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1 Introduction

CO2 is the primary gas and the best-known greenhouse gas
(GHG) contributing to global warming. Non-renewable
fossil fuel energies are the primary energy sources.
Annually, 24 billion tons of CO2 is produced by human
activity, and especially fossil fuel combustion, thus, the

primary source of CO2 emission is fossil fuel including
coal, oil, and natural gas which accounts for 65% (United
States Environmental Protection Agency, 2014). The CO2

level in the atmosphere has raisen from 310 ppm in 1958 to
413.71 ppm in 2021 (August 24) according to the latest
reading reported by Scripps Institution of Oceanography
(2021), and is rising faster and faster; that is why
contemporary research has focused on ways to slow or
stop this trend and globally, there has been a significant
increase in interest in reducing CO2 emissions in both
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H I G H L I G H T S

•Addition of hindered amine increased thermal
stability and viscosity of TTTM.

•Addition of hindered amine improved the CO2

absorption performance of TTTM.
•Good the CO2 absorption of recycled solvents
after two regenerations.

• Important role of amine group in CO2 absorption
of TTTM confirmed by DFT analysis.
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G R A P H I C A B S T R A C T

A B S T R A C T

Is it possible to improve CO2 solubility in potassium carbonate (K2CO3)-based transition temperature
mixtures (TTMs)? To assess this possibility, a ternary transition-temperature mixture (TTTM) was
prepared by using a hindered amine, 2-amino-2-methyl-1,3-propanediol (AMPD). Fourier transform
infrared spectroscopy (FT-IR) was employed to detect the functional groups including hydroxyl,
amine, carbonate ion, and aliphatic functional groups in the prepared solvents. From thermogravi-
metric analysis (TGA), it was found that the addition of AMPD to the binary mixture can increase the
thermal stability of TTTM. The viscosity findings showed that TTTM has a higher viscosity than TTM
while their difference was decreased by increasing temperature. In addition, Eyring’s absolute rate
theory was used to compute the activation parameters (ΔG*, ΔH*, and ΔS*). The CO2 solubility in
liquids was measured at a temperature of 303.15 K and pressures up to 1.8 MPa. The results disclosed
that the CO2 solubility of TTTM was improved by the addition of AMPD. At the pressure of about 1.8
MPa, the CO2 mole fractions of TTM and TTTMwere 0.1697 and 0.2022, respectively. To confirm the
experimental data, density functional theory (DFT) was employed. From the DFT analysis, it was
found that the TTTM+ CO2 system has higher interaction energy (|ΔE |) than the TTM+ CO2 system
indicating the higher CO2 affinity of the former system. This study might help scientists to better
understand and to improve CO2 solubility in these types of solvents by choosing a suitable amine as
HBD and finding the best combination of HBA and HBD.
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academics and industry, notably in China. It is anticipated
that the CO2 concentration will reach 900-1100 ppm if we
will not take immediate and major actions to reduce the
CO2 emissions (Wang and Song, 2020) and the tempera-
ture will rise 5°C by the century’s end (Pachauri and
Reisinger, 2007). As a result, it is necessary to reduce CO2

emissions from stationeries especially fossil fuel power
plants. Bearing in mind that fossil fuels will continue to be
the dominant energy resource in the next decades, carbon
capture utilization, and storage (CCUS) is essential and the
most promising technology to mitigate these problems
(Ghaedi et al., 2017d; Hu et al., 2018; Nawar et al., 2019).
CCUS is a method of capturing CO2 emissions from big
industrial facilities including coal, oil, and natural gas
combustion plants, as well as other industrial processes,
before they are released into the atmosphere. Pre- or post-
combustion, oxyfuel, and electrochemical separation are
all part of this technique. Even though each of these
approaches has its own set of benefits and drawbacks, post-
combustion is the most basic CCUS technology for CO2

capture. The post-combustion capture process using
solvents is a mature technology for CCUS. The absorption
process using aqueous amine solutions is an efficient
method for capturing CO2 (Xie et al., 2014). However,
there are several concerns over amine solvents for post-
combustion CO2 capture, for example, high energy
required for solvent regeneration, corrosion problems,
amine volatility, and the environmental and health impact
due to the degradation products of amine solvents. As a
result, scientists are attempting to find alternate solvents to
amines; hence, solvent development is the central part of
improving post-combustion CCUS technologies.
The use of ionic liquids (ILs) and deep eutectic solvents

(DESs) has grown in popularity during the last two
decades, both industrially and scientifically. Despite many
unique properties, high cost, complex reaction steps, high
viscosity, potential toxicity, limited biodegradability,
required purification, and energy-intensive of regeneration
steps are the main disadvantages associated with IL
limiting their application at a large scale (Chemat et al.,
2016; Kalhor et al., 2021). DESs and transition-tempera-
ture mixtures (TTMs) (deep eutectic analogs) have
emerged as possible alternatives to ILs and traditional
solvents. They are receiving increasing attention for many
purposes, but in particular, capturing CO2. These new
solvents have many of the same properties as ILs and,
however, they are more advantageous due to the potential
low cost of initial components, easy preparation procedure,
non-toxic, non-volatility, less corrosive, biodegradability,
no further purification, high thermal stability, and electrical
conductivity (Ghaedi et al., 2017a; Ghaedi et al., 2017b;
Ghaedi et al., 2017 g; Xu et al., 2016). It is worth noting
that the main difference between DES and TTM solvents is
that the DSC curve of DES shows a melting or freezing
temperature, however, TTM has only the glass transition
temperature in the DSC curve (Ghaedi et al., 2018b; Mat

