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1.1 Introduction 

1.1.1 Reactive nitrogen as a threat to the environment  

The global nitrogen cycle is believed to be one of the three Earth subsystems or processes of which 
the planetary boundaries have been overstepped by human activity, alongside biodiversity loss and 
climate change (Rockström et al., 2009). These boundaries define a safe operating space for 
humanity, and breaching them causes unacceptable global environmental changes. Human 
interference with the global nitrogen cycle has led to enhanced losses of reactive nitrogen (Nr) to 
the environment. This extra input of Nr has led to a series of adverse effects, such as soil 
acidification, eutrophication, and biodiversity loss (De Vries et al., 2011), and poses a major threat 
to human and environmental health.   
 
The Earth’s atmosphere consists of nearly 80% dinitrogen gas (N2). Most living organisms cannot 
use this inert form of nitrogen because of the strength of the triple bond that holds the two N atoms 
together. They require it to be converted into usable forms of nitrogen such as nitrogen dioxide 
(NO2) or ammonia (NH3), collectively known as reactive nitrogen compounds (Nr). Historically 
reactive nitrogen has only been available to nature in limited supply through the process of 
biological nitrogen fixation (Vitousek et al., 2002). In this biological process, N2 gas is converted 
into NH3 and other forms of Nr by nitrogenase enzymes. Biological nitrogen fixation is naturally 
carried out by microorganisms in soils, both free-living and in symbiosis, for instance, symbiotic 
bacteria associated with leguminous plants. Other natural sources of Nr include the formation of 
nitrogen oxides (NOx) by lightning, or the release of NH3 from the Earth’s crust by volcanic 
eruptions (Galloway et al., 2003).   
 
Nitrogen is a key component of amino acids, proteins, and DNA in living organisms and is 
therefore essential to life. By origin, N is the most limiting nutrient in the vast majority of natural 
ecosystems and almost all agricultural systems. Back in the day, farmers recycled organic waste 
(e.g., manure, guano) or planted leguminous, Nr fixing plants to enhance Nr inputs to their crops, 
and increase crop production. This all changed in 1908 when Fritz Haber discovered a way to 
synthesize NH3 using an iron-based catalyst (Smil, 2001). Four years after his initial discovery, 
the process was commercialized by Germany’s largest chemical company under engineer Carl 
Bosch. The newly discovered Haber-Bosch process made mass production of NH3 from N2 and H2 
under high pressures and temperatures possible, enabling humans to create large amounts of Nr 
inexpensively. Initially, the Haber-Bosch process was meant for the production of explosives. 
After the end of World War II, however, to meet the demand for food for a growing world 
population, the primary application of the process became the production of nitrogenous fertilizers. 
It is estimated that roughly half of the world’s population is fed by synthetic fertilizers (Erisman 
et al., 2008), making the production of Nr vital for today’s food security.    

Today, over half of the existing Nr is created by humans. Nr fixation in agriculture is the largest 
source of human-created Nr and responsible for about 75% of the total anthropogenic Nr creation. 
The other 25% stems from the emissions of nitrogen oxides (NOx). NOx is a collective term for 
nitric oxide (NO) and nitrogen dioxide (NO2) gas. NOx is an oxidized form of Nr and is emitted as 
a byproduct from combustion processes, for instance from traffic, energy production or biomass 
burning. Over the past century, NOx emissions have risen significantly together with the increase 
in fossil fuel consumption. Other forms of oxidized Nr are for example nitrates (NO3

-), a common 
component of synthetic fertilizers, and nitrous oxide (N2O) gas.    



3 

 

Another important form of Nr is ammonia (NH3). Up to 50% of the global Nr emissions to the 
atmosphere consist of NH3 (Reis et al., 2009). NH3 is a reduced form of Nr and is mainly emitted 
from agricultural activities. The vast majority of the NH3 emissions come from livestock housing 
and grazing and manure and synthetic fertilizer application to farm fields. Globally, around 40% 
of the NH3 emissions directly follow from the volatilization of manure or synthetic fertilizers 
applied to farm fields (Sutton et al., 2013). Following the immense population growth of the 
previous century, NH3 emissions have naturally increased substantially, too. Together with the 
increase in NOx emissions, there has been almost a tripling of the global amounts of NOx and NH3 
emissions to the atmosphere compared to pre-industrial levels (Erisman et al., 2015). 
 

 
Figure 1.1. Global trends in human population and total anthropogenic Nr creation throughout the 20th 

century. (Source: Erisman, 2015)  

1.1.2  Impacts of reactive nitrogen  
After the creation of one atom of Nr, it may be chemically converted and transported through 
different pathways in the atmosphere, hydrosphere and biosphere. During its existence, the same 
atom of Nr may therefore have multiple consequences and contribute to several environmental and 
health impacts before being converted back to nonreactive N2. This sequence of effects is called 
the nitrogen cascade (Galloway et al., 2003). As a result, whether it is related to the human 
production of food or energy, the origin of Nr becomes unimportant. To minimize the adverse 
effects of Nr, effective nitrogen management and policy development thus require consideration 
of all forms of Nr simultaneously. 

To sustain the world’s need for food and energy, the amount of Nr has tremendously increased 
over the past century. A large part of the created Nr is, however, lost to our environment and ends 
up as pollution. It is for instance estimated that approximately half of the Nr added to agricultural 
fields in Europe is either lost to the environment or converted back to N2 and wasted (Sutton et al., 
2011). Nr pollution either directly moves through the biosphere and hydrosphere, for instance 
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through leaching and run-off, or indirectly through Nr emissions to the atmosphere. Emitted Nr is 
transported through the atmosphere until it comes back down to terrestrial and aquatic surfaces 
through the process of nitrogen deposition. Through nitrogen deposition, large areas of the world 
receive Nr well above the natural background levels. All this extra input of Nr has caused 
unprecedented changes to the nitrogen cycle and comes with a series of unwanted negative impacts 
on our environment.  

Nr is a significant driver of biodiversity loss through acidification and eutrophication. Nitrogen 
deposition is identified as the third most important driver of biodiversity loss, after habitat 
conversion and climate change (Sala et al., 2000). In the terrestrial biosphere, excessive Nr inputs 
on pristine surfaces can lead to acidification and biodiversity loss. High inputs of Nr accelerate the 
growth of certain nitrogen-loving species, well adapted to nutrient-rich conditions. Excessive 
amounts of ammonium (NH4

+) and nitrate (NO3
-) acidifies soils, favoring certain acid-tolerant 

species. The faster-growing plants (e.g., nettles, blackberries) outcompete other native species that 
were adapted to nutrient-poor conditions. Also, high concentrations of airborne Nr compounds can 
be harmful to plants. High concentrations of NH3 gas, for instance, can be directly toxic to sensitive 
species such as lichens (Ashmore et al., 2010). Chronically elevated Nr inputs may even affect 
organisms higher on the food chain if their main source of food disappears (Erisman et al., 2013, 
WallisDeVries, 2014). Moreover, nitrogen deposition may enhance the susceptibility of plant 
species to stress and disturbance factors, such as drought, frost, or pathogens (Bobbink et al., 2010).  

Nitrogen deposition, together with other forms of Nr pollution (e.g., through leaching and run-off), 
can lead to excess amounts of Nr in ground- and surface waters. High concentrations of nitrate in 
drinking water can be harmful to human health, and for instance increases the risk of bowel cancer 
(van Grinsven et al., 2010). In aquatic ecosystems, Nr enrichment stimulates the growth of algae 
and certain aquatic plants, a phenomenon known as eutrophication. Eutrophication can reduce 
species diversity in coastal and marine ecosystems (Smith and Schindler, 2009, Bauwman et al., 
2010). The proliferation of algae can for instance inhibit coral reef growth by covering them. 
Ultimately, large inputs of Nr can lead to excessive biomass sedimentation and promote oxygen-
consuming microbial decomposition. Severe eutrophication can lead to oxygen depletion, in the 
deeper water layers, i.e., hypoxia, and kill fish and invertebrates (Selman et al., 2008).  In Europe, 
it is estimated that the Nr threshold for biodiversity risk is exceeded in around 80% of the fresh 
waters (Sutton et al., 2011).   

In the atmosphere, Nr contributes to the formation of ground-level ozone (O3) through the reaction 
of nitrogen oxides (NOx) with volatile organic compounds (VOC) during daytime conditions. 
Moreover, NOx and NH3 are important precursors for the formation of particulate matter. In 
agriculture-intensive regions, NH3 has been demonstrated to be one of the main precursors of 
inorganic secondary particulate matter and contributes substantially to fine particulate matter 
(PM2.5) concentrations (Erisman and Schaap, 2004, Wu et al., 2016). Fine particulate matter and 
ground-level ozone are associated with premature mortality by causing respiratory and 
cardiovascular disease (Pope et al., 2009, Lelieveld et al., 2015, Giannakis et al., 2019). Exposure 
to high concentrations of airborne particles is estimated to reduce the life expectancy of at least 
half of all Europeans by six months (Sutton et al., 2011). Moreover, fine particulate matter is not 
only harmful to human health, it also, directly and indirectly, impacts climate change (Erisman et 
al, 2011, Myhre et al., 2013). 
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Moreover, Nr contributes to climate change via several different processes. The most direct impact 
of Nr is through the formation of nitrous oxide (N2O). The primary source of N2O is agriculture, 
in particular the industrial production of fertilizers or microbial conversion of nitrogen-rich 
substrate after fertilizer or manure application on soils (Davidson et al., 2009). N2O is a strong 
greenhouse gas that has a global warming potential of 265-298 CO2-equivalents over 100 years 
(Myhre et al., 2013). Nitrogen oxides (NOx) emissions also affect radiative forcing through their 
contribution to tropospheric ozone formation (O3), which is the third most important greenhouse 
gas (Erisman et al., 2011). The production of these two powerful greenhouse gases (N2O and O3) 
results in a net warming effect. Moreover, Nr containing aerosols directly affects the radiative 
balance on Earth through the scattering of incoming sunlight, which results in a net cooling effect 
(Butterbach-Bahl et al., 2011).  

Nr also indirectly affects climate through several pathways, mostly linked to alteration of the 
biosphere’s exchange of greenhouse gases carbon dioxide (CO2) and methane (CH4). High levels 
of tropospheric O3 following NOx emissions are, for one, toxic to plants and damage crops and 
natural ecosystems, leading to a reduction of the biospheric CO2 sink. For another, long-term 
exposure to enhanced nitrogen deposition on nutrient-poor wetlands likely increases vascular plant 
biomass, which increases CH4 emissions and leads to a net warming effect (Bodelier et al., 2014). 
Nitrogen deposition can, to a certain extent, also have a positive effect on the biospheric CO2 sink 
through enhancing vegetation productivity. Nitrogen deposition stimulates plant growth in areas 
where Nr is the limiting nutrient and herewith induces CO2 sequestration in terrestrial ecosystems 
(Butterbach-Bahl et al., 2011). Globally, it is estimated that about 10% more CO2 is sequestered 
due to nitrogen deposition compared to natural conditions (de Vries et al., 2014). This additional 
storage of CO2, i.e., carbon sequestration, has a mitigating effect on climate change and results in 
a net cooling effect (Erisman et al., 2011). Carbon sequestration predominantly takes place in forest 
ecosystems (Pan et al., 2011), and forest are therefore vital drivers of the biospheric CO2 sink. The 
effect of Nr on carbon sequestration in forests is, however, uncertain. In the next section, the 
important processes and determining factors are discussed.  

1.1.3  Nitrogen deposition and carbon sequestration in forest ecosystems   

Nitrogen deposition is thus an important driver of carbon sequestration in terrestrial ecosystems. 
On the global scale, it is currently estimated that Nr deposition increases the forest carbon sink by 
around 276 to 448 Tg C yr-1 (De Vries et al., 2014). Most of this extra carbon sequestration takes 
place in boreal and temperate forests that are Nr limited. Excessive amounts of nitrogen deposition, 
on the other hand, can also cause chemical imbalances if the Nr demands are exceeded and damage 
ecosystem health and functioning (Aber et al., 1998). Long-term exposure to excess Nr may 
ultimately lead to growth reductions by nitrogen saturation (Bobbink et al., 2010), which may lead 
to a reduction of the biospheric CO2 sink on the long term.   
 
Besides nitrogen deposition, there are many other stressors that influence growth and carbon 
sequestration in forest ecosystems (e.g., CO2 fertilization, O3 exposure, forest management, 
climatic and edaphic conditions, herbivore and pathogen outbreaks). As most studies focus on the 
effect of one of these stressors at the time, the effect of multiple, interacting stressors is often less 
understood. An example of this is the interplay between nitrogen deposition and drought. In the 
coming century, nitrogen deposition is projected to increase (Lamarque et al., 2013). Furthermore, 
climate change effects are becoming more apparent (e.g., increased atmospheric CO2 levels, 
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elevated temperatures, and changes in water availability) and, as a result, the frequency and 
intensity of droughts will likely be exacerbated (Seneviratne et al., 2012). The effects of N 
deposition in terrestrial ecosystems strongly depend on water availability and therefore on drought. 
The current state of knowledge, however, limits the satisfactory coupling of the co-effects of 
nitrogen deposition and drought on quantification of terrestrial carbon sequestration in forest 
ecosystems (e.g., Fleischer et al., 2013, Erisman et al., 2011).  So far, estimates of nitrogen 
deposition have been too coarse in space and time with substantial uncertainty. To tackle this, our 
main objective in this thesis is to provide more accurate estimates of nitrogen deposition by making 
the best out of the synergistic use of state-of-the-art chemical transport models and satellite 
observations.     
     

 
Figure 1.2. Conceptual diagram of the impacts of global change on processes controlling the stoichiometry of 

trees. Yellow hexagons are global change drivers: increasing atmospheric CO2 concentration (Rising Ca); 

climate change leading to drier and warmer conditions and high rates of atmospheric nitrogen (N) deposition; 

rectangles represent nutrient pools; and ellipses indicate biogeochemical processes (Source: González de 

Andrés, 2019).  

1.1.4 Modelling the fate of reactive nitrogen   
Models are important tools to understand the fate of Nr emissions, and the subsequent 
consequences for human health and environmental quality. With the scarceness of available ground 
observations for Nr and their limited representativeness, together with the large spatial and 
temporal variation in source strength, concentrations and deposition of Nr, models are commonly 
used to estimate Nr fields on a regional scale. The mechanisms that govern the atmospheric 
composition are summarized in so-called chemistry transport models (CTMs). CTMs are used to 
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simulate the various chemical and physical processes that take place (emissions, transport, 
chemical conversion, deposition processes), using different sources of information and 
mathematical approximations (parameterizations). CTMs are equipped with several input 
variables, such as emission inventories and land use and meteorological data. Emission inventories 
provide estimates of the amounts of air pollutants that are discharged into the atmosphere over a 
longer period, usually a year, and can be translated to hourly input emissions using time profiles. 
The dispersion and transport of the emitted species are then computed using meteorological data, 
for instance from the European Centre for Medium-Range Weather Forecasts (ECMWF). Air 
pollutants that are transported through the atmosphere may undergo chemical transformations or 
may be deposited back to the surface, which is also simulated in CTMs. The transport distance of 
each Nr component depends on its susceptibility for chemical conversion and deposition. NH3, for 

instance, has a very short atmospheric lifetime of a few hours (e.g., Dammers et al., 2019) because 
it readily reacts with other components and is deposited relatively rapidly. Once converted to its 
particulate form ammonium (NH4

+), however, which has a lifetime of about a week (e.g., John et 
al., 2016), it can be transported much farther away from its source. Because of the reactive nature 
of Nr components, the use of CTMs is thus especially important. To understand the impacts of Nr 

deposition, reduced (NHx) and oxidized (NOy) forms cannot be addressed separately. Moreover, 
the atmospheric concentrations of other trace gases (e.g., O3, SO2) are also important because of 
their chemical interactions in the atmosphere and their effect on deposition processes. For a correct 
representation of the composition of the troposphere, and the chemical conversion that takes place 
in it, multiple atmospheric species need to be considered simultaneously. The most relevant 
chemical reactions and deposition processes for Nr are discussed in more detail in the next sections.  

Chemical conversion   
Chemical conversion in the troposphere is one of the removal processes of atmospheric Nr. The 
main chemical reactions involving NH3 are discussed here. In the atmosphere nitric acid (HNO3) 
and sulfuric acid (H2SO4) are formed through the oxidation of NOx and SO2, respectively. Reaction 
of these acids with sea salt cause the release of a third acid, hydrochloric acid (HCl). When 
atmospheric NH3 comes into contact with sulfuric acid, nitric acid or hydrochloric acid the 
following chemical reactions take place:   
 
H�SO�  +  2 NH
  →  (NH�)�SO�      

HNO
  +  NH
 ↔  NH�NO
      

HCl +  NH
 ↔  NH�Cl   

In these chemical reactions, ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3) and 
ammonium chloride (NH4Cl) aerosol particles are formed. The reaction to (NH4)2SO4 is one-sided 
and permanently removes gaseous NH3 from the atmosphere (Seinfeld, 1986). The gas-aerosol 
partitioning of nitric acid and hydrochloric acid, on the other hand, are equilibria, meaning that 
after formation they may decompose and release NH3 again (Behera et al, 2013). For nitric acid, 
the rate and direction of this balance depend on equilibrium constant K = [NH3][HNO3], which is 
dependent on the ambient conditions (temperature, relative humidity) and NH3 and HNO3 
concentrations (Erisman et al., 1988, West et al., 1999). Hence, the effectiveness in which 
ammonium forms depends on the relative abundance of both reactants and meteorological 
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conditions. The balance shifts towards the aerosol phase during low temperatures, for instance 
during winter, and relatively humid conditions. At a given ammonia level, the nitrate formation 
depends on the nitric acid production and thus the amount of NO2. The chemical reactions 
involving the formation of nitric acid are different during day- and nighttime (see Hertel et al., 
2012). During the daytime, the formation of nitric acid is dependent on the available amount of 
free hydroxyl radicals (OH·). Under influence of light (photons) tropospheric ozone (O3) is 
photochemically broken down to excited oxygen atoms (O·), which in turn can react with water to 
form free hydroxyl radicals: 

O
 + hv →  O ·  + O�  
O ·  + H�O →  2 OH · 
 
The generated hydroxyl radicals react with volatile organic compounds leading to ozone formation 
when nitrogen monoxide is oxidized by peroxides. OH · also reacts directly with gaseous NO2, 
forming HNO3: 

NO�  +  OH · →  HNO
 

During nighttime, nitric acid is formed from dinitrogen pentoxide (N2O5), which is generated from 
the following reaction pathway: 

NO�  +  O
 →  NO
 ·  + O�  
NO
 ·  + NO�  ↔  N�O� 

N�O� + H�O →  2 HNO
  

These reactions only occur during the night, because both NO3 and N2O5 decompose during 
daylight conditions. In Europe, most of the nitric acid is formed through the night time reaction 
(Schaap et al., 2004) 

Atmospheric deposition   
Nr molecules, both in gaseous and particle form, can be removed from the atmosphere through the 
process of deposition. There are two forms of deposition: wet- and dry deposition. Wet deposition 
is the removal of atmospheric gases and particles by precipitation events (Fowler et al., 1990, 
Erisman and Draaijers, 1995). The two main wet deposition processes are in-cloud and below-
cloud scavenging. In-cloud scavenging, also called rain-out, is the process where condensation of 
humid air forms cloud droplets on aerosol particles. Subsequently, water soluble gases may solute 
into the cloud water. This mostly happens with particles that can act as a nucleation core, such as 
aerosols. In below-cloud scavenging, also called wash-out, gases and particles in the air column 
below clouds are incorporated into droplets due to impaction (particles) or dissolution (gases) 
(Banzhaf et al., 2012). This is an effective way to remove highly soluble gases like NH3 from the 
atmosphere. Another type of wet deposition is the removal of gases or particles via early morning 
dew or fog (Fowler et al., 1989). This process is called occult deposition and is normally neglected 
in CTMs. Direct deposition of cloud water on mountain ridges is also included in this process.  
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Dry deposition is the direct removal of atmospheric gases and particles by vegetation, soils, or 
surface waters (Farquhar et al., 1980, Nemitz et al., 2001). The dry deposition flux of trace gases 
depends on the surface concentrations and the dry deposition velocity.  A common way to 
parameterize the dry deposition velocity is the use of a resistance analogy. In a resistance model, 
the most important pathways along which trace gases are taken up by the surface are parameterized. 
The dry deposition velocity can be represented as the reciprocal sum of the aerodynamic resistance, 
the quasi-laminar resistance and the canopy resistance (Van Zanten et al., 2010). Here, the 
aerodynamic resistance describes the resistance to turbulent transport close to the surface. The 
quasi-laminar resistance accounts for transport by molecular diffusion through the laminar layer 
close to the surface. Lastly, the canopy resistance accounts for the uptake at the surface (e.g., 
through leaves and stomata). For NH3, the surface-atmosphere exchange is bi-directional, i.e., NH3 
can be re-emitted from surfaces to the atmosphere. Plants, for instance, can act as a source of NH3 
when the NH3 concentrations in their stomata exceed the ambient atmospheric NH3 concentrations. 
The direction of the NH3 flux depends on the so-called compensation point. The compensation 
point is defined as the NH3 concentration at which no net NH3 exchange takes place between the 
surface and the atmosphere (Nemitz et al., 2000, Wichink Kruit et al., 2012). For plants, the 
compensation point is determined by the temperature, pH, and the ammonium (NH4

+) 
concentration inside the stomata (Massad et al, 2008).   

 
Figure 1.3. The atmospheric processing of Nr, illustrating the main sources, chemical pathways, and sinks. 

The black values indicate the total emissions (in Tg yr-1), the red values the anthropogenic contribution. 

(Adapted from Fowler et al., 2013)  
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1.1.5 Satellite measurements for reactive nitrogen   

After the launch of the first artificial satellite to be put into outer space in 1957, the Sputnik 1, 
many satellites followed. The primary purpose of the earliest Earth observational satellites was to 
study weather from space. As of April 2020, 446 operational Earth observational satellites are in 
orbit (UCS, 2021), collecting not only weather-related variables (e.g., precipitation, relative 
humidity, temperature, cloud structure), but all sorts of information (e.g., surface elevation, 
vegetation types and parameters, snow cover, ice thickness, mineral composition of the Earth’s 
surface, ocean waves, tectonic movement, atmospheric composition). The main advantage of 
satellites is that they provide global observations, which is especially advantageous for remote 
locations, in a uniform way, i.e., with the same sensors. Moreover, most satellite measurements 
provide long time series on a regular basis, making them ideal for monitoring (Rees, 2013). 

The vast majority of satellite instruments measure electromagnetic radiation. Active sensors 
provide their own source of radiation and detect the amount of emitted radiation that is reflected 
or scattered by the targets of interest. Passive sensors, on the other hand, make use of naturally 
existing radiation. The source of electromagnetic radiation can be either the sun, i.e., solar energy 
reflected from the Earth, radiation emitted by the Earth itself, or a combination of both (Toth and 
Jóźków, 2016, Zhu et al., 2018). Electromagnetic radiation interacts with the Earth’s surface and 
atmosphere, where it can be scattered, absorbed, or emitted. Each molecule has its specific way of 
interacting with electromagnetic waves. This behavior can be used to recognize or discriminate 
between certain molecules, or on a larger scale, everything that’s made up of these molecules. The 
amount of electromagnetic radiation that is reflected by a surface as a function of wavelength, its 
spectral signature, can for example be used to differentiate between different types of soils or 
vegetation (Zhu et al., 2018).     

Broadly speaking, Earth observational satellites either target the Earth’s surface or the atmosphere. 
The atmosphere, a thin sheet of air around the Earth, is in between the satellites and the Earth’s 
surface. The molecules in the Earth’s atmosphere, in particular water vapor (H2O), absorb large 
proportions of incoming and outgoing radiation. Only the part of the electromagnetic radiation that 
is transmitted through the atmosphere can be observed by satellites. Satellites aimed at monitoring 
the variability of the Earth’s surface typically measure in spectral regions with high atmospheric 
transmittance, so-called atmospheric windows (Rees, 2013). These satellites typically observe the 
reflected radiation at certain wavelength ranges within these atmospheric windows. These 
wavelength ranges are called spectral bands and are usually located somewhere within the visible 
light (VIS), near-infrared (NIR), or short-wave infrared (SWIR) part of the electromagnetic 
spectrum. Satellite sensors with relatively more, and narrower spectral bands (e.g., hyperspectral 
sensors) can extract more detailed spectral signatures and can detect more subtle differences (Zhu 
et al., 2018).   
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Figure 1.4. The electromagnetic spectrum. (Source: Averill and Eldredge, 2011)  

Atmospheric sounders interested in the composition of the atmosphere focus on wavelength ranges 
where certain molecules in the atmosphere absorb (or emit) radiation. Usually, this is in either the 
ultraviolet (UV) or infrared regions (IR) of the electromagnetic spectrum. Atmospheric sounders 
typically have a high spectral resolution (narrow wavelength intervals) so that they can distinguish 
absorption lines from various molecules. The intensity and shape of the absorption lines can be 
used to infer the concentrations of atmospheric species (Rees, 2013). In this work, observations 
from two different satellite instruments that measure NH3 concentrations in the atmosphere are 
used. The Infrared Atmospheric Sounder Interferometer (IASI) (e.g., Whitburn et al., 2016, Van 
Damme et al., 2015, Van Damme et al., 2017) and the Cross-track Infrared Sounder (CrIS) (e.g., 
Shephard et al., 2015, Shephard et al., 2020) instruments both provide global distributions of 
atmospheric NH3 at a twice-daily resolution. Both instruments measure infrared radiation coming 
from the Earth’s surface with interferometers. An example of the atmospheric NH3 concentrations 
observed by CrIS is shown in Figure 1.5. The two main differences between these two instruments 
are the used retrieval strategies and their overpass times. A detailed description of the IASI-NH3 
and CrIS-NH3 products is given in Chapter 2 and Chapter 4 of this work, respectively.  

 
Figure 1.5. Global distributions of atmospheric NH3 concentrations as observed by the CrIS satellite 

instrument. The circles indicate large NH3 point sources at which NH3 emissions could be successfully 

estimated from satellite data. (Source: Dammers et al., 2019) 
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1.2 Outline   

1.2.1 Motivation and research aims  
The nitrogen cycle has been severely disturbed by human activity. Several studies have shown that 
increased nitrogen deposition on natural ecosystems influences the carbon cycle and the response 
of vegetation to drought. With the occurrence and severity of droughts likely to be exacerbated by 
climate change, nitrogen deposition – drought interactions remain one of the key uncertainties in 
climate models to date. The coupling of nitrogen deposition and drought, however, is currently 
hampered by the relatively high uncertainty in the modelled nitrogen deposition estimates. 
Nitrogen deposition is highly variable in space and time and is difficult to estimate and model 
accurately. At this moment, nitrogen deposition estimates are too coarse in space and time to 
effectively link to carbon exchange and drought. To tackle this, the following questions were pre-
defined in the original research proposal: 

• How do nitrogen deposition rates in terrestrial systems vary spatially and temporally? 

• What is the influence of N deposition on C-exchange at FLUXNET sites, both under 
normal and under drought conditions? What is the effect of N deposition and drought on 
carbon interactions in terrestrial systems? 

This research was funded by the Netherlands Organization for Scientific Research (NWO) under 
project number ALW-GO/16-05. A major part of this work is devoted to answering the first 
question. The primary focus of this research is hence to reduce the uncertainty in nitrogen 
deposition estimates through synergetic use of satellite observations and atmospheric transport 
models. Multiple types of satellite measurements are used in combination with the modelling 
infrastructure of the LOTOS-EUROS chemical transport model to quantitively estimate the spatial 
and temporal variability of nitrogen deposition. Two types of satellite observations are 
differentiated: atmospheric satellite observations of NH3 concentrations (IASI-NH3, CrIS-NH3) 
and vegetation remote sensing products (e.g., MODIS). In addition, one of the chapters of this 
work is devoted to answering the second question. Here, the aim is to contribute to the 
understanding of nitrogen deposition and drought dynamics on C-exchange specifically in forest 
ecosystems. The abovementioned questions are translated and split up into several research 
questions, each of which is described in the next section.  

1.2.2 Research questions  

With the scarceness of available observations, large-scale dry deposition estimates usually come 
from models such as CTMs. Dry deposition fields in CTMs are computed from air concentrations 
of trace gases or particles through inferential modelling. The modelled air concentrations in CTMs, 
however, are relatively uncertain, particularly for NH3. Satellite observations from IASI provide 
us with the daily distribution of atmospheric NH3 concentrations, but in itself lack information 
about the temporal evolution of atmospheric NH3. Synergistic use of IASI-NH3 observations and 
information from CTMs (e.g., vertical distribution, diurnal cycle, deposition velocities) may help 
to improve dry deposition estimates. Satellite observed NH3 total columns can be translated to NH3 
surface concentrations and dry deposition fluxes with the help of the LOTOS-EUROS chemical 
transport model. This brings us to the first research question of this thesis:  
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• How can NH3 dry deposition estimates be improved through synergistic use of the 
LOTOS-EUROS model and NH3 satellite observations? 
 

In the next chapter of this thesis, Chapter 2, a relatively simple, satellite-data driven method is 
applied to derive NH3 surface concentrations and dry deposition fluxes. This method has 
previously been demonstrated to improve on modelled dry deposition fluxes of NO2 and SO2 
(Nowlan et al., 2014) by combining information from a chemical transport model and satellite-
observed atmospheric concentrations. Here, the LOTOS-EUROS chemical transport model and 
NH3 total column concentrations of the Infrared Atmospheric Sounding Interferometer (IASI) 
instrument are used. The applicability and limitation of this method specifically for NH3 are 
discussed, focusing on Europe, where in-situ observations of NH3 surface concentrations are 
plentily available and used as a proxy for validation.     

 
Deposition schemes for trace gases and particles in CTMs are often pragmatic and include 
relatively simple empirical functions. Two important input values that are used to compute 
deposition velocities in CTMs are the leaf area index (LAI), a quantity that describes the amount 
of plant canopy per unit ground area, and the surface roughness length (z0), a measure for surface 
roughness. The assumed values and seasonality of the LAI and the z0 input values in CTMs are 
typically fixed values, dependent on land use classification maps only. In reality, however, these 
values are dynamic, i.e., they vary spatially and show seasonal variation. Optical remote sensing 
data can be used to derive more realistic, dynamic LAI and z0 values. The integration of these 
satellite-derived values potentially improves their representativeness in CTMs, and could herewith 
improve the estimated nitrogen deposition fields. This brings us to the next research question: 
   

• How does the integration of satellite-derived LAI and z0 values improve the modelled 
Nr deposition fields in LOTOS-EUROS? 
 

In Chapter 3 of this work, a combination of multiple satellite products is used to derive dynamic 
LAI and z0 input maps for the LOTOS-EUROS chemical transport model. An approach to derive 
monthly z0 maps using data from satellite sensors MODIS (Moderate Resolution Imaging 
Spectroradiometer) and GLAS (Geoscience Laser Altimeter System) is presented and the derived 
z0 values are validated with z0 values computed from FLUXNET observations. The satellite-
derived LAI and z0 values are integrated into LOTOS-EUROS, and the sensitivity of the modelled 
Nr deposition fields to these values is evaluated. Here, the impact on both the total Nr deposition 
as well as the subpixel Nr deposition per land-use class (e.g., deciduous forest, coniferous forest, 
arable land) is looked into. Moreover, focusing on a region in western Europe (Germany, the 
Netherlands, and Belgium), the modelled NH4

+ and NO3
− wet deposition and NH3 and NO2 surface 

concentration fields are compared to in-situ observations.    
 

The modelled NH3 concentration and deposition fields are strongly determined by the emission 
distributions used in a CTM. Due to the large spatiotemporal variability stemming from the diverse 
nature of agricultural sources, NH3 emission inputs are especially uncertain compared to those of 
other air pollutants. Recently, satellite observations have successfully been used for deriving 
emission estimates of various atmospheric species, either directly or indirectly through inverse 
modelling or data assimilation. Data assimilation is a way to link simulations to actual observations 
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and can be used to optimally combine information from models and satellites. Currently, CrIS is 
the newest satellite instrument that observes NH3 concentrations globally at twice-daily resolution. 
The satellite-observed NH3 concentrations from CrIS can serve as an important “reality check” for 
modelled NH3 concentrations and can be used to update the NH3 input emissions from CTMs, for 
instance using data assimilation. This way, by reducing the uncertainty related to NH3 emission 
inputs, the modelled NH3 concentrations and deposition fields would improve as well. This leads 
us to the next research question: 

• How can integration and assimilation of NH3 satellite observations improve the spatio-
temporal distribution of modelled NH3 fields in LOTOS-EUROS? 
 

Chapter 4 of this work describes two methods to update NH3 input emissions from the LOTOS-
EUROS chemistry transport model using CrIS-NH3 observations. The first method uses CrIS-NH3 
observations to derive a set of a-priori, observation-based NH3 time factors for agricultural 
emission sources. The second method uses a Local Ensemble Transform Kalman Filter (LETKF) 
to assimilate CrIS-NH3 observation into the LOTOS-EUROS model. The two methods are tested, 
individually and combined, focusing on a low-to-high NH3 emission area within western Europe 
(The Netherlands, Germany, Belgium). The impact on the simulated NH3 emissions, concentration 
and deposition fields is evaluated. The modelled fields are validated against in-situ observations 
of NH3 surface concentrations and NH4

+ wet deposition to see if they improve.    
Nitrogen deposition is an important driver of carbon sequestration in forest ecosystems. Although 
previous studies have focused on nitrogen-carbon interaction in forest ecosystems, relatively little 
is known about the impact of nitrogen deposition on ecosystem carbon cycling during climate 
extremes such as droughts. Nitrogen deposition and drought effects on forest growth are found to 
be interdependent and non-additive, but to date, their joint effect is barely researched. With the 
frequency and intensity of droughts likely exacerbated by climate change and nitrogen deposition 
projected to increase the coming century, understanding the co-effects of N deposition and drought 
on the carbon exchange of forests, the most important terrestrial carbon sink, becomes increasingly 
important. This brings us to the next and last research question of this work:  

• What is the effect of nitrogen deposition on the drought response of gross primary 
production at European FLUXNET forest sites? 

In Chapter 5 of this work, several soil water availability indicators (Standardized Precipitation 
Evapotranspiration Index, soil volumetric water) are used to quantify the effect of drought on gross 
primary production at the European forest sites, using high-quality measurements from the 
FLUXNET database. The computed drought responses were linked to ecosystem-specific nitrogen 
deposition estimates from the LOTOS-EUROS chemical transport model for varying edaphic, 
physiological, and climatic conditions.            
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Chapter 2: How are NH3 dry deposition estimates affected by combining the 

LOTOS-EUROS model with IASI-NH3 satellite observations?  

 

Abstract. Atmospheric levels of reactive nitrogen have increased substantially during the last 
century resulting in increased nitrogen deposition to ecosystems, causing harmful effects such as 
soil acidification, reduction in plant biodiversity and eutrophication in lakes and the ocean. Recent 
developments in the use of atmospheric remote sensing enabled us to resolve concentration fields 
of NH3 with larger spatial coverage. These observations may be used to improve the quantification 
of NH3 deposition. In this paper, we use a relatively simple, data-driven method to derive dry 
deposition fluxes and surface concentrations of NH3 for Europe and for the Netherlands. The aim 
of this paper is to determine the applicability and the limitations of this method for NH3. Space-
born observations of the Infrared Atmospheric Sounding Interferometer (IASI) and the LOTOS-
EUROS atmospheric transport model are used. The original modelled dry NH3 deposition flux 
from LOTOS-EUROS and the flux inferred from IASI are compared to indicate areas with large 
discrepancies between the two. In these areas, potential model or emission improvements are 
needed. The largest differences in derived dry deposition fluxes occur in large parts of central 
Europe, where the satellite-observed NH3 concentrations are higher than the modelled ones, and 
in Switzerland, northern Italy (Po Valley) and southern Turkey, where the modelled NH3 
concentrations are higher than the satellite-observed ones. A sensitivity analysis of eight model 
input parameters important for NH3 dry deposition modelling showed that the IASI-derived dry 
NH3 deposition fluxes may vary from ∼ 20 % up to ∼50 % throughout Europe. Variations in the 
NH3 dry deposition velocity led to the largest deviations in the IASI-derived dry NH3 deposition 
flux and should be focused on in the future. A comparison of NH3 surface concentrations with in 
situ measurements of several established networks – the European Monitoring and Evaluation 
Programme (EMEP), Meetnet Ammoniak in Natuurgebieden (MAN) and Landelijk Meetnet 
Luchtkwaliteit (LML) – showed no significant or consistent improvement in the IASI-derived NH3 
surface concentrations compared to the originally modelled NH3 surface concentrations from 
LOTOS-EUROS. It is concluded that the IASI-derived NH3 deposition fluxes do not show strong 
improvements compared to modelled NH3 deposition fluxes and there is a future need for better, 
more robust, methods to derive NH3 dry deposition fluxes. 

 

 
 
 
 
 
 
 
 

Published as: van der Graaf, S. C., Dammers, E., Schaap, M., and Erisman, J. W.: Technical note: How are 
NH3 dry deposition estimates affected by combining the LOTOS-EUROS model with IASI-NH3 satellite 
observations?, Atmos. Chem. Phys., 18, 13173–13196, https://doi.org/10.5194/acp-18-13173-2018, 2018. 
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2.1    Introduction     

Reactive nitrogen (Nr) emissions have substantially increased during the last century to around 
4 times the pre-industrial levels (Erisman et al., 2008; Fowler et al., 2013). As a result, atmospheric 
deposition of reactive nitrogen to both terrestrial and aquatic ecosystems has also increased 
(Dentener et al., 2006b). Excessive nitrogen deposition to sensitive ecosystems can cause harming 
effects such as soil acidification, reduction in plant biodiversity and eutrophication in water bodies 
(Erisman et al., 2015). One molecule of reactive nitrogen may even contribute to a number of these 
environmental impacts through different pathways and chemical transportation in the biosphere, 
the so-called nitrogen cascade (Galloway et al., 2003). Ammonia (NH3) is one form of reactive 
nitrogen and constitutes an important part of the total amount of Nr emissions. Up to 50 % of global 
reactive nitrogen emissions consist of NH3 (Reis et al., 2009), and therefore NH3 contributes 
significantly to these adverse effects. Atmospheric ammonia is deposited to surfaces by two 
processes: dry and wet deposition. 

Dry deposition may comprise a large part of the total deposition. Earlier modelling studies showed 
that dry deposition of NHx even constitutes to over 60 % of the total deposition (Dentener et al., 
2006a). The modelled fraction of dry deposition, however, ranges hugely depending on the used 
model. Deposition models in general are known to involve large uncertainties regarding the 
chemistry behind NH4 formation and the NH3 dry deposition velocities (Dentener et al., 2006a). 
At the same time, large-scale assessment of NH3 dry deposition is hindered by the extremely 
limited number of dry deposition observations and their sparse distribution in space and time. 
Measurements of NH3 dry deposition fluxes largely remain experimental and are limited to a few 
research sites and measurement campaigns of short durations (e.g. Zoll et al., 2016; Spindler et al., 
2001). These measurements typically are representative of a confined area and a specific 
ecosystem. Dry deposition has so far been estimated on a regional scale through mainly two 
methods: geostatistical approaches and atmospheric chemistry models. Geostatistical approaches 
include geospatial interpolation of, or generating statistical models based on, existing in situ 
observations (e.g. Erisman and Draaijers, 1995). Atmospheric chemistry models use known and 
modelled inputs (i.a. emissions) to derive dry deposition fluxes (e.g. Dentener et al., 2006a; 
Wichink Kruit et al., 2012; Van der Swaluw et al., 2017). Both methods depend strongly on the 
quality and availability of reliable input information, which is often limited or even absent. 

Recent developments in the use of atmospheric remote sensing to measure NH3 distributions with 
large spatial coverage and daily resolution (Van Damme et al., 2014a) allow us to examine their 
development in space and time in more detail. Information from satellites can be of help to 
strengthen our understanding of the complex chain of processes of atmospheric deposition, 
emissions, dispersion and chemistry, especially when complemented with information from 
atmospheric chemistry models. Atmospheric chemistry models may, for example, help to fill in 
missing information on NH3 concentrations close to the Earth's surface, arising from low 
sensitivities of NH3 measuring instruments, or may, for instance, supplement satellite data with 
information on diurnal cycles. Nowlan et al. (2014) estimated surface concentrations and dry 
deposition of NO2 and SO2 by combining satellite observations of the Ozone Monitoring 
Instrument (OMI) and the GEOS-Chem model. The resulting estimates compared reasonably well 
with in situ measurements, thus providing a relatively simple, data-driven method to estimate 
surface concentrations and dry deposition fluxes on a worldwide scale. More recently, Kharol et 
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al. (2017) derived NH3 dry deposition fluxes over North America using a similar method with NH3 
observations of the Cross-track Infrared Sounder (CrIS) satellite and the GEM-MACH model. The 
aim of this paper is to search for the applicability and the limitations of this method for NH3 over 
Europe using space-born observations of the Infrared Atmospheric Sounding Interferometer (IASI) 
and the LOTOS-EUROS atmospheric transport model. This paper shows the first use of the IASI-
NH3 product for the derivation of NH3 dry deposition fluxes, together with validation of the derived 
NH3 surface concentrations with in situ measurements. The latter serve as a direct proxy for the 
validity of the derived NH3 dry deposition fluxes. Also, this paper is the first to estimate the effect 
of modelling errors on the satellite-derived NH3 dry deposition fluxes by performing a model 
sensitivity study. 
  
