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Canonical quantization on the half-line and in an interval based upon an alternative
concept for the momentum in a space with boundaries
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For a particle moving on a half-line or in an interval the operator p̂ = −i∂x is not self-adjoint and thus does
not qualify as the physical momentum. Consequently canonical quantization based on p̂ fails. Based upon an
alternative concept for a self-adjoint momentum operator p̂R, we show that canonical quantization can indeed
be implemented on the half-line and on an interval. Both the Hamiltonian Ĥ and the momentum operator p̂R are
endowed with self-adjoint extension parameters that characterize the corresponding domains D(Ĥ ) and D( p̂R ) in
the Hilbert space. When one replaces Poisson brackets by commutators, one obtains meaningful results only if
the corresponding operator domains are properly taken into account. The alternative concept for the momentum
is used to describe the results of momentum measurements of a quantum mechanical particle that is reflected at
impenetrable boundaries, either at the end of the half-line or at the two ends of an interval.
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I. INTRODUCTION

Momentum is one of the most fundamental physical
quantities. The momentum operator generates infinitesimal
translations in infinite space. When the Hamiltonian is trans-
lation invariant, momentum is conserved. Coordinates and
their canonically conjugate momenta play a central role in
Hamiltonian dynamics, which turns into quantum mechanics
upon canonical quantization.

Several important physical systems are confined inside
a limited region of space with sharp boundaries. These in-
clude, for example, ultracold atoms in an optical box trap [1]
of a few tens of micrometers in size, electrons in a quan-
tum dot at the nanometer scale [2], the “femto-universe” of
the phenomenological MIT bag model [3–5] for confined
quarks and gluons, domain wall fermions [6,7], or intervals of
extra-dimensional space at the Planck scale. In the idealized
mathematical description of such systems, space is endowed
with sharp impenetrable boundaries. While for most systems
this is just a mathematical convenience that allows one to
exclude regions of very high potential energy, it is conceivable
that extra-dimensional space literally ends at a boundary. In
spaces with boundaries, translation invariance is explicitly
broken, not just because the Hamiltonian includes symmetry-
breaking terms, but because space itself ends (at least in
the idealized mathematical description). As a consequence,
the usual quantum mechanical momentum operator p̂ = −i∂x

is no longer self-adjoint, and thus no longer represents the
physical momentum. From this it has been concluded that,
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in a finite volume, momentum is no longer a measurable
physical observable [8]. As another consequence of the non-
self-adjointness of p̂, canonical quantization (which is based
upon p̂) fails for confined systems with sharp boundaries.

Recently, we have introduced an alternative concept for
the momentum of a quantum mechanical particle in a box
[9], which gives rise to a physically and mathematically
satisfactory self-adjoint momentum operator. This concept
naturally extends to the half-line as well as to higher dimen-
sions. Intervals and half-lines are the basic building blocks of
higher-dimensional regions of space with sharp boundaries.
The present investigations hence form the basis for future
applications to physical systems in higher dimensions. The
sharp boundaries of a confined system give rise to a high
degree of ultraviolet sensitivity. At low energies, this reflects
itself in the values of self-adjoint extension parameters of the
Hamiltonian that characterize the boundary conditions of the
wave function.

In order to take the ultraviolet sensitivity into account prop-
erly, in our construction of a self-adjoint momentum operator
in [9] we started out from an ultraviolet lattice regularization.
While this is familiar in nonperturbative quantum field theory,
in this case it is beneficial even in quantum mechanics. On
the lattice, one naturally distinguishes forward and backward
derivatives, neither of them being Hermitian. The Hermi-
tian lattice momentum operator is given by a symmetrized
forward-backward derivative, which manifests itself as a finite
difference that extends over two lattice spacings. This natu-
rally leads to the distinction of even and odd lattice points. A
careful analysis of the problem reveals that the construction
of a self-adjoint momentum operator in the continuum limit
requires the doubling of the standard Hilbert space, in order
to maintain a remnant of the crucial distinction between even
and odd lattice points even in the continuum [9]. In fact, some
aspects of the problem are reminiscent of the lattice fermion
doubling problem [10–12], which arises because the Dirac
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operator contains first-order derivatives. The resulting insight
of [9] is that the construction of a self-adjoint momentum op-
erator requires a refined concept, not only of Hilbert space, but
even of space itself. This may not be too surprising, because
a space that ends abruptly supports other momentum modes
than infinite space. Still, as we will see, the finite-energy
sector, which is defined by the Hamiltonian, resides in a region
of Hilbert space that is completely equivalent to the standard
quantum mechanical treatment.

An extension of the Hilbert space also plays an important
role in quantum measurements related to a positive operator-
valued measure (POVM) [13–19], which are based on Kraus
operators describing quantum jumps. Measurement processes
using a POVM provide a generalization of von Neumann’s
standard projective measurements. They play an important
role for controlling quantum systems and processing quantum
information. In POVM-based measurements, the quantum
system to be investigated is first coupled to another quantum
system that acts as an ancilla. Then a standard projective
measurement is performed on the ancilla, which indirectly
affects the quantum system under study [20]. That a given
POVM can be realized by an appropriate extension of the
Hilbert space is related to Neumark’s theorem [18,21–24].
In this way measurements on confined systems have been
described by POVMs [25] and an optimal POVM for a particle
on a half-line has been considered in [26]. It should be pointed
out that the POVM measurement is not based on a self-adjoint
momentum operator of the quantum particle itself, but rather
of the particle coupled to its ancilla. Our construction, on the
other hand, provides a self-adjoint momentum operator for
the particle alone (without invoking any ancilla). In our case,
the doubling of the Hilbert space results from the necessity to
include states whose energy is ultraviolet-sensitive, but which,
due to the existence of sharp boundaries, still contribute to the
momentum eigenstates. In other words, the Hilbert space that
contains the finite-energy eigenstates is too small to contain
also the momentum eigenstates of a quantum particle in a
space with sharp boundaries.

The time evolution of a quantum system is driven by its
Hamiltonian, which is described by a self-adjoint operator
acting in an appropriate Hilbert space. In nonrelativistic 1-
d quantum mechanics, the single-particle Hamiltonian Ĥ =
− 1

2m ∂2
x + V (x) (in units where h̄ = 1) contains the differential

operator ∂2
x , which is supposed to act on square-integrable

wave functions. Since not all square-integrable functions are
differentiable, the Hamiltonian (as well as other physical op-
erators) acts only in a restricted domain D(Ĥ ) of the Hilbert
space. For a differential operator the domain is characterized
by the square-integrability of the corresponding derivatives of
the wave function. In an infinite-dimensional Hilbert space,
there are subtle differences between Hermiticity and self-
adjointness, which were first understood by von Neumann
[27]. Hermiticity means that an operator Â and its adjoint Â†

act in the same way. Self-adjointness requires, in addition, that
the corresponding domains D(Â) = D(Â†) coincide [28–30].
In order to qualify as a physical observable, an operator must
be self-adjoint. This is because only self-adjointness, and not
Hermiticity alone, guarantees a spectrum of real eigenvalues
with a corresponding complete set of orthonormal eigenfunc-
tions. During its time evolution the wave function of a particle

with finite energy only explores the domain D(Ĥ ), and never
reaches other corners in Hilbert space.

However, when the unitary time evolution driven by the
Hamiltonian is interrupted by an (idealized) projective mea-
surement, the momentary wave function is projected onto
an eigenstate of the operator Â that describes the measured
observable. It is possible that the domains of the Hamiltonian
D(Ĥ ) and of the observable D(Â) do not coincide. This is no
problem, because a self-adjoint operator has a complete set of
eigenfunctions. As a consequence, every wave function [even
outside of D(Â)] can be represented arbitrarily well by a su-
perposition of eigenstates of Â. In this way, one can determine
the probabilities to measure the various possible eigenvalues
of the observable Â. After such a projective measurement, the
wave function is inside D(Â) but not necessarily any longer
inside D(Ĥ ). How can the unitary time evolution proceed
after such a measurement? Again, since the Hamiltonian is
self-adjoint, any state [even outside D(Ĥ )] can be approxi-
mated arbitrarily well by a superposition of eigenstates of Ĥ ,
and the time evolution proceeds accordingly. However, the
energy expectation value after a measurement that leads out
of D(Ĥ ) is usually infinite. Hence, idealized measurements
can transfer an infinite amount of energy to the particle un-
der investigation. Of course, any practical measurement only
consumes a finite amount of energy, and is, in any case, not
completely realistically described by an idealized projective
measurement.

Momentum measurements on confined particles fall in this
category. For example, a particle of finite energy that moves
along the entire real axis in a potential that diverges at spatial
infinity, V (±∞) → ∞, has a square-integrable wave function
that vanishes at infinity and belongs to the Hilbert space
L2(R) of square-integrable wave functions over the entire
real axis. When the momentum of the particle is measured
and one obtains the value k, its wave function collapses
onto the plane wave momentum eigenstate 〈x|k〉 = exp(ikx),
which has 〈k|V |k〉 = ∞. It should be pointed out that this
state does not belong to the Hilbert space, because it is not
square-integrable. As a result, a standard instantaneous pro-
jective momentum measurement, which results in an exact
momentum eigenstate after the measurement, indeed transfers
an infinite amount of energy to a confined particle. This is
a result of von Neumann’s concept of idealized projective
measurements, which does not do justice to all aspects of
actual measurements performed inside a laboratory. In par-
ticular, those have finite resolution, they take a finite amount
of time, and they transfer only a finite amount of energy.
While being aware of these facts, in this work we follow the
completely standard practice of using von Neumann’s concept
of idealized projective measurements.

The situation becomes more subtle in the presence of
impenetrable sharp boundaries (which, of course, again are
mathematical idealizations) [8,31–35]. For example, for a
particle that is strictly confined to the positive real axis (the
half-line) the operator p̂ = −i∂x is not self-adjoint, and hence
it has until now been unknown how to properly define the
corresponding momentum operator. As a consequence, one
has replaced the momentum operator by the dilation op-
erator, thus moving from canonical to affine quantization
[36–40]. The main purpose of this paper is to provide an
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appropriate construction of a self-adjoint momentum operator
that is satisfactory both from a physical and from a mathemat-
ical point of view, and to show that canonical quantization is,
in fact, applicable to the half-line as well as to an interval. As a
result, we will be able to describe momentum measurements
performed on a quantum mechanical particle that is strictly
limited to the positive real axis or to an interval, even after
a momentum measurement. Such a particle is bound to or
reflected at impenetrable boundaries, either at the origin or
at the two ends of the interval.

It should be pointed out that our construction of a self-
adjoint momentum operator assumes that some physically
meaningful ultraviolet cutoff (like a crystal lattice in a quan-
tum dot) actually exists, and that the quantum mechanical
description in the continuum is an effective low-energy de-
scription that is valid only below that ultraviolet cutoff. If
one assumes that the quantum mechanics formulated in the
continuum is a “theory of everything,” in other words that
no physical ultraviolet cutoff exists at short distances, there
would be no basis for extending the Hilbert space. In that
case, momentum would indeed not be a meaningful concept
for motion on the half-line, and one would be restricted to
affine quantization. In experimental situations involving, for
example, quantum dots, there is always a physical ultraviolet
cutoff at which the effective low-energy quantum mechan-
ical description in the continuum breaks down, such that
our momentum concept is indeed applicable. Whether the
Planck length leads to a physical ultraviolet cutoff in extra-
dimensional spaces with boundaries is, of course, a matter of
speculation.

