

20% (for Australia and Oceania) and 45% (for Africa). This implies that these separate regressions 

are also likely to show similar results. For Asia, the number of observations was much higher than 

for the other continents. To make the statistical calibration for Asia computationally feasible, the 

smart sampling strategy from the autoGLM package described in the previous calibration report 

(Andrée and Koomen, 2017)1 was used to reduce the number of observations for Asia by 50 percent.2 

Table 1. Number of observations and sample sizes per continent for the analyses explaining urban area in 
2014 and urban expansion between 1990-2014 (with the percent overlap with all urban cells in 2014). 

Continent  Sample share Static analysis Dynamic analysis 

  Valid 
observations 

Urban cells in 
sample  

Valid 
observations 

Urban cells in sample (% of 
cells from static analysis) 

Africa 1 36,325,023 56,545 36,293,574 25,096 (45%) 

Asia 0.5 42,306,983 115,002 42,231,171 40,633 (37%) 

Australia & Oceania 1 10,869,627 13,369 10,858,720 2,462 (20%) 

Europe  1 11,026,506 156,030 10,902,396 31,920 (22%) 

North America  1 40,285,937 177,685 40,154,202 45,950 (27%) 

South America 1 21,634,881 32,277 21,608,942 6,338 (21%) 

The main dataset has 206,825,451 observations (including NoData cells) 
The dynamic analysis includes those urban cells that were newly developed between 1999 and 2014. Incidental occurrences 
of loss of urban area are assumed to result from classification issues and discarded. 

 

 

1 The package is available from GitHub (https://github.com/BPJandree/AutoGLM) 
2 This sampling strategy is designed to reduce sample size while keeping the statistical properties of the sample 
data similar to the full data set, which results in almost identical model parameter estimates as one would 
obtain when processing the entire data set. 



Revised calibration of the 2UP model; analysing change and regional variation 

 

 7 

2.1.2 Explanatory variables  

Compared to the earlier version of the statistical calibration, several explanatory variables have been 

added. The newly added variables relate to distances to relevant spatial features (coastline, 

freshwater bodies, main roads and secondary roads), the presence of specific natural hazards (river 

floods, earthquakes and landslides) and spatial planning (protected areas). The general 

characteristics of the explanatory variables are listed in Table 2 and a more extensive description 

with sources is included in Appendix 1. Two predictive variables included in the previous 

calibration, urban area density and coastal urban area density, have been omitted due to their 

endogenous nature. Travel time is now included as individual minutes (up to 1 hour) and not any 

longer grouped in a limited number of classes. Elevation, slope and terrain roughness are described 

as in the previous calibration. Soil type was also considered as an explanatory variable and included 

as a series of dummy variables linking to specific soil types, but these were excluded from the final 

analysis because their contribution to explaining urban development was limited (see Appendix 1). 

In total, 13 drivers were used to describe the presence and growth of urban area.  

Table 2. Descriptive statistics of the dependent and explanatory variables. 

* The previous calibration report referred to this urban area layer as 2010 in line with other base data in the 2UP model, 
but the underlying GHSL data is based on 2014 imagery. 
** This represents mean population density in the eight surrounding cells without considering the central cell. A natural 
logarithm is applied to limit the impact of occasionally very high values, replacing zero values with 0.1 to prevent errors. 

 
Several pre-processing steps were executed for each continent to only retain relevant explanatory 

variables (see Figure 1). First, the data was split into continent-specific datasets, and subsequently, 

all rows containing no data values were dropped. In a third step, the bivariate correlation between 

variables was tested, as exemplified in Figure 2 for Europe. Per variable pair with a correlation 

coefficient larger than 0.7, we excluded one variable to reduce dimensionality of the data without 

losing linearly important information. To decide which of the two variables to retain, caret’s 

Variable name (unit) Africa Asia Australia 
& Oceania 

Europe North 
America 

South 
America 

 Min Max Min Max Min Max Min Max Min Max Min Max 

Urban area 2014* 0 1 0 1 0 1 0 1 0 1 0 1 

Urban expansion 1990-2014 0 1 0 1 0 1 0 1 0 1 0 1 

Ln neighbourhood population density 1990**  -2.3 12.7 -2.3 13.1 -2.3 11.1 -2 11.6 -2.3 11.5 -2.3 11.1 

Distance to coast (km, cut off at 250) 0 250 0 250 0 250 0 250 0 250 0 250 

Distance to fresh water body (km, cut off at 250) 0 250 0 250 0 250 0 250 0 250 0 250 

