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Radial lattice quantization of 3D ϕ4 field theory
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The quantum extension of classical finite elements, referred to as quantum finite elements (QFE) [R. C.
Brower et al., Lattice ϕ4 field theory on Riemann manifolds: Numerical tests for the 2-d Ising CFT on S2,
Phys. Rev. D 98, 014502 (2018). and R. C. Brower et al., Lattice dirac fermions on a simplicial Riemannian
manifold, Phys. Rev. D 95, 114510 (2017).], is applied to the radial quantization of 3D ϕ4 theory on a
simplicial lattice for the R × S2 manifold. Explicit counterterms to cancel the one- and two-loop ultraviolet
defects are implemented to reach the quantum continuum theory. Using the Brower-Tamayo [Embedded
Dynamics for ϕ4 Theory, Phys. Rev. Lett. 62, 1087 (1989).] cluster Monte Carlo algorithm, numerical
results support the QFE ansatz that the critical conformal field theory (CFT) is reached in the continuum
with the full isometries of R × S2 restored. The Ricci curvature term, while technically irrelevant in the
quantum theory, is shown to dramatically improve the convergence, opening the way for high precision
Monte Carlo simulation to determine the CFT data; operator dimensions, trilinear operator product
expansion couplings, and the central charge.

DOI: 10.1103/PhysRevD.104.094502

I. INTRODUCTION

Numerous important aspects of nonperturbative quantum
field theories are best understood on curved space-time
manifolds. As an example, when a conformal field theory
(CFT) on Euclidean Rd is mapped to the Riemann sphere,
Sd, the free energy gives direct access to the central charge
[4]. Mapped alternatively to the cylinder [5], R × Sd−1,
“time” translations along the length of the cylinder are
generated by the dilatation operator, giving direct access
to conformal dimensions and the conformal partial-wave
expansion [6]. Model building to search for potential new
physics in composite Higgs or dark matter scenarios
beyond the standard model increasingly focus on small
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deformations from conformal infrared fixed points. These
theories can be realized by lattice field theory [7–9] by
adding Tev scale fermions, or described by Hamiltonian
truncation [10] by adding mass deformations. Even for
conventional Euclidean lattice QCD, the R × Sd−1 mani-
fold could be advantageous for describing scattering phase
shifts with a spherical finite volume transverse to Euclidean
time. A separate set of examples include nonperturbative
studies of quantum gravity in the AdS=CFT framework
[11], in which global Euclidean hyperbolic space maps at
the boundary of AdSdþ1 to a CFT on Sd or R × Sd−1.
While there is a comprehensive literature, cf. [12–14], on

the extension of Feynman’s perturbation theory for
renormalizable field theories to general smooth Riemann
manifolds, the aforementioned problems stand to benefit
greatly from a rigorous, nonperturbative method. One
solution is the extension of lattice field theory methods
beyond Euclidean flat space. Towards this solution, we
have developed in previous works a quantum extension of
classical finite elements by placing the lattice theory on a
simplicial complex with appropriate counterterms, referred
to as quantum finite elements (QFE) [1,2]. Within this
framework, sophisticated algorithmic tools developed for
lattice QCD can be leveraged for application to problems
using curved manifolds.
In this work, we choose to study the classic prototype of

3D ϕ4 in radial quantization on R × S2 in comparison with
the well-studied 3D Ising CFT [15]. This serves as both an
additional test of the QFE approach, as well as a demon-
stration of the utility of combining radial quantization and
lattice methods. In this approach, translations, t → tþ t0,
along the cylinder correspond to exponential displacements
in the radial distance r ¼ R expðtÞ, allowing one to reach
the equivalent of exponential scales on a finite lattice. We
show that the exponentially decaying two-point correlators
give direct access to eigenvalues of the dilatation operator,
and Wilson coefficients of the conformal partial-wave
expansion may be extracted from four-point correlators.
However, as pointed out by Cardy [16,17], for d > 2 a

lattice implementation faces severe difficulties, because
there is no uniform sequence of lattices approaching the
spherical manifold, Sd−1. A first attempt by Brower,
Fleming, and Neuberger [18] placed the 3D Ising model
on a cylindrical lattice R × I with the sphere S2 approxi-
mated by a uniformly triangulated icosahedron I as
illustrated on the left side of Fig 1. While the results were
encouraging, not surprisingly a small breaking of spherical
symmetry was observed in the splitting of the (2lþ 1)-
degenerate rotational multiplets. The third descendant
(l ¼ 3) splits into two irreducible multiplets of the icosa-
hedral group, even when extrapolated to the continuum
limit. To remove this defect, a new lattice discretization
method has been developed, referred to as QFE [2],
conjectured to converge to the proper continuum limit

for any renormalizable quantum field theory on a smooth
Riemannian manifold.
To understand the nature of this conjecture it is useful to

contrast our QFE simplicial lattice with the earlier pioneer-
ing results of Hasenbusch [19] carried out on the flat
hypercubic lattice using almost identical Monte Carlo
sampling. Hasenbusch demonstrates that the lattice ϕ4

