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Abstract 

Anthropogenic activities are degrading coastal marine ecosystems globally. While the ecological 

and biodiversity implications of some of these impacts are well understood, for others there is a 

need for a greater understanding of the effects of these activities on vulnerable sedentary species. 

For researchers to pragmatically assess impacts on cryptic sponge species in highly productive 

reef systems, taxonomic assignment of these taxa is essential. With regards to the sponge fauna 

of Aotearoa, New Zealand, identification of sponge species is crucial for two main reasons. Firstly, 

these species significantly contribute to the productivity of inshore coastal reef ecosystems. 

Secondly, the existing literature of New Zealand’s sponge species has scarcities in species 

characterisation and identification for inshore sponge fauna.  

The Taranaki region is arguably foremost for consideration, as the coast would likely 

reflect any shifts in trans-Tasman current systems, and this region has a highly exposed 

geomorphology making it logistically difficult to conduct dive surveys. Furthermore, little is 

currently known about shallow water biogeography from this region.  

Focusing on temperate rocky reefs in the Taranaki Region of New Zealand, this thesis 

investigates the biogeography of sponge assemblages across broad spatial scales (hundreds of 

kms). It examines ecological processes, linked to trophic cascades to further our understanding 

of factors affecting the distribution and abundance of sponge communities at smaller spatial 

scales (tens of kms), with particular focus on the effects of land derived catchment discharges.  

 A combination of Linnean taxonomic classification and operational taxonomic units (OTUs) 

were used to identify sponge species and highlight locations with unique assemblages of taxa at 

regional scales. To achieve this a program of taxonomic revision was required, including the 

redescription of a collection of common sponge species Aaptos globosa, Acanthoclada prostrata, 

Biemna rufescens, Halichondria (Halichondria) moorei, and Stylissa haurakii. These results 

progress the modern requirements of these species description from those described in early 

New Zealand literature that lacked adequate and detailed descriptions and in situ images.  

As a precursor to the Taranaki ecological survey, a revision of sponge species from the 

Bay of Plenty was conducted. This study examined the family Dysideiidae and describes two novel 
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sponge species (Dysidea tuapokere and Dysidea teawanui), from Tauranga Harbour, in the Bay of 

Plenty, and validated five species within New Zealand’s Exclusive Economic Zone, Dysidea 

cristagalli, D. hirciniformis, D. navicularis, D. ramsayi, D. spiculivora. Dysidea fragilis is now 

considered to be invalid, and D. elegans is considered unrecognisable. Further taxonomic 

assignment of Taranaki sponge fauna is required and is ongoing. The set of qualitative, but 

validated data now provides a baseline survey of spatial heterogeneity in terms of the 

distribution of sponge taxa across the Taranaki and central west coast North Island region. 

Biogeographic data showed that the geographic range of sponge species is highly patchy and 

supports the hypothesis that species assemblages at the Pariokariwa Reef (now part of the 

Parininihi Marine Reserve) are highly unique. Results from this investigation provide a baseline 

species diversity estimate within Taranaki and reveal Waitara reefs as biologically significant 

areas with the second largest number of unique sponge species out of all six locations surveyed. 

These findings have important implications for developing conservation strategies for marine 

fauna in Taranaki, highlighting locations of significant biological diversity, abundance, and 

uniqueness. Potential drivers for this biogeographic patchiness are addressed in subsequent 

sections of the research program.  

 Environmental factors influencing the distribution and abundance of marine sponges as 

described around the Taranaki region (Waitara reefs, Waiwhakaiho reefs, and Hangatahua Reef) 

over a three-year period were examined. There was a greater diversity and abundance of sponges 

at rocky reef stations that were in closer proximity to river mouths. This provides evidence that 

terrestrially derived organic matter from rivers may be supporting a greater assemblage and 

biomass of marine taxa on coastal rocky reefs, despite the increased sediment input from some 

of the catchments examined. The size of sponges in terms of volume were greater at coastal 

stations positioned next to rivers with a relatively large coverage of indigenous forests as 

opposed to reef systems adjacent to modified and urbanized catchments. An examination of the 

effects of several physico-chemical factors including turbidity, total phosphorus, total nitrogen, 

and Escherichia coli presence (an indicator of human and agricultural inputs), revealed that 

sponges appear to be resilient to certain degrees of exposure to these variables. There appears 

to be a negative correlation between effects of turbidity and nutrient level on sponges generally, 

with high levels of turbidity associated with decline in sponge characterised reef habitat. In 
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contrast, some sponge species appear to thrive in turbid conditions that have high levels of 

nutrients in a form that they can profit from metabolically. Therefore, the quality of the 

catchment system can directly influence the quality of the nearshore benthic sponge assemblage.  

 Finally, the critical role of marine sponges in processing terrestrially derived carbon was 

investigated by examining the proportional contribution of food from various sources to the diet 

of sponges on temperate rocky reefs. Our isotope analysis revealed that marine food sources 

including coastal seston (>1.2–400 µm), coastal GFX (combined fine and coarse glass fibre filter 

samples >0.7–1.2 µm), and coastal bacteria (>0.2–0.7 µm) contributed the largest proportion to 

the diet of coastal sponges at 60–73% across our three stations. This was followed by a relatively 

large proportion of terrestrially derived food sources including freshwater seston (>1.2–400 µm), 

freshwater GFX (>0.7–1.2 µm), and freshwater bacteria (>0.2–0.7 µm) at 27–40%. Sponges are 

therefore argued to play significant roles in linking terrestrial and marine food webs, and 

associated carbon cycles, via recycling terrestrially derived carbon and nitrogen. Combining our 

estimated C retention rate with the isotopically-determined contribution of foods from terrestrial 

sources to the diet of coastal sponges (27–40%), suggests that sponge meadows may retain 

approximately 117–173 kg of terrestrially-derived C km−2 day 

 In summary, the biogeographic distribution of sponge fauna that characterise nearshore 

reef environments around the Taranaki region has been described at large and small scales. This 

provides a baseline for future surveillance of nearshore ecological condition over ensuing years. 

This study highlights the importance of undertaking taxonomic precursor studies of regional 

sponge fauna to allow researchers to gain the taxonomic expertise to conductor wider scale 

ecological studies of this diverse phylum. The distribution of assemblages in Taranaki is 

particularly patchy with several highly unique communities being identified. These findings are 

important to the management of sponge fauna and the systems that support them. Land-based 

activities and ground cover and use are having direct effects on coastal reef communities, as seen 

in the distribution, abundance, and sizes of sponge species over large-scale environmental 

gradients. An important role of sponges in processing terrestrial derived carbon has been 

identified. The implications of this are that sponges are ingesting terrestrially derived organic 

matter on temperate reefs and potentially turning it into sources of food in the form of biomass, 

and cell shedding. This study shows that rivers and their derived food sources are important for 
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coastal sponge communities. A unique assemblage of sponges was found close to a catchment 

system that discharges large quantities of sediment from significantly degraded hinterland 

suggesting that some taxonomic groups can thrive in areas where other species may struggle 

hence, species specific studies of how certain taxa adapt to multiple environmental stressors is 

suggested. Future studies should endeavour to further this research and expand our current 

understanding of sponge fauna as they constitute useful sentinel organisms.  
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Chapter 1 

General introduction 

 An investigation into the trophic ecology and biogeography of sponges 

influenced by rivers 

The overall aim of this thesis is to examine the trophic ecology and biogeography of coastal 

marine sponges. There is a need for a better understanding of trophic ecological interactions at 

smaller spatial scales in a biogeographic region on the west coast of the North Island of New 

Zealand. Specifically, there is an urgent need to understand and explore trophically important 

sedentary reef forming fauna such as sponges to determine the effects of river(s) catchments on 

these organisms in a fast-changing climate. Furthermore, there is a need to understand the 

ecological dynamics of nearshore shallow water reef systems to wider coastal ecology and 

productivity. To achieve this, fundamental research is required to examine the biosystematics of 

sponge species present in the Taranaki region. Moreover, the trophic cascades and roles of 

sponges in the Taranaki region is poorly understood in terms of the wider benthic pelagic 

coupling on rocky reef systems.  