Table 2.1. Type of instruments used to measure ambient NH3 concentrations and associated uncertainty 

estimates. 

 
We start this paper with a description of the used models and datasets and their associated 
uncertainties. This is followed by a description of the methodology that is used to determine the 
NH3 surface concentrations and dry deposition fluxes. Here, we also describe the design of the 
sensitivity study of the LOTOS-EUROS model. The resulting estimates of the NH3 surface 
concentrations and dry deposition fluxes are given. The NH3 surface concentrations are compared 
to in situ measurements from the European Monitoring and Evaluation Programme (EMEP) 
network in Europe. In a special case study for the Netherlands, they are compared to in situ 
measurements from the Meetnet Ammoniak in Natuurgebieden (MAN) and Landelijk Meetnet 
Luchtkwaliteit (LML) networks. Moreover, a sensitivity study of the LOTOS-EUROS model is 
evaluated to estimate the effect of model input uncertainties on the results that are obtained in the 
same section. The study is then concluded with a discussion.  

2.2    Models and datasets  

2.2.1    IASI NH3 product  
The Infrared Atmospheric Sounding Interferometer (IASI) is a passive remote-sensing instrument 
that measures infrared radiation emitted by the Earth's surface and atmosphere within the spectral 
range of 645–2769 cm−1 (Clerbaux et al., 2009). The IASI-A instrument is aboard the MetOp-A 
satellite that was launched in 2006 and circles in a polar Sun-synchronous orbit. In this study, we 
used NH3 total column measurements from the morning overpass, as these are more sensitive to 
NH3 than the nighttime observations (Van Damme et al., 2015). The morning overpass passes over 
Europe once a day in the morning around 09:30 LT. The NH3 product has an elliptical spatial 
footprint of approximately 12 by 12 km and a detection limit of 2.5 ppbv (Van Damme et al., 2015). 
The retrieval uses a neural network to derive NH3 columns based on the calculation of the 
hyperspectral range index (HRI), e.g. the spectral index (Van Damme et al., 2017). The retrieval 
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algorithm combines information on the temperature, humidity and pressure profiles to represent 
the atmospheric state closely (Whitburn et al., 2016). The retrieval uses a fixed profile in time, 
based on the profiles described by Van Damme et al. (2015). The IASI-NN (neural network) 
retrievals have been validated in Dammers et al. (2016) and Dammers et al. (2017b). In these 
papers, they compared the IASI-NN and Fourier-transform infrared spectrometer (FTIR) total 
columns and showed that the two compare reasonably well with a systematic underestimation by 
the IASI-NN product of around 30 %. In this paper, the NH3 total columns observed during the 
warmer season (April to September) of 2013 and 2014 are used. The warm season was chosen 
because considerably fewer observations are available during the cold months. Moreover, the 
observations in the cold months generally have a higher relative uncertainty (Van Damme, 2014a). 
A filter has been applied after (Van Damme et al., 2014b). This filter leaves out observations with 
a relative error of <100 % unless the absolute error is smaller than 5×1015 molecules cm−2. Fig. 2.1 
shows the mean IASI NH3 total column concentration over Europe and the Netherlands.     
 

 
Figure 2.1. The annual mean NH3 total column concentration in 2013–2014 as observed by IASI-A in Europe 

(regridded to 0.50∘ longitude by 0.25∘ latitude) and the Netherlands (regridded to 0.125∘ longitude by 0.0625∘ 
latitude). 

 
Figure 2.2. The relative error of the annual IASI-A retrieved NH3 total column concentrations in Europe and 

the Netherlands in 2013–2014.        

 

2.2.2    IASI NH3 uncertainties  
The retrieval algorithm (Whitburn et al., 2016) allows estimation of quantitative errors of each 
observation. The error estimate depends on a combination of the thermal contrast (the temperature 
difference between Earth's surface and atmosphere at 1.5 km) and the HRI, i.e. the spectral 
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footprint. The estimate also includes error terms for the uncertainty in the profile shape and error 
terms arising from the used temperature and water vapour profiles. The uncertainty estimate for 
each retrieved NH3 total column is an error propagation of the individual parameter uncertainties. 
Whitburn et al. (2016) showed in an error characterization that individual retrieved NH3 columns 
hold the smallest errors (∼25 %) in the situation of a high NH3 concentration combined with a high 
thermal contrast. The error increases progressively when either of these lowers. In the case of a 
low NH3 concentration and a low thermal contrast, the errors can be as high as ∼270 %. More 
information on how the IASI-NN retrieval works and how the relative errors are derived can be 
found in Whitburn et al. (2016). Fig. 2.2 shows the relative uncertainty of the IASI-A NH3 total 
column concentrations in 2013–2014 over Europe and the Netherlands. The relative uncertainty 
ranges from ∼90 % in remote areas with little emissions to ∼30 % in high emissions areas. 

2.2.3    NH3 ground measurements  

Ground measurements of NH3 surface concentrations from three air quality networks were used to 
validate the LOTOS-EUROS and IASI-derived NH3 surface concentrations on a monthly and a 
yearly basis. To do this, observations of ambient NH3 concentrations of the EMEP network are 
used for Europe (EMEP, 2016). For the case study of the Netherlands, observations from two 
established networks are used, the LML (RIVM, Netherlands National Institute for Public Health 
and the Environment) and MAN (Lolkema et al., 2015). NH3 is challenging to measure reliably 
because of potential adsorption to parts of the measurement device, leading to slow response times 
(von Bobrutzki et al., 2010). The uncertainties of the measurements may differ significantly per 
instruments design. Table 2.1 gives an overview of the instruments used by each of these networks 
and their uncertainties. 

2.2.3.1    EMEP network  
The main measurement network for reactive nitrogen concentrations on a European scale is the 
EMEP network (Tørseth et al., 2012). NH3 measurements from 35 stations were available to 
validate the results of 2013 and 46 stations for the results of 2014. Different types of measurement 
devices are used to measure NH3 within the EMEP network. The majority of the EMEP sites use 
filter packs, of which the results are relatively uncertain. In a field intercomparison of different 
NH3 measurement techniques, von Bobrutzki et al. (2010) found that different instruments have 
an overall bias varying from −31.1 % to +10.9 % for the entire data range (∼ 2 weeks), 
demonstrating that there is a need for a standardized approach. For smaller concentrations 
(<10 ppbv) the bias is even larger, from −22.0 % to +54.5 %. 

2.2.3.2 LML network  

The LML has monitored hourly NH3 concentrations in the Netherlands since 1993 (van Zanten et 
al., 2017). Since 2014, only six stations have been left in operation; before that, there were eight 
stations. The locations of the monitoring stations were carefully selected to cover regions with 
high, moderate and low emission densities equally. The measurements are performed with AMOR 
instruments, which are continuous-flow denuders. Airflow passes through a wetted rotating 
denuder tube in the AMOR instrument and the NH3 absorbs into this fluid. The electric 
conductivity is then determined and used as a measure for the NH3 concentration (van Zanten et 
al., 2017). The measurements have a reported uncertainty of at least 9 % for hourly concentrations 
and at least 7 % for yearly averages (van Zanten et al., 2017; Blank, 2001). 
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2.2.3.3    MAN network  
The MAN network has provided monthly mean ambient NH3 concentrations in nature areas in the 
Netherlands since 2005. The network has 236 sampling points as of 2014, spread over 60 different 
nature areas. The measurements are performed with low-cost passive samplers from Gradko. The 
measurements are calibrated against the measurements of the LML (Lolkema et al., 2015). The 
bottom of the passive sampler is an open cap with a porous filter through which NH3 in the air can 
enter. In the top end of the tube, the NH3 is adsorbed by an acid to form NH4

+. The NH4
+ 

concentrations in the samplers are analysed in a laboratory every month to compute the monthly 
mean NH3 concentrations. The uncertainty of the MAN measurements depends on the NH3 
concentration and varies between 20 % for high concentrations (10–20 µg m−3) and 41 % for low 
concentrations (1 µg m−3) (Lolkema et al., 2015). 

 
2.2.4    The LOTOS-EUROS model  
2.2.4.1    Model description  
LOTOS-EUROS is an Eulerian chemistry transport model (CTM) (Manders et al., 2017) that 
simulates air pollution in the lower troposphere. A horizontal resolution of 0.50∘ longitude by 0.25∘ 
latitude, corresponding to approximately 28 by 28 km2, is used to perform simulations for Europe 
(35–70∘ N, 15∘ W–35∘ E). Secondly, for the case study of the Netherlands, the horizontal resolution 
is set to 0.125∘ longitude by 0.0625∘ latitude, approximately 7 by 7 km (50.5–54∘ N, 3–7.5∘ E). The 
vertical resolution of the model is a four-layer vertical grid that extends up to 3.5 km above sea 
level. The bottom layer is the surface layer and has a fixed height of 25 m. On top of this layer, 
there is a mixing layer, followed by two equally thick dynamic reservoir layers with time-varying 
thicknesses. The model follows the mixed layer approach. LOTOS-EUROS performs hourly 
calculations using meteorology provided by ECMWF (ECMWF, 2016). Gas-phase chemistry is 
described using the Netherlands Organisation for Applied Scientific Research (TNO) CBM-IV 
(carbon bond mechanism) scheme (Schaap et al., 2009), which is an updated version of the original 
scheme by (Whitten et al., 1980). Anthropogenic emissions used in LOTOS-EUROS are taken 
from the TNO Monitoring Atmospheric Composition and Climate (MACC) III emission database 
(Kuenen et al., 2014). LOTOS-EUROS uses a set of temporal factors (monthly, daily and hourly) 
to break down annual total emissions into hourly emissions. The time profile of a particular 
pollutant is an aggregation of the time-dependent emission strengths from different Selected 
Nomenclature for Sources of Air Pollution (SNAP) sources. The monthly NH3 emissions peak in 
March and then decrease, followed by another smaller peak in September. The daily NH3 emission 
strengths are redistributed more or less evenly over the week. The hourly NH3 emission peak is 
reached at 13:00 LT (Denier van der Gon et al., 2011). 

2.2.4.2 Dry deposition parameterization  

The dry deposition fluxes in LOTOS-EUROS are calculated with the Deposition of Acidifying 
Compounds (DEPAC) 3.11 module, following the resistance approach (van Zanten et al., 2010). 
In this approach, the deposition velocity is the reciprocal sum of the aerodynamic resistance, the 
quasi-laminar layer resistance and the surface resistance. A canopy compensation point for 
simulation of the bi-directional flux of NH3 is included in the implementation of the DEPAC3.11 
module, following the approach presented in Wichink Kruit et al. (2012). The compensation point 
is computed dynamically using modelling results from the last month. The model uses the 
CORINE/Smiatek land use map converted to the DEPAC land use classes to determine the 
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exchange velocities for different land use classes. More information on the LOTOS-EUROS model 
can be found in Manders et al. (2017). 

2.2.4.3    Model performance  
The LOTOS-EUROS model has participated in multiple model intercomparison studies (e.g. 
Colette et al., 2017; Wichink Kruit, 2013; Bessagnet et al., 2016; Vivanco et al., 2018), showing 
an overall good model performance. LOTOS-EUROS also showed a good correspondence with 
yearly NH3 concentrations with a slight underestimation in agricultural areas and overestimation 
in nature areas in the Netherlands (Wichink Kruit, 2013). The inferential method that we use here 
heavily relies on results from LOTOS-EUROS. The model therefore has to closely represent 
reality, if we wish to obtain reasonable results. As in any model, there are, however, uncertainties 
associated with every part of the total chain of modelled processes. The uncertainties related to 
emissions and to dry and wet deposition are expected to impact the results the most and are 
discussed below.  

 
2.2.4.4    Uncertainties related to emission input  
Emissions are the most important input for any CTM and are, at the same time, a source of 
substantial uncertainties (Reis et al., 2009; Behera et al., 2013). NH3 emissions are relatively 
uncertain due to the diverse nature of agricultural sources leading to large spatial and temporal 
variations in emissions. The uncertainty of the European reported annual totals is estimated to be 
around ±30 % (EMEP, 2016). The uncertainty is larger for countries that have limited research on 
their emission inventory and carry out a few emission measurement activities. 

The presence of other gaseous components such as SO2 and NOx may have a high impact on the 
modelled NH3 concentrations, as NH3 in the atmosphere reacts readily with sulfuric acid (H2SO4) 
and nitric acid (HNO3) to form particulate ammonium (e.g. (NH4)2SO4 or NH4NO3). It is therefore 
also important to consider the errors in the SO2 and NOx emissions. The SO2 emissions are 
relatively well known per source category and thus hold a relatively low uncertainty of about 
±10 % on reported annual totals. The uncertainty in the NOx emissions is higher, of around ±20 % 
on reported annual totals. However, due to interpolation to account for missing data for some 
countries, the final uncertainty of the annual totals of both SO2 and NOx is estimated to be higher 
(Kuenen et al., 2014). Needless to say, one single emission at a certain time may have a much 
higher error due to the large uncertainty related to redistribution and the timing of emissions 
(Hendriks et al., 2016; Skjøth et al., 2011). More information on the quality data ratings of NH3, 
SO2 and NOx per source category and per country can be found in the report of the European 
Environment Agency (EEA, 2016). 

2.2.4.5    Uncertainties regarding dry and wet deposition  
The second source of uncertainties originates from the model parameterization of both dry and wet 
deposition. Several multi-model studies (e.g. Dentener et al., 2006a; Colette et al., 2017; Wichink 
Kruit, 2013; Flechard et al., 2011; Vivanco et al., 2018) have shown that there is quite a large 
discrepancy in the implementation of dry and wet deposition in different CTMs. A fundamental 
input for estimating dry deposition fluxes in CTMs is the uncertainty in the deposition velocity. 
Schrader and Brummer (2014) compiled a database of the NH3 deposition velocities per land use 
category that have been used in several deposition models from 2004 to 2013. The results showed 
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quite a large variation in the Vd values for different land use classes. Some classes (e.g. water, 
urban) showed only a small variation in Vd of an interquartile range of ∼5 to 10 % for 50 % of the 
data. Other classes (e.g. coniferous, agriculture) showed a much larger interquartile range in Vd of 
∼30 to 40 %. Flechard et al. (2011) compared four existing dry deposition routines across 55 Nr 
monitoring sites and found that the differences between models reach a factor 2–3 and are often 
larger than differences between monitoring sites. Erisman (1993) estimated the dry and wet 
deposition fluxes of acidifying substances in the Netherlands from measured and modelled 
concentrations. The estimated uncertainty in the average NH3 fluxes in this paper was estimated to 
be 30 %, with a systematic error of 30 % in the used Vd for NH3. Dentener et al. (2006a) calculated 
the deposition of Nr with 23 atmospheric chemistry transport models in a multi-model evaluation. 
Although there were quite large differences between the different models, the paper showed that 
71.7 % of the model-calculated mean wet deposition rates in Europe agreed to within ±50 % with 
NH4

+ wet deposition measurements from the EMEP network.   

 

2.3    Methodology   
The NH3 surface concentrations and dry deposition fluxes are estimated by combining the 
observations of the IASI-A satellite instrument and the modelling results from LOTOS-EUROS. 
The method is an adapted version of the approach for NO2 and SO2 presented by Nowlan et 
al. (2014). The IASI-A instrument only observes the NH3 total column at overpass time. We use 
the modelling results of LOTOS-EUROS to account for the diurnal variation in the atmospheric 
concentrations of NH3. The vertical NH3 profiles in LOTOS-EUROS are also used to deduce the 
ground-level NH3 concentrations from IASI. The computation of the IASI-derived NH3 surface 
concentrations and dry deposition fluxes is described in detail in the following sections. 

 
2.3.1    Surface concentration computation  
The NH3 total column observations from IASI are first regridded onto the LOTOS-EUROS model 
grid. The monthly mean NH3 total column concentrations are then calculated for each pixel. We 
use the vertical profile of NH3 per grid cell in LOTOS-EUROS to relate the IASI NH3 total column 
to NH3 surface concentrations. The IASI-derived NH3 surface concentrations (�����) are computed 
following Eq. (2.1):   

 

C���� = � !" 
�#$%&'())*+ ∙  C-.     (Eq. 2.1) 

Here Ω���� represents the monthly mean NH3 total column concentration from IASI (molecules 

cm-2), Ω01234566-.  represents the modelled NH3 total column at overpass time in LOTOS-EUROS 

(molecules cm-2) and C-.   is the modelled mean surface concentration (μg m-3), the concentration 
in the down-most layer in LOTOS-EUROS.  

2.3.2 Dry deposition flux computation  

The hourly NH3 dry deposition fluxes are modelled in LOTOS-EUROS. The modelled NH3 dry 
deposition fluxes are then adjusted based on actual observations from IASI. The modelled and the 
IASI-derived NH3 concentrations share the same vertical profile. The ratio of the observed and the 
modelled total column concentrations, rather than the surface concentrations, is therefore directly 



25 

 

used to alter the modelled NH3 dry deposition flux. The NH3 dry deposition flux (kg N ha−1 yr−1) 
inferred from IASI, FIASI, is computed following Eq. (2.2):  

F���� = � !" 
�8$%&'())*+  ∙  F95:;<-.   (Eq. 2.2) 

Here Ω����  denotes the NH3 total column concentration from IASI, Ω=1234566-.  the modelled NH3 

total column at overpass time in LOTOS-EUROS (molecules cm-2) and F95:;<-.   the total daily NH3 

dry deposition flux in LOTOS-EUROS (kg N ha-1yr-1). F95:;<-.  is the sum of the hourly NH3 dry 

deposition fluxes, as shown in Eq. (2.3):  

F95:;<-. = ∑  F?-. = ∑  V9 (C?-.��?AB − χE0E,?-. ) ��?AB    (Eq. 2.3) 

The hourly NH3 dry deposition flux is the product of the dry deposition velocity V9 and the 

difference between the hourly NH3 surface concentration, C?-., and the total compensation point 

of NH3, χE0E,?-. . To account for the high variability of atmospheric NH3 and the limiting amount of 

available IASI observations, monthly means of these values are used rather than daily values.  

2.3.3    Sensitivity analysis  
The main sources of model uncertainties that are relevant for deposition modelling arise from 
uncertainties in the emission input and the deposition parameterizations (see Sect. 2.2.3). A total 
of four input fields were varied in LOTOS-EUROS: the MACC-III NH3 emissions, the MACC-III 
NOx and SO2 emissions, the dry deposition velocity, Vd, of NH3 and the wet deposition of NH3. 
The wet deposition is varied by adjustment of the gas scavenging constant, Gscav, for NH3. The wet 
scavenging constant Gscav linearly influences the amount of NH3 wet deposition. This results in 
changes in the wet NH3 deposition flux of +30 % and −30 %, too. The objective of these eight 

sensitivity runs is to assess the uncertainty ranges on the estimated dry NH3 deposition fluxes 
resulting from modelling errors. Table 2.2 gives an overview of the parameters that are varied. We 
chose to apply a constant perturbation of +30 % and −30 % to one field at the time to see their 

individual effect and to improve the comparability of the results, too. Moreover, perturbations of 
±30 % are reasonable ranges since they correspond to the estimated uncertainties in the MACC-III 
emission fields' annual totals and the uncertainties in the wet and dry deposition fluxes of NH3. 

Table 2.2. Perturbations on input fields that have been used for the sensitivity analysis of the method.                
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2.4    Results  

2.4.1    NH3 surface concentrations  
2.4.1.1    Europe   
Fig. 2.3 shows the warm season (April–September) mean NH3 surface concentrations in 2013 and 
2014. Fig. 2.3a, c, e, g show the modelled concentrations from LOTOS-EUROS (which we will 
refer to as the “modelled concentrations”) and concentrations that are derived from IASI in 
combination with LOTOS-EUROS (which we will refer to as “IASI-derived concentrations”). The 
dots represent the corresponding measurements from the EMEP stations. Fig. 2.3b, d, f, h show 
the absolute differences between the EMEP measurements and the modelled and IASI-derived 
concentrations. In general, the pattern of the EMEP measurements and the modelled and IASI-
derived concentrations matches quite well. The majority of the EMEP measurements agree with 
the modelled and IASI-derived concentrations to −0.75 to +0.75 µg m−3. The sum of the absolute 
differences between the warm season mean NH3 surface concentrations in a cubic metre from 
EMEP and LOTOS-EUROS was 23.0 µg in 2013 and 32.5 µg in 2014. The sum of the absolute 
differences between the warm season mean NH3 surface concentrations from EMEP and IASI was 
slightly lower: 22.6 µg in 2013 and 28.0 µg in 2014. 

Fig. 2.4 shows scatterplots of the monthly mean (Fig. 2.4a, b, e, f) and the warm season mean 
(Fig. 2.4c, d, g, h) NH3 surface concentrations. The x axis represents concentrations measured by 
the EMEP stations. The y axis represents either the modelled concentrations (blue) or the IASI-
derived concentrations (orange). The monthly mean modelled concentrations and the EMEP 
measurements show a reasonably strong linear relationship in 2013 (r=0.71). The correlation 
between the two was weaker (r=0.39) in 2014. The correlation between the IASI-derived 
concentrations and the EMEP measurements was similar in 2013 (r=0.71) and was higher in 2014 
(r=0.46). The warm season mean IASI-derived concentrations and the EMEP measurements have 
a slightly stronger correlation coefficient and an improved slope compared to the modelled 
concentrations. 

Fig. 2.5 shows the mean NH3 surface concentration of all EMEP stations per month and the 
corresponding modelled and IASI-derived concentrations at the same locations. The absolute 
differences per month are plotted in the same figure in blue (LOTOS-EUROS vs. EMEP) and 
orange (IASI-derived vs. EMEP). All concentration time profiles show a peak value in April, 
resulting from spring fertilization. The LOTOS-EUROS time profile at the EMEP locations 
decreases from April to May and starts to increase towards the end of the year. The time profile of 
the EMEP stations follows the same pattern from April to June but decreases towards the end of 
the year. The IASI-derived time profile shows a decreasing pattern, except in August, where there 
is a small peak. The IASI-derived time profile shows a relatively better comparison with the EMEP 
measurements in April and July to September in 2013 and in April and September in 2014. The 
sum of the absolute differences of the mean NH3 surface concentrations in a cubic metre at all 
EMEP locations between LOTOS-EUROS and EMEP amounts to 3.1 µg in 2013 and 2.5 µg in 
2014. The sum of the absolute differences between IASI and EMEP was somewhat smaller in 
2013, amounting to 1.7 µg, and somewhat higher in 2014, amounting to 3.0 µg. In summary, the 
majority of the IASI-derived concentrations showed a slightly stronger correlation with the EMEP 
measurements than modelled concentrations on a monthly basis. The correlation became more 
pronounced on a seasonal basis (mean of April–September). 
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Figure 2.3. Comparison of the warm season (April–September) mean NH3 surface concentrations (µg m−3) 

from LOTOS-EUROS and derived from IASI and the warm season mean NH3 surface concentrations measured 

by the EMEP stations in 2013 (a, b, c, d) and 2014 (e, f, g, h). The absolute differences between the two are 

shown in the right figures. 
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Figure 2.4. Comparison of the monthly mean (a, b, e, f) and warm season (April–September) mean (c, d, g, h) 

NH3 surface concentrations measured by the EMEP stations and the corresponding NH3 surface 

concentrations from LOTOS-EUROS (blue dots) and inferred from IASI (orange dots) in 2013 (top) and 

2014 (bottom). 

 
Figure 2.5. Mean of the NH3 surface concentrations at all EMEP locations per month (green line) and the 

coinciding NH3 surface concentrations from LOTOS-EUROS (blue line) and derived from IASI (orange line) 

in 2013 (a) and 2014 (b). The absolute differences between EMEP and LOTOS-EUROS are shown in blue and 

the absolute differences between EMEP and IASI are shown in orange. 
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Figure 2.6. Comparison of the warm season (April–September) mean NH3 surface concentration in 2013 (a, 

b, c, d) and in 2014 (e, f, g, h) from LOTOS-EUROS and derived using IASI. The corresponding warm season 

mean NH3 surface concentrations measured by the LML stations are plotted on top of the left figures. The right 

figures depict the differences between the two. 
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Figure 2.7. Comparison of the monthly mean NH3 surface concentrations measured by the LML stations and 

the corresponding LOTOS-EUROS and IASI-derived NH3 surface concentrations during the warm season 

(April–September) of 2013 (top) and 2014 (bottom). The high-concentration stations (Vredepeel and Wekerom) 

are eliminated from the right figures (c, d, g, h). 

 

2.4.1.2    The Netherlands  
Comparison with LML measurements  
Fig. 2.6 shows the warm season (April–September) mean NH3 surface concentrations (µg m−3) in 
the Netherlands in 2013 and 2014. The corresponding LML measurements are plotted on top of 
the modelled and IASI-derived concentrations. LOTOS-EUROS seems to capture the general 
pattern of the LML measurements fairly well in both 2013 and 2014. The sum of the absolute 
differences between the warm season mean NH3 surface concentrations in a cubic metre from LML 
and LOTOS-EUROS was 47.3 µg in 2013 and 44.8 µg in 2014. The sum of the absolute differences 
between the warm season mean NH3 surface concentrations from LML and IASI was slightly 
lower in 2013, namely 44.9 µg, and somewhat higher in 2014, namely 48.5 µg. 

Fig. 2.7 shows scatterplots of the monthly mean NH3 surface concentrations (µg m−3). The x axis 
depicts the LML measured concentrations. The y axis depicts the corresponding modelled and 
IASI-derived concentrations. The modelled concentrations and the LML measurements show a 
moderate linear relationship (r=0.39 in 2013, r=0.50 in 2014). The high NH3 concentration stations 
(Vredepeel and Wekerom) are underestimated by LOTOS-EUROS. The other stations are closer 
to the 1:1 line and appear to match quite well. The correlation coefficient of the IASI-derived 
concentrations and the LML measurements is r=0.39 in 2013 and r=0.53 in 2014. The IASI-
derived concentrations also underestimate the high-concentration LML stations (Vredepeel and 
Wekerom) in both years. The majority of the low-concentration LML stations are overestimated 
by the IASI-derived concentrations in 2013 and underestimated by the IASI-derived concentrations 
in 2014. In general, both high and low LML measurements were reproduced inadequately by the 
IASI-derived concentrations. The elimination of the high-concentration stations (Vredepeel and 
Wekerom) does not lead to a better comparison of the LML measurements to the IASI-derived 
concentrations. 
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Table 2.3 gives a month-by-month comparison of the correlation coefficient, the slope and the 
intercept of the monthly mean NH3 surface concentrations of all LML stations vs. the 
corresponding modelled and IASI-derived concentrations. In 5 out of 12 months, the IASI-derived 
concentrations and the LML measurements have a better correlation coefficient and slope 
compared to the modelled concentrations and the LML measurements. The modelled 
concentrations are consistently lower than the LML measurements. In short, the IASI-derived 
concentrations do not show a better comparability with the LML measurements compared to the 
modelled concentrations. 

Comparison with MAN measurements  

Fig. 2.8 shows the warm season mean NH3 surface concentrations in the Netherlands in 2013 and 
2014. The dots represent the corresponding MAN measurements. The patterns of the MAN 
measurements are captured quite well by the modelled concentrations, with low NH3 surface 
concentrations near the coast and increasing values towards the east of the Netherlands. The sum 
of the absolute differences between the warm season mean NH3 surface concentrations in a cubic 
metre from MAN and LOTOS-EUROS was 444.7 µg in 2013 and 494.3 µg in 2014. The sum of 
the absolute differences between the warm season mean NH3 surface concentrations from MAN 
and IASI was slightly higher in both years, amounting to 512.1 µg in 2013 and 513.6 µg in 2014. 
 
Fig. 2.9 shows scatterplots of the monthly mean (Fig. 2.9a, b, e, f) and warm season mean 
(Fig. 2.9c, d, g, h) NH3 surface concentrations. The x axis depicts the MAN measurements. The y 
axis depicts the corresponding modelled or IASI-derived concentrations. The modelled 
concentrations and the MAN measurements show a moderate positive linear relationship (r=0.5 in 
2013, r=0.46 in 2014). The correlation of the IASI-derived concentrations and the MAN 
measurements is somewhat weaker in both years (r=0.40 in 2013, r=0.38 in 2014). The IASI-
derived concentrations and the MAN measurements show a similar to slightly stronger correlation 
(r=0.59 in 2013, r=0.54 in 2014) compared to the modelled concentrations and the MAN 
measurements for the warm season (r=0.54 in 2013, r=0.54 in 2014). 

Fig. 2.10 shows the mean NH3 surface concentration of all MAN stations per month and the 
corresponding modelled and IASI-derived concentrations at the same locations. The absolute 
differences per month are plotted in blue (LOTOS-EUROS vs. MAN) and orange (IASI-derived 
vs. MAN). The mean of all MAN stations peaks in April in both years. In 2013, the mean of all 
MAN stations increases from May on, peaks in July and then decreases towards the end of the 
year. In 2014, there is an additional peak in July, followed by another decrease. 
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Figure 2.8. Comparison of the warm season (April–September) mean NH3 surface concentration in 2013 (a, 

b, c, d) and in 2014 (e, f, g, h) from LOTOS-EUROS and derived using IASI. The corresponding warm season 

mean NH3 surface concentrations measured by the MAN stations are plotted on top of the left figures. The right 

figures depict the differences between the two. 
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Table 2.3. Month-by-month comparison of the correlation coefficient (r), slope and intercept of the monthly 

mean NH3 surface concentrations of the LML stations (x axis) and the coinciding monthly mean LOTOS-

EUROS and IASI-derived NH3 surface concentrations (y axis). The arrows denote which of the two (LOTOS-

EUROS or IASI) gives the most desirable value. The arrows are attributed to either LOTOS-EUROS or IASI 

based on the following criteria: highest r, slope closest to 1, intercept closest to 0 and smallest RMSD.    

     

 
 

Figure 2.9. Comparison of the monthly mean (a, b, e, f) and warm season (April–September) mean (c, d, g, h) 

NH3 surface concentrations measured by the MAN stations and the corresponding NH3 surface concentrations 

from LOTOS-EUROS (blue dots) and inferred from IASI (orange dots) in 2013 (top) and 2014 (bottom). 
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Figure 2.10. Mean of the NH3 surface concentrations at all MAN locations per month (green line) and the 

coinciding NH3 surface concentrations from LOTOS-EUROS (blue line) and IASI (orange line) in 2013 (a) 

and 2014 (b). The absolute differences between MAN and LOTOS-EUROS are shown in blue and the absolute 

differences between MAN and IASI are shown in orange. 

The sum of the absolute differences of the mean NH3 surface concentrations in a cubic metre at all 
MAN locations between LOTOS-EUROS and MAN amounts to 7.2 µg in 2013 and 10.9 µg in 
2014. The sum of the absolute differences between IASI and MAN was somewhat larger in 2013, 
amounting to 7.9 µg, but considerably smaller in 2014, amounting to 6.0 µg. 

Table 2.4 shows the correlation coefficient, the slope and the intercept of the MAN measurements 
vs. the modelled and IASI-derived concentrations for the warm months in 2013 and 2014. In 2013, 
the IASI-derived concentrations show a weaker correlation with the MAN measurements than the 
modelled concentrations in all months. Only in May and June in 2014, the IASI-derived 
concentrations compared slightly better to the MAN measurements than the modelled 
concentrations. 

The data are grouped into different MAN NH3 surface concentration ranges to test the performance 
of the modelled and IASI-derived concentrations as a function of concentration level. Fig. 2.11 
shows the grouped absolute differences between the monthly mean NH3 surface concentrations 
measured by the MAN stations and the corresponding modelled (blue) and IASI-derived (orange) 
concentrations. For low MAN concentration ranges (0–10 µg m−3), the modelled concentrations 
agree fairly well with the MAN measurements in both years. For higher MAN concentration ranges 
(>10 µg m−3), the model seems to underestimate the monthly mean NH3 surface concentrations. 
The IASI-derived concentrations were relatively higher than the modelled concentrations for all 
concentration levels in 2013. The opposite is true in 2014, where the IASI-derived concentrations 
were relatively lower than the modelled concentrations. We conclude that the differences between 
modelled and IASI-derived concentrations in the Netherlands cannot be assigned to specific 
concentration levels. In summary, the comparison with the MAN measurements does also not 
show any significant or consistent improvement in the IASI-derived concentrations compared to 
the modelled concentrations. 
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Table 2.4. Month-by-month comparison of the correlation coefficient (r), slope and intercept of the monthly 

mean NH3 surface concentrations of the MAN stations (x axis) and the coinciding monthly mean LOTOS-

EUROS and IASI-derived NH3 surface concentrations (y axis). The arrows denote which of the two (LOTOS-

EUROS or IASI) gives the most desirable values. The arrows are attributed to either LOTOS-EUROS or IASI 

based on the following criteria: highest r, slope closest to 1, intercept closest to 0 and smallest RMSD.         

         

      
 

Figure 2.11. The absolute differences between the monthly mean NH3 surface concentrations modelled in 

LOTOS-EUROS (blue) and derived from IASI (orange) and the monthly mean NH3 surface concentrations 

measured by the MAN stations in the warm season (April–September) in 2013 (a) and 2014 (b), grouped as 

function of the MAN monthly mean NH3 surface concentrations. The black line indicates the median, the edges 

of the boxes indicate the 25th and the 75th percentiles (Q1 and Q2), the whiskers indicate the full range of the 

absolute differences (Q1 − 1.5*IQR and Q3 + 1.5*IQR), and the dots indicate the outliers values that lie 

outside the whiskers. 
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Figure 2.12. The warm season (April to September) mean NH3 dry deposition modelled in LOTOS-EUROS (a, 

c) and inferred from IASI (b, d) in kg N ha−1 yr−1 in 2013 (a, b) and 2014 (c, d).  

 

Figure 2.13. The absolute (a, b) and relative (c, d) differences in the warm season (April to September) mean 

NH3 dry deposition modelled in LOTOS-EUROS and inferred from IASI in 2013 (a, c) and 2014 (b, d).
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Figure 2.14. The warm season (April to September) mean NH3 dry deposition in the Netherlands modelled in 

LOTOS-EUROS (a, c) and inferred from IASI (b, d) in kg N ha−1 yr−1 in 2013 (a, b) and 2014 (c, d).  

 

 
Figure 2.15. The absolute (a, b) and relative (c, d) differences in the warm season (April to September) mean 

NH3 dry deposition in the Netherlands modelled in LOTOS-EUROS and inferred from IASI in 2013 (a, c) and 

2014 (b, d).  
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2.4.1.3    Summary of the comparison with in situ measurements  
We compared the modelled and IASI-derived concentrations to measurements of the European 
EMEP network. The IASI-derived concentrations showed in general a slightly stronger correlation 
with the EMEP measurements than modelled concentrations on a monthly basis. Moreover, the 
correlation became more pronounced on a seasonal basis (mean of April–September). We then 
compared the modelled and the IASI-derived concentrations to measurements of Dutch MAN and 
LML networks. This comparison, on the other hand, did not show any significant or consistent 
improvement in the IASI-derived concentrations compared to the modelled concentrations. 

In general, both the modelled and the IASI-derived concentrations seem to be overestimated in 
emission areas. This could potentially be related to the overpass time of the satellite. In high 
emission areas, the NH3 concentrations are more variable in time, and the IASI observations might 
have an uncertain representativeness. Moreover, the measurements in high emission areas are 
generally more uncertain with regard to their spatial representativeness. Overall, these 
measurements can be more affected by local rather than regional sources. 

Generally, the modelled and the observed NH3 total columns match quite well. This means that 
the LOTOS-EUROS model represents the spatial distribution of NH3 rather well. There are some 
areas with large discrepancies between the two where we see considerable deviations in the 
modelled and the IASI-derived concentrations. Most of these areas, however, cannot be validated 
against measurements, because of the lack of measurements here. The changes in the comparison 
of the available measurements with modelled vs. IASI-derived concentrations are therefore 
relativity small. Based on the measurements we have, we conclude that we do not see any 
significant improvement in the IASI-derived concentrations compared to the modelled 
concentrations. 

The differences between Europe and the Netherlands could be explained by the location of the 
ground measurements. The majority of the European-scale stations are located in background 
regions, with relatively well-mixed and low NH3 concentrations. Most stations in the Netherlands, 
on the other hand, are located in, or nearby, regions with relatively higher NH3 concentrations. As 
a result, the vertical profile shapes in LOTOS-EUROS in the Netherlands are more complex and 
variable in time, as this region is influenced by a constantly changing combination of transport, 
emission and deposition. The use of an inadequate vertical profile to derive NH3 surface 
concentrations from IASI could lead to an erroneous redistribution of the total amount of measured 
NH3, therewith worsening the comparability with in situ measurements. On the contrary, the 
vertical profile shapes in background regions are more stable and constant in time, and therefore 
more likely to be described adequately by the LOTOS-EUROS model.      

Side note on validation with in situ measurements  
The differences between the in situ measurement and the modelled and IASI-derived 
concentrations can partially be explained by their discrepancy in terms of spatial representation, 
which limits their comparability to some extent. The footprint of the in situ measurements is 
relatively small and easily influenced by local factors, whereas the model and the satellite provide 
us with a mean value over a much larger area. The two high-concentration stations of the LML 
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network in the Netherlands, Vredepeel and Wekerom, are, for instance, influenced by nearby 
emission sources which cannot be resolved by regional models at the current resolution. 

 
2.4.2    NH3 dry deposition flux  
2.4.2.1    Europe  
The monthly mean dry NH3 deposition flux has been computed for the warm season (April to 
September) in 2013 and 2014. Fig. 2.12 shows the warm season mean dry NH3 deposition flux 
(kg N ha−1 yr−1). Fig. 2.12a, c show the original, modelled flux from LOTOS-EUROS (which will 
be referred to as the “modelled flux”). Fig. 2.12b, d show the modelled flux adjusted by the IASI 
satellite observations (which will be referred to as “IASI-derived flux”). The modelled fluxes were 
very similar in both years. Fig. 2.13 shows the absolute and relative differences between the 
modelled and the IASI-derived flux. In 2013, the IASI-derived fluxes were higher than the 
modelled fluxes in the Netherlands and Belgium. This depicts that the IASI-observed NH3 total 
columns here were higher than the modelled total columns in LOTOS-EUROS. The IASI-derived 
fluxes were higher than the modelled fluxes in other areas such as Germany and large parts of 
central Europe, mainly in Poland, Belarus and Romania. In 2014, the IASI-derived fluxes were 
much higher than the modelled flux in parts of central Europe, mainly in Poland and the Czech 
Republic, and in parts of the United Kingdom, for instance, Northern Ireland. In both years, the 
IASI-derived fluxes were much lower than modelled fluxes in Switzerland, the Po Valley in Italy 
and the northern part of Turkey. Here, the IASI-observed NH3 total columns were thus consistently 
lower than the modelled total columns in LOTOS-EUROS. Inadequate emission input data could 
explain the differences at these locations. Another possible cause is incorrect modelling of the 
atmospheric transport and/or stability of NH3 in LOTOS-EUROS. 

2.4.2.2 The Netherlands  

The modelled and IASI-derived fluxes in the Netherlands are shown in Fig. 2.14. Fig. 2.14 shows 
that the modelled fluxes were similar in both years, whereas the IASI-derived flux varied quite a 
lot. The IASI-derived flux was higher than the modelled flux in 2013 and lower than the modelled 
flux in 2014. The IASI-observed NH3 total columns in the Netherlands were thus in general 
somewhat higher than the modelled NH3 columns in 2013 and somewhat lower than the modelled 
NH3 columns in 2014. 

 
Figure 2.16. The median change (%) in the terrestrial NH3 dry deposition flux in 2014 in (kg N ha−1 yr−1) from 

LOTOS-EUROS (a) and IASI-derived fluxes (b), resulting from different perturbations of model inputs of 

LOTOS-EUROS. The orange lines indicate the 25th and the 75th quartiles. 
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Figure 2.17. The change (%) in the monthly mean IASI-derived NH3 dry deposition flux resulting from different 

perturbations of the LOTOS-EUROS model. 

Fig. 2.15 depicts the absolute and relative differences between the modelled and IASI-derived 
fluxes. In 2013, the main differences occurred in the central and northernmost parts of the 
Netherlands, where the IASI-derived fluxes were clearly higher than the modelled ones. 
Furthermore, the IASI-derived fluxes were higher than the modelled fluxes for the largest part of 
the Netherlands. In 2014, the IASI-derived fluxes were lower than the modelled fluxes for the 
largest part of the Netherlands, except for the centre and the northernmost part.  
 
