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Abstract. For each implication τ : Condition_part⇒ Decision_part
de�ned in table data sets, we see τ is a rule if τ satis�es appropriate
constraints, i.e., support(τ) ≥ α and accuracy(τ) ≥ β for two threshold
values α and β (0 < α, β ≤ 1). If τ is a rule for relatively high α, we say
τ is supported by major instances. On the other hand, if τ is a rule for
lower α, we say τ is supported by minor instances. This paper focuses on
rules supported by minor instances, and clari�es some problems. Then,
the NIS-Apriori algorithm, which was proposed for handling rules sup-
ported by major instances from tables with information incompleteness,
is extended to the NIS-Apriori algorithm with a target descriptor. The
e�ectiveness of the new algorithm is examined by some experiments.

Keywords: Rule generation, Uncertainty, Apriori algorithm, NIS-Apriori
algorithm, SQL.

1 Introduction

We have been coping with some variations of rule generation related to the Apri-
ori algorithm [1, 16], and proposed the NIS-Apriori algorithm for handling tables
with de�nite information (Deterministic Information Systems: DISs) and tables
with inde�nite information (Non-deterministic Information Systems: NISs) [9,
13]. Furthermore, we recently realized a software tool termed NIS-Apriori in
SQL [10]. Since SQL has high versatility, the environment yielded by NIS-Apriori
based rule generation in SQL will be useful for table data analysis with infor-
mation incompleteness. The execution logs are uploaded to the web page [11].
In [12�14], we are also considering new topics in conjunction with three-way
decisions [17].

With such a background, this paper considers two kinds of rules and the
problem related to Apriori-based rule generation below:
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• An implication τ is a major rule, if support(τ) ≥ α and accuracy(τ) ≥ β
for relatively high α and β.

• An implication τ is a minor rule, if support(τ) ≥ α and accuracy(τ) ≥ β
for lower α and relatively high β.

• Problem: NIS-Apriori-based rule generation will be e�ective for generating
major rules, but it may not be e�ective for generating minor rules. It is
necessary to take measures for minor rule generation.

Major rules re�ect the tendency over major instances of the data sets. On
the other hand, minor rules re�ect the tendency, which strongly holds in minor
instances of the data sets. For example, the English alphabet will be the major
alphabet in the world, and the Japanese Hiragana and Katakana alphabets are
the minor alphabets in the world. However, the major part of publications in
Japan consists of the Hiragana, Katakana, and Chinese alphabets, not the En-
glish alphabet. Less people in the world understand any Japanese newspaper, but
most people in Japan understand it easily. The framework termed imbalanced
data set [3, 4] will be another approach to this issue.

In the application of NIS-Apriori-based rule generation, it will be e�ective for
relatively high α, because the amount of possible implications is usually reduced
by using the constraint support(τ) ≥ α. However, it is not e�ective for lower
α, because most of implications will satisfy the constraint support(τ) ≥ α, and
they are still remained as candidates of rules. So, it is very time-consuming for
NIS-Apriori-based minor rule generation. For solving this problem, we extend
the NIS-Apriori algorithm to that with a target descriptor.

This paper is organized as follows: Section 2 surveys the framework of NIS-
Apriori-based rule generation, and clari�es the problem of minor rule generation.
Section 3 proposes NIS-Apriori-based rule generation with a target descriptor,
and Section 4 describes the experiments by the implemented system. Section 5
concludes this paper.

2 NIS-Apriori-based Rule Generation in NISs

This section surveys DIS-Apriori-based rule generation in DISs and NIS-Apriori-
based rule generation in NISs, then clari�es the problem related to minor rules.

2.1 DIS-Apriori-based Rule Generation in DISs

Table 1 is an exemplary DIS ψ1. We usually prede�ne a decision attribute Dec.
In ψ1, Dec=price, and CON is a subset of {color, size, weight}. In DIS ψ, we
term a pair [A, valA] (an attribute A, an attribute value valA) a descriptor. A
rule is an implication τ : ∧A∈CON [A, valA] ⇒ [Dec, val] satisfying below: [1, 8,
15].
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Table 1. An exemplary DIS ψ1 for suitcases. OB (a set of instances), AT (a set
of attributes), V ALcolor (a set of attribute values of color) is {red, blue, green},
V ALprice={high, low}.