Hussin et al., 2020). On the other hand, still there is a
debate between researchers in order to categorize these
new solvents. It was stated that for some ILs and DESs
which are not non-easily crystallizable even the melting or
freezing temperature is not observed; then, they can be
named as DESs (Jiang et al., 2020; López-Salas et al.,
2014a; López-Salas et al., 2014b). Other research groups
have reported similar results (Guo et al., 2013; Gutierrez
et al., 2011; Morrison et al., 2009).
According to the appropriate safety data sheet (SDS),

AMPD is non-toxic to fish on an acute basis (LC50>100
mg/L) and is not likely to accumulate in the food chain
(bio-concentration potential is low). Due to very low (but
observable) volatility, exposure to vapor is minimal and it
may evaporate slowly from products containing it. It also
has low toxicity if swallowed. AMPD is unlikely to persist
in the environment and is ultimately biodegradable, which
suggests it will be removed from soil and water
environments, including biological wastewater treatment
plants. Also, regarding ecotoxicology, persistence, and
bioaccumulation, K2CO3, EG, and AMPD are not
suspected of being environmental toxins and bioaccumu-
lative according to Environment Canada’s Domestic
Substance List. It has been reported that the toxicities of
DESs are lower than their components (Wen et al., 2015).
Potassium carbonate (K2CO3) is used in large amounts

in industry and consumer products. K2CO3 is environmen-
tally benign, non-toxic, and is not carcinogenic or
genotoxic. The only possible potential hazard of K2CO3

to the aquatic environment is caused by a raised alkalinity
due to the carbonate ion (pH buffering effect). Of particular
significance is the fact that the K2CO3 solution process is
an important technology for CO2 removal and has been
used in many plants around the world because of several
advantages: easy regeneration, inexpensive solvent, low
toxicity, and low tendency to degrade (Borhani et al.,
2015).
Ethylene glycol (EG) is an odorless, colorless, sweet,

relatively nonvolatile, and slightly viscous organic liquid,
used as a raw chemical in the production of a large number
of products such as polyester fibers for clothes and many
industrial and commercial applications, for example,
antifreeze and coolant. EG is not persistent in soil, and
surface/groundwater, and air. According to the acute
toxicity data, EG does not bioaccumulate in and is
practically non-toxic to aquatic organisms. (Hayyan
et al., 2013) used EG as an HBD of DES-based choline
chloride and investigated the toxicity using Gram-positive
and Gram-negative bacteria. According to the results, the
tested DES did not have a toxic effect toward the studied
bacteria. Therefore, the toxicity of the final mixtures of
K2CO3, EG, and AMPD is likely to be lower than that of
their original components.
The Fourier transform infrared spectroscopy (FT-IR)

analysis is commonly applied to examine the interactions
between various groups and to analyze and identify the
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structure of materials. It is particularly useful for
determining the hydrogen bond strengths between compo-
nents of TTMs or TTTMs. It is essential to do a
thermogravimetric analysis (TGA) of the solvents used
for CO2 absorption. To be effective, the solvent employed
for CO2 absorption must be thermally stable at the studied
absorption temperature. Furthermore, in order to develop
new TTMs with enhanced functionality, a better under-
standing of CO2 absorption utilizing TTMs is required.
Computational chemistry approaches namely Density
Functional Methods (DFT) can be applied to understand
the mechanism of CO2 and TTM-molecule interaction.
DFT simulation is an excellent approach to get molecular
structure-property relationships, which might help
researchers for developing novel task-specific TTMs for
better CO2 capture.
As a result, the primary goals of this study are to

(1) analyze the structure and thermal stability of prepared
samples, (2) measure the viscosity of prepared samples,
(3) measure the CO2 solubility in the fresh and reused
potassium carbonate-based TTM or TTTM, and (4) study
CO2-capturing mechanism using DFT simulation.

2 Materials and methods

2.1 Chemicals

K2CO3 and AMPD were purchased from Sigma-Aldrich.
EG was supplied by R&M Chemicals. The details of pure
chemicals are presented in Table 1. Fig. S1 shows the
chemical structure of individual compounds.

2.2 Preparation of solvents

Binary TTM was prepared in the molar ratio of 1:10 for
K2CO3 to EG at a temperature of about 353 K for 1–2 h. To

prepare TTTM, the hindered amine AMPD was mixed
with the binary mixture in a molar ratio of 1:10:1 for
K2CO3-EG-AMPD. The AMPD was added into the binary
mixture of K2CO3 and EG after about 30 min. After 1 h
continues stirring at the same temperature, a liquid was
obtained. All solvents were kept in a closed vial to prevent
contamination with moisture or any other contaminants for
further use without purification. More details of solvents
are shown in Table 2.