The paper is written also with some pedagogical intentions
in mind. Therefore we do not assume that the reader is familiar
with the concept of operator domains, which is crucial for the
distinction between Hermiticity and self-adjointness. Unfor-
tunately, in the education of the typical theoretical physicist
these issues often do not play a prominent role. The experts
will hopefully not be offended that we elaborate on some is-
sues that are well known to them. We also like to point out that
the notion of canonical quantization is not as uniquely defined
as one might think. Definitely, it describes quantization in an
equal-time Hamiltonian formulation, rather than, for example,
on a light cone or some other hypersurface. Here we use a
more narrow definition of canonical quantization, which is
based upon the canonical commutation relations between co-
ordinates and conjugate momenta (or closely related variants
thereof). This definition distinguishes canonical quantization
from affine quantization, which also operates in an equal-time
Hamiltonian framework, but replaces the momentum by the
dilation operator. The main result of our work is the con-
struction of an appropriate self-adjoint momentum operator,
which forms the basis for successfully applying canonical
quantization to the half-line and to an interval, for which it
was thought to be inapplicable. Still, applying canonical quan-
tization (defined in this way) to the half-line or an interval is
less straightforward than for the entire real axis, because some
subtleties related to operator domains are crucial. Although
this is well known to the experts, we will discuss explicitly
how canonical quantization should be applied in such cases.

The rest of the paper is organized as follows. In Sec. II,
we address the non-self-adjointness of the standard momen-

tum operator p̂ = −i∂x on the half-line R�0, we construct
the self-adjoint extensions of the Hamiltonian, and we
address canonical quantization and standard momentum mea-
surements, as well as affine quantization. Based upon our
alternative concept, in Sec. III we construct a self-adjoint
momentum operator on the half-line, embed the Hamiltonian
in the resulting mathematical framework, and discuss the cor-
responding momentum measurements. We then consider the
resulting canonical quantization on the half-line including the
classical limit. Section IV addresses canonical quantization
on an interval and relates the results to the situation on a
circle. Finally, we end with some conclusions. Ultraviolet
lattice aspects of our momentum concept are summarized in
an Appendix.

II. FROM CANONICAL QUANTIZATION ON THE ENTIRE
REAL AXIS TO AFFINE QUANTIZATION ON

THE HALF-LINE

In this section we address the non-self-adjointness of the
standard momentum operator on the half-line and its conse-
quences for canonical and affine quantization.

A. Non-self-adjointness of −i∂x on R�0

Let us consider the standard momentum operator p̂ = −i∂x

on the half-line R�0. Using partial integration one obtains

〈p̂†χ |�〉 = 〈χ | p̂�〉 = 〈p̂χ |�〉 − iχ (0)∗�(0). (1)

Hermiticity requires that χ (0)∗�(0) = 0. This requirement
can be satisfied if one restricts the domain D( p̂) to those wave
functions whose derivative is square-integrable and that obey
�(0) = 0. However, then χ (0) remains unrestricted and can
still assume arbitrary values. Consequently, the domain of p̂†,
which acts on χ , remains unrestricted, and D( p̂†) ⊃ D( p̂).
When �(0) = 0, p̂ and p̂† act in the same way and hence
p̂ = −i∂x is indeed Hermitian. However, since D( p̂†) �= D( p̂),
it is not self-adjoint. In fact, it is impossible to extend p̂ to a
self-adjoint operator on the half-line. Consequently, p̂ = −i∂x

does not describe the physical momentum of a quantum me-
chanical particle that moves along the positive real axis. As a
result, it has been concluded that, in this case, momentum is
no longer an observable physical quantity [8]. We will reach
a different conclusion, namely that not p̂ = −i∂x (which is
not self-adjoint) but another operator, p̂R = −iσ1∂x, which is
self-adjoint in the Hilbert space L2(R�0) × C2 of the doubly
covered positive real axis, describes the physical momentum
of a particle on the half-line. In fact, the appropriate mo-
mentum operator p̂R + i p̂I has a Hermitian component p̂R as
well as an anti-Hermitian component i p̂I , with both p̂R and p̂I

being self-adjoint.

B. Self-adjoint extension of Ĥ on R�0

When restricted to the half-line, the self-adjointness of
Ĥ = − 1

2m ∂2
x + V (x), with V (x) being nonsingular, requires

the following adaptations. First of all, by performing two
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partial integrations one obtains

〈Ĥ†χ |�〉 = 〈χ |Ĥ�〉
= 〈Ĥχ |�〉 − 1

2m
[∂xχ (0)∗�(0) − χ (0)∗∂x�(0)].

(2)

Hermiticity hence requires the term in square brackets to
vanish. The most general boundary condition that is consistent
with the linearity of quantum mechanics is the Robin bound-
ary condition

γ�(0) − ∂x�(0) = 0. (3)

Dirichlet boundary conditions, �(0) = 0, result from γ →
∞, while Neumann boundary conditions, ∂x�(0) = 0, cor-
respond to γ = 0. Since (for finite γ ) �(0) itself can still
take arbitrary values, inserting Eq. (3) in the square bracket
in Eq. (2), the Hermiticity condition turns into

[∂xχ (0)∗ − γχ (0)∗]�(0) = 0 ⇒ γ ∗χ (0) − ∂xχ (0) = 0.

(4)

This relation characterizes the domain D(Ĥ†) of Ĥ† (which
acts on χ ). The Hamiltonian is self-adjoint only if the two
domains coincide, D(Ĥ†) = D(Ĥ ), i.e., if γ ∗ = γ ∈ R. In this
way, we obtain a 1-parameter family of self-adjoint extensions
of Ĥ .

Self-adjointness is not just a mathematical requirement; it
also has most important physical consequences. In particular,
for γ ∈ R the boundary condition of Eq. (3) ensures that the
probability current density,

j(x) = 1

2mi
[�(x)∗∂x�(x) − ∂x�(x)∗�(x)], (5)

vanishes at the boundary, i.e., j(0) = 0, and hence does not
flow into the forbidden region on the negative real axis. This
ensures unitarity, i.e., probability conservation, for the particle
moving along the half-line.

In the absence of a potential [V (x) = 0] it is easy to con-
struct the energy eigenstates. First of all, there are stationary
scattering states of positive energy E = p2

2m :

ψE (x) = exp(−ipx) + R(p) exp(ipx), R(p) = ip + γ

ip − γ
. (6)

It is sufficient to limit oneself to p � 0, because (together with
a bound state for γ < 0) these states alone form a complete
orthonormalized set with

〈ψE ′ |ψE 〉 = 2πδ(p − p′), (7)

where E ′ = p′2

2m , p′ > 0. In particular, since R(−p) = R(p)∗ =
R(p)−1, the states with opposite values of p are simply given
by

exp(ipx) + R(−p) exp(−ipx) = R(−p)ψE (x). (8)

In addition, for γ < 0, there is a bound state of negative
energy

ψb(x) =
√

−2γ exp(γ x), Eb = − γ 2

2m
. (9)

Interestingly, a perfectly reflecting impenetrable barrier can
still support bound states, and the Hamiltonian Ĥ = − 1

2m ∂2
x

FIG. 1. Action of the translation operators Ua = exp(i p̂a) and
Ũq = exp(iqx̂) on the position and momentum eigenstates for the
entire real axis R.

(endowed with a negative self-adjoint extension parameter
γ < 0) indeed has an eigenstate of negative energy. It is easy
to convince oneself that the bound state is orthogonal to the
scattering states, i.e., 〈ψE |ψb〉 = 0.

C. Canonical quantization on R

Canonical quantization is based upon the canonical com-
mutation relation [x̂, p̂] = i. This relation applies to unre-
stricted linear motion, because in the Hilbert space L2(R) the
momentum operator p̂ = −i∂x is indeed self-adjoint. The op-
erator p̂ then generates infinitesimal translations in coordinate
space. The unitary operator that translates a wave function by
a distance −a acts as

Ua�(x) = exp(i p̂a)�(x) = exp(a∂x )�(x) = �(x + a).
(10)

By a Fourier transformation, we obtain the momentum space
wave function

�̃(p) = 〈p|�〉 =
∫ ∞

−∞
dx〈p|x〉〈x|�〉

=
∫ ∞

−∞
dx exp(−ipx)�(x). (11)

The position operator x̂ = i∂p generates infinitesimal trans-
lations in momentum space. The unitary operator Ũq =
exp(iqx̂), which translates a momentum space wave function
by q, acts as

Ũq�̃(p) = exp(−q∂p)�̃(p) = �̃(p − q). (12)

For momentum eigenstates 〈x|k〉 = exp(ikx) [which are or-
thonormalized to 〈k′|k〉 = 2πδ(k − k′)] we have

〈x|k + q〉 = exp(iqx)〈x|k〉 = Ũq〈x|k〉. (13)

We also find

UaŨq�(x) = Ua exp(iqx)�(x) = exp[iq(x + a)]�(x + a),

ŨqUa�(x) = exp(iqx)�(x + a). (14)

Hence, as a counterpart to the Heisenberg algebra [x̂, p̂] = i,
one obtains the Weyl group relation

UaŨq = exp(iqa)ŨqUa. (15)

The action of the operators Ua and Ũq is illustrated in Fig. 1.
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D. Standard momentum measurements

Since the standard momentum operator p̂ = −i∂x is self-
adjoint only over the entire real axis but not over the half-line,
applying the standard concept of a momentum measurement
requires extending the Hilbert space from L2(R�0) to L2(R)
[41]. This can be achieved by assigning a finite constant
potential V (x < 0) = V0 to the negative real axis and fi-
nally sending V0 → ∞ [42]. A momentum measurement then
projects the wave function (which is exponentially suppressed
on the negative real axis) on a plane wave 〈x|k〉 = exp(ikx),
which is unsuppressed for x < 0. Such a momentum measure-
ment catapults the particle out of the energetically allowed
region and transfers an infinite amount of energy to the parti-
cle in the limit V0 → ∞. Such a measurement can be realized,
for example, in an optical box trap, if the ultracold atoms
are released from the trap immediately before the momentum
measurement.

Let us first consider the bound state |ψb〉 for γ < 0. It may
not be obvious that the bound state can arise in a context
in which V0 approaches infinity from finite values. Indeed,
with a standard finite square-well potential, this would not
be the case. However, as shown explicitly in [35], by taking
an appropriate limit of a finite piecewise constant potential,
one can realize any desirable value of γ . The overlap of the
bound state with the eigenstates |k〉 determines the probability
density to obtain the value k in a measurement of the standard
momentum operator

1

2π
|〈k|ψb〉|2 = − 1

π

γ

γ 2 + k2
. (16)

As expected, the resulting momentum expectation value van-
ishes. The momentum uncertainty diverges because

1

2π

∫ ∞

−∞
dk k2|〈k|ψb〉|2 = − 1

π

∫ ∞

−∞
dk

γ k2

γ 2 + k2
= ∞. (17)

In the limit γ → 0− the bound state becomes an unbound
zero-energy scattering state, and the probability density to
measure the momentum k turns into

− lim
γ→0−

1

π

γ

γ 2 + k2
= δ(k). (18)

This seems to suggest that, in this limit, the value k = 0
is measured with certainty, in contradiction to the divergent
uncertainty that we found for γ < 0. This shows that the
limit γ → 0− is not approached uniformly. In any case, the
state ψb(x) = Aθ (x), which in the limit γ → 0− becomes
proportional to the step function θ (x), is not identical with the
k = 0 momentum eigenstate, which is constant over the entire
real axis. This property results from the fact that |ψb〉 belongs
to the Hilbert space L2(R�0) while |k〉 resides in an extension
of L2(R).