 A general overview of sponge biology 

Darwin (1859) first proposed the scientific theory that all life on earth has evolved from a single 

common ancestor. Diversity of life arose by common descent through a pattern of branching 

termed evolution (Darwin, 1859). It is not known exactly when life on Earth originated. However, 

fossilized microorganisms that inhabited hydrothermal vents dating between 3.7 and 4.2 billion 

years ago, are the earliest records of life forms on Earth (Dodd, 2017). These records are nearly 

as old as the formation of the oceans 4.4 billion years ago and Earth itself 4.5 billion years ago 

(Manhes et al., 1980; U.S. Geological Survey, 1997; Dalrymple, 2001; Wilde et al., 2001). There is 

evidence to suggest that the first multicellular animals on earth were simple balls of cells with 

limited capacity to differentiate (Sogabe, et al., 2019). However, additional authors have stated 

that sponges may be the first multicellular animals to have evolved on Earth and are the common 

ancestor of all other animals with numerous phylogenetic analyses revealing that they are the 

earliest divergent metazoan group in existence (Peterson & Butterfield, 2005; Sperling et al., 
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2007; Erwin et al., 2011; Mills et al., 2014; Feuda et al., 2017). Sponges are a sedentary, 

multicellular, heterotrophic group of animals that have a heterogeneous diet across a size range of 

particles and organisms including, but not limited to: (a) carnivory of invertebrates such as nauplii 

of brine shrimp in food poor environments (Vacelet & Boury-Esnault, 1995); (b) prokaryotes 

(heterotrophic bacteria, e.g. Prochlorococcus sp., Synechococcus sp.), eukaryotes (protozoa, 

phytoplankton, and ciliates) (Ribes et al., 1999); (c) dissolved organic matter including coral and 

crustose coralline algae derived organic matter (Van Duyl et al., 2011; Rix et al., 2016); and (d) 

larger forms of organic matter through direct phagocytosis (Bergquist, 1978). Sponges have been 

recorded removing suspended bacteria with efficiencies between 75% and 99% (Reiswig, 1971, 

1975; Wilkinson, 1978; Wilkinson et al., 1984). Bergquist (1978) concluded that sponges are non-

selective particle feeders and can consume any particles capable of entering their ostia. 

Nevertheless, the hexactinellid sponge Aphrocallistes vastus was found to select against 

Synechococcus sp. during the month of July (Yahel et al., 2006, 2007; Maldonado et al., 2012). 

The filtration rate of sponges is relatively large. For example, two species of sponges namely 

Halichondria (Halichondria) panicea and Haliclona (Haliclona) urceolus were shown to have near-

identical filtration rates, with maximum rates of approximately 60 mL min1 (gdry weight)-1 at 12°C 

(Riisgård et al., 1993).  

At present, there are 9,372 valid sponge species (marine and non-marine) described 

worldwide (Van Soest et al., 2021). Sponges have adapted to survive in all marine habitats and 

ecosystems, in addition to freshwater systems including lakes and rivers. Most sponges actively 

or passively filter feed by filtering water through their pores (ostia), canals and choanocyte 

chambers using choanocyte cells (Renard et al., 2013). Their aquiferous systems are not only 

utilised for collecting food but are also involved in physiological functions such as reproduction 

and excretion of waste matter (Renard et al., 2013). Sponges are divided into four extant classes 

(Calcarea; Hexactinellida; Demospongiae; Homoscleromorpha). 

The calcareous sponges of class Calcarea are characterised by skeletons composed of 

calcium carbonate spicules in the form of calcite or aragonite. Class Hexactinellida, also known 

as glass sponges, are characterized by skeletons composed of siliceous spicules with four to six 

rays (Hooper & Van Soest, 2002). The class Homoscleromopha are the fourth extant class of 

sponges that are characterized by siliceous spicules, if present, composed of tetractinal-like 

https://scholar.google.com/citations?user=3nZMnXEAAAAJ&hl=en&oi=sra
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calthrop spicules (diods, triods, and lophate spicules) (Gazave et al., 2011). It is often difficult to 

differentiate some of the classes as identifications frequently require insight from a professional 

sponge taxonomist. The largest of the four classes in terms of species diversity are the 

Demosponges (Class Demospongiae), which are characterized as having ‘spongin’ skeletons that 

may or may not be accompanied by siliceous spicules.  

Sponges are flexible in terms of their ability to reproduce. They can adapt to their 

environmental conditions and can use three forms of asexual reproduction: fragmentation, 

budding, and via the production of gemmules (Battershill & Bergquist, 1990). Additionally, 

sponges possess the capability of performing sexual reproduction due to most sponges being 

hermaphrodites functioning as both sexes at the same time (Bergquist, 1978).  

Currently there are eight larval types known within the phylum Porifera including 

dispherula, cinctoblastula, clavablastula, parenchymella, hoplitomella, calciblastula, 

amphiblastula and trichimella. Each of these larval types have and can be used as morphological 

identifiers of different sponge taxa (Maldonado, 2004). Most sponges belonging to the classes 

Calcarea and Demospongiae have indirect larval development phases, whereby the embryos 

become a larval form which may strongly differ from the adult stage morphologically. This may 

also be the case for the Hexactinellida, but there is a scarcity of information on the larval ecology 

of this class (Maldonado, 2004). The advantage of larval stages for sessile organisms such as 

sponges is that they can increase their dispersal capability allowing them to colonise 

geographically suitable habitats, both near and distant from their progeny (Maldonado, 2004). 

This study also stated that the dispersal capability provided by different larval stages may 

enhance population health by favouring gene flux between subpopulations and decreasing 

population consanguinity, in addition to increasing recruitment success (Maldonado, 2004). 

Sponge larvae are lecithotrophic and with a relatively short planktonic life cycle (Maldonado, 

2004). Sponges range in size from microplankton (50—500 µm) to mesoplankton (0.5—6 mm) 

(Maldonado, 2004).  

 In most sponges the embryo develops internally, and once the larvae are ready to be 

released they begin to swim through the aquiferous system (Bergquist & Sinclair, 1968; Fell 1989; 

Maldonado & Young, 1996; Maldonado and Uriz, 1999). Nevertheless, in sponges with external 

development, embryogenesis occurs either in the water column or on the sea-bed as eggs and 
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early embryos are usually expelled in negatively buoyant envelopes and or mucus strands 

(Maldonado, 2004). Brooding sponges usually take several weeks or months to develop their 

larvae compared to external developers which can take 2—3 days after fertilization (Maldonado, 

2004). There are a number of signals which can influence the onset of the release of sponge 

larvae including temperature, photoperiod, lunar cycles, and pheromones (Reiswig, 1970, 1983; 

Watanabe, 1978; Fell, 1983; Hoppe & Reichert, 1987; and Fromont, 1994). 