2.4.2.3 Interannual differences  

The interannual variations of the modelled and IASI-derived flux differences (see Figs. 2.13 and 
2.15) could be related to different meteorological conditions. The annual global climate reports 
from the National Oceanic and Atmosphere Administration (NOAA) show that the mean 
temperatures in Europe were higher in 2014 than in 2013, especially in western Europe. This might 
have had an effect on the actual emissions and their variability, which is only limited taken into 
account by the model. The annual precipitation in both years was near average for Europe as a 
whole. However, if we zoom in to a more regional scale, we see that it was much wetter than 
average during the warm season in nearly all parts of the Balkan peninsula and Turkey (NOAA, 
2014, 2015). Fig. 2.13 shows that the largest interannual variations on a European scale occur 
around the Black Sea: in Ukraine but also in the eastern parts of the Balkan peninsula and Turkey. 
Some of these regions thus coincide with regions that experienced heavy rainfall in 2014 and might 
have affected emission and deposition processes which are not taken into account by the model. 
This suggests that meteorological effects might indeed influence our results. However, the 
examined period of two warm seasons only is too short to draw a conclusion.  
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2.4.3 LOTOS-EUROS sensitivity study  
The results of the sensitivity runs are summarized in Figs. 2.16, 2.17 and 2.18. Fig. 2.16 shows the 
relative changes in the warm season mean terrestrial dry NH3 deposition flux over Europe 
modelled in LOTOS-EUROS (Fig. 2.16a) and derived from IASI (Fig. 2.16b) in 2014 for different 
model runs. The mean LOTOS-EUROS dry NH3 deposition over the land cells in the modelling 
grid in 2014 was 1.76 kg N ha−1 yr−1. The mean IASI-derived dry NH3 deposition flux was 
somewhat higher, namely 2.20 kg N ha−2 yr−1. 

Variations in the MACC-III NH3 emissions caused the largest changes in the modelled flux. The 
smallest change was obtained by variation of the wet deposition scavenging coefficient Gscav. The 
variations in the dry deposition velocity Vd led to the biggest changes in the IASI-derived flux. The 
effect appears to be amplified compared to the effect on the modelled flux. The effect of the 
MACC-III NH3 emissions is dampened. On the other hand, the effect of the MACC-III NOx and 
SO2 emissions is also amplified. The signs of the changes in the IASI-derived flux have flipped 
because of the changes in MACC-III NH3, MACC-III NOx and SO2 and Gscav. The modelled flux 
is 1:1 sensitive to emission changes in NH3, whereas for IASI-derived flux this is much lower. The 
IASI-derived flux, in turn, changes 1:1 with the Vd. The variations in the modelled flux are a result 
of daily and monthly variations in emissions. The variations in the IASI-derived flux are also a 
result of these variations, but on top of this they also include an effect of the overpass time of the 
satellite. 

Fig. 2.17 shows the changes (%) of monthly mean IASI-derived fluxes in 2014 resulting from the 
different LOTOS-EUROS sensitivity runs. Note that the effect of the runs with changes in wet 
deposition through variations of the gas scavenging coefficient for NH3 is enlarged by a factor of 
10. We see that the changes with respect to the standard LOTOS-EUROS run are in general 
constant over the months. The least variation is observed for the runs with changed Vdry values, 
that all resulted in a change of ∼31 % per month. The runs with adjusted MACC-III emissions of 
NH3 and emissions of NOx and SO2 led to largest changes in May and the smallest changes in 
September. The maximum differences between months are 9.5 % and 5.6 %, respectively, for the 
runs with adjusted NH3 and the runs with adjusted NOx and SO2 values. The runs with changed 
values of Gscav for NH3 seem to be affected most by changing weather conditions, which resulted 
in the relatively largest variation per month. However, because the changes in the IASI-derived 
flux are small (−2.4 % to +1.7 %), we now continue to look at yearly changes. 

Fig. 2.18 shows the relative standard deviation (%) of all eight sensitivity runs for Europe. 
Fig. 2.18d shows the relative standard deviation of the final IASI-derived flux. The relative 
standard deviation varies from ∼20 % to ∼50 % throughout Europe. The smallest variations can 
be seen in the southwestern and central parts of Europe. The highest variations, of ∼40 %–50 %, 
are mainly found in long-distance transport areas with low NH3 concentrations and deposition 
fluxes, such as Scandinavia, and in areas with high aerosol precursor emissions, such as the 
Balkans. 
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Figure 2.18. The relative standard deviation (%) of the warm season mean output of all perturbed runs and 

the associated dry deposition estimate inferred from IASI in 2014. Panel (a) shows the LOTOS-EUROS NH3 

total column concentration at overpass time, (b) the LOTOS-EUROS NH3 surface concentration, (c) the NH3 

dry deposition flux in LOTOS-EUROS and (d) the resulting IASI-derived NH3 dry deposition flux.   

 

2.5    Discussion  

In this paper, we examined the applicability and the limitations of the method suggested by Nowlan 
et al. (2014) for the derivation of NH3 surface concentrations and dry deposition fluxes across 
Europe. A comparison of the LOTOS-EUROS modelled and IASI-derived NH3 surface 
concentrations with in situ measurements of the EMEP network on a European scale and the LML 
and MAN networks in the Netherlands has been made. Although there appeared to be some 
improvements in the IASI-derived NH3 surface concentrations compared to the modelled LOTOS-
EUROS NH3 surface concentrations, mainly in background regions, there did not seem to be any 
significant, consistent improvement. In addition, the timing of the IASI-derived NH3 surface 
concentrations did not show better correspondence with the in situ observations than the modelled 
NH3 surface concentrations. Consequently, as the dry NH3 deposition fluxes are directly derived 
from the NH3 surface concentrations, no significant improvement is expected here either. On top 
of this, the sensitivity study using eight input parameters important for NH3 dry deposition 
modelling showed that the effect of model uncertainties on the IASI-derived dry NH3 deposition 
fluxes is amplified by the estimation procedure compared to the effect on the model simulations 
itself. The final IASI-derived dry NH3 deposition fluxes can vary ∼20 % up to ∼50 % throughout 
Europe as a result of model uncertainties. 
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The method used to derive the NH3 surface concentrations and dry deposition fluxes from IASI 
observations is based on various assumptions. For one, the method assumes that the relationship 
between the NH3 concentration and the dry deposition flux is linear, whereas this relationship is in 
reality non-linear. In fact, these quantities can even be anti-correlated with highest surface 
concentrations during the night when the atmosphere is stable and the exchange is limited. The 
compensation point of NH3 further enhances the non-linearity. For our purpose, we focus on a 
single time of the day using monthly data; however, approximating this concentration–flux 
relationship by a linear curve may seem reasonable for concentration regimes below the saturation 
point. For higher NH3 surface concentrations the current approach will likely lead to overestimated 
dry deposition fluxes. Moreover, this study includes the impact of the compensation point of NH3 
through the dry deposition scheme in LOTOS-EUROS. Although the uncertainties are relatively 
large as the used compensation points are based on relatively few observations (e.g. Wichink Kruit 
et al., 2007), we feel that the inclusion of the compensation point is a strong point of this study. 

Moreover, the approach by Nowlan also assumes that the NH3 total column concentrations 
measured by IASI serve as a direct proxy of the NH3 surface concentrations. In reality, however, 
the relationship between the two is influenced by various different factors, including the vertical 
distribution of NH3 and the satellite's sensitivity. There are already quite some uncertainties 
involved with the vertical distribution of NH3, and therefore tower measurement campaigns 
(Dammers et al., 2017a; Li et al., 2017a) are very important to strengthen our understanding. 
Dammers et al. (2017a), for instance, showed that the daytime boundary layer is well mixed, which 
supports the choice of a model that uses the mixed layer approach such as LOTOS-EUROS. Li et 
al. (2017b) showed that there is a clear seasonal variation in the vertical distribution of NH3 and 
that the slope of the NH3 concentration gradient varies throughout the year. During winter, Li et 
al. (2017b) observed relatively high NH3 ground concentrations due to potential trapping of NH3 
emissions in a shallow winter boundary layer and reduced NH3 concentrations higher up the 
column. In these types of situations, the IASI satellite instrument potentially misses high NH3 
ground concentrations because of the lack of sensitivity to the lower parts of the boundary layer. 
The computation of averaging kernels for IASI could help to indicate more precisely where the 
sensitivity lies and how the measured total columns are distributed. Moreover, further development 
and validation of the IASI retrieval may help to improve our understanding of the satellite's 
product, therewith also increasing its applicability. 

The method also assumes that the timing and distribution of the emissions in the LOTOS-EUROS 
model closely represent reality, as the ratio between the retrieved and the modelled ammonia 
burden is used at overpass time. The accuracy of the seasonal variation in the NH3 emissions in 
LOTOS-EUROS is therefore of great importance. The reliability of yearly dry NH3 deposition 
estimates using our method is limited by the lack of high-quality IASI observations during the cold 
season. As a result, derivation of yearly IASI-derived NH3 dry deposition estimates may differ 
substantially depending on whether or not the spring maximum peak occurs in the satellite-
observed months (April–September). Skjøth et al. (2011) presented the seasonal variation and the 
distribution of NH3 emissions for different European countries per agricultural source. They 
showed, for instance, that approximately half of the NH3 emissions from spring fertilization are 
usually emitted in March. As the spring fertilization amounts to ∼20 %–50 % of the yearly total 
NH3 emissions, this may result in a variation of the same magnitude on the subsequent deposition 
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estimates. Improvement of the seasonal variation in NH3 emissions in LOTOS-EUROS could be 
used to fill in this gap and lead to a more accurate representation of reality. Skjøth et al. (2011) 
showed that the implementation of a dynamic NH3 emission model for different agricultural 
sources may result in considerable model performance improvements when high-quality activity 
data and information on spatial distributions of emissions are available. Furthermore, Hendriks et 
al. (2016) showed that the use of manure transport data for NH3 emission time profiles leads to 
additional model improvements and a better representation of the spring maximum. 

Moreover, mismatches between the actual and modelled diurnal variations in NH3 emission could 
also easily lead to large differences in the IASI-derived dry NH3 deposition estimates. As an 
illustration, Sintermann et al. (2016), for instance, measured NH3 emissions from an agricultural 
surface after slurry application and showed that ∼80 % of the total NH3 was emitted within 2 h. 
Combined with the short lifetime of NH3, there is a possibility that the IASI instrument completely 
misses these kinds of events if they occur after its overpass. A possible way to reduce the impact 
of the diurnal variation is to combine information from IASI with other satellites that have different 
overpass times. NH3 observations from the CrIS satellite instrument could, for instance, be used 
(Shephard and Cady-Pereira, 2015). 

At this stage, we can conclude that the IASI-derived NH3 deposition fluxes do not show strong 
improvements compared to modelled NH3 deposition fluxes and there is a future need for better, 
more robust, methods to derive NH3 dry deposition fluxes. This could potentially be achieved by 
further integration of existing in situ and satellite data into models with special attention to data 
representativeness, for instance, by means of data assimilation. In addition, there is a need for a 
better understanding of the surface exchange of NH3 for different land use types. Model 
parameterizations of the surface exchange of NH3 are now based on a limited number of direct 
flux measurements, and more measurements could definitely improve this. Also, a better 
understanding of the timing and distribution of NH3 emissions could lead to considerable 
improvements in modelled emission fields and consequently deposition fields from CTMs.
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Chapter 3: Satellite-derived leaf area index and roughness length 

information for surface–atmosphere exchange modelling: a case study for 

reactive nitrogen deposition in north-western Europe using LOTOS-

EUROS v2.0.  

 

Abstract. The nitrogen cycle has been continuously disrupted by human activity over the past 
century, resulting in almost a tripling of the total reactive nitrogen fixation in Europe. 
Consequently, excessive amounts of reactive nitrogen (Nr) have manifested in the environment, 
leading to a cascade of adverse effects, such as acidification and eutrophication of terrestrial and 
aquatic ecosystems, and particulate matter formation. Chemistry transport models (CTMs) are 
frequently used as tools to simulate the complex chain of processes that determine atmospheric Nr 
flows. In these models, the parameterization of the atmosphere–biosphere exchange of Nr is largely 
based on few surface exchange measurements and is therefore known to be highly uncertain. In 
addition to this, the input parameters that are used here are often fixed values, only linked to 
specific land use classes. In an attempt to improve this, a combination of multiple satellite products 
is used to derive updated, time-variant leaf area index (LAI) and roughness length (z0) input maps. 
As LAI, we use the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD15A2H 
product. The monthly z0 input maps presented in this paper are a function of satellite-derived 
normalized difference vegetation index (NDVI) values (MYD13A3 product) for short vegetation 
types (such as grass and arable land) and a combination of satellite-derived forest canopy height 
and LAI for forests. The use of these growth-dependent satellite products allows us to represent 
the growing season more realistically. For urban areas, the z0 values are updated, too, and linked 
to a population density map. The approach to derive these dynamic z0 estimates can be linked to 
any land use map and is as such transferable to other models. We evaluated the sensitivity of the 
modelled Nr deposition fields in LOng Term Ozone Simulation – EURopean Operational Smog 
(LOTOS-EUROS) v2.0 to the abovementioned changes in LAI and z0 inputs, focusing on 
Germany, the Netherlands and Belgium. We computed z0 values from FLUXNET sites and 
compared these to the default and updated z0 values in LOTOS-EUROS. The root mean square 
difference (RMSD) for both short vegetation and forest sites improved. Comparing all sites, the 
RMSD decreased from 0.76 (default z0) to 0.60 (updated z0). The implementation of these updated 
LAI and z0 input maps led to local changes in the total Nr deposition of up to ∼30 % and a general 
shift from wet to dry deposition. The most distinct changes are observed in land-use-specific 
deposition fluxes. These fluxes may show relatively large deviations, locally affecting estimated 
critical load exceedances for specific natural ecosystems. 
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3.1 Introduction 

The nitrogen (N) cycle has been continuously disrupted by human activity over the past century 
(Fowler et al., 2015; Galloway et al., 2004, 2008), resulting in a doubling of the total reactive 
nitrogen (Nr) fixation globally and even a tripling in Europe. As a result, excessive amounts of Nr, 
defined as all N compounds except N2, have manifested in the environment contributing to 
acidification and eutrophication of sensitive terrestrial and aquatic ecosystems (Bobbink et al., 
2010a; Paerl et al., 2014). NOx and NH3 affect air quality through their significant role in the 
formation of particulate matter, impacting human health and life expectancy (Lelieveld et al., 2015; 
Bauer et al., 2016; Erisman and Schaap, 2004). Nr also influences climate change through its 
impact on greenhouse gas emissions and radiative forcing (Erisman et al., 2011; Butterbach-Bahl 
et al., 2011). As Nr forms are linked through chemical and biological conversion in one another 
within the environmental compartments, one atom of N may even take part in a cascade of Nr 
forms and effects (Galloway et al., 2003). To minimize these adverse effects, effective nitrogen 
management and policy development therefore require consideration of all Nr forms 
simultaneously. 

With the scarceness and inadequate distribution of available ground measurements, especially for 
reduced Nr, the most important method to assess and quantify total Nr budgets on a larger spatial 
scale to date remains the use of models. Models – chemistry transport models, in particular – are 
used for understanding the atmospheric transport and the atmosphere–biosphere exchange of 
nitrogen compounds. Most chemistry transport models compare reasonably with observations for 
oxidized forms of Nr but need improvement when it comes to the reduced forms of Nr (Colette et 
al., 2017). Modelled NH3 fields are in general uncertain due to the highly reactive nature and the 
uncertain lifetime of NH3 in the atmosphere. More importantly, NH3 emissions that are used as 
model input are very complex to estimate and remain highly uncertain (Reis et al., 2009; Behera 
et al., 2013), for example, due to the diversity in NH3 volatilization rates originating from different 
agricultural practices. Recently, a lot of effort has been made to improve the spatiotemporal 
distributions of bottom-up NH3 emissions (e.g. Hendriks et al., 2016; Skjøth et al., 2011). 
Emissions can also be estimated top-down through the usage of data assimilation and inversion 
techniques. Optimally combining observations and chemistry transport models has already enabled 
us to create large-scale emission estimates for various pollutants (e.g. Curier et al., 2014; Abida et 
al., 2017), for instance, for NO2 and will likely also be used for large-scale NH3 emission estimates 
in the future. 

Most data assimilation and inversion methods rely on the assumption that sink terms in the model 
hold a negligible uncertainty. To obtain reasonable top-down emission estimates, we must thus 
also aim to reduce the uncertainty involved on this side of models. The sink strengths of trace gases 
and particles in chemistry transport models are often pragmatic and computed with relatively 
simple empirical functions (e.g. following Wesely, 1989; Emberson et al., 2000; Erisman et al., 
1994), mostly linked to land use classification maps. The parameterization of the atmosphere–
biosphere exchange of Nr components that is used in models is largely based on surface exchange 
measurements and is therefore very uncertain, especially for NH3 (Schrader et al., 2016). The 
deposition strengths in models may vary tremendously depending on the used deposition 
parameterization and velocities (Wu et al., 2018; Schrader and Brummer, 2014; Flechard et al., 
2013). Moreover, inter-model discrepancies in deposition fluxes may also arise from differences 
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in the used input variables. Here, we focus on the leaf area index (LAI) and the roughness length 
(z0) input values. The deposition velocity is often parameterized using both the LAI and the z0. 
Currently, most models use fixed, land-use-specific values for both parameters. In practice, 
however, spatial as well as seasonal variation is observed. In this paper, we aim to improve the 
deposition flux modelling by using more realistic, space- and time-variant LAI and z0 values that 
are derived from optical remote sensors. 

The LAI is defined as the one-sided green leaf area per unit surface area (Watson, 1947). The LAI 
serves as a measure for the amount of plant canopy and herewith directly related to energy and 
mass exchange processes. As a result, the LAI is nowadays used as one of the main parameters in 
many ecological models. In deposition modelling, stomatal uptake is often parameterized using 
the LAI. The LAI can be determined in the field using either direct methods, such as leaf traps, or 
indirect methods, such as hemispherical photography (Jonckheere et al., 2004). For larger areas, 
the LAI can be simulated using land surface or biosphere models. Another group of indirect 
methods to estimate the LAI for large regions is the use of optical remote sensing. The LAI can, 
for instance, be estimated using empirical relationships between LAI and vegetation indices (e.g. 
Soudani et al., 2006; Davi et al., 2006; Turner et al., 1999) or by inversion of canopy reflectance 
models (e.g. Houborg and Boegh, 2008; Myneni et al., 2015). A well-known example of the latter 
is the LAI product from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
instrument, which we will use in this study. 

The z0 is used to describe the surface roughness. The surface roughness serves as a momentum 
sink for atmospheric flow and is therefore an important term in atmospheric modelling. The 
interaction between the boundary layer and the roughness of the Earth's surface results in shear 
stress that affects the wind speed profile. Under neutral conditions, the resulting wind profile can 
be approximated using a logarithmic profile:  

G(H) = I∗
K LM N O

O8P  (Eq. 3.1) 

U(z) represents the mean wind speed, u* the friction velocity and k the von Kármán constant. Here, 
z0 is a constant that represents the height at which the wind speed theoretically becomes zero. The 
z0 can be estimated from in situ wind speed measurements using bulk transfer equations. More 
recently, several studies have shown that z0 for specific, uniform land cover types can also be 
estimated from optical remote sensing measurements, for instance, using vegetation indices (e.g. 
Xing et al., 2017; Yu et al., 2016; Bolle and Streckenbach, 1993; Hatfield, 1988; Moran, 1990). 
The z0 can also be estimated using (satellite-derived) vegetation height (e.g. Raupach, 1994; Plate, 
1971; Brutsaert, 2013; Schaudt and Dickinson, 2000). 

The use of optical remote sensing data holds large potential for improvements to the 
representativeness of the surface characterization in chemistry transport models. Here, we present 
an approach to derive monthly z0 input maps using satellite-derived normalized difference 
vegetation index (NDVI) values (MYD13A3 product) for short vegetation types and a combination 
of satellite-derived forest canopy height and LAI for forests. We validate these z0 values by 
comparing them to z0 values computed from FLUXNET observations. We also update the z0 values 
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for urban areas, using a population density map. We use the updated z0 values, as well as the 
MODIS LAI, as input in LOng Term Ozone Simulation – EURopean Operational Smog (LOTOS-
EUROS) to illustrate the effect on transport and deposition modelling of Nr components. We 
evaluate the sensitivity of the Nr deposition fields to these input parameters, focusing on Germany, 
the Netherlands and Belgium. Moreover, we quantify and present the implications for land-use-
specific fluxes on a model subpixel level. Also, we compare our model outputs with wet deposition 
measurements of NH4

+ and NO3
− and surface concentration measurements of NH3 and NO2. 

3.2    Model and datasets   

3.2.1    LOTOS-EUROS  

3.2.1.1    Model description  
The LOTOS-EUROS model is a Eulerian chemistry transport model that simulates air pollution in 
the lower troposphere (Manders et al., 2017). In this study, the horizontal resolution is set to 0.125∘ 
by 0.0625∘, corresponding to pixels of approximately 7 by 7 km in size. The model uses a five-
layer vertical grid that extends up 5 km above sea level, starting with a surface layer with a fixed 
height of 25 m. The next layer is a mixing layer, followed by two time-varying dynamic reservoir 
layers of equal thickness and a top layer up to 5 km. LOTOS-EUROS follows the mixed layer 
approach and performs hourly results using European Centre for Medium-Range Weather 
Forecasts (ECMWF) meteorology. The gas-phase chemistry uses the Netherlands Organisation for 
Applied Scientific Research (TNO) carbon bond mechanism (CBM) IV scheme (Schaap et al., 
2009) and the anthropogenic emissions from the TNO Monitoring Atmospheric Composition and 
Climate (MACC) III emission database (Kuenen et al., 2014). The wet deposition parameterization 
is based on the Comprehensive Air Quality Model with Extensions (CAMx) approach and includes 
both in-cloud and below-cloud scavenging (Banzhaf et al., 2012). LOTOS-EUROS makes use of 
the Coordination of Information on the Environment (CORINE)/Smiatek land use map to 
determine input values for surface variables. 

3.2.1.2 Dry deposition  

The dry deposition flux of gases is computed following the resistance approach, in which the 
exchange velocity QR is equal to the reciprocal sum of the aerodynamic resistance ST, the quasi-
laminar boundary layer resistance SU and the canopy resistance SV: 

QR =  B
WXY WZYW[      (Eq. 3.2) 

ST and SU are both influenced by the wind profile, which is computed with (Eq. 3.1). The wind 
profile, in turn, depends on roughness length z0 associated with different land use classes. The 
aerodynamic resistance ST is computed as follows: 

ST = \ ]N^
_P

`I∗O aHb
O8  (Eq. 3.3) 

Here, ℎ is the canopy height, which is pre-defined per land use class. The empirical function Φ NO
eP 

is taken from Businger et al. (1971) and depends on the state of the atmosphere. Depending on the 
value of Monin-Obukhov length f, the following stability equations are used:  
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• for a stable atmosphere (f > 0):   
 

Φij^
_k = 1 + 4.7 j^

_k (Eq. 3.4) 

 

• for an unstable atmosphere (f < 0):   
ΦIj^

_k = N1 − 15 j^
_kPr=.��

 (Eq. 3.5) 

For a neutral atmosphere is it equal to unity. The Monin-Obukhov length f is dependent on z0, and 
is computed using the following empirical equation (Majumbar and Ricklin, 2010):  

B
e =  s (tB + t�s�) H=

(UuYUv|x|YUyxv) (Eq. 3.6) 

Here, tB, t�, zB, z� and z
 are constants (0.004349, 0.003724, -0.5034, 0.2310 and -0.0325 
respectively) and empirical factor s =  −0.5 (3.0 − 0.5 |i|}~|) with near-surface wind speed |i 
and exposure factor }~ , depending on cloud cover and solar zenith angle. The wind speed at a 
reference height (10 meters) is used to obtain the friction velocity |∗:  

|∗ = �|B=�/ LM NOu8�
O8

P  (Eq. 3.7) 

The quasi-laminar boundary layer resistance SU is a function of the cross-wind leaf dimension fR 
and the wind speed at canopy top, |(ℎ), following the parameterisation presented in McNaughton 
and Van Den Hurk, 1995:  

SU = 1.3 ∗ 150 ∗  � e�
I(b)  (Eq. 3.8) 

fR is set to 0.02 m for arable land and permanent crops, and to 0.04 m for deciduous and coniferous 
forests. For other land use classes fR, and subsequently, the  SU, is equal to zero. The canopy 
resistance SV is computed using the DEPAC3.11 (Deposition of Acidifying Compounds) module 
(van Zanten et al., 2010). SV is a parallel system of the resistances of three different pathways, the 
external leaf surface or cuticular resistance S�, the effective soil resistance Si���,���  and the 

stomatal resistance Si, and is defined as:  

SV = � B
W�

+ B
W����,���

+ B
W�

� rB (Eq. 3.9) 

The external leaf surface resistance S� is a function of the surface area index (SAI) and the relative 
humidity. The SAI is a function of the LAI. The effective soil resistance Si���,���  is the sum of the 

in-canopy resistance S��V and the soil resistance Si���. Soil resistance Si��� has a fixed value, 
depending on the land use class and conditions (frozen, wet or dry). In case of  |∗ > 0 the in-
canopy resistance for arable land, permanent crops and forest is computed as follows:  

S��V = B� b x��
I∗

  (Eq. 3.10) 
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For  |∗ < 0 and other land use classes a fixed value is used. The stomatal conductance for optimal 
conditions is the product of the LAI and the maximum leaf resistance from (Emberson et al., 2000). 
This maximum value is reduced by correction factors for photoactive radiation, temperature and 
vapor pressure deficit to obtain the stomatal conductance �i. The Si is then equal to 1/�i. The 
resistance parameterizations differ with land us type. A total of nine different land use classes are 
used in DEPAC.  LOTOS-EUROS uses a fixed z0 value for each of these land use classes. The 
default LAI values are also linked to the DEPAC classes, and follow a fixed temporal behaviour 
that describes the growing season of each land use class (Emberson et al., 2000). The bi-directional 
exchange of NH3 is included in the implementation of the DEPAC3.11 module (Wichink Kruit et 
al., 2012), allowing emissions of NH3 under certain atmospheric conditions. More information 
about the most recent version of the model can be found in Manders et al. (2017). 

3.2.2 Datasets 

The following section gives a short description of all the datasets that are used in this study. Firstly, 
a description of the LAI dataset is given. Subsequently, the datasets that are used to derive the 
updated z0 maps are described. Finally, the in-situ observations used for validation are discussed 
in the last paragraphs. 

3.2.2.1 MCD15A2H leaf area index  

The satellite-derived LAI is a combined product of the MODIS instruments aboard the Terra and 
Aqua satellites (Myneni et al., 2015). The LAI algorithm compares bidirectional spectral 
reflectances observed by MODIS to values evaluated with a vegetation canopy radiative transfer 
model that are stored in a look-up table. The algorithm then archives the mean and the standard 
deviation of the derived LAI distribution functions. We used the sixth version of the product, 
MCD15A2H, which has a temporal resolution of 8 d and a spatial resolution of 500 m. 

3.2.2.2 MYD13A3 NDVI  

NDVI is a vegetation index computed with reflectances observed by the MODIS instrument aboard 
the Aqua satellite (Didan, 2015). The NDVI is the normalized transform of the near infrared to the 
red reflectance and is expressed by  

NDVI = �� �r �&%�
�� �Y �&%�

 (Eq. 3.11) 

We used the MYD13A3 product, which is the monthly NDVI product with a spatial resolution of 
1 km. 
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Table 3.1. Overview of eddy covariance sites used to compute z0. The following abbreviations for land use 

types are used: DBF – deciduous broadleaf forest, ENF – evergreen needleleaf coniferous forest, MF – mixed 

forest, CRO – croplands, WET – permanent wetlands, GRA – grasslands.      

References for each Site ID: BE-Bra: Janssens (2016); BE-Lon: De Ligne et al. (2016a); BE-Vie: De Ligne et 

al. (2016b); DE-Akm: Bernhofer et al. (2016a); DE-Geb: Brümmer et al. (2016); DE-Gri: Bernhofer et 

al. (2016b); DE-Hai: Knohl et al. (2016); DE-Kli: Bernhofer et al. (2016c); DE-Obe: Bernhofer et al. (2016d); 

DE-RuR: Schmidt and Graf (2016a); DE-RuS: Schmidt and Graf (2016b); DE-Seh: Schneider and 

Schmidt (2016); DE-SfN: Klatt et al. (2016); DE-Tha: Bernhofer et al. (2016e); NL-Hor: Dolman et al. (2016); 

NL-Loo: Moors and Elbers (2016); FR-Fon: Berveiller et al. (2016); CH-Cha: Hörtnagl et al. (2016a); CH-

Fru: Hörtnagl et al. (2016b); CH-Lae: Hörtnagl et al. (2016c); CH-Oe1: Ammann (2016); CH-Oe2: Hörtnagl 

et al. (2016d); CZ-wet: Dušek et al. (2016). 

3.2.2.3 Forest canopy height  

The forest canopy height is derived from lidar (light detection and ranging) data acquired by the 
GLAS (Geoscience Laser Altimeter System) instrument aboard the ICESat (Ice, Cloud, and land 
Elevation Satellite) satellite (Zwally et al., 2002). This instrument was an altimeter that transmitted 
a light pulse of 1024 nm and recorded the reflected waveform. We used the global forest canopy 
height product developed by Simard et al. (2011), which has a spatial resolution of 1 km. 

3.2.2.4 Population density map  

The population density grid used in this study available for all European countries and provided 
by the European Environmental Agency (Gallego, 2010). The population density is disaggregated 
with the CORINE Land Cover inventory of 2000, using data on population per commune. The 
resulting population density grid is downscaled to a spatial resolution of 100 m. 

3.2.2.5 CORINE Land Cover  

The CORINE Land Cover (CLC) is a land use inventory that consists of 44 classes (European 
Environmental Agency, 2014). The CLC is produced by computer-assisted visual interpretation of 
a collection of high-resolution satellite images. The CLC has a minimum mapping unit of 25 ha 
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and a thematic accuracy of >85 %. We used the latest version of the product, CLC2012, in this 
study. 

Table 3.2. An overview of the datasets that are used to derive z0 input values for each DEPAC land use 

category. 

 

3.2.2.6 In situ reactive nitrogen observations  

The modelled NH4
+ and NO3

− wet deposition fluxes are compared to observations of wet-only 
samplers. We used observation from the Dutch Landelijk Meetnet Regenwatersamenstelling 
(LMRe) network (Van Zanten et al., 2017) and the German lander network (Schaap et al., 2017). 
The location of the stations can be found in Fig. 3.16. The modelled NH3 surface concentrations 
are compared to observation from the Dutch MAN network (Lolkema et al., 2015) and the 
European Monitoring and Evaluation Programme (EMEP) network (EMEP, 2016). The modelled 
NO2 surface concentrations are compared to observation from AirBase (EEA, 2019). We only used 
background stations. The location of these stations can be found in Fig. 3.14. 

3.2.2.7 Eddy covariance data  

FLUXNET is a global network of micrometeorological towers that measure biosphere–atmosphere 
exchange fluxes using the eddy covariance (EC) method. We used half-hourly observations from 
the FLUXNET2015 dataset (Pastorello et al., 2017) to validate the z0 values. We use observations 
of the mean wind speed, the friction velocity, the sensible heat flux, precipitation and air 
temperature to determine z0 values. The sites used in this study are shown in Table 3.1. 

Table 3.3. Studies that relate the aerodynamic roughness length (z0) to satellite-derived NDVI values for 

specific land cover types and conditions.  
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Figure 3.1. Several functions that relate the roughness length z0 (m) to the normalized difference vegetation 

index (NDVI). The dotted line shows the average of all the functions. This function is used to compute NDVI-

dependent z0 values for the subcategories within DEPAC classes “arable”, “other” and “permanent crops”.       

  

 

3.3    Methodology 

3.3.1    Updated z0 maps 
The updated z0 maps are a composition of z0 values derived using different methods. We 
distinguish three different main approaches: (1) z0 values that depend on forest canopy height, 
(2) z0 values that depend on the NDVI and (3) new z0 values for urban areas that depend on the 
population density map. In addition to these three approaches, the z0 values of some urban 
classes were set to new default values. An overview of the datasets that are used for each 
DEPAC land use class is given in Table 3.2. 

The MODIS NDVI, the MODIS LAI and the GLAS forest canopy height had to be pre-processed 
and homogenized in order to obtain consistent input maps that can be read into the LOTOS-
EUROS model. To achieve this, we created input maps for each DEPAC class on the coordinate 
grid of the CORINE/Smiatek land use map in LOTOS-EUROS. 

First of all, the original datasets were re-projected to geographic coordinates. The following 
approach is used to deal with the different horizontal resolutions of the datasets. We used the 
CLC2012 map, having the highest horizontal resolution, as a basis for the computation of the 
updated z0 values. For each of the other datasets, we first computed the percentages of each 
CORINE land cover class within every pixel. We define homogeneous pixels, consisting of nearly 
one CORINE land cover class, for which we will use a threshold value of 85 % of the pixels area. 
Then we isolate and use only these (nearly) homogeneous pixels to compute z0 values for each 
CORINE land cover class. The methods that were applied are described in the subsequent section. 

3.3.1.1 Forest-canopy-height-derived z0 values  

The forest canopy height dataset derived from GLAS lidar observations is used to compute the z0 
values for each CLC2012 forest land cover class (broadleaved forest, coniferous forest and mixed 
forest) that corresponds to one of the DEPAC forest land use classes (4: coniferous forest and 5: 
deciduous forest). Several publications relate vegetation height to z0 (e.g. Raupach, 1994; Plate, 
1971; Brutsaert, 2013). Here, we used the often-used equation from Brutsaert (2013):  
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z= =  0.136 ∗  h (Eq. 3.12) 

The vegetation height is the most important parameter influencing turbulence near the surface, and 
for this reason, the used parameterization gives a reasonable estimate of z0, even though it ignores 
many other aspects that influence z0 (e.g. density, vertical distribution of foliage). Multiple studies 
have illustrated that there is a seasonal variation in z0∕h for different types of forests (e.g. Yang and 
Friedl, 2003; Nakai, 2008). The z0 of deciduous trees is therefore additionally linked to the leaf 
area index to account for changes in tree foliage. The following formula is used to compute the 
monthly z0 value for each deciduous forest pixel:  

z=(LAI) = z=,¢:£ + -�� r -��,¢:£
-��,¢5¤ r -��,¢:£  (z=,¢5¤ − z=,¢:£)  (Eq. 3.13) 

Here, the maximum roughness length z0,max is set to the lidar-derived z0 from (Eq. 3.12). The 
minimum roughness length z0,min represents the z0 of leafless deciduous trees. Following the 
dependence of z0∕h on LAI presented in Nakai (2008) and Yang and Friedl (2003), we set the z0,min 
to 80 % of z0,max. 

 

Table 3.4. An overview of the default and the adjusted roughness length of each DEPAC class used in LOTOS-

EUROS for Germany, the Netherlands and Belgium. The datasets that are used to derive the updated z0 values 

are given in the last column. The mean z0 value of the DEPAC classes computed using the MODIS NDVI 

product is the yearly mean of all monthly z0 values. 
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Figure 3.2. Composite map of the new z0 values. The yearly mean is displayed for land use classes with time-

variant z0 values.  

 

 
Figure 3.3. Mean relative difference (%) of the updated z0 values with respect to the default z0 values. 
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3.3.1.2 NDVI-derived z0 values  

Table 3.3 gives an overview of several studies that relate the z0 value to the NDVI. The functions 
are derived for different vegetation types under specific conditions. Equations (3.12)–(3.20) are 
derived for different types of agricultural land. These equations are all within a reasonable range 
from one another for NDVI values below ∼0.8. Therefore, we chose to use the average function 
of Eqs. (3.12)–(3.19) to compute z0 values for all CLC subcategories of the following DEPAC 
classes: “arable”, “other” and “permanent crops”. Fig. 3.1 is a visualization of Eqs. (3.12)–(3.19) 
and the used mean function. Fig. S3.1 in the Supplement shows a histogram of all NDVI values in 
our study area in 2014. We computed that 7.4 % of all NDVI values have a NDVI >0.8, 1.3 % have 
a NDVI >0.85 and only 0.04 % have a NDVI >0.9. Virtually all NDVI values thus fall within the 
range where the average function does not differ much from the individual functions. The z0 value 
of grasslands is in general lower than other vegetation types. The last equation, Eq. (3.20), is 
specifically derived for grassland and is therefore used for all CLC subcategories that fall under 
the DEPAC class “grass”. 

3.3.1.3 z0 values for urban areas  

The default z0 of urban areas in LOTOS-EUROS was set to 2 m. We have updated the z0 values 
for urban areas to avoid possible overestimation of z0 in sparsely populated urban areas. The 
updated z0 values for CLC2012 classes 1 and 2, “1: continuous urban fabric” and “2: discontinuous 
urban fabric” are time-invariant and coupled to the EEA population density map. The z0 values are 
set to 2 m in areas with a population density higher than 5000 inhabitants km−2 and to 1 m in areas 
with a population density lower than 5000 inhabitants km−2. The z0 values of the other urban 
subcategories, CLC2012 classes 3 to 9, are updated to the proposed values for CLC classes in Silva 
et al. (2007). Fig. S3.2 shows the resulting updated z0 values for urban areas.        
 

3.3.2 LAI and z0 in LOTOS-EUROS  

After the computation of the z0 values, the maps for each CLC class were merged and converted 
into DEPAC classes using a pre-defined conversion table. As multiple CORINE land covers may 
translate to a single DEPAC class, the weighted average based on the respective percentage of each 
CORINE land cover class was computed for each pixel. We then used linear interpolation to obtain 
continuous z0 maps for each DEPAC class. Finally, the maps were regridded unto the 
CORINE/Smiatek grid and saved into one file per month. 

The default parameterization of the LAI in LOTOS-EUROS is replaced by the MCD15A2H LAI 
product from MODIS. First, we applied a coordinate transformation to obtain the data in 
geographical coordinates. The data were then regridded unto the grid of the CORINE/Smiatek land 
use map using linear interpolation. The quality tags were evaluated to identify pixels with default 
fill values from the MCD15A2H product. These fill values were replaced by the default LAI values 
in LOTOS-EUROS, to avoid modelling discrepancies resulting from sudden jumps in LAI values. 
Finally, the values were sorted per DEPAC land use class and individual fields were created for 
each class as new input for LOTOS-EUROS. 
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Table 3.5. Roughness length values from different types of studies. The first column states the global land use 

category of the z0 values. The second column states the (range of) z0 values, as well as the specific type of 

land use they are derived for. The third column shows the reference. 1Literature study. 2 Model input (EMEP 

Meteorological Synthesizing Centre – West; MSC-W). 3Model input (CHIMERE).  
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3.4    Results 

3.4.1    Comparison of the default and updated z0 values 
We used the CORINE/Smiatek land use map to combine all the updated z0 values into a single 
map. The resulting composite map has a horizontal resolution of 500 by 500 m and is shown in 
Fig. 3.2. The mean relative difference (MRD) between the default and updated z0 values is 
presented in Fig. 3.3. The largest positive differences occur in forested areas, meaning that the 
default z0 values are lower than the updated z0 values. The largest negative deviations occur in 
urban areas and areas with “grass”. The updated z0 values are generally lower in the Netherlands 
and Belgium, and mostly higher in Germany. Table 3.4 gives an overview of the default z0 values 
in LOTOS-EUROS and the mean and standard deviation of the new z0 values for each of the 
DEPAC land use classes. The updated z0 values for “arable land”, “coniferous forest”, 
“deciduous forest” and “other” are on average higher than the default z0 values in LOTOS-
EUROS. The updated z0 values for “grass”, “permanent crops” and “urban” are on average lower 
than the default z0 values in LOTOS-EUROS.    

Table 3.6. Comparison of the computed z0 values from FLUXNET observations and the corresponding 

satellite-derived z0 values. The table shows the mean and standard deviation of all z0 values in 1 year. For 

forest, only the maximum z0 value is given.   
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Figure 3.4. Comparison of the updated z0 values (x axis) to the z0 values derived from EC measurements (y 

axis). The error bars indicate the standard deviation.  

 

Figure 3.5. Seasonal variation of the computed z0 values at the FLUXNET cropland sites in 2014 (left axis) 

and the corresponding z0 values estimated from NDVI values (right axis). The green lines indicate the estimated 

z0 values derived from FLUXNET measurements and the purple lines indicate the z0 values derived from NDVI 

values. The assumptions used to compute the z0 values are shown in the titles of the figures. 
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Figure 3.6. The yearly mean MODIS leaf area index in 2014. 

 
Figure 3.7. The absolute differences (LAIMODIS – LAIdefault) between the MODIS leaf area index and the default 

leaf area index in LOTOS-EUROS. 
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Figure 3.8. Seasonal variation of the default and MODIS LAI values per DEPAC class. The black line 

represents the mean MODIS LAI of all pixels within the modelled grid for that particular DEPAC class; the 

ranges represent the mean plus and minus the standard deviation of the MODIS LAI. The red line depicts the 

default LAI values in LOTOS-EUROS.  

3.4.2 Comparison to z0 values from other studies  

We compared the updated z0 values to z0 values from several studies (Wieringa, 1993; Silva et al., 
2007; Troen and Petersen, 1989; Lankreijer et al., 1993; Yang and Friedl, 2003) and z0 values used 
in other CTMs (Simpson et al., 2012; Mailler et al., 2017). Table 3.5 gives an overview of these z0 
values. There is in general good agreement with these z0 values, and the updated z0 values mostly 
fall within the stated ranges. The updated z0 values for coniferous and deciduous forest are on the 
high side compared to these studies. A histogram of the forest canopy heights derived from GLAS 
within our study area is given in Fig. S3.1 in the Supplement. These differences can in part be 
explained by the occurrence of relatively tall forest canopy (∼30 m) in the dataset, especially in 
forests in southern Germany, whereas most of these studies either assumed or studied shorter trees. 
Another possible explanation lies in the fact that we used a relatively large conversion factor of 
0.136 (Eq. 3.12), whereas a factor of 0.10 is also used quite often.         