Distance to main roads (km, cut off at 250) 0 250 0 250 0 250 0 250 0 250 0 250 

Distance to secondary roads (km, cut off at 250) 0 250 0 250 0 250 0 250 0 250 0 250 

Travel time to city centre (minutes, cut off at 60)  0 60 0 60 0 60 0 60 0 60 0 60 

Elevation (meters) -170 5,825 -406 8,682 0 4,437 -30 4,570 -84 5800 -116 6798 

Slope (in degrees)  0 55 0 54 0 59 0 40 0 48 0 58 

Terrain roughness index (1-7)  0 7 0 7 0 7 0 7 0 7 1 7 

Protected area (0 or 1 =true) 0 1 0 1 0 1 0 1 0 1 0 1 

Flood prone area (0 or 1 =true) 0 1 0 1 0 1 0 1 0 1 0 1 

Earthquake intensity (0-8 range; 8 = high) 0 6 0 8 0 8 0 8 0 8 0 8 

Landslide prone (0 or 1 = true) 0 1 0 1 0 1 0 1 0 1 0 1 
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‘findCorrelation’ function was applied that removes the variable with the largest mean absolute 

correlation with all other variables. After this initial screening, the balanced logistic regression 

model, described in Section 2.2, was run. The results of this first logistic regression indicated that 

not all variables contributed to the overall prediction performance of the model. These insignificant 

predictors were removed from the dataset in a fourth pre-processing step, resulting in the final 

dataset per continent used for the logistic regression discussed in Section 3. 

 

Figure 1.The main data pre-processing and variable selection steps (1-4) in the regression analysis. 

 
Figure 2. Bivariate correlation coefficients for urban change 1990-2014 and all available explanatory 
variables in Europe. All correlation coefficients are significant in this example. One variable was excluded 
per variable pair with a correlation coefficient larger than 0.7. 
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2.2 Balanced logistic regression model  

Several different regression models have been explored to find the most suitable one for the problem 

at hand (see Ferdinand, 2020). The biggest hurdle in fitting a good regression model is the size of 

the dataset and the imbalance of the two classes (urban/non-urban). Giving an example, Table 1 

shows that less than only 0.27% of all observations for Asia are urban. This means that a model can 

achieve 99.73% classification accuracy by assigning zero suitability for urban land use to all cells, 

which would be highly problematic when that suitability is subsequently used to simulate plausible 

future urban development. Therefore, the final model for the analysis was selected based on 

balanced accuracy metrics that give equal weight to accuracy on both urban and non-urban 

validation samples. The performance metrics thus ignore the imbalance in classes in a validation 

sample and only reward model predictions that differentiate between both urban and non-urban 

samples within both classes rather than simply reflecting the near-zero rate of occurrence of urban 

land use itself3. By comparison, the uninformative model that would reach 99.73% accuracy by never 

predicting an urban pixel would only reach Balanced Classification Accuracy of 50%. More 

discussion on balanced validation metrics, their policy interpretation in the context of model-based 

decision making, and the connection to a Weighted Maximum Likelihood criterion can be found in 

Andrée et al. (2020).  

Given the large datasets and the training data's imbalancedness, a logit model with a downsampling 

approach was used for further analysis. This has the benefit that the training data becomes balanced 

by discarding samples from the majority (non-urban) class and thus, apart from improving model 

predictions on a balanced performance metric, also smaller and easier to process. The predictive 

modelling was done in R using the caret package, short for Classification And REgression Training. 

A short overview of the operational steps in the statistical analysis is included in Appendix 2. 

A training and testing sample is created from the original dataset to prevent overfitting and ensure 

the model performs well on new data. The train/test split was set at 0.5 and was generated using a 

stratified sampling approach that leaves the class frequency intact in both the training and holdout 

 

 

3 In particular, a linear model with down-sampling is comparable to a model with case weights that explicitly 
increases the weight of individual minority class observations (rather than duplicating them in the estimation 
sample). Maximum Likelihood Estimation is a probabilistic framework for estimating the parameters of a 
model, and for a logit model, the likelihood function is the same as the log-loss function. Estimating the logit 
model with down-sampling is thus equal to calibrating it by minimizing a balanced log-loss function. Balanced 
log-loss, for a completely uninformative model, is minimized at a probability prediction of 0.50. This 
uninformed guess, in turn, corresponds to an expected balanced accuracy of 50% if residual errors are uniform. 
The balanced accuracy will be used to interpret and compare the different models for each continent. 
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data.4 Caret’s train function was used to tune the logit model using data from the train split and test 

its performance using cross-validation techniques on the training data. A standard k-fold cross-

validation is used with the number of groups in which the data is split (k) is set at = 10. Cross-

validation is often applied in machine learning to estimate the prediction performance of a model; 

in this case, we estimate the model 10 times on 90% of the training data and validate the predictions 

on the remaining 10%, finally averaging out the 10 out-of-sample performance estimates to obtain a 

final estimate of true holdout performance.  