 There is a large variability in the number of sponge larvae released among sponge species 

in field observations (Maldonado, 2004). For example, North Atlantic individuals of 

Ophlitaspongia papilla have been observed releasing 18 larvae m-2 day-1 during a release season, 

compared to the Spanish Mediterranean sublittoral species Ircinia oros was observed expelling 

on average 2350 larvae day-1 and 3.3 × 104 larvae throughout the entire two week period studied 

(Fry, 1971; M. Maldonado, unpublished data). In contrast, there is a dearth of information 

regarding external larval development. Nevertheless, Fromont and Bergquist (1994) estimated 

that a female Xestospongia bergquistia spawned 1.4 million eggs with fertilization success of 

about 71.4% which totals approximately 1 million larvae derived from this single individual.  

 Sponge larvae disperse by becoming merozooplankton and drifting for a relatively short 

period of time in the water column. In theory Maldonado (2004) argues that the longer a larvae 

remains in the water column the greater the dispersal potential. However, a greater dispersal 

period may also increase the likelihood of mortality from predation or larvae being transported 

to an area that is not suitable for attachment (Maldonado, 2004). Due to the lecithotrophic 

nature of sponge larvae Maldonado (2004) has postulated three main limiting factors which 

influence the larval success and dispersal capabilities of sponge larvae: (1) the level of energy 

reserves in the larvae, (2) the species specific tempo of the developmental program, and (3) the 

availability of settlement cues in the environment. The majority of data available on sponge 

larvae suggest that most have a larval duration in the water column ranging from minutes to a 

few days (Maldonado, 2004). Nevertheless, unciliated hoplitomella is the only sponge larva 

consistently reported from offshore plankton samples, and they may remain in the plankton for 

a long time, perhaps months (Trégouboff, 1939, 1942; Vacelet, 1999).  

 Sponge larvae are for the most part considered to be lechithotrophic and arguably rely 

on the maternal egg lipids provided to them. However, Bergquist and Green (1977) found that 
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monociliated cells may incorporate dissolved compounds via phagocytosis in the pinacocytes. 

Jaeckel (1995) further demonstrated that larvae were able to assimilate the amino acid alanine 

and the fatty acid palmitic acid from seawater. The alanine was not considered energetically 

significant; however, the palmitic acid was estimated to account for 21—55% of larval 

metabolism. This is further complicated by the addition of research which  found that ciliated 

cells of Halichondria (Halichondria) parenchymella  were able to phagocytose and digest bacteria 

and small (>4 µm) unicellular organisms. Overall, the potential dispersal distance of sponge larvae 

is dependent on a number of environmental and physiological factors than can influence how far 

they travel and their survivability.  

 Ecological significance of sponges in marine ecosystems 

Sponges play an important role in supporting a multitude of life in marine ecosystems. They 

create three dimensional habitats including bowls, fingers, tubes, and mounded morphologies 

that are colonized by a variety of mobile invertebrates such as echinoderms, polychaetes, 

molluscs, and crustaceans (Ribeiro et al., 2003; Henkel & Pawlik, 2005; Roberts et al., 2008). 

Biogenic habitats characterized by sponges are primarily utilized by herbivorous, suspension 

feeders and tube dwelling amphipods (Roberts et al., 2008). Furthermore, sponges have been 

recorded as supporting several additional sessile invertebrates including ascidians and bryozoans 

(Ribeiro et al., 2003). Notably, New Zealand sponges support important nurseries for goatfish 

Upeneichthys lineatus (Froese & Pauly, 2019), and commercially important fisheries species such 

as snapper Pagrus auratus (Battershill, 1987). Bell (2008a) conducted a literature review on some 

of the most important functional roles sponges perform in marine ecosystems. These included 

reef creation, substrate stabilization, benthic pelagic coupling, carbon cycling, silicon cycling, 

oxygen depletion and nitrogen cycling (Bell, 2008a). Therefore, if sponges are lost from benthic 

ecosystems this may have negative ecosystem effects by limiting the food and habitat availability 

for sponge associated organisms.  

Sponges act as ecological indicators because they are sedentary, they integrate across 

prevailing biophysical conditions, hence act to monitor the health of benthic ecosystems, and 

reflect environmental effects at a localized level (Carballo et al., 1996; Vilanova, 2004; Batista et 

al., 2013). Benthic-pelagic coupling is one of the most fundamental properties of sponge biogenic 

habitats (Bell, 2008a; Maldonado et al., 2012). Recent evidence suggests that sponges can be 
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useful as natural environmental DNA (eDNA) samplers for examining marine biodiversity within 

a geographic location (Mariani et al., 2019). Environmental DNA metabarcoding has surged in its 

use over the past five years as an alternative method of biodiversity monitoring. Sponges are 

highly efficient filter feeders that are capable of sifting through 10,000 litres a day, and they can 

trap and concentrate eDNA from surrounding water which makes them ideal bioindicators 

(Mariani et al., 2019; Kahn et al., 2015). Furthermore, unlike other motile organisms, sponges 

remain fixed to the substrate and are thus useful for monitoring the biodiversity in the 

surrounding location they are sampled from.  

 

 Carbon cycling and the sponge loop hypothesis 

One of the most important roles sponges play in cycling nutrients is their ability to collect organic 

matter and recycle it to higher trophic levels (Rix et al., 2018). The role of sponges in cycling 

nutrients is particularly important in food-poor oligotrophic environments such as coral reefs and 

the deep sea where other organisms may rely on food produced by sponges in the form of 

biomass or particulate organic matter. Sponges on coral reefs facilitate the transfer of coral-

derived organic matter to detritivores by producing detrital matter as sponge cells (Fig. 1.1) (Rix 

et al., 2016; Rix et al., 2017). However, the importance of the sponge loop hypothesis in 

temperate marine systems is poorly understood.  
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Figure 1.1 Steps of the sponge loop pathway: (1) corals and algae release exudates as dissolved organic matter 
(DOM), (2) sponges take up DOM, (3) sponges release particulate organic matter usually in the form of sponge 
cells (POM), (4) sponge detritus (POM) is taken up by sponge-associated and free-living detritivores (modified 
from Rix et al., 2018). 

 

A carbon balance of sponges is described in its simplest form by Maldonado et al. (2012), with 

the following equation: 

I = P + R + E, 

where I = carbon ingestion, P = its use for biomass production, R = respiration, and E = ingestion 

and excretion of material from sponges.  

Both P and R are collectively represented as assimilation (A). Maldonado et al. (2012) 

defined ingestion in sponges as the incorporation of carbon into the tissue of the sponge and not 

the total amount of organic matter entering the sponge. After ingestion, carbon is utilized for 

growth, and production of energy (Maldonado et al., 2012). Moreover, sponge waste is often 
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recorded in the form of detrital material (DOC and POC), composed of digested and undigested 

material, and an often-overlooked component of sponge excretion is faecal pellets which sink to 

the ocean floor becoming unavailable for suspension feeders (Witte et al., 1997; Maldonado et 

al., 2012).  

