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INTRODUCTION 

Carbon dots (C dots) are the youngest member of the 

nanomaterial family with quasi-zero dimension and size 

regime of less than 10 nm. These novel carbon nano-

materials have attracted much attention due to their 

good optical stability, excellent water solubility, low tox-

icity, biocompatibility, easy surface modification and 

functionalization (Zhi et al., 2018; Dias et al., 2019). 

These unique characteristics allow the carbon dots to 

be extensively used in biosensing, in-vitro and in-vivo 

bioimaging, photocatalytic sensing, solar energy har-

vesting, food safety, drug-gene delivery system, explo-

sive detection and environmental remediation and 

Abstract 

Coconut shell is one of the major agro-by products vis-a-vis agro-waste generated by coconut processing units. At present, 

Coconut shells are largely utilized as feed material for thermal power conversion by various allied industrial sectors, which is a 

highly energy inefficient and ecologically unfriendly process. The present study aimed to generate activated carbon dots/ carbon 

nanomaterials with a wide range of potential applications through a relatively less energy dependant hydrothermal carbonization 

process. Hydrothermal carbonization is a one-step, simple, low cost and environmental friendly approach to obtain carbon dots. 

The findings demonstrate that coconut shells when subjected to hydrothermal carbonization process at 250ᵒC for 6 h produced 

uniform-sized, stable, negatively charged and amorphous forms of carbon dots. Characterization of carbon dots using  

High-Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM), Selected Area Electron 
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Teller (BET) Analyzer, Elemental Dispersive X-ray (EDX) analyzer and Fourier Transform Infrared Spectroscopy (FTIR) had 

conclusively confirmed the versatility of the carbon dots generation process and were able to achieve stable 2 nm-sized, spheri-

cal shaped carbon dots with numerous downstream applications. The study will help the conversion of agro-waste coconut 

shells into useful bio-based fluorescent carbon dots. 
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monitoring. Hydrothermal carbonization is a thermo-

chemical and bottom up process that converts raw bio-

mass into value-added products in the temperature re-

gime of 150 – 350 °C which is much lower than pyroly-

sis (450 –550 °C) and gasification (900–1200 °C) tem-

perature (Liu et al., 2010). Thus, the hydrothermal car-

bonization process has a great scope for synthesizing 

carbon dots from a wide range of biomasses (Sharma 

et al., 2019). Carbon dots  have been prepared with 

different biomass precursors like lemon juice (Gharat et 

al., 2019), Bee pollens (Zhang et al., 2015), coffee 

grounds (Crista et al., 2020), cocoon silk (Wu et al., 

2013), papaya (Kasibabu et al., 2015), peach gum (Lin 

et al., 2019), crab shell (Yao et al., 2017), cow manure 

(Horst et al., 2021), sugarcane juice (Mehta et al., 

2014), red cabbage (Sharma et al., 2020), tea waste 

(Chen et al., 2019), water chestnut and onion (Hu et al., 

2017), Eutrophic algal blooms (Ramanan et al., 2016), 

Lactobacillus plantarum (Lin et al., 2017) and orange 

juice (Sahu et al., 2012). Although few studies have 

attempted to explore the possibilities of deriving C dot 

from coconut shell, this present study focused on opti-

mising the parameters to obtain a stable and higher 

yield of C dots.  

Coconut shell is an agricultural residue that accounts 

for around 85% of the weight of the fruit (Ayrilmis et al., 

2011) and has an average composition of 33.30% lig-

nin, 30.58% cellulose, 26.70%,  hemicellulose, 8.86% 

water and 0.56% ash (Arena et al., 2016). Since cellu-

lose and hemicellulose material are requisites for the 

synthesis of carbon dots, according to the “one-stone-

two-birds” strategy, hydrothermal carbonization process 

is a green, economic, one-pot method for synthesizing 

C-dots. With this background the present study aimed 

to synthesize biomass-derived carbon dots from coco-

nut shells using a hydrothermal reactor by optimizing 

parameters besides characterizing to understand the 

morphology, functional group, stability, surface charge 

and optical properties. 

MATERIALS AND METHODS 

Coconut shells were collected from the coconut residue 

processing unit located at Pollachi in Tamil Nadu, India. 