Data manipulations, such as the down-sampling scheme used to obtain a more balanced model fit, 

occur “within” fold; that is, they are repeated separately on each of the 90% samples such that the 

cross-validation estimate reflects the impact of such procedures on out-of-sample predictions. This 

procedure can be used to estimate the impact of and decide between various modelling decisions. 

These decisions are represented by different “hyper-parameters,” which are often referred to as 

“tuning-parameters” when cross-validation is used to optimize over them explicitly. A key tuning 

parameter used in this analysis is a regularization, or “penalty,” parameter that discourages overly 

complex models by shrinking parameter values toward 0 when predictors are weak. In the context 

of neural networks, this parameter is often called “decay.” This language will be adopted here. To 

ensure that the penalization similarly impacts parameters of different predictors and thus disregards 

the variance of that predictor, each variable is normalized to the [0,1] range within each fold. Finally, 

cross-validation is only performed on the 50% train split, so the remaining 50% test split can be used 

for final validation. 

In the subsequent sections, the results from the regression analyses are described, starting with the 

analysis of all urban areas present in 2014 in Section 2 and the analysis of the urban area developed 

between 1990 and 2014 in Section 3. 

  

 

 

4 The data split was created with the createDataPartition function from the caret package. 
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3 Results 

3.1 Results static analysis (urban area 2014) 

In this section, the regression results for the existing urban area in 2014 will be presented. By way of 

example, the cross-validation results for Europe are shown in Figure 3. The figure demonstrates how 

the cross-validation estimates of a balanced log-loss metric vary across different values of the decay 

parameter. In particular, it shows that out-of-sample prediction performance did not improve when 

higher values of decay were used. This highlights that the standard logistic regression model is not 

overfitting on the estimation sample. Therefore, there is no need to discourage large parameter 

values for one or several weak predictors. In the case of Europe, the best log-loss value is 0.179 at a 

weight decay of 0.001. Consequently, this regularization parameter is used for the final model of this 

continent. The weight decays for the other continents are shown in Table 3. 

 

Figure 3. Cross Validation results for Europe showing that in this case increased weight decay does not 
results in lower log-loss values. The noninformation value for log-loss is approximately 0.693. 

The log-loss is a classification loss function often used to evaluate classification models. In general, 

the lower the log-loss statistic is, the more often the model predicts the correct class with high 

certainty. For example, if the actual cell is urban, and the model predicts with a probability of 1 that 

this cell is urban, the cost function (log-loss) would be zero—the log-loss increases as the probability 

with which the correct class is predicted decreases. The log-loss function also puts a high penalty on 

wrong classifications with a high probability. If the model classifies a non-urban cell as urban with 

high certainty, the log-loss value will increase drastically.  

In addition to the log-loss values, Table 3 also contains two other important measures for model 

accuracy, the false negative rate (FNR) and the false positive rate (FPR) for each continent. The FNR 

represents the probability of failure to predict urban given that the actual class label is urban. The 
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FNR is also known as the miss-rate and is calculated as follows: FN/(FN+TP), where FN is the 

number of false negatives, and TP is the number of true positives (FN+TP being the total number of 

positives). The FPR is the rate of incorrectly classifying urban land use, given that the actual class 

label is non-urban. The FPR is calculated as follows: FP/(FP+TN), where FP is the number of false 

positives, and TN is the number of true negatives (FP+TN being the total number of negatives). The 

different FPRs and FNRs shown in Table 3 are very low, indicating a good performance of the 

models. The balanced accuracy takes one minus an equal weight of FPR and FNR and is very high 

for all continents, as shown in Table 3. Recall that an unpredictive model would score only 50%. This 

means that we can predict whether a cell is urban or not for all continents with high accuracy.  

When interpreting these performance metrics, it is important to consider that an arbitrary 0.5 

probability value is applied as threshold value for classification. This deviates from the envisioned 

application in a land-use model that is constrained by an expected amount of urban development. 

The model generates urban pixels based on the interaction between expected demand for urban 

development and the probabilities generated by the suitability assessment discussed in this report. 

In effect, the threshold for urban classification would be controlled by the demand equation in the 

simulation model. The balanced log-loss metric is thus the appropriate measure for the intended 

application as it measures how close the predicted probabilities are to observed outcomes. The 

classification rates here are merely discussed because of their more straightforward interpretation. 