field theory has a critical line in the space of dimensionless
bare couplingsm0 ¼ am; λ0 ¼ aλ with one relevant param-
eter and a Wilson Fisher fixed point at strong coupling as
a → 0. We conjecture that the QFE discretization—after
renormalization by quantum counterterms up to two loops
in perturbation theory, as we shall explain in detail below—
contains the same critical surface in the bare coupling
space. The numerical results presented in this work support
this. As discussed in the conclusion, future simulation at
higher precision as well as theoretical developments, e.g.,
for nonperturbative QFE counterterms, will seek to further
strengthen the conjectured convergence.
The QFE construction begins by defining a series of

refined simplicial lattices, which approach the target
manifold, and a classical lattice action using the finite-
element method (FEM) based on the discrete exterior
calculus (DEC). While this is sufficient for classical
solutions to the equation of motion, it fails in the quan-
tum-path integral due to sensitivity to the irregular UV
cutoff intrinsic to the simplicial approximation of the target
manifold. To overcome this problem, explicit QFE counter-
terms are introduced in order to restore the exact non-
perturbative quantum physics as the cutoff is removed.
To date this QFE method has been tested with numerical

simulations for the 2D ϕ4 theory on S2 and has been found
to be in precise agreement with the exact solution of the
minimal c ¼ 1=2 Ising CFT [1]. The goals of this paper
are to test the QFE method for ϕ4 theory on R × S2 in
comparison with the 3D Ising CFT and to demonstrate
its potential to give high-precision lattice Monte Carlo
predictions to extend and complement results from the
conformal bootstrap [15,20].

FIG. 1. The Lth level refinement of the icosahedron subdivides
triangles into L2 smaller triangles for a total of N△ ¼ 20L2 faces,
E ¼ 30L2 edges, and N ¼ 2þ 10L2 sites. Illustrated on the left
is the L ¼ 3 icosahedral refinement with 2þ 10L2 ¼ 92 vertices
and on the right subsequently projected onto the unit sphere.
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II. CLASSICAL SIMPLICIAL LATTICE ACTION

Conformal field theories have an enlarged symmetry
group, promoting the D-dimensional Euclidean-Poincaré
group to the conformal groupO (dþ 1, 1) or the isometries
of the global AdSdþ1 manifold. As a consequence, a CFT
can equivalently be quantized after a Weyl transformation
from a flat Euclidean manifold Rd to a cylinder R × Sd−1,

ds2flat ¼ dxμdxμ ¼ r2½ðd log rÞ2 þ dΩ2
d−1�

⟶
Weyl

ds2cylinder ¼ dt2 þ R2dΩ2
d−1; ð1Þ

with a sphere of fixed radius R and flat coordinate
t ¼ logðr=RÞ along the length of the cylinder. In radial
quantization the dilatation operator, which is conjugate
to translations in radial time, t, plays the role of the
Hamiltonian. The cylinder, illustrated in Fig. 7, resides
on the boundary of AdSdþ1 space. The problem, as in all
lattice constructions, is to construct a discrete lattice action
which is rigorously equivalent to the continuum-quantum
path integral on the target manifold as the cutoff is
removed. Since the radius of the sphere provides an
intrinsic IR scale, the continuum limit for the conformal
theory is now defined by the limit, a=R → 0, relative to the
UV cutoff at lattice spacing a.
We begin by implementing a finite element method

discretization of the continuum action,

Scont ¼
1

2

Z
M

ddx
ffiffiffi
g

p ½gμν∂μϕðxÞ∂νϕðxÞ þ ξ0Ricϕ2ðxÞ

þm2ϕ2ðxÞ þ λϕ4ðxÞ�; ð2Þ

for ϕ4 theory on a curved Riemann manifold. The action
includes a Ricci scalar term with nonzero coefficient, ξ0 ¼
ðd − 2Þ=ð4ðd − 1ÞÞ for d ≥ 3. For our radial quantization
on R × Sd−1, the Ricci term, Ric ¼ ðd − 1Þðd − 2Þ=R2, is
a constant determined by the radius of the sphere, and as
such represents a shift in the mass. For the massless free
theory (m ¼ λ ¼ 0) in 3D, it is a relevant marginal operator
required by conformality. As a result the free conformal
scalar is gapped with a spectrum, lðlþ 1Þ þ 1=4 ¼
ðlþ 1=2Þ2, that is the square of the spectrum, lþ 1=2,
for a free massless Dirac operator. The dimension of
the conformal scalar primary and its descendants is
Δϕ;l ¼ 1=2þ l.
To construct the radial lattice action for R × S2, we

introduce a sequence of simplicial lattice approximations
to S2, as illustrated in Fig. 1. The simplicial lattice is refined
by introducing finer triangulations on each icosahedral face
and projecting onto geodesics on the sphere. This spherical
lattice is copied uniformly along theR cylindrical axis with
lattice spacing at. It is important to carefully introduce
the FEM action in physical units relative to the radius, R, of
the sphere,