 Growth rates of sponges range from very slow growing specimens in cold waters 0.003% 

to 0.07% y-1 in volume, to 5–60% y-1 in situ for temperate and tropical individuals (Reiswig, 1973; 

Dayton, 1979; Hoppe, 1988; Leys & Lauzon, 1998; Koopmans & Wijffels, 2008; ; McMurray et al., 

2008; Van Duyl et al., 2008; Maldonado et al., 2012). However, Duckworth and Battershill (2003) 

recorded much larger growth rates of Latrunculia (Biannulata) wellingtonensis (see also, Alvarez 

et al., 2002), and Polymastia crocea which grew 960% and 730% respectively over a six-month 

period from explants indicating that fast growth is possible and that a size plateau may well be 

reached. A number of researchers have also reported a large growth rate of the Antarctic sponge 

Anoxycalyx joubini which had increased in size by 30% over a two year period, compared to 1974–

77 when several Antarctic species had measurable but very slow growth (Dayton et al., 2013; 

Dayton et al., 2016). Moreover, Wulff (2017) recorded the mean specific growth rates of 12 

sponge species in-situ over a 12 month period and found that growth rates differed among 

species but ranged from 0.9 to 4.7%: and after 20 months from 1.2 to 9.7% with some species 

remaining the slowest (Ectyoplasia ferox) and fastest growing (Desmapsamma anchorata) 

respectively.  

 Impacts and threats to sponges  

Rising atmospheric CO2 and associated acidification of seawater together with other climate 

change related shifts in temperature, oceanic circulation, stratification, nutrient input, and 

oxygen content will have potentially devastating impacts on marine ecosystems worldwide 

(Doney et al., 2012). A primary concern of climate change related impacts are the effects on 

cryptic biota, including sponges, which are increasingly argued to play important roles in marine 

ecosystems. A review conducted by Webster (2007) stated that marine diseases are significantly 

impacting sponge populations globally. One of the most severe examples of a sponge disease 

epidemic occurred in the Caribbean in 1938 causing the mortality of 70–95% of sponge 

individuals (Galstoff, 1942; Webster, 2007). Wulff (2013) conducted a study examining the 
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devastating effects of cyanobacterial blooms on the Belize Barrier Reef in 2011 and provided a 

better understanding on the non-mass mortality dynamics as well as an exact measure of 

biomass lost for 54 species at the site. Although there has been a general failure to identify 

causative agents for sponge disease, general causes are potentially correlated to environmental 

factors including climate change in addition to urban and agricultural runoff (Cervino et al., 2006; 

Webster, 2007). Bell et al. (2015a) examined the impacts of sedimentation on marine sponges 

including pumping rates, feeding, respiration, reproductive output, growth, impacts of sediment 

on sponge symbionts, and the consequences of altered larval recruitment success and mortality 

of established sponges on demography and diversity patterns (biogeography). Sediment impacts 

on sponges are dependent on the quantity, particle size and mineralogy of the material 

inundating reefs (Bannister et al., 2012; Bell et al., 2015a). Sedimentation has clear harmful 

effects on sponges; however, most studies suggest that sponges have developed adaptations to 

tolerate or sometimes thrive in highly sedimented environments (Bell et al., 2015a).  

Despite an increase in the number of sponges reported at some locations, there is a clear 

decline in other populations. For example, within the tropical Atlantic cyanobacterial blooms 

reduced the abundance of six sponge species with a mortality rate of 23–80% (Butler et al., 1995; 

Bell et al., 2015b). Introduction of non-indigenous taxa may also have a negative impact on 

sponge fauna. For example, the introduction of a non-indigenous species of algae Caulerpa 

scalpelliformis resulted in the decline in the abundance of sponges on a deep-reef habitat (Davis 

et al., 1997; Bell et al., 2015b).  

Bell et al., (2015b) found that based on all the literature published on the impacts to 

sponges, there were many stressors that can cumulatively impact sponge populations including 

change in temperature, increased suspended sediments, substratum loss, introduction to 

microbial pathogens, abrasion, hydrocarbon contamination, introduction of non-indigenous 

species, hypoxia, physical damage, changes in salinity, increased turbidity, and changes in pH 

(Bell et al., 2015b). What has not been considered in any detail is how environmental change 

affects what sponges consume, i.e., the source of sponge food being produced in future climate 

scenarios, and the response of sponges including potentially increased metabolisms related to 

temperature and other biophysical conditions. Overall, sponges face a plethora of 

anthropogenically and environmentally driven impacts globally. It may be difficult to tease apart 
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exact modes of sponge mortality given the complexity of marine systems; however, sponges have 

a large diversity of physiological adaptations to combat certain levels of impacts. Some sponge 

species appear to be well suited to certain levels of stressors including sedimentation and 

changes in temperature, but it is important to determine how cumulative stressors will affect 

sponge populations in a changing world.  

 Taxonomy of sponges in New Zealand 

As with any ecosystem study, it is important to know and identify the species components, 

particularly those of central interest. For research on sponges and sponge ecology, reliable 

identifications are frequently lacking, especially if new geographic locations are the focus of the 

investigation. Therefore, an essential element of this work has been to identify the species of 

interest. The study herein has led to the discovery and description of new species and improved 

descriptions of species that have been historically described. However, the current area of 

interest in the Taranaki region is a relatively new area in terms of the characterization of its 

sponge fauna and ecology due to the logistical difficulties of conducting diving activities on 

uncharted reefs. Furthermore, there are often low visibility conditions and prevailing westerly 

winds making it difficult to work in this region.  

Kelly et al., (2009) reported on the history of sponge taxonomy in New Zealand, including 

the earliest work conducted by Gray (1843) who listed three sponge species in his chapter ‘Fauna 

of New Zealand’ in Ernst Dieffenbach’s Travels in New Zealand. Kelly et al. (2009) reported on the 

work of Hutton (1904) who created a list of all the 354 sponge species found in New Zealand at 

that time. An additional 92 species and ‘varieties’ of sponge species, and five unnamed sponges 

were recorded by Kirk (1904) in a book chapter written by Hutton (1904). Later, sponges from 

the Kermadec Islands were reported by Kirk in 1911 (Kelly et al., 2009). Subsequent investigations 

were conducted by Dendy (1924), and Brøndsted (1923; 1924; 1926) who described a total of 

166 sponge species, of which 106 were considered new to science (Kelly et al., 2009).  

 A new era of sponge taxonomic research occurred in the 1960s with the work of Bergquist 

(1961a; 1961b; 1961c) describing 26 new sponge species (Kelly et al., 2009). Dawson (1993) 

provided a list of all marine Porifera recorded from New Zealand listing 354 sponge species (Kelly 

et al., 2009). Further prominent taxonomic contributions around this period included: Bergquist, 
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1968, 1970, 1972, 1980, 1996; Ayling, 1979; Bergquist & Warne, 1980; Pritchard et al., 1984; 

Bergquist & Fromont, 1988; Bergquist & Kelly-Borges, 1991, 1995; Kelly-Borges & Bergquist, 1994, 

1997; Cook & Bergquist, 1996, 1998, 1999, 2000, 2001, 2002; Bergquist et al., 1998; Cryer et al., 

2000; Kelly, 2000, 2003, 2007; Kelly & Buckeridge, 2005; Kelly et al., 2009; and Battershill et al., 

2010. There were also a significantly large number of taxonomic publications describing the New 

Zealand sponge fauna in the following decade (Kelly & Vacelet, 2011; Reiswig & Kelly, 2011; Sim-

Smith & Kelly, 2011, 2015, 2019; Kelly & Sim-Smith, 2012; Kelly et al., 2015a, 2015b; Sim-Smith 

& Kelly, 2015, 2019; Hestetun et al., 2016; Kelly et al., 2016; Kelly & Cárdenas, 2016; Kelly, 2018; 

Kelly & Rowden, 2019; Zeng et al., 2019; and Mc Cormack et al., 2020). There is current work 

underway to revise the species list for valid sponges found throughout New Zealand over the 

past decade (M. Kelly, 2021, pers. comm.). However, most of the earlier taxonomic work 

conducted from 1843 to 2000 have not been reviewed, revisited, or updated to include modern 

morphological descriptions such as in situ photographs. Moreover, there is an urgent need to 

classify and describe regional fauna, especially in areas where anthropogenic activities are having 

potential impacts on sponge communities. This is a difficult task given the scarcity of sponge 

taxonomists working in New Zealand. Suffice it to say, any new marine study focusing on sponges 

will invariably invoke a need for biosystematics and the identification of new species (Mc 

Cormack et al., 2020; Appendix 1 & 2).  