False positives can be expected to occur less frequently in the simulation output as the amount of 

simulated demand for urban development would imply a classification threshold higher than 0.5, 

resulting in a smaller number of urban classifications. Regardless of these considerations, all 

validation metrics point to very high predictive power of the regional suitability models. 

Table 3. Confusion matrix for logit model with down sampling, explaining presence of urban area in 2014. 

Statistics Africa Asia Australia 
& Oceania 

Europe North 
America 

South 
America 

Weight decay  0 0.0001 0.0001 0.001 0 0 

True positive (TP) 26,837 56,537 6,531 74,787 87,283 15,771 

False positive (FP) 1,009,406 1,269,644 109,447 489,814 692,640 344,484 

False negative (FN) 1,435 964 153 3,228 1,559 367 

True negative (TN) 17,124,833 19,826,346 5,318,682 4,945,424 19,361,486 10,456,818 

False negative rate (FNR): FN/(FN+TP) 5.58% 6.00% 2.02% 8.15% 3.46% 3.24% 

False positive rate (FPR): FP/(FP+TN) 4.87% 1.73% 1.93% 4.67% 1.66% 2.40% 

Balanced log-loss 0.150 0.113 0.061 0.179 0.078 0.091 

Accuracy: (TN + TP)/(TN+TP+FN+FP) 0.944 0.940 0.980 0.911 0.966 0.968 

Balanced accuracy  0.947 0.962 0.978 0.934 0.974 0.973 

 
Besides the performance results, we are very interested in the regression coefficients for each 

continent that show which explanatory variables are relevant in explaining urban land use and how 

these differ between regions. What stands out first is that the total number of relevant explanatory 
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variables and the variables themselves differ between the continents (Table 4). For example, for 

North America, twelve statistically significant variables remain after the pre-processing steps and 

the two regressions, whereas for Europe, only eight variables remain. Most of the included variables 

are significant at the 1% level. For Africa, Asia, and Europe, one of the significant variables in step 

number four (Figure 1) was no longer significant after removing the variables that did not yield 

statistically significant coefficients during the first logistic regression.  

For most variables, their influence on the probability of a cell being urban is either positive or 

negative across all continents, however there are some differences depending on the regional setting. 

For example, in all continents but Australia and North America, the presence of protected areas 

negatively influences the probability of finding an urban area. The z-statistics included in Appendix 

3 show that neighbourhood population density is by far the most important variable for explaining 

the presence of urban land use. Travel time is the second most important variable across all 

continents. A full discussion of the continent-specific variation in the importance of these drivers is 

beyond the scope of this short report. But being able to specify this variation will allow a more 

specific definition of suitable locations for urban development. 

Table 4. Regression results for logit model with down sampling, explaining presence of urban area in 2014. 

Significance coding: *** p<0.01, ** p<0.05, * p<0.1 

3.2 Results dynamic analysis (urban expansion 1990–2014) 

This final section documents the results for the dynamic analysis explaining where new urban 

development occurred between 1990 and 2014. As expected, the performance of the models is not 

as good as for the static analysis that predicts the location of all urban cells, which means we are less 

well able to explain urban growth between 1990 and 2014 than we are in enplaning the static urban 

pattern in 2014. The dynamic analysis results show a decreased balanced accuracy and increased 

FNRs and FPR for all continents (Table 5). Based on these three performance measures, the model 

 Variables Africa Asia Australia 
& Oceania 

Europe North 
America 

South 
America 

Intercept 2.534*** -1.133*** 1.763*** -5.683*** -0.631*** -0.633*** 

Ln neighbourhood population density 0.531*** 0.840*** 0.870*** 1.275*** 0.975*** 0.724*** 

Distance to coast -0.008*** -0.005*** -0.005*** -0.001*** -0.003*** -0.004*** 

Distance to fresh water       -0.007*** -0.007*** 0.011*** 

Distance main roads -0.014*** -0.011*** -0.032***     0.006 -0.076*** -0.034*** 

Distance secondary roads -0.050***   -0.012***       

Travel time to city centre -0.038*** -0.035*** -0.030*** -0.033*** -0.053*** -0.037*** 

Elevation 0.002*** 0.001*** 0.001*** -0.002*** 0.001*** -0.0001** 

Slope -0.066*** 0.033*** -0.299***         -0.040** -0.064*** 

Terrain roughness index -0.653*** -0.620*** -0.720***   -0.652***   

Protected area  -0.076 -0.384*** 1.005*** -0.575*** 0.578*** -0.706*** 

Flood prone area 0.788***     0.199***       0.179** 1.684*** 

Earthquake intensity       0.007 -0.198***    -0.008* -0.029*** 0.095*** 

Landslide prone   -0.440*** 1.554***   -0.857*** -0.876*** 

Number of explanatory variables 10 10 11 9 12 11 
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for Europe performs worst, and the model for North and South America perform the best. This may 

very well relate to the fact that recent developments in Europe are more likely to be steered by spatial 

planning. Since we cannot include local planning regulations because of a lack of data, our 

simulations, to some extent, produce a counterfactual representation of what could happen without 

regulations. This may help planners decide at which locations planning attention is most desirable.  