Next, we consider standard momentum measurements per-
formed on the positive energy scattering state |ψE 〉 with E =
p2

2m , p � 0. It is straightforward to obtain

〈k|ψE 〉 = −i lim
ε→0+

(
1

k − iε + p
+ R(p)

1

k − iε − p

)
. (19)

Using the residue theorem one then confirms that

〈ψE ′ |ψE 〉 = 1

2π

∫ ∞

−∞
dk 〈ψE ′ |k〉〈k|ψE 〉 = 2πδ(p − p′).

(20)

In this case, one might expect that the only possible mea-
surement results for the standard momentum are k = p and
k = −p, each with probability 1

2 . However, as we will see at
the end of the paper, these probabilities are only 1

4 . Due to
the two different Hilbert spaces L2(R�0) and L2(R), ψE (x),
which vanishes for x < 0, is not a linear combination of
〈x| − p〉 = exp(−ipx) and R(p)〈x|p〉 = R(p) exp(ipx) along
the entire real axis.

We may conclude that it is possible to enforce the standard
concept of momentum for a particle on the half-line, however,
at the price of putting the particle also onto the negative real
axis as a result of the measurement. We will soon present
an alternative concept for a self-adjoint momentum operator,
which, on the half-line, leads to the same probability distri-
bution for the measurement results, but strictly confines the
particle to the positive real axis also after a measurement.
In a finite interval, on the other hand, the momentum values
associated with the alternative concept are discrete and thus
differ qualitatively from the continuous values of the standard
momentum.

E. Affine quantization on R�0

Since on the half-line there is no translation invariance, the
operator p̂ = −i∂x is not self-adjoint. As a result, the standard
commutation relation [x̂, p̂] = i that underlies canonical quan-
tization has only a formal status and is no longer physically
meaningful. Consequently, in this case canonical quantization
based upon p̂ fails. For this reason, on the half-line affine
quantization has played an important role [36–40]. The mo-
mentum operator p̂ is then replaced by the generator d̂ of
infinitesimal dilations. The unitary operator that dilates a wave
function by a scale factor 1/s ∈ R>0 acts as

Us�(x) = exp(id̂ ln s)�(x) = √
s�(sx). (21)

Let us consider an infinitesimal dilation s = 1 + ε with small
ε. We then obtain

Us�(x) = √
1 + ε�(x + εx)

≈
(

1 + ε

2

)
[�(x) + εx∂x�(x)]

≈ (1 + iεd̂ )�(x) ⇒

d̂�(x) = −i

(
1

2
+ x∂x

)
�(x) ⇒

d̂ = −i

(
1

2
+ x∂x

)
= − i

2
(∂xx + x∂x ). (22)

The commutation relation that replaces [x̂, p̂] = i in affine
quantization is

[x̂, d̂] = [x̂,−ix∂x] = ix̂. (23)
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By performing a partial integration we obtain

〈d̂†χ |�〉 = 〈χ |d̂�〉

=
∫ ∞

0
dx χ (x)∗

[
−i

(
1

2
+ x∂x

)
�(x)

]
=

∫ ∞

0
dx

[
−i

(
1

2
+ x∂x

)
χ (x)

]∗
�(x)

= 〈d̂χ |�〉. (24)

As long as xχ (x)∗�(x) vanishes at the boundary x = 0, d̂ is
Hermitian. Since square-integrable wave functions are less
singular than 1/

√
x near the origin, this condition is satis-

fied without further domain restrictions. As a result, D(d̂ ) =
D(d̂†) and d̂ is indeed self-adjoint.

The eigenfunctions of d̂ obey

d̂|κ〉 = −i

(
1

2
+ x∂x

)
|κ〉 = κ|κ〉 ⇒

〈x|κ〉 = 1√
l

(x

l

)iκ−1/2
. (25)

Here l is an arbitrarily chosen fixed length scale. Similarly
to the momentum eigenstates |k〉 over R, the eigenstates |κ〉
of d̂ are not normalizable in the usual sense. The analog of
Fourier transformation for canonical quantization is a Mellin-
type transformation [36] for affine quantization

�̃(κ) = 〈κ|�〉 =
∫ ∞

0
dx 〈κ|x〉〈x|�〉

=
∫ ∞

0
dx

1√
l

(x

l

)−iκ−1/2
�(x). (26)

Let us also introduce the unitary operator Ũδ = exp(iδx̂)
which leads to

UsŨδ�(x) = Us exp(iδx)�(x) = √
s exp(iδsx)�(sx),

ŨδsUs�(x) = exp(iδsx)
√

s�(sx). (27)

Hence, in analogy to the Weyl group for canonical quanti-
zation, for affine quantization one obtains the affine group
relation

UsŨδ = ŨδsUs. (28)

III. FROM THE ALTERNATIVE CONCEPT FOR THE
MOMENTUM OPERATOR TO CANONICAL

QUANTIZATION ON THE HALF-LINE

In this section, we introduce an alternative concept for the
momentum operator in a space with sharp boundaries, which
allows us to apply canonical quantization to the half-line.

A. A self-adjoint momentum operator on the half-line

Recently we have developed an alternative concept for
the momentum of a quantum mechanical particle in a 1-d
box [− L

2 , L
2 ] [9], which readily extends to the half-line as

well as to higher-dimensional spaces with sharp boundaries.
For the convenience of the reader, we summarize the most
important aspects of this construction in the Appendix. The
construction results from the continuum limit of a system that

is regularized on a spatial lattice. On a lattice, the derivative
that enters the momentum operator is replaced by a nearest-
neighbor finite difference. One must distinguish forward and
backward derivatives, neither of them being Hermitian. Only
the symmetrized forward-backward derivative, which corre-
sponds to a next-to-nearest neighbor finite difference that
extends over two lattice spacings, results in a Hermitian mo-
mentum operator. The lattice is naturally divided into two
sublattices, one with even and one with odd lattice sites. The
symmetrized forward-backward derivative associated with an
even site then results from the values of the wave function
at the two neighboring odd sites. In the continuum limit, the
sublattice structure naturally leads to a two-component wave
function, on which the momentum operator acts as a 2 × 2
matrix

p̂R = −i

(
0 ∂x

∂x 0

)
= −iσ1∂x, �(x) =

(
�e(x)
�o(x)

)
. (29)

As a result, the problem is elevated to the Hilbert space
L2(R�0) × C2 of square-integrable functions on the double
cover of the half-line. This is the crucial insight that leads to
the construction of a self-adjoint momentum operator.

The full momentum operator p̂R + i p̂I has both a Hermi-
tian component p̂R (which can be extended to a self-adjoint
operator) and an anti-Hermitian component i p̂I with

p̂I = lim
ε→0+

(
δ(x − ε) 0

0 0

)
. (30)

The operator p̂I is self-adjoint and diagonal in the position
basis.

Let us first investigate the Hermiticity of p̂R. By partial
integration we obtain

〈p̂†
Rχ |�〉 = 〈χ | p̂R�〉

= 〈p̂Rχ |�〉 + i[χe(0)∗�o(0) + χo(0)∗�e(0)].

(31)

Next, we impose the boundary condition

�o(0) = λ�e(0), (32)

which constrains the domain D( p̂R). Inserting this relation in
Eq. (31), the Hermiticity condition becomes

[χe(0)∗λ + χo(0)∗]�e(0) = 0. (33)

Since �e(0) can still take arbitrary values, one obtains

χo(0) = −λ∗χe(0). (34)

The operator p̂R is self-adjoint if D( p̂†
R) = D( p̂R), which is

true when λ = −λ∗, such that λ ∈ iR. As a result, we obtain
a 1-parameter family of self-adjoint extensions, characterized
by the purely imaginary parameter λ. Since p̂R is self-adjoint,
it has a complete set of orthonormal eigenstates with corre-
sponding real eigenvalues. The momentum eigenstates, which
obey p̂Rφk (x) = kφk (x) with k ∈ R, are given by

φk (x) = 1√
2

(
exp(ikx) + σ exp(−ikx)
exp(ikx) − σ exp(−ikx)

)
,

σ = 1 − λ

1 + λ
∈ U (1). (35)
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Like the momentum eigenstates |k〉 on the entire real axis, the
states |φk〉 on the half-line are orthonormalized to δ functions,
i.e., 〈φk′ |φk〉 = 2πδ(k − k′).

B. Embedding of Ĥ in L2(R�0) × C2

The search for a self-adjoint momentum operator that is
strictly limited to the half-line has naturally put us into the
Hilbert space L2(R�0) × C2 of the doubly covered positive
real axis. The double cover reflects the importance of even and
odd lattice points in the underlying ultraviolet regularization at
the level of the continuum description that emerges in the limit
of vanishing lattice spacing. In order to apply the alternative
concept for the momentum to the particle on the half-line,
we must embed the original Hamiltonian Ĥ = − 1

2m ∂2
x + V (x)

with the self-adjoint extension parameter γ , which acts in
L2(R�0), into the doubled Hilbert space L2(R�0) × C2. This
is achieved by constructing the Hamiltonian

Ĥ (μ) =
(− 1

2m ∂2
x + V (x) 0
0 − 1

2m ∂2
x + V (x)

)
+ μP̂−. (36)

Here P̂− projects on states �−(x) with �−
o (x) = −�−

e (x). In
the underlying lattice theory, these states have energies at the
lattice cutoff. In order to decouple them from the continuum
theory, we take the limit μ → ∞. The complementary opera-
tor P̂+ projects on the remaining states �+(x) with �+

o (x) =
�+

e (x), which have finite energy, i.e.,

P̂± = 1

2

(
1 ±1

±1 1

)
, P̂2

± = P̂±, P̂+ + P̂− = 1,

�(x) = �+(x) + �−(x), �±(x) = P̂±�(x). (37)

What is the most general boundary condition at x = 0 for
the extended Hamiltonian Ĥ (μ)? The linearity of quantum
mechanics restricts us to writing(

�o(0)
∂x�o(0)

)
= eiη

(
a −b

−c d

)(
�e(0)

∂x�e(0)

)
. (38)

Self-adjointness of Ĥ (μ) again demands that the proba-
bility current density vanishes at the origin, j(0) = 0. For
2-component wave functions the current density takes the
form

j(x) = 1

2mi
[�(x)∗∂x�(x) − ∂x�(x)∗�(x)]

= 1

2mi
[�e(x)∗∂x�e(x) − ∂x�e(x)∗�e(x)

+�o(x)∗∂x�o(x) − ∂x�o(x)∗�o(x)]. (39)

Using j(0) = 0, it is straightforward to derive the conditions
a, b, c, d ∈ R and ad − bc = −1. Together with η, these are
four independent parameters, which define a family of self-
adjoint extensions. In order to correctly embed the original
Hamiltonian Ĥ , the boundary condition must support the
finite-energy states with �+

o (x) = �+
e (x), which requires

eiη = 1, a = 1, b = 0, d = −1. (40)

Using these specific parameters, Eq. (38) reduces to

− c

2
�+(0) − ∂x�

+(0) = 0, �−(0) = 0. (41)

We now identify �+(x) with the wave functions in the original
Hilbert space L2(R�0). Putting γ = −c/2, Eq. (41) reduces
to the Robin boundary condition of Eq. (3), while the wave
functions �−(x) obey Dirichlet boundary conditions. By con-
struction, in the limit μ → ∞ the Hamiltonian Ĥ (μ) has
the same finite-energy spectrum as the original Hamiltonian
Ĥ . The corresponding eigenstates of Ĥ (μ) are just identical
copies of the original eigenstates of Ĥ (renormalized by 1√

2
)

in the upper and lower component of the 2-component wave
function.