The coconut shells free from coconut coir were washed, 

air dried and ground to a fine powder using impact pul-

veriser and sieved under British Standard Sieve (BSS) 

200 (75 micron mesh) to obtain the uniform-sized parti-

cles and stored in  airtight plastic bags until use. Dis-

tilled water was used throughout the experiments. A 

hydrothermal reactor capacity of 120 ml was used for 

the synthesis of carbon dots. 

Synthesis of carbon dots 

Carbon dots were prepared by hydrothermal treatment 

of powdered coconut shells. In a typical synthesis, 3g 

of the powdered sample was added into 75 ml of dis-

tilled water in the ratio of 1: 25. The mixture was then 

transferred into a 120 ml steel-lined reactor and heated 

at 250 °C for 6 h. The Carbon dots were collected by 

removing larger particles through centrifugation at 

10,000 rpm for 20 min. Then it was filtered using 0.22 

μm syringe filter to remove larger micron particles and 

the pale yellow solution was dried under a hot air oven 

for 48 h and re-dispersed in distilled water at a concen-

tration of 1mg/ ml for further characterization. 

Scanning Electron Microscopy (SEM) 

The morphology of the sample was analyzed by using 

Scanning Electron Microscope (FEI, Quanta 250). For 

analysis, 1 mg of sample was dispersed in 10 ml of 

distilled water to prepare a suspension solution. A drop 

of the suspension was mounted on the carbon tape 

using a micropipette and allowed to air dry before imag-

ing at 20000X magnification. 

Energy Dispersive X-Ray Spectroscopy (EDAX)  

The chemical composition of a sample was recorded 

on Energy Dispersive X-Ray Spectroscopy in conjunc-

tion with Scanning Electron Microscopy. The beam of 

electron with energy 10-20 keV was allowed to strike 

the conducting sample surface causing X- rays to emit 

from the material and emitted X- rays depend on the 

sample material under examination (Titus et al., 2019). 

High Resolution -Transmission Electron Micro-

scope (HR-TEM)  

The sizes of the carbon dots were measured under 

High-Resolution Transmission Electron Microscopy 

with 200 kV. The particle sizes were statistically meas-

ured using image J software. For analysis, 1 mg of 

sample was dispersed in 1ml of distilled water and 

dropped on to the copper grid using a micropipette. 

Then, it was allowed to air dry and placed in sample 

holder for imaging by following the protocol outlined in 

(Chunduri et al., 2017). 

Selected Area Electron Diffraction (SAED) 

The crystal structure of the material was determined by 

SAED which is performed inside Transmission Electron 

Microscope. When the beam of the electron was 

passed through a sample, its crystal lattice acted as a 

diffraction grating and the electrons were scattered and 

resulted in a diffraction pattern (Zhou and Thomson, 

2009). The obtained diffraction pattern was confirmed 

with XRD result. 

Zeta potential 

The zeta potential measurement is related to the surface 

charge of a solid phase in contact with the liquid medium. 
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The measures of dispersion stability were measured 

using the Nano -Particle Size Analyzer (Model: HORI-

BA-SZ-100), in which the zeta potential was measured 

between -200 mV to +200 mV.  

Brunauer–Emmett-Teller (BET) analyzer 

Prior to assessment of surface area, pore size and pore 

volume of carbon dots, carbon dots were subjected to 

degassing procedure for 3 hours at 2000C in order to 

remove undesirable vapors and gases in the samples. 

Once the degassing was completed, the sample cell 

was transferred to the analysis port. The interaction 

between the sample surface and adsorbent (Nitrogen) 

occurs at the sample analysis port and the surface ar-

ea, pore size and pore volume of the samples were 

measured and documented using  BET Quantachrome 

TouchWin™ version 1.22. 

Fourier Transform Infrared Spectroscopy (FTIR) 

The functional group as well as chemical bonding of 

carbon dots, was recorded by Fourier- Transform Infra-

red (FTIR) using Jasco Model: R- 3000-QE. A pinch of 

the sample was placed on the sample port and Infrared 

radiation of about 10,000–100cm−1 is passed through 

the sample and part of the radiation is absorbed and 

some pass through the sample. The sample converts 

the absorbed radiation to vibrational or rotational ener-

gy. The detector detects the resultant signal generally 

from 4000 to 400 cm−1 which is the molecular finger-

print of the sample. The data obtained were plotted 

using ORIGIN Ver.8.5. 