Table 5. Confusion matrix for logit model with down sampling, explaining urban expansion 1990-2014. 

Statistics Africa Asia Australia  
& Oceania 

Europe North 
America 

South 
America 

Decay  0.01 0.001 0.01 0.0001 0.1 0 

True positive (TP) 11,709 19,875 1,173 14,864 22,457 3,076 

False positive (FP) 1,173,224 1,509,489 156,864 669,543 895,092 427,882 

False negative (FN) 839 441 58 1,096 518 93 

True negative (TN) 16,961,015 19,585,780 5,271,265 4,765,695 19,159,034 10,373,420 

False negative rate (FNR) 6.45% 7.11% 2.96% 12.32% 4.46% 3.90% 

False negative rate (FPR) 6.25% 2.06% 3.82% 6.95% 2.13% 3.03% 

Balanced log-loss 0.178 0.135 0.105 0.256 0.097 0.115 

Accuracy  0.935 0.929 0.971 0.877 0.955 0.960 

Balanced accuracy  0.934 0.953 0.962 0.904 0.966 0.966 

 
The regression coefficients from the dynamic analysis, as shown in Table 6, are mostly in line with 

the coefficients from the static analysis (Table 4). Mean population density remains the most 

important variable for all continents. However, the effect decreased compared to the static 

analysis.  

Table 6. Regression results for logit model with down sampling, explaining urban expansion 1990-2014. 

Significance coding: *** p<0.01, ** p<0.05, * p<0.1 
  

 Africa Asia Australia 
& Oceania 

Europe North 
America 

South 
America 

Intercept 2.725*** 0.495*** 2.766*** -4.122*** 1.124***   0.217 

Ln neighbourhood population density 0.495*** 0.658*** 0.758*** 1.102*** 0.777*** 0.692*** 

Distance to coast -0.007*** -0.006***      -0.003** -0.002*** -0.004*** -0.005*** 

Distance to fresh water  0.003***       -0.005** 0.012*** 

Distance main roads -0.022*** -0.037*** -0.057*** -0.112*** -0.101*** -0.016*** 

Distance secondary roads -0.052*** -0.003***     

Travel time to city centre -0.036*** -0.035*** -0.037*** -0.039*** -0.061*** -0.042*** 

Elevation 0.001*** 0.001***  -0.001*** 0.001***  

Slope        0.045** -0.727*** -0.139*** 0.095***  

Terrain roughness index -0.647*** -0.567***  -0.216  -0.714***   -0.055 

Protected area 0.470***      -0.411** 1.624*** -0.414*** 0.940***  

Flood prone area 0.822***   0.494***  1.405*** 

Earthquake intensity      0.039**  -0.235***      0.020** -0.058***  

Landslide prone  -0.571*** 1.454***  -1.078*** -0.506** 

Number of explanatory variables 10 11 9 9 11 8 
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4 Recommendations for further research 

The updated calibration results presented in this report were used to help improve the simulation 

of urban growth patterns with the 2UP model. However, further improvement is possible as is 

discussed in this concluding section.  

One aspect of the current research design that could be improved is the incorporation of land-use 

data. Several global datasets are available that distinguish different types of use, such as forest, 

agricultural land, barren land, and grassland (e.g., MODIS or CCI-LC, see Diogo and Koomen, 2016). 

This data can be used to characterise local neighbourhoods and may indicate types of use that are 

more likely to transition into urban land. The data can also be used to help overcome the current 

imbalance between urban and non-urban land by creating the opportunity for a sampling strategy 

that samples proportionally from different land-use types. 

To further improve the calibration, regression analysis could be performed for smaller and more 

homogeneous regions than the continents applied in this study. Especially on large and diverse 

continents such as Europe and Asia, urban expansion patterns are expected to differ between 

countries. Analysis of individual countries could also provide the opportunity to include country-

specific drivers such as zoning policies. Alternatively, countries could be grouped according to their 

urban development trajectory. For example, distinguishing between maturity stages based on urban 

share of population and urban land growth rate (as proposed by Gao and O’Neill, 2020) or urban 

change trajectories defined as a function of changes in population and urban land intensity (as 

described by Li et al., 2022). 