OB color size weight price

x1 red small light low
x2 red medium light high
x3 blue medium light high
x4 red medium heavy low
x5 red large heavy high
x6 blue large heavy high

For two threshold values 0 < α, β ≤ 1.0,
support(τ)(= N(τ)/N(OB)) ≥ α,
accuracy(τ)(= N(τ)/N(∧A∈CON [A, valA])) ≥ β,
Here, N(∗) means the amount of instances satisfying the formula ∗,
OB is a set of all instances. We de�ne support(τ) = accuracy(τ) = 0,
if N(∧A∈CON [A, valA]) = 0.

(1)

The Apriori algorithm is originally de�ned for the transaction data sets,
and the manipulation of item sets is proposed [1]. However, if we identify each
descriptor [A, valA] with an item, we can similarly apply the Apriori algorithm
to rule generation from table data sets. We see the instance x1 shows an item
set and the table ψ1 is a set of item sets below:

ItemSet(x1) = {[color, red], [size, small], [weight, light], [price, low]},
Set_ItemSet(ψ1) = {ItemSet(x1), ItemSet(x2), · · · , ItemSet(x6)}.

We term the algorithm handling the above data structure a DIS-Apriori algo-
rithm (Algorithm 1). It has the following properties.
(Property 1) The amount of elements in each ItemSet(xi) is equal to the num-
ber of the attributes.
(Property 2) The decision attribute Dec is usually prede�ned, and the decision
part is an element in the set {[Dec, val] | val is a decision attribute value}.
(Property 3) Except (Property 1) and (Property 2), the DIS-Apriori algorithm
is almost the same as the Apriori algorithm for the transaction data sets.

We say τ ′ : (∧A∈CON [A, valA]) ∧ [B, valB ]) ⇒ [Dec, val] is a redundant im-
plication for τ : ∧A∈CON [A, valA] ⇒ [Dec, val]. If we recognize that τ is a rule,
we automatically see τ ′ is also a rule for reducing the amount of rules, namely
we handle only a minimal implication as a rule. We have next two additional
properties.
(Property 4) If an implication τ ′ is redundant for τ , support(τ ′) ≤ support(τ)
always holds.
(Property 5) If an implication τ ′ is redundant for τ , accuracy(τ ′) ≤ accuracy(τ)
may not hold.
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Algorithm 1 DIS-Apriori algorithm

Require: DIS ψ, the decision attribute Dec, the threshold values α, β.
Ensure: Rule(ψ).
Rule(ψ)← {}; i← 1;
create SubIMPi(⊆ IMPi), where each τi,j ∈ SubIMPi satis�es support(τi,j) ≥ α;
while (|SubIMPi| ≥ 1) do

Rest← {};
for all τi,j ∈ SubIMPi do

if accuracy(τi,j) ≥ β then add τi,j to Rule(ψ);
else add τi,j to Rest;
end if

end for

i← i+ 1;
generate SubIMPi(⊆ IMPi) by using Rest, where τi,j ∈ SubIMPi satis�es
support(τi,j) ≥ α and τi,j is not redundant for any implication in Rule(ψ);

end while

return Rule(ψ)

We also introduce the next IMP1, IMP2, · · · , IMPn.
IMP1={τ : [A, valA] ⇒ [Dec, val]},

(Any implication with one condition attribute),
IMP2={τ : [A, valA] ∧ [B, valB ] ⇒ [Dec, val]},

(Any implication with two condition attributes),
IMP3={τ : [A, valA] ∧ [B, valB ] ∧ [C, valC ] ⇒ [Dec, val]},

(Any implication with three condition attribute).
: : : :

Here, the subscript i in IMPi is the amount of descriptors in the condition part,
and |IMPi| is the amount of implications. The DIS-Apriori algorithm makes use
of SubIMPi(⊆ IMPi) and Properties 4-5, and it is sound and complete for the
rules de�ned in the formula (1) [13]. So, any rule de�ned in the formula (1) can
be obtained by Algorithm 1.