X- Ray Diffraction (XRD)  

The nature of the powder materials was recorded on a 

powder X-Ray Diffractometer (XRD) Using Shimadzu, 

Model: XRD 600 using Cu Kα radiation (λ = 1.54Å), 

monochromator, 40 Kv current with scan speed of 

10000 deg/min and scan range between 1,00,000- 

9,00,000 degree Which is rapid and non-destructive 

analytical technique. The powder samples were placed 

on the sample holders and then subjected for analysis 

and data obtained were plotted using ORIGIN Ver.8.5. 

UV- Visible Spectroscopy 

The optical properties were determined by UV-Vis ab-

sorption spectrum using Specord 210 plus. The sample 

was filled in a quartz cuvette and used for absorption 

measurements in the UV range transparent to the 

wavelengths above 190 nm. The wavelength of the 

sample is determined by the sample’s maximum ab-

sorption level (Skoog et al., 2017). The data obtained 

were plotted using ORIGIN Ver.8.5.  

RESULTS AND DISCUSSION 

Size distribution and morphology 

In this study, the reaction time of the carbonization pro-

cess was optimized for 6 hour duration as it produced 

stable carbon dots within the size less than 10 nm 

compared to 2h and 4h reaction time. The carbon dots 

obtained via hydrothermal carbonization of coconut 

shell powder at 250°C for 6 h followed by centrifugation 

and filtration were subjected to characterization. The 

SEM image of the carbon dots showed the particles 

are spherical, uniform in distribution (Fig.1 A and Fig 1 

B). These morphological results are in line with the 

observations of Kang et al. (2020), who reported the 

synthesis of carbon dots from graphite rods through the 

electrolysis method and found that the carbon dot parti-

cles were spherical and uniform in distribution. In addi-

Fig.1 A. SEM image showing the carbonization of carbon 

dots 

Fig.1 B. SEM image showing the carbon particles at  20 

μm resolution 
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tion, Kang et al. (2020) reported that XRD pattern anal-

ysis of carbon dots synthesized by electrolysis method 

exhibited strong agglomeration effect, which is a poten-

tial deterrent in the application point of view of carbon 

dots and highly limits its usability. In contrast, the car-

bon dot synthesized by the hydrothermal carbonization 

in the current study was relatively stable and did not 

exhibit agglomeration effect. The HR-TEM image 

showed that the synthesized Carbon dots from coconut 

shell were spherical and monodisperse with narrow 

size distribution around 2nm (Fig. 2 A and Fig. 2 B) and 

results are consistent with the reports of Yuan et al. 

(2015), who reported that the hydrothermal synthesis of 

carbon dots from wheat straw and found that synthe-

sized carbon dots were less than 2nm.  The zeta poten-

tial of carbon dots synthesized at 250°C for 2 h, 4 h 

showed less than -20mV, confirming that the particles 

were no longer stable, whereas carbon dots synthe-

sized at 250°C for 6 h recorded -32 mV indicated that 

these are stable in nature (Fig. 3). The negative sign 

indicated the charge might be due to various carboxyl, 

carbonyl and hydroxyl groups present on the surface of 

the carbon dots. These observations coincide with our 

FT-IR results. The wavelength of the carbon dots 

showed the absorbance at 280 nm attributed with the n

–π* transition of the C=O band π–π* transitions of the 

C=C band and the formation of carbon dots were con-

firmed by pale yellow solution in day light and bright blue 

emission under UV illumination as (365 nm) shown in Fig. 

4. These UV-Vis results are consistent with the observa-

tions of Nguyen et al. (2020), who reported the hydro-

thermal synthesis of carbon dots from banana peels 

and found that the carbon dots exhibited the absorb-

ance peak at 280 nm which is attributed with the n–π* 

Fig. 2 A. HR-TEM image showing the  carbon dots at 10 

nm resolution  

Fig.2 B. HR-TEM image showing the  carbon dots at 2nm 

resolution  

Fig. 3. Zeta potential graph showing the stability of carbon 

dots at – 32 mV  

Fig. 4. UV- Vis spectrum of carbon dots showing the ab-

sorption peak at 280 nm. Inset: Photograph of the ob-

tained Carbon dots solution under irradiation of day light 

(left) and 365 nm UV light (right)  
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transition of the C=O band π–π* transitions of the C=C 

band. Further, they implored the dual advantage of the 

generation of carbon dots and activated carbon. 