C. Momentum measurements on R�0

We are now ready to apply the alternative concept of mo-
mentum to the particle on the half-line. An original wave
function ψ (x) ∈ L2(R�0) is trivially embedded in the doubled
Hilbert space L2(R�0) × C2 as

�+(x) =
(

�+
e (x)

�+
o (x)

)
= 1√

2

(
ψ (x)
ψ (x)

)
. (42)

The probability to measure a momentum value k is determined
by the amplitude

〈φk|�+〉 = 1

2

∫ ∞

0
dx

(
exp(ikx) + σ exp(−ikx)
exp(ikx) − σ exp(−ikx)

)†(
ψ (x)
ψ (x)

)
=

∫ ∞

−∞
dx exp(−ikx)ψ (x)θ (x) = 〈k|ψ〉. (43)

Remarkably, 〈k|ψ〉 is just the amplitude that determines the
probability to obtain the value k in a measurement of the
standard momentum operator p̂ = −i∂x that is self-adjoint
only over the entire real axis. Here, using the step function
θ (x), the wave function ψ (x) has been trivially extended to
the negative real axis. As a result, both the standard and the
alternative concept of momentum yield the same probability
distributions for the measurement results. However, the two
concepts project onto different states after the measurements.
In particular, while a standard momentum measurement puts
the particle also onto the negative real axis, the alternative
concept is strictly limited to the half-line; i.e., also after the
measurement the particle remains on the positive real axis.
Still, also with the alternative concept a momentum measure-
ment transfers an infinite amount of energy to the particle.
This is because the momentum eigenstate φk (x), onto which a
measurement that results in the value k projects, not only has
the finite-energy component φ+

k (x) = 1√
2

exp(ikx) but also the

component φ−
k (x) = 1√

2
σ exp(−ikx), whose energy diverges

in the limit μ → ∞. Interestingly, the purely imaginary self-
adjoint extension parameter λ, which determines σ = (1 −
λ)/(1 + λ) ∈ U (1), does not affect the probability to obtain
a certain momentum measurement result.

As we will see later, the standard and the alternative
concept for the momentum no longer result in the same mea-
surement results when one considers a particle that is confined
to an interval [9]. In that case, a standard momentum measure-
ment catapults the particle outside of the interval and results
in a continuous momentum value. The alternative concept, on
the other hand, yields discrete momentum values and leaves
the particle inside the interval after a measurement.
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D. Canonical quantization on the half-line R�0

As we have seen in Eq. (10), in canonical quantization the
unitary operator Ua = exp(i p̂a) with p̂ = −i∂x performs a co-
ordinate shift, Ua�(x) = �(x + a), while the operator Ũq =
exp(iqx̂) with x̂ = i∂p performs a momentum shift, Ũq�̃(p) =
�̃(p − q) [cf. Eq. (12)]. What is the unitary operator Ṽq that
shifts the eigenstates φk (x) of the self-adjoint momentum op-
erator on the half-line, p̂R = −iσ1∂x, to φk+q(x)? We construct

φk+q(x) = 1√
2

(
exp[i(k + q)x] + σ exp[−i(k + q)x]
exp[i(k + q)x] − σ exp[−i(k + q)x]

)
=

(
cos(qx) i sin(qx)
i sin(qx) cos(qx)

)
× 1√

2

(
exp(ikx) + σ exp(−ikx)
exp(ikx) − σ exp(−ikx)

)
= Ṽqφk (x) ⇒

Ṽq =
(

cos(qx) i sin(qx)
i sin(qx) cos(qx)

)
= exp(iqx̂R), x̂R = σ1x.

(44)

Not surprisingly, the conjugate coordinate to the momentum
p̂R = −iσ1∂x is x̂R = σ1x. Indeed, the two operators obey the
canonical commutation relation [x̂R, p̂R] = i. According to the
Stone–von Neumann theorem [43–46], this implies that x̂R

and p̂R are unitarily equivalent to the standard coordinate x̂
and momentum p̂. While this is true mathematically, if not
properly interpreted, it might be physically misleading. In
particular, while the eigenstates of x̂ describe positions on the
entire real axis, the eigenstates of x̂R describe a double cover
of the half-line. Hence, the situations are, in fact, physically
distinct, but, as we will see explicitly below, indeed mathemat-
ically related by a unitary transformation. This may still seem
surprising, since p̂R possesses the self-adjoint extension pa-
rameter λ ∈ iR which characterizes the domain D( p̂R), while
the standard momentum operator does not. However, two
operators p̂R, which are endowed with different self-adjoint
extension parameters λ and λ′, are indeed related by a unitary
transformation

W = exp(iωσ1) =
(

cos ω i sin ω

i sin ω cos ω

)
,

W (−iσ1∂x )W † = −iσ1∂x, (45)

which leaves the differential expression for p̂R invariant. The
boundary condition �o(0) = λ�e(0) then turns into(

� ′
e(0)

� ′
o(0)

)
= W

(
�e(0)
�o(0)

)
=

(
cos ω�e(0) + i sin ω�o(0)
i sin ω�e(0) + cos ω�o(0)

)
=

(
(cos ω + λi sin ω)�e(0)
(i sin ω + λ cos ω)�e(0)

)
⇒

� ′
o(0) = i sin ω + λ cos ω

cos ω + λi sin ω
� ′

e(0) = λ′� ′
e(0). (46)

As a result, two different operators p̂R, which are associated
with the self-adjoint extension parameters λ and λ′, are related

by the unitary transformation W with

tan ω = i
λ − λ′

1 − λλ′ ,

σ ′ = 1 − λ′

1 + λ′ = exp(−2iω)
1 − λ

1 + λ
= exp(−2iω)σ. (47)

Let us again denote the eigenstates of x̂ as |x〉, such that
x̂|x〉 = x|x〉. Here we limit ourselves to the positive real axis
with x > 0. The eigenstates of x̂R = σ1x are then given by

x̂R|x,+〉 = x|x,+〉, |x,+〉 = 1√
2

(|x〉
|x〉

)
,

x̂R|x,−〉 = −x|x,−〉, |x,−〉 = 1√
2

( |x〉
−|x〉

)
. (48)

The eigenstates |x,+〉 have a positive eigenvalue x > 0 and
belong to the finite-energy sector, i.e., P̂+|x,+〉 = |x,+〉,
while the eigenstates |x,−〉 have a negative eigenvalue −x and
obey P̂−|x,−〉 = |x,−〉, P̂+|x,−〉 = 0.

How does the operator Va = exp(i p̂Ra) act on the eigen-
states |x,±〉? We obtain

Va|x,±〉 = 1

2π

∫ ∞

−∞
dk exp(i p̂Ra)|φk〉〈φk|x,±〉

= 1

2π

∫ ∞

−∞
dk exp(ika)|φk〉〈φk|x,±〉,

〈x,+|φk〉 = 1

2
(1, 1)

(
exp(ikx) + σ exp(−ikx)
exp(ikx) − σ exp(−ikx)

)
= exp(ikx),

〈x,−|φk〉 = 1

2
(1,−1)

(
exp(ikx) + σ exp(−ikx)
exp(ikx) − σ exp(−ikx)

)
= σ exp(−ikx), (49)

which implies

Va|x,+〉 = |x − a,+〉, for 0 � x − a,

Va|x,+〉 = σ |a − x,−〉, for x − a < 0,

Va|x,−〉 = |x + a,−〉, for 0 � x + a,

Va|x,−〉 = σ ∗| − x − a,+〉, for x + a < 0. (50)

Writing x̂R|xR〉 = xR|xR〉, xR ∈ R, we identify |xR〉 = |xR,+〉
for xR > 0, and |xR〉 = | − xR,−〉 for xR < 0. Equation (50)
then implies that, up to a phase σ or σ ∗, Va shifts the eigen-
states of x̂R from |xR〉 to |xR − a〉. Independently of σ , as
a consequence of the Heisenberg algebra [x̂R, p̂R] = i, one
obtains the Weyl group relation

VaṼq = exp(iqa)ṼqVa. (51)

The action of the operators Va and Ṽq is illustrated in Fig. 2.
The operator Va = exp(i p̂Ra) transports states |x,+〉 in the
finite-energy sector to the left, and states |x,−〉, whose energy
is ultraviolet-sensitive, to the right. When a state |x,+〉 is
transported beyond the origin (at x = 0), it turns into the state
|a − x,−〉.

For mathematical purposes, the Weyl groups are more
convenient than the corresponding Heisenberg algebras be-
cause unitary operators are bounded while the corresponding
self-adjoint operators are not. Based upon the Weyl groups
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FIG. 2. Action of the translation operators Va = exp(i p̂Ra) and
Ṽq = exp(iqx̂R ) on the position and momentum eigenstates for the
half-line R�0.

of Eq. (15) and Eq. (51), the Stone–von Neumann theorem
guarantees the unitary equivalence of x̂R and p̂R with x̂ and p̂.
The corresponding unitary transformation U is given by

UVaU
† = Ua, UṼqU † = Ũq,

Ux̂RU † = x̂, U |x,+〉 = |x〉, U |x,−〉 = σ ∗| − x〉,
U p̂RU † = p̂, U |φk〉 = |k〉. (52)

We would like to stress again that this mathematical unitary
transformation relates two physically very different situations.
In particular, while the states |x,+〉 (with x > 0) in the finite-
energy sector are mapped to position eigenstates |x〉 on the
positive real axis, the states |x,−〉 (again with x > 0), which
are mapped to the states | − x〉 on the negative real axis,
actually reside on the positive half-line, but have ultraviolet-
sensitive energies and are removed from the spectrum of the
Hamiltonian Ĥ (μ) in the limit μ → ∞.

E. The classical limit

Until now we have used the term quantization—be it
canonical or affine—without even starting from a classical
theory. Since quantum physics is more fundamental than
classical physics, this way to proceed is not unreasonable.
Until now, we have shown that our alternative concept gives
rise to a self-adjoint momentum operator p̂R = −iσ1∂x that
obeys the canonical commutation relation, [x̂R, p̂R] = i, with
the corresponding coordinate x̂R = σ1x. We now consider the
classical limit in order to demonstrate that the alternative
concept still makes sense when commutators are replaced by
Poisson brackets.