2.2 NIS-Apriori-based Rule Generation in NISs

The table Φ1 in Table 2 is an exemplary NIS. NISs were proposed by Pawlak [7],
Orªowska [6], and Lipski [5] for handling information incompleteness in table data
sets. Formerly, information retrieval and question answering were investigated
in NISs, and we are recently coping with rule generation from NISs. We replace
each non-deterministic information and each ? symbol with a possible value, and
we obtain a table with deterministic information. We termed it a derived DIS
from NIS. Let DD(Φ) be a set of all derived DISs from Φ. We see (or suppose) an
actual DIS ϕactual exists in DD(Φ). For Φ1, DD(Φ1) consists of 144 (=32 × 24)
derived DISs. Based on DD(Φ), we proposed the certain and the possible rules
below:

De�nition 1. [9]
(1) We say τ is a certain rule, if τ satis�es support(τ) ≥ α and accuracy(τ) ≥ β
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Table 2. An exemplary NIS Φ1 for suitcases. V ALcolor (a set of attribute val-

ues of color) is {red, blue, green}, V ALsize={small,medium, large}, V ALweight=
{light, heavy}, V ALprice={high, low}.

OB color size weight price

x1 ? small light low
x2 red ? light high
x3 blue medium ? high
x4 red medium heavy low
x5 {red, blue} {medium, large} heavy high
x6 blue large heavy {high, low}

in each ϕ ∈ DD(Φ),
(2) We say τ is a possible rule, if τ satis�es support(τ) ≥ α and accuracy(τ) ≥ β
in at least one ϕ ∈ DD(Φ).

De�nition 1 seems natural, but we have the computational complexity prob-
lem, because the amount of elements in DD(Φ) increases exponentially. In Φ1,
the amount is 144, and the amount is more than 10100 in the Mammographic
data set in UCI machine learning repository [2]. For this computational problem,
we de�ned two sets for a descriptor [A, val] below:

inf([A, val])={x : instance | the value of x for A is a singleton set {val}},
sup([A, val])={x : instance | the value of x for A is a set including val},
inf(∧A∈CON [A, valA])=∩A∈CON inf([A, valA]),
sup(∧A∈CON [A, valA])=∩A∈CONsup([A, valA]).

By using these sets inf and sup, we have solved the computational complexity
problem. With respect to an implication τ , the following holds [9].

(Result 1) There is a derived DIS ψmin ∈ DD(Φ) satisfying (i) and (ii).
(i) minsupp(τ)(= minψ∈DD(Φ){support(τ) in ψ}) = support(τ) in ψmin,
(ii) minacc(τ)(= minψ∈DD(Φ){accuracy(τ) in ψ} = accuracy(τ) in ψmin.
Thus, τ is a certain rule, if and only if τ is a rule in ψmin ∈ DD(Φ), i.e.,
minsupp(τ) ≥ α and minacc(τ) ≥ β.
(Result 2) There is a derived DIS ψmax ∈ DD(Φ) satisfying (i) and (ii).
(i) maxsupp(τ)(= maxψ∈DD(Φ){support(τ) in ψ}) = support(τ) in ψmax,
(ii) maxacc(τ)(= maxψ∈DD(Φ){accuracy(τ) in ψ} = accuracy(τ) in ψmax.
Thus, τ is a possible rule, if and only if τ is a rule in ψmax ∈ DD(Φ), i.e.,
maxsupp(τ) ≥ α and maxacc(τ) ≥ β.
(Result 3) Each formula of four criterion values, minsupp(τ), · · · , maxacc(τ), is
expressed by using inf and sup sets. This calculation does not depend on the
amount of DD(Φ). (We omit the formulas for them. The details are in [9, 13]).
Thus, certain rule generation and possible rule generation does not depend upon
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Fig. 1. Each point (support(τ), accuracy(τ)) by ψ ∈ DD(Φ) is located in a rectangle
area [13].

the amount of elements in DD(Φ).

Based on the above results, we have a chart in Figure 1 for each implication
τ . We apply the above three results to the DIS-Apriori algorithm in Algorithm 1,
and we proposed the NIS-Apriori algorithm. Namely, in certain rule generation
minsupp(τ) and minacc(τ) are employed instead of support(τ) and accuracy(τ)
in Algorithm 1. In possible rule generation, maxsupp(τ) and maxacc(τ) are
employed in Algorithm 1. Therefore, the time complexity of the NIS-Apriori
algorithm is more than twice time complexities of the DIS-Apriori algorithm.
However, it is possible to calculate criterion four values in polynomial order time,
so the NIS-Apriori algorithm does not depend upon the amount of elements in
DD(Φ). The NIS-Apriori algorithm is also sound and complete [13]. Without
three results, it will be hard to handle Mammographic data set which has more
than 10100 derived DISs. Thus, we insist that NIS-Apriori-based rule generation
is a signi�cantly new framework supported by possible world semantics.