 

3.4.3 Comparison to z0 values derived from EC measurement sites  

We computed the z0 values of the EC sites, and we refer to Sect. S1 in the Supplement for a 
description of the methodology that is used to derive these values. We compared the z0 values 
based on their land use stated by FLUXNET to avoid issues arising from discrepancies in land use 
classifications. The forest sites (DBF, ENF and MF) are compared to z0 values derived from GLAS. 
The cropland and wetland sites (CRO and WET) are compared to the NDVI-dependent z0 values 
derived using the mean function shown in Fig. 3.1. The grassland sites (GRA) are compared to the 
NDVI-dependent z0 values for grassland specifically. The results per site are given in Table 3.6. 
Fig. 3.4 shows the comparison of the z0 values from EC measurements and the updated z0 values 
for different land use classes. The z0 values for forests match quite well. Differences between the 
two can in part be explained by the influence of topography, which is not accounted for in the z0 
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values that are derived using forest canopy height only. The z0 values for short vegetation seem to 
be overestimated for crops and underestimated for grassland and wetland sites. The 
underestimation of some grassland and wetland sites can be explained by the large inter-site 
differences in vegetation cover. Some of the FLUXNET sites classified as grasslands are, for 
instance, mostly covered with short grass only (for instance, Oensingen), while other sites are 
covered with relatively tall herbaceous vegetation, such as reeds (for instance, Horstermeer). 
Compared to the default z0 values in LOTOS-EUROS, the root mean square difference (RMSD) 
improved from 0.76 (default z0) to 0.60 (updated z0). For forest, the RMSD improved from 1.23 
(default z0) to 0.96 (updated z0). For short vegetation, the RMSD also decreased, from 0.22 (default 
z0) to 0.19 (updated z0). Fig. 3.5 shows the comparison of the seasonal variation in computed and 
satellite-derived z0 values for the FLUXNET sites classified as crops in 2014. We can once more 
observe a clear offset between the two. The FLUXNET z0 values go to near-zero values in 
wintertime, whereas the satellite-derived z0 values never drop below 0.12 m. This seems to be due 
to the distribution of the NDVI values (Fig. S3.1), which shows that the NDVI >0.4 most of the 
time. The seasonal patterns, on the other hand, seem to match well in general, even though the 
satellite-derived z0 values rise somewhat earlier in the year. 

 
Figure 3.9. Seasonal variation of the MODIS LAI at individual FLUXNET sites with different land use 

classifications. 

 

Figure 3.10. The modelled amount of dry (a) and wet (b) deposition in kg N ha−1 in 2014.  
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3.4.4 Comparison of the default and MODIS LAI  

The yearly mean MODIS LAI values are shown in Fig. 3.6. The mean differences between the 
MODIS and the default LAI values are presented in Fig. 3.7. The largest positive differences occur 
in areas with “arable land”, where the mean default LAI values are lower than the MODIS LAI 
values. The largest negative deviations occur in areas with forest, especially for “coniferous 
forest”. The seasonal variations of the MODIS and the default LAI values are shown in Fig. 3.8. 
The default LAI of “grass” and “deciduous forest” seems to fit the yearly variation of the MODIS 
LAI quite well. We matched the MODIS LAI with the locations of the FLUXNET sites to take a 
closer look at the pattern for different land use classes. Figures 3.9 and S3.3 show the seasonal 
variation of the MODIS LAI at FLUXNET sites with different land use classifications. The LAI 
of the grassland sites seems to vary the most, which corresponds to the large inter-site differences 
in vegetation cover as explained in Sect. 3.4.3. For the cropland sites, we can recognize the 
growing season and the apparent harvest, where the LAI values drop again. Of all the different 
land use classes, deciduous broadleaf forest sites reach the highest LAI values in the growing 
season. There is less variation in the LAI for evergreen needleleaf forest sites. However, the 
wintertime LAI values seem to be unrealistically low. 

3.4.5 Implications for modelled Nr deposition fields  

In the following section, the impact of the updated LAI and z0 values on modelled Nr deposition 
fields in LOTOS-EUROS is discussed. A total of four different LOTOS-EUROS runs are 
compared to examine the individual effect of the updated LAI and z0 values on the modelled Nr 
distributions and deposition fields. The first run, named “LEdefault”, is the standard run using default 
LAI and z0 values. The second run, named “LELAI”, uses updated LAI values and the default z0 
values. The third run, named “LEz0”, uses updated z0 values and the default LAI values. The fourth 
run, named “LEz0+LAI”, uses both updated LAI and z0 values. From now on, we will refer to the 
outputs of these different runs using the abovementioned abbreviations. 

3.4.5.1 Effect on total Nr deposition  

Fig. S3.4 shows the division of the total terrestrial Nr deposition over Germany, the Netherlands 
and Belgium into different Nr compounds for each of the model runs. A relatively larger portion 
of the total Nr deposition is attributed to oxidized forms of Nr in Germany. The reduced forms of 
Nr predominate in the Netherlands and Belgium. The largest change in total Nr deposition occurs 
in Belgium (+6.19 %) due to the inclusion of the MODIS LAI. This corresponds to the relative 
increase in LAI values here. The inclusion of the updated z0 values led to a minor decrease in total 
Nr deposition in the Netherlands (−1.45 %) and Belgium (−1.13 %), and a minor increase in 

Germany (+0.44 %). 

3.4.5.2 Effect on wet and dry Nr deposition  

We examined the direct effect of the updated LAI and z0 values on the modelled dry Nr deposition, 
as well as the related indirect effect in modelled wet Nr deposition. Fig. 3.10 shows the dry and 
wet Nr deposition in kg N ha−1 in 2014, modelled with the updated LAI and z0 values as input in 
LOTOS-EUROS. Fig. 3.11 shows the relative changes in the total amount of dry and wet Nr 
deposition of the different runs with respect to the default run. The combined effect shows an 
increase of the amount of dry Nr deposition over most parts of Belgium and Germany. The amount 
of wet Nr deposition decreases over most parts of Germany and eastern Belgium but remains 
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unchanged in north-western parts of Germany. We observe a decrease in total Nr deposition in the 
Netherlands. In general, we observe changes ranging from approximately −20 % to +30 % in the 

total amount of dry Nr deposition. The changes in wet Nr deposition are smaller in magnitude and 
range from approximately −3 % to +3 %. 

3.4.5.3 Effect on reduced and oxidized Nr deposition  

We split up the total Nr deposition into NHx (NH3 and NH4
+) and NOy (NO and NO2 and NO3

− and 
HNO3) deposition to look at the effect of the updated LAI and z0 input maps on the deposition of 
reduced and oxidized forms of Nr, respectively. Fig. 3.12 shows the modelled NHx and NOy 
deposition in kg N ha−1 in 2014, including the updated LAI and z0 input values. Fig. 3.13 shows 
the relative changes (%) in the total NHx and NOy of the different runs with respect to the default 
run of LOTOS-EUROS. The updated z0 values have a larger impact on the NHx deposition than on 
the NOy deposition. The implementation of the updated z0 values has led to a decrease in NHx 
deposition over most of the Netherlands and western Belgium, driven by the large fraction of 
grassland here. The updated LAI values led to relatively more NHx deposition in Belgium. The 
updated LAI values led to an increase of NOy deposition in almost all areas within the modelled 
region, except for some urban areas. Moreover, the impact seems to be limited in large forests 
located in background areas. 

Table 3.7. Relative change (%) in total Nr deposition with respect to the default run over Germany, the 

Netherlands and Belgium in 2014 per land use class.    

 

3.4.5.4 Effect on land-use-specific fluxes  

Table 3.7 gives an overview of changes in the distribution of the land-use-specific fluxes in the 
whole study area (Germany, the Netherlands and Belgium combined) for the different runs. The 
most distinct changes in Nr deposition are due to the updated LAI values (“LELAI”), where we 
observe an increase in total Nr deposition on urban areas (+16.62 %) and arable land (+9.53 %), 
and a decrease on coniferous forests (−9.36 %). This coincides with the categories where we 

observe the largest changes in LAI values. The default LAI values in urban areas were first set to 
zero for all urban DEPAC categories. The MODIS LAI values, however, are only zero in densely 
populated areas and areas with industry. The main effects of the updated z0 values (“LEz0”) can be 
observed for grass (−3.95 %), permanent crops (+3.27) and arable land (−3.17 %). In the combined 

run, “LEz0+LAI”, we observe an amplified effect in total Nr deposition over grass (−8.05 %) and 

arable land (+12.88 %). The impact of the individual parameters on the remaining land use 
categories is attenuated in this run. 
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3.4.6 Implications for Nr distributions  

The changes in Nr deposition amounts induce an effect in the modelled distribution of nitrogen 
components. Here, we look at the effect of the updated LAI and z0 values on NH3 and NO2 surface 
concentrations. Fig. 3.14 shows the updated modelled NH3 and NO2 surface concentrations in 
2014. The dots on top of the figures represent the stations that are used for validation and their 
observed mean NH3 and NO2 surface concentrations. Fig. 3.15 shows the relative change in yearly 
mean NH3 and NO2 surface concentrations in 2014 of the different runs with respect to the default 
run of LOTOS-EUROS. 

The first column represents the changes in NH3 and NO2 surface concentrations due to the updated 
z0 values. The NH3 surface concentration in the Netherlands has increased by up to ∼8 %. The NH3 
surface concentration in almost all of Germany has decreased by up to ∼10 %. The changes in the 
NO2 surface concentration are less distinct and changed approximately minus to plus 4 % in most 
areas. The middle column represents the changes in NH3 and NO2 surface concentrations due to 
the inclusion of the MODIS LAI only. The NH3 surface concentration has increased with up to 
∼10 % in the Netherlands, western Belgium and north-western and southern Germany. The NH3 
surface concentration has decreased in eastern Belgium and central Germany. The NO2 surface 
concentrations have decreased with up to ∼6 % in almost all of the modelled area. 

3.4.7 Comparison to in situ measurements  

To analyse the effect of the updated LAI and z0 values, we compared our model output to the 
available in situ observations. Due to the lack of available dry deposition measurements, we 
decided to use NH4

+ and NO3
− wet deposition and NH3 and NO2 surface concentrations 

measurements instead. The distribution of the wet deposition stations is shown in Fig. 3.16, as well 
as the modelled mean NH4

+ (left) and NO3
− (right) wet deposition in 2014. The locations of the 

stations that measure the NH3 and NO2 surface concentrations are shown in Fig. 3.14. 

The relationships between the modelled and observed fields are evaluated using the Pearson 
correlation coefficient (r), the RMSD and the coefficients (slope, intercept) of simple linear 
regression. Table S3.1 shows these measures for the comparison with monthly mean NO3

− wet 
deposition, NH4

+ wet deposition and the monthly mean NH3 and NO2 surface concentrations in 
2014. Table S3.1 shows the same statistics but computed per DEPAC land use class. Overall, we 
do not observe large changes in the shown measures due to the inclusion of the updated LAI and 
z0 values on a yearly basis. The model underestimates NO3

− wet deposition, and NH4
+ to a lesser 

extent, too. The modelled NH3 surface concentrations are in general higher than observed 
concentrations. The opposite is true for NO2; here, the modelled surface concentrations are lower 
than the observed concentrations. The computed measures did not change drastically due to the 
inclusion of the updated z0 and LAI values. 



68 

 

Figure 3.11. The relative change in total dry (a, b, c) and wet (d, e, f) Nr deposition in 2014 for the different 

model runs relative to the default LOTOS-EUROS run. The first row indicates the changes related to the 

implementation of the updated z0 values. The second row indicates the changes related to the implementation 

of the MODIS LAI values. The third row shows the combined effect of both these updates.      

Figure 3.12. NHx deposition (a) and NOy deposition (b) in kg N ha−1 in 2014.       
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Figure 3.13. The relative change in total NHx (a, d) and NOy (c, f) deposition in 2014 for the different model 

runs relative to the default LOTOS-EUROS run. The first row indicates the changes related to the 

implementation of the updated z0 values. The second row indicates the changes related to the implementation 

of the MODIS LAI values. The third row shows the combined effect of both these updates. 

 

Figure 3.14. The yearly mean NH3 (a) and NO2 (b) surface concentrations in µg m−3 in 2014 and the 

corresponding mean surface concentrations measured at the in-situ stations.     
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Figure 3.15. The relative change (%) in mean NH3 (a, b, c) and NO2 (d, e, f) surface concentration in 2014 for 

the different model runs relative to the default LOTOS-EUROS run. The first row indicates the changes related 

to the implementation of the updated z0 values. The second row indicates the changes related to the 

implementation of the MODIS LAI values. The third row shows the combined effect of both these updates.  
  

Figure 3.16. The mean NH4
+ (a) and NO3

− (b) wet deposition in kg N ha−1 month−1 in 2014. The mean observed 

wet deposition observed at the stations is plotted on top. 
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Fig. S3.5 shows the monthly mean NO3
− wet deposition, NH4

+ wet deposition, NH3 surface 
concentration and NO2 surface concentrations for the different model runs and the mean of the 
corresponding in situ observations. The relative changes with respect to the default model run are 
shown in the bottom figures. For NH4

+, the model captures the observed pattern quite well, 
although the mean spring peak has slightly shifted. The model captures the monthly variation of 
NO3

− well in general, too. There appears to be an underestimation during the winter, especially in 
December. The observed NH3 surface concentrations are lower than the modelled concentrations 
at the beginning of spring and higher during summer. The measured NO2 surface concentrations 
are continuously higher than the modelled values. A potential reason for this might be the spread 
of the NO2 stations. Unlike NH3, NO2 is not only measured in nature areas but all types of locations. 
Even the selected background stations may therefore be located relatively closer to emission 
sources, leading to higher observed NO2 surface concentrations. The changes due to the inclusion 
of either the MODIS LAI or the updated z0 values in our model are limited. Both Tables S3.1 and 
S3.2, and Fig. 3.16 illustrate that the comparability of the modelled wet deposition and surface 
concentration fields to the available in situ measurements did not change significantly. The impact 
of the updated LAI and z0 values on these fields is largely an indirect effect of the more distinct 
changes in the dry deposition and thus too small to lead to any drastic changes. We conclude that 
we are unable to demonstrate any major improvements with the use of the currently available in 
situ measurements. 

3.5    Discussion  
This paper aimed to improve the surface characterization of LOTOS-EUROS through the inclusion 
of satellite-derived LAI and roughness length (z0) values. We used empirical functions to derive z0 
values for different land use classes. The updated z0 values are compared to literature values, 
showing a good agreement in general. We also compared our z0 values to z0 values computed from 
FLUXNET sites. The z0 values for forests seemed to match well, but the z0 values for short 
vegetation seem to be overestimated for crops and underestimated for grassland and wetland sites. 
The differences for short vegetation types can be partially explained by the large inter-site 
variability in vegetation types within each classified land use (e.g. reeds versus short grass). The 
equation for short vegetation used here seems to work best for short grasslands. For our current 
study area, this does not pose a problem, since most grasslands in Germany, Belgium and the 
Netherlands are managed and grazed upon. We found an improved RMSD value of 0.60, compared 
to RMSD of 0.76 with default z0 values. Even though there is an offset between the satellite-derived 
and computed FLUXNET z0 values for crops, the seasonal pattern seemed to match well. The 
offset can be explained by the absence of low NDVI (<0.4) values. 

The z0 is closely related to the geometric features and distributions of the roughness elements in a 
certain area. In reality, it is not only dependent on vegetation properties but, for instance, also the 
topography of the area. The updated z0 values are linked to specific land use pixels and are therefore 
assumed reasonable estimates for moderately homogeneous areas with this specific land use type. 
There are various approaches to combine these z0 values into an “effective” roughness for larger, 
mixed areas (e.g. Claussen, 1990; Mason, 1988). The LOTOS-EUROS model uses logarithmic 
averaging to compute an effective roughness for an entire model pixel. This averaging step seems 
to be one of the reasons why the effect of our updated z0 values on the deposition fields is limited. 
To illustrate this, the relative change in total dry NH3 deposition due to the updated z0 values were 
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computed and shown in Fig. 3.17. We used increasing threshold percentages to sort the NH3 
deposition on a model pixel level per land use type and fraction. Fig. 3.17 shows that the 
differences in total NH3 deposition between the two runs increase with increasing land use fraction. 
The model pixels that mostly consist of one type of land use seem to show the largest change in 
NH3 deposition. The change thus appears to be less distinct in pixels that have a higher degree of 
mixing. Most of the model pixels largely contain mixtures of different land uses on the current 
model resolution. As a result, averaging of z0 on a model pixel level is thus likely to cause a 
levelling effect on the current model resolution. The impact of the updated z0 values is therefore 
expected to be larger at a higher model resolution. The use of another approach for computing the 
“effective” roughness could potentially lead to stronger changes in the modelled deposition fields. 

Moreover, we should also consider the limitations of the datasets used in this study. The forest 
canopy height map used in this study has been validated against 66 FLUXNET sites (Simard et al., 
2011). The results showed that root mean square error (RMSE) was 4.4 m and R2 was 0.7 after 
removal of seven outliers. For the FLUXNET forest sites used in this study, we compared the 
forest canopy heights from GLAS to the maximum forest canopy height at the FLUXNET sites 
taken from (Flechard et al., 2020). For all but one site (DE-Hai), the forest canopy heights from 
GLAS were lower than this value (Table S3.3). This method could potentially be improved by 
using another product with either a higher precision or resolution. For modelling studies on a 
national level, one could or instance consider the use of airborne lidar point clouds to retrieve forest 
canopy heights. This procedure, although it is computationally expensive, would allow us to create 
high-resolution z0 maps. 

 
Figure 3.17. The relative difference (%) in total dry NH3 deposition in 2014 between the default run (LEdefault) 

and the run with the updated z0 values (LEz0), sorted by increasing land use fraction.    

The MODIS LAI at the FLUXNET sites showed realistic seasonal variations for most land use 
classifications, except for relatively low wintertime values for evergreen needleleaf forests. The 
previous versions of the MODIS LAI have been validated in many studies (e.g. Fang et al., 2012; 
Wang et al., 2004; Kobayashi et al., 2010), showing an overall good agreement with ground-
observed LAI values and other LAI products. The seasonality in LAI is properly captured for most 
biomes, but unrealistic temporal variability is observed for forest due to infrequent observations. 
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Also, the previous versions overestimate LAI for forests (Fang et al., 2012; Kobayashi et al., 2010; 
Wang et al., 2004). The MODIS LAI products have been gradually improving with each update; 
however, these issues still exist in the newer versions of the product. For the most recent version 
of the MODIS LAI, version 6, Yan et al. (2016) found an overall RMSE of 0.66 and a R2 of 0.77 
in comparison with LAI ground observation. More recently, using a different approach, Xu et 
al. (2018) found a slightly higher RMSE of 0.93 and a R2 of 0.77. Some studies (e.g. Tian et al., 
2004) have reported an underestimation of the MODIS LAI in presence of snow cover, particularly 
affecting evergreen forests. With only limited amounts of snowfall, the regions in our study did 
not suffer from this problem. However, this issue should be carefully considered when using the 
MODIS LAI for regions with frequent snow cover, like Scandinavia. LOTOS-EUROS uses 
meteorological data to determine what regions are covered with snow and for these regions the 
standard parameterization for the canopy resistance is not used. LOTOS-EUROS uses a pre-
defined value for the canopy resistance instead. As such, these low MODIS LAI values do not 
affect the modelled deposition in LOTOS-EUROS during snow cover.   
 
Though the issues with the MODIS LAI should be considered with care, the spatial and temporal 
distributions of these LAI values are more realistic than those of the default LAI values used in 
LOTOS-EUROS. The same holds for the updated, time-variant z0 values. The representation of 
the growing season is now more realistic due to their dependence on NDVI and LAI values. 
Moreover, the z0 values for forests now also have a clear spatial variation, such as a latitudinal 
gradient with increasing z0 values towards the south of Germany. These types of patterns can 
simply not be captured by fixed values. 

Figure 3.18. Critical load exceedances on forests in kg N ha−1 in 2014. The upper figures show the critical on 

deciduous (a) and coniferous (b) forest, as modelled with the updated z0 and LAI values. The lower figures 

show the absolute differences in critical load exceedance on deciduous (c) and coniferous (d) between the new 

and the default LOTOS-EUROS run. 
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We evaluated the effect of updated z0 and LAI values on modelled Nr distribution and deposition 
fields. The distribution of the relative changes in deposition of the reduced and oxidized forms of 
reactive nitrogen showed a similar pattern. Here, the updated z0 values led to a variation of ∼±8 %, 
and the updated LAI values led to variations of ∼±30 % in both fields. The dry deposition fields 
were most sensitive to changes in z0 and LAI, as these varied from approximately −20 % to +20 % 

with the updated z0 map, and from −20 % even up to +30 % with the MODIS LAI values. As a 

result, we observed a shift from wet to dry deposition, except for the Netherlands, where we 
observe an opposite shift from dry to wet deposition. Moreover, we observed a redistribution of Nr 
deposition over different land use classes on a subgrid level. To illustrate the potential 
consequences on a local scale, we computed the critical load exceedances for deciduous and 
coniferous forest (Fig. 3.18) using critical loads of 10 kg following Bobbink et al. (2010b). 
Compared to the default run, the changes may be sizable locally, ranging from approximately −3 
up to +2 kg for deciduous forest and even over −3 kg for coniferous forest. 

The uncertainties of the LAI and z0 input data are but one aspect of the model uncertainty of CTMs. 
The model uncertainty has several other origins, like the physical parameterizations (e.g. 
deposition velocities) and the numerical approximations (e.g. grid size). Two of the most important 
uncertainties related to deposition modelling are the emissions and the surface exchange 
parameterization. The emission inventories for reactive nitrogen hold a relatively large uncertainty. 
The uncertainty of the reported annual total NH3 emissions is estimated to be at least ±30 %. This 
is mainly due to the diverse nature of agricultural emission sources, leading to large spatiotemporal 
variations. The annual NOx emissions total hold a lower uncertainty, of approximately ±20 % 
(Kuenen et al., 2014). Emissions at specific locations, especially for NH3, are even more uncertain 
due to assumptions made in the redistribution and timing of emissions. A recent paper of Dammers 
et al. (2019), for instance, found that satellite-derived NH3 emissions of large point sources are a 
factor of 2.5 higher than those given in emission N inventories. The surface exchange 
parameterization is another source of uncertainty. The complexity of the NH3 surface exchange 
schemes in CTMs is usually low compared to the current level of process understanding (Flechard 
et al., 2013). Moreover, large discrepancies exist between deposition schemes. Flechard et 
al. (2011), for instance, showed that the differences between four dry deposition schemes for 
reactive nitrogen can be as large as a factor of 2–3. 

This work has shown that changes in two of the main deposition parameters (LAI, z0) can already 
lead to distinct, systematic changes (∼30 %) in the modelled deposition fields. This demonstrates 
the model's sensitivity toward these input values, especially the LAI. In addition to the known 
uncertainty involved with the surface exchange parameterization itself, this further stresses the 
need for further research. Another important aspect that should receive more attention is the 
validation of the dry deposition fields with in situ dry deposition measurements. Here, we 
illustrated the need for direct validation methods, as relatively large changes in modelled dry 
deposition field cannot be verified sufficiently by surface concentration and wet deposition 
measurements. 

The surface–atmosphere exchange remains one of the most important uncertainties in deposition 
modelling. The use of satellite products to derive LAI and z0 values can help us to represent the 
surface characterization in models more accurately, which in turn might help us to minimize the 
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uncertainty in deposition modelling. The approach to derive high-resolution, dynamic z0 estimates 
presented here can be linked to any land use map and is as such transferable to many different 
models and geographical areas.  
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Chapter 4: Data assimilation of CrIS-NH3 satellite observations for 

improving spatiotemporal NH3 distributions in LOTOS-EUROS.  

 

Abstract. Atmospheric levels of ammonia (NH3) have substantially increased during the last 
century, posing a hazard to both human health and environmental quality. The atmospheric budget 
of NH3, however, is still highly uncertain due to an overall lack of observations. Satellite 
observations of atmospheric NH3 may help us in the current observational and knowledge gaps. 
Recent observations of the Cross-track Infrared Sounder (CrIS) provide us with daily, global 
distributions of NH3. In this study, the CrIS-NH3 product is assimilated into the LOTOS-EUROS 
chemistry transport model using two different methods aimed at improving the modelled spatio-
temporal NH3 distributions. In the first method NH3 surface concentrations from CrIS are used to 
fit spatially varying NH3 emission time factors to redistribute model input NH3 emissions over the 
year. The second method uses the CrIS-NH3 profile to adjust the NH3 emissions using a Local 
Ensemble Transform Kalman Filter (LETKF) in a top-down approach.  The two methods are tested 
separately and combined, focusing on a region in western Europe (Germany, Belgium, and the 
Netherlands). In this region, the mean CrIS-NH3 total columns were up to a factor 2 higher than 
the simulated NH3 columns between 2014 and 2018, which, after assimilating the CrIS-NH3 
columns using the LETKF algorithm, led to an increase of the total NH3 emissions of up to 
approximately 30%. Our results illustrate that CrIS-NH3 observations can be used successfully to 
estimate spatially variable NH3 time factors, and improve NH3 emission distributions temporally, 
especially in spring (March to May). Moreover, the use of the CrIS-based NH3 time factors resulted 
in an improved comparison with the onset and duration of the NH3 spring peak observed at 
observation sites at hourly resolution in the Netherlands. Assimilation of the CrIS-NH3 columns 
with the LETKF algorithm is mainly advantageous for improving the spatial concentration 
distribution of the modelled NH3 fields. Compared to in-situ observations, a combination of both 
methods led to the most significant improvements in modelled monthly NH3 surface concentration 
and NH4

+ wet deposition fields, illustrating the usefulness of the CrIS-NH3 products to improve 
the temporal representativity of the model and better constrain the budget in agricultural areas. 
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4.1 Introduction 

Ammonia (NH3) is an alkaline gas in the Earth’s atmosphere. NH3 is highly reactive and readily 
reacts with available acids, forming aerosol components harmful to human health (Pope et al., 
2009, Lelieveld et al., 2015, Giannakis et al., 2019) and, directly and indirectly, impacting global 
climate change (Erisman et al, 2011, Myhre et al., 2013). NH3 is emitted from a large number of 
sources, including agriculture, natural nitrogen fixation in oceans and plants, volcanic eruptions, 
and biomass-, industrial- and fossil fuel burning (Erisman et al., 2015). Globally, agriculture is the 
largest source of NH3. Agricultural emissions of NH3 consist of, among others, volatilized NH3 
after manure and chemical fertilizer application, livestock housing and grazing and harvesting of 
crops. About 40% of the total global NH3 emissions follow directly from volatilization of animal 
manure and chemical fertilizer, a spatially variable process highly controlled by the temperature 
and acidity of soils (Sutton et al., 2013). In western Europe, for instance, agriculture is an even 
more dominant source of NH3 and contributes to 85-100% of all NH3 emissions (Hertel et al., 
2011). After the emitted NH3 is transported through the atmosphere, it is deposited back to the 
Earth’s surface through the processes of wet and dry deposition. Excess amounts of reactive 
nitrogen deposition can cause several adverse effects, such as eutrophication in aquatic ecosystems 
and soil acidification (Erisman et al., 2007) and biodiversity loss in terrestrial ecosystems (Bobbink 
et al., 2010).    

 

Even though NH3 at its current levels is an important threat to human health and environmental 
quality, its atmospheric budget is still very uncertain. NH3 concentrations are highly variable in 
space and time and are difficult to be reliably measured in-situ due to the sticky nature of NH3 
leading to potential adsorption to parts of the measurement devices (von Bobrutzki et al, 2010). 
Globally, only a few NH3 measurement networks exist, most of which contain only a small number 
of locations. Moreover, most measurements are performed at a coarse temporal resolution (weeks 
to months), while most atmospheric processes occur on much shorter time scales. Due to the lack 
of dense and precise measurement networks, measures for NH3 emission controls currently rely 
mostly on estimates from models, for instance from chemical transport models (CTMs). CTMs 
simulate atmospheric processes such as emissions, transport, deposition and chemical conversion 
to estimate the spatial and temporal distribution of atmospheric NH3. However, these models 
involve large uncertainties. On the one hand, model assumptions and parameterizations are 
uncertain due to insufficient or lack of knowledge of some of the processes, for instance, the limited 
understanding of bi-directional fluxes of NH3 (Schrader and Brümmer, 2014, Schrader et al., 2018) 
or the direct effect of meteorology on NH3 emissions (Sutton et al., 2013). On the other hand, 
uncertainties stem from the underlying input data and the spatial and temporal variation in 
emissions. Compared to other air pollutants, NH3 emission inputs are especially uncertain due to 
their large spatiotemporal variability resulting from the diverse nature of agricultural sources 
(Behera et al., 2013). In Europe, the uncertainty of the total annual reported NH3 emissions on a 
country level is for instance already estimated to be at least round ~30% (EEA, 2019). Naturally, 
NH3 emissions from individual sources have a much higher uncertainty due to errors related to 
spatial and temporal distribution. So as to reduce the uncertainty in modelled NH3 fields from 
CTMs, it is vital to better understand both the spatiotemporal distribution of NH3 emissions. 
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With the scarceness of in-situ measurements and uncertainties in existing models, the atmospheric 
NH3 budget remains among the least known parts of the nitrogen cycle (Erisman et al., 2007). 
Recent satellite observations of NH3 in the lower troposphere can help us to fill in both 
observational and knowledge gaps. Satellite instruments, such as the NASA Tropospheric 
Emission Spectrometer (TES) (Beer et al., 2008), ESA’s Infrared Atmospheric Sounder 
Interferometers (IASI) (Clarisse et al., 2009), the NASA Atmospheric Infrared Sounder (AIRS) 
(Warner et al., 2016), the Thermal And Near-infrared Spectrometer for Observation-Fourier 
Transform Spectrometer (TANSO-FTS) (Someya et al., 2020) and the NASA/NOAA Cross-track 
Infrared Sounder (CrIS) (Shephard and Cady-Pereira, 2015) provide global observations of 
atmospheric NH3. Out of the operational satellites that observe NH3 with twice daily global 
coverage, CrIS is the newest instrument and has the lowest radiometric noise in the spectral region 
used for NH3 (Zavyalov et al., 2013). Moreover, CrIS has greater vertical sensitivity to near-surface 
NH3, and provides retrievals of the vertical distribution of NH3 (Shephard et al., 2020).  

 

These atmospheric trace gas measurements with satellites have opened up new ways to study the 
atmospheric budget. Recently, satellite observations have successfully been used for direct 
estimates of emissions and lifetimes of various other atmospheric species (e.g., SO2, NO2, CO2) of 
single anthropogenic or natural point sources (e.g., Fioletov et al., 2015, Nassar et al., 2017) or 
even multiple sources at a time (Fioletov et al.,2017, Beirle et al., 2019). For NH3 specifically, 
multiple studies have reported emissions and atmospheric lifetime estimates either based on 
satellite data (e.g., Zhu et al., 2013, Whitburn et al., 2015, Van Damme et al., 2018, Zhang et al., 
2018, Cao et al., 2020, Evangeliou et al., 2021) or directly estimated from satellite data (e.g., Van 
Damme et al., 2018, Adams et al., 2019, Dammers et al., 2019). Here, also different forms of model 
inversions have been used. Overall, these studies indicate an underestimation of both 
anthropogenic and natural NH3 emissions in the current emission inventories. In addition to 
estimating NH3 emissions, various studies used satellite observations to estimate dry deposition 
fluxes of NH3 (Kharol et al., 2018, Van der Graaf et al., 2018, Lui et al., 2020).   
 

In this manuscript, we describe two methods to improve both the temporal and spatial variation of 
NH3 emissions in the LOTOS-EUROS chemistry transport model with CrIS-NH3 observations. 
The first method aims at deriving an improved set of a-priori, observation-based NH3 time factors 
to be used for the temporal distribution of agricultural emission sources within LOTOS-EUROS. 
In this method, the NH3 surface concentrations from CrIS are used to fit daily NH3 time factors. 
The second method is used to assimilate the CrIS-NH3 observations into the LOTOS-EUROS 
model, using a Local Ensemble Transform Kalman Filter (LETKF) approach as data-assimilation 
system. The impact of the two methods, both individually and combined, on the simulated NH3 
emissions, concentration and deposition fields is then evaluated. The focus region of the study is a 
low-to-high NH3 emission area within western Europe (The Netherlands, Germany, Belgium), 
which is representative for other intense agricultural regions in the world. Moreover, the NH3 
emissions within this region are relatively well known and in-situ observations are sufficiently 
available.  
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4.2 Methodology   

4.2.1 LOTOS EUROS   

LOTOS-EUROS is an Eulerian chemistry transport model (Manders et al., 2017) that could be 
used to simulate trace gas and aerosol concentrations in the lower troposphere. The model has an 
intermediate complexity with limited run time, allowing ensemble-based simulations and 
assimilation studies. LOTOS-EUROS uses meteorological data as input, which in this study is 
taken from the using European Centre for Medium-Range Weather Forecasts (ECMWF). The gas-
phase chemistry follows a carbon-bond mechanism (Schaap et al., 2008). The dry deposition fluxes 
are calculated with the Deposition of Acidifying Compounds (DEPAC) 3.11 module, following 
the resistance approach and it includes a calculation of bi-directional NH3 fluxes (Van Zanten et 
al., 2010, Wichink Kruit et al., 2012). The wet deposition fluxes are computed using the CAMx 
(Comprehensive Air quality Model with Xtensions) approach, which includes both in-cloud and 
below-cloud scavenging (Banzhaf et al., 2012). The anthropogenic emissions are taken from 
CAMS-REG-AP (Copernicus Atmospheric Monitoring Services Regional Air Pollutants) 
emissions dataset v2.2 (Granier et al., 2019). For Germany, high resolution gridded NH3 emission 
inputs (GRETA) are used (Schaap et al., 2018). In this study, a region in Western Europe (47°N-
56°N, 2°E-16°E) is modelled, which includes all of Germany, the Netherlands and Belgium (Fig. 
4.2). A spatial resolution of 0.20° longitude by 0.10° latitude is used, corresponding to 
approximately 12 by 12 square kilometers, which is also roughly the footprint size of CrIS (14 by 
14 km2 at nadir). The vertical grid extends up to   200 hPa and is split up into 13 vertical layers. 
This captures the largest part of atmospheric NH3, as it is a relatively short-lived species mainly 
located in the boundary layer. The interfaces of the vertical layers are based on the pressure layers 
used in the ECMWF meteorological input data. LOTOS-EUROS is part of the operational 
Copernicus Atmosphere Monitoring Service (CAMS) ensemble forecasts and analysis for Europe 
(Marécal et al., 2015). The model has participated in multiple model intercomparison studies (e.g., 
Bessagnet et al., 2016, Colette et al., 2017, Vivanco et al., 2018), showing overall good 
performance. 

4.2.2 Datasets  

4.2.2.1 CrIS NH3   

The Cross-Track Infrared Sounder (CrIS) is an instrument aboard NASA’s sun-synchronous, Earth 
orbiting Suomi NPP satellite with an equatorial overpass at 13:30 and 1:30 LST. The CrIS sensor 
has a spectral resolution of 0.625 cm-1 (Shephard et al., 2015) and a detection limit of 0.3-0.5 ppbv 
under favorable conditions (Shephard et al., 2020). The instrument has a wide swath of up to 2200 
km with pixels of approximately 14 km in size at nadir. Compared to other NH3 satellite sounders 
(e.g., AIRS, IASI), CrIS has greater vertical sensitivity to NH3 close to the surface due to its low 
spectral noise of approximately 0.04K at 280K in the NH3 spectral region (Zavyalov et al., 2013). 
Moreover, CrIS has a relatively high near-surface sensitivity and an overpass time around 1:30 
LST which coincides with the time of the day with the highest thermal contrast. The peak 
sensitivity of the instrument is typically between 900 and 700 hPa, which corresponds to 
approximately 1 to 3 km (Shephard et al., 2020). The CrIS NH3 total columns have an estimated 
total random measurement error of around 10-15%, and an estimated random total error of ~30%. 
Due to the limited vertical resolution, the NH3 concentrations at individual retrieval levels have a 
higher random measurement error of about 10-30% and a total error of ~60-100% (Shephard et al., 
2020). Version 1.3 of the CrIS-NH3 product has been evaluated against in-situ Fourier Transform 
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Infrared (FTIR) measurements (Dammers et al., 2017) showing an overall good performance and 
high correlations of r~0.8. In this study, we used version 1.5 of the CrIS fast physical retrieval 
(FPR)-NH3 product, which is based on the optimal estimation method (Rodgers, 2000). More 
details about the CrIS FPR-NH3 product can be found in (Shephard et al., 2020). Here, we used 
daytime observations of NH3 (partial) column concentrations and surface concentrations made 
between January 2014 and December 2018 from the first CrIS sensor, which has the longest 
observing period. During this 5-year period, a virtually continuous timeseries of CrIS observations 
was available. More recent observations were not used due to the technical issues of the CrIS 
instrument during the summertime in 2019, and the potentially anomalous situation resulting from 
the COVID-19 outbreak in 2020.  

4.2.2.2 In-situ observations   

Several measurement networks were used to evaluate the simulated concentration and deposition 
fields. The NH3 surface concentrations are evaluated against observations from the Dutch Meetnet 
Ammoniak in Natuurgebieden (MAN) network (Lolkema et al., 2015), the Dutch Landelijk 
Meetnet Luchtkwaliteit (LML) network (van Zanten et al., 2017), the Belgium Flanders 
Environment Agency (VMM) network (den Bril et al., 2011) and the German Environment Agency 
(UBA) network (Schaap et al., 2018). The locations of these sites are shown in Fig. 4.1. The MAN 
network provides monthly mean NH3 surface concentrations since 2005, spread over 80 mostly 
low NH3 emission nature areas in the Netherlands. The measurements are performed with low-
cost passive samplers from Gradko and have an estimated uncertainty of ~20% for high 
concentrations and ~41% for low concentrations (Lolkema et al., 2015). The NH3 concentrations 
in Flanders are measured with passive samplers from Radiëllo and IVL samplers (den Bril et al., 
2011). The LML network observes hourly NH3 concentrations at six different locations in the 
Netherlands with different emission regimes (high, moderate, low). Initially, continuous flow 
denuders from AMOR were used, which have a reported uncertainty of at least 9% for hourly 
concentrations (Blank et al., 2001). Around 2016, the AMOR instruments were replaced by 
miniDOAS instruments (Berkhout et al., 2017), which are active differential optical absorption 
spectroscopes. For evaluation of the wet deposition fields, observations from wet-only samplers 
from the Dutch Landelijk Meetnet Regenwatersamenstelling (LMRe) network (van Zanten et al., 
2017), whose locations largely overlap with the LML network, and the UBA network (Schaap et 
al., 2018) are used. The locations of the wet-only samplers are shown in Fig. S4.1.    
 

 
Figure 4.1. Locations of stations that measure NH3 surface concentrations. The circles depict passive samplers 

and the diamonds hourly observations stations.  
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4.2.3 Fitting method for deriving CrIS-based NH3 time factors   

A non-linear least squares method is used to fit a trimodal gaussian curve to the scaled NH3 surface 
concentrations (see section 4.2.3.3.) from CrIS in each grid cell. The Trust Region Reflective 
algorithm is used to perform the minimization (Conn et al., 2000). The minimalization algorithm 
is restrained with initial parameter guesses and bounds for three fitted gaussians. The three 
gaussians represent the spring (μ1, σ1, and A1), autumn (μ2, σ2, and A2) and summer peak (μ3, σ3, 
and A3) in NH3 emissions, respectively. The initial parameter guesses are based on the standard 
MACC-III (Kuenen et al., 2014) NH3 emission time profiles. The bounds are defined as follows: 
  
• the mean values (μ1,2,3) are permitted to shift by one month (30 days) to cover the most probable 
emission peaks  
• the standard deviations (σ1,2,3) are permitted to vary by half their initial value guess (i.e., ±0.5σ)  
• the fitted amplitude of the spring peak (A1) is allowed to be between 0.1 and 1.0 and amplitudes 
of the autumn and summer gaussians (A2,3) between 0.1 and 0.8 

An overview of the permitted parameter bounds is given in Table 4.1. The range in permitted A1,2,3 
values is quite large, allowing the minimization algorithm to fit meaningful trimodal curves for 
different types of time variant NH3 emission sources simultaneously (e.g., flatter peaks for 
emissions that mainly dependent of temperature and specific periods, such as open stables, a 
sharper more distinct spring and autumn peaks for emissions following fertilizer or manure 
application).   

Table 4.1. Initial parameter guesses and parameter bounds used in the trimodal fit algorithm.  

 Spring peak Autumn peak Summer peak 

 μ1 
(doty) 

σ1 
(days) 

A1 (-) 
μ2 

(doty) 
σ2 

(days) 
A2 (-) 

μ3 

(doty) 
σ3 

(days) 
A3 (-) 

Lower bound 47.4 13.1 0.1 222.8 11.6 0.1 148.9 26.9 0.1 

First guess   

(MACC-III) 
77.4 26.1 0.96 252.8 23.2 0.26 178.9 53.7 0.21 

Upper bound 107.4 39.1 1.0 282.8 34.8 0.8 208.9 107.4 0.8 

 
After the daily NH3 time factors are fitted, the diurnal variation from the MACC-III NH3 time 
factors is added to obtain hourly time factors. The resulting hourly CrIS-based time factors are 
used as input for all time-variant NH3 sources from agriculture subcategories in LOTOS-EUROS, 
i.e., continuous NH3 point sources emissions remain time-invariant.  