2.3 Characterization

FT-IR spectrometer (Thermo Scientific™ Nicolet™ iS 10)
was applied to record infrared spectra of all materials in the
region of 4000 cm–1 to 400 cm–1. A thermogravimetric-
differential thermal analysis-mass spectrometry (TG-DTA-
MS) instrument (Rigaku, Smart loader) was employed for
the thermal stability analysis of samples at a temperature
range from 300 K to 800 K at a heating rate of 10 K/min
under Helium atmosphere with a flow rate of 100 mL/min.
A digital rolling ball micro-viscometer (Anton Par, model
Lovis-2000M/ME) was employed to measure the viscosity
of liquids from 293.15 K to 333.15 K.

2.4 CO2 solubility and solvent regeneration experiments

Using a high-pressure solubility cell (SOLTEQ BP-22)
(see Fig. S2), the pressure drop was utilized to test CO2

solubility in solvents. A set of equations was used to
calculate the amount of CO2 absorbed as stated in Section
1 of the supplementary material (Ghaedi et al., 2017d). For
the regeneration study, the prepared solvents were
collected after CO2 solubility measurements. The recycling
of solvents was conducted by desorbing CO2 via the
application of depressurization and vacuum (< 45 kPa).
The collected samples were placed in a vacuum oven for
assuring the full CO2 removal for 24 h. Following that, the

Table 1 Description of materials used for the synthesis of TTM and TTTM.

Chemical name CAS number Supplier Purity Melting point Purity analysis

Potassium carbonate 584-08-7 Sigma-Aldrich > 99.90 891 °C a Trace metals analysis

2-amino-2methyl-1,3-propanediol 115-69-5 Sigma-Aldrich > 99.00 109–111 °C a Titration with HClO4

Ethylene glycol 107-21-1 R & M Chemicals > 99.50 –13.0 °C a Gas chromatography

a) This information was obtained from the safety data sheet (SDS).

Table 2 The details of prepared TTM and TTTM

Solvent HBA HBD Molar ratio Water content
(mass fraction) e

Glass transition,
Tg (°C)

f

Symbol MTTM/TTTM
a Symbol MHBA

b Symbol MHBD
c HBA HBD

TTM 68.992 K2CO3 138.21 EG 62.07 1 10 0.0060 –121.5

TTTM 72.004 K2CO3 138.21 EG & AMPD 62.07
105.14

1 10:1d 0.0068 –83.3

a MTTM/TTTM molecular weight of TTM or TTTM in g/mol.
b Molecular weight of HBA in g/mol.
c Molecular weight of HBD in g/mol.
d (10) is the molar ratio of EG and (1) is the molar ratio of AMPD.
e,f Water content and glass-transition temperature of samples were taken from previous work (Ghaedi et al., 2018b).
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collected solvents were tested for CO2 solubility to
determine their possible application for recycling.

2.5 Density functional theory (DFT)

DFT is a useful tool to simulate and gain information about
molecular structure-property relationships; and the CO2-
capturing mechanism, helping researchers to develop and
synthesize new task-specific solvents for CO2 capture
(Altamash et al., 2016). Therefore, the geometry optimiza-
tions were performed using DFT with Becke three-
parameter (Exchange), Lee, Yang, and Parr correlation
(B3LYP) and basis set of 6-31+ G (d, p) which is widely
used in computational studies (Yang et al., 2021; Khan
et al., 2020). B3LYP was selected for all calculations due
to its remarkable performance over a wide range of
systems. To do the calculations and optimizations, the
GAUSSIAN 09 software package with the aid of the Gauss
View visualization program was used in this study. The
initial geometries for each solvent and CO2 + solvent were
generated using previously optimized geometries of
K2CO3, EG, AMPD, and free CO2 developed using the
Gauss View software. The standard counterpoise method
was used to correct the absolute interaction energy (ΔE)
to avoid basis set superposition error (BSSE) for the
systems containing two or more molecules (Altamash
et al., 2016).

3 Results and discussion

3.1 FT-IR analysis

For prepared solvents such as TTMs, identifying and
studying the functional groups, investigation of the
chemical bonds, the combinations of various components,
and the observed changes in their structure are the
important aspects. Infrared spectroscopy is beneficial and
useful not only for the identification of molecules and
studying their structure but also in studying the interactions
which have a great effect on molecular vibrations. Figs. S3,
S4, and S5 show the FT-IR spectroscopy of the single
components including K2CO3, EG, and AMPD. The FT-IR
spectra of TTM and TTTM are displayed in Figs. 1 and 2,
respectively.

3.1.1 Hydroxyl functional group (OH)

From Figs. 1 and 2, the OH stretching vibrations which are
mostly affected by hydrogen bonding occurred in the
region of 3800–3100 cm–1. The OH stretching bands in the
condensed phase are observed at a wavenumber range of
3550 cm–1–3230 cm–1, for example, these bands are
generally centered at 3400 cm–1 for water, alcohols, and
phenols (Larkin, 2011). Therefore, the broadening and