We recently implemented the NIS-Apriori algorithm in SQL [10], and the
execution logs are uploaded to the web page [11]. Figure 2 shows the obtained
certain and possible rules (α=0.05 and β=0.8) from the Mammographic data
set. There are 960 instances and �ve attributes assess, age, shape, margin,
density (assess was added by physicians).

2.3 Problem on Minor Rule Generation

We clarify the problem on minor rule generation by using the Mammographic
data set. We employ �ve α values (0.25, 0.1, 0.05, 0.01, 0.001) and one β=0.8.
We see the cases I (α=0.25 and β=0.8) and II (α=0.1 and β=0.8) de�ne major
rules, and we see the cases IV (α=0.01 and β=0.8) and V (α=0.001 and β=0.8)
de�ne minor rules.
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Fig. 2. The obtained certain rules and possible rules (α=0.05 and β=0.8) from the
Mammographic data sets. Each certain rule satis�es support ≥ 0.05 and accuracy ≥ 0.8
in every ψ ∈ DD(Φmammo), where the amount of elements ψ is more than 10100.

Table 3. The comparison of major rule generation and minor rule generation in the
Mammographic data set. |c1rule| is the amount of implications in the table c1rule.
MIN means the minimum amount of implications so as to be one rule, namely 960×α.

Case α MIN exec_time |c1rule| |c1rest| |c2rule| |c2rest| |c3rule| |c3rest|
|p1rule| |p1rest| |p2rule| |p2rest| |p3rule| |p3rest|

I 0.25 240 19.9 (sec) 2 4 0 2 0 0
(major rule) 2 4 0 2 0 0

II 0.10 96 76.3 (sec) 2 14 4 11 0 1
(major rule) 5 13 2 11 0 2

III 0.05 48 164.9 (sec) 3 20 6 22 0 8
9 22 6 29 0 12

IV 0.01 10 540.6 (sec) 6 34 4 75 8 66
(minor rule) 15 34 19 112 7 98

V 0.001 1 889.9 (sec) 7 43 2 192 45 378
(minor rule) 18 36 48 190 44 351

Table 3 shows the execution time and the amount of rules, where tables
c1rule, c2rule, and c3rule store certain rules obtained from IMP1, IMP2, and
IMP3 in Algorithm 1, respectively. Tables c1rest, c2rest, and c3rest store im-
plications in Rest in Algorithm 1. Tables p1rule, p2rule, p3rule, p1rest, p2rest,
and p3rest store possible rules and implications. In case V, each implication τ
satis�es the constraint support(τ) ≥ 0.001, so we need to consider any impli-
cation. We cannot reduce the amount of implications by using (Property 4) in
Section 2.1.
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3 NIS-Apriori Algorithm with a Target Descriptor

In this section, we extend the NIS-Apriori algorithm to the NIS-Apriori al-
gorithm with a target descriptor (tNIS-Apriori). Generally in Apriori-based rule
generation, the decision attribute is prede�ned and any attribute value is consid-
ered. In the tNIS-Apriori algorithm, we consider prede�ned descriptor [Dec, val]
in Algorithms 2-3.

In Algorithm 1, we consider a set SubIMPi(⊆ IMPi), whose element τi,j
takes [Dec,_] (_ means any val ∈ V ALDec) as its decision part. However,
Algorithms 2-3, we �x an attribute value val ∈ V ALDec and consider a set
SubIMPi,[Dec,val](⊆ SubIMPi ⊆ IMPi), whose element τi,j takes [Dec, val] as
its decision part. In tNIS-Apriori based rule generation, we have the following
advantage and disadvantage.
(Advantage)
The NIS-Apriori algorithm tries to �nd all rules whose decision attribute is
Dec, but the tNIS-Apriori algorithm tries to �nd all rules whose decision part
is [Dec, val]. In the Mammographic data set, the decision attribute values are
0 (benign) and 1 (malignant). So, we apply the tNIS-Apriori algorithm to two
decisions [Dec, 0] and [Dec, 1]. The execution time by the NIS-Apriori algorithm
is usually more time-consuming than that of the tNIS-Apriori algorithm.
(Disadvantage)
In order to have all rules, we need to repeat the execution for each [Dec, val].
So, the user's manipulation may be confused, if the amount of decision attribute
values is large.