4.2.3.2 Data selection   

The CrIS NH3 concentrations in the lowest retrieval level, i.e., closest to the surface, are used to 
adjust the daily variability in the NH3 time profiles spatially on a regular 0.1° by 0.05° grid. First, 
to collect a sufficient number of observations for the fitting algorithm, the CrIS NH3 surface 
concentrations with a quality flag of at least 3 and within a selection radius of 1° around the center 
points of each grid cell are selected. The daily average NH3 concentrations throughout the year are 
computed after application of a simple outlier filter (>99th percentile excluded given more than 3 
observations). Due to the lower number of observations during winter, and to avoid a bias towards 
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higher values due to lower thermal contrast, observations in January, November and December are 
ignored. During these months it is anyway prohibited to apply fertilizer or spread manure in parts 
of the regions (for the Netherlands, see RVO, 2021), and in combination with the colder 
temperatures, NH3 concentrations are expected to be low due to low volatilization rates (e.g., 
Søgaard et al., 2002).  

4.2.3.3 Correction for local emission to concentration ratio   

The relationship between NH3 emissions and surface concentrations differs by region and changes 
throughout the year due to changes in the meteorological and chemical conditions. To correct for 
this, the following adjustment factor is applied to the daily CrIS NH3 surface concentrations. The 
factor is derived from the NH3 emission and simulated surface concentration fields from LOTOS-
EUROS, which are used to compute the local ratio of the smoothed daily total NH3 emissions to 
the NH3 surface concentrations at the CrIS overpass time per grid cell. These are used as a first 
order approximation for the relation between the emission and concentration. The ratios are 
rescaled by the mean annual values for each grid cell to obtain a unitless daily scaling factor (Fig. 
S4.2). After multiplying the daily averaged CrIS NH3 surface concentrations with this scaling 
factor, a ±1σ filter is used to smoothen out the daily time series. To avoid too much flattening of 
the spring emission peak, a separate filter is applied for the spring period. NH3 emissions 
originating from the application of synthetic or manure fertilizer are mainly found during this 
period, at the beginning of the growing season. This may lead to an increase in observed NH3 
concentrations, that would be filtered out when the same filter is applied for the entire year. Finally, 
the scaled NH3 surface concentrations are normalized for each grid cell. 

4.2.4 Data assimilation system   

4.2.4.1 Local Ensemble Transform Kalman Filter   

The Ensemble Kalman Filter (Evensen, 2003) is a sequential data assimilation method that could 
be used to combine model simulations with observation.  In this study, the Local Ensemble 
Transform Kalman Filter (LETKF) formulation is used (Hunt et al, 2007) following the 
implementation by (Shin et al., 2016). The LETKF performs an analysis per grid cell based on 
nearby observations only and it therefore computationally advantageous compared to the regular 
implementation of the Ensemble Transform Kalman Filter. The basic idea behind an Ensemble 
Kalman Filter is to express the probability function of the state in terms of an ensemble with N 
possible states ¥¦, ¥§, … ¥©, each considered to be a possible sample out of the distribution of the 
true state.  In this study, the state contains the NH3 concentrations in a three-dimensional grid and 
two-dimensional NH3 emission perturbation factors β. The perturbation factors describe the 
uncertainty in the emissions, and are modelled as samples out of normal distribution with zero 
mean and standard deviation σ. Spatial variations are initially not defined, but are introduced by a 
localization length scale that is described below. The temporal variation in the emission factors is 
described by temporal correlation coefficient α, that depends on temporal length scale τ (Lopez-
Restrepo et al., 2020, Barbu et al., 2009): 

ªK = «r|¬r¬®u|/¯ (Eq. 4.1) 

An initial ensemble is created by generating random samples of the perturbation factors. The 
ensemble is then propagated in time in what is called the forecast step between consecutive 
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analysis times for which observations are available. In the forecast step, the model propagates the 
analysed ensemble members from time °KrB to time °K following, with integer value k that 
describes steps in time: 

²³(k) = ´µr¦(²³¶(k − 1)) (Eq. 4.2) 

where operator ´µr¦ describes the model simulation, including application of the perturbation 
factors that are present in ². The ensemble mean · and forecast error covariance ¸ at time ¹ are 
expressed as: 

x =  B
» ∑ x:»:AB   (Eq. 4.3) 

¸ =  B
»rB  ∑ (x: − x)(x: − x)¼»:AB   (Eq. 4.4) 

When CrIS observations (½�¾��) are available (at time °K), the LETKF algorithm analyses the 
ensemble by incorporating the observations to reduce the ensemble spread. The analysed ensemble 
members are computed from:  

²³¶ = ²³ + ¸¶¿ÀÁr¦ (½�¾�� − Â(x:) + Ã³) (Eq. 4.5) 

In here, Â(x:) represents the simulated retrieval from the state ²³, or in particular from the 
concentration array in ²³ and error Ã³. Operator ¿ is a linearization of Â(x) to · (see section 
4.2.4.4.). The matrix Á is the observation representation error covariance, which describes the 
difference between the simulation and the observation due to measurement and representation 
errors:  
 

     ½�¾�� − Â(x:)   ~ N(0, Á) (Eq. 4.6)  
 
The actual implementation of Â, ¿, and Á are described below. The analysis covariance ¸¶ is 
computed from:  

¸¶ = Å¸¿ÀÁr¦¿ + �Ær¦ ¸ (Eq. 4.7) 

4.2.4.2 Observation simulation   

The simulated observation vector Â(²³), representing the simulated retrieval, which is what the 
satellite observes from the concentrations described in 3-dimensional grid xi, and is computed 
from:   

Â(x:) =  ½¶ − �½¶ + �Çx:  (Eq. 4.8) 

Here, matrix Ç, the gridding operator, is applied to horizontally and vertically match the simulated 
partial NH3 columns in LOTOS-EUROS with the retrieval CrIS pressure levels. Here, air-mass 
weighted averaging is used to average the model layers to the retrieval levels. The relationship 
between the true and the retrieved atmospheric NH3 profiles, i.e., the vertical sensitivity of the CrIS 
measurements, is described by averaging kernel �. The full relationship between the true and the 
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observed state is given by ½È¾ÉÊ = Â(²È¾ÉÊ) + Ã, which can be rewritten to (Eq. 4.9) (Rodgers and 
Connor, 2003): 

½È¾ÉÊ = ½¶ + � (Ç ²È¾ÉÊ − ½¶) + Ã  (Eq. 4.9) 

with ½¶ the a-priori profile that is part of the CrIS retrieval product. The error v is a sample of the 
observation representation error, taken from a normal distribution, that describes the possible 
differences between simulation and retrieval: 

v ~ N(0,R)  (Eq. 10) 

In this study, R is set to the retrieval error covariance that is part of the CrIS product. The linearized 
observation operator becomes: 

H = A G  (Eq. 4.11) 

4.2.4.3 Analysis per grid cell   

The analysis described above is applied per model grid cell; for the exact implementation we refer 
to Shin et al. (2016). First, the simulated observation vectors Â(²³) are computed for all ensemble 
members. For the grid cell to be analyzed, all simulations are collected that are within 3.5ρ 
distance, where ρ is called the localization length scale as well as the matching actual observations 

½�¾��. The state elements corresponding to the grid cell are then analyzed using the collected 
observations and simulations, where the weight of observations further away is limited using 
Gaussian correlation that decays with distance and that uses the same correlation length scale ρ 
that is used for collection. 

4.2.4.4 Observation selection  

CrIS observations with the highest quality flag, QF = 5, were used. These observations have a 
relatively higher impact because of their low uncertainty. As the assumed vertical NH3 profile 
shape in background areas used in the CrIS retrieval and in LOTOS-EUROS differ, CrIS retrievals 
with “unpolluted” a-priori profiles were filtered out. The original CrIS retrieval is performed in the 
log domain and therefore either the averaging kernels A from CrIS need to be linearized or the 
LOTOS-EUROS profiles transformed to the log-domain. Linearization of the kernel is only 
accurate for higher concentrations, and since this is the case for the selected “polluted” retrievals, 
this option was found to be suitable. 

4.2.4.5 Parameter calibration  

In this study, we used a localization radius of ρ = 15 km, a standard deviation of σ = 0.5 and a 
temporal correlation length of τ = 3 days. Two experiments were performed to study the effect of 
ρ, σ and τ in more detail. A description of the experiments can be found in section S1 of the 
supplementary materials. A limited ensemble size of N=12 was found to be sufficient to describe 
the imposed model uncertainty, which is not too complicated due to short life-time of NH3 and 
therefore strong relation between concentrations and nearby emissions. 
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4.3 Results   

4.3.1 Direct comparison of NH3 concentrations from CrIS and LOTOS-EUROS 

Before looking at the effects of assimilating the CrIS observations, a direct comparison of the 
modelled and observed NH3 column densities was made. The simulated NH3 concentrations from 
the default run in LOTOS-EUROS were sampled at the locations of the CrIS observations, and 
after application of the averaging kernels compared with the retrievals. The observed and simulated 
NH3 total columns averaged over all years are shown in Fig. 4.2. Similar maps per year are 
available in Fig. S4.3 of the supplementary materials. The general pattern of the NH3 total column 
densities matches quite well. For instance, the observed and simulated NH3 columns are very 
similar in southwestern Germany, and close to the Dutch border. The CrIS NH3 total columns are 
generally higher than the simulated NH3 total columns. This is for instance found in large parts of 
northeastern Germany, along the Belgium coast and in the south of the Netherlands. Here, the 
observed NH3 columns were on average approximately a factor 2 higher than the simulated NH3 
columns. Moreover, the observed NH3 total columns are consistently higher than the simulated 
NH3 columns in background areas, with a bias between the observed and modelled concentrations 
of approximately ~0.5x1016 molecules/cm2.  

Figure 4.2. Mean retrieved (left) and simulated (center) NH3 total column from 2014-2018, and their absolute 

difference (right).  

4.3.2 CrIS-based NH3 time factors   

4.3.2.1 Effect on NH3 emissions in LOTOS-EUROS  

Following the method described in section 4.2.3, temporal profiles for the NH3 have been obtained 
per grid cell. Compared to the original model, the new time profiles vary spatially. Fig. 4.3 shows 
a comparison of the daily grid-averaged NH3 emissions between the default background model run 
(xb) and the background run with the CrIS-based NH3 time factors (xb,CrIS), using a different color 
for each month. The default NH3 time factors from MACC-III provide more intra-annual variation 
than the CrIS-based NH3 time factors. The default time factors include a very high peak in spring 
and much lower peaks during summer and autumn (i.e., A1/A3 = 4.57, A1/A2= 3.70). Fig. S4.4 
shows the fitted spring parameters (μ1, σ1 and A1). The NH3 spring peak present in the CrIS-NH3 
surface concentrations is generally lower than the default NH3 spring peak. In large parts of the 
model region, the CrIS-observed NH3 spring peak is subsequently lower and less sharp. Compared 
to the default NH3 time factors, the amplitude of the spring peak in the CrIS-based NH3 time factors 
is now generally much lower. The amplitude of the spring peak differs almost by a factor 2 on 
average. As a result, there is a decrease in springtime NH3 emissions, especially in March and 
April. The CrIS-based NH3 time factors, and consequently the NH3 emissions, are, on the other 
hand, generally higher later in the year. The NH3 emissions are on average approximately 50% 
higher in summer and the beginning of autumn (June to September), and approximately twice as 
high in October. 
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Figure 4.3. Daily grid-average NH3 emission, colored per month. Here, xb represents the default background 

run and xb,CrIS the background run with CrIS-based NH3 time factors. 

4.3.2.2 Effect on NH3 concentrations and deposition fields in LOTOS-EUROS  

The changes in modelled NH3 surface concentration, total column concentrations and NHx total 
deposition from 2014 to 2018 related to the use of the CrIS-based NH3 time factors alone are shown 
in Fig. 4.4, Fig. S4.5 in the supplementary materials and Fig. 4.5. Here, xb represents the default 
background run and xb,CrIS the background run with the CrIS-based NH3 time factors. The use of 
the CrIS-based emission time profiles led to an overall increase in mean NH3 surface 
concentrations. The absolute change is largest in areas with already relatively high NH3 surface 
concentrations, for instance in northwestern Germany, where the mean NH3 surface concentrations 
increased with up to 2 μg/m3. The mean NH3 surface concentrations increased with up to ~25% 
due to the change in NH3 time factors. The effect of the CrIS-based NH3 time factors on the NH3 
total column concentrations is smaller, with minor changes from minus ~5% up to 5%. The mean 
NH3 total column concentrations generally increase in areas with already high NH3 concentrations, 
such as large parts of the Netherlands, and decrease in background areas with little NH3 emissions, 
for instance in central Germany. The use of the CrIS-based NH3 time factors led to ~10% less total 
NHX deposition along the northwestern coast, including agricultural hotspots such as the 
Netherlands and northwestern Germany, and an increase of up to ~10% in background areas. 
  

 

Fig. S4.6 compares the daily, grid averaged, NH3 surface concentrations, total column 
concentrations and NHx wet and dry deposition, with different colors per month. Here, a similar 
redistribution is observed for the NH3 concentration and deposition fields as seen earlier for the 
NH3 emission fields. Compared to the default background run (xb), the NH3 concentration fields 
were up to a factor 2 lower during March and April. The NH3 total columns decreased in spring, 
the largest decrease occurring in April (up to ~60%). The NH3 surface concentrations increased 
during the summer and the beginning of autumn, up to ~50% in September. During these months, 
a similar but slightly lower increase in the NH3 total column concentrations is observed.    
 
 



88 

 

Because the CrIS-based NH3 time factors vary per year, the interannual variation in the modelled 
NH3 fields is much larger. Fig. S4.7 shows the relative changes in NH3 surface concentration, total 
column concentration and NHx deposition fields per year. Overall, the mean NH3 surface 
concentration increases by up to ~30% per year.  The largest increases occurred in 2016 and 2018, 
years with relatively high summer temperatures (Copernicus Climate Change Service, 2021). The 
variation in the annual mean NH3 total column concentrations is much smaller (-15 to +15%). The 
relative change in NHx budget shows much more variation, with the most prominent increase 
occurring in 2014 (+25%) and decreases occurring in 2018 (-25%).    
 
The temporal redistribution of the NH3 emissions thus significantly impacts the modelled NH3 
concentration and deposition fields, too. Generally, a part of the initial spring NH3 emissions is 
now attributed to the summer and autumn months. Depending on the degree of redistribution, there 
are distinct changes in the NHx budget. Looking at the fitted spring peak parameters (Fig. S4.4) 
and the matching CrIS-based NH3 factors at hourly measurement sites (Fig. S4.8), clear interannual 
differences are observed. For instance, a relatively sharp spring peak was observed over the 
Netherlands in 2014. In 2018, on the other hand, the fitted spring peak had a distinctly lower 
amplitude and started later in the year. Moreover, a relatively large rise in NH3 time factors was 
observed again in late summer and autumn (July to September). Compared to 2014, this resulted 
in a relatively larger redistribution of the NH3 emissions towards warmer months. The higher 
temperatures resulted in lower dry deposition velocities and more vertical mixing and transport of 
NH3, leading to an overall decrease in NHX deposition over the Netherlands. Moreover, the 
summer of 2018 was relatively dry, also leading to higher NH3 total column concentrations and a 
decrease in wet NHx deposition.  

Figure 4.4. The mean NH3 surface concentration over 2014 to 2018 from the (top left) default background run 

(xb) and the (top right) background run with CrIS-based NH3 time factors (xb,CrIS) and their (bottom left) 

absolute and (bottom right) relative difference.   
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Figure 4.5. The total NHx deposition from 2014 to 2018 from the (top left) default background run (xb) and the 

(top right) background run with CrIS-based NH3 time factors (xb,CrIS) and their (bottom left) absolute and 

(bottom right) relative difference. 

4.3.3 Local Ensemble Transform Kalman Filter  

4.3.3.1 Effect on NH3 emissions and concentrations in LOTOS-EUROS  

The CrIS-NH3 columns were assimilated using the Local Ensemble Transform Kalman Filter 
(LETKF) described in section 4.2.4. Assimilations were performed using either the default 
emission time profiles (xa), or using the CrIS-based profiles (xa,CrIS). The total NH3 emissions from 
2014 to 2018 and the relative and absolute changes compared to background simulations xb and 
xb,CrIS are shown in Fig. 4.6. The corresponding mean NH3 surface and total column concentrations 
are shown in Fig. S4.9 and Fig. S4.10 of the supplementary materials. The absolute NH3 emission 
updates by the LETKF are, as expected, largest in regions with already high NH3 emissions. There 
is a maximum increase of ~30% in total NH3 emission by the LETKF over the entire period for 
some grid cells. Relatively, the largest changes are found in the southern parts of the Netherlands 
(province of Noord-Brabant), the west coast of Belgium (province of West-Vlaanderen), the 
northeastern parts of Germany and France. Compared to the analysis run using default emission 
time profiles (xa), the analysis runs with the CrIS-based NH3 profiles (xa,CrIS) generally have more 
NH3 emission and consequently higher NH3 surface and total column concentrations. The long-
term spatial patterns of the emission updates by the LETKF, however, remained very similar.

   

To study the effect of the LETKF in more detail, the daily grid average NH3 emissions of the 
background runs (xb and xb,CrIS) are plotted against analysis runs (xa and xa,CrIS) in Fig. 4.7. 
Similarly, the NH3 surface and total column concentrations are plotted in Fig. S4.11 of the 
supplement. In the runs with the default NH3 time factors (xb and xa), data assimilation of the CrIS-
NH3 columns led to both positive and negative emission updates in spring. In the summer, on the 
contrary, it mostly resulted in an increase in NH3 emissions. In the runs with the CrIS-based NH3 
time factors (xb,CrIS and xa,CrIS), the pattern is distinctly different. Compared to the default runs, the 
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NH3 emission updates in spring are now smaller and largely positive, with the largest updates 
occurring in April. Moreover, the NH3 emission updates were generally smaller during summer, 
too. This is related to the fact that the CrIS-NH3 surface concentrations were used to fit the NH3 
time factors, which resulted in the model being closer to the CrIS observations already.  

Figure 4.6. The total NH3 emissions in 2014-2018 in the background runs xb and xb, CrIS and in analysis runs xa 

and xa,CrIS (top panels), as well as their absolute and relative difference (bottom panels).    
 

 
Figure 4.7. Daily grid average NH3 emissions in 2014-2018 from the (left) default background run (xb) versus 

analysis run (xa), and from the (right) background run with the CrIS-based NH3 time factors (xb, CrIS) versus 

analysis run xa,CrIS, colored per month. 

Perturbation factor β is the computed multiplication factor by which the initial input NH3 emissions 
are updated in the LETKF. The mean perturbation factors β per year are shown in Fig. S4.12 of 
the supplementary materials. The pattern of the NH3 emission updates does not change drastically 
between years, which points to a consistent, spatial misdistribution of the emissions in the current 
inventory. By far the largest mean NH3 emission updates took place in 2018, followed by 2015. 
Fig. 4.8 shows timeseries of the daily grid average NH3 emissions in both background runs xb and 
xb,CrIS and analysis runs xa and xa,CrIS. Fig. 4.9 and S4.13 show the corresponding timeseries and 
changes in NH3 surface and total column concentrations. The NH3 emissions in the default 
background run (xb) have a strong, annually reoccurring spring peak. After this peak, the NH3 
emissions decrease steeply and then slightly increase again in late summer and autumn (August 
and September). In analysis run xa, the spring NH3 emissions are both positively and negatively 
adjusted. Later in the year, almost only positive emission updates are found. The largest positive 
NH3 emission updates occurred around August and September, which suggests an underestimation 
of the autumn NH3 peak in the default runs.   
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In the background runs with the CrIS-based NH3 time factors (xb,CrIS), the NH3 emissions are much 
more evenly distributed over the year. In contrast to the default runs, practically only positive NH3 
emission updates occurred in the analysis run (xa,CrIS). The largest NH3 updates took place during 
spring (March to May). The flattening of the NH3 emissions led to a flattening in NH3 
concentration fields, too. Compared to default runs (xb and xa), there is much less interannual 
variation in the NH3 surface and total column concentrations. As a result, the NH3 concentrations 
during summer and autumn could be at the same level or even higher than the springtime 
concentrations. During the warm summer of 2018 (Copernicus Climate Change Service, 2021), 
for instance, the NH3 concentrations in August even clearly exceed the spring NH3 concentrations. 
   

Figure 4.8. Timeseries of the daily grid-averaged NH3 emissions in the background and analysis runs, and 

their absolute difference. The top figure (blue) represents the default background (xb) and analysis run (xa). 

The bottom figure (green) the background (xb,CrIS) and analysis run (xa,CrIS) with the CrIS-based NH3 time 

factors.  

Figure 4.9. Timeseries of the daily grid-averaged NH3 surface concentrations in the background and analysis 

runs, and their absolute difference. The top figure (blue) represents the default background (xb) and analysis 

run (xa). The bottom figure (green) the background (xb,CrIS) and analysis run (xa,CrIS) with the CrIS-based NH3 

time factors.   
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Figure 4.10. The total NHx budget from 2014-2018 in the background (xb and xb, CrIS) and analysis (xa and 

xa,CrIS) model runs in LOTOS-EUROS, and their absolute and relative difference.  

4.3.3.2 Effect on NHx deposition in LOTOS-EUROS  

The modelled total NHx budgets from 2014 to 2018 from the two background runs (xb and xb,CrIS) 
and analysis runs (xa and xa,CrIS) are shown in Fig. 4.10. Overall, the modelled NHX budget shows 
the same spatial pattern as the NH3 emissions. Like the NH3 emissions, the relatively largest spatial 
differences between the background and analysis runs took place in the south of the Netherlands, 
the west of Belgium and northeast Germany. Compared to the default runs, the relative changes in 
total NHx budget were slightly larger in the runs with the CrIS-based NH3 time factors (xb,CrIS and 
xa,CrIS).  

The modelled NHx deposition follows the temporal distribution of the NH3 emissions, too. 
Timeseries of the daily wet and dry deposition amounts in the domain are shown in Fig. 4.11. The 
wet and dry deposition in the default runs (xb and xb,CrIS) versus the analysis runs (xa and xa,CrIS) 
per month is shown in Fig. S4.14 in the supplement. In the default background run (xb), the total 
NHx deposition peaks in March and April. In the analysis run (xa), the dry and wet deposition both 
increased and decreased during spring (March to May). Later in the year, the wet and dry NHx 
deposition mostly increased in the analysis run, particularly in August and September. In the 
background runs with the CrIS-based NH3 time factors (xb,CrIS and xa,CrIS),  the modelled dry and 
wet deposition fields are much less variable. Following the NH3 emission updates, both the dry 
and wet deposition mostly increased in the analysis run, especially in March and April. Moreover, 
the use of the CrIS-based NH3 time factors resulted in a redistribution of the ratio of wet and dry 
deposition over the year. As a result of the relatively lower spring NH3 surface concentrations, 
there is a reduction of the dry deposition during spring. The relatively higher summer NH3 total 
column concentrations led to a shift in wet deposition, too, from spring to summer.  
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Figure 4.11. Timeseries of the average amounts of dry (green) and wet (blue) NHx deposition in the different 

model runs. The top two figures represent the default background (xb) and analysis (xa) run and the bottom two 

figures the background (xb,CrIS) and analysis (xa,CrIS) run with the CrIS-based NH3 time factors.        

4.3.4 Comparison to in-situ observations   

The modelled NH3 surface concentration and NH4
+ wet deposition fields are compared with in-

situ observations. First, the spatial distribution is evaluated by comparing the modelled NH3 
surface concentration and NH4

+ wet deposition fields to the observed annual averages per 
measurement site. Second, the temporal distribution is evaluated by comparing the modelled NH3 
surface concentration and NH4

+ wet deposition fields to the same set of observations, but on a 
monthly basis. The comparisons are done per type of observation, e.g., all available wet-only 
measurements simultaneously. To differentiate between different NH3 emission regimes, the 
results are plotted separately for either all hourly observations or for the passive samplers. The 
results are shown in Fig. 4.12 and 4.13. The Dutch site with the highest NH3 surface concentrations, 
Vredepeel, is excluded from this comparison because of the large model-observation discrepancies 
here (see Fig. S4.18). This site is located near agricultural emission sources and therefore less 
representative of a larger region. In these figures, the first column shows the comparison for the 
default background run (xb), the second column shows the background run with CrIS-based NH3 
time factors (xb,CrIS), the third column shows the analysis run with the default NH3 time factors (xa) 
and, finally, the fourth column shows the analysis run with CrIS-based NH3 time factors (xa,CrIS).  

4.3.4.1 Spatial distribution    

Fig. 4.12 shows the scatterplots of the annual averages per site per year. The annual average NH3 
surface concentrations (top row) in the default run xb show a strong correlation (r = 0.88) with the 
observed concentrations at the hourly observation sites (LML and UBA). Here, the NH3 surface 
concentrations are generally underestimated (slope = 0.61). The annual average NH3 surface 
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concentrations (middle row) at the passive sampler sites (MAN, VVM and UBA) are generally 
overestimated (slope = 1.17), with a lower, but still relatively strong correlation is observed (r = 
0.69). The modelled annual average NH4

+ wet deposition budgets (bottom row) are moderately 
correlated with the observations from wet-only samplers (r = 0.45), and are generally lower than 
the observed wet deposition (slope = 0.81). When using the CrIS-based NH3 time factors, the 
annual average NH3 surface concentrations and NH4

+ wet deposition budgets are slightly 
increased. This led to a slight, overall increase in slope between all observations and the 
background run with the CrIS-based NH3 time factors (xb,CrIS). As the annual totals, and herewith 
the spatial distribution of the NH3 emissions, remained the same in this run, the other measures (r, 
RMSE, MAD, MRD, NMB) didn’t change drastically on a yearly basis.  

The comparison with annual average NH3 surface concentrations from the passive sampler 
networks from both analysis runs (xa and xa,CrIS) slightly worsened compared to the background 
runs (xb and xb,CrIS). The comparison at the hourly observation and wet-only sampler sites, on the 
other hand, showed clear improvements. Here, virtually all statistical measures improved, 
illustrating an overall improvement in modelled NH3 surface concentration and NH4

+ wet 
deposition field spatially. Of all runs, the analysis run with the CrIS-based NH3 time factors (xa,CrIS) 
compared the best with the hourly observation and wet-only sampler network. The differences 
between the modelled and observed NH3 surface concentrations at the hourly observation were 
distinctly smaller, compared to the default background run (xb: {RMSE = 2.79, MAD = 1.96, MRD 
= -0.15, NMB = -0.28} versus xa,CrIS: {RMSE = 2.2, MAD = 1.69, MRD = -0.11, NMB = -0.08}). 
Here, also the slope largely improved (xb: slope = 0.61 versus xa,CrIS: slope = 0.76). The same is 
observed for the modelled NH4 wet deposition fields, where the slope improved particularly (xb: 
{RMSE = 0.95, MAD = 0.63, MRD = -0.13, NMB = -0.22, slope = 0.81} versus xa,CrIS: {RMSE = 
0.92, MAD = 0.61, MRD = -0.02, NMB = -0.11, slope = 0.95}).  

4.3.4.2 Temporal distribution   

Fig. 4.13 shows the scatterplots of the monthly means per site. The modelled monthly NH3 surface 
concentrations from the default background run (xb) are strongly correlated with the hourly 
observation network (r = 0.73), and with the passive sampler network (r = 0.63). Both comparisons 
show a distinct overestimation of the NH3 surface concentration in March and April. The observed 
NH3 surface concentrations at the hourly observation sites are higher than the modelled ones during 
the rest of the year. At the passive sampler sites, the observed versus modelled monthly NH3 
surface concentrations during the rest of the year lie more around the one-on-one line. Here, too, 
the modelled NH3 surface concentrations are slightly underestimated at the beginning of summer 
(June and July). The NH4

+ wet deposition is moderately correlated with monthly observations from 
wet-only samplers (r = 0.44). At these sites, a similar pattern is observed. The modelled NH4

+ wet 
deposition is overestimated in spring (especially March and April), and underestimated during the 
rest of the year. In general, this comparison indicates an overestimation of the NH3 spring peak 
emissions in the default model runs, particularly in March and April, and an underestimation of 
the NH3 emission during the rest of the year, mainly during summer (June, July, August).  
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The use of the CrIS-based NH3 time factors (xb,CrIS) led to an overall improvement at the hourly 
observation and wet-only sampler sites.  Compared to the default background run (xb), higher 
correlations and lower differences (RMSE, MAD, MRD, NMB) are observed. At the hourly 
observation sites, the comparison improved the most (xb: {r = 0.73, RMSE = 3.67, MAD = 2.67, 
MRD = -0.22, NMB = -0.27, slope = 0.84} versus xb,CrIS:{r = 0.82, RMSE = 2.98, MAD = 2.24, 
MRD = -0.12, NMB = -0.20, slope = 0.88}). Compared to observations from the passive sampler 
and wet-only sampler networks, the modelled monthly NH3 surface concentration and NH4

+ wet 
deposition fields now generally lie around the one-on-one line during spring (March, April, May). 
There is, on the other hand, an overestimation in July and August now. Moreover, as a result of 
the decrease in CrIS-based NH3 time factors to zero during winter, the NH3 surface concentration 
and NH4

+ wet deposition in December is underestimated in the xb,CrIS run.   

 

Figure 4.12. Comparison of the modelled annual average NH3 surface concentrations and NH4
+ wet deposition 

fields to in-situ observations.   

 
Compared to the background runs (xb and xb,CrIS), the two analysis runs (xa and xa,CrIS) show higher 
correlations with all types of measurements. The differences (RMSE, MAD, MRD, NMB) between 
the observed and modelled monthly NH3 surface concentrations at the passive sampler sites are 
now, on the other hand, larger in the two analysis runs (xa and xa,CrIS), illustrating an overall 
overestimation of the NH3 concentrations in background regions. Although a large shift in the 
temporal distribution of the monthly NH4

+ wet deposition is observed, the differences between the 
observed and modelled values remained similar. At the hourly observation sites, the comparison 
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improved the most in the analysis run with the CrIS-based NH3 time factors (xa,CrIS). Here, 
compared to the default background run (xb), higher correlations and smaller differences were 
found (xb: {r = 0.73, RMSE = 3.67, MAD = 2.67, MRD = -0.22, NMB = -0.27, slope = 0.84} 
versus xa,CrIS:{r = 0.83, RMSE = 2.83, MAD = 2.21, MRD = 0.03, NMB = -0.07, slope = 1.0}). 

4.3.4.3 Regional patterns   

The modelled NH3 surface concentrations were compared to observations from each passive 
sampler network separately. Fig. S4.15, S4.16 and S4.17 show comparison with the MAN network 
in the Netherlands, the UBA network in Germany and the VMM network in Belgium, respectively. 
In the default background run (xb), the Dutch sites with relatively higher NH3 surface 
concentrations are overestimated, most of which are located along the eastern border of the 
Netherlands. The highest correlation coefficients and lowest differences (RMSE, MAD) are found 
at the VMM network in Belgium. Here, the lower NH3 surface concentration sites are 
overestimated and the higher NH3 concentrations sites are underestimated in the default 
background run (xb). At the German UBA stations, the comparison lies more around the one-on-
one line. The mean NH3 surface concentrations at the sites close to the western border of Germany 
are generally overestimated in the default background run (xb). The use of the CrIS-based NH3 
time factors (xb,CrIS) led to an overall increase in modelled mean NH3 surface concentrations 
compared to the default background run (xb). This led to a slight, overall increase in differences 
(RMSE and MAD) at all networks. Furthermore, steeper slopes were found at all three networks, 
i.e., the modelled NH3 surface concentrations increased relatively more at sites with already higher 
concentrations. The same is observed in the two analysis runs (xa and xa,CrIS), but to a greater 
extend. Compared to background runs (xb and xb,CrIS), the differences (RMSE, MAD) between the 
modelled and observed concentrations were relatively higher at all networks. At the Dutch MAN 
network, a slightly higher correlation coefficient is observed.   

Fig. S4.18 of the supplementary materials shows another comparison of the modelled and observed 
NH3 surface concentrations at the hourly observation stations at daily resolution. Here, the 
correlation coefficient, root-mean-squared error RMSE, the mean difference MD and the slope are 
shown per site. The stations are located in different NH3 emission regimes and are sorted by 
increasing NH3 surface concentrations. The modelled NH3 surface concentrations in the default 
background run (xb) are generally overestimated at stations with low NH3 emission regimes and 
underestimated at stations with medium to high NH3 emission regimes. The use of the CrIS-based 
NH3 time factors (xb,CrIS) led to an improved comparison (higher correlation coefficient and lower 
RMSE) at the Dutch stations, but a worse comparison at the German stations. On a monthly basis, 
the comparison to the German UBA sites slightly worsened after the use of the CrIS-based NH3 
time factors (xb,CrIS) (Fig. S4.19). The modelled NH3 surface concentrations in the background run 
with the CrIS-based NH3 time factors (xb,CrIS) were, on the other hand, closer to the observations 
of the Dutch LML network in most months, with a lower differences (RMSE, MD) and slopes 
closer to 1. Here, the largest increase in correlation coefficients were found in March and April.  
In both analysis runs (xa and xa,CrIS), the correlation coefficient improved and lower model-
observation differences were found at all sites. Here, no clear distinction between sites located in 
different NH3 emission regimes can be seen.   
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Compared to the default background run (xb), the modelled NH3 surface concentrations in the 
background run with the CrIS-based NH3 time factors (xb,CrIS) thus improved the most at Dutch 
stations located in medium to high NH3 emission regimes. Most of the Dutch stations are located 
in the proximity of agricultural hotspots. The German stations, on the other hand, are located in 
background areas in central Germany, further away from major agricultural hotspots for NH3. Fig. 
S4.8 of the supplementary materials shows the fitted CrIS-based NH3 time factors at each site. The 
fitted NH3 time factors at the majority of the Dutch stations show clear, identifiable peaks, in 
particular the spring peak. Moreover, most Dutch sites show clear year-to-year variations. For the 
German stations, on the other hand, the fitted NH3 time factors are much flatter and show much 
less interannual variation. This indicates that the observed CrIS-NH3 surface concentrations at 
these locations remained around the same level, and thus that no clear (inter)annual patterns were 
present in the CrIS data. 

In the Netherlands, the CrIS-based NH3 time factors led to an improvement in the representation 
of the NH3 spring peak. A time-series of the observed daily NH3 surface concentrations at LML 
sites Valthermond and Zegveld are plotted in Fig. S4.20 of the supplementary materials. The 
modelled NH3 surface concentrations in the default background run (xb) start to rise too early in 
the year, particularly in 2014. In the background run with the CrIS-based NH3 time factors (xb,CrIS), 
both the start and the duration of the spring peak in NH3 concentration improve. Here, the onset of 
the spring peak is delayed, better matching the observed NH3 timeseries. 

 
Figure 4.13. Comparison of the modelled monthly mean NH3 surface concentrations and NH4

+ wet deposition 

fields to in-situ observations. The colors indicate the month.    
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4.4  Summary and discussion  

4.4.1 Summary 

In this study, the CrIS-NH3 product is integrated into the LOTOS-EUROS chemical transport 
model using two different methods. In the first method, the CrIS-NH3 surface concentrations were 
used to fit spatially varying NH3 time factors to redistribute the NH3 emission inputs in LOTOS-
EUROS over the year. In the second method, the CrIS-NH3 columns were assimilated to adjust 
NH3 emissions through local Ensemble Transform Kalman filtering in a top-down approach.  

The fitted NH3 time factors based on the CrIS-NH3 surface concentrations led to a major temporal 
redistribution of the NH3 emissions. In most regions, the updated NH3 time profiles became flatter, 
with an overall decrease in spring (March to May) NH3 emissions and an increase in NH3 emissions 
in June to October. As a result, the mean modelled NH3 fields between 2014 and 2018 spatially 
changed by up to +25% in NH3 surface concentrations, -5 to +5% in NH3 total column 
concentrations and -5 to +5% in NHx budget. The CrIS-based NH3 time factors added an extra 
interannual variation of up to ±25% in the annual mean NH3 concentrations and deposition fields. 
Data assimilation of the CrIS-NH3 columns with the LETKF led to a unanimous increase in total 
NH3 emissions. The modelled NH3 fields between 2014 and 2018 changed with up to +30% in 
NH3 surface concentrations, up to +20% in NH3 total column concentrations and +10 to +25% in 
NHx budget. The largest increases in NH3 emissions (+30%) were found over the south of the 
Netherlands (Brabant), the west of Belgium (West-Vlaanderen) and a large region in northeastern 
Germany. The temporal distribution of the NH3 emissions wasn’t largely adjusted by the LETKF. 
The largest positive NH3 emission updates took place in late summer and the beginning of autumn 
(July to September) and both increases and decreases in NH3 emissions were observed in spring 
(March to May).   
 
The modelled NH3 surface concentration and NH4

+ deposition fields were compared to in-situ 
observations. The statistics are summarized in Table 4.2. Our results illustrate that the strength of 
the first method, i.e., CrIS-based NH3 time factors, primarily lies in improving the temporal 
distribution of the NH3 emissions. Compared to in-situ networks, an overall increase in correlation 
coefficient and clear decrease in differences (RMSE, MAD, MRD, NMB) at the hourly observation 
and the wet-only sampler sites was observed. Moreover, time-series of observed daily NH3 surface 
concentrations illustrate that using the CrIS-based NH3 time factors resulted in a better 
representation of both the onset and duration of the spring NH3 peak in the Netherlands. The second 
method, data assimilation of the CrIS-NH3 columns with the LETKF, improved the comparability 
to in-situ observation both spatially and temporally. Here, higher correlations with both annual and 
monthly observed mean NH3 surface concentrations and NH4

+ wet deposition were observed. This 
method also led to a decrease in differences (RMSE, MAD, MRD, NMB) at the hourly observation 
and the wet-only sampler sites. The mean NH3 surface concentrations at the passive sampler sites, 
on the other hand, were more strongly overestimated in both methods. The comparison to in-situ 
observations improved the most, both spatially and temporally, in the run where both methods are 
combined (xa,CrIS). This illustrates that an initial, observation-based, rescaling of the NH3 emissions 
enhances the adaptability of the LETKF, herewith thus improving the modelled NH3 surface 
concentration and NH4

+ wet deposition fields.  
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Table 4.2. Summary of the computed statistics (correlation coefficient (r), root mean square error (RMSE), 

mean absolute difference (MAD), mean relative difference (MRD), normalized mean bias (NMB) and slope) 

for each type of instruments from Figure 4.12 and 4.13.   
  

hourly observations passive samplers wet-only samplers 

  
xb xa xb,cris xa,cris xb xa xb,cris xa,cris xb xa xb,cris xa,cris 

a
n

n
u

a
l 

m
ea

n
  

r 0.88 0.89  0.87 0.87 0.69 0.70 0.69 0.70 0.45 0.45 0.46 0.46 

RMSE 2.79 2.34 2.50 2.20 2.05 2.67 2.45 3.22 0.95 0.91 0.94 0.92 

MAD 1.96 1.68 1.82 1.69 1.55 2.05 1.84 2.49 0.63 0.61 0.62 0.61 

MRD -0.15 -0.02 -0.05 0.11 0.25 0.46 0.37 0.61 -0.13 -0.03 -0.14 -0.02 

NMB -0.28 -0.17 -0.20 -0.08 0.16 0.36 0.28 0.50 -0.22 -0.13 -0.22 -0.11 

slope 0.61 0.71 0.68 0.76 1.17 1.39 1.32 1.53 0.81 0.90 0.84 0.95 

m
o
n

th
ly

 m
ea

n
  

r 0.73 0.79 0.82 0.83 0.63 0.68 0.64 0.67 0.44 0.46 0.49 0.50 

RMSE 3.67 3.10 2.98 2.83 3.45 3.74 3.68 4.57 1.40 1.37 1.27 1.30 

MAD 2.67 2.25 2.24 2.21 2.18 2.52 2.60 3.26 0.93 0.91 0.88 0.92 

MRD -0.22 -0.09 -0.12 0.03 0.20 0.40 0.32 0.53 -0.09 0.03 -0.03 0.11 

NMB -0.27 -0.16 -0.20 -0.07 0.16 0.36 0.29 0.51 -0.21 -0.11 -0.19 -0.07 

slope 0.84 0.90 0.88 1.00 1.62 1.72 1.69 1.98 1.10 1.17 1.01 1.15 

4.4.2 Discussion  

4.4.2.1 CrIS-based NH3 time factors  

The temporal redistribution of the NH3 emissions after using the fitted CrIS-based NH3 time factors 
led to a significantly better representation of the temporal variation in NH3 emissions, especially 
the spring peak. Compared to in-situ observations, however, the NH3 surface concentrations were 
overestimated in late summer and autumn (August to October). Further fine-tuning of the fitting 
algorithm could help to reduce the current overestimation and potentially improve the fitted NH3 
time factors. For example, data filtering and selection criteria could be adapted. Narrowing the 
selection radius used for selecting the CrIS-NH3 observations could for instance lead to a better 
representation of the NH3 concentrations locally. This, however, may not always be possible, as a 
minimum number of observations is needed for a converging fit. Furthermore, the fitting algorithm 
currently doesn’t allow for NH3 area emissions during winter, because of the limited number of 
available CrIS observations at this time. As a result, the fitted NH3 time factors show a relatively 
steep increase at the beginning of spring and a decrease at the beginning of winter. This could lead 
to step-like functions in areas where clear NH3 peaks in the CrIS-NH3 data are absent. However, 
as this mainly occurs in areas with little to no NH3 emissions, this shouldn’t severely impact the 
modelled NH3 concentrations in this study.  