 Aims and organisation of thesis  

Sponges face cumulative threats to their survival, and they are ecologically important as they 

support of diversity of other taxa that are functionally beneficial to marine ecosystems worldwide. 

Information permitting a more comprehensive understanding of the role sponges play in trophic 

cascades is difficult, especially for temperate regions. In addition, the influence of coastal 

processes, especially those associated with catchment discharges of sediments and nutrients on 

sponge characterised communities is scarce. 

Given the potentially devastating effects of CO2 rise and associated climate change 

related environmental shifts (Doney et al., 2012), in addition to the numerous additional 

anthropogenic threats facing sponges; the baseline health and physiology of marine sponges and 

the consequences of altered population’s structure, biogeography and trophic exchanges 

requires urgent attention. There is a need for information regarding the general health including 
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distribution and abundance of sponges and other taxa in poorly studied regions of New Zealand. 

What is not clear is the effects that land use and coverage from terrestrial ecosystems are having 

on sedentary benthic invertebrates such as sponges. Terrestrially derived matter, including 

pollutants and nutrients, are carried to the oceans by river systems along with sediments. The 

combined impacts these riverine inputs (positive and negative) are having on sponge 

communities is poorly understood.  

This thesis focuses on four key areas: 

Chapter Two: The biogeography of New Zealand Sponges with a Focus on Taranaki. 

Chapter Two describes the biogeography of Taranaki from a sponge systematics perspective, 

providing the backdrop for the remaining thesis. The biogeography of New Zealand benthic 

encrusting fauna is not well understood at medium geographic scales. Recent reviews by 

Biosecurity New Zealand cast Aotearoa New Zealand into several large geographic and 

biogeographic zones (Beaumont et al., 2010). There are many gaps in knowledge, especially in 

areas where research is difficult due to unfavourable weather and sea conditions. These areas 

also happen to be important areas for monitoring as they are in locations likely to be influenced 

by changes in oceanic circulation. The Taranaki region is one such high priority location in New 

Zealand with little detailed information on the ecology and biogeography of shallow water 

coastal ecosystems. This research focuses predominantly on North Taranaki, which has different 

bathymetry to South Taranaki. Therefore, the ecology of South Taranaki requires further research 

to increase our understanding of the whole of the Taranaki region. 

Chapter Three: Environmental factors influencing the distribution and abundance of marine 

sponges around the Taranaki region of New Zealand. 

A baseline description of sponge species and associated benthic taxa was created over a three-

year period. This was designed to permit ecological focus on sponge characterized communities 

at moderate spatial scales, to examine the effects of coastal dynamics on trophic cascades. 

Decadal data on physiochemical conditions of three major Taranaki Rivers were supplied by 

Taranaki Regional Council to assess potential effects of riverine water quality and their 

catchments on nearby marine coastal reef communities. Here, I hypothesize that there would be 

a larger diversity and abundance of sponges in coastal rocky reef communities that were subject 
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to rivers with ‘good’ ecological health. Therefore, rivers were chosen to represent a gradient of 

water quality and catchment land cover types. Environmental factors potentially influencing the 

distribution and abundance of marine sponges around the Taranaki region of New Zealand were 

investigated.  

Chapter Four: Land-sea connectivity: using stable isotopes (δ13C and δ15N) to understand the role 

of marine sponges in processing terrestrially derived carbon.  

Carbon and nitrogen stable isotopes were analysed to understand the role marine sponges play 

in processing terrestrially derived carbon. A Bayesian Mixing model (MixSIAR) was used to 

investigate the food web structure of coastal temperate rocky reef sponges and determine which 

food sources (terrestrial or marine) contributed the highest proportion of food to their diet. The 

hypothesis is that there would be a larger availability of food coming from rivers with good water 

quality and ecological health, and that coastal rocky reef sponges were deriving a large 

proportion of their food from terrestrial systems.  

Chapter Five: General Discussion: 

The overall goals of this thesis were to provide a greater insight into the taxonomy, biogeography 

and ecology of sponges (Porifera) from west coast, North Island, New Zealand. This thesis 

presents a number of key findings: (1) that the biogeography of the Taranaki region is complex 

over medium spatial scales and reflects a combination of geological profile and effects of ocean 

currents, (2) the ecology of Taranaki sponge characterised communities reflects nearshore 

dynamics of adjacent catchment systems, (3) trophic cascades are occurring via the cycling of 

terrestrially derived organic matter from rivers into coastal reef communities, (4) a cross section 

of biophysical dynamics influencing the nature of sponge characterized communities is provided. 

These dynamics play an important role in nearshore productivity and trophic cascades. Land-sea 

connectivity and the health of coastal catchments is paramount in supporting nearshore coastal 

productivity. 
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Chapter 2 

The biogeography of Taranaki sponges 

 Abstract 

The biogeography of Taranaki sponges is unique over small spatial scales. A high level of 

endemism in the Taranaki sponge fauna is confirmed, the diversity in some areas so unique 

that the Department of Conservation established a marine reserve in 2006 to protect the 

exceptional sponge assemblages (from lost gill net entanglements) - Parininihi Marine 

Reserve. Apart from surveys in the late 1990s associated with protection of the Parininihi reef 

system, little was known about the biodiversity of sponges (or benthos in general) at larger 

spatial scales in this region.  

This study has shown that the geographic range of sponge species is patchy, and that 

species assemblages in places like Parininihi Marine Reserve are highly unique. Results from 

this investigation provide a baseline species diversity estimate with a total of 127 sponge 

species recorded from all shallow water stations in Taranaki surveyed herein, with an index 

estimation of 2.4 sponge species per m2 of rocky reefs surveyed. Pariokariwa Reef had the 

largest number of sponge species unique to that area (44 unique species). Surprisingly, 

Waitara reefs, arguably the most sediment impacted, had the second largest number of 

unique sponge species among all locations in Taranaki (36 unique species), followed by Patea 

reef (12 unique species), Hangatahua (9 unique species), and Waiwhakaiho (6 unique species). 

Overall, these findings have important implications for developing conservation strategies for 

marine fauna on this coastline, highlighting locations of significant biological diversity, 

abundance, and uniqueness. 