Let us perform a unitary transformation D that diagonalizes
x̂R, p̂R, and Ĥ (μ) such that

Dσ1D† = σ3, D = 1√
2

(
1 1
1 −1

)
,

x̂′
R = Dx̂RD† = xσ3 =

(
x 0
0 −x

)
, x ∈ R�0,

p̂′
R = Dp̂RD† = −iσ3∂x = −i

(
∂x 0
0 −∂x

)
,

Ĥ (μ)′ = DĤ (μ)D†

=
(− 1

2m ∂2
x + V (x) 0
0 − 1

2m ∂2
x + V (x) + μ

)
. (53)

The positive eigenvalues of x̂R correspond to physical points
x ∈ R�0 on the half-line on which finite-energy states are
located. The negative eigenvalues −x of x̂R, on the other hand,
are not associated with the negative real axis, but host states
with energies at the ultraviolet cutoff scale, which are removed
in the limit μ → ∞.

A similar mathematical description arises when one applies
the standard concept of momentum. In that case, one regu-
larizes the problem by assigning a potential V (x < 0) = V0

to points on the negative real axis, and ultimately taking the
limit V0 → ∞. At a formal level V0 then corresponds to μ,
but the physical interpretation is very different. In fact, when
one applies the alternative concept for the momentum, the
particle is strictly limited to the positive real axis, even after a
momentum measurement.

In any case, one can now replace the commutation relation
[x̂′

R, p̂′
R] = i by the classical Poisson bracket relation {x, p} =

1 and replace the Hamiltonian Ĥ (μ)′ in the limit μ → ∞
by the classical Hamilton function H(x, p) = p2

2m + V (x). The
hard wall at x = 0 arises as a consequence of μ → ∞, thus
leading to the standard motion of a classical particle that gets
reflected at the origin. The self-adjoint extension parameters λ

and γ leave no trace in the classical limit. In particular, unlike
the quantum particle, the classical particle cannot be bound to
the reflecting wall at x = 0.

F. Subtleties with commutators and operator domains

Canonical quantization (as defined in the introduction) usu-
ally starts from a classical theory with the Poisson bracket
relation {x, p} = 1, which is then promoted to the commu-
tation relation [x̂, p̂] = i between self-adjoint operators x̂ and
p̂. Until now, it was assumed that on the half-line canonical
quantization fails, simply because in this case no self-adjoint
momentum operator exists for L2(R�0). As we have seen, a
satisfactory self-adjoint momentum operator p̂R = −iσ1∂x as
well as its canonically conjugate coordinate x̂R = σ1x (with
x � 0) indeed exist in the doubled Hilbert space L2(R�0) ×
C2. The operator p̂R is endowed with the self-adjoint exten-
sion parameter λ, and is thus not uniquely defined. However,
as we have seen in Eq. (46), in accordance with the Stone–von
Neumann theorem [43–46], two operators p̂R, which are asso-
ciated with two different self-adjoint extension parameters λ

and λ′, are, in fact, unitarily equivalent.
Following the canonical quantization procedure, one re-

places the classical Hamilton function H(x, p) = p2

2m + V (x)
with a Hamilton operator Ĥ by replacing x with x̂ and p with
p̂. When one replaces the classical kinetic energy T = p2

2m
with the operator

T̂ = p̂2
R

2m
= 1

2m
(−iσ1∂x )2 = − 1

2m
∂2

x 1, (54)

at least at the formal level of differential expressions one
obtains the correct kinetic energy operator that enters the
Hamiltonian Ĥ (μ) of Eq. (36).

At a superficial level one might conclude that T̂ and p̂R

commute. However, T̂ is self-adjoint in L2(R�0) × C2 only
if it is endowed with its own self-adjoint extension param-
eters which characterize the domain D(T̂ ). The most general

033079-9



M. H. AL-HASHIMI AND U.-J. WIESE PHYSICAL REVIEW RESEARCH 3, 033079 (2021)

self-adjoint extension of T̂ is characterized by Eq. (38), which
contains four independent parameters: η, a, b, c, d ∈ R sub-
ject to the constraint ad − bc = −1. However, for the reasons
explained above, here we are only interested in the special
case η = 0, a = 1, b = 0, c = −2γ , d = −1. For general
finite γ < ∞, one then has �e(0) = �o(0), which is in-
consistent with �o(0) = λ�e(0), because λ ∈ iR is purely
imaginary. As a result, the domains of the momentum operator
and the kinetic energy operator are not the same, D( p̂R) �=
D(T̂ ). Only when we choose Dirichlet boundary conditions
(which correspond to γ → ∞), the domain of T̂ is character-
ized by �e(0) = �o(0) = 0, which is automatically consistent
with �o(0) = λ�e(0). Hence, in this special case, D(T̂ ) ⊂
D( p̂R). This implies that an application of p̂R on a wave func-
tion T̂ �(x) ∈ D(T̂ ) is still possible and p̂RT̂ �(x) ∈ D( p̂R).
On the other hand, an application of T̂ on p̂R�(x) ∈ D( p̂R)
is possible only if p̂R�(x) ∈ D(T̂ ). Hence, the commutator
p̂RT̂ − T̂ p̂R cannot act on all wave functions in D( p̂R) or
D(T̂ ), and hence has only a limited formal meaning. As a
result, although the operators p̂R and T̂ seem to commute at
the superficial level of differential expressions, they do not
have common eigenfunctions.

Let us return to the operators x̂ and d̂ = −i( 1
2 + x∂x ) that

we encountered in affine quantization and consider them to-
gether with the operators x̂R = σ1x and p̂R = −iσ1∂x that we
used in canonical quantization. Among those, only the domain
D( p̂R) is further restricted by the condition �o(0) = λ�e(0)
with λ ∈ iR. First of all,

x̂R�(x) =
(

0 x
x 0

)(
�e(x)
�o(x)

)
=

(
x�o(x)
x�e(x)

)
, (55)

which does not lead out of D( p̂R), because x�e(x) =
λx�o(x) = 0 at x = 0. Trivially embedding x̂ into the doubled
Hilbert space, we also obtain(

x̂ 0
0 x̂

)(
�e(x)
�o(x)

)
=

(
x�e(x)
x�o(x)

)
, (56)

which does not lead out of D( p̂R) either. Finally, by also
embedding d̂ into the doubled Hilbert space, one obtains(

d̂ 0
0 d̂

)(
�e(x)
�o(x)

)
=

(
−i( 1

2 + x∂x )�e(x)

−i( 1
2 + x∂x )�o(x)

)
. (57)

Putting x = 0, we then find

−i

(
1

2
+ x∂x

)
�o(0) = − i

2
�o(0) = − i

2
λ�e(0)

= −λi

(
1

2
+ x∂x

)
�e(0). (58)

We thus conclude that d̂ does not lead out of D( p̂R) either.
Since x̂, x̂R, and d̂ are not subject to further domain restrictions
of their own, limiting ourselves to wave functions �(x) ∈
D( p̂R), the following commutators are indeed not just formal
expressions, but mathematically and physically meaningful,

[x̂, x̂R] = 0, [x̂, d̂] = ix̂, [x̂, p̂R] = iσ1,

[x̂R, d̂] = [σ1x,−ix∂x] = iσ1x = ix̂R, [x̂R, p̂R] = i,

[ p̂R, d̂] = [−iσ1∂x,−ix∂x] = −σ1∂x = −i p̂R. (59)

This implies that affine and canonical quantization are fully
consistent with each other and can be implemented simulta-
neously.

G. Summary of the canonical quantization procedure

To summarize, the resulting canonical quantization proce-
dure consists of the following steps:

(i) Select a classical system characterized by coordinates
x and canonically conjugate momenta p associated with a
classical Hamilton function H(x, p) as well as with some
observables A(x, p).

(ii) Identify an appropriate Hilbert space in which to
realize the time evolution and the measurements for a corre-
sponding quantum system.

(iii) Replace classical Poisson bracket relations by formal
commutation relations.

(iv) Realize the commutation relations by differential ex-
pressions.

(v) Extend the differential expressions to self-adjoint op-
erators.

(vi) Make a specific choice of self-adjoint extension pa-
rameters and thus of the corresponding operator domains.

(vii) Return to the formal commutation relations, investi-
gate whether they are affected by domain incompatibilities,
and take this into account properly.

(viii) If the canonical commutation relation between po-
sition and momentum itself is compromised by domain
incompatibilities, try to replace the position or the momentum
operator by more appropriate operators that are unaffected by
such subtleties.

As we have seen, the identification of an appropriate
Hilbert space may be nontrivial and may depend on the set
of observables to be measured. In particular, for the particle
on the half-line the time evolution driven by the Hamiltonian
Ĥ can be realized in the Hilbert space L2(R�0). However, in
order to consider momentum measurements, the Hilbert space
must be doubled to L2(R�0) × C2 and the Hamiltonian must
be extended accordingly to Ĥ (μ). In the absence of subtle
Hilbert space or domain incompatibility issues, all relevant
commutators correctly reflect the relations between the var-
ious operators, and the procedure outlined above simplifies
considerably. When such subtleties do arise, on the other
hand, naively applying the commutation relations that result
from classical Poisson brackets may lead to wrong results.
This would happen, for example, if one would not realize that
the self-adjoint operators p̂R and T̂ do not commute, although
the corresponding differential expressions seem to suggest
this. In such a case, it is necessary to properly address the
subtleties, which is possible using the well-developed mathe-
matical theory that was initiated by von Neumann [27].

The remaining steps for addressing the quantum dynam-
ics are the usual ones, but they are strongly affected by the
selected operator domains:

(i) Employ the Hamiltonian to determine the wave func-
tion that solves the Schrödinger equation.

(ii) Solve the eigenvalue problem for the operators that
describe observables to be measured.

(iii) Project the wave function on the eigenfunction of an
observable in order to predict the probability to measure the
corresponding eigenvalue.
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It should be stressed that there is absolutely nothing wrong
with affine quantization applied to the half-line. In view of
our construction, it is just no longer the only quantization
procedure that is available in this case.

H. Is canonical quantization a fine quantization
for the half-line?

Is there anything wrong with the above canonical quanti-
zation procedure applied to the half-line? We will now argue
that this admittedly somewhat subtle procedure is completely
fine, and, in fact, very natural in a continuous space with sharp
boundaries. First of all, in order to motivate the construction
of p̂R in the first place, in [9] we have introduced an ultravi-
olet regularization by replacing the continuum with a spatial
lattice with N points. The resulting Hilbert space is then N-
dimensional. In a finite-dimensional Hilbert space, there is
no difference between Hermiticity and self-adjointness, and
one need not worry about the domains of operators. The
lattice variant of the momentum operator p̂R results from a
symmetrized forward-backward lattice derivative that extends
over two lattice spacings. The lattice variant of the kinetic
energy operator T̂ is described by a standard finite-difference
lattice version of a second derivative. The low-energy physics
of the lattice system does not require an extension of the
Hilbert space and does not depend on any operator domain
issues. If we interpret the lattice spacing as mimicking a
shortest relevant physical length scale, such as a crystal lattice
spacing in a quantum dot, or the Planck length in an interval
of extra-dimensional space, every Hermitian operator would
automatically be self-adjoint and could act in the entire Hilbert
space. In particular, the mathematical subtleties related to
operator domains would have no effect on the physics.