Finally, by utilising cloud computing, more advanced regression techniques can be considered, 

including interaction variables and spatial lags.  
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Appendix 1 Data sources and processing 

An overview of all included datasets including a short description and their sources is listed below. 

Table 7 Overview of included data sets and their sources. 

 
To characterise accessibility, we use the Global Roads Inventory Project (GRIP) dataset, 

distinguishing between main roads and secondary roads. As we assume the impact of roads 

negligible at very long distances, we apply a maximum distance of 250 kilometres for both main and 

secondary roads. Higher values are kept at that maximum value. Figure 4 shows the spatial 

distribution of the cut-off values in red. This procedure has the additional advantage of preventing 

unrealistic values at, for example, isolated islands that would otherwise range in the 1000’s. The 

same cut-off value is applied to other distance-based variables. 

Variable name Description Source 

Urban area Presence of urban land use (1 =true), classified at 30 
arc seconds based on aggregation of original 38m 
raster, applying a 50% threshold 

Global Human Settlement layer (GHSL, Pesaresi et al., 
2016) 

Ln neighbourhood 
population density 

Mean population density in eight surrounding cells, 
not considering central cell. Ln transformation is 
applied to limit impact of occasionally very high 
values, replacing 0 values with 0.1 to prevent errors. 

Global Human Settlement layer (GHSL, Pesaresi et al., 
2016) 

Distance to coast Euclidean distance to coast line in kilometres; cut 
off at 250km (higher values set to 250km) 

Coastlines are inferred from national boundaries in the 
Database of Global Administrative Areas (available 
from: https://gadm.org/) 

Distance to fresh water Euclidean distance to nearest river or lake 
(whichever is closest) in km, cut off at 250km 

HydroRIVERS database (Lehner and Grill, 2013) andd 
Global Lakes and Wetlands Database (Lehner and Dölll, 
2004) 

Distance main roads Euclidean distance to nearest highway, primary or 
secondary roads (types 1-3) in km, cut off at 250km 

Global Roads Inventory Project (GRIP) dataset; (Meijer 
et al., 2018) 

Distance secondary 
roads 

Euclidean distance to nearest tertiary or local road 
(types 4 or 5) in km, cut off at 250km 

Global Roads Inventory Project (GRIP) dataset; (Meijer 
et al., 2018) 

Travel time to city centre Travel time in minutes to the nearest city centre, 
with maximum value of 60 minutes 

Travel time to settlements with over 50,000 inhabitants 
(from CIESIN et al., 2017) over a cost surface grid based 
on the GRIP road data set. 

Elevation Elevation in meters  SRTM V3 (Jarvis et al., 2006) and GTOPO30 for high lati-
tudes (USGS, 1996)  

Slope Slope in degrees GTOPO30 (USGS, 1996)   

Terrain roughness index Index describing overall ruggedness within a cell, 
based on slope and elevation 

Calculated based on method by Riley et al. (1999) using 
Slope and Elevation datasets  

Protected area Presence of protected area  World database on protected areas (WDPA; UNEP-
WCMC, 2019) 

Flood prone area Location exposed to river floods with a 100-year 
return period 

Global Risk Data Platform (UNEP/GRID-Geneva, 2018)  

Earthquake intensity Estimate of the Modified Mercalli Intensity of 
earthquakes with a 475-year return period  

Global Risk Data Platform (UNEP/GRID-Geneva, 2018)  

Landslide prone  Location exposed to a potentially destructive 
landslide with a 200,000-year return period. 
Probabilities are corrected for the share of the cell 
that is potentially affected. 

Global Risk Data Platform (UNEP/GRID-Geneva, 2018).  

Precipitation-induced landslide areas are selected here 
that overlap the areas facing landslides triggered by 
earthquakes, but also cover additional area.   
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Figure 4. Distance to the nearest main road cut off at 250 kilometres (in red). 

Soil type is generally considered to be an important driver for urban development. Studies for South- 

and North America, for example, showed that urban land expansion is positively correlated with 

productive agricultural soils (Aguayo et al., 2007; Batisani and Yarnal, 2009; Reilly, O’Mara and Seto, 

2009). In initial analysis we, therefore considered soil type as independent variable. Data on the type 

of soil was obtained from the harmonized world soil database (HWSD; FAO et al., 2009). The data 

contains 33 categories, but several types showed near-zero variation (meaning they are relatively 

rare) while others occurred only in a number of continents. After removing the types with very low 

variance, we included reference to over 20 soil types in our logistic regression as an equal number 

of dummy variables indicating the presence (or absence) of individual soil types. Figure 5 below 

shows the cross-validation results of this initial test.  