SFEM ¼ at
2

� X
y∈hx;yi

l�xy
lxy

ðϕt;x − ϕt;yÞ2 þ
ffiffiffiffiffi
gx

p
4R2

ϕ2
t;x

þ ffiffiffiffiffi
gx

p �ðϕt;x − ϕtþ1;xÞ2
a2t

þm2ϕ2
t;x þ λϕ4

t;x

��
; ð3Þ

with the Einstein summation convention for x ¼ 1; 2;…; N
for sites on each sphere and t ¼ 1; 2;…; Lt along the length
of the cylinder with periodic boundary conditions. On any
2D curved manifold this discrete scalar Laplacian on a
triangular simplex coincides exactly with both linear
FEM and with the form given earlier by Hamber and
Williams [21–23] in the context of Regge calculus for
dynamical gravity.
Another attractive approach is the use of DEC imple-

mentation on a simplicial complex and its Voronoi dual
which again coincides with linear FEM and Regge calculus
for d ¼ 2 but differs from linear elements for d > 2. The
use of DEC is implicit in the pioneering work by N. H.
Christ, R. Friedberg, and T. D. Lee [24] in their work on
random lattices in flat space. This formalism provides a
natural extension for scalar fields in general dimensions as
well as coupling to gauge [24] and Dirac fields [25]. In this
context the lxy are the lengths of the edges of triangles
shown on the right side of Fig. 1, l�xy are the lengths
of edges between circumcenters on the dual lattice, andffiffiffiffiffi
gx

p
are the Voronoi dual areas at each site. On a general n-

dimensional simplicial complex, the resultant DEC
Laplace-Beltrami operator is

�d � dϕx ¼
1

jσ�0ðxÞj
X

y∈hx;yi

jσ�1ðxyÞj
jσ1ðxyÞj

ðϕx − ϕyÞ; ð4Þ

with the replacement: lxy → jσ1ðxyÞj, l�xy → jσ�1ðxyÞj andffiffiffiffiffi
gx

p
→ jσ�0ðxÞj. The discrete Hodge Star ð�Þ transfers

differential forms between the simplicial lattice and
Voronoi dual polytopes, weighted by appropriate volume
elements. The reader is referred our earlier papers [1,2,26]
and to the vast FEM literature for details [27].
It is important to appreciate the theoretical consequences

of the discrete exterior calculus. When properly applied,
DEC guarantees exact convergence of the simplicial
action Eq. (3) to the classical action Eq. (2), and therefore
all lattice solutions converge to solutions of the Euler-
Lagrange partial differential equations as the cutoff is
removed. Moreover, the DEC formalism extends naturally
to higher dimensions with higher-spin gauge fields and
Kähler-Dirac or staggered fermions. With the addition
of a FEM spin connection, an extension to Wilson lattice
fermions, including a domain wall with an extra flat
direction, was formulated in Ref. [2].
In the next step, we follow the standard methods of

numerical simulation by rewriting the lattice action in terms
of dimensionless fields and parameters,
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S ¼ 1

2

� X
y∈hx;yi

l�xy
lxy

ðϕt;x − ϕt;yÞ2 þ
a2

4R2

ffiffiffiffiffi
gx

p
ϕ2
t;x

þ ffiffiffiffiffi
gx

p �
a2

a2t
ðϕt;x − ϕtþ1;xÞ2 þm2

0ϕ
2
t;x þ λ0ϕ

4
t;x

��
: ð5Þ

On a hypercubic lattice, with a uniform lattice spacing, a,
this is equivalent to working in units so that a ¼ 1. Here it
is a bit subtler. The geometry of the manifold has
introduced an explicit IR length scale through the radius
of the sphere and two UV cutoffs; the longitudinal lattice
spacing, at, and a characteristic edge length a2 on the
sphere. For convenience, we have defined a2 relative to the
average area of a Voronoi polytope, A� ¼h ffiffiffiffiffi

gx
p i¼a2

ffiffiffi
3

p
=2,

at each vertex. Of course, there are other possible choices
such as average area of triangles, A△ ≃ A�=2 ¼ a2

ffiffiffi
3

p
=4 or

the average squared edge length, hl2xyi ≃ 0.752a2, which are
equivalent to Oða4=R2Þ.
To unambiguously recover the physical scales, we

need to provide our change to dimensionless variables,
g̃x and ϕ̃t;x,

ffiffiffiffiffi
gx

p ¼ A� ffiffiffiffiffi
g̃x

p
; ϕt;x ¼ ϕ̃t;x=Z0: ð6Þ

This fixes the mean lattice measure h ffiffiffiffiffi
g̃x

p i exactly to one
and by choosing Z2

0 ¼ atA�=a2 preserves the form of the
mass terms,

1

N

X
x

ffiffiffiffiffi
g̃x

p ¼ 1; at
ffiffiffiffiffi
gx

p
m2ϕ2

tx ¼
ffiffiffiffiffi
g̃x

p
a2m2ϕ̃2

tx: ð7Þ

Introducing a dimensionless mass (m0 ¼ am), coupling
(λ0 ¼ a2λ=Z2

0), and dropping the tilde notation gives our
lattice action in Eq. (5). In our simulation, we also set the
bare speed of light to one; c0 ¼ a=at ¼ 1. As a result, we
have achieved the traditional advantage of setting all terms
toOð1Þ in the lattice action, independent of the refinement.
Two consequences of our rescaling conventions should

be noted. First, the rescaled weights of the kinetic term give

X
hx;yi

l�xy=lxy ¼
2

3
ð1þ ϵ0ÞE; ð8Þ

when summed over E edges. The 2=3 factor is a conse-
quence of the equilateral triangulation of the icosahedron,
each of which contributes exactly one to the sum. However,
when the triangles are projected obliquely onto the
sphere they are no longer equilateral so that the DEC
weights increase the sum by a small geometrical fraction;
ϵ0 ¼ 0.003285þOða2=R2Þ. We also note that using piece-
wise linear finite elements or the DEC, the Oða2=R2Þ
corrections in the classical action (5) are not determined. At
present in the quantum context, we see no compelling
advantage to higher order elements.