4.4.2.2 Local Ensemble Transform Kalman Filter  

The NH3 emission updates computed by the Local Ensemble Transform Kalman Filter (LETKF) 
always remain tied to the initial model fields by a certain uncertainty range. As such, data 
assimilation of the CrIS-NH3 columns with the LETKF is mainly suitable for fine-tuning NH3 
emissions in regions where the NH3 emissions are already relatively well known. The chosen 
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LETKF configuration is for instance not able to correct for missing NH3 emissions in areas where 
little or no initial NH3 emissions are present. Furthermore, the LETKF is unable to resolve temporal 
patterns well without sensible input, as was illustrated in an experiment with homogeneous NH3 
emission fields (supplement section S1).   

The LETKF filter settings used in this modelling setup (ρ = 15 km, σ = 0.5, τ = 3 days) led to a 
maximum emission increase of roughly ~30% on the initial NH3 emissions for long-term 
simulations. The choice of these filter settings affects the adaptability of the LETKF, i.e., the 
achievable emission adjustments by correction factors. In this study, a temporal length scale τ of 3 
days was chosen as a compromise between short time scales needed for irregular emissions (e.g., 
fertilizer application) and longer time scales needed for regular emissions (e.g., stables and other 
point sources). Moreover, it matches the average satellite revisiting time per grid cell given the 
number of CrIS-NH3 observations left after data selection (Fig. S4.21). A spatial correlation of ρ 
= 15 km was chosen because it matches the footprint size of the satellite. Furthermore, as shown 
in section S1 in the supplement, increasing standard deviation σ leads to larger, positive β factors. 
To prevent further overestimations in background regions, a σ of 0.5 was used for this region.  
 
The current LETKF settings could for instance be improved by using spatially varying τ values. 
The choice of τ could be optimized for each emission category in the model. Locations with 
fertilizer application as dominant NH3 emission source could for instance be set to lower τ values 
than locations with predominantly regular NH3 sources. Another way to optimize the filter settings 
would be to study timeseries of the model-satellite discrepancies in more detail and base the choice 
of τ on this. A more apparent memory effect (i.e., higher τ) would be useful in areas with consistent 
model-satellite discrepancies, whereas in areas with incidental differences a lower τ would be more 
appropriate. Similarly, statistical analysis of the already computed emission perturbation factors β 
could be performed. In this study, the model uncertainty follows a normal distribution in the current 
model setup. The distribution of the NH3 concentrations, however, is, in reality, better 
approximated by a log-normal distribution. It would therefore be more realistic to use a log-normal 
distribution for the model uncertainty as well. This would incidentally allow for larger correction 
factors when high NH3 peaks are observed, for instance after fertilizer application. In the current 
LETKF model setup, only the NH3 emissions are perturbed. Thus, the discrepancies between the 
observed and modelled NH3 concentrations are currently thus fully assigned to errors in the 
underlying model NH3 emissions. However, other model uncertainties could also cause these 
discrepancies, for instance uncertainties in other model inputs (e.g., other trace gas emissions) or 
parameterizations (e.g., deposition routines). In a follow-up study, it would be interesting to further 
investigate to the effect of an inverted LETKF setup, where model sink terms are perturbed instead 
of the source terms. However, the current setup is the most obvious as the NH3 emissions are likely 
the largest source of model uncertainty in this area. It would also be interesting to assimilate in-
situ observations and/or other satellite products (for instance IASI-NH3) simultaneously in a 
follow-up study.  

4.4.2.3 Data products   

Direct comparison of the observed and simulated NH3 columns showed distinctly lower NH3 total 
column concentrations in LOTOS-EUROS. This discrepancy could be the result of a systematic 
underestimation of the input NH3 emission in LOTOS-EUROS, or other model uncertainties. It 
could, on the other hand, also be partially related to the CrIS observations themselves. Here, only 
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CrIS observations with the highest quality flag (QF=5) were used, which for instance could have 
resulted in a bias towards observations with higher NH3 concentrations or during good weather 
(e.g., no clouds), as these observations usually have a lower uncertainty. Moreover, an offset of 
approximately ~0.5x1016 molecules/cm2 is observed. This seems to be the effect of the detection 
limit of the CrIS instrument, which is unable to detect very low NH3 concentrations. Furthermore, 
this, too, could be enhanced by the relatively strict data selection criteria used in this study, which 
favors higher NH3 concentrations that usually have a lower uncertainty. In the next version of the 
CrIS-NH3 product, which was not yet available for this study, these non-detects are addressed. 
This might lead to lower NH3 concentrations in background regions and partially solve this 
discrepancy. Moreover, this could also result in a better comparison with observations of the 
passive sampler networks.  

The differences between the modelled and observed NH3 concentrations and NH4
+ wet deposition 

fields are partially related to limitations in the spatial representativeness of the in-situ observations. 
The comparison of the different model runs to in-situ observations showed an overall 
overestimation at the passive sampler sites. These sites are mainly located in nature areas and 
therefore assumed to be representative of background regions with little to no NH3 emissions. 
However, especially in the Netherlands, the landscape layout is very heterogenous and the nature 
areas are relatively small. As a result, at the current model grid size, each model pixel is likely to 
include other landscape elements than nature alone. The larger model scale averages out the small-
scale effects, thus leading to an overestimation. The opposite is true for the hourly observation 
sites located in medium to high NH3 emission regimes. Especially at sites close to NH3 emission 
sources, an underestimation is expected.  

4.4.2.4  Conclusions 

To conclude, satellite observed CrIS-NH3 timeseries are helpful in improving NH3 emissions, both 
spatially and temporally. Our results illustrated that CrIS-NH3 surface concentrations can be 
successfully used to fit spatially variable NH3 time factors, which allows us to improve temporal 
NH3 emission distributions relatively easy in a forward modelling setup. Comparison with in-situ 
NH3 surface concentrations and NH4

+ wet deposition observations showed that the fitted CrIS-
based NH3 time factors were particularly useful for adjusting the timing and duration of the NH3 
spring peak in medium to high NH3 regimes. Moreover, the comparison showed that the CrIS-
based NH3 time factors improve the temporal distribution of the modelled NH3 surface 
concentrations and NH4

+ wet deposition fields. Our results show that data assimilation of the CrIS-
NH3 columns data with the Local Ensemble Transform Kalman Filter (LETKF) improves the 
comparability with in-situ observations both spatially and, to a lesser extent, temporally, too. As 
the adaptability of the LETKF is limited by the uncertainty in the modelled fields, the strength of 
this method primarily lies in fine-tuning pre-existing NH3 emission patterns. As a result, this 
method proved particularly useful for improving spatial NH3 distributions in long-term 
simulations. Moreover, our results illustrated that combining both methods enhanced the 
adaptability of the LETKF, and led to the largest improvements in modelled NH3 surface 
concentration and NH4

+ wet deposition fields compared to in-situ observations.  
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Chapter 5: Nitrogen deposition shows no consistent negative nor positive 

effect on the response of forest productivity to drought across European 

FLUXNET forest sites.  

 

Abstract. Atmospheric reactive nitrogen (N) deposition is an important driver of carbon (C) 
sequestration in forest ecosystems. Previous studies have focused on N-C interactions in various 
ecosystems; however, relatively little is known about the impact of N deposition on ecosystem C 
cycling during climate extremes such as droughts. With the occurrence and severity of droughts 
likely to be exacerbated by climate change, N deposition – drought interactions remain one of the 
key uncertainties in process-based models to date. This study aims to contribute to the 
understanding of N deposition-drought dynamics on gross primary production (GPP) in European 
forest ecosystems. To do so, different soil water availability indicators (Standardized Precipitation 

Evapotranspiration Index (SPEI), soil volumetric water) and GPP measurements from European 
FLUXNET forest sites were used to quantify the response of forest GPP to drought. The computed 
drought responses of the forest GPP to drought were linked to modelled N deposition estimates for 
varying edaphic, physiological, and climatic conditions. Our result showed a differential response 
of forest ecosystems to the drought indicators. Although all FLUXNET forest sites showed a 
coherent dependence of GPP on N deposition, no consistent or significant N deposition effect on 
the response of forest GPP to drought could be isolated.  The mean response of forest GPP to 
drought could be predicted for forests with Pinus trees as dominant species (R2 = 0.85, RMSE = 
8.1). After extracting the influence of the most prominent parameters (mean annual temperature 

and precipitation, forest age), however, the variability remained too large to significantly 
substantiate hypothesized N deposition effects. These results suggest that, while N deposition 
clearly affects forest productivity, N deposition is not a major nor consistent driver of forest 
productivity responses to drought in European forest ecosystems. 
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5.1 Introduction 
5.1.1 Nitrogen-carbon interactions  
Terrestrial ecosystems have the potential to take up significant amounts of carbon dioxide from 
the atmosphere through photosynthesis and growth and thereby mitigate climate change. As the 
sequestration of carbon (C) in terrestrial ecosystems predominantly occurs in forest ecosystems 
(Pan et al., 2011), forests largely drive the terrestrial C balance. The compound effect of many 
interacting drivers determines whether a forest is a net sink of C (i.e., taking up C from the 
atmosphere over multi-year timescales) or a net source of C (i.e., releasing C to the atmosphere 
over multi-year timescales). These drivers include edaphic and climatic factors such as soil nutrient 
and moisture conditions and air temperature and humidity. Drought, fires and outbreaks of insect 
herbivores and fungal pathogens can reduce forest productivity for many years and can also cause 
widespread forest mortality (e.g., Anderegg et al. 2020). On the other hand, some factors can 
potentially increase ecosystem carbon storage, such as CO2 fertilization, ozone exposure, nitrogen 
(N) deposition and forest management.  
 
Earth system models (ESMs) can be used to quantify and predict ecosystem responses to a 
changing climate and the feedbacks involved.  However, ESMs are known to involve large 
uncertainties in terrestrial C feedbacks (Friedlingstein et al, 2014). These uncertainties partially 
result from a lack of knowledge of the physical and biogeochemical processes responsible for these 
C cycle feedbacks. Furthermore, we know relatively little about ecosystem responses to multiple, 
simultaneous stressors and their interactions, as most studies to date focus on the effect of one 
single stressor on plant growth. The impact of co-stressors is highly variable across ecosystems 
and, currently, ESMs are ill-equipped to model these interactions (Drewniak and Gonzalez-Meler, 
2017). One key example is the interplay between increased nitrogen (N) deposition and drought. 
With the frequency and intensity of droughts likely to increase globally as a result of climate 
change (Seneviratne et al., 2012), and N deposition projected to increase to 88 Tg N yr-1 by 2100 
under representative concentration pathway (RCP) 8.5 scenario (Lamarque et al., 2013), 
understanding the effects of N deposition-drought interactions on forest productivity becomes 
increasingly important. N deposition-drought interactions are found to be interdependent and non-
additive and remain one of the least quantified processes that vary locally and therewith one of the 
major uncertainties in ESMs to date (Drewniak and Gonzalez-Meler, 2017).   
 
Our objective is to contribute to understanding the variability of combined N deposition – drought 
interactions on C dynamics in forest ecosystems by (1) quantifying the effect of different types of 
drought on the gross primary production (GPP) from FLUXNET observations at European forest 
sites, and (2) linking these responses to different levels of N deposition for different forest types, 
climate zones and soil types.  

5.1.2    Forest response to N deposition   
Nitrogen (N) is an important nutrient in ecosystems and critical for driving photosynthesis and 
growth (Evans 1989; Fernández-Martínez, M. et al. 2014; Oren, R. et al. 2001). Forest growth in 
temperate and boreal forest ecosystems is generally limited by N availability (Fischer et al, 2012), 
and N deposition is, therefore, an important driver of forest growth in these ecosystems. The three 
main effects of N deposition on ecosystems are changes in foliar or leaf N, changes in biomass 
partitioning and increases in biomass N (Bobbink et al., 2010). Reactive nitrogen (N) emissions 
have substantially increased during the last century, causing enhanced atmospheric N deposition 
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on forest ecosystems (Dentener et al., 2006; Lamarque et al. 2013). With most forest ecosystems 
being N limited, this has resulted in significantly increased net primary production (NPP) and 
subsequently carbon (C) sequestration in trees (e.g. (Thomas et al., 2010; De Vries et al., 2009)).  
 
Several studies have found increases in foliar N and, as a consequence, decreases in C:N ratios in 
leaves under elevated N deposition (e.g. (Pregitzer et al., 2008;  Elvir et al., 2005; Boggs et al., 
2005)). Increases in foliar N are often associated with increases in aboveground net primary 
production (ANPP) (Pregitzer et al., 2008) as foliar N is generally found to be linearly and 
positively related to leaf photosynthetic capacity (Xue et al. 2016). Under elevated N availability, 
the ANPP may also increase because of reductions in N use efficiency and C allocation shifts away 
from mycorrhizae, leaving more C available for growth (Talhelm et al., 2011).   
 
Gains in forest productivity from increased N deposition may lead to an increase in litter 
production, which may ultimately lead to an increase of N mineralization in soils. Moreover, 
increased productivity in trees may result in higher C sequestration in soil due to higher soil C 
inputs by litterfall and reduction of organic matter decomposition (Lu et al, 2011, Janssens et al., 
2010). The increase in forest productivity is often correlated with an increase in aboveground 
biomass (e.g. (Pregitzer et al., 2008; Quinn Thomas et al, 2010)), resulting from changes in C 
partitioning in trees. Most of this increase in aboveground biomass is allocated to stems (Pregitzer 
et al., 2008; de Vries et al., 2014), and generally resulting in faster biomass accumulation and taller, 
thinner trees. However, the increase in growth varies largely among different tree species. Needle-
leaved boreal forests, for instance, have higher C/N ratios in all compartments and show a lower 
C-N response and N use efficiency than deciduous and evergreen broadleaved forests in temperate 
regions (de Vries et al., 2014).   
 
The C-N responses of forest ecosystems are non-linear and vary with N input level and time. At 
high and chronic N deposition rates, forest ecosystems will become N saturated. N loss rates by 
leaching, runoff and denitrification will increase, leading to a decrease in N retention (de Vries et 
al., 2014). Forest growth is initially stimulated by low levels of N deposition, as N limitations for 
growth diminish.  At higher N deposition levels, when the ecosystem starts to become N saturated, 
the stimulating effect may decline and even reverse due to soil acidification and nutrient 
imbalances (Aber et al., 1998).   
 
N deposition can also lead to an increase in forest biomass N. Eventually, this extra N will flow 
from the canopy into the litter pool, where it can cause faster decomposition (Zhu et al., 2015) and 
enhanced N mineralization to the forest floor. At low external N inputs, the breakdown of organic 
C due to microbial activity is stimulated, increasing respiration. This stimulating effect diminishes 
completely, however, after ecosystems start to become N saturated, due to N-induced microbial 
community and decomposing enzyme shifts, resulting in a reduction of forest soil respiration 
(Janssens et al., 2010).   
 
Modelling studies estimated that approximately 24% of the global historical C sink (between 
1900–2006) was driven by N deposition effects (Fleischer et al., 2015) and that N deposition 
accounts for the additional storage of approximately 175 Pg C in forests since pre-industrial times 
(Bala et al., 2013). It is estimated that N deposition currently increases the global forest C sink by 
around 276 to 448 Tg C yr-1 (De Vries et al., 2014). Quantification of stimulation of forest growth 
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as the result of nitrogen deposition, is still under discussion (Ehtesham and Bengtson, 2017), with 
estimates of net ecosystem production (NEP) being simulated at rates of 30–75 kg C per kg N 
down to 16 kg C per kg N (e.g. Butterbach-Bahl et al. 2011).  A recent meta-analysis showed the 
difference between old and younger forest with a factor of 5 for the stimulation of aboveground 
woody production, but also low productivity forests respond more strongly than high productivity 
forests, (Schulte-Uebbing and de Vries, 2017).   
 
Excess amounts of N deposition, on the other hand, can also cause nitrate leaching, reductions in 
forest biodiversity and may ultimately lead to growth reductions by N saturation (Bobbink at al., 
2010). N deposition thus significantly influences the response of forest ecosystems, and 
consequently plays a vital role in understanding the long-term response of forests to the effects of 
climate change (increased CO2 levels, elevated temperatures and changes in water availability) 
(De Vries et al., 2009).   
 

5.1.3 Forest response to drought   

The response of forest ecosystems to drought depends on various factors, including the sensitivity 
of dominant tree species to drought, soil characteristics -especially those related to soil water 
retention and rooting depth-, the climatic zone and the severity of the particular drought (e.g. 
(Schwalm et al., 2010; von Buttlar et al., 2017)). Generally, two mechanisms are identified through 
which plants are negatively impacted by drought, carbon starvation and hydraulic failure. Carbon 
starvation and hydraulic failure can co-occur and both mechanisms generally result in lower C 
assimilation and may ultimately lead to tree mortality (Sevanto et al. 2011). Carbon starvation can 
occur when leaf stomata close to constrain water losses, also impairing the diffusion of CO2 into 
the leaf and thereby limiting C assimilation. Reduced C assimilation results in fewer carbohydrates 
available for growth and maintenance and may ultimately lead to serious tissue damage if existing 
C reserves are insufficient to sustain plant maintenance requirements. Hydraulic failure occurs 
when xylem functioning is partially or completely lost through xylem embolism, which inhibits 
water and nutrient transport from the roots to the leaves and leads to tissue desiccation (Adams et 
al., 2017, McDowell et al., 2008).    

 

The drought tolerance of trees depends on many morphological and physiological traits and 
drought response mechanisms, such as stomatal control, hydraulic redistribution, tissue desiccation 
tolerance or allometric plasticity (Baker et al., 2008). To withstand droughts, trees may also reduce 
C demand for instance by leaf senescence or down-regulation of respiration (Sala et al., 2010). The 
effects forest may experience under droughts include changes in C availability, mobilization and 
transport, increases in N limitation and changes in biomass partitioning (Drewniak and Gonzalez-
Meler, 2017).   

 

Stomatal closure or leaf senescence during droughts may lead to lower C availability and a higher 
N limitation. Stomata closure reduces photosynthesis and may lead to lower litter production and 
N mineralization in the soil over long periods, which in turn may lead to additional N limitations 
(Schimel et al., 2007). Moreover, low soil moisture levels during droughts reduce nutrient flow 
and diffusion in soils, resulting in additional nutrient limitations, which may reduce photosynthesis 
levels even further. As a response to the early stages of drought, trees have shown to increase the 
root-to-shoot ratio to maintain transpiration. Several studies have found changes in C partitioning 
in trees following droughts, such as translocation of carbohydrates to roots and increases in root-
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to-leaf biomass production (e.g. (Hanson et al., 2007; Hertel et al., 2013)). Trees may also alter 
morphological traits of their roots to help fulfil water demands in response to drought (Meier et 
al., 2008). Furthermore, certain trees can extend root systems to deep soil layers or to redistribute 
water through the soil column via hydraulic redistribution (Hanson et al., 2007). Hydraulic 
redistribution can effectively transfer water upwards into dry soil layers, and even move water 
deeper into the soil to be protected from evaporation or competition. These mechanisms may 
prevent hydraulic failure in trees by maintaining water potential above the failure limits.   

 

The frequency, severity and timing of a drought plays an important role in the magnitude of a 
forest productivity response to drought. Over shorter time scales, stomata regulate water loss and 
can result in a decline of photosynthesis. Over longer time scales, frequent but less severe droughts 
may on the other hand increase forest drought tolerance as changes in tree physiology may occur 
that optimize hydraulic conductance (Martin-StPaul et al., 2013).  The time scale at which forest 
growth responds to drought reflects its ability to cope with water deficits and is a proxy for drought 
vulnerability. The period between water shortage and impact on growth differ among different 
forest types and climate zones. For example, forests located in semi-arid and sub-humid areas tend 
to respond over longer time-scales than forests located in humid areas. Some forests may not 
respond to drought at all, for example, forests located in very cold and humid areas (Vicente-
Serrano et al., 2014). The timing of drought also plays a key role in forest response. Droughts 
coinciding with peak growth periods will for instance likely result in a stronger response of forest 
C uptake and higher tree mortality.  

 

The response to drought varies strongly among different tree species. For example, in angiosperms, 
European beech (Fagus sylvatica) is generally found to be more vulnerable to drought-induced 
growth reductions compared to European oak (Quercus robur) (van der Werf et al., 2007, 
Scharnweber et al, 2011). In gymnosperms, Norway spruce (Picea abies) is found to be more 
drought vulnerable in terms of radial growth compared to black pine (Pinus nigra) and Douglas fir 
(Pseudotsuga menziesii) due to its relatively shallow rooting depth (Lévesque et al., 2014). Pine 
species (Pinus spp.), for example, Scots pine (Pinus sylvestris) and the Maritime pine (Pinus 

pinaster) are generally considered more drought-tolerant, although the Maritime pine shows a 
strong stomatal response (decline in stomatal conductance and photosynthesis) to drought (Picon 
et al., 1996). In addition to species-specific drought tolerance, angiosperms and gymnosperms also 
have fundamental differences in their drought response strategies. A recent study, for instance, 
found that angiosperms, initially, have lower resistance to droughts, while gymnosperms generally 
show reduced recovery after droughts (DeSoto et al., 2020).    
 

5.1.4 N deposition and drought interactions   

The interactions between N deposition and drought are not always straightforward and vary with 
climate zone, forest type, as well as drought severity and duration. Furthermore, N deposition and 
drought may have counteracting effects on forest growth on different time scales. Where N 
deposition tends to increase photosynthetic capacity, photosynthesis is generally limited by 
drought. As a result, drought could negate increases in forest productivity resulting from increased 
N deposition (Wang et al., 2012, Lui et al., 2013). However, experiments have also shown that N 
addition may also partially alleviate drought impacts on growth (Wang et al., 2012).   
 
N deposition and droughts both affect nutrient availability in forest ecosystems. Reduced soil 
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moisture content during drought may lead to a decrease in organic matter decomposition, and 
immobilize nutrients in the soil. However, extra N available from N deposition may help reduce 
N limitations (Hanson et al., 2000). Very low N deposition rates may also lead to a lack of N 
reserves, impairing the trees ability to sustain drought stress (Gessler et al., 2017). Excessive N 
deposition, on the other hand, may result in nutrients imbalance within the soil and plants tissue, 
and cause a reduction of available cations (Mg, Ca and K), that play an important role in 
physiological drought defense mechanisms (Schulze, 1989). Furthermore, excess nitrogen leads to 
an increase in the shoot – root ratio and a shallower rooting system and decreasing fine root 
biomass increasing the risk of drought (e.g., Li et al. 2015). Therefore, we would expect an 
optimum value of N deposition where N deposition alleviates drought stress.   

 
The anatomical and physiological traits of trees are also influenced by N deposition and drought. 
Chronic, elevated N deposition levels may lead to lower root to shoot ratios, a shallower rooting 
system and decreasing fine root biomass increasing the risk of drought (e.g., Li et al. 2015). 
Reduction in root biomass under combined N deposition and drought appear to be more severe for 
younger trees than for older trees (Palátová et al., 2002), as trees tend to allocate more biomass to 
roots as they age (Meyer-Grünefeldt et al., 2015). Trees that allocated more C to stems under 
elevated N deposition may, on the other hand, initially experience less water stress during droughts 
due to extra water storage (Albuquerque et al., 2013).           
 

5.1.5 Paper setup  

A global network of eddy-covariance measurements allows us to look at CO2 fluxes between the 
atmosphere and biosphere on an ecosystem level. The FLUXNET2015 dataset provides an 
estimate of the net CO2 balance of an ecosystem, as well as partitioning into upward- and 
downward CO2 fluxes. Here we focus on the European forest sites because of the availability of 
more detailed nitrogen deposition data. One important component of the ecosystem C cycle is the 
net ecosystem exchange (NEE), which is the net CO2 flux from the ecosystem to the atmosphere 
(Chapin et al., 2006). The NEE corresponds to the difference of photosynthetic C uptake, or the 
gross primary production (GPP), and the total ecosystem respiration (Reco), which includes both 
autotrophic and heterotrophic respiration (Papale et al., 2006). So far, accurate estimates of 
nitrogen deposition are lacking for these sites. Flechard et al. (2019) used the inferential method 
and the EMEP model with a coarse grid to provide estimates of nitrogen deposition. Here, we used 
the recent updated LOTOS-EUROS model to provide site-specific estimates using more detailed 
local estimates. Furthermore, we use multiple methods to quantify the response of GPP at 
European forest eddy-covariance sites to drought. Several drought indices and soil water 
availability products (Standardized Precipitation Evapotranspiration Index, soil volumetric water 
layer) were used, indicating different types and durations of droughts. The computed responses of 
forest GPP to drought were then linked to the modelled N deposition estimates to assess potential 
N-drought interactions. In doing so, the across-site variability in circumstances, such as different 
dominant forest type, soil types and climate zones is taken into account.    

 

We hypothesize that the response of forest GPP to droughts is smallest at an intermediate level of 
N deposition of max 10 kg ha-1 yr-1, which is generally accepted as the critical load for nitrogen 
deposition (Bobbink et al. 2010). N deposition during drought may not always be detrimental and 
alleviate some of the impacts of drought. Due to a potential shortage of available nutrients, we 
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expect the response of forest GPP to drought to be more severe in forests that experience very low 
levels of N deposition than in forest with intermediate levels of N deposition. At high N deposition 
levels, on the other hand, we expect that biomass partitioning and the anatomical and physiological 
development in trees plays a more dominant role in drought impact. As forest ecosystems under 
chronic, elevated N deposition levels may have reduced amounts of root biomass, we expect a 
more severe response of forest GPP to drought, especially for longer-lasting droughts.   
 

5.2 Datasets and model  

5.2.1 FLUXNET2015 data    

The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange 
between the biosphere and the atmosphere, as well as other meteorological and biological 
measurements (Pastorello et al., 2020). The eddy covariance technique measures land-atmosphere 
energy and greenhouse gas fluxes at an ecosystem level at a high temporal resolution of 30 minutes. 
High frequency (10-20 Hz) measurements of the vertical wind velocity and scalar variables (e.g. 
CO2, temperature) are used to provide an estimate of the net exchange of that scalar variable over 
a footprint area around the point of measurement (Aubinet et al., 2012). The measured NEE is 
partitioned into the GPP and Reco using the night-time method (Reichstein et al., 2005). In this 
study, we use estimates of the daily and monthly GPP and Reco, as well as some other 
meteorological observations.  

We selected forest sites in Europe with at least 6 years of observations left after the application of 
a pre-processing filter (see Methods section). An overview of the used sites including auxiliary 
information is given in Table S5.1 and S5.2 in the supplement. The locations of the selected sites 
are shown in Fig. 5.1.  

 
Figure 5.1. Locations of the selected European FLUXNET forest sites.  
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5.2.2 Soil type  

The physical properties of the soils on which the forests are growing are obtained from the 
European Soil Data Centre (ESDAC) Topsoil physical properties for Europe (based on LUCAS 
topsoil data) (Ballabio et al., 2016). This dataset includes the percentage of clay, silt and sand in 
the topsoil layer (upper 20 cm), and is based on interpolation of around 20.000 survey points all 
over Europe from the LUCAS topsoil database using Multivariate Additive Regression Splines.
  

5.2.3 Drought characterization     
5.2.3.1 Standardized Precipitation Evapotranspiration Index (SPEI)  
The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that takes into 
account both precipitation and potential evapotranspiration (Vicente-Serrano et al., 2010). The 
SPEI has been widely used because it allows the comparison among sites with contrasting climates 
and accounts for droughts at different time scales. The SPEI index is a standardized variate, i.e. a 
z-value, and expresses deviations from the current climatic balance (precipitation minus 
evapotranspiration potential) in respect to the long-term balance. Positive and negative SPEI values 
correspond to relatively wet and dry conditions, respectively. The SPEI values are computed 
globally on a grid for different time scales, depending on the time window that is used to calculate 
the SPEI values of the previous n months. Here, monthly SPEI values were obtained from the 
SPEIbase v.2.5, with 1-, 3-, 6- and 12- month time windows and a spatial resolution of 0.5⁰. 

5.2.3.2 Soil volumetric water layer (swvl)  

The soil volumetric water layer is the volume of water present in the total volume of soil (m3/m3), 
divided into different soil layers. Compared to the SPEI which is a statistical metric, the soil 
volumetric water layer is a soil physical variable which is related to plant available soil water. The 
volumetric soil water layer is a product of the European Centre for Medium-Range Weather 
Forecasts (ECMWF) ERA5-Land reanalysis (Copernicus Climate Change Service, 2019) and is 
associated with soil texture, soil depth and the underlying groundwater level. The model used by 
ECMWF has a four-layer representation of soil: the first layer extending from 0 to 7 cm depth, the 
second layer from 7 to 28 cm, the third layer from 28 to 100 cm and finally the fourth layer from 
100 to 289 cm depth. Here, the same partitioning is kept.    

 

5.2.4 N deposition fields  

The N deposition fields used in this study are modelled using the LOTOS-EUROS chemical 
transport model (Manders et al., 2017). LOTOS-EUROS is an Eulerian chemistry transport model 
that simulates air pollution in the lower atmosphere. For this study, we used the mixed layer 
approach version of the model.  We used a five-layer grid that extends up to 5 km vertically. The 
bottom layer is the surface layer that has a fixed thickness of 25 meters. This layer is followed by 
a mixing layer, which is in turn followed by two dynamic reservoir layers of equal thickness and 
finally a top layer that extends up to 5 km. The model performs hourly calculations using ECMWF 
meteorology (ECMWF, 2016), and uses the TNO CBM-IV gas-phase chemistry scheme (Schaap 
et al., 2009). The anthropogenic emissions are taken from CAMS-REG-AP (Copernicus 
Atmospheric Monitoring Services Regional Air Pollutants) emissions dataset v2.2 (Granier et al., 
2019). The wet deposition computation simulates both in-cloud and below-cloud scavenging and 
is based on the CAMx approach (Banzhaf et al., 2012).  The dry deposition flux is computed using 
the DEPAC3.11 (Deposition of Acidifying Compounds) module (Van Zanten et al., 2010). This 
module follows the resistance approach, in which the exchange velocity is equal to the reciprocal 
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sum of the aerodynamic, quasi-laminar and canopy resistance. A canopy compensation point for 
NH3 is implemented in this routine, allowing bi-directional fluxes.  The model uses the 
CORINE/Smiatek land use map to compute exchange velocities for different land use classes. In 
this study, we computed 12 years (2003 – 2014) of land use specific fluxes for deciduous and 
coniferous forest in Europe (35⁰N to 70⁰N, 15⁰W to 35⁰E).  We used a horizontal resolution of 
0.50⁰ longitude by 0.25⁰ latitude, corresponding to approximately 28 by 28 km2. We match the 
modelled deposition flux with the FLUXNET sites based on their plant functional type. For mixed 
forest, the average flux for deciduous and coniferous forest is computed.   

 

5.3 Methods 

5.3.1 Deviations from reference GPP values  

To quantify the response of forest GPP to drought, the observed daily GPP values are first 
compared to two types of reference GPP cycles, which we assume are “expected” or default GPP 
values at a specific day on the long term. The deviations from these reference cycles are then 
computed and matched with drought indices to quantify the response of forest GPP to a specific 
drought. Here, two types of reference cycles are defined: (1) the detrended daily mean and 
maximum GPP values, and (2) the modelled daily GPP values, estimated from the observed 
meteorological variables at the same location using multiple regression analysis. The daily 
deviations are computed and then accumulated over a month or season (spring and summer), so 
that they can be linked to the monthly drought indices. The two types of reference GPP cycles are 
explained in more detail in the sections below.   

 

5.3.1.1 Mean and maximum daily GPP values  

The first method directly uses the daily FLUXNET measurement of the GPP. For each site, the 
mean and maximum GPP values are computed for each day of the year and used as GPP reference 
cycles.  For the computation of the daily mean GPP value, all measurements with a medium- to 
high-quality indication are used (NEE_VUT_REF_QC > 0.5). For determining the daily maxima, 
only observations with a high-quality flag indication (NEE_VUT_REF_QC > 0.9) were used to 
avoid the inclusion of outliers. The monthly accumulated deviations from the daily mean GPP 
values will be referred to as δGPP1.  

 

5.3.1.2 Modelled daily GPP values   

In the second method, the reference GPP values are computed using multiple regression analysis. 
Here, daily FLUXNET observation of the ambient air temperature (T5:3), incoming short-wave 
radiation (SW:£) and longwave radiation (LWin), the sensible- (H) and latent (LE) heat flux and 
the vapor pressure deficit (VPD) are used. These parameters are used as predictors to estimate the 
expected daily GPP at a certain day of the year given the meteorological conditions. As most 
biochemical reactions follow a hyperbolic curve, the following multi polynomial regression model 
is fitted to the data in a least-squares sense:  

GPP = aBT5:3� +  a�T5:3 + a
SW:£� + a�SW:£ + a�LW:£� + aÐLW:£ + aÑH� + aÒH + aÓLE� +
aB=LE + aBBVPD� + aB�VPD + aB
t + aB� (Eq. 5.1) 
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The relationship between these predictors and the GPP changes throughout the year and may be 
quite asymmetrical, especially for a deciduous forest. To avoid systematic over- or 
underestimations in specific months, we fit the model for two separate periods: a startup growing 
period and the remainder of the growing season. In the startup period, we commonly observe a 
delayed response of GPP to change in these predictors. After this period, the relationship stabilizes 
and can be modelled well with a single multi-regression fit (see Result section).  For simplicity, 
the split is made at the beginning of May for sites with deciduous forests and at the beginning of 
June for sites with coniferous forests. 

The monthly accumulated deviations from the daily modelled GPP values will be referred to as 
δGPP2. 
 

5.3.2 Detecting extreme drought events  
Extreme droughts are detected using the following criterium: SPEI less than the 10th percentile of 
the site-specific SPEI distribution. Here, only droughts that occur during spring and summer 
(March-August) are taken into account. The distribution of the different SPEI values (i.e., the 
monthly, 3-monthly, 6-monthly and 12-monthly) is computed at each forest site during the time 
the measurements took place and the months in the lower 10th percentile are selected as drought 
events. The deviations from the reference cycles δGPP1 and δGPP2 during the months indicated as 
‘drought event’ are then matched and (1) the distribution of δGPP1 and δGPP2 values and (2) the 
most extreme (negative) δGPP1 and δGPP2 values in the corresponding months are computed. 
  
 

5.3.3 Comparison to N deposition, climate zone, soil type and forest age  
After the deviations from the reference cycles δGPP1 and δGPP2 were computed and matched with 
the SPEI indices, they were compared to climatic and edaphic variables and N deposition estimates 
at each site. As a way of standardizing across forest sites, the δGPP1 and δGPP2 values are 
expressed as a percentage of the monthly mean GPP. As forest located in different climate zones 
respond differently to droughts of different durations, we determine which SPEI time window (1-
,3-,6- or 12- months) shows the largest negative median δGPP1 and δGPP2 values at each site. The 
median and the largest negative, i.e., most severe, δGPP1,2 values corresponding to the SPEI with 
this time window are compared to the average amount of N deposition, the mean annual 
temperature (MAT), the mean annual precipitation (MAP), the age of the forest, and the percentage 
of clay and sand in the soil.   
 

5.3.4 Detecting low soil moisture content   
The soil volumetric water layer is used to look at the direct effect of soil water deficits on forest 
GPP during spring and summer. The analysis is as follows: first, the weighted averages of the soil 
volumetric water layer in the upper three layers (up to 1 m depth) at each site are computed. The 
weighted values are normalized so that 1 corresponds to the wettest- and 0 to the driest soil 
conditions occurring at that site, respectively. Subsequently, for each year the average weighted 
soil volumetric water layer during the spring (March-May) and summer (June-August) is 
computed, which we call the “svwlWA”. Here, the daily maximum GPP values are used as reference 
values. For each year, the observed, total GPP during spring and summer is divided by the 
maximum GPP values during the same season, which we will refer to as “fGPPmax”. The svwlWA 
during spring and summer are then plotted against the corresponding fGPPmax values. A simple 
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linear regression model is fitted to all points and the slope and correlation coefficient are calculated.  
The computed slope and correlation coefficients are then compared to the average amount of N 
deposition, the mean annual temperature (MAT), the mean annual precipitation (MAP), the age of 
the forest, and the percentage of clay and sand in the soil for all sites simultaneously. 

5.4 Results  

5.4.1 Relationship between N deposition and GPP and Reco fluxes   

First, the yearly N deposition at each forest site is directly compared to the corresponding gross 
primary production (GPP) and ecosystem respiration (Reco) values. The annual GPP values show 
a clear dependence on the annual N deposition values, increasing linearly at first, and peaking at 
approximately 10-15 kg N ha-1 yr-1 and 2000 gC m-2 yr-1 (Fig. 5.2). For higher N deposition values 
(>15 kg N ha-1 yr-1) a decrease in annual GPP is observed. This is in correspondence with the 
previously reported growth optimum related to N deposition. The relationship between Reco and N 
deposition shows more inter-site variability but follows a similar pattern. The optimum again lies 
around 10-15 kg N ha-1 yr-1 and around 1500 gC m-2 yr-1. The modelled N deposition is then split 
up into NOy and NHx deposition. The breakdown of the N deposition into NOy versus NHx 
components at each FLUXNET site is shown in Fig. S5.1. The yearly NOy and NHx deposition are 
compared to the corresponding GPP values in Fig. 5.3. For the individual components, a similar 
relationship to GPP is observed. The optima for each component, however, lie at different values. 
The optimum GPP for NOy occurs around 8 kg N ha-1 yr-1, while the optimum GPP for NHx lies 
around 12 kg N ha-1 yr-1. Beyond these optima, the GPP decreases at different rates. Here, the 
decrease is particularly strong for NOy deposition values above 8 kg N ha-1 yr-1, and relatively 
steeper than for NHx.  

 
Figure 5.2. Yearly observed gross primary production (GPP) and ecosystem respiration (Reco) plotted against 

modelled N deposition for each European FLUXNET forest site. The symbols indicate different sites, as in 

Figure 5.1. The colored lines indicate the entire range (minimum – maximum) of the GPP, Reco and N deposition 

values at each site.  
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Figure 5.3. Relationship between yearly GPP and NHx (left) and NOy (right) deposition. Only years with GPP 

values of quality flag 0.8 or higher are plotted. Each dot represents a single year and the colors represent 

different FLUXNET sites as in Figure 5.1. The grey lines represent the best least-squares polynomial fit 

through all points.   
 

5.4.2 Changes in GPP during extreme droughts  
The mean and maximum GPP cycles at each of the FLUXNET forest sites, that are used as 
reference values, are shown in Fig. 5.4. The GPP cycle of the forest sites with Picea abies as 
dominant species is the most symmetrical throughout the year and the least variable across sites. 
Forest sites with predominant deciduous broadleaved species, e.g., with Quercus and Fagus 

sylvatica as dominant species, show the most asymmetrical GPP cycles, as was expected. The GPP 
cycles of most forest sites with Quercus subspecies as dominant forest type are twofold, with a 
large initial peak during spring- and summertime followed by a smaller peak during autumn. 
Moreover, a clear dependence on climate is observed. Forest located in colder climates, for 
instance in Finland (Fi-Sod, Fi-Hyy), have a relatively short growing season. For forests in 
Mediterranean climates (e.g., IT-Cpz), on the other hand, an early onset of the growing season, as 
well as relatively high GPP values in wintertime (Fig. 5.4c) are observed.  

Figure 5.4. The mean (a,b,c,d) and maximum (e,f,g,h) daily GPP cycle at each FLUXNET forest site.

  

The distribution of the computed δGPP1 and δGPP2 values during months indicates as droughts 
are shown in Fig. S5.2. Table S5.1 shows an evaluation of the polynomial regression model per 
site, which includes the root-mean-squared deviation (RMSD), the mean absolute deviation 
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(MAD), Pearson’s correlation coefficient r and the slope between the measured and modelled daily 
GPP values. First of all, the spread of the δGPP1 and δGPP2 values plotted in Fig. S5.2 varies quite 
a lot across sites. There seems to be significant variability in the GPP responses to different drought 
durations as well. For example, there are more frequent, negative GPP responses corresponding to 
longer-lasting droughts in sites with Pinus spp.  as dominant tree species (e.g. FI-Hyy, FI-Sod, FR-

LBr), as well as sites dominated by Quercus spp. (FR-Pue, IT-Cpz, IT-Ro2). The difference 
between δGPP1 and δGPP2 values indicates to what extent the response of forest GPP to drought 
can be explained by the weather conditions. Some forest sites for instance strongly respond to high 
ambient air temperatures in combination with high vapor pressure deficit values with a consistent 
decrease in GPP, which could indicate direct stomatal closure at these conditions. This is visible 
for forest sites with Quercus species as dominant forest type in particular (i.e. FR-Fon, FR-Pue, 

IT-Cpz, IT-Ro1, IT-Ro2).   