shifting of OH stretching vibrations indicate the hydrogen-
bond formation. From Figs. 1 and S4, it is clear that the
absorption band at 3285.44 cm–1 in pure EG changed to a
marginally broader and stronger band at the wavenumber
of 3284.13 cm–1 after the formation of TTM. Pure AMPD
(see Fig. S4) reveals broadband at 3245.78 cm–1 assigned
to the υ(OH) band which is stronger than that of pure EG.
From Fig. 2, the OH stretching vibration in TTTM reveals
a band at 3277.03 cm–1, approximately similar to TTM.
Also, it is obvious from Figs. 1 and 2 that the intensities of
different absorption bands of both solvents are almost the
same. Then, it can be stated that the hydrogen bonds are
strong in this region. Generally, peaks observed in the 900–
500 cm–1 region are the OH and NH2 wagging vibrations
(Larkin, 2011). In the TTM, TTTM, and pure EG, there are
two positive peaks at wavenumbers between 850 cm–1 and
870 cm–1 indicating the OH wagging vibrations. In pure
AMPD, Peaks at 914.84 cm–1 and 886.29 cm–1 can be
possibly attributed to these vibrations.

Fig. 1 The spectrum of TTM.

Fig. 2 The spectrum of TTTM.
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3.1.2 Amine functional group (–NH2)

AMPD is considered a primary amine, with an amino
group –NH2. Usually, primary amines give two weak
absorptions in the -NH2 stretching bands region between
3400 cm–1 and 3100 cm–1 including the out-of-phase and
in-phase NH2 stretching vibrations. Normally, out-of-
phase NH2 stretching bands are weaker in the spectra
than the in-phase NH2 stretching bands. The out-of-phase
NH2 stretching band is considered as an antisymmetric
vibration and the in-phase NH2 stretching band is regarded
as the symmetric vibration in the spectra. According to Fig.
S4, three peaks appeared in this region. The peak at
3327.84 cm–1 is ascribed to the antisymmetric –NH2

vibration. Regarding the in-phase –NH2 stretching bands,
it is difficult to interpret this peak in the spectra. One may
consider the peak at a wavenumber of 3188.92 cm–1 as in-
phase –NH2 stretching bands. It is a moot point and may
not be true due to the fact that –NH2 bands are weaker than
OH bands, and, thus, –NH2 bands have a higher frequency.
Moreover, it is well established that in amines, a low-
intensity shoulder occurs at the wavenumber around
3200 cm–1 (Larkin, 2011). Indeed, an overtone of the N-
H bending vibration at a wavenumber of 1617.01 cm–1

caused this low-intensity band at the wavenumber of
3188.92 cm–1 in pure AMPD. It should be mentioned that it
is more complex to analyze the curve affected by
overlapping bands. Therefore, the peak at a wavenumber
of 3188.92 cm–1 does not indicate the in-phase-NH2

stretching band and, in fact, this band has been overlapped
by OH stretching bands and cannot be observed in the
spectra. From Fig. 2, it is quite clear that in the prepared
TTTM, the OH stretching bands overlapped the in-phase
–NH2 stretching bands. The peaks at the wavenumbers of
1640 cm–1 to 1560 cm–1 are associated with the N-H
bending modes (scissoring) with medium to strong
intensity bands (Larkin, 2011). In pure AMPD, this
mode appeared at 1617.01 cm–1. As mentioned earlier, an
overtone of this mode caused a band at 3039.96 cm–1 and
after the formed TTTM, it was possibly shifted to a lower
intensity band at the wavenumber of 1594.11 cm–1 (see
Fig. 2). As shown in Fig. 1, this peak cannot be present in
the spectra of TTM due to the absence of NH2 groups in its
structure. The NH2 wagging vibrations in TTTM and pure
AMPD occurred at the wavenumbers of 769.58 cm–1 and
776.70 cm–1, respectively. These peaks were absent in the
spectra of TTM and pure EG.

3.1.3 The aliphatic (-CHn) vibrational modes

The region between 3000 and 2700 cm–1 mainly contains
the peaks of aliphatic stretching vibrations. Normally, the
CH2 stretching vibrations appear at 2940–2915 cm–1 and
2870–2840 cm–1, while bands for CH3 stretching vibra-
tions occur at wavenumbers of 2975–2950 cm–1 and 2885–
2865 cm–1. Since these bands are not strong, they may not

be distinguishable in the spectrum (Larkin, 2011). Here,
the C-H stretching vibrations include methylene (CH2

antisymmetric and symmetric stretching) and methyl (CH3

symmetric stretching). According to Fig. S1, there is no
CH3 group on the structure of pure EG and, hence, there
are no CH3 stretching vibrations. For this case, the region
of CH2 stretching vibrations was between two vicinities of
2935.41 cm–1 and 2873.18 cm–1 accompanied by two
positive peaks and the same intensity. In pure AMPD, the
CH3 symmetric stretching out of phase occurred at
2972.80 cm–1 and CH2 stretching vibration was observed
at 2960.90 cm–1. The in-phase CH2 stretching vibrations
were observed between 2905.92 cm–1 and 2752.86 cm–1.
As illustrated in Fig. S4, there is a low-intensity peak at

3039.96 cm–1 for pure AMPD which may not be an
indication of the aliphatic stretching vibrations, because
the aliphatic stretching vibrations are sharp and spiky. In all
probability, this can be attributed to an overtone of the
1500.07 cm–1 owing to Fermi resonance between the
methylene CH2 stretching vibrations. As seen from Figs. 1
and 2, these aliphatic stretching vibrations were seen at the
wavenumbers of 2924.86 cm–1 (as CH3 stretching vibra-
tion) and 2866.19 cm–1 (as CH2 stretching vibration) for
TTM and at the wavenumbers of 2925.39 cm–1 (as CH3

stretching vibration) and 2866.96 cm–1 (as CH3 stretching
vibration) for TTTM along with two positive peaks and the
same intensity. Further explanations on other vibrations are
available in the Supplementary Material.