Second, due to the intrinsic geometry of the manifold,
the action still has explicit lattice spacing dependence in
the coefficient of the lattice Ricci scalar. In our rescaling
convention, Eq. (6), this coefficient is determined relative to
area of the sphere,

a2=R2 ¼ 4πa2=ðA�NÞ ¼ 8π=ð
ffiffiffi
3

p
NÞ: ð9Þ

For the nonperturbative CFT in the continuum limit the
Ricci term is an irrelevant operator due to the factor of
a2=R2 combined with the known scaling dimensionΔϵ > 1

for ϕ2. In our first extensive Monte Carlo simulations, we
have dropped the Ricci term in Eq. (5) to demonstrate
convergence to continuum CFT, as a → 0. Although the
Ricci term is not required, we demonstrate subsequently the
major advantage of including it is to accelerate convergence
to the continuum.

III. RESTORING SYMMETRIES IN THE QFT

Now we check whether or not our classical FEM action
in Eq. (5), is capable of converging to the full quantum ϕ4

theory on R × S2. To this end, we search for a critical
surface in the bare coupling space ðm2

0; λ0Þ with extensive
Monte Carlo simulations. To search for the critical surface,
we monitor the fourth-order Binder cumulant,

U4ðL;m2
0; λ0Þ ¼

3

2

�
1 −

hM4i
3hM2i2

�
; ð10Þ

of the magnetization M ¼ P
t;x

ffiffiffiffiffi
gx

p
ϕt;x, as we reduce the

lattice spacing a. We impose periodic boundary conditions
in t with fixed aspect ratio, Lt=L ¼ 4. In the continuum
limit, our Binder cumulant is normalized so that it
approaches 0 in the extreme-disordered (Gaussian) phase
and 1 in the extreme-ordered phase. A second-order critical
surface is found where the Binder cumulant approaches a
constant between 0 and 1 as the lattice spacing vanishes.
We scan the relevant parameter m2

0 at fixed λ0 ¼ 0.2.
As a base line, in the top panel in Fig. 2, we abandon

the FEMweights by setting l�xy=lxy ¼ 2=3 and
ffiffiffiffiffi
gx

p ¼ 1. As
in the radial 3D Ising simulation [18] with icosahedron
triangulations on R × I , there is apparently a well-defined
critical theory. However as shown below in Fig. 3, the
continuum fixed point exhibits only icosahedral irreducible
multiplets, which break the full spherical symmetry at the
level of the l ¼ 3 descendant. The result is presumably a
CFT on an the icosahedron cylinder, R × I , not our
intended target manifold, R × S2.
In the middle panel in Fig. 2, we restore the position

dependent classical FEM weights in Eq. (5) for the
simplicial lattice, but we now fail to locate a critical
surface. For this study we have dropped the Ricci term
and rescaled the fields to cancel ϵ0 in Eq. (8). For values of
m2

0 > −0.26906, the cumulant trends towards U4 ¼ 0 for
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large a, but at smaller a < 0.05 the curves begin to turn
around and will eventually oscillate. Ironically the FEM
weights required for classical physics result in failure for
quantum physics. Just as in our 2D application [1] on the
Riemann sphere, S2, the problem is that the local FEM
variations in the effective cutoff are amplified by the UV
divergence of the quantum field theory. To overcome this
problem, we add counterterms to our simplicial action,
computed from spatially varying UV divergent lattice
Feynman diagrams.
We need to define precisely how we convert the FEM

action into the QFE action to compensate for quantum
UV defects. Since ϕ4 theory is super-renormalizable in
three dimensions, there are a finite number of divergent

diagrams, illustrated in Fig. 4: a one-loop linear divergence
and a two-loop logarithmic divergence.
To construct the simplicial Feynman diagrams in Fig. 4,

we compute numerically the lattice propagator,Gt1;x;t2;y, for
the free theory atm0 ¼ 0 including the Ricci term, which is
required by conformal symmetry and to act as IR regulator
on the sphere. The result to second order is an effective
action,

Γeff ¼ Γ0 þ 6λ0
ffiffiffiffiffi
gx

p
Gt;x;t;xϕ

2
t;x

− 24λ20
ffiffiffiffiffi
gx

p
ϕt1;xG

3
t1;x;t2;yϕt2;y

ffiffiffiffiffi
gy

p
: ð11Þ

The counterterms will be designed to exactly cancel the
rotational breaking in the relevant operators in our lattice
action.
Not only is the one-loop lattice diagram local, it is also

finite in lattice units. This finiteness for power divergences
is a general feature of lattice perturbation theory. We
subtract the rotational symmetric piece to isolate the
breaking term,

δGx ≡Gt;x;t;x −
1

N

XN
x¼1

ffiffiffiffiffi
gx

p
Gt;x;t;x; ð12Þ

FIG. 3. Spherical symmetry breaking in the continuum limit
for the icosahedral model onR × I (Rxico) compared with QFE
on R × S2 (RxS2) for the l ¼ 3 correlator at separations
t=L ¼ 1=2; 3=4.