4 Some Experiments

We employed Windows desktop PC (3.60GHz), and revised the SQL procedures
step1, step2, and step3 in the NIS-Apriori algorithm to the SQL procedures
tstep1, tstep2, and tstep3 in the tNIS-Apriori algorithm. For example in the
Mammographic data set, the next procedure

step1('severity',960,0.05,0.8)

(Find all implications satisfying support(τ) ≥ 0.05, accuracy(τ) ≥ 0.8.)

is changed to two procedures below:

tstep1('severity','0',960,0.05,0.8), tstep1('severity','1',960,0.05,0.8)
(Find all implications with decision value 0) and (Find all implications with
decision value 1).

Table 4 shows the comparison of the execution time on the Mammographic
data set [2]. Of course, it took less execution time for each of [severity, 0] and
[severity, 1] by the tNIS-Apriori algorithm. However, total execution time SUM
is worse than that by the NIS-Apriroi algorithm. In this example, the NIS-Apriori
algorithm seems better than the tNIS-Apriori algorithm.
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Algorithm 2 NIS-Apriori algorithm with a Target Descriptor (Certain rule
generation part)

Require: NIS Φ, the descriptor [Dec, val], the threshold values α, β.
Ensure: Certain_Rule(Φ).
▷ Each changed part from Algorithm 1 is underlined.

Certain_Rule(Φ)← {}; i← 1;
create SubIMPi,[Dec,val](⊆ IMPi) (τi,j ∈ SubIMPi,[Dec,val] and the decision part

of τi,j is [Dec, val]), and minsupp(τi,j) ≥ α holds;
while (|SubIMPi,[Dec,val]| ≥ 1) do

Rest← {};
for all τi,j ∈ SubIMPi,[Dec,val] do

if minacc(τi,j) ≥ β then add τi,j to Certain_Rule(Φ);
else add τi,j to Rest;
end if

end for

i← i+ 1;
generate SubIMPi,[Dec,val](⊆ IMPi) by using Rest, where

τi,j ∈ SubIMPi,[Dec,val] satis�es minsupp(τi,j) ≥ α and τi,j is not redundant

for any implication in Certain_Rule(Φ);
end while

return Certain_Rule(Φ)

Algorithm 3 NIS-Apriori algorithm with a Target Descriptor (Possible rule
generation part)

Require: NIS Φ, the descriptor [Dec, val], the threshold values α, β.
Ensure: Possible_Rule(Φ).
▷ In possible rule generation, we replace minsupp and minacc in Algorithm 2 with
maxsupp and maxacc, respectively. The other part is the same as Algorithm 2.

Table 5 shows the comparison of the execution time on the Congressional
Voting data set [2]. This data set consists of 435 instances, 17 attributes, each
attribute value is either yes or no. The decision attribute value is either democrat
or republic. Since there are 392 missing values, DD(Φcongress) consists of about
10120 (≒ 2392) derived DISs. In case IV, the total execution time SUM is slightly
larger, but in case V, we ceased the execution by the NIS-Apriori algorithm, be-
cause of its too long execution time. In this example, the tNIS-Apriori algorithm
is essential. We have to choose the tNIS-Apriori algorithm for handling the case
V.

4.1 Discussion

Of course, the execution time of two algorithms depends upon the details of the
algorithms and the characteristics of the data sets. The most time-consuming
part of Algorithms 1-3 is `to generate SubIMPi by using Rest'. We generate
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Table 4. The execution time (sec) of the tNIS-Apriori algorithm for the Mammo-
graphic data set. The column SUM indicates the summation of two cases.

Case NIS-Apriori tNIS-Apriori
(sec) SUM (sec) Dec=0 (benign) (sec) Dec=1 (malignant) (sec)

I 19.9 22.8 11.1 11.7
II 76.3 77.8 33.5 44.2
III 164.9 185.0 92.3 92.7
IV 540.6 615.9 280.3 335.6
V 889.9 1112.3 495.6 616.7

Table 5. The execution time (sec) of the tNIS-Apriori algorithm for the Congressional
Voting data set. The column SUM indicates the summation of two cases.

Case NIS-Apriori tNIS-Apriori
(sec) SUM (sec) Dec=dem(ocrat) (sec) Dec=rep(ublic) (sec)

I 424.1 308.7 27.3 281.4
II 1620.8 1369.5 444.1 925.4
III 3065.5 2616.3 988.6 1627.7
IV 5281.4 5802.9 1806.9 3996.0
V ceased 7620.0 1999.5 5620.5

Table 6. The execution time (sec) of the DIS-Apriori algorithm with a target descriptor
for the Car Evaluation data set. The column SUM indicates the summation of four
cases.