 Introduction 

A fundamental property of ecological investigations conducted within any poorly studied 

region will always be good baseline taxonomic assignments involving the characterization, 

naming and identification of species. Lack of taxonomic expertise and poorly identified taxa 

is a major constraint to marine ecological studies, especially those involving sponges. In recent 

years there has been an increasing interest in potential anthropogenic impacts to sponges, 

which includes broad scale climate change related stressors such as land derived 

sedimentation because of accelerated hydrological cycles. Furthermore, recent studies have 
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heightened the need to understand the health and conservation status of sponge 

communities facing compounding anthropogenic threats. However, very little research has 

been conducted on the biogeography, ecology, and taxonomy of marine sponges in the 

Taranaki region of New Zealand. Sturgess (2015) stated that the distribution of marine 

invertebrates along the west coast of the North Island of New Zealand has been poorly 

studied because of the surf conditions which limits the ability to survey these areas. There 

remain many unanswered questions concerning the significance of the reef system to the 

wider Taranaki region and west coast New Zealand coastal biogeography, not to mention 

potential opportunity in hosting future biodiscovery research.  

This is seen as a major gap in knowledge as the Taranaki coastline is likely to be one 

of the regions affected by climate change induced shifts in oceanic currents, and alterations 

in Tasman Sea oceanography as evidenced recently along the eastern seaboard of Australia 

(Johnson & Holbrook, 2014; Oliver et al., 2018). As such, the Taranaki coast could be viewed 

as a sentinel location for any changes likely to be experienced in Aotearoa. 

In addition to potential shifts in the ocean climate, rapid changes in riverine inputs 

from terrestrial sources may also be impacting coastal reef communities in this region. Several 

researchers have reported on the evolutionary and ecological importance of sponges, yet 

sponges are not as well studied as corals and other benthic taxa that form structural habitats, 

and their significance within the global marine ecosystem is far less widely appreciated 

(Becerro, 2008; Przeslawski et al., 2008; Schönberg & Fromont, 2011; Van Soest et al., 2012; 

Fromont et al., 2016). There is a general lack of management for sponge communities to the 

point where they are now considered a ‘neglected group’ (Saleuddin & Fenton, 2006; Bell et 

al., 2015b; Fromont et al., 2016). 

 Fromont et al. (2016) noted that knowledge of sponge species distributions is often 

impeded by significant numbers of undescribed species, making it difficult to characterize all 

taxa. Biogeographic studies are limited by the number of taxonomic experts available, and 

the number of taxa required to be identified, especially in poorly studied regions. Therefore, 

restricting identifications to Linnaean taxa can significantly underestimate the true 

biodiversity of a region, and the use of OTUs (operational taxonomic units, or morphological 

concepts) can significantly improve estimates of undescribed or cryptic sponge fauna 

(Fromont et al., 2016).  
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 There are three key factors that influence the magnitude of dispersal patterns of 

sedentary marine invertebrate larvae. These include (1) the length of their larval life, (2) the 

swimming behaviour or ability of their larvae, and (3) the hydrographic regimes that the 

larvae encounter during the planktonic phase (Young & Chia, 1987; Graham & Sebens, 1996; 

Paris & Cowen, 2004; Mariani et al., 2006). Timing of larval release is also a factor that 

influences the magnitude of dispersal patterns as sponges as outgoing tidal cycles could draw 

sponges away from settlement habitats and nearshore reefs. Although factors affecting larval 

dispersal of sponge species cannot explain the exact distribution of populations (Mariani et 

al., 2006) this information may act as a guide for potential modes of distribution. For example, 

long-lived (typically dispersing for months) sponge larvae may remain close to localized 

parental populations via specialist behavioural adaptations that limit their horizontal 

movement in the water column, thus limiting their dispersal (tens of kilometres) (Paris & 

Cowen, 2004; Mariani et al., 2006). Mariani et al. (2006) also argued that it is likewise possible 

that even short-lived larvae (typically short dispersing, for several days) that are incapable of 

efficient swimming can be transported and dispersed by currents over relatively large 

distances (hundreds of kilometres) after being transported to a mainstream oceanic flow. 

Interestingly, Mariani et al. (2006) found that pelagic larvae with efficient swimming and cue 

responses (light intensity) can actively counteract hydrodynamic forces to some degree. 

However, short-lived, non-feeding larvae of some Order Dictyoceratida species may favour 

retention near parental habitats, thus enhancing self-seeding and self-recruitment (Mariani 

et al., 2006). Therefore, in the current study attention is placed on the possibility of spatial 

selection of localized sponge communities with specialized behavioural adaptations or 

preference for parental habitats by reproductive propagules, contrasted with species that 

may have reproductive strategies that are less ‘selective’ for localized habitats, against the 

prevailing biophysical conditions of the different locations examined. However, sponge 

species that can accommodate wide scale distribution patterns should be commonly found 

at all localities examined. In addressing these theories, the extent that major oceanic current 

systems can influence the coastal benthos around New Zealand as correlated to the 

distribution patterns of sponge fauna, can be ascertained.  

There have been few ecological studies on sponge populations in Taranaki, which is 

likely attributed to the logistical difficulties of conducting surveys in this isolated region, in 

addition to dynamic weather conditions and generally poor water visibility for diving (average 

subtidal visibility <4 m). Furthermore, a large proportion of the rocky reefs within the Taranaki 
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region are uncharted. Therefore, local expertise and experienced skippers are required to 

explore this coastline to locate sponge rocky reef habitats. This study will focus on sponge 

populations living on shallow coastal rocky reefs at large regional scales (over hundreds of 

kilometres) and at local scales over tens of meters in the Taranaki region and draw upon 

information from surveys conducted from Kapiti Island in the Wellington region. Apart from 

Battershill and Page (1996), and Kelly et al. (2017), there is a general lack of research on 

sponge communities both from a taxonomic and ecological perspective in the Taranaki region.  

Regional endemism is substantially higher in sponges than other marine invertebrate 

phyla across the globe’s oceans (Wilson & Allen, 1987; Van Soest, 1989;Kelly et al., 2009). 

Remarkably, for New Zealand Porifera, endemism is reported to be as high as 95%. This is 

likely due to the isolated nature of New Zealand’s land mass and relatively early departure 

from Gondwanaland (85 mya) (Suggate, 1990). Thornton, 1997). Kelly et al. (2009) noted the 

historical tendency of sponge researchers to give New Zealand sponge species incorrect 

species names (mostly European), giving the false impression that many sponges are 

cosmopolitan. Kelly et al. (2009) also highlighted the need for documentation of regional 

sponge fauna in New Zealand, specifically those from the west coasts of both main islands 

and the South Island. There is continued need here to renew interest in expanding sponge 

biodiversity initiatives at both regional and national scales.  

 There have been regional studies that focus specifically on marine sponges, in 

combination with other phyla while also examining the anthropogenic threats these 

organisms are facing in a changing world. Battershill and Page (1996) conducted the first 

ecological study of sponges in the Taranaki Region with a preliminary survey of Pariokariwa 

Reef in North Taranaki, which now forms part of the 18 km2 of Parininihi Marine Reserve. This 

study found dense assemblages of sponges at depths from 5–25 m, covering areas of greater 

than 75% of available boulder space (Battershill & Page, 1996). Pariokariwa reef is subject to 

extremely high-energy areas and large-scale erosion and therefore it was surprising for the 

authors to find such a diverse assemblage of sponge fauna at this location (Battershill & Page, 

1996). Further identification work has been conducted by Kelly et al. (2017) for sponges at 

Patea Reef located in South Taranaki as part of a citizen science project involving the 

identification of organisms at Patea Reef (Project Reef South Taranaki, 2021).  