FIG. 2. Binder cumulant plotted against the lattice refinement
for icosahedral spatial lattice (top) versus the spherical spatial
lattice without (middle) and with counterterms (bottom). In all
three cases, we searched in m2

0 at fixed λ0 ¼ 0.2.

FIG. 4. The one- and two-loop UV divergent diagrams con-
tributing to the mass renormalization in 3D.
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which is independent of t by translation invariance along
the cylinder. The two-loop term in Fig. 4 gives a nonlocal
product ϕt1;xϕt2;y. However, after subtracting the rotational-
symmetric piece, we find that the nonlocal behavior is
exponentially damped in units of the lattice spacing—or in
the jargon of lattice field theory, the correction is local but
not ultralocal. So to leading order in a, the dominant
contribution is local and can be isolated by defining

δGð3Þ
x ≡X

t0;y

ffiffiffiffiffi
gy

p �
G3

t;x;t0;y −
1

N

XN
x¼1

ffiffiffiffiffi
gx

p
G3

t;x;t0;y

�
: ð13Þ

The sum over t0; y cancels a rotational symmetric loga-
rithmic divergence, yielding a finite position dependent
counterterm as in the case of the one-loop counterterm
introduced for 2D ϕ4 theory on S2. The reader is referred to
Ref. [1] for details.
As a result, we propose a new QFE action

SQFE ¼ S −
X
t;x

ffiffiffiffiffi
gx

p ½6λ0δGx − 24λ20δG
ð3Þ
x �ϕ2

t;x; ð14Þ

relative to the classical FEM lattice action, S, in Eq. (5). By
tuning to the weak-coupling fixed point, this QFE action
should match the full renormalized perturbation following
the Wilsonian-renormalization procedure in the same
fashion as on a regular hypercubic lattice. Moreover we
see the new QFE lattice action in the bottom panel of
Fig. 2 does appear to have a well-defined critical surface.
Dropping the Ricci term in Eq. (8), the Binder cumulant is
studied up to lattice sizes of L ¼ 96. We intersect the
critical surface at λ0 ¼ 0.2 and m2

0 ≃ −0.27018ð4Þ, which
we now fix as a good approximation to the continuum
critical couplings at zero lattice spacing.
We now conjecture that our QFE lattice action Eq. (14),

tuned to the critical surface, also converges to the exact
nonperturbative CFT as the cutoff is removed. In the
absence of a proof we support this QFE conjecture with
numerical simulations. While this is the standard Wilson-
renormalization procedure used extensively on the hyper-
cubic lattice in flat space, we acknowledge that this a
nontrivial extension for our QFE action on curved
manifolds, which warrants further theoretical and higher-
precision numerical investigation.
Next, we check the restoration of SO(3) spatial rotational

symmetry by examining the two-point correlator in the
Z2-odd channel on the critical surface,

Cl;m1;m2
ðt1 − t2Þ ¼ hϕt1;lm1

ϕt2;lm2
i; ð15Þ

projected onto partial waves on the sphere, ϕt;lm ¼P
x

ffiffiffiffiffi
gx

p
ϕt;xYlm½x�. The spherical harmonics are defined

by evaluating the continuum functions at the discrete sites
x. In the continuum limit, spherical symmetry implies

Cl;m1;m2
ðtÞ ¼ δm1;m2

clðtÞ, with (2lþ 1) degeneracy for
SO(3) irreducible representations. The first three SO(3)
representations, l ¼ 0, 1, 2, are also irreducible in the
icosahedral group. At the l ¼ 3 level, the seven-
dimensional SO(3) representation splits at finite lattice
spacing into a direct sum of a three (3T) and a four
(3G)-dimensional irreducible representation in the
icosahedral group. We examine the diagonal elements
m1 ¼ m2 ¼ 0 and m1 ¼ m2 ¼ 1 denoted by C30ðtÞ and
C31ðtÞ, which are components entirely in the 3T- and
3G-icosahedral representations respectively.
In Fig. 3, we plot the normalized error in rotational

symmetry, 1 − C31ðtÞ=C30ðtÞ, at two fixed physical time
slices t=L ¼ 1=2 and t=L ¼ 3=4 as a function of the lattice
spacing a. A quadratic function is fit to each case to
extrapolate to the continuum limit. Comparing the critical
theory on R × I and on R × S2, we see that without
FEM weights and counterterms, the icosahedral breaking
persists to the continuum limit as expected, whereas for our
QFE action in Eq. (14), including the one- and two-loop
counterterms, the SO(3) symmetry is recovered.