3.2 TGA results

An effective solvent for CO2 absorption should have high
thermal stability at absorption temperatures. To date, TGA
data on TTMs/TTTMs are inadequate; and, there is a need
to collect TGA data of these solvents. Therefore, the
thermal stabilities of TTM and TTTM were analyzed in
this study. Fig. 3 (a) illustrates the TGA curves of pure
components and TGA-DTA (differential thermal analysis)
curves of prepared solvents are shown in Fig. 3 (b). There
are two decomposition steps in these curves, as seen in
Fig. 3 (b). The thermal decomposition temperature of salts
is greater than that of HBDs (Abbas and Binder, 2010). As
a result, the first and second decomposition steps reflect the
temperature at which HBDs and salt decompose, respec-
tively. The first decomposition temperatures for TTM and
TTTM occurred at about 383 K and 389 K, respectively.
As seen in Fig. 3 (b), the second weight loss was
accompanied by endothermic peaks at 414 K and 457 K for
TTM and TTM, respectively. The DTA curves shifted
upward after the second decomposition which is attributed
to the mass loss. Moreover, TTTM is slightly more stable
than TTM. As seen in Fig. 3, AMPD is more stable than
EG. Therefore, the addition of AMPD enhanced the
thermal stability of TTTM. In the previous work, the result
disclosed that the viscosity of the solvent affects its thermal
stability (Ghaedi et al., 2018a; Ghaedi et al., 2017c). The
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hydrogen-bonding interactions have an effect on the
thermal stability of solvents. Higher OH stretching
frequencies indicate weaker hydrogen bonds inside the
solvents. From the FT-IR results, the OH stretching
wavenumber in TTTM was lower than in TTM. This is
an indication of the strong hydrogen bonding in TTTM
resulting in its higher thermal stability. Another possible
reason could be that the structure of TTTM has is a longer
alkyl chain length due to AMPD resulting in higher
thermal stability. Previously, a similar finding was reported
(Ghaedi et al., 2018a; Ghaedi et al., 2017c).

3.3 Viscosity results

Table S1 lists the experimental viscosity data of pure EG,
TTM, and TTTM. The temperature dependence of
experimental viscosity values of pure EG, TTM, and
TTTM is shown in Fig. 4. Table S2 compares the viscosity
of EG in our study to that found in the literature (Yang
et al., 2003). As presented in Table S2, there was a good
agreement between experimental and literature data with a
low average absolute deviation (%AAD) of 0.3358.
By raising the temperature, the viscosity of solvents and

EG decreased. The higher viscosity of solvents is directly
associated with their intermolecular interactions. Thus, the
higher temperature decreases the internal resistance of
molecules and their intensity accordingly, and they are less
viscous and flow more easily. It is seen from Fig. 4 that
both TTM and TTTM had a higher viscosity than EG.
Moreover, the viscosity of TTTM increased over the
temperature range by the addition of AMPD. For instance,
the viscosity of TTTM was 184.93 mPa$s, higher than that
of TTM (126.07 mPa$s) at 298.15 K. To correlate the
experimental viscosity data an empirical relation was used
as given below (Ghaedi et al., 2018a; Ghaedi et al., 2017f;
Ghaedi et al., 2018b):

ln
η

ð��MÞTTM=TTTM

" #
¼ A0 þ

A1

T
þ A2

T2 þ :::þ An

Tn

¼
Xn
i¼0

Ai

T i , (1)

where T is the temperature; and ρ is the density (available
in previous work (Ghaedi et al., 2018b)); Ai is the fitting
parameter, and MTTM/TTTM is the molecular mass of TTM
or TTTM in g/mol.
Additionally, several relations were used for the

correlation study, for example, Arrhenius, Seddon,
Andrade, Vogel-Fulcher-Tammann (VTF), Waterton, and
Yaws, as mentioned in the Supplementary Material. As
evident in Table S3 and Fig. 4, a quite low RMSE value
between the experimental and the calculated data from
Eq. (1) shows that the suggested correlation appropriately
describes the viscosity of solvents as a function of
temperature, density and molecular weight of solvents;
hence, Eq. (1) can be used in the calculation of viscosity
with high accuracy. The activation energy (Ea, J/mol) of
solvents can be estimated from experimental viscosity. A

Fig. 3 (a) TGA curves for pure components and (b) TGA-DTA
curves of prepared solvents from 300 K to 800 K at the heating rate
of 10 K/min under Helium atmosphere with a flow rate of 100 mL/
min. The black solid and dashed lines represent the TGA and DTA
curves of TTM, respectively. The blue solid and dotted lines
represent the TGA and DTA curves of TTTM, respectively.