However, also from a physics point of view, it is desirable
to derive a low-energy effective description of the underlying
lattice physics, by taking the continuum limit of vanishing
lattice spacing. This would have been straightforward if we
would care only about the spectrum of the Hamiltonian. In
fact, one could then stay within the Hilbert space L2(R�0).
Since we also care about the momentum operator, the sit-
uation is more subtle. In particular, the crucial concept of
even and odd lattice points naturally leads to the doubled
Hilbert space L2(R�0) × C2. As we have seen, the embedding
of the original Hamiltonian Ĥ into this framework leads to
the Hamiltonian Ĥ (μ) with the specific self-adjoint extension
parameters of Eq. (40). The limit μ → ∞ removes those
states from the finite-energy spectrum whose lattice variants
have energies at the cutoff scale. This inevitably leads to the
different operator domains, D( p̂R) �= D(Ĥ (μ)).

While the resulting canonical quantization procedure may
seem unnecessarily complicated, it is the price a physicist
has to pay for using a low-energy continuum description
in an infinite-dimensional Hilbert space. This description
is, in fact, mathematically quite elegant, but admittedly
not completely straightforward. A straightforward alterna-
tive description could stay on the lattice without taking the
continuum limit. However, such a formulation is not very
transparent, it leads to more complicated variants of the
Schrödinger equation, and it does not correspond to the stan-
dard quantum mechanical continuum description. We suggest

that it is worth familiarizing oneself with the differences
between Hermiticity and self-adjointness, and thus with the
issues related to operator domains, even if this may require an
expansion of the sometimes prevailing practices in quantum
mechanics.

IV. CANONICAL QUANTIZATION IN AN INTERVAL
AND ON A CIRCLE

In this section, we apply the alternative concept for the
momentum to an interval, which allows us to extend canonical
quantization to that case as well. We then relate the results to
the well-understood situation on a circle.

A. Canonical quantization in the interval [0, L]

In [9] we have introduced the alternative concept for the
momentum operator in an interval [− L

2 , L
2 ]. In that work we

have only briefly touched upon the corresponding algebra
that relates the finite-volume momentum to its corresponding
conjugate coordinates. Here we consider this problem in more
detail. We shift the interval to [0, L] in order to be able to
recover the half-line in the limit L → ∞.

In an interval, the domain D( p̂R) of the finite-volume
momentum operator p̂R is characterized by two self-adjoint
extension parameters, λ and λL, associated with the two ends
of the interval. In the interval [0, L] the boundary conditions
are

�o(0) = λ�e(0), �o(L) = λL�e(L), λ, λL ∈ iR�0.

(60)

The corresponding momentum eigenfunctions φk (x) are still
given by Eq. (35). However, in contrast to the half-line, in the
interval the momentum k is quantized and obeys the condition

exp(2ikL) = (1 − λ)(1 + λL )

(1 + λ)(1 − λL )
= σσ ∗

L = exp(iθ ). (61)

For λ = λL this leads to k = πn
L , n ∈ Z, while in general

k = π

L

(
n + θ

2π

)
, n ∈ Z. (62)

Adjacent momentum eigenvalues are hence separated by π
L .

The self-adjoint extension parameter θ is invariant against the
unitary transformation W of Eq. (45) because

exp(iθ ′) = σ ′σ ′
L
∗ = exp(−2iω)σ exp(2iω)σ ∗

L

= σσL
∗ = exp(iθ ). (63)

Here we have used Eqs. (61) and (47).
What is the unitary operator that translates the momentum

eigenfunctions by π
L ? Using Eq. (44), which is still applicable

in the interval, we obtain

φk+π/L(x) = Ṽπ/Lφk (x),

Ṽπ/L = exp
(

i
π

L
x̂R

)
=

(
cos πx

L i sin πx
L

i sin πx
L cos πx

L

)
. (64)

The fact that Ṽπ/L acts as a shift operator for the momentum
also reflects itself in the commutation relations

[ p̂R, Ṽπ/L] = π

L
Ṽπ/L, [ p̂R, Ṽ †

π/L] = −π

L
Ṽ †

π/L. (65)
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Since for x = 0 and x = L the operator Ṽπ/L reduces to
1, for a wave function �(x) ∈ D( p̂R) [which obeys �o(0) =
λ�e(0) and �o(L) = λL�e(L)] one obtains (Ṽπ/L�)o(0) =
λ(Ṽπ/L�)e(0) and (Ṽπ/L�)o(L) = λL(Ṽπ/L�)e(L). As a result,
Ṽπ/L�(x) ∈ D( p̂R), which means that Ṽπ/L does not lead out
of the domain D( p̂R). This implies that the commutation re-
lations of Eq. (65) are not just formal relations, but are fully
consistent with the domains of the corresponding operators.

It should be noted that the canonical commutation relation
[x̂R, p̂R] = i, which is completely appropriate on the half-
line, is no longer a meaningful expression in the interval.
This is because, in contrast to Ṽπ/L, the operator x̂R leads
out of the domain D( p̂R). This follows from (x̂R�)e(L) =
L�o(L) = LλL�e(L) = λL(x̂R�)o(L), which is inconsistent
with the domain condition (x̂R�)o(L) = λL(x̂R�)o(L). Hence,
in the interval [0, L] the commutation relations of Eq. (65)
replace the canonical commutation relation [x̂R, p̂R] = i. This
is another example where the last step in the canonical quan-
tization procedure is crucial: “If the canonical commutation
relation between position and momentum itself is compro-
mised by domain incompatibilities, try to replace the position
or the momentum operator by more appropriate operators that
are unaffected by such subtleties.” Starting from the original
position and momentum operators x̂ and p̂ = −i∂x, which no
longer obey the canonical commutation relation on the half-
line, we were led to the operators x̂R = σ1x and p̂R = −iσ1∂x,
which indeed satisfy [x̂R, p̂R] = i. Moving on to an interval,
we now realize that this relation again seizes to hold, which
motivated us to replace x̂R by the more appropriate opera-
tor Ṽπ/L = exp(i π

L x̂R) that obeys the commutation relations
Eq. (65).

How does the operator Va = exp(i p̂Ra) act on the x̂R eigen-
states |x,±〉 (with x ∈ [0, L]) of Eq. (48)? In close analogy to
Eq. (50), for a ∈ [−L, L) one obtains

Va|x,+〉 = σL|a − x + 2L,−〉, for L � x − a < 2L,

Va|x,+〉 = |x − a,+〉, for 0 � x − a < L,

Va|x,+〉 = σ |a − x,−〉, for − L � x − a < 0,

Va|x,−〉 = σ ∗
L | − x − a + 2L,+〉, for L � x + a < 2L,

Va|x,−〉 = |x + a,−〉, for 0 � x + a < L,

Va|x,−〉 = σ ∗| − x − a,+〉, for − L � x + a < 0. (66)

Independently of σ or σL, as a consequence of Eq. (65) one
then obtains the Weyl group relation

VaṼπ/L = exp
(

i
π

L
a
)
Ṽπ/LVa. (67)

The action of the operators Va and Ṽπ/L is illustrated in Fig. 3.
Since in the interval momentum is quantized, in the corre-
sponding momentum space there are only discrete translations
by multiples of π

L , which are generated by Ṽπ/L. Despite
the fact that there is no translation symmetry in the inter-
val [0, L] (which is the reason why the original momentum
operator p̂ = −i∂x is not self-adjoint), the momentum oper-
ator p̂R = −iσ1∂x indeed generates infinitesimal translations
in the doubly covered interval [0, L]. As illustrated in Fig. 3,
Va = exp(i p̂Ra) acts like a periodic “conveyor belt,” which
transports states |x,+〉 (in the finite-energy sector) to the left,

FIG. 3. Action of the translation operators Va = exp(i p̂Ra) and
Ṽπ/L = exp(i π

L x̂R ) in the continuous position and discrete momentum
eigenstates for the interval [0, L].

and states |x,−〉 (which lie in the sector of states whose
energy is ultraviolet-sensitive) to the right. When a state |x,+〉
is transported beyond the origin (at x = 0), it turns into the
state |a − x,−〉. When such a state is transported further be-
yond the other end of the interval (at x = L), it returns to the
finite-energy sector.

It is a matter of definition whether one wants to classify the
situation in the interval as belonging to “canonical quantiza-
tion.” We prefer to do so, despite the fact that x̂R and p̂R no
longer satisfy a meaningful canonical commutation relation.
The reason for this is simply that in a finite volume momentum
is quantized. As a consequence, x̂R can no longer generate
infinitesimal translations in momentum space. The appropri-
ate discrete momentum translations by π

L are generated by
Ṽπ/L = exp(i π

L x̂R). As a result, the commutation relations of
Eq. (65) replace the usual canonical commutation relation.
In any case, the corresponding Weyl group of Eq. (67) has
the same form as in the other cases of canonical quantization,
and thus using the term “canonical quantization” also for the
interval is indeed justified.

B. Comparison with motion on S1

Let us compare the situation in an interval with the well-
understood motion of a quantum mechanical particle on a
circle S1, parametrized by the angle ϕ ∈ [−π, π ]. In that case,
the operator for the linear momentum is replaced by the an-
gular momentum operator L̂ = −i∂ϕ . First, let us investigate
the Hermiticity and self-adjointness of L̂, which acts on wave
functions �(ϕ). Applying partial integration one obtains

〈L̂†χ |�〉 = 〈χ |L̂�〉 =
〈L̂χ |�〉 − i[χ (π )∗�(π ) − χ (−π )∗�(−π )]. (68)

Hermiticity of L̂ hence requires that the expression in square
brackets vanishes. Since, in contrast to an open interval, ϕ =
π and ϕ = −π parametrize the same point on the closed
circle, the boundary condition

�(π ) = ρ�(−π ), (69)

which restricts the domain D(L̂), is local and thus physically
admissible. Inserting this relation in the square brackets in
Eq. (68), and using the fact that �(−π ) can still take arbitrary
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values, one obtains the Hermiticity condition

[χ (π )∗ρ − χ (−π )∗]�(−π ) = 0 ⇒ χ (π ) = 1

ρ∗ χ (−π ),

(70)
which defines the domain D(L̂†). The operator L̂ is self-
adjoint only if D(L̂) = D(L̂†), which is the case when

ρ = 1

ρ∗ ⇒ ρ = exp(iθ ). (71)

It is well known that the angular momentum operator L̂ has a
1-parameter family of self-adjoint extensions parametrized by
the angle θ . The angular momentum eigenstates |n〉 then obey

L̂|n〉 =
(

n + θ

2π

)
|n〉, n ∈ Z,

〈ϕ|n〉 = 1√
2π

exp

[
i

(
n + θ

2π

)
ϕ

]
,

〈π |n〉 = exp(iθ )〈−π |n〉. (72)

It is also well known that ϕ̂ and L̂ do not obey the standard
canonical commutation relation. This is because an operation
with the nonperiodic operator ϕ̂ leads out of the domain of
D(L̂). Instead, the periodic unitary operator Ũ = exp(iϕ̂) acts
as a discrete translation operator of angular momentum, with
which it obeys the commutation relations

[L̂, Ũ ] = Ũ , [L̂, Ũ †] = −Ũ †. (73)

Defining angular eigenstates |ϕ〉 by ϕ̂|ϕ〉 = ϕ|ϕ〉, the oper-
ator Uα = exp(iL̂α), with α ∈ [−π, π ), acts as

Uα|ϕ〉 = exp(iθ )|ϕ − α + 2π〉, for − 2π � ϕ − α < −π,

Uα|ϕ〉 = |ϕ − α〉, for − π � ϕ − α < π,

Uα|ϕ〉 = exp(−iθ )|ϕ − α − 2π〉, for π � ϕ − α < 2π.