 

In the following section, only months identified as ‘extreme droughts’ that correspond to negative 
impacts on GPP are considered. Fig. 5.6 shows the most negative response in δGPP1 and δGPP2 at 
each forest site plotted against the mean N deposition, the MAT and the MAP, the forest age and 
the sand and clay content of the soil. Fig. S5.2 shows the same information but grouped by 
dominant tree species. The largest negative δGPP1 and δGPP2 values differ the most for relatively 
young forest (< 80 years), young forest having a relatively larger negative response in δGPP1. This 
indicates that young forests tend to respond more rapidly and consistently to changes in weather 
conditions.  At first sight, there is a decreasing response in forest GPP to drought with increasing 
N deposition values, which levels off around 15 kg N ha-1 yr-1. However, the variation is large and 
the R2 values of the best fitting curves are relatively small (R2=0.15 and R2=0.39). In general, no 
clear pattern for all sites in relation to either MAT or MAP, or sand or clay content is observed. 
Here, too, the relationships are rather weak.    

 

Fig. 5.7 shows the mean negative response in δGPP1 and δGPP2 per drought event at each forest 
site plotted against the mean N deposition, the MAT and the MAP, the forest age and the sand and 
clay content of the soil. Fig. S5.3 shows the same information but grouped by dominant tree 
species. In these figures, the values are plotted in g C m-2 per drought event, which corresponds to 
the mean decrease in GPP in one month identified as extreme drought (<10th percentile) by the 
used SPEI indices. First of all, all plotted relationships are rather weak. The mean negative 
response in forest GPP to drought increases with increasing MAT values, which indicates that 
forest sites located in warmer climates experience relatively strong GPP reductions during extreme 
droughts. Despite significant uncertainties, there appear to be some detectable relationships in 
forest sites with the same dominant tree taxa. For example, at forest sites with Pinus spp. as 
dominant species there seems to be a linear relationship between the mean negative δGPP1 and the 
mean annual temperature and precipitation. Furthermore, in oak forests (Quercus ssp.), and to a 
lesser extent in spruce forests (Picea ssp.), linear relationships between the mean negative δGPP1 
and the soil sand and clay content can be observed at each site. In these forests, the response of 
forest GPP to drought seems to become more severe with decreasing soil sand content and 
increasing clay content. This suggests that Quercus ssp. are in general more sensitive to changes 
in soil water content and that Quercus ssp. forests on sandy soils are generally less susceptible to 
droughts than those on clayey soils. 
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5.4.3 Effect of soil volumetric water layer on seasonal GPP  

Fig. 5.8 shows the slope and the correlation between the svwlWA and fGPPmax during spring and 
summer at each forest site. Positive slopes and correlation coefficients represent a positive 
relationship between the svwlWA and fGPPmax, e.g., increasing GPP with increasing soil volumetric 
water layer. In general, GPP in most forest sites benefits from relatively low soil moisture levels 
during spring, and relatively high soil moisture levels during summer.  

The highest correlations between svwlWA and fGPPmax in spring are found for sites with Fagus 

sylvatica as dominant species (diamond). The growth during the beginning of the growing season 
is thus highly dependent on the amount of available soil water at sites with Fagus sylvatica as the 
dominant tree species. Generally, the soil volumetric water content in the topmost layer (> 1 meter 
below the surface) decreases gradually from wintertime towards the summer as accumulated 
evaporation becomes higher than accumulated precipitation. As a result, trees are thus less likely 
to experience serious water shortages during spring. Moreover, as the start of the growing season 
seems to be fairly consistent at these sites (see Fig. 5.5), the apparent positive effect of low soil 
moisture conditions on GPP in spring is likely caused by favorable meteorological conditions, such 
as higher air temperatures and higher amounts of incoming short-wave radiation, and not low soil 
moisture conditions.  

During summertime, the relationship between svwlWA and fGPPmax is mainly dependent on the 
mean annual temperature (MAT) and the forest age. The slope and correlation coefficient increase 
with increasing MAT values, indicating that forest sites located in warm climates are relatively 
sensitive to changes in soil moisture. The slope and the correlation coefficients decrease with 
increasing forest age, suggesting that the GPP in younger forests is more sensitive to changes in 
soil moisture compared to older forests. This is in line with the literature, as young forests have 
less developed root systems. In general, there are no clear pattern in relation to N deposition.  
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Figure 5.6. Most severe, negative response in forest GPP to drought (δGPP1 and δGPP2), plotted against the 

mean N deposition (Ndep), mean annual temperature (MAT) and mean annual precipitation (MAP), the forest 

age and the soil sand and clay content. The δGPP1 and δGPP2 values are plotted as percentage of the monthly 

mean GPP at each site, and represents the most negative δGPP1 or δGPP2 value out of the all values computed 

with 1-, 3-, 6- and 12- monthly SPEI values. The symbols represent the dominant forest types at each site. The 

gray lines represent the best fitting polynomial function using least-squares optimization.   
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Figure 5.7. The mean negative response in forest GPP to drought (δGPP1 and δGPP2), plotted versus the 

amount of N deposition (Ndep), the mean annual temperature (MAT) and the mean annual precipitation (MAP), 

the forest age and the soil clay and sand content. The GPP response per drought event is computed by summing 

all negative δGPP1 and δGPP2 values and then dividing that by the number of drought events per SPEI index 

(1-, 3-, 6- and 12- monthly). The gray lines indicate the spread in outcomes using different SPEI indices. The 

symbols represent the dominant forest types at each site.    
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Figure 5.8. The slope and the correlation coefficient between the weighted average normalized soil volumetric 

water layer (swvlWA) and the fraction of the maximum GPP (fGPPmax) during spring and summer at all forest 

sites, plotted against the amount of N deposition (Ndep), the mean annual temperature (MAT) and the mean 

annual precipitation (MAP). Negative slopes and r values (red) indicate a preference for drier soil conditions, 

whereas positive slopes and r values (blue) indicate a preference for wetter soil conditions. The symbols 

represent the dominant forest types at each site. The slope and correlation coefficients are obtained by fitting 

a simple linear regression using least-squares optimization… 
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Figure 5.8. …continued for the forest age and the soil sand and clay content.  

 

 

 

 



123 

 

5.4.4 Case study: N deposition and drought interactions in pine forest (Pinus ssp.)           
The results from the previous sections suggest that there is a differential response of forest GPP to 
drought across FLUXNET sites, seemingly independent from N deposition. However, by grouping 
sites with the same dominant tree taxa, some patterns could be distinguished.  In this section, the 
group of sites located in pine forests (Pinus spp.) is studied in more detail. These pine forest sites 
(FI-Hyy, FI-Sod, IT-SRo, FR-LBr, NL-Loo, BE-Bra) showed the strongest relationship between 
the response in forest GPP to drought and the MAT, MAP and forest age. Moreover, the largest 
variation in N deposition levels is observed across these sites.   

 

 
Figure 5.10. The mean negative response in forest GPP (δGPP1) per drought event identified by different 

drought indices. A specific month is classified as drought if the used drought index is below its 10th percentile 

value. The soil volumetric water layer (svwl) values are standardized.  

 
Figure 5.11. The mean negative response in GPP (δGPP1) per drought month in relation to the mean annual 

temperature (MAT), the mean annual precipitation (MAP), the forest age and the N deposition. Each triangle 

stands for one forest site, and the grey lines indicate the spread in outcomes using different SPEI values. The 

triangles with the white outline are the modelled δGPP1 values, using a multi-linear regression fitted to the 

MAT, MAP and forest age (δGPP1= 6.29*MAT - 0.35*MAP - 0.02*forest age + 183.43, R2 = 0.76, rmse = 
10.0). 

Fig. S5.5 shows the time series of the daily and monthly summed GPP deviations (δGPP1). At 
some sites, there are consistently higher or lower GPP values throughout the entire year (IT-SRo, 

FR-LBr, FI-Sod). Other sites, on the other hand, show much more intra-annual variability (NL-

Loo, FI-Hyy).  
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Fig. 5.10 shows the mean negative response in forest GPP (δGPP1) per drought event identified by 
different drought indices. Here, the normalized soil volumetric water layer (svwl) values at each 
forest site is used as an additional drought indicator. Most sites respond more severely to longer-
lasting droughts, except for BE-Bra. The addition of the svwl did not lead to a more severe response 
in forest GPP to drought at all sites. BE-Bra, NL-Loo and FI-Sod are insensitive to svwl as an 
additional drought indicator. 

Fig. 5.11 shows the mean negative response in forest GPP (δGPP1) per drought event, in relation 
to the MAT, MAP, forest age and the amount of N deposition. Overall, the response in GPP 
increases with increasing MAT and MAP values and decreasing with increasing forest age. To 
extract the influence of the MAT, MAP and forest age, a multi-linear regression was fitted. The 
resulting, modelled δGPP1 are plotted in white in relation to N deposition, alongside the initial 
δGPP1 values. From our hypothesis, we expect the response in forest GPP to drought to be more 
severe at forest sites with very low levels of N deposition (FI-Hyy and FI-Sod), and with very high 
levels of N deposition (BE-Bra and NL-Loo). At forest sites with intermediate levels of N 
deposition (IT-SRo and FR-LBr), N deposition is expected to alleviate the drought response in 
GPP. The fitted δGPP1 values, however, at different levels of N deposition, are both higher and 
lower than the observed δGPP1 values. Moreover, the response of forest GPP to drought was 
modelled with another multi-linear regression, this time including the amount of N deposition. The 
resulting fitted model (δGPP1= 5.26*MAT - 0.38*MAP - 0.41*forest age +1.13*Ndep + 225.36) 
improved slightly, but not significantly (R2 = 0.85, RMSE = 8.1) and shows that N deposition only 
explains another ~10% of the variation in the data. These results suggest that there is no consistent 
nor significant effect of N deposition on the response of forest GPP to drought in these pine forest 
sites and therefore do not support our hypothesis. 

5.5 Discussion  

This study discusses various pathways in which N deposition and drought can interact as co-
stressors on forest productivity in European forest ecosystems. Based on the literature, our initial 
hypothesis was that the response of forest GPP to drought is relatively small in forest ecosystems 
that experience intermediate levels of N deposition (5-10 kg ha-1 yr-1). Productivity in forest 
ecosystems with either very low N deposition levels (<5 kg ha-1 yr-1) or higher N deposition levels 
approaching N saturation (>10 kg ha-1 yr-1) was expected to show a relatively large magnitude 
response to drought. Due to a differential response to the used drought indices, we were unable to 
isolate a clear, overall dependence of the response of forest GPP to drought on N deposition. This, 
in part, results from the large inter-site variability in dependencies of the response of forest GPP 
to drought on varying physiological, climatic and edaphic conditions. Grouping sites with the same 
dominant tree species enabled us to extract some of these dependencies, such as the sensitivity of 
drought response to soil texture in oak (Quercus ssp.) forests. Furthermore, the GPP response to 
drought within the group with the largest variation in N deposition (Pinus ssp.) could be predicted 
using the site mean annual temperature and precipitation and the age of the forest (R2 = 0.76, 
RMSE = 10.0). However, after extracting the contribution of these most prominent parameters, the 
variability in drought responses remained too large to substantiate any hypothesized N deposition 
effects.   

 



125 

 

We were unable to draw any generalized conclusions regarding the impact of N deposition on the 
response of GPP to drought in European forest ecosystems. In addition to the large inter-site 
variability in physiological, climatic and edaphic conditions in general, another limiting factor in 
this study setup was the low variation in N deposition levels within some groups of dominant forest 
species (e.g. Quercus ssp. or Fagus sylvatica). Moreover, even though the FLUXNET2015 dataset 
contains the most extensive network of eddy-covariance measurements to date, this study is limited 
by the relatively short time series at some forest sites. As a result, some forest sites for instance 
only experienced a handful of months indicated as severe droughts. As we established that for 
example both frequency and severity of a particular drought event play an important role in the 
forest response, it is especially hard to generalize the response with only a few droughts occurring. 
Moreover, a relatively short time series of GPP observations could result in a bias in the mean GPP 
cycle and therefore the drought-induced anomalies in GPP. For example, if the majority of the 
years with measurements at a particular site were relatively warm and dry, the difference in GPP 
with a classified drought period would be smaller than if these years were relatively cold and wet. 
Also, longer time series would allow us to look at the impact of re-occurring or longer-lasting 
droughts, and the impact of severe drought on the long-term C cycling in forest ecosystems.  

A recent review by Speich et al., 2018 found that, for temperate forests, drought indices accounting 
for evaporative demand performed better than indices based on precipitation alone. The SPEI index 
used here does account for both precipitation and evaporative demand, but does not include any 
additional levels of information. The results showed that not all month indicated as extreme 
droughts by the SPEI-indices correspond to negative responses in GPP (Fig. S5.2). This is likely 
because the SPEI index does not account for soil moisture storage, the ease of soil water extraction 
by plant roots, or water table depth. Therefore, the first couple of months of drought, with possibly 
sufficient water availability coming from deeper soil layers, were included in the analysis. As long 
as tree root systems have access to sufficient amounts of soil water, favorable meteorological 
conditions during drought, such as higher incoming solar radiation, could even result in a relative 
increase of GPP. This illustrates that using the 10th percentile of the SPEI index as a definition of 
extreme drought conditions, as was done in this study, does not necessarily only include impactful 
droughts. Using a more applied drought index that uses more site-specific variables (e.g., soil 
moisture storage, stand properties, physiological thresholds) could potentially improve the 
selection of droughts. 

Other factors contributing to the uncertainty in our analyses are related to the modelling of N 
deposition. The modelled N deposition fields used in this study have a relatively large uncertainty. 
N deposition measurements, both the dry and wet component of the deposition fluxes, at the same 
locations as the FLUXNET sites could help to improve on this and would allow us to represent the 
current N deposition levels per site more accurately. At the same time, most of these forests are 
around a 100 years old, and better estimates or measurements of current N deposition levels are, 
therefore, not necessarily correlated with historic N deposition levels. Here, we used a relatively 
long time-series (12 years) of modelled N deposition and assumed that these N deposition levels 
represent the N availability in these forests as a whole relatively well. N retention and allocation 
in forest ecosystems is, however, not only influenced by the current level of N deposition, but also 
by the accumulated N deposition that a forest ecosystem has received (De Vries et al., 2014). Using 
additional measurements of N in plant and soil pools could help us to get a better grip of the 
accumulated N in different forest compartments and herewith the historic N deposition levels.  
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Nutrient availability in general is a key regulator of the forest carbon balance. Not only N limitation 
plays a role in forest productivity, but also the availability of other nutrients (e.g., potassium, 
phosphorus, calcium, magnesium) (Fernandez-Martinez et al., 2014). For a more complete 
analysis, not only N availability but also other potentially limiting nutrients such as phosphorus 
(P) or other cations (Mg, Ca and K) could be considered. Moreover, surface ozone (O3) also plays 
a critical role in forest growth and drought response (e.g. (Karlsson et al., 1997, Kronfuβ et al., 
1998)).  In the current study setup, however, adding more variables (for instance O3 surface 
concentrations) would likely result in an even greater divergence in conditions between the 
FLUXNET forest sites. To effectively isolate N deposition-drought interactions, an extensive 
measurement network in forests with similar edaphic, physiological and climatic conditions is 
needed. To get more insight into N deposition – drought interactions for specific tree species, one 
could for instance set up N addition experiments in a managed forest. Another option would be to 
do measurements for the same type of trees in regions with strong, local N deposition gradients.  

This is the first study to examine both the effects of modelled N deposition on forest productivity 
across the European FLUXNET sites and the possible effects of N deposition on the magnitude of 
a productivity response to drought. We find good agreement across the FLUXNET sites in the 
dependence of GPP to N deposition and its component (NOy and NHx), with an initial strong 
increase in GPP at low N deposition levels followed by a slow decline, and even a decrease at high 
N deposition levels. However, the effect of N deposition on the magnitude of the forest 
productivity response to drought could not be isolated. These results suggest that, while N 
deposition might play a critical role in the response of forest productivity to drought within specific 
forest ecosystems, N deposition does not seem to be a major or consistent driver of the magnitude 
of the GPP response to drought across a diverse set of FLUXNET forest sites in Europe.       
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Chapter 6: Synthesis  
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6.1 Overview   

The human modification of the global nitrogen cycle has led to enhanced losses of reactive nitrogen 
(Nr) to the environment, exceeding many thresholds for human and ecosystem health. Excess 
atmospheric deposition of Nr on natural ecosystems causes soil acidification, eutrophication, and 
ultimately biodiversity loss. Moreover, nitrogen deposition may exacerbate the impact of climate 
change, for instance, by affecting vegetation growth and carbon exchange in case of drought (De 
Vries et al., 2011). So far, the coupling of nitrogen deposition and drought has been hampered by 
the relatively high uncertainty of the modelled nitrogen deposition estimates. To tackle this, the 
main goal of this PhD thesis was to improve nitrogen deposition estimates from chemical transport 
models (CTMs) through the integration and assimilation of different types of satellite observations. 
Furthermore, the effects of drought and nitrogen deposition on gross primary production in 
European forest ecosystems were studied using high-quality measurements from the FLUXNET 
database.  

This PhD research was funded by the Netherlands Organization for Scientific Research (NWO) 
under project number ALW-GO/16-05. At the start of this PhD, satellite retrievals of atmospheric 
NH3 concentrations from the Infrared Atmospheric Sounding Interferometer (IASI) and the Cross-
track Infrared Sounder (CrIS) had recently been developed (IASI: Clarisse et al., 2009, Van 
Damme et al., 2014, CrIS: Shephard and Cady-Pereira, 2015) and validated (Dammers et al., 2016, 
Dammers et al., 2017ab). The NH3 observations provided by these instruments could be used to 
reduce the large uncertainties that exist in the atmospheric budget and distribution of NH3.  In 
Chapter 2 of this thesis (van der Graaf et al., 2018), the IASI-NH3 product, the product with the 
longest time series, was used in combination with information from the LOTOS-EUROS chemical 
transport model to derive dry deposition fluxes of NH3. Here, we illustrated that the direct use of 
satellite data following the approach by Nowlan et al., 2014 did not provide any added value for 
directly constraining NH3 fields in Europe. The validation of the results with in-situ measurements 
also emphasized the need for better, more robust methods for deriving large-scale deposition 
fluxes. The sensitivity study that was conducted in this chapter and a direct comparison of the 
satellite and model NH3 distributions identified two important areas for improvements: the 
modelled deposition velocities and the input emissions for NH3. Aiming to improve the surface 
characterization in LOTOS-EUROS, and herewith the deposition velocities, high resolution 
satellite observations were used to derive more realistic, dynamic input parameters for the 
deposition parameterization. The results of this study are presented in Chapter 3 (van der Graaf et 
al., 2020). The inclusion of the satellite-derived parameters led to significant changes in the 
modelled nitrogen deposition fields for specific land use types. These changes, however, were 
difficult to validate with the available set of in-situ observations.  

Next, our focus shifted towards improving the spatiotemporal distribution of the NH3 input 
emissions, and to achieve this a data assimilation study was performed.  The results are presented 
in Chapter 4 of this work (van der Graaf et al., 2021a). Here, the CrIS-NH3 product was used to 
derive NH3 time factors and adjust NH3 emissions with a Local Ensemble Transform Kalman Filter 
(LETKF) approach. Because of the lack of averaging kernels in the IASI-NH3 product, the decision 
was made to switch to the CrIS-NH3 products for a fairer comparison with the modelled NH3 
concentrations. In the meantime, a study was started to look at nitrogen deposition and drought 
interactions at European FLUXNET sites. Around this time, the new regional CAMS emission 
inventories became available for LOTOS-EUROS, which allowed us to model ecosystem-specific 
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nitrogen deposition fluxes for a long time period at an improved spatial resolution compared to 
existing deposition estimates. The results of this study are presented in Chapter 5 (van der Graaf 
et al., 2021b).  

In the next sections of this concluding chapter, the main results of this thesis are summarized 
following the four research questions formulated in Chapter 1. Finally, the results are briefly 
discussed and prospects for future research are proposed.  

6.2 Research questions  

• How can NH3 dry deposition estimates be improved through synergistic use of the 
LOTOS-EUROS model and NH3 satellite observations?  
 

A combination of NH3 total column observations from IASI and modelled NH3 concentration and 
dry deposition fields from LOTOS-EUROS were used to compute satellite-derived NH3 surface 
concentrations and dry deposition (hereafter referred to as the IASI-derived surface concentrations 
and dry deposition). The IASI-derived NH3 surface concentrations were used to identify regions 
with large model-satellite discrepancies. In these regions, systematic over-, or underestimations in 
modelled NH3 concentrations were observed, potentially indicating errors in the current emission 
inventories for NH3. The validation of the IASI-derived NH3 surface concentrations and dry 
deposition fluxes was, however, hampered by the limited amount, and uneven distribution, of 
available in-situ measurements. A comparison to the available set of NH3 surface concentrations 
measurements in Europe showed no significant or consistent improvement in the IASI-derived 
NH3 surface concentrations compared to the originally modelled NH3 surface concentrations from 
LOTOS-EUROS. The derivation of NH3 surface concentrations and dry deposition fluxes from 
IASI satellite observations using some form of inferential modelling (incorporated in CTMs or 
standalone) could be very useful in remote regions or regions where NH3 emissions estimates are 
highly uncertain or even lacking. Otherwise, these methods might not be viable at this time, 
particularly due to the relatively low sensitivity to near-surface NH3 of the IASI instrument and 
the high uncertainty in surface-atmosphere exchange schemes for NH3.        

 

• How does the integration of satellite-derived LAI and z0 values improve modelled Nr 
deposition fields in LOTOS-EUROS?  
 

Several satellite products were used to derive more realistic, dynamic input values for the 
roughness length (z0) and the leaf-area-index (LAI) values, to be used in the computation of the 
deposition fluxes in LOTOS-EUROS instead of fixed, land-use specific values. The monthly LAI 
input values were computed with the MODIS-LAI product (MCD15A2H). For short vegetation 
types (e.g., grass, arable land), the monthly z0 input maps were a function of the MODIS-NDVI 
(MYD13A3) product. For forest, a combination of satellite-derived forest canopy heights and 
MODIS-LAI were used. The default and satellite-derived z0 values were compared to z0 values 
computed at FLUXNET sites. Overall, the root-mean-squared-difference (RMSD) decreased from 
0.76 (default z0) to 0.60 (satellite-derived z0). The largest improvements were found for forests. 
Here, the RMSD decreased from 1.23 (default z0) to 0.96 (satellite-derived z0). The satellite-
derived z0 values for forests showed the most spatial variation. For example, a clear latitudinal 
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gradient with increasing z0 values towards the south of Germany was observed, which is related to 
the relatively tall trees here. The integration of these satellite-derived LAI and z0 input maps in 
LOTOS-EUROS led to distinct changes in the modelled total Nr deposition of up to ∼30 % 
compared to the default runs and an overall shift from wet to dry deposition. The Nr deposition 
fields were especially sensitive to changes in the LAI input values. The largest impacts were 
observed in the modelled land-use-specific Nr deposition fields. The changes in modelled total Nr 
deposition for forests ranged for instance from approximately −3 up to +2 kg N ha-1 yr-1 for 
deciduous forests and even over −3 kg N ha-1 yr-1 for coniferous forests. To conclude, the use of 
satellite products to derive LAI and z0 values is a promising way to represent the surface 
characterization in CTMs more accurately, which is a step towards better Nr deposition estimates 
from CTMs by reducing the uncertainty related to the used input parameters.        

 

• How can integration and assimilation of NH3 satellite observations improve the spatio-
temporal distribution of modelled NH3 fields in LOTOS-EUROS?  
 

To improve the modelled spatio-temporal distributions of the modelled NH3 fields, CrIS-NH3 
satellite observations were integrated into the LOTOS-EUROS chemistry transport model in two 
different ways. The first method directly used NH3 surface concentrations from CrIS to fit spatially 
varying NH3 emission time factors, that were used to redistribute the model input NH3 emissions 
over the year. Comparison to in-situ observations (NH3 surface concentrations, NH4

+ wet 
deposition) showed that this relatively simple, ad-hoc method can improve the temporal 
distribution of NH3 input emissions locally. This method is especially useful in agricultural-
intensive regions during spring (March to May), where it can be successfully used to estimate the 
onset and duration of the NH3 spring peak. The second method used column concentrations from 
CrIS in a top-down approach to adjust the model input NH3 emissions through a Local Ensemble 
Transform Kalman Filter (LETKF).  The strength of this method primarily lies in fine-tuning pre-
existing NH3 emission patterns, and in that way improving the spatial distribution of the modelled 
NH3 fields. The two methods were also combined in a two-step approach, i.e., first rescaling the 
NH3 time factors before assimilating the CrIS-NH3 columns. This setup enhanced the adaptability 
of the LETKF and led to the most significant improvements compared to the in-situ observations. 
To conclude, integration and data assimilation of the CrIS-NH3 product with the methods presented 
here improved the temporal representativity of modelled NH3 fields in LOTOS-EUROS. This led 
to better constraints on the Nr budget, especially in agricultural areas.    

 

• What is the effect of nitrogen deposition on the drought response of gross primary 
production at European FLUXNET forest sites? 

The response of gross primary production (GPP) to drought at European FLUXNET forest sites 
was quantified using different soil water availability indicators (e.g., Standardized Precipitation 
Evapotranspiration Index (SPEI), soil volumetric water). A differential response in the used 
drought indicators across forest sites with different dominant species was observed. Moreover, the 
variation in nitrogen deposition levels at similar forest sites (e.g., with the same dominant tree 
species) was very limited. The group of FLUXNET forest sites with Pinus trees as dominant 
species had the largest variation in nitrogen deposition. At these sites, the GPP drought response 
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could be predicted with the mean annual temperature (MAT), the mean annual precipitation 
(MAP), and the forest age. The effect of nitrogen deposition, however, could not be isolated. 
Although the effect of nitrogen deposition on forest GPP in itself was very apparent and coherent, 
no consistent or significant relationship between nitrogen deposition and the drought response of 
forest GPP arose from our analysis. To conclude, nitrogen deposition is a clear driver of forest 
GPP. However, because of the differential response of forest types to drought and the limited 
variation in nitrogen deposition levels at the European FLUXNET sites, no consistent positive nor 
negative nitrogen deposition effects on the drought response of GPP were observed. 

6.3 Discussion and outlook  

Most of this thesis (Chapter 2, 3 and 4) was devoted to reducing the uncertainty in nitrogen 
deposition estimates through synergetic use of satellite observations and CTMs. In addition, the 
effect of nitrogen deposition on the drought response of gross primary production at European 
FLUXNET forest sites was studied (Chapter 5). Here, the results are discussed and suggestions for 
follow-up research are given.  

Uncertainties in modelled Nr fields   
The two most important sources of uncertainty in the deposition computation in CTMs are the 
input emissions and the process descriptions. The emissions used in CTMs are a source of 
substantial uncertainties (Reis et al., 2009; Behera et al., 2013). Due to the large spatiotemporal 
variability and the diverse nature of agricultural sources, the uncertainty of NH3 emissions is 
relatively high compared to other trace gases. The reported uncertainty of the European national 
annual total NH3 emissions is estimated to be at least around ±30 %, versus ±10 % for SO2 
emissions and ±20 % for NOx emissions (Kuenen et al., 2014, EMEP, 2016). Many counties, 
however, have limited research on their national emission inventory and the uncertainty can 
therefore be much larger. National emission inventories may for instance be incomplete and miss 
emissions from certain sources. In addition, emissions at a single point in space and time have a 
much larger uncertainty due to assumptions made in the spatio-temporal redistribution of the 
national emissions. Several studies have indicated an overall underestimation of both 
anthropogenic and natural NH3 emissions in the current inventories (e.g., see Dammers et al., 
2019). Globally, satellite-derived emissions of large agricultural and industrial NH3 point sources 
are for instance estimated to be ~2.5 times higher than the reported emissions (Dammers et al., 
2019).  

Satellite observations of NH3 concentrations from CrIS and IASI can help to improve the spatial 
distribution of the NH3 input emissions. They can for instance be used to detect missing NH3 point 
sources and to identify regions with large model-satellite discrepancies. In these regions, structural 
differences are likely attributed to under- or overestimations in NH3 emissions. The methods 
presented in Chapter 2 and 4 of this work involved identifying systematic errors in the NH3 
emissions using these satellite products. Data assimilation algorithms can correct NH3 emissions 
according to satellite observations within the uncertainty limits of a CTM. In Chapter 4 of this 
work, the NH3 emissions in LOTOS-EUROS were constrained by assimilation of CrIS-NH3 
observations using a Local Ensemble Transform Kalman Filter (LETKF) approach. Our results, 
however, illustrated that data assimilation algorithms similar to the LETKF alone cannot 
sufficiently correct for missing NH3 emission sources, given the current set of observations. This 
method proved to be mainly useful for refining existing NH3 patterns in regions where the spatial 
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distribution of the NH3 emissions is relatively well known, such as the Netherlands. For better 
results, a two-step approach with an initial scaling of the NH3 base emissions could be tested in 
areas with systematic under- or overestimations in modelled NH3 distributions. Another method 
would be to first identify missing or incorrect NH3 emission sources with source-fitting methods 
(like Van Damme et al., 2018, Dammers et al., 2019) and include those in the existing NH3 
emissions before data assimilation.   

Our results showed that the annual averages of the modelled and the observed NH3 concentrations 
and wet deposition in Europe agree fairly well in background situations, but show larger 
discrepancies in intensive agriculture areas (see Chapter 2 and 4). In western Europe (the 
Netherlands, Belgium and Germany), the spatial distribution of the NH3 concentrations observed 
by IASI and CrIS roughly coincide with the modelled concentrations when averaged over longer 
periods. However, these satellite observations point out several regions with large 
underestimations in modelled NH3 concentrations, likely due to missing NH3 emission sources. 
Moreover, in the majority of the regions with similar long-term spatial patterns, these satellite 
instruments observe higher NH3 concentrations. Here, too, there appears to be an underestimation 
in modelled NH3 emissions. Looking at the temporal distribution, the differences between the 
observed and modelled NH3 concentrations become even larger. In this aspect there is still a lot of 
room for improvement. For one, the assumed annual time factors of the modelled NH3 emissions 
seem to be incorrect. Our results for instance showed that the spring peak of agricultural NH3 
emissions is too steep in LOTOS-EUROS. For another, the NH3 time profiles in CTMs are 
typically static and spatially invariant. Chapter 4 illustrated that the temporal distribution of NH3 
emissions in CTMs can be improved using satellite observed NH3 concentrations. Because of the 
satellite footprint of the current NH3 observing instrument, however, this method can only be used 
when modelling at a relatively coarse spatial resolution. Also, it does not provide much insight 
into the time profiles of individual sources. Another way to improve the temporal distribution of 
NH3 emissions is the use of dynamic time profiles that are linked to different agricultural practices 
(see Ge et al., 2020). This would be especially advantageous for higher resolution modelling in 
CTMs. Moreover, detailed information from satellites can be utilized to refine bottom-up NH3 
emission inventories. Satellite observations could for instance potentially improve NH3 emissions 
by providing information about meteorological circumstances (e.g., temperature, wind speed, 
precipitation) or the soil conditions. Observations from recent satellite missions like Sentinel-2 
provide high-resolution land cover and crop type maps. These maps could for example be of use 
to CTMs to represent the surface or to estimate NH3 emissions related to certain agricultural 
practices (Ge et al., 2021, submitted). 

On the larger scale, the uncertainty in the emissions likely dominates the uncertainty in the 
modelled deposition. The total emissions of a certain trace gas on a country level are for example 
more or less equivalent to its deposition, particularly for large countries. Further away from source 
regions, or in regions with relatively good emission estimates, the uncertainty in the model process 
descriptions becomes increasingly important. For modelled deposition fields, this uncertainty 
largely stems from the used deposition schemes. The differences between NH3 deposition schemes 
in CTMs are large and the complexity is typically low compared to the current level of process 
understanding (Flechard et al., 2013). Several multi-model studies have for instance illustrated 
large discrepancies between deposition fields (e.g., Flechard et al., 2011, Colette et al., 2017; 
Vivanco et al., 2018), with differences in dry deposition fluxes as large as a factor 2-3 (Flechard 
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et al., 2011). The computed deposition velocities for NH3 may vary tremendously for certain land 
use categories, for instance for coniferous and mixed forests (Schrader and Brummer, 2014). In 
addition, the compensation point for NH3 is regularly overlooked and not implemented.  

Another source of uncertainty are the input parameters used in the deposition schemes, as was the 
focus of Chapter 3. Here, we illustrated that the modelled Nr deposition can already vary with up 
to ~30% as a result of using satellite-derived LAI and z0 input values. For land use specific fluxes, 
the spatial differences were even larger. Chapter 3 illustrated that satellite observations can be used 
for a more realistic surface representation in CTMs, which in turn could lead to better local and 
land use specific Nr deposition estimates. In addition to this, further detailing of deposition 
schemes such as DEPAC could significantly improve deposition estimates, especially for certain 
ecosystem- or land use types. The DEPAC module currently only includes 9 land use categories, 
while land cover classification maps (e.g., CORINE, ESA CCI) typically have many more. As a 
result, a lot of information is lost in the translation. An improved distinction between ecosystem 
types in deposition modelling would also be beneficial for studying the effects of Nr deposition on 
an ecosystem level, as described in Chapter 5. A combination of further detailing of deposition 
schemes and the integration of satellite-derived input parameters would add a lot of spatial and 
temporal variation to vegetation and surface characteristics in CTMs that is not yet captured at this 
time.  

To effectively utilize high resolution information from satellites and to further improve existing 
deposition schemes, however, more research is needed. Future research could focus on data-
assimilation of several satellite products at once. Furthermore, different types of observations, such 
as ground observations of NH3 concentrations or deposition measurements could be used in a data 
assimilation setting. In the end, when it comes to Nr, all processes in the nitrogen cascade are 
relevant and need to be better quantified. To this end, the alignment of atmospheric observations 
of different trace gases (e.g., NO2 and SO2 from TROPOMI) for simultaneous data assimilation in 
CTMs could also be helpful. As NH3 plays a major role in the formation of secondary aerosols, 
assimilation of aerosol satellite products (e.g., aerosol optical depth (AOD)) can also help to 
improve modelled Nr fields.  

Scarceness of available ground level observations   

The scarceness of available in-situ observations is a recurring topic in this thesis. The number of 
available in-situ observations is especially limited for NH3. One reason for this is that measuring 
NH3 is challenging due to the high reactivity and sticky nature of the molecule. Several field 
campaigns have shown that the existing instruments have a relatively large uncertainty and bias 
(e.g., von Bobrutzki et al., 2010, Puchalski et al., 2011). In addition to this, the cost for obtaining, 
maintaining and operating the instruments can be high, especially for flux measurements. Such 
measurements, however, are vital for the validation of existing models, and importantly, to 
improve our understanding of ongoing processes.   

To improve our understanding of the processes that govern the surface-atmosphere exchange of 
NH3 as well as other Nr components, continuous micrometeorological flux measurements are 
needed (e.g., using the eddy-covariance technique or other techniques with high temporal 
resolution). Even though flux measurement networks for non-reactive greenhouse gases are 
common and already operational on a continental scale, flux measurements of Nr components are 
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still largely experimental with limited campaign durations (e.g., Zöll et al., 2016; Schrader et al., 
2018, Moravek et al., 2019, Wintjen et al., 2020). A larger database of flux measurements could 
advance the development of surface-atmosphere exchange schemes and enable us to better validate 
existing inferential models. The high temporal resolution of eddy-covariance measurements (<1s) 
allows to identify and quantify processes taking place on short time scales, such as the bi-
directional exchange of NH3. In addition, simultaneous measurements of several Nr components 
at once would improve insight into other complex processes, e.g., chemistry, soil emissions or the 
quantification of direct Nr losses after field management.  

The monitoring of NH3 surface concentrations is relatively more common. However, from a global 
perspective, the number of available observations is still very limited, and the distribution is 
uneven. Even the Dutch network, one of the most extensive networks worldwide, cannot 
sufficiently capture the spatial and temporal variability in the NH3 concentrations. The 
observations from the LML (Landelijk Meetnet Luchtkwaliteit) network have the temporal 
resolution needed to accurately monitor the variability of NH3 concentrations in time. However, 
due to the small number of sites, this network is not representative of large regions. The MAN 
(Meetnet Ammoniak in Natuurgebieden) network, on the other hand, is very extended but misses 
much of the temporal variability of the NH3 concentration because of its monthly resolution. 
Moreover, the spatial representativeness of the available observations is usually limited. NH3 
concentrations are highly variable in space and time and the observed NH3 concentrations are 
therefore typically only representative for a relatively small, homogenous area. The MAN network, 
for example, only measures NH3 concentrations in nature areas. The Dutch landscape, however, is 
very heterogeneous and nature areas are relatively small and scattered. Further extension of the 
Dutch network, for example also more MAN sites outside nature areas in agricultural or in urban 
areas, could improve its overall representativeness.  

This would also lead to a fairer comparison to satellite observed or modelled NH3 concentrations. 
The footprints of the atmospheric sounders used in this thesis (CrIS ~14km, IASI ~ 12km) are 
relatively coarse and satellite observations therefore miss the local, sub-footprint variability in the 
NH3 concentrations, especially over heterogeneous terrain. The same applies to modelled 
concentrations. Here, too, the spatial resolution almost always exceeds the footprint of individual 
in-situ measurements by far.  

Deriving NH3 surface concentrations and fluxes from satellites   
In Chapter 2 of this work, a method to infer NH3 surface concentrations and dry deposition fluxes 
from IASI-NH3 satellite observations was presented. Over the past years, several studies have 
presented comparable methods for directly deriving dry deposition fluxes from satellite NH3 
concentrations, from either IASI or CrIS, using inferential modelling (e.g., Kharol et al., 2018, Lui 
et al., 2020). While a part of the uncertainty in this method is related to the uncertainty in the 
surface-atmosphere exchange parameterization, another part is due to the relatively low near-
surface sensitivity of the current satellite instruments.  Because of this, NH3 surface concentrations 
estimates from satellites often heavily rely on assumptions. Compared to the IASI instrument, the 
CrIS instrument has lower instrumental noise and increased vertical sensitivity for near-surface 
NH3. Still, the amount of independent information at the Earth’s surface is limited and the retrieved 
NH3 concentrations from the CrIS-NH3 product contain a lot of information from a-priori profiles. 
The a-priori profiles used in the NH3 retrieval algorithms often come either from CTMs or from 
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field campaigns. The vertical NH3 profiles from CTMs, however, may be inaccurate due to, among 
other things, uncertainties in the underlying NH3 emissions, the vertical mixing and horizontal 
transport of atmospheric NH3. Vertical profile assumptions based on field campaigns may, on the 
other hand, not be representative for other regions. In the future, more field campaigns aimed at 
measuring the vertical distribution of atmospheric NH3 should be organized to reduce this 
uncertainty.  

Harmonizing existing NH3 satellite products   

Further research should focus on the simultaneous use of existing NH3 satellite products, for 
instance IASI and CrIS. The two instruments have different overpass times (IASI in the morning, 
CrIS in the afternoon), making them ideal for complementary use. The IASI-NH3 and CrIS-NH3 
products, however, use different retrieval strategies for NH3. To maximize their scientific return, 
more research is needed to compare and harmonize the used NH3 satellite retrievals. The 
intercomparison of the NH3 satellite retrievals can be useful to map and potentially solve under- 
and overestimations in the existing NH3 products. Moreover, harmonization of the NH3 satellite 
products could help to minimize biases in retrieved NH3 concentrations. First, this would lead to 
an increased number of available observations and higher spatial coverage, which would be 
advantageous in data assimilation applications. Second, several harmonized observations at 
different times of the day could be used to study the diurnal cycle of atmospheric NH3. And lastly, 
it would lead to a longer, consistent time series of NH3 concentrations, which could be used for 
trend analysis. Harmonizing several NH3 satellite products could also be beneficial for methods 
presented in Chapter 4. The alignment of multiple datasets could for instance facilitate the fitting 
of local NH3 time factors and could allow for further refinement of NH3 emissions through data 
assimilation.   

Future developments in NH3 observing satellites  
In the future, satellite instruments and retrievals are expected to further improve, and more accurate 
and higher resolution information from satellites will become available. Enhanced identification 
of NH3 emission sources and emission strength with future satellites would be very helpful for 
improving the current NH3 emission inventories. Future satellite instruments are expected to have 
a lower instrumental noise and a higher spectral resolution, which would improve the sensitivity 
to near-surface NH3 and the overall accuracy of satellite-derived NH3-products. The next 
generation IASI instrument, the IASI-NG instrument on board of the Metop-SG satellite to be 
launched in 2022, will for example have half the spectral resolution and spectral noise of the 
current IASI instruments. Like the instrumental characteristics (i.e., lower instrumental noise and 
higher spectral resolution), the footprints of future satellites are also expected to improve. 
Atmospheric sounders aboard geostationary satellites could for instance take more frequent 
observations over smaller areas, which could enhance the identification of NH3 points sources and 
give more insight into the diurnal and seasonal cycle and atmospheric lifetime of NH3. An example 
is for instance the MTG-S satellite that will be launched in 2022. This satellite will be the first to 
carry a hyperspectral infrared sounder (IRS) into a geostationary orbit, providing NH3 observations 
at a high spatial (~4 by 4 km) and temporal (~hourly) resolution over Europe.   
  
Nitrogen deposition – drought interactions in forests    
In the previous chapter (Chapter 5), the influence of nitrogen deposition and drought on gross 
primary production in forest ecosystems was studied. Our results showed a differential response 
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of different forest types to drought, with no consistent positive nor negative nitrogen deposition 
effects. The main reasons for this were the large inter-site variability and the limited variation in 
nitrogen deposition levels at the European FLUXNET sites.  