Fig. 4 Experimental viscosity (η) of pure EG, TTM, and TTTM
at several temperatures. The solid lines show the viscosity data
obtained by Eq. (1).
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higher Ea value indicates that the ions cannot easily move
past each other due to a highly viscous fluid. From the data
presented in Table S3, the Ea values of TTTM estimated by
the Arrhenius and Seddon relations are higher than those
for TTM indicating that TTTM is more viscous. Further,
Eq. (2) was used for calculating the Ea as a function of
temperature, as given below (Ghaedi et al., 2017f):

Ea ¼ R�
∂
�
ln½ηðTÞ�

�
∂ð1=TÞ

¼ R� A1 þ
2� A2

T
þ 3� A3

T2

�
,

�
(2)

where A1, A2, and A3 are the fitting parameters derived
from Eq. (1), as listed in Table S3. Then, these fitting
parameters were used to calculate Ea data for TTM and
TTTM, as listed in Table S4. Fig. 5 illustrates the Ea

against temperature. As demonstrated in Fig. 5, by raising
the temperature, the value of Ea decreased moderately.
Moreover, TTTM has higher activation energy than TTM
indicating higher viscosity of this solvent.

Eyring’s absolute rate theory is applied to express the
viscosity of a liquid (Ghaedi et al., 2017f):

η ¼ h� NA

V
exp

ΔG�

R� T

� �
, (3)

where and T denotes temperature; R signifies the gas
constant, V is the molar volume of solvents (available in
previous work (Ghaedi et al., 2019)); h is Planck’s
constant; NA is Avogadro’s number, and ΔG* represents
the molar Gibbs free energy of activation calculated from
the following equation:

ΔG� ¼ ΔH� – T � ΔS�: (4)

The viscosity of a liquid can be calculated from the
following equation by combining Eq. (4) and Eq. (3):

R� ln
η� V

h� NA

� �
¼ ΔH�

T
–ΔS�: (5)

In the above equations, ΔH* represents the enthalpy of
viscous flow and ΔS* is the entropy of viscous flow. For
some cases, the relationship between R$ln(η$V/h$NA) and
1/T is linear, and the slope is equal to ΔH* and the intercept
is equal to-ΔS* (Vranes et al., 2012). However, there is
some curvature evident by plotting R$ln(η$V/h$NA)
against 1/T for some other liquids, as reported in

previous work (Ghaedi et al., 2017f). For the solvents
studied here, by plotting R$ln(η$V/h$NA) against 1/T, as
shown in Fig. S6, the values of R2 were 0.998 and 0.999 for
both TTM and TTTM, respectively, indicating the linear
relationship. Table 3 lists the ΔG* values obtained from
Eq. (4) used. For the data in Table 3, TTTM has higher
ΔG* values than TTM at the studied temperatures
indicating a stronger interaction in TTTM in comparison
to TTM. Since the dependence of R$ln(η$V/h$NA) was a
linear function of 1/T, practically speaking, it may be
assumed that ΔH* is an independent function in this
temperature range.

From the data in Table 4, it was found that T$ΔS* values
are lower than ΔH* values. It means that the energetic
influence (ΔH*) is significant rather than entropic influence
(ΔG*) (Ghaedi et al., 2017f); then, the interactional factor
dominates the structural factor.

3.4 CO2 solubility and regeneration results

The CO2 solubility measurements at 303.15 K and
pressure up to 1.8 MPa are presented in Table 5. As listed
in Table 5, the CO2 solubility in TTTM was higher than

Fig. 5 The E values of TTM and TTTM as a function of T
obtained from Eq. (2).

Table 3 The ΔG* (J/mol) values solvents at the studied temperatures

T (K) TTM TTTM

293.15 24428.00 25572.34

298.15 24183.33 25277.27

303.15 23938.66 24982.21

308.15 23693.99 24687.14

313.15 23449.32 24392.08

318.15 23204.65 24097.01

323.15 22959.98 23801.95

328.15 22715.31 23506.88

333.15 22470.64 23211.82

Table 4 The ΔH* and ΔS* of solvents

Solvent ΔH* (J/mol) ΔS* (J/(mol⋅K)) R2

TTM 38773 48.934 0.998

TTTM 42872 59.013 0.999
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that that in TTM. By adding AMPD to the mixture, TTTM
has shown a better affinity for absorbing CO2 in
comparison to TTM (without AMPD). It may be reasoned
that an additional amino group (–NH2) in the structure of
TTTM improves its CO2 solubility. In the previous work, it
was found that CO2 solubility in DESs increases as alkyl
chain length increases (Ghaedi et al., 2017e). From Fig. S1,
it is clear that TTTM containing two HBDs has a longer
alkyl chain length than TTM which is composed of only
one HBD; consequently, TTTM exhibited a higher CO2

solubility than TTM. It is worth comparing CO2 solubility
in the studied solvents with other solvents. In the previous
work, the CO2 solubility in phosphonium-based DESs was
measured with different HBDs in different molar ratios
(Ghaedi et al., 2017e). A comparison shows that CO2

solubility in TTM and TTTM in this work is lower than
that in phosphonium-based DESs. However, the main
finding of this research work is that using amine as a third
component can improve CO2 solubility. Due to the tunable
properties of DESs and TTMs have, new solvents using
different amines as HBDs could be prepared for the CO2

absorption improvement. Table 5 presents the CO2

solubility data in recycled TTM and TTTM. The data
show that the CO2 solubility in fresh and recycled TTM
and TTTM did not change considerably and that the
difference is not significant.
Fig. 6 compares the CO2 solubility in TTTM and several