 
Figure 5. Cross-validated root mean square error (RMSE, also referred to as Brier Score in this context) for 
models including an increasing number of soil class dummies. Lower error is obviously preferred. The graph 
highlights that the improvement in prediction performance is extremely low when using soil dummies, 
compared to the model that does not include any soil dummies. 
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The figure indicates that the impact of including the set of over 20 variables that refer to soil classes 

on top of a basic model with 5 variables is minimal in terms of on limiting the root mean square 

error. Adding so many individual variables does limit the possibility of including other more 

relevant variables, however, so it was decided to exclude soil type from further analysis.  
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Appendix 2 General steps in the calibration process 

Below is an overview of the general workflow to calibrate the 2UP model. A more detailed 

description of the individual steps can be found in the R script files mentioned below and available 

from the first author. 

 

1. Export dataset from GeoDMS (export csv)  

2. Open R and use file: Continent_calibration_2010_rfe.R or Continent_Calibration_1990_2010_New.R 

for following steps: 

a. Import csv file  

b. Make sample for each continent (Asia has to be sampled with AutoGLM) 

3. Use R file: Caret_predicitve_models_2UP_FINAL.R for each continent separately:  

a. Import clean data continent  

b. Create training and testing data  

c. Run regression model  
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Appendix 3 Full regression results  

Table 8. Results for logit model with down sampling, explaining presence of urban area in 2014. 

 

Table 8. continued 

 

  

Variables Africa Asia Australia & Oceania 

beta std.err. z-stat. sign. beta std.err. z-stat. sign. beta std.err. z-stat. sign. 

Intercept 2.534 0.082 30.922 0.000 -1.133 0.085 -13.262 0.000 1.763 0.268 6.580 0.000 

Ln neighbourhood pop. dens. 0.531 0.006 87.515 0.000 0.840 0.010 83.385 0.000 0.870 0.027 31.715 0.000 

Distance to coast -0.008 0.000 -30.003 0.000 -0.005 0.000 -27.878 0.000 -0.005 0.001 -5.595 0.000 

Distance to fresh water             

Distance main roads -0.014 0.001 -15.350 0.000 -0.011 0.002 -4.765 0.000 -0.032 0.006 -5.411 0.000 

Distance secondary roads -0.050 0.003 -14.408 0.000     -0.012 0.003 -3.836 0.000 

Travel time to city centre -0.038 0.001 -32.010 0.000 -0.035 0.001 -37.473 0.000 -0.030 0.004 -7.051 0.000 

Elevation 0.002 0.000 22.639 0.000 0.001 0.000 13.727 0.000 0.001 0.000 4.077 0.000 

Slope -0.066 0.019 -3.475 0.001 0.033 0.013 2.603 0.009 -0.299 0.091 -3.275 0.001 

Terrain roughness index -0.653 0.031 -21.076 0.000 -0.620 0.025 -25.035 0.000 -0.720 0.105 -6.878 0.000 

Protected area -0.076 0.093 -0.810 0.418 -0.384 0.108 -3.567 0.000 1.005 0.277 3.631 0.000 

Flood prone area 0.788 0.087 9.025 0.000         

Earthquake intensity     0.007 0.006 1.178 0.239 -0.198 0.032 -6.204 0.000 

Landslide prone     -0.440 0.074 -5.914 0.000 1.554 0.337 4.613 0.000 

Variables Europe North America South-America 

beta std.err. z-stat. sign. beta std.err. z-stat. sign. beta std.err. z-stat. sign. 

Intercept -5.683 0.054 -105.270 0.00 -0.631 0.075 -8.471 0.000 -0.633 0.124 -5.123 0.00 

Ln neighbourhood pop. dens. 1.275 0.008 152.796 0.00 0.975 0.010 102.519 0.000 0.724 0.013 55.019 0.00 

Distance to coast -0.001 0.000 -5.999 0.00 -0.003 0.000 -12.822 0.000 -0.004 0.000 -10.520 0.00 

Distance to fresh water -0.007 0.001 -9.113 0.00 -0.007 0.001 -5.759 0.000 0.011 0.002 6.649 0.00 

Distance main roads 0.006 0.005 1.068 0.29 -0.076 0.015 -5.116 0.000 -0.034 0.006 -5.571 0.00 

Distance secondary roads             

Travel time to city centre -0.033 0.001 -38.096 0.00 -0.053 0.001 -58.809 0.000 -0.037 0.002 -19.632 0.00 