(74)

As a result of Eq. (73), one then obtains the Weyl group
relation

UαŨ = exp(iα)ŨUα. (75)

The action of the operators Uα and Ũ is illustrated in Fig. 4.
Angular momentum is quantized in integer units (shifted by
θ

2π
), and the corresponding discrete translation symmetry is

generated by Ũ . The continuous angular rotations described
by Uα = exp(iL̂α) act like the periodic “conveyor belt” asso-
ciated with Va = exp(i p̂Ra) for the interval that is illustrated
in Fig. 3.

The similarities between Eq. (73) for the circle S1 =
[−π, π ] and Eq. (65) for the interval [0, L] are not accidental.
In fact, the operator pairs L̂, Ṽ and p̂R, Ṽπ/L are mathemat-
ically related by a unitary transformation, although they are
physically quite different. Up to phase factors, the unitary
transformation U maps the position eigenstates |x,±〉 in the
interval x ∈ [0, L] to the angular eigenstates |ϕ〉 on the circle
ϕ ∈ [−π, π ]:

UVaU
† = Uα=πa/L, UṼπ/LU † = Ũ ,

Ux̂RU † = L

π
ϕ̂,

FIG. 4. Action of the translation operators Uα = exp(iL̂α) and
Ũ = exp(iϕ̂) on the continuous angle and discrete angular momen-
tum eigenstates for the circle S1 = [−π, π ].

U |x,+〉 =
∣∣∣∣ϕ = πx

L

〉
, U |x,−〉 = σ ∗

∣∣∣∣ϕ = −πx

L

〉
,

U p̂RU † = π

L
L̂, U |φk〉 =

∣∣∣∣n = kL

π

〉
. (76)

Let us check this for consistency. For example, using Eq. (66)
for L � x − a < 2L, which implies π � ϕ − α < 2π , we ob-
tain

Va|x,+〉 = σL|a − x + 2L,−〉 ⇒
UVaU

†U |x,+〉 = σLU |a − x + 2L,−〉 ⇒

Uα=πa/L

∣∣∣∣ϕ = πx

L

〉
= σLσ ∗

∣∣∣∣ϕ = −π

L
(a − x + 2L)

〉
⇒

exp(−iθ )

∣∣∣∣ϕ = π

L
(x − a) − 2π

〉
= σLσ ∗

∣∣∣∣ϕ = π

L
(x − a) − 2π

〉
. (77)

This is indeed consistent, because based on Eq. (61),
exp(iθ ) = σσ ∗

L .
Equation (76) is very similar to Eq. (52) which describes

the mathematical unitary equivalence of the standard oper-
ators x̂ and p̂ acting on wave functions over the entire real
axis with the operators x̂R and p̂R that apply on the half-line,
that followed from the Stone–von Neumann theorem. Also
in that case the mathematical unitary equivalence relates two
physically very different situations.

C. Physical significance of θ

For circular motion, the parameter θ is well known to
represent a magnetic flux that threads the circle, which affects
a charged particle moving around the circle via an Aharonov-
Bohm phase. First of all, since the angles ϕ = ±π parametrize
one and the same point on the circle, in the absence of mag-
netic flux the value of the wave function should be unique at
that point, i.e., �(π ) = �(−π ), such that θ = 0. In the pres-
ence of a magnetic flux �, the angular momentum operator
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takes the form

L̂′ = −i∂ϕ + e�

2π
= −i∂ϕ + θ

2π
, θ = e�. (78)

Here −e is the charge of the particle and (along with h̄) we
have put the velocity of light to 1. One can now perform the
unitary transformation

U (θ ) = exp

(
i

θ

2π
ϕ̂

)
,

L̂ = U (θ )L̂′U (θ )† = −i∂ϕ, �(ϕ) = U (θ )� ′(ϕ), (79)

which implies

�(π ) = exp

(
i
θ

2

)
� ′(π ) = exp

(
i
θ

2

)
� ′(−π )

= exp(iθ )�(−π ). (80)

After the unitary transformation, the wave function �(ϕ) is no
longer single-valued at ϕ = ±π . This is no problem, because
the unitary transformation corresponds to a nonperiodic gauge
transformation. Like the magnetic flux �, the parameter θ

itself is gauge invariant. However, the unitary transformation
U (θ ) moves θ from the operator L̂′ to the (no longer strictly
periodic) wave function �(ϕ).

The similarity with the situation in the interval suggests
that a similar interpretation exists for the corresponding pa-
rameter θ , which results from

exp(iθ ) = σσ ∗
L = (1 − λ)(1 + λL )

(1 + λ)(1 − λL )
. (81)

As we have seen, the unitary transformation W = exp(iωσ1)
of Eq. (45) changes the values of the self-adjoint extension
parameters, such that σ ′ = exp(−2iω)σ , σ ′

L = exp(−2iω)σL,
but leaves θ invariant [cf. Eq. (63)]. Still, we can perform
another x-dependent unitary transformation,

W (θ ) = exp

(
i

θ

2L
σ1x̂

)
= exp

(
i

θ

2L
x̂R

)
, (82)

which implies σ ′ = σ and σ ′
L = exp(−iθ )σL such that

σ ′σ ′
L
∗ = 1. The transformation W (θ ) again represents a gauge

transformation in Hilbert space, which now moves θ from the
boundary conditions on the wave function to the momentum
operator

p̂′
R = W (θ )† p̂RW (θ ) = −iσ1∂x + θ

2L
. (83)

When we perform the unitary transformation on the kinetic
energy T̂ we obtain

T̂ ′ = W (θ )†T̂W (θ ) = p̂′2

2m
1,

p̂′ = −i∂x + θ

2L
= p̂ + eAx, θ = 2eAxL. (84)

In this case, θ manifests itself as a vector potential Ax, or more
precisely as its line integral

∫ L
0 dxAx = AxL that connects

the two boundaries. The original Robin boundary condition,
γ�(0) − ∂x�(0) = 0, of Eq. (3), along with its counterpart at
the other end of the interval, γL�(L) + ∂x�(L) = 0, must also

be transformed accordingly, and one obtains [35]

γ� ′(0) − Dx�
′(0) = 0, γL� ′(L) + Dx�

′(L) = 0,

Dx = ∂x + ieAx. (85)

The covariant derivative Dx also enters the conserved proba-
bility current

j′(x) = 1

2mi
[� ′(x)∗Dx�

′(x) − Dx�
′(x)∗� ′(x)]. (86)

As a result, the boundary conditions of Eq. (85) still guaran-
tee that no probability leaks out of the interval, i.e., j′(0) =
j′(L) = 0.

Under a general gauge transformation ϕ(x) the vector po-
tential and the wave function transform as

ϕAx(x) = Ax(x) − ∂xϕ(x), ϕ� ′(x) = exp [ieϕ(x)]� ′(x).
(87)

The gauge string connecting the two ends of the interval,
capped by the values of the wave function at the end points,

S = |0〉 exp

(
ie

∫ L

0
dx Ax(x)

)
〈L|,

〈� ′|S|� ′〉 = � ′(0)∗ exp

(
ie

∫ L

0
dx Ax(x)

)
� ′(L), (88)

is gauge invariant, i.e., 〈ϕ� ′|ϕS|ϕ� ′〉 = 〈� ′|S|� ′〉. In cases
where such a gauge string stretches through the interval, the
parameter θ appears in the corresponding momentum opera-
tor.

D. Momentum measurements in [0, L]

Let us now consider momentum measurements in the inter-
val [0, L]. For simplicity, we consider a Hamiltonian without
a potential [i.e., V (x) = 0]. First, we investigate Neumann
boundary conditions, which are characterized by γ = 0 at
both ends of the interval. In the limit μ → ∞, the finite-
energy eigenstates of Ĥ (μ) then take the form

Ĥ (μ)ψl (x) = Elψl (x), El = π2l2

2mL2
, l ∈ N�0,

ψ0(x) = 1√
2L

(
1
1

)
,

ψl>0(x) = 1√
L

(
cos(π lx/L)
cos(π lx/L)

)
. (89)

Again for simplicity, we choose λL = λ which implies θ =
0, such that the corresponding momentum eigenvalues and
eigenfunctions are

p̂Rφk (x) = kφk (x), k = πn

L
, n ∈ Z, σ = 1 − λ

1 + λ
∈ U (1),

φk (x) = 1

2
√

L

(
exp(ikx) + σ exp(−ikx)
exp(ikx) − σ exp(−ikx)

)
. (90)

First of all, one obtains 〈ψl | p̂R|ψl〉 = 0. Irrespective of the
value of λ, when one projects them onto the finite-energy
sector, the momentum eigenstates are just φ+

k,e(x) = φ+
k,o(x) =

1
2
√

L
exp(ikx). In the ground state the probability to measure

the momentum value k = 0 is |〈φ0|ψ0〉|2 = 1
2 . Similarly, the
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FIG. 5. Probability to measure the momentum k = π

L n in the en-
ergy eigenstate ψl (x) with l = 7 for Neumann boundary conditions,
as a function of n ∈ {−10, . . . , 10}.

probability to measure k = πn
L with n �= 0 is

|〈φk|ψ0〉|2 = 2

π2n2
, (91)

for odd n and zero otherwise. When one measures the mo-
mentum in an energy eigenstate ψl (x) with l > 0, one obtains
k = ±π l

L each with probability 1
4 . The probability to measure

k = πn
L for n �= ±l is then given by

|〈φk|ψl〉|2 = 4n2

π2(l2 − n2)2
, (92)

if (−1)n = −(−1)l and zero otherwise. Indeed the various
probabilities, which are illustrated in Fig. 5, are correctly
normalized because

1

2
+

∑
n∈Z,n odd

2

π2n2
= 1, for l = 0,

1

4
+ 1

4
+

∑
n∈Z,n even

4n2

π2(l2 − n2)2
= 1, for odd l > 0,

1

4
+ 1

4
+

∑
n∈Z,n odd

4n2

π2(l2 − n2)2
= 1, for even l > 0.

(93)

Let us also consider the momentum uncertainty (�pR)2 =
〈p̂2

R〉 − 〈p̂R〉2 in the energy eigenstate ψl (x). Besides 〈p̂R〉 = 0
one obtains〈

p̂2
R

〉 = π2

L2

∑
n∈Z,n odd

2

π2
→ ∞, for l = 0,

〈
p̂2

R

〉 = π2

L2

(
l2

4
+ (−l )2

4
+

∑
n∈Z,n even

4n4

π2(l2 − n2)2

)
→ ∞, for odd l > 0,

〈p̂2
R〉 = π2

L2

(
l2

4
+ (−l )2

4
+

∑
n∈Z,n odd

4n4

π2(l2 − n2)2

)
→ ∞, for even l > 0. (94)

Hence, for Neumann boundary conditions the momentum
uncertainty diverges for any energy eigenstate. This is a
consequence of the domain incompatibility D(T̂ ) �= D( p̂R).
Although at a formal level of differential expressions the
kinetic energy operator T̂ and the momentum operator p̂R

seem to commute (which would imply a vanishing momentum
uncertainty), the domain incompatibility leads to a completely
different result.