ILs such as trihexyltetradecylphosphoniump [THTDP]-
based IL with anion of bis(trifluoromethyl)sulfonylimide
([NTf2]

–) and imidazolium-based ILs containing different
cations and anions. As illustrated in Fig. 6, TTTM, showed
a better CO2 absorption performance than some ILs such as
[C2mim][EtSO4], [C6mim][BF4], and [C6mim][BF4].
However, the CO2 solubility in TTTM was less than
those of ILs containing [NTf2]

- anion and a longer alkyl
chain length on the cation such as [THTDP][NTf2],
[C8mim][NTf2] and [C8mim][PF6]. From the data pre-
sented in Table 6. TTTM exhibited a higher CO2

absorption in comparison with other TTMs and DESs in
the literature.

3.5 DFT analysis

Fig. 7 illustrates the optimized structures of TTM and
TTTM before and after interaction with CO2. The
optimized structures of K2CO3, EG, AMPD, and free
CO2 are shown in Fig. S7 in Supplementary Material. The
following equations were used to compute the ΔE of those
processes related to binding energy for K2CO3 salt
(ΔEK2CO3

), TTM formation (ΔETTM), TTTM formation
(ΔETTTM), and CO2 capture by these two solvents
(ΔETTM + CO2

) and (ΔETTTM + CO2
):

ΔEK2CO3
¼ EK2CO3

– ½2� EK þ�ECO3
� (6)

ΔETTM ¼ ETTM – ½EK2CO3
þ 10� EEG� (7)

ΔETTMþCO2
¼ ETTMþCO2

– ½EK2CO3
þ 10� EEG þ ECO2

�

(8)

ΔETTTM ¼ ETTTM – ½EK2CO3
þ 10� EEG þ EAMPD� (9)

ΔETTTMþCO2
¼ ETTTMþCO2

– ½EK2CO3
þ 10� EEG

þ EAMPD þ ECO2
� (10)

where EK2CO3
, ETTM + CO2

, and ETTTM + CO2
represent the

(counterpoise corrected) energies of EK2CO3
, TTM+ CO2,

and TTTM+ CO2, respectively. EEG, EAMPD, and ECO2

correspond to the energies of K2CO3, EG, AMPD, and free
CO2, respectively. (García et al., 2015) calculated the |ΔE|
for processes related to CO2 absorption using choline
chloride- malonic acid and choline chloride-glycerol and
stated that choline chloride- malonic acid exhibited better

Table 5 CO2 solubility in fresh and recycled TTM and TTTM at the temperature of 303.15 K

Fresh First recycled Second recycled

PE (MPa) xCO2
PE (MPa) xCO2

PE (MPa) xCO2

TTM

1.794 0.1697 1.805 0.1654 1.815 0.1638

1.604 0.1428 1.613 0.1393 1.625 0.1375

1.324 0.1211 1.319 0.1180 1.331 0.1164

1.080 0.1013 1.092 0.0987 1.101 0.0977

TTTM

1.780 0.2022 1.794 0.1976 1.802 0.1961

1.598 0.1741 1.591 0.1694 1.609 0.1671

1.301 0.1483 1.316 0.1457 1.325 0.1443

1.010 0.1203 0.998 0.1175 1.015 0.1159
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CO2 capture performance due to the larger |ΔE| value.
Therefore, |ΔE| data help us judge the ability of TTM and
TTTM to capture CO2. The |ΔE| values are listed in Table
7. As presented in this table, the second geometries of
TTM (ІІ) and TTTM (ІІ) were almost stable than their first
geometries (ІІ). However, the first geometries were used to
investigate CO2 absorption. Because the main purpose of
this study was how adding amine as a third part could
increase CO2 absorption. The optimized structures of
second geometries are shown in Fig. S8 in Supplementary
Material. From the data in Table 7, the |ΔE| value for
TTTM (І)+ CO2 system was larger than that of TTM (І)+

CO2. Therefore, higher CO2 affinity can be obtained by
adding AMPD to a binary mixture of K2CO3 + EG, which
was investigated by experimental CO2 measurement in this
work. Besides, the sums of van der Waals (vdW) atomic
radii of H and O (2.5 Å) and H and N (2.6 Å) are
considered as infallible indicators of H‒bonding forma-
tion. Regarding the TTM (І)+ CO2 complex, no H-bond is
developed between the solvent and CO2. But a 107CCO2

…
2OCO3

– interaction with a bond distance of 2.84 Å and a
6K+…108OCO2

with a bond distance of 3.03 Å are formed.
Upon AMPD addition to TTM, the new solvent (TTTM),
is capable of developing N-119HAMPD…126OCO2

H-bond
with a bond distance of 2.37 Å. Two main interactions
occurred between EG and CO2, 23HEG…127OCO2

,
60HEG…127OCO2

and 63HEG…126OCO2
with bond dis-

tances of 2.68 Å, 2.65 Å and 2.58 Å, respectively as well as
a 125CCO2

…121OAMPD interaction with a bond distance of
3.09 Å. However, in the new solvent, the 6K+…127OCO2

distance increases to 4.03 Å. Therefore, the existing amine
group in AMPD plays an important role in increasing CO2

solubility in TTTM. The DFT analyses indicate good
agreement with the results obtained from the experimental
CO2 solubility measurements.