This chapter will focus on qualitatively examining the hypothesis that the 

biogeography of sponge taxa in the Taranaki region is complex over medium spatial scales 
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and reflects a combination of geographic aspect, geological profiles, land derived river inputs 

(sediments), and effects of oceanic currents. It is designed to set the backdrop for the 

following chapters that examine the drivers for observed distribution and abundance of 

sponges around Taranaki. 

 Methods 

A taxonomic biogeographic characterization of sponge species from the Taranaki region was 

undertaken. Sponge specimens were collected for analysis using SCUBA by Samuel Mc 

Cormack (SMcC) over three years and two southern hemisphere seasons (autumn, April 4–5, 

2019; summer, January 14–17, 2020; and summer, January 15–20, 2021), along three 

transects from Taranaki in the North Island of New Zealand (Fig. 2.1). Transects were coastally 

positioned adjacent to three rivers discharging from increasingly ‘pristine’ catchments: 

Waitara reefs (Waitara coastal near and distant stations), Waiwhakaiho reefs (Waiwhakaiho 

coastal near and distant stations), and Hangatahua Reef (Fig. 2.1). Transects were 

characterized by differences in terrestrial, freshwater, and marine organic inputs from diverse 

land uses and coverage, and water quality and were selected to provide a representative cross 

section of anthropogenic impact on the land (Taranaki Regional Council, 2018). We sampled 

2–3 stations along each transect (WAI, WAIW and HAN): 1–2 coastal rocky reef stations about 

1–2 km offshore (from the three rivers — Waitara, Waiwhakaiho and Hangatahua). At each 

station, sponges were collected at depths between 12–19 m from rocky reefs using a sharp 

dive knife and placed in containers for storage.  

 The survey protocol resulted in a fast plateau of new species ‘finds’ within each dive 

and station suggesting that the method effectively permitted collection of most species 

present at each station.  

Data from this project was combined with previous taxonomic information conducted 

by Battershill and Page (1996), Kelly et al. (2017), together with records of sponge taxa 

recorded from Kapiti Island (also by the author for the Department of Conservation), to 

determine the biogeography of sponges along the central west coast of the North Island of 

New Zealand. Previous taxonomic work conducted on sponges from the Tauranga Harbour 

was used as a precursor study as part of this PhD, to develop the capacity and taxonomic 

expertise to undertake broad-scale ecological studies of sponges from the remote Taranaki 

region (see Appendices 1 & 2). The previous taxonomic work conducted on Bay of Plenty 
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sponges found in Appendices 1 & 2 is an example of the diligence that is required to undertake 

such a study, and both manuscripts are in preparation for publication as part of this overall 

study as some of the species overlap the Taranaki fauna. For example, to provide a 

comprehensive update of five common New Zealand sponge species all sponge specimens for 

each species stored at the NIWA Invertebrate Collection (NIC) and the Museum of New 

Zealand Te Papa Tongarewa Wellington (NMNZ) were examined. Institutional records, 

combined with collections from the current study extend our understanding of the 

morphological boundaries of each species within New Zealand. The research conducted in 

appendices one and two sets a precedent for the appropriate method to conducting modern 

day redescriptions of sponge species in critical need of revision from New Zealand.  

Figure 2.1 Coastal locations surveyed within the current study (black dots), Waitara reefs (Waitara 
coastal near and distant reefs), Waiwhakaiho reefs (coastal near and distant reefs), and Hangatahua 
reefs. Additional black dots represent locations not surveyed in the current study but analysed as part 
of the wider biogeographic study from Patea Reef and Kapiti Island reefs.  
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2.3.1 Study region oceanography and current systems  

 

Figure 2.2 The land mass of New Zealand is surrounded by three major water masses, and the boundaries 
of these masses are called fronts. The diagram above shows the fronts of these water masses including the 
Tasman Front (TF), Subtropical Front (STF) and Subantarctic Front (SAF). Warmer masses including the 
Tasman Front has relatively warm waters and surface currents. Eastward flows of warm water split around 
New Zealand, and currents flow south-eastwards around the North Island’s east coast, and north-westward 
around the South Island’s east coast. A cooler Sub-Antarctic Front is found at the bottom of New Zealand’s 
Exclusive Economic Zone. In southern New Zealand Sub-Antarctic and cold Antarctic Circumpolar Current 
(ACC) flow near the deep ocean floor to the east of Campbell Plateau and Chatham Rise. The D’Urville 
Current (DC) is an important current system that influences the Taranaki Region and Fauna within the 
current study area (modified from Te Ara Encyclopedia of New Zealand, 2021).  

 

The current systems around New Zealand’s Economic Exclusion Zone (EEZ) likely play 

important roles in distributing sponge species given the poor swimming abilities of the larvae 

of certain species. The west coast of New Zealand’s North Island is influenced by three major 

currents including the West Auckland Current flowing south from the top of New Zealand’s 
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North Island, the Westland Current flowing north from the west of the South Island. Finally, 

the  D’Urville Current, flowing southeast through Cook Straight, is the most influential current 

systems in the Taranaki region and may provide insight into the organisation of some sponge 

taxa that rely on hydrodynamic systems for dispersal (Salinas-de-León et al., 2012;  Fig. 2.2). 

Chiswell and Stevens (2010) used Lagrangian and Eulerian measures to estimate current flow 

around Kapiti Island and reported that the mean flow was to the south-west, towards the 

Cook Strait. Nevertheless, current flow and direction is likely heavily influenced by the 

exposure to wind conditions along most parts of the west coast of the North Island of New 

Zealand. A study conducted on the sponge larvae of an intertidal gastropod species 

Austrolittorina cincta on the southeast coast of New Zealand’s North Island found that most 

of the positively identified larvae dispersed over a distance of ˂5 km, low numbers were fund 

at distant locations (15–50 km), and very few larvae travelled over 100 km (Salinas-de-León 

et al., 2012). Therefore, this study highlights the likelihood of some gastropods having mostly 

localised  ˂5 km dispersal distances along this coastline, likely attributed to longshore tidal 

flow. Consequently, this may provide insights into the potentially limited dispersal of other 

taxa including sponge larvae along the west coast of the North Island of New Zealand.  

Although these are different taxa to sponges larvae and sponge larvae may have 

different swimming, or buoyancy capabilities, these sorts of studies provide insights into 

potential dispersal distances. Although the wider coastal geomorphology of the sea floor may 

also potentially influence the biogeographic distribution of sponge populations an 

examination of these effects is beyond the scope of the current study.  