The interactions between nitrogen deposition and drought are regulated by many complex 
interactions that are determined by local factors. For the quantification of these interactions, it is 
relevant to have the right data representing these local scales. This thesis shows that there are 
limitations to the nitrogen deposition estimates and therefore most attention was given to improve 
these in this thesis. Furthermore, drought indices and carbon exchange data also yield uncertainty. 
The effect of drought varies tremendously depending on the type of forest, climatic conditions and 
edaphic conditions, and because of this, the choice for a drought index was difficult. The 
Standardized Precipitation Evapotranspiration Index (SPEI) used in our study is a statistical 
measure that expresses drought in terms of a departure from long-term conditions. This drought 
index accounts for precipitation and evaporative demand and is suitable for comparisons across 
different climatic zones. Furthermore, the main advantages of this product are its global coverage, 
needed for eventual upscaling, and its flexible temporal scale, allowing us to account for variable 
drought durations. However, it does not account for soil moisture storage, which is why the soil 
volumetric water layer was introduced in our study. Before arriving at this choice, two other global 
drought indices that do include the influence of soil moisture storage, the Palmer Drought Severity 
Index (PDSI) and the self-calibrating Palmer Drought Severity Index (scPDSI), were tested. 
However, using these indices, we also saw a similar, differential response in the gross primary 
production. To shed more light on the influence of the type of forest, drought indices from water 
balance models that account for variations in physiological and stand properties could be used 
(e.g., relative extractable water (REW), ratio of actual to potential transpiration (AT/PT ratio)). 
These indices contain information about the surface or vegetation properties and would represent 
the water balance at each forest site more realistically. However, these types of indices are more 
site-specific and therefore less suitable when comparing the effect of drought across sites with 
varying meteorological conditions. Moreover, these indices are more difficult to compute for larger 
scales and therefore less suitable for upscaling.  

The gross primary production is studied as the response variable to drought in Chapter 5. The 
measurements at the FLUXNET sites represent the carbon exchange of the area surrounding the 
flux towers. The gross primary production therefore includes carbon uptake from trees, but also 
from other vegetation. Moreover, the gross primary production may also contain effects of other 
external factors that interact with drought stress, for instance insects and pathogens infestations, 
forest fires, species competition or forest management.  

Furthermore, to effectively isolate nitrogen deposition-drought interactions, a more extensive 
measurement network of forests with similar edaphic, physiological and climatic conditions is 
needed. More nitrogen addition experiments in managed forest or measurements in forests with 
strong, local nitrogen deposition gradients could for example help us to get more insight into 
nitrogen deposition – drought interactions. In addition, to fully understand the availability of Nr in 
specific ecosystems, more observations of Nr in plant and soil pools are needed. For instance, more 
observations of the Nr content in soils or leaves could help us to get a better grip of the accumulated 
Nr in different forest compartments and could give more insight into the historic nitrogen 
deposition levels a forest has received. 
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In the current study setup, there is quite a mismatch in spatial representativeness between the 
FLUXNET observations and the used drought and nitrogen deposition estimates. The flux 
footprints are in the order of tens to hundreds of meters (Burba, 2001), whereas the modelled 
nitrogen deposition fields have a spatial resolution of tens of kilometers. To represent the nitrogen 
deposition levels more accurately, local, high-resolution observations at the same locations as the 
FLUXNET sites are needed. Another possibility to overcome this would be to repeat our analysis 
with large-scale carbon exchange estimates, for example from FLUXCOM (Jung et al., 2020), 
instead.  
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6.4 Summary   

6.4.1 English summary   

The nitrogen cycle has been severely disturbed by human activity. Reactive nitrogen emissions 
have tremendously increased in the last century, leading to increased amounts of nitrogen 
deposition on natural ecosystems. Several studies have demonstrated the influence of nitrogen 
deposition on growth, and vegetation responses to drought in natural ecosystems. The coupling of 
nitrogen deposition to carbon exchange and drought, however, is currently hampered by the 
relatively large uncertainty of the nitrogen deposition estimates. With the scarceness of available 
observations, nitrogen deposition estimates usually come from models, such as chemical transport 
models. These models, however, are known to involve relatively large uncertainties stemming 
from, among other things, used parameterization and input data (e.g., emissions, land surface input 
parameters). Satellite observations may help to improve nitrogen deposition estimates from 
models. In this thesis, we aim to improve modelled nitrogen deposition estimates from the LOTOS-
EUROS chemical transport model by integration and assimilation of different types of satellite 
measurements. Several approaches to use atmospheric satellite observations of NH3 concentrations 
and satellite-derived land surface parameters (leaf-area-index, roughness length) for nitrogen 
deposition modelling are presented.  

In the first study, presented in Chapter 2, NH3 total column observations from the IASI satellite 
instrument are used in combination with information from LOTOS-EUROS to compute satellite-
derived NH3 surface concentration and dry deposition fields. The IASI-derived NH3 surface 
concentrations were used to identify regions with systematic over-, or underestimations in 
modelled NH3 concentrations, indicating potential errors in the current emission inventory for 
NH3. The comparison with available in-situ observations in Europe, however, showed no 
significant or consistent improvement in the IASI-derived concentrations compared to the 
originally modelled concentrations from LOTOS-EUROS. Here, our study illustrated that the 
application of this method might not be viable at this time, particularly due to the relatively low 
near-surface sensitivity of the current NH3 observing instruments and the uncertainty in surface-
atmosphere exchange schemes for NH3. 

In the second study, presented in Chapter 3, several satellite products were used to derive more 
realistic, dynamic input values for the roughness length (z0) and the leaf-area-index (LAI) values. 
The satellite-derived z0 values were validated with z0 values at FLUXNET sites, showing an 
overall improvement compared to the default values used in LOTOS-EUROS. The z0 and LAI 
values were integrated in LOTOS-EUROS for the computation of deposition fluxes, instead of the 
fixed and land-use specific default values. Compared to the default model runs, this led to distinct 
changes in the modelled total Nr deposition of up to ∼30 % and an overall shift from wet to dry 
deposition. Our results illustrated that the Nr deposition fields were especially sensitive to changes 
in the LAI input values. The changes for land use specific deposition fluxes were even greater, 
with particularly large changes in the modelled deposition fluxes over coniferous and deciduous 
forests.  

In the third study, presented in Chapter 4, CrIS-NH3 satellite observations were integrated into 
LOTOS-EUROS in two different ways. In the first method, the NH3 surface concentrations from 
CrIS were used to fit spatially variant NH3 emission time factors. This method proved to be 
especially useful in agricultural-intensive regions during spring, where it can be successfully used 
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to estimate the onset and duration of the NH3 spring peak. In the second method, the NH3 input 
emissions were refined in a top-down approach, using a Local Ensemble Transform Kalman Filter 
(LETKF) as data assimilation algorithm. The strength of this method primarily lies in fine-tuning 
existing NH3 emission patterns, and in that way improving the spatial distribution of the modelled 
NH3 fields. Both these methods, especially when combined, led to distinct improvements in the 
comparison with in-situ observations and showed strong potential to improve the NH3 input 
emissions, and herewith modelled nitrogen deposition. 

Lastly, in the fourth study, presented in Chapter 5, long-term, land-use specific, modelled nitrogen 
deposition estimates from LOTOS-EUROS were used to examine the interaction of nitrogen 
deposition and drought as co-stressors on gross primary production (GPP) at European FLUXNET 
forest sites. Our results showed that nitrogen deposition is a clear driver of GPP in forests. 
However, due to the differential response of various dominant forest types to drought and the 
limited variation in nitrogen deposition levels found at the FLUXNET sites, no consistent positive 
nor negative nitrogen deposition effects on the drought response of GPP could be isolated.  

6.4.2 Dutch summary  

De stikstofcyclus is ernstig verstoord door menselijk handelen. De afgelopen decennia zijn de 
emissies van reactief stikstof enorm toegenomen, wat heeft geleid tot meer stikstofdepositie op de 
natuur. Verschillende studies hebben aangetoond dat stikstofdepositie invloed heeft op 
vegetatiegroei, en de invloed van droogte hierop.  De koppeling van stikstofdepositie aan 
koolstofuitwisseling, specifiek tijdens droogte, wordt echter bemoeilijkt door de relatief hoge 
onzekerheid van de huidige stikstofdepositieschattingen. Doordat er weinig waarnemingen 
beschikbaar zijn, zijn stikstofdepositieschattingen meestal afkomstig van modellen, bijvoorbeeld 
chemische transport modellen. Deze modellen brengen echter de nodige onzekerheid met zich 
mee, die onder meer voortvloeit uit de gebruikte procesbeschrijvingen en invoergegevens 
(bijvoorbeeld gebruikte emissies of landoppervlakte gegevens). Satellietwaarnemingen kunnen 
wellicht gebruikt worden om de stikstofdepositieschattingen van modellen te verbeteren. In dit 
proefschrift proberen wij gemodelleerde stikstofdepositieschattingen van het LOTOS-EUROS 
chemische transportmodel te verbeteren door integratie en assimilatie van verschillende soorten 
satellietmetingen.  Wij presenteren verschillende manieren om gebruik te maken van atmosferische 
satellietwaarnemingen van ammoniakconcentraties en landoppervlaktegegevens van satellieten 
voor stikstofdepositiemodellering.  

In het eerste onderzoek, beschreven in Hoofdstuk 2, werden NH3 totale kolom waarnemingen van 
het IASI instrument gecombineerd met informatie van LOTOS-EUROS om satelliet afgeleide NH3 
grondconcentraties en droge depositievelden te bepalen. De IASI-afgeleide grondconcentraties 
werden vervolgens gebruikt om gebieden met systematische onder- of overschattingen in de 
gemodelleerde NH3 concentraties te identificeren, wat wijst op mogelijke fouten in de gebruikte 
emissie inputdatabase voor NH3. De vergelijking met beschikbare grondmetingen in Europa 
toonde echter aan dat er geen significante of consistente verbeteringen waren vergeleken met de 
oorspronkelijk gemodelleerde concentraties van LOTOS-EUROS. Ons onderzoek liet zien dat de 
toepassing van deze methode voor Europa op dit moment niet werkbaar is, voornamelijk door de 
relatief lage gevoeligheid van de huidige satellietinstrumenten voor NH3 op grondniveau en de 
onzekerheid in de oppervlakte-atmosfeer uitwisselingsschema’s voor NH3.  
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In het tweede onderzoek, beschreven in Hoofdstuk 3, werden verschillende satellietproducten 
gebruikt om realistische, dynamische invoerwaarden voor de ruwheidslengte (z0) en de 
bladoppervlakte-index (LAI) af te leiden. De satelliet afgeleide z0 en de LAI waarden werden 
gevalideerd met z0 waarden van FLUXNET locaties. Dit liet een algehele verbetering zien ten 
opzichte van de standaard invoerwaarden gebruikt in LOTOS-EUROS. De z0 en LAI waarden 
werden vervolgens geïntegreerd in LOTOS-EUROS voor de berekening van depositievelden. In 
vergelijking met de standaardversie van LOTOS-EUROS leidde dit tot veranderingen in de 
gemodelleerde stikstofdepositievelden van maximaal ~30% en een algehele verschuiving van natte 
naar droge depositie. Onze resultaten lieten zien dat de stikstofdepositie bijzonder gevoelig is voor 
veranderingen in LAI invoerwaarden. De veranderingen in landgebruikspecifieke depositievelden 
waren nog groter, met name boven naald- en loofbossen.  

In het derde onderzoek, gepresenteerd in Hoofdstuk 4, werden NH3 satelliet observaties van CrIS 
geïntegreerd in LOTOS-EUROS op twee verschillende manieren. In de eerste methode werden 
grondconcentraties van NH3 van CrIS gebruikt om ruimtelijke variërende NH3 emissietijdsfactoren 
te bepalen. Deze methode bleek vooral nuttig in regio’s met intensieve landbouw in het voorjaar, 
waar het gebruikt kan worden om het begin en de duur van de NH3 voorjaarsemissiepiek te 
schatten. In de tweede methode werden de NH3 invoeremissies aangepast aan de hand van een 
Local Ensemble Transform Kalman Filter. De kracht van deze methode ligt in het verfijnen van 
bestaande emissiepatronen, waarmee de ruimtelijke verdeling van de gemodelleerde NH3 velden 
verbeterd kan worden. De grootste verbetering in de vergelijking met gronddata was zichtbaar 
wanneer beide methoden gecombineerd werden.  

In het vierde onderzoek, beschreven in hoofdstuk 5, hebben wij tenslotte de interactie tussen 
stikstofdepositie en droogte op de productiviteit van Europese bossen onderzocht, gebruik 
makende van FLUXNET-locaties en landgebruik specifieke stikstofdepositieschattingen uit 
LOTOS-EUROS. Onze resultaten lieten een duidelijk verband zien tussen stikstofdepositie en 
gross primary production (GPP) in bossen. Onze analyse kon echter geen consistente positieve of 
negatieve stikstofeffecten in de reactie van de GPP op droogte isoleren door de gevarieerde reactie 
op droogte van verschillende boomsoorten en de beperkte variatie in stikstofdepositie bij de 
FLUXNET-boslocaties.   
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Supplementary materials for Chapter 3: Satellite-derived leaf area index 

and roughness length information for surface–atmosphere exchange 

modelling: a case study for reactive nitrogen deposition in north-western 

Europe using LOTOS-EUROS v2.0.  

 

S3.1 Derivation of z0 values from EC measurements   

We used the regression method (e.g. Graf et al., 2014. Chen et al., 2015) to compute z0 from several 
eddy covariance sites. A description of the methodology and the data processing is given in this 
section. The wind profile in the surface layer can be approximated by:  

       ln NOrR
O8

P =  K I(O)
I∗ + Ψ� NOrR

e P (Eq. S3.1)  

    
here, H is the measurement height, a is the displacement height, H= is the aerodynamic roughness 
length, ¹ is the Von-Karman constant (=0.4), |(H) is the average wind speed, |∗ is the friction 
velocity and Ψ� is the integrated universal momentum function, also known as the stability 
correction term. Ψ� is a function of f, the Monin-Obukhov length, which is defined as (e.g. 
Erisman and Duyzer, 1991):  

f =  − I∗y ØX�VÙ
KÚÛ  (Eq. S3.2) 

where ÜT is the air temperature, Ý the air density (= 1.2 kg m-3), Þßthe heat capacity at constant 

pressure (=1005 J kg-1 K-1), à the acceleration due to gravity, and á the sensible heat flux. Stability 
correction term Ψ� is in principle a non-linear function, however, for a certain stability range it 
can be approximated by a linear function. It is shown that for moderately stable conditions (0 < 
OrR

e  < 1) stability correction term Ψ� holds the following form: 

Ψ� NOrR
e P =  −â ∗ NOrR

e P (Eq. S3) 

where â is a constant. We consider a simple linear regression with offset parameter t and slope 
parameter z. If we assume that Ψ� is linear, we can rewrite Eq. S3.1 in the following form: 

K I(O)
I∗ = t + z NOrR

e P (Eq. S3.4) 

Now t provides an estimate of ln(H − a)/H= , and we can directly compute H= from (H −
a)/exp (t). We use observations from 2014 only, unless stated otherwise in Table 1. For forest 
we assume that a = (2/3) ∗ ℎ (Maurer et al., 2013), and we use the forest canopy height derived 
from GLAS. For short vegetation we assume that displacement height a is negligible, that is, a =
0 . Graf et al., 2014 illustrated that the linearity approximation of Ψ� is valid for small negative 
values of (H − a)/f , so we first select all points where -0.1 < (H − a)/f < 1. We filter out 
observation during rainfall and where |∗ < 0.15, as presented in Chen et al., 2015. We split our 
data into a group with stable conditions (f > 0) and with unstable conditions (f < 0). We assume 
that the H= is more or less constant over a period of 5 days. For each 5-day period we plot 
¹|(H)/|∗ against (H − a)/f and fit a simple line function using linear least-squares. The z0 values 
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are then computed from offset parameter t. We compute the mean, median, standard deviation 
and the range of the all computed z0 values in one year. If the computed z0 values for stable and 
unstable conditions in one 5-day period differ more than 50% from their arithmetic mean they are 
filtered out.  

 
Figure S3.1. Histogram of all positive MODIS NDVI values (left) and the forest canopy height derived from 

GLAS (right).  

 
Figure S3.2. Map of the updated z0 values for urban areas, with a zoom-in of the Ruhr-valley (right).  
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Figure S3.3. Seasonal variation of the MODIS-LAI at FLUXNET sites with different land use classifications. 

The black line represents the mean MODIS-LAI value per land use and the ranges represent the mean plus 

and minus the standard deviation. 

 
Figure S3.4. The total Nr deposition (kton) per country for each of the model runs, and the division into 

different Nr component. The colours depict the part of the total deposition each individual Nr component 

comprises. The numbers above the individual bars indicate the change in the total Nr deposition for each of 

the runs. 
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Figure S3.5. The absolute (top) and the relative (bottom) changes in monthly mean NH4
+ (a) and NO3

- (b) wet 

deposition and NH3 (c) and NO2 (d) surface concentrations w.r.t. the default model run induced by the inclusion 

of the MODIS-LAI and the updated z0 values. The dotted red line represents the corresponding observations 

as measured by the in-situ networks.  

Table S3.1. Correlation coefficient r, root-mean-square difference, slope and intercept of the different in-situ 

networks in comparison with the corresponding values from the different model runs.  

 Network Run ID r RMSD Slope Intercept 

NH4
+ wet deposition 

UBA 
n = 139 

LEdefault 0.38 0.30 0.75 0.03 
LEz0 0.38 0.30 0.74 0.03 
LELAI 0.38 0.31 0.77 0.02 

LEz0+LAI 0.38 0.31 0.76 0.02 

LMRe 
n = 7 

LEdefault 0.67 0.25 0.87 -0.01 

LEz0 0.67 0.25 0.87 -0.01 

LELAI 0.66 0.26 0.89 -0.03 

LEz0+LAI 0.66 0.25 0.89 -0.03 

NO3
- wet deposition 

UBA 
n = 173 

LEdefault 0.41 0.17 0.53 0.01 

LEz0 0.41 0.17 0.53 0.01 

LELAI 0.40 0.17 0.53 0.00 

LEz0+LAI 0.40 0.17 0.53 0.00 

LMRe 
n = 7 

LEdefault 0.78 0.15 0.60 -0.04 

LEz0 0.78 0.15 0.61 -0.04 

LELAI 0.78 0.15 0.61 -0.04 

LEz0+LAI 0.78 0.15 0.61 -0.04 

NH3 surface concentration 

MAN 
n = 239 

LEdefault 0.60 3.13 1.18 -1.17 

LEz0 0.60 3.15 1.19 -1.17 

LELAI 0.61 3.34 1.30 -1.62 

LEz0+LAI 0.61 3.35 1.31 -1.62 

EMEP 
n = 20 

LEdefault 0.81 1.38 1.08 -0.03 

LEz0 0.82 1.36 1.10 -0.07 

LELAI 0.81 1.45 1.15 -0.13 

LEz0+LAI 0.82 1.44 1.16 -0.16 

NO2 surface concentration 
Airbase 
n = 333 

LEdefault 0.75 8.83 0.78 -2.22 
LEz0 0.75 8.76 0.79 -2.41 
LELAI 0.75 9.14 0.74 -1.93 

LEz0+LAI 0.75 9.08 0.76 -2.09 



166 

 

Table S3.2. Pearson’s correlation coefficient and root-mean-square difference computed for stations located 

on specific land use classes. The stations are co-located with the CORINE/Smiatek land cover map used in 

LOTOS-EUROS, and then translated to DEPAC classes and grouped. Statistics are computed when at least 10 

sites per land use class were left.   

Land use type  Grass Arable land Coniferous 
forest 

Deciduous 
forest 

Urban 

   r RMSD r RMSD r RMSD r RMSD r RMSD 

NH4
+  U

B
A

 

 

n 19  74  72  43  96  

LEdefault 0.49 0.29 0.37 0.32 0.40 0.28 0.21 0.32 0.44 0.30 

LEz0 0.49 0.29 0.37 0.32 0.40 0.28 0.21 0.32 0.44 0.30 

LELAI 0.49 0.29 0.37 0.32 0.40 0.29 0.21 0.32 0.44 0.30 

LEz0+LAI 0.49 0.29 0.37 0.32 0.40 0.29 0.21 0.32 0.44 0.30 

NO3
-  U

B
A

 n 18  44  97  39  3  

LEdefault 0.45 0.14 0.54 0.13 0.43 0.18 0.27 0.18 - - 

LEz0 0.45 0.14 0.54 0.13 0.43 0.18 0.27 0.18 - - 

LELAI 0.45 0.14 0.52 0.14 0.42 0.18 0.26 0.18 - - 

LEz0+LAI 0.45 0.14 0.52 0.14 0.42 0.18 0.26 0.18 - - 

NH3  M
A

N
 

 

n 98  64  24  38  10  

LEdefault 0.61 3.25 0.65 3.09 0.60 2.89 0.49 3.33 0.65 2.92 

LEz0 0.62 3.25 0.65 3.08 0.59 2.95 0.49 3.42 0.66 2.84 

LELAI 0.61 3.49 0.66 3.40 0.62 3.06 0.50 3.43 0.66 2.93 

LEz0+LAI 0.62 3.50 0.66 3.38 0.61 3.12 0.50 3.50 0.67 2.83 

NO2  A
irbase 

 

n 23  86  33  24  166  

LEdefault 0.71 6.50 0.72 7.61 0.78 6.13 0.81 5.53 0.69 10.49 

LEz0 0.71 6.49 0.72 7.61 0.78 6.14 0.82 5.50 0.69 10.38 

LELAI 0.71 6.62 0.72 7.87 0.78 6.29 0.81 5.73 0.69 10.88 

LEz0+LAI 0.71 6.60 0.71 7.87 0.78 6.31 0.82 5.72 0.69 10.78 

 

Table S3.3. Comparison of the forest canopy heights at FLUXNET forest sites. Hmax is the maximum forest 

canopy height found in (Flechard et al., 2019). 

Site ID Hmax (m) (1) Hcanopy GLAS (m) 

BE-Bra 21 18 
BE-Vie 30 22 
DE-Hai 23 26 
DE-Tha 27 23 
NL-Loo 18 17 
CH-Lae 30 28 
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Supplementary materials for Chapter 4: Data assimilation of CrIS-NH3 

satellite observations for improving spatiotemporal NH3 distributions in 

LOTOS-EUROS. 

S4.1 Local Ensemble Transform Kalman Filter setting experiments 
  

Two experiments were performed to study the effect of the LETKF filter settings in more detail. 
In the first experiment homogeneous NH3 emission fields were used to study the possible emission 
adjustments that can be achieved by the LETKF. In this experiment, the NH3 base emissions at 
every grid cell were set to two times the mean NH3 emissions in the Netherlands. The NH3 time 
factors were kept time-invariant, i.e., set to 1 throughout the year. For different LETKF filter 
settings, the obtained emission perturbation factors β are shown in Fig. S4.22 and Fig. S4.23. The 
experiment shows that increasing temporal length scale τ, i.e., prolonging the time an emission 
update computed by the LETKF is kept in the model, leads to a larger distribution of computed β 
factors. Imposing more noise on the ensemble members, i.e., a σ value to 1 instead of 0.5, also 
leads to a larger distribution in β factors, as well as an overall increase in β factors. The average 
computed β factors illustrate those large-scale spatial patterns in NH3 concentrations, as observed 
by the CrIS instrument, can be resolved. The distribution of the obtained β factors is, except for 
March, very similar throughout the year. This illustrates that the LETKF is unable to resolve 
temporal patterns well without sensible initial inputs. In the second experiment the effect of 
temporal length scale τ is studied in more detail. In this experiment, our initial model setup was 
kept, but the temporal length scale is extended to τ = 10 days and τ = 14 days. The obtained β 
factors are shown in Fig. S4.24 and Fig. S4.25. The spatial pattern of the obtained β factors 
remained very similar in all model runs, however, the range in β factors increased with increasing 
τ. Moreover, as patterns of the CrIS-NH3 observations is followed more strongly with increasing 
τ values, the obtained spatial variation in β factors became more distinct.  

Figure S4.1. Locations of the wet-only samplers used in this study, plotted on top of the modelled mean NH4 

wet deposition in 2014 to 2018.  
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Figure S4.2. Example of the calculated scaling factors applied to correct for NH3 surface concentration to 

NH3 emission ratios in 2014.  

Figure S4.3. Retrieved (top) and simulated (bottom) NH3 total column per year.   
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Figure S4.4. The fitted spring peak parameters (μ1, σ1 and A1) per year.  

 
Figure S4.5. The mean NH3 total column over 2014 to 2018 from the (top left) default background run (xb) 

and the (top right) background run with CrIS-based NH3 time factors (xb,CrIS) and their (bottom left) absolute 

and (bottom right) relative difference.    

 
Figure S4.6. Scatter plots of the daily grid-averaged NH3 surface concentration (left), NH3 total column 

(center) and NHx deposition (right) colored per month. xb represents the default LOTOS-EUROS background 

run and xb,CrIS the LOTOS-EUROS background run with CrIS-based NH3 time factors. 
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Figure S4.7. Relative difference in mean NH3 surface concentrations (top), total column concentrations 

(center) and total NHx deposition (bottom) per year following the inclusion of the CrIS-based NH3 time factors 

in LOTOS-EUROS. xb represents the default LOTOS-EUROS background run and xb,CrIS the LOTOS-EUROS 

background run with CrIS-based NH3 time factors. 

Figure S4.8. The CrIS-based NH3 time factors at the hourly observation stations. 
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Figure S4.9. Mean NH3 surface concentration in 2014-2018 in the background runs xb and xb, CrIS and in 

analysis runs xa and xa,CrIS (top panels), as well as their absolute and relative difference (bottom panels).  

Figure S4.10. Mean NH3 total column concentration in 2014-2018 in the background runs xb and xb, CrIS and 

in analysis runs xa and xa,CrIS (top panels), as well as their absolute and relative difference (bottom panels). 

 
Figure S4.11. Scatter plots of the daily grid-averaged NH3 surface concentration (left) and NH3 total column 

concentration (right) in 2014-2018 from the background runs xb and xb, CrIS versus analysis runs xa and xa,CrIS 

in LOTOS-EUROS, colored per month.  
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Figure S4.12. Mean emission perturbation factors (β) per year for (top) LOTOS-EUROS runs with default 

NH3 emission time factors and (bottom) LOTOS-EUROS runs with CrIS-based NH3 time factors. 

Figure S4.13. Timeseries of the daily grid-averaged NH3 total column concentrations in the background and 

analysis runs, and their absolute difference. The top figure (blue) represents the default background (xb) and 

analysis run (xa). The bottom figure (green) the background (xb,CrIS) and analysis run (xa,CrIS) with the CrIS-

based NH3 time factors.  

 
Figure S4.14. Scatter plots of the daily grid-averaged amounts of dry (left) and wet (right) NHx deposition in 

2014-2018 from the background (xb and xb, CrIS) versus the analysis (xa and xa,CrIS) model runs in LOTOS-

EUROS, colored per month.  
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Figure S4.15. Mean NH3 surface concentrations (2014-2017) as observed by the Dutch MAN stations and the 

matching modelled values. The upper figures represent the matching mean NH3 surface concentrations from 

the default version of LOTOS-EUROS: xb the background run and xa the analysis run. The lower figures 

represent the matching values from the LOTOS-EUROS run with the CrIS-based NH3 time factors: xb,CrIS the 

background run and xa,CrIS the analysis run. 

 
Figure S4.16. Mean NH3 surface concentrations (2014-2018) as observed by the Belgium VMM stations and 

the matching modelled values. The upper figures represent the matching mean NH3 surface concentrations 

from the default version of LOTOS-EUROS: xb the background run and xa the analysis run. The lower figures 

represent the matching values from the LOTOS-EUROS run with the CrIS-based NH3 time factors: xb,CrIS the 

background run and xa,CrIS the analysis run. 
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Figure S4.17. Mean NH3 surface concentrations (2014-2018) as observed by the German passive sampler 

stations and the matching modelled values. The upper figures represent the matching mean NH3 surface 

concentrations from the default version of LOTOS-EUROS: xb the background run and xa the analysis run. The 

lower figures represent the matching values from the LOTOS-EUROS run with the CrIS-based NH3 time 

factors: xb,CrIS the background run and xa,CrIS the analysis run. 

 
Figure S4.18. Correlation coefficient r, root-mean-square error, differences in means, slope and intercept 

between the observed and modelled NH3 surface concentrations. The stations are sorted by increasing mean 

NH3 surface concentration. The colors of the bars represent the different background (xb and xb,CrIS) and 

analysis (xa and xa,CrIS) runs.  
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Figure S4.19. Monthly comparison of the observed and modelled NH3 surface concentrations per hourly 

observation network. From top to bottom, the Pearson’s correlation coefficient r, the root-mean-square error, 

the differences in means, the slope and the intercept are plotted. The purple lines represent the default version 

of LOTOS-EUROS (xb being the background run, xa the analysis run) and the green lines the version of LOTOS-

EUROS with the CrIS-based NH3 time factors (xb,CrIS the background run, xa,CrIS the analysis run). 

Figure S4.20. Example of the observed and modelled daily NH3 surface concentrations at LML stations 

Valthermond and Zegveld. xb represents the default LOTOS-EUROS background run and xb,CrIS the LOTOS-

EUROS background run with CrIS-based NH3 time factors. 
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Figure S4.21. Number of selected CrIS-NH3 observations per grid cell.  

 
Figure S4.22. Mean emission perturbation factors (β) from March to October 2014 for model runs with 

initially homogeneous NH3 emissions, using different local Ensemble Kalman filter settings.   

 
Figure S4.23. Distribution of emission perturbation factors (β) per month for model runs with initially 

homogeneous NH3 emissions, using different local Ensemble Transform Kalman filter settings.   
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Figure S4.24. Mean emission perturbation factors (β) in 2014 for model runs with default NH3 emissions with 

varying temporal correlation length τ values. 

 
Figure S4.25. Distribution of emission perturbation factors (β) per month for model runs with default NH3 

emissions, using different values for temporal correlation length τ.   
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Supplementary materials for Chapter 5: Nitrogen deposition shows no 

consistent negative nor positive effect on the response of forest productivity 

to drought across European FLUXNET forest sites. 

 
Figure S5.1. Modelled NOy and NHx deposition at each FLUXNET forest sites.  

 
Figure S5.2. Boxplots of all monthly δGPP1,2 values within the 10th percentile of the 1-, 3-, 6- and 12- monthly 

SPEI values, respectively, at each European FLUXNET forest site.  The values in purple represent the monthly 

deviations in GPP with respect to the mean GPP cycle. The red values represent he residuals of the multi 

polynomial regression.      
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Figure S5.3. Most severe negative response in δGPP1 (black outline) and δGPP2 (red outline) for each group 

of sites with the same dominant forest type, plotted against the mean N deposition (Ndep), mean annual 

temperature (MAT), mean annual precipitation (MAP), the forest age and the sand and clay content. The 

minimum δGPP1,2 is plotted as the fraction of the monthly mean GPP at each site, and represents the most 

negative δGPP1,2 out of the values computed with 1-, 3-, 6- and 12- monthly SPEI values. The symbols represent 

the dominant forest types at each site.   

 
Figure S5.4. The mean negative response of δGPP1 (black outline) and δGPP2 (red outline) per drought event 

for each group of sites with the same dominant forest type, plotted versus the amount of N deposition (Ndep), 

the mean annual temperature (MAT), the mean annual precipitation (MAP), forest age and sand and clay 

content. The response per drought event is computed by summing all negative δGPP1,2 and then dividing that 

by the number of drought events per SPEI index (1-, 3-, 6- and 12- monthly). The gray lines indicate the spread 

in outcomes using different SPEI indices. The symbols represent the dominant forest types at each site.   
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Figure S5.5. Timeseries of the daily and monthly summed variations in GPP (δGPP1) with respect to the mean 

GPP cycle at all FLUXNET forest sites with Pinus ssp. as dominant forest type. Years with less than 200 full 

days of observations are filtered out. 
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Table S5.1. FLUXNET2015 forest sites used in this study. 1Plant functional type. ENF = evergreen needle leaf 

forest, EBF = evergreen broadleaf forest, DBF = deciduous broadleaf forest, MF = mixed forest.  2Köppen-

Geiger climate classification. Cfa = Warm temperate fully humid with hot summer, Cfb = Warm temperate 

fully humid with warm summer, Csa = Warm temperate with dry, hot summer, Dfb = Snow fully humid warm 

summer, Dfc = Snow fully humid cool summer, ET = Polar tundra. 

Site id  Location  PFT1 Dominant 

species 

Forest 

age 

Climate 

zone2 

FLUXNET2015 DOIs  

DE-Obe Oberbärenburg, 

Germany 

ENF Picea abies - Cfb 10.18140/FLX/1440151 

DE-Tha Tharandt, Germany ENF Picea abies 120 Cfb 10.18140/FLX/1440152 

CH-Dav Davos, Switzerland ENF Picea abies 240 – 

400 

ET 10.18140/FLX/1440132 

IT-Ren Renon, Italy ENF Picea abies 111 Dfc 10.18140/FLX/1440173 

RU-Fyo Fyodorovskoye, 

Russia 

ENF Picea abies 190 Dfb 10.18140/FLX/1440183 

BE-Bra Brasschaat, Belgium MF Pinus sylvestris 82 Cfb 10.18140/FLX/1440128 

NL-Loo  Loobos, the 

Netherlands  

ENF Pinus sylvestris 101 Cfb 10.18140/FLX/1440178 

FI-Hyy  Hyytiälä, Finland ENF Pinus sylvestris 48 Dfc 10.18140/FLX/1440158 

FI-Sod Sodankylä, Finland ENF Pinus sylvestris 100 Dfc 10.18140/FLX/1440160 

FR-LBr Le Bray, France ENF Pinus pinaster 41 Cfb 10.18140/FLX/1440163 

IT-SRo San Rossore, Italy ENF Pinus pinaster 61 Csa 10.18140/FLX/1440176 

FR-Fon  Fontainebleau, France DBF Quercus robur, 

Quercus 

petraea 

111 Cfb 10.18140/FLX/1440161 

FR-Pue Puechabon, France EBF Quercus ilex 69 Csa 10.18140/FLX/1440164 

IT-Cpz Castelporziano, Italy EBF Quercus ilex - Csa 10.18140/FLX/1440168 

IT-Ro1 Roccarespampani, 

Italy 

DBF Quercus cerris 21 Csa 10.18140/FLX/1440174 

IT-Ro2 Roccarespampani, 

Italy 

DBF Quercus cerris 21 Csa 10.18140/FLX/1440175 

BE-Vie Vielsalm, Belgium MF Fagus 

sylvatica, 

Pseudotsuga 

menziessii 

86 Cfb 10.18140/FLX/1440130 

CH-Lae Laegern, Switzerland MF Fagus 

sylvatica, Picea 

abies 

111 Cfb 10.18140/FLX/1440134 

DE-Hai  Hainich, Germany DBF Fagus sylvatica 142 Cfb 10.18140/FLX/1440148 

DE-Lnf  Leinefelde, Germany DBF Fagus sylvatica 113 Cfb 10.18140/FLX/1440150 

DK-Sor Sorø, Denmark DBF Fagus sylvatica 91 Cfb 10.18140/FLX/1440155 

IT-Col Collelongo, Italy DBF Fagus sylvatica 120 Cfa 10.18140/FLX/1440167 
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Table S5.2. Additional information per site.  

Site id Location Start End Latitude Longitude 
Elevation 

(m) 

MAT 

(⁰C) 

MAP 

(mm) 

DE-Obe 
Oberbärenburg, 

Germany 
2008 2014 50.78666 13.72129 734 5.5 996 

DE-Tha 
Tharandt, 

Germany 
1996 2014 50.96235 13.56516 385 8.2 843 

CH-Dav 
Davos, 

Switzerland 
1997 2014 46.81533 9.85591 1639 2.8 1062 

IT-Ren Renon, Italy 1998 2013 46.58686 11.43369 1730 4.7 809.3 

RU-Fyo 
Fyodorovskoye, 

Russia 
1998 2014 56.46153 32.92208 265 3.9 711 

BE-Bra 
Brasschaat, 

Belgium 
1996 2014 51.30761 4.51984 16 9.8 750 

NL-Loo 
Loobos, the 

Netherlands 
1996 2014 52.16658 5.74356 25 9.8 786 

FI-Hyy Hyytiälä, Finland 1996 2014 61.84741 24.29477 181 3.8 709 

FI-Sod 
Sodankylä, 

Finland 
2001 2014 67.36239 26.63859 180 -1 500 

FR-LBr Le Bray, France 1996 2008 44.71711 -0.7693 61 13.6 900 

IT-SRo San Rossore, Italy 1999 2012 43.72786 10.28444 6 14.2 920 

FR-Fon 
Fontainebleau, 

France 
2005 2014 48.47636 2.7801 103 10.2 720 

FR-Pue 
Puechabon, 

France 
2000 2014 43.7413 3.5957 270 13.5 883 

IT-Cpz 
Castelporziano, 

Italy 
1997 2009 41.70525 12.37611 68 15.6 780 

IT-Ro1 
Roccarespampani, 

Italy 
2000 2008 42.40812 11.93001 235 15.15 876.2 

IT-Ro2 
Roccarespampani, 

Italy 
2002 2012 42.39026 11.92093 160 15.15 876.2 

BE-Vie 
Vielsalm, 

Belgium 
1996 2014 50.30496 5.99808 493 7.8 1062 

CH-Lae 
Laegern, 

Switzerland 
2004 2014 47.47808 8.3650 689 8.3 1100 

DE-Hai Hainich, Germany 2000 2012 51.07917 10.4530 430 8.3 720 

DE-Lnf 
Leinefelde, 

Germany 
2002 2012 51.32822 10.3678 451 6.96 894.6 

DK-Sor Sorø, Denmark 1996 2014 55.48587 11.64464 40 8.2 660 

IT-Col Collelongo, Italy 1996 2014 41.84936 13.58814 1560 6.5 1180 
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Table S5.3. Evaluation of the polynomial multi regression model at each FLUXNET forest site. The units of 

the root-mean-squared deviation (RMSD) and the mean absolute deviation (MAD) are given in gC m-1 day-1.  

 

All year Spring Summer 
 

RMS
D 

MAD r slope RMSD MAD r slope RMSD MAD r slope 

DE-Obe 1.38 1.03 0.95 0.94 1.24 0.98 0.93 0.91 1.76 1.31 0.84 0.85 
DE-Tha 1.34 1.01 0.95 0.94 1.44 1.1 0.90 0.91 1.70 1.33 0.78 0.83 
CH-Dav 1.45 1.11 0.79 0.79 1.38 1.07 0.75 0.75 1.69 1.3 0.44 0.56 
IT-Ren 1.47 1.13 0.88 0.87 1.44 1.14 0.84 0.82 1.67 1.29 0.63 0.63 
RU-Fyo 1.60 1.17 0.91 0.91 1.37 1.05 0.86 0.86 2.11 1.66 0.67 0.72 
BE-Bra 1.08 0.80 0.94 0.94 1.07 0.82 0.9 0.89 1.38 1.04 0.82 0.89 
NL-Loo 0.98 0.75 0.95 0.95 1.09 0.83 0.87 0.85 1.18 0.92 0.8 0.83 
FI-Hyy 0.90 0.68 0.96 0.96 0.82 0.63 0.92 0.91 1.13 0.9 0.84 0.92 
FI-Sod 0.83 0.60 0.93 0.92 0.57 0.44 0.89 0.87 1.09 0.85 0.72 0.76 
FR-LBr 1.35 1.02 0.89 0.89 1.25 0.95 0.84 0.82 1.66 1.33 0.81 0.82 
IT-SRo 1.44 1.06 0.86 0.86 1.53 1.14 0.81 0.8 1.87 1.39 0.7 0.65 
FR-Fon 1.64 1.21 0.94 0.94 1.54 1.11 0.94 0.92 2.06 1.61 0.67 0.86 
FR-Pue 0.85 0.65 0.90 0.90 0.85 0.68 0.87 0.86 1.07 0.81 0.89 0.86 
IT-Cpz 1.31 0.99 0.82 0.82 1.31 0.98 0.71 0.70 1.65 1.28 0.66 0.63 
IT-Ro1 1.28 0.93 0.93 0.93 1.40 1.04 0.95 0.85 1.55 1.19 0.89 0.93 
IT-Ro2 1.38 1.00 0.94 0.94 1.45 1.02 0.96 0.88 1.61 1.24 0.88 0.94 
BE-Vie 1.34 0.99 0.94 0.93 1.38 1.05 0.87 0.87 1.72 1.35 0.74 0.85 
CH-Lae 2.15 1.61 0.84 0.84 2.15 1.65 0.79 0.76 2.33 1.79 0.64 0.74 
DE-Hai 1.44 1.03 0.96 0.95 1.49 1.02 0.94 1.06 1.70 1.34 0.82 0.96 
DE-Lnf 1.63 1.2 0.95 0.94 1.59 1.15 0.92 0.95 2.03 1.64 0.77 0.9 
DK-Sor 1.79 1.27 0.95 0.94 1.76 1.21 0.94 0.94 2.46 1.97 0.77 0.88 
IT-Col 1.74 1.27 0.93 0.92 1.59 1.07 0.91 0.93 2.19 1.74 0.62 0.83 
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