Elevation -0.002 0.000 -33.142 0.00 0.001 0.000 9.684 0.000 -0.0001 0.000 -2.012 0.04 

Slope     -0.040 0.018 -2.274 0.023 -0.064 0.019 -3.272 0.00 

Terrain roughness index     -0.652 0.031 -21.144 0.000     

Protected area -0.575 0.043 -13.288 0.00 0.578 0.160 3.621 0.000 -0.706 0.168 -4.210 0.00 

Flood prone area 0.199 0.041 4.807 0.00 0.179 0.071 2.511 0.012 1.684 0.148 11.345 0.00 

Earthquake intensity -0.008 0.005 -1.757 0.08 -0.029 0.008 -3.600 0.000 0.095 0.017 5.605 0.00 

Landslide prone     -0.857 0.094 -9.111 0.000 -0.876 0.116 -7.527 0.00 
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Table 9. Results for logit model with down sampling, explaining urban expansion (1990-2014). 

 

Table 9. continued 

 

 

Variables Africa Asia Australia & Oceania 

beta std.err. z-stat. sign. beta std.err. z-stat. sign. beta std.err. z-stat. sign. 

Intercept 2.725 0.112 24.405 0.000 0.495 0.112 4.409 0.000 2.766 0.511 5.412 0.000 

Ln neighbourhood pop. dens. 0.495 0.008 61.751 0.000 0.658 0.012 53.085 0.000 0.758 0.052 14.643 0.000 

Distance to coast -0.007 0.000 -19.108 0.000 -0.006 0.000 -19.895 0.000 -0.003 0.002 -2.083 0.037 

Distance to fresh water     0.003 0.001 3.826 0.000     

Distance main roads -0.022 0.001 -14.669 0.000 -0.037 0.005 -7.021 0.000 -0.057 0.011 -5.014 0.000 

Distance secondary roads -0.052 0.004 -11.618 0.000 -0.003 0.000 -6.188 0.000     

Travel time to city centre -0.036 0.002 -21.809 0.000 -0.035 0.001 -23.755 0.000 -0.037 0.009 -4.050 0.000 

Elevation 0.001 0.000 15.863 0.000 0.001 0.000 7.381 0.000     

Slope     0.045 0.019 2.406 0.016 -0.727 0.206 -3.533 0.000 

Terrain roughness index -0.647 0.036 -17.900 0.000 -0.567 0.038 -15.105 0.000 -0.216 0.157 -1.373 0.170 

Protected area 0.470 0.110 4.293 0.000 -0.411 0.171 -2.404 0.016 1.624 0.441 3.684 0.000 

Flood prone area 0.822 0.122 6.731 0.000         

Earthquake intensity 0.039 0.019 2.104 0.035     -0.235 0.058 -4.028 0.000 

Landslide prone     -0.571 0.109 -5.227 0.000 1.454 0.480 3.032 0.002 

Variables Europe North America South-America 

beta std.err. z-stat. sign. beta std.err. z-stat. sign. beta std.err. z-stat. sign. 

Intercept -4.122 0.101 -40.754 0.000 1.124 0.124 9.102 0.000 0.217 0.256 0.847 0.397 

Ln neighbourhood pop. dens. 1.102 0.017 65.825 0.000 0.777 0.015 52.299 0.000 0.692 0.024 28.244 0.000 

Distance to coast -0.002 0.000 -8.116 0.000 -0.004 0.000 -12.079 0.000 -0.005 0.001 -6.001 0.000 

Distance to fresh water     -0.005 0.002 -2.306 0.021 0.012 0.003 3.519 0.000 

Distance main roads -0.112 0.014 -7.912 0.000 -0.101 0.024 -4.290 0.000 -0.016 0.006 -2.824 0.005 

Distance secondary roads             

Travel time to city centre -0.039 0.002 -22.232 0.000 -0.061 0.002 -36.787 0.000 -0.042 0.004 -10.972 0.000 

Elevation -0.001 0.000 -6.780 0.000 0.001 0.000 7.475 0.000     

Slope -0.139 0.015 -9.588 0.000 0.095 0.030 3.151 0.002     

Terrain roughness index     -0.714 0.053 -13.383 0.000 -0.055 0.051 -1.068 0.286 

Protected area -0.414 0.084 -4.923 0.000 0.940 0.227 4.135 0.000     

Flood prone area 0.494 0.081 6.103 0.000     1.405 0.302 4.654 0.000 

Earthquake intensity 0.020 0.009 2.282 0.022 -0.058 0.015 -3.982 0.000     

Landslide prone     -1.078 0.162 -6.663 0.000 -0.506 0.233 -2.174 0.030 