IV. RICCI IMPROVED TWO-POINT
CORRELATOR

Conformal symmetry completely determines the form of
the two-point function of primary operators, which for a
scalar in radial quantization is given by

hϕðt1; r1Þϕðt2; r2Þi ¼
1

ð2 cosh t12 − 2 cos θ12ÞΔϕ
; ð16Þ

with t12 ¼ jt1 − t2j and cos θ12 ¼ r1 · r2 the relative coor-
dinates on the cylinder in Fig 7. Up to an overall
normalization convention, the correlator is fixed by the

FIG. 5. Scaling dimension of lowest Z2 odd scalar primary σ as
a function of the lattice spacing, computed with (blue crosses)
and without (red crosses) the Ricci term in the QFE action.
Fixing the Δσ ¼ 0.5181 at a ¼ 0 (green star) including Ricci
term in perturbation (green dashes) fits well the lattice-spacing
dependence.
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scaling dimension Δϕ of the primary operator. Having
tested the restoration of spherical symmetry approaching
the critical surface at m2

0 ≃ −0.27018ð4Þ and λ0 ¼ 0.2, this
correlator provides a stringent test of conformal symmetry
for the continuum limit of the QFE lattice.
The lowest primary in the Z2-odd sector couples to

the lattice field ϕt;x and must scale with the conformal
dimension Δσ with unit spacing of its descendants Δσ;l ¼
Δσ þ l for l ¼ 1; 2; 3;… in the continuum limit. The lattice
correlator is projected onto partial waves on the sphere as in
Eq. (15) and fit to exponentials, exp½−μlt12�, for large
t12 ¼ jt1 − t2j. The lattice masses, μl, are related to the
scaling dimension by μl ¼ atΔσ;l ¼ cRaΔσ;l in terms of a
renormalized speed of light cR relative to the bare value c0
which we set to 1 in the classical limit. We may fix the
renormalized cR either by enforcing the integer spacing of
descendants in the continuum limit or by matching the
conserved dimension ΔT ¼ 3 for the energy-momentum
tensor in the OPE expansion of the four-point function
in Eq. (25).
The results for Δσ;l as function of a are given in Fig. 6.

All the data is in a limited range of lattice spacing a ∈
½0.03; 0.15� corresponding to lattice sizes of L ∈ ½8; 40� on
the periodic cylinder with aspect ratio Lt=L ¼ 16. By
computing the correlation function on Oð108Þ statistically
independent configurations with an improved cluster esti-
mator [3], we achieve statistical errors for the scaling

dimension on the order of 0.1%. With such high statistics,
our initial fits (not shown) clearly identified a lattice artifact
term scaling as Oða0.40Þ giving rise to an infinite slope as
one approaches the continuum limit. This is consistent at
the 1% level with the scaling dimension of the composite
operator, ∶ϕ2

x;t∶ (Δϵ ¼ 1.4126), implying a cut off depend-
ence, OðaΔϵ−1Þ ¼ Oða0.4126Þ, when the Ricci term is not
included in the lattice action. Indeed to check this idea, we
parametrize the fits shown in Fig. 6 to

Δσ;lðaÞ ¼ cðΔσ þ lþ AlaΔϵ−1 þ BlaÞ; ð17Þ

determining the constants c, Al, and Bl by a simultaneous
fit to l ¼ 0, 1, 2, 3 while setting the dimensions to their
continuum values; Δσ ≃ 0.5181 and Δϵ ≃ 1.4126. The
linear term was added to model subleading lattice artifacts
beyond the irrelevant Ricci scaling. For the coarsest lattice
spacing at the l ¼ 3 level, we see that there may be
sensitivity to yet further lattice artifacts, so we omit this
point from the fit.
The result of the fit is shown by the blue dashed curves in

Fig. 6, with the best-fit values of the coefficients reported
in the legend. We remark that the best-fit value for the
renormalized speed of light is very close to 1. The small
χ2=N ¼ 0.58 indicates that the Ricci term accurately
captures the leading lattice artifact behavior, playing an
important role in the continuum extrapolation despite
being irrelevant. The correlator clearly converges to the
conformal multiplet—albeit slowly with the Ricci term
excluded from the simulation—as indicated by an accurate
recovery of the descendent relation up to l ¼ 3 and
consistency with the bootstrap value for Δσ [28].
To check quantitatively the role of the Ricci term in

approaching the continuum discovered in Fig. 6, we carry
out two additional studies. First, we treat the Ricci term,
δS ¼ −ða2=ð8R2ÞÞ ffiffiffiffiffi

gx
p

ϕ2
t;x, as a small perturbation near

the continuum limit. To first order this shifts the scaling
dimensions by

δΔσ;l ¼ −
a2

8R2
hΔσ;lj ffiffiffiffiffi

gx
p

ϕ2
t;xjΔσ;lic; ð18Þ

where the sum over x is implied. The right-hand side is
independent of t by translation invariance down the
cylinder. The form factor on the right-hand side remains
a nonperturbative function of λ0. We have computed the
matrix element in our Monte Carlo simulation for l ¼ 0 and
l ¼ 1 through a standard ratio method,

hΔσ;lj
ffiffiffiffiffi
gx

p
ϕ2
t;xjΔσ;lic ≃

hϕt1;lm
ffiffiffiffiffi
gx

p
ϕ2
t;xϕt2;lmic

hϕt1;lmϕt2;lmi
ð19Þ

for the connected piece, as t1=t2 → þ= −∞, which imple-
ments for the CFT the standard operator-state correspon-
dence map. The resultant,