Chemical nature of the carbon dots 

The highest peak in EDAX showed the presence of 

carbon, oxygen followed by silicon and potassium with 

75.42, 24.18, 00.11, 00.29 weight percentages as pre-

sented in Fig. 5.and Table 1. The XRD spectrum (Fig. 

6) confirmed that the synthesized carbon dots were 

amorphous in nature. The Selected Area Electron Dif-

fraction (SAED) pattern of carbon dots showed diffuse 

rings (Fig. 7) and it was consistent with the above XRD 

data. Such results corroborate with the findings of 

Shaikh et al. (2019), who reported that the hydrother-

mal synthesis of carbon dots from Citrus limetta and 

showed that the carbon dot particles were amorphous 

in nature. The FTIR spectra at a strong peak 3435 cm-1 

showed symmetrical and asymmetrical stretching  

of -OH and N-H. The peak at 1647 cm-1 corresponds to 

the functional group –COOH. The peak at 1380 cm−1 

indicates C–O–C asymmetric stretch or C–H bending 

arising from a methyl functional group. The aromatic 

plane C–H bending corresponding to peak around 900–

669 cm−1 is shown in the Fig. 8. The FTIR datasets 

generated in the current study are in line with the da-

taset of Shaikh et.al. (2019), who reported a similar FT-

IR spectra profile of strong peak at 3435 cm-1, symmet-

rical and asymmetrical stretching pattern of functional 

groups in carbon dots synthesized from Citrus limetta 

by hydrothermal method. BET results showed that the 

surface area of carbon dots produced from the shell 

was 25.483 m²/g. The total pore volume of carbon dots 

was found to be 0.0085119 cc/g and the average pore 

diameter was found to be 0.66805 nm. Here the pore 

diameter represented the intervoid spaces between the 

carbon dots and the absolute isotherm result showed 

that the carbon dots were nonporous material (Cejka 

Fig. 5. EDAX graph showing the elemental composition of 

carbon dots  

Fig.6. XRD spectra showing the amorphous nature of 

carbon dots  

Fig. 7. SAED pattern confirming the amorphous nature of 

carbon dots  

Fig. 8. FTIR spectra showing the chemical bonds of carbon 

dots  
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and Mintova, 2007). Overall, in the hydrothermal car-

bonization reaction, the hydronium ions are generated, 

leading to the hydrolysis of carbohydrates. Sucrose 

undergoes hydrolysis to form glucose and fructose and 

the starch forms maltose, glucose and fructose (Funke 

and Ziegler, 2010). The glucose and fructose decom-

pose to form organic acids, which catalyze the hydroly-

sis of maltose to monosaccharide that undergo dehy-

dration and fragmentation (ring opens and C–C bond 

breaks), which results in the soluble products. They 

undergo intermolecular dehydration and aldol conden-

sation leading to polymerization. These polymers un-

dergo aromatization to form C=O groups (Jain et al. 

2016) and lead to the formation of activated carbon and 

carbon dots. Interestingly, these reactions primarily 

depend upon the feed and go in a parallel manner ra-

ther than the consecutive reaction. Thus, hydrothermal 

carbonization method is widely recognized as sustaina-

ble, cost-effective, environmental friendly and facile 

technology for the synthesis of carbon dots. 

Conclusion 

Numerous research initiatives have gained importance 

to develop low-cost, high volume, stable carbon dots 

from waste materials. The hydrothermal approach is by 

far a relatively energy-efficient process that yields sta-

ble carbon dots within the expected size range of < 10 

nm. Further, findings from our study conclusively 

proved that coconut shell powder could serve as an 

excellent precursor for synthesising stable carbon dots. 

In addition, the process of carbon dots synthesis using 

coconut shells by hydrothermal carbonization also re-

sulted in the generation of a facile, costless and envi-

ronmental-friendly hydrochar, an important and widely 

used adsorbent for pollution remediation. XRD results 

in the current study revealed that synthesized carbon 

dots were amorphous and in good agreement with the 

SAED pattern. The carbon dots exhibited blue fluores-

cence, soluble in water and were found to have an av-

erage size of 2nm. Besides, the zeta potential meas-

urements showed that these novel carbon nanomateri-

als were stable with abundant hydroxyl group on its 

surface that made them amenable for functionalization 

and repurposing them for specific applications catering 

the needs of industries. Overall, this investigation con-

firms that hydrothermal carbonization is an effective 

and simple chemical process to transform coconut 

waste biomass into a valuable resource, namely carbon 

dots. 
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