Case Dec=any SUM Dec=unacc Dec=acc Dec=good Dec=vgood
Instances 1728 1728 1210 384 69 65
Ratio 100% 100% 70% 22% 4% 4%

I 8.30 13.7 8.09 2.01 1.79 1.81
II 38.26 33.83 15.48 14.87 1.79 1.69
III 255.23 177.37 15.23 158.57 1.72 1.85
IV 3343.52 2014.33 23.71 1513.74 240.09 213.08
V 6004.56 4043.02 25.09 2103.51 1065.04 849.38

SubIMPi instead of using IMPi. This strategy is based on Property 4 in Section
2.1. For major rule generation, the amount of |SubIMPi| is generally small.
Actually, in Mammographic data set, we focus on implications occurring more
than 240 times or 96 times. The amount of such implications is small. For minor
rule generation, the amount of |SubIMPi| generally becomes large. In the case
V in the Mammographic data set, we need to focus on implications occurring
1 time, namely the support constraint is meaningless. We cannot remove any
implications satisfying accuracy(τ) < β.

In the generation of SubIMPi, we actually pick up all condition descriptors
appearing in Rest at �rst, then we add each of them to implications in Rest and
we remove implications which are not in the original table. This manipulation
is the most complicated part in the SQL procedure. For example, in certain rule
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generation (case V) from the Mammographic data set, |Rest|=192 (implications
with two condition descriptors) and 20 condition descriptors are picked up. The
amount of the candidates of implications is 1068. From these 1068 implications,
we generate SubIMP3,[Severity,0] which consists of 987 implications. This seems
large amount of implication, however the amount of IMP3 is huge, because
there are about 9600 implications (there are 960 instances and the selection of
3 attributes is 5C3=5*4*3/3*2*1=10 cases). Even though there are the same
implications in 9600 implications, the amount of IMP3 is much larger than that
of SubIMP3,[Severity,0].

The above manipulation seems to be related to the amount of decision at-
tribute values. In the Pittsburgh Bridges data set [2], there are six decision
attribute values, and the execution of the NIS-Apriori algorithm was ceased, be-
cause of too long execution time. In case V, |SubIMP3| in certain rule generation
exceeds 10000 implications, and the tNIS-Apriori was essential in this case, too.

In DISs, we also executed the DIS-Apriori algorithm with a target descriptor.
Table 6 shows the results of rule generation in DIS, the Car Evaluation data set
[2]. In Case I, II, and III, the SUM of four execution times is almost the same as
the execution time of Dec=any. However in Case IV and V, the summation of
four execution times is reduced to about 2/3 of Dec=any. In the Balance Scale
data set and the Phishing data set [2], we similarly had the same results.

5 Concluding Remarks

This paper proposed the tNIS-Apriori algorithm, which is a NIS-Apriori algo-
rithm with a target descriptor. The merits are the following.
(1) For a �xed decision attribute values, tNIS-Apriori algorithm works much
better than NIS-Apriori algorithm.
(2) The tNIS-Apriori algorithm is e�ective for minor rule generation. Actually
in Table 5, the NIS-Apriori algorithm cannot generate rules, but tNIS-Apriori
algorithm did them.

The NIS-Apriori is suitable for major rule generation, however it is time-
consuming for minor rule generation, because the next properties.
(a) If support(τ) < α holds, we can decide any redundant implication of τ is not
a rule (Property 4 in Section 2.1).
(b) If support(τ) ≥ α and accuracy(τ) < β, this τ is not a rule, but some re-
dundant τ ′ may satisfy support(τ ′) ≥ α and accuracy(τ ′) ≥ β (Property 5 in
Section 2.1).
(c) If we employ the lower threshold value α, most of implications do not sat-
isfy the above (a) and we can not apply the above (a). Furthermore, most of
implications satisfy the above (b). Thus, we need to consider large number of
redundant implications as candidates of rules.

In order to solve this weak point, we proposed the tNIS-Apriori algorithm.
By handling the speci�ed decision descriptor in the tNIS-Apriori algorithm, the
candidates of rules are reduced. Thus, we showed the possibility of NIS-Apriori-
based minor rule generation. The analysis of the bottlenecks for the execution
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time, the improvement of the procedures in SQL, and the evaluation with ex-
periments are still in progress now.
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