FIG. 6. Lowest Z2 odd-scaling dimension, Δσ;l, as a function of
lattice spacing, a, for the lowest four angular-momentum values.
Quantities in angle brackets are held fixed in the continuum limit
fits. Where not visible, statistical error bars are smaller than
markers.
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δΔσ;l¼0 ¼ −0.3777ð38ÞaΔϵ−1; ð20Þ

δΔσ;l¼1 ¼ −0.083ð10ÞaΔϵ−1; ð21Þ

are in reasonable agreement with the coefficients found by
fitting Eq. (17) given in Fig. 6. The perturbative prediction
in Eq. (20), shown in Fig. 5 by the green dashed curve, has
zero free parameters after fixing to the continuum value
Δσ ¼ 0.5181 at a ¼ 0. The Ricci term describes the a
dependence of the data of the original simulation accurately
at small a < 0.2.
Next we carried out a modest first simulation including

the Ricci term in an improved QFE action for lattice
spacings a ∈ ½0.05; 0.6� on Oð107Þ statistically indepen-
dent configurations. The blue markers in Fig. 5 show the
results from the simulation using the Ricci improved action
compared to the red markers showing the original high
statistics simulation omitting the Ricci term. The improved
action simulation, highlighted in the insert, shows a
dramatic improvement at lattice spacings a < 0.2, reducing
finite lattice cutoff effects by two orders of magnitude and
achieving an accuracy for the scaling dimension Δσ ¼
0.518ð2Þ at about 0.5% and in agreement with the bootstrap
value. In passing we note that for 2D ϕ4 on S2 [1], this
correction was not required, as expected since the coef-
ficient of the Ricci term for d ¼ 2 vanishes.

V. OPERATOR PRODUCT EXPANSION

The full content of a CFT requires computing data
for both the dimension of operators and the three-point
coupling that appears first in the four-point function
OPE. Here we summarize our method to extract the same
parameters from QFE simulations on R × S2. Radial
quantization is well suited to study the OPE.
The invariant amplitude for identical scalars, ϕ1 þ ϕ2 →

ϕ3 þ ϕ4, is

gðu; vÞ ¼ hϕt1;r1ϕt2;r2ϕt3;r3ϕt4;r4i
hϕt1;r1ϕt2;r2ihϕt3;r3ϕt4;r4i

; ð22Þ

in terms of the standard cross ratios, u and v. In radial
quantization it is more convenient to choose τ, α
coordinates,

coshðτÞ ¼ 1þ ffiffiffi
v

p
ffiffiffi
u

p ; cosðαÞ ¼ 1 −
ffiffiffi
v

p
ffiffiffi
u

p ; ð23Þ

where for large τ and fixed angle,
ffiffiffi
u

p
≃ 4 expð−τÞ. To

extract OPE terms, we place two incoming fields on one
sphere and two outgoing on a second separated by t ¼
t12 − t34 as illustrated in Fig 7. Propagation is given by the
dilatation operator D, so that the invariant amplitude is

gðτ; αÞ ¼ hjr1 − r2j2Δσϕ1ϕ2e−tDjr3 − r4j2Δσϕ3ϕ4i;

where the continuum two-point functions have been
inserted using the normalization convention in Eq. (16).
It should be noted that the time (t) separation along the
cylinder is not in general a conformal invariant as it is
conjugate to the dilatation operator.
However, by choosing a special frame with antipodal

points [29] on each unit sphere, the time separation t and
angle θ are now mapped to invariants,

coshðτÞ ¼ coshðtÞ; cosðαÞ ¼ r̂1 · r̂3 ¼ cosðθÞ; ð24Þ

and the OPE expansion for d ¼ 3 is given as the partial
waves expansion,

gðτ; αÞ ¼ 1þ
X

Δl;l¼0;2;���
λ2Δl

e−ΔltPlðcos θÞ; ð25Þ

where the leading contribution from the identity operator is
normalized to be unity. Expanding conformal blocks into
partial waves [30], the couplings and dimensions of
the descendants are fixed by their primaries and therefore
restricting our fitting parameters to CFT data. (For d ≠ 3,
one replaces Plðcos θÞ by Gegenbauer polynomials,
Cν
l ðcos θÞ, with ν ¼ d=2 − 1.)
We are particularly interested in the contribution

from the stress-energy tensor, with l ¼ 2 and ΔT ¼ d to
determine the central charge CT . Following Dolan and
Osborn [31], the coupling to the energy momentum tensor
in Eq. (25) is