4 Conclusions

In this work, two types of potassium carbonate-based
transition-temperature mixtures were prepared. The binary
transition-temperature mixture (TTM) was a combination
of potassium carbonate HBA and EG HBD with a molar
ratio of 1:10 HBA/HBD. To improve CO2 solubility, a
hindered amine, 2-amino-2-methyl-1,3-propanediol
(AMPD), as another HBD was added to the TTM to

Fig. 6 CO2 solubility in TTTM compared to that in ILs at
303.15 K. Symbols are: (♦) TTTM in this work; (#) [THTDP]
[NTf2] (Carvalho et al., 2010); (✕) [C6mim][BF4] (Shokouhi et
al., 2010); (–) [C6mim][OTf] (Jalili et al., 2010b); ( + ) [C6mim]
[PF6] (Jalili et al., 2010b); (*) [C8mim][PF6] (Safavi et al., 2013);
(Δ) [C2mim][EtSO4] (Jalili et al., 2010a), and (◊) [C8mim][NTf2]
(Jalili et al., 2012).

Table 6 The CO2 solubility comparison between solvents in this work and TTMs/DESs in literature.

Solvent T (K) PE (MPa) xCO2
Ref.

DES

Choline chloride /Urea (1:2.5) 313–333 1.06–12.55 0.032–0.203 Li et al., 2008

Choline chloride Ethanol amine (1:6) 298 1.0 0.11 Ali et al., 2014

Choline chloride /Diethanol amine (1:6) 298 1.0 0.0925 Ali et al., 2014

Choline chloride /Triethylene Glycol (1:6) 298 1.0 0.0419 Ali et al., 2014

Choline chloride /Glycerol (1:3) 298 1.0 0.0454 Ali et al., 2014

Methyltriphenylphosphonium Bromide/ Ethanol amine (1:6) 298 1.0 0.1441 Ali et al., 2014

Tetrabutylammonium Bromide/ Diethanol Amin (1:6) 298 1.0 0.0830 Ali et al., 2014

TTM

Choline chloride /Latic acid (1:2) 303–348 0.83–9.38 0.248–0.0995 Francisco et al., 2013

Tetramethylammonium chloride/ Latic acid (1:2) 308 0.8–2.0 0.025–0.059 Zubeir et al., 2014

Tetraethylammoniumchloride/ Latic acid (1:2) 308 0.8–2.0 0.031–0.073 Zubeir et al., 2014

Tetrabutylammonium chloride/ Latic acid (1:2) 308 0.8–2.0 0.053–0.127 Zubeir et al., 2014

K2CO3/EG (1:10): TTM 303 1.080–1.794 0.1013–0.1697 This work

K2CO3/EG/AMPD (1:10:1): TTTM 303 1.010–1.780 0.1203–0.2022 This work
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prepare a ternary transition-temperature mixture (TTTM).
The main functional groups such as aliphatic (-CHn),
hydroxyl (-OH), amino (-NH2), and the carbonate ion
(CO3

–2) were identified and analyzed by FT-IR. The results

obtained by the spectra of both solvents confirmed that
these solvents exhibit similar behavior to their HBDs,
especially ethylene glycol. Although both TTM and TTTM
showed similar spectra, their difference was in two peaks.
In fact, there were two peaks in the spectra of TTTMwhich
did not appear in the spectra of TTM. These peaks are an
indication of the existence of the amino-functional group
(-NH2) on the structure of TTTM. The results showed that
by adding AMPD to the binary mixture, the thermal
stability and viscosity of TTTM increases compared to
TTM. By employing Eyring’s absolute rate theory, positive
values of ΔH* and ΔS* were obtained for both solvents.
Finally, CO2 absorption was improved by adding AMPD
to the mixture. The CO2 solubility in TTTM was higher
than that in TTM because of an additional amine functional
group (-NH2) in its structure. This was confirmed by DFT
analysis by computing the interaction energy (|ΔE |) of
systems. It was found that TTTM+ CO2 system has a

Fig. 7 Optimized structures of (a) TTM (І), (b) TTM (І)+ CO2, (c) TTTM (І), (d) TTTM (І)+ CO2 at the B3LYP/6-31+G (d, p) level.
Atom color code: (gray) carbon, (light gray) hydrogen, (red) oxygen, (purple) potassium, and (blue) nitrogen.

Table 7 Absoluteinteraction energy (|ΔE|) of systems with or without

CO2

System |ΔE| (kJ/mol)

K2CO3 1507.78

TTM (І) 541.42

TTM (ІІ) 565.05

TTM (І) + CO2 561.93

TTTM (І) 558.82

TTTM (ІІ) 598.60

TTTM (І) +CO2 596.36
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higher |ΔE| |value than the TTM+ CO2 system and amine
group in AMPD of TTTM played an important role in the
formation of H-bond between N-HAMPD…OCO2

resulting
in higher CO2 solubility in TTTM.
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