Let us now consider the limit L → ∞ in which we expect
to recover the results for the half-line. For γ = 0, according
to Eq. (6), R(p) = 1. Then, using Eq. (19), for k �= ±p one
obtains

|〈k|ψE 〉|2 = 4k2

(p2 − k2)2
, E = p2

2m
. (95)

For finite L we identify k = πn
L and p = π l

L , such that, using
Eq. (92) for n �= ±l , one gets

|〈φk|ψl〉|2 = 4n2

π2(l2 − n2)2
= 1

L2

4k2

(p2 − k2)2

= 1

L2
|〈k|ψE 〉|2. (96)

The factor 1
L2 is due to the fact that |k〉 and |�E 〉 are normal-

ized to δ functions, while |φk〉 and |ψl〉 are normalized to 1.
In any case, this implies that (with Neumann boundary condi-
tions) in the stationary scattering state ψE (x) = exp(−ipx) +
exp(ipx) the probability to measure a momentum value k = p
or k = −p is 1

4 in both cases. In the remaining half of the cases
the momentum measurement returns a result k �= ±p with a
divergent momentum uncertainty. This somewhat counterin-
tuitive result is again due to domain incompatibilities.

Finally, let us also discuss the standard textbook case of
Dirichlet boundary conditions which are characterized by γ =
∞. The spectrum of finite-energy states then takes the form

Ĥ (μ)ψl (x) = Elψl (x), El = π2l2

2mL2
, l ∈ N>0,

ψl (x) = 1√
L

(
sin(π lx/L)
sin(π lx/L)

)
. (97)

In this case, the probability to measure the momentum k =
p or k = −p is again 1

4 in both cases, and the probability to
measure k �= ±p is

|〈φk|ψl〉|2 = 4l2

π2(l2 − n2)2
, (98)

if (−1)n = −(−1)l and zero otherwise. Again, the probabil-
ities, which are illustrated in Fig. 6, are correctly normalized
because

1

4
+ 1

4
+

∑
n∈Z,n even

4l2

π2(l2 − n2)2
= 1, for odd l > 0,

1

4
+ 1

4
+

∑
n∈Z,n odd

4l2

π2(l2 − n2)2
= 1, for even l > 0.

(99)
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FIG. 6. Probability to measure the momentum k = π

L n in the
energy eigenstate ψl (x) with l = 7 for Dirichlet boundary conditions,
as a function of n ∈ {−10, . . . , 10}.

In this case one obtains〈
p̂2

R

〉 = π2

L2

(
l2

4
+ (−l )2

4
+

∑
n∈Z,n even

4l2n2

π2(l2 − n2)2

)

= π2l2

L2
, for odd l > 0,

〈
p̂2

R

〉 = π2

L2

(
l2

4
+ (−l )2

4
+

∑
n∈Z,n odd

4l2n2

π2(l2 − n2)2

)

= π2l2

L2
, for even l > 0, (100)

which implies (�pR)2 = 2mEl . Hence, for Dirichlet boundary
conditions the momentum uncertainty in an energy eigen-
state is finite. This is because, in this case, D(T̂ ) ⊂ D( p̂R).
Again using Eq. (6), one now gets R(p) = −1, and following
Eq. (19), for k �= ±p one obtains

|〈k|ψE 〉|2 = 4p2

(p2 − k2)2
= L2|〈φk|ψl〉|2. (101)

For Dirichlet boundary conditions the stationary scattering
state is ψE (x) = exp(−ipx) − exp(ipx). Then the probabil-
ity to measure momentum k = p or k = −p is again 1

4 in
both cases. In the remaining half of the cases the momentum
measurement results in k �= ±p, now with a finite momentum
uncertainty.

V. CONCLUSIONS

We have introduced an alternative concept for a self-adjoint
quantum mechanical momentum operator for an interval
[0, L] and for the half-line R�0. The alternative concept arises
naturally in the continuum limit of the lattice-regularized
problem. On the lattice one distinguishes even and odd lat-
tice points. In the continuum limit, this naturally leads to
a two-component wave function, which is associated with a
doubling of the Hilbert space from L2([0, L]) to L2([0, L]) ×
C2 and from L2(R�0) to L2(R�0) × C2. The additional con-
tinuum states correspond to lattice states with energies at the
cutoff scale. In the continuum limit, these states are removed

from the physical energy spectrum. The key insight underly-
ing the alternative concept is that these states, although they
are ultimately removed to infinite energy, must be kept in
the physical description in order to facilitate the construction
of a self-adjoint momentum operator. Interestingly, although
the resulting momentum operator for the half-line is endowed
with a self-adjoint extension parameter λ (associated with the
origin) and is thus not unique, the results of momentum mea-
surements performed on finite-energy states are independent
of this parameter. In an interval, the momentum operator is
characterized by two self-adjoint extension parameters λ and
λL (associated with the two boundary points). In that case, the
value of the quantized momentum, k = π

L (n + θ
2π

), depends
on the particular combination θ of the two self-adjoint exten-
sion parameters.

Based upon the alternative concept for the momentum op-
erator, canonical quantization becomes applicable both to the
half-line and to an interval. However, due to the existence of
sharp boundaries, self-adjoint extension parameters enter the
description and thus lead to physically inequivalent quantum
variants of the same classical system. This goes beyond the
usual operator ordering ambiguities. In particular, different
operators, like the momentum p̂R and the Hamiltonian Ĥ (μ),
act in different domains, D( p̂R) �= D(Ĥ (μ)), of the Hilbert
space. As a consequence, the commutation relations that result
from classical Poisson bracket relations are just formal equa-
tions relating differential expressions. Understanding the true
nature of the relations between the various operators requires
a careful analysis of the corresponding operator domains.

This is an inevitable consequence of the low-energy con-
tinuum description of a system with sharp impenetrable
boundaries, which are necessarily ultraviolet sensitive. Work-
ing explicitly with an ultraviolet lattice cutoff (representing
the shortest physically relevant distance scale) is straight-
forward and might even be quite physical, but is not very
transparent. A transparent effective low-energy continuum de-
scription, as it is completely common in quantum mechanics,
necessarily uses an infinite-dimensional Hilbert space. As we
have seen, on the half-line or in an interval this requires a
careful application of the canonical quantization procedure.
Familiarizing ourselves with the elegant mathematical frame-
work originally established by von Neumann is very well
worth the effort in order to gain a more complete physical
understanding of these “simple” quantum systems.

It should be mentioned that most of the somewhat subtle
Hilbert space and operator domain issues, associated with the
canonical quantization procedure that we carried out above,
arose only because we decided to construct the momentum
operator in addition to just the Hamiltonian. To a physicist
who favors Everett’s many-worlds interpretation of quan-
tum mechanics [47], this may seem unnecessary, because
any measurement process is then incorporated in the global
Hamiltonian that governs the time evolution of the wave
function of the entire universe. This wave function includes
the quantum system under study, any device that registers
measurement results, as well as the conscious observer who
reads off those results and uses them to draw conclusions
about how the quantum system works. Still, when engaging
in an actual study of an isolated quantum system (rather than
of the universe as a whole), even a hard-line “Everettian”
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FIG. 7. Lattice with N = 9 points in the interval [0, L].

would probably prefer to work with the much more tractable
canonical quantization procedure applied above.

The alternative concept of momentum in a space with
boundaries has potentially far reaching consequences. Its gen-
eralization to higher dimensions is straightforward and was
sketched in [9]. A natural next step, which is currently un-
der investigation, concerns the generalization and physical
interpretation of the Heisenberg uncertainty relation that was
derived for a finite volume with sharp boundaries in [35].
This can be applied, for example, to optical box traps [1] and
quantum dots [2], which may make the alternative momentum
concept experimentally accessible. In this context, it is also
interesting to construct a momentum measurement device, at
least at a theoretical level, for example, along the lines origi-
nally introduced by von Neumann [27]. This implies coupling
the quantum particle to another quantum system that serves as
a measurement device, whose pointer can then be read out at
the classical level. Time-of-flight momentum measurements
of this kind have been discussed, for example, in [48]. Further
applications, again along the lines of [35], suggest themselves
in the context of relativistic fermions, for example, to the
phenomenological MIT bag model [3–5], or to domain wall
fermions residing in an interval of extra-dimensional space
[6,7]. Canonical quantization (which was thought to be in-
applicable because the standard momentum operator is not
self-adjoint) can be applied in all these situations based on
the alternative concept of momentum in a space with sharp
boundaries.
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APPENDIX: LATTICE REGULARIZATION OF THE
MOMENTUM OPERATOR

In order to circumvent the subtleties associated with
Hermiticity versus self-adjointness, which arise because the
Hilbert space is infinite-dimensional, in [9] we have inves-
tigated the problem on the interval in an ultraviolet lattice
regularization. As illustrated in Fig. 7, the interval [0, L] is
then divided into N = L/a segments of size a [not to be con-
fused with the self-adjoint extension parameter of Eq. (38)],
with a lattice point in the middle of each segment, such
that x = (n − 1

2 )a, n ∈ {1, 2, . . . , N}. The Hilbert space then
becomes N-dimensional and self-adjointness becomes indis-
tinguishable from Hermiticity. As a result, there are no longer
any domain issues, since every operator can act in the entire
finite-dimensional Hilbert space.

The lattice momentum operator is represented by forward
and backward discretized derivatives:

p̂F = − i

a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
0 0 −1 . . . 0 0 0

. . . . . . . .

. . . . . . . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 λL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

p̂B = − i

a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ 0 0 . . . 0 0 0
−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

. . . . . . . .

. . . . . . . .

0 0 0 . . . 1 0 0
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A1)

On the lattice, the parameters λ, λL ∈ iR are directly incor-
porated in the corresponding matrices. In the continuum limit
a → 0 they turn into self-adjoint extension parameters. Nei-
ther p̂F nor p̂B are Hermitian matrices. It is natural to construct
the following combinations:

p̂R = 1

4
( p̂F + p̂†

F + p̂B + p̂†
B)

= − i

2a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ 1 0 . . . 0 0 0
−1 0 1 . . . 0 0 0
0 −1 0 . . . 0 0 0

. . . . . . . .

. . . . . . . .

0 0 0 . . . 0 1 0
0 0 0 . . . −1 0 1
0 0 0 . . . 0 −1 λL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

i p̂I = 1

4
( p̂F − p̂†

F + p̂B − p̂†
B)

= i

2a
diag(1, 0, 0, . . . , 0, 0,−1). (A2)

The resulting momentum operator p̂R + i p̂I is not Hermitian,
but has a Hermitian component p̂R and an anti-Hermitian
component i p̂I , which is diagonal in the position basis.
The Hermitian component p̂R corresponds to a symmetrized
forward-backward next-to-nearest neighbor derivative that ex-
tends over two lattice spacings.

The lattice eigenvalue problem of p̂R is given by

p̂Rφk,x = 1

a
sin(ka)φk,x, (A3)

and the momentum quantization condition takes the form

exp(2ikL) = [1 − λ exp(ika)][1 + λL exp(ika)]

[exp(ika) + λ][exp(ika) − λL]
. (A4)

This relation reduces to Eq. (61) in the continuum limit.
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