λ2ΔT
¼ 4ΔTΔ2

σΔ2
T

CTdðd − 1Þ ¼
96Δ2

σ

CT
: ð26Þ

Note in 2D the common practice is to use c ¼ CT=2 so the
free field is c ¼ 1. We note in passing that the bootstrap’s
c-minimization hypothesis for the central charge gives only
a few percent reduction, CT=Cfree

T ¼ 0.946534ð11Þ, relative
to the free theory Cfree

T ¼ d=ðd − 1Þ ¼ 3=2. Indeed all the
dimensions of the lowest primaries in the 3D Isings CFT
and their couplings, with the exception of Δϵ, are within a

FIG. 7. The operator product expansion (OPE) for the four-
point function on the cylinder is computed by placing the field on
two spheres separated by t ¼ jt12 − t13j.
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few percent of the free (or generalized mean field) value,
so significant comparisons to the bootstrap require high
precision.
To achieve this in our future high precision simulations,

the Ricci QFE action will be used along with additional
improvement schemes common to numerical lattice field
theory. Since no lattice operator is a pure primary, we will
construct improved lattice sources to better approximate
primary operators. As a typical example, in the lowest
odd Z2 scalar sector, with almost no additional cost an
improved estimator in the cluster algorithm can measure a
2 × 2 matrix of correlator: Cij ¼ hOiðt1x1ÞOjðt1; x2Þi for
Oiðt; xÞ ¼ fϕðt; xÞ;ϕ3ðt; xÞg. In principle, as the lattice
spacing a → 0, the mixing is Oðða=RÞΔσ0−ΔσÞ. By diago-
nalizing the 2 × 2 matrix, the lowest state is an improved
variational operator for σ primary at finite lattice spacing.
Using this operator will further reduce the lattice-spacing
errors in the four-point function.

VI. FUTURE DIRECTIONS

Based on the numerical evidence in this letter, we believe
our QFE lattice theory does converge to the continuum
CFTas the cutoff is removed. The current simulation due to
the efficiency of the cluster algorithm generated Oð108Þ
uncorrelated configurations that allowed us to identify the
importance of including the Ricci term in the action. Next
we plan to proceed to much higher precision numerical
investigations to support the QFE lattice method against the
best CFT data from the conformal bootstrap [15].
In particular we seek both stronger numerical and

theoretical support for our quantum counterterms. We find
it surprising that even in a super-renormalizable theory, we
appear to restore the spherical manifold with the counter-
terms extracted from perturbation theory. One possibility is
that these counterterms are only truly valid if we take the
continuum limit at fixed renormalized mass and coupling
m, λ, by scaling the bare dimensionless lattice parameters,
m0 ¼ am; λ0 ¼ aλ, to zero. This is a viable alternative
method to implement our QFE algorithm. Indeed by
simulating at fixed m0, λ0 and taking a → 0 as in this
work, we may eventually reach a sufficiently small lattice
spacing at which the counterterms fail. At current precision
and lattice volumes this has not been observed, but it
remains a viable interpretation. Also we are seeking a
nonperturbative definition of counterterms, e.g., with
Wilson flow [32], capable of extending the critical surface
to span the full range of bare couplings, as observed by
Hasenbusch [19] on a regular cubic lattice. Support for
this requires new theoretical developments, backed up by
higher precision numerical data.
Stringent comparison between QFE and the conformal

bootstrap is interesting in its own right. Either agreement or
disagreement could have fundamental consequences, since

the two are based on radically different methods and
assumptions. The QFE approach identifies a specific target
quantum field theory as the cutoff is removed, whereas the
bootstrap tightly constraints a generic class of theories by
combining exact inequalities on a truncated operator
expansion with the observation that simple known theories
nearly saturate the constraints, supplemented for example
by the c-Minimization procedure [15]. Agreement between
the two approaches would go a long way to supporting the
validity of both. Disagreement will begin a fundamental
search for a better theoretical understanding to hopefully
remove the discrepancies.
By including fermions and gauge fields on the simplicial

complex, we believe QFE lattice theory should apply to any
quantum field theory that posses a renormalizable pertur-
bative expansion on a smooth Euclidean-Riemann mani-
fold [14]. Conformal and special integrable models provide
stringent tests for QFE, but the general approach is equally
applicable to theories with massive deformations. The mass
deformation naturally induces a spectral flow from eigen-
values of the Dilation operator to the Hamiltonian, e.g.,
operator dimensions (Δ) to masses (m) respectively in the
continuum limit; 1=R ≪ m ≪ 1=a. QFE is complimentary
to the expanding repertoire of Hamiltonian truncation [10]
and the conformal truncation [33] methods that also seek a
nonperturbative computation moving adiabatically away
from CFT fixed points.
Particularly interesting in this regard is the application of

QFE to 4D non-Abelian gauge theories, which are under
consideration as models for composite Higgs or dark matter
[34], with enough fermionic flavors to be in or near the IR
conformal window at strong coupling. Supersymmetric
conformal examples are also under consideration. QFE
methods should have an even wider range of applications to
quantum gravity, for example in anti–de Sitter space [35] or
the Regge formulation of simplicial gravity interacting with
matter. None of these extensions are easy or guaranteed to
work, but we believe that the current success with 3D ϕ4

theory suggests a way forward to test more complicated
field theories.
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