2.3.2 Species assemblages around Taranaki 

Datasets were compiled from four sources from around Taranaki and Kapiti Island on the 

western coast of the North Island (Data from Kapiti is provided for comparison, mindful that 

it is an offshore island compared to otherwise coastal locations). The first dataset analysed 

was from work conducted by Battershill and Page (1996) who conducted a preliminary survey 

of Pariokariwa Reef in north Taranaki. Commissioned by the Department of Conservation 

(DOC) Battershill and Page (National Institute of Water and Atmospheric Research, NIWA) 

surveyed the reef and collected specimens of benthic invertebrates for identification. The 

impetus for the work was based on local iwi reports of a rich and varied sponge-characterised 

community that was under threat from lost gill nets fouling the reef. NIWA (Battershill, 

Bergquist, Gordon as taxonomists) was commissioned to identify sponges and brachiopods 
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on Pariokariwa Reef, which at the time was being proposed as a new marine reserve (now 

titled Parininihi Marine Reserve). The survey also had a secondary aim of providing advice on 

the status of the reef and its occupants (rare, common, undescribed species) (Battershill & 

Page, 1996). Five dives were completed by the team and visited by NIWA with support from 

the Department of Conservation with the aim of covering as much different habitat forms as 

possible (Battershill & Page, 1996). Communities were qualitatively characterized, and 

collections of as wide a range of diversity of marine fauna and flora as possible were 

undertaken. Sponge species were then stored for laboratory taxonomic identification to at 

least genus level by Battershill and Bergquist. This survey highlighted the extreme exposure 

of the Taranaki region and finer sediments covering slat areas in the subtidal benthos 

(Battershill & Page, 1996). The Pariokariwa Reef in north Taranaki was found to have 

exceptionally unique sponge communities in terms of area covered and endemism. For 

example, one reef was covered by over 70% bright orange sponge Polymastia crassa 

interspersed by Polymastia sp., Tethya aurantium, and Aaptos globosa between 10–15 m 

(Battershill & Page, 1996). Finger sponges (species not specified) occupied the deeper rocky 

reefs 10–25 m of Pariokariwa Reef with an inverse relationship between Ecklonia radiata 

coverage and finger sponge abundance (Battershill & Page, 1996). The summary of findings 

from this report suggested that there were many novel undescribed sponge species with two 

distinctive communities of Polymastia crassa and Axinella gardens at Pariokariwa Reef 

supporting a rich assemblage of associated taxa (Battershill & Page, 1996). A full species list 

from this survey has been compiled and was used as part of the larger scale biodiversity 

analysis of sponges in the Taranaki region, reported below, in addition to species from Kapiti 

Island in the Wellington Region further south (Appendix 3, A3.1).  

 An additional survey conducted by Samuel Mc Cormack (SMcC), researchers from the 

University of Waikato Coastal Marine Field Station, and Department of Conservation 

examined the biodiversity and ecology of marine taxa surrounding Kapiti Island. Ecological 

surveys conducted inside and outside of the reserve were conducted to determine if there 

was a greater diversity and abundance of taxa within the Kapiti Island Marine Reserve. Data 

from the Kapiti Island marine survey was compiled and utilized as part of the current wider 

geographic study herein.  

 An additional field identification guide for sponges and other taxa was created by 

taxonomists for Patea Reef, south Taranaki (Kelly et al., 2017). This sponge identification 
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guide was created to assist citizen science researchers who are part of South Taranaki Reef 

Life Project, which was developed to raise awareness for this unique offshore reef 

environment. This ongoing project is co-funded Curious Minds PSP, Ministry of Business 

Innovation and Employment (MBIE) and capital funds from Toi Foundation. The Reef Life 

Project is also supported by the voluntary resources of the South Taranaki Underwater Club 

and aims to obtain baseline ecological and biodiversity data of Patea Reef through regular 

sub-tidal monitoring. Kelly et al. (2017) provides a rough guide and list of sponge species 

commonly found on Patea Reef. This Patea Reef sponge species dataset was also utilised here 

to help understand patterns of sponge diversity in Taranaki.  

2.3.3 New species descriptions 

A comprehensive update of five common New Zealand sponge species was required to permit 

diligence in sponge taxonomic assignments. This work is a precursor to assignment of the 

many putative new species collected during this PhD study. A collaboration with researchers 

from the National Institute of Water and Atmospheric Research (NIWA), and the NIWA 

Invertebrate Collection (NIC) team allowed for a comprehensive review of all the literature 

and descriptions of these species from New Zealand. Appendix 1 describes two new species 

of Dysidea (Porifera, Demospongiae, Dictyoceratida, Dysideidae) from Tauranga Harbour, Bay 

of Plenty, New Zealand as an example of the approach taken to describe sponge taxa herein 

(Mc Cormack et al., 2020).  
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 Results 

 

Figure 2.3 Proportion of higher taxa (ordinal classification) across 73 species and OTUs distinguished in this 
biodiversity survey from five combined coastal rocky reef stations in Taranaki (Waiwhakaiho coastal near, 
Waiwhakaiho coastal distant, Waitara coastal near, Waitara coastal distant, and Hangatahua coastal near). 
Values were rounded to the nearest percentage. 

 

Based on taxonomic analysis of sponge specimens and non-destructive sub-tidal visual 

surveys it is apparent that the order Poecilosclerida Topsent, 1928, had the greatest 

percentage of individual sponges present at all stations at 15% (Fig. 2.3). The second most 

common order recorded from all stations was Tetractinellida Marshall, 1876, (11%), followed 

by Dictyoceratida Minchin, 1900, (6%), Suberitida Chombard and Boury-Esnault, 1999, (4%), 

Axinellida Lévi, 1953, (3%), Scopalinida Morrow and Cárdenas, 2015, (3%), and Tethyidae Gray, 

1848, (1%) (Fig. 2.3). It should be noted that although there was a large proportion of 

unidentified sponge species across all stations (56%), it is difficult to visually characterize 

different sponge species sub-tidally without examination of their skeletal and spicule 

morphology (in progress for full taxonomic assignments).  
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There were 35 sponge species that only occurred at the northernmost and 

southernmost locations at Pariokariwa Reef in northern Taranaki and Kapiti Island in the 

Wellington region to the south (Appendix 3: A3.1). The index estimation for sponges in the 

Taranaki region was approximately 9.6 sponge species 1 m‒2 of rocky reef. The black pillow 

sponge Ecionemia alata was the most widely distributed species, and the only taxon recorded 

at all six locations (Appendix 3: A3.1). Data related to sponge populations from Kapiti Island 

reefs and Pariokariwa reefs are being used in the current study as general comparisons for 

the data collected herein.  

2.4.1 Species presence by taxonomic class 

Heteroscleromorpha Cárdenas, Pérez & Boury-Esnault, 2012, was the most abundant sub 

class found at all locations (Table 2.1). Species and OTU level diversity were most abundant 

at Pariokariwa Reef (56 species) and Kapiti Island (86 species) (Fig. 2.4; Appendix 3: A3.3).  
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Table 2.1 Species presence and total number of species separated into taxonomic subclasses from combined surveyed and taxonomic collection data at each location: 

Pariokariwa reefs, Waitara reefs, Waiwhakaiho reefs, Hangatahua reefs, Patea Reef, and Kapiti Island reefs.  

Class Subclass Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti Taranaki All locations

Calcarea Calcaronea 3 0 0 0 0 1 3 4
Calcarea Calcinea 0 0 0 0 0 1 0 1
Demospongiae Unknown 0 2 0 0 0 0 2 2
Demospongiae Heteroscleromorpha 44 20 11 9 21 71 105 176
Demospongiae Keratosa  9 4 2 1 2 13 18 31
Total 56 26 13 10 23 86 128 214

Number of species

 

There were 242 apparently different sponge species present among all locations surveyed (Table 2.2). Waitara had the highest number 

of different sponge species at 47, and a percentage of different sponge species at 19% among all stations sampled in the current study (Table 

2.2). However, Pariokariwa had the largest number of different sponge species among all Taranaki stations when previous studies are included 

in the analysis at 56 different species, and 24% of all sponges were different species (Table 2.2). Kapiti Island was the most biodiverse in terms 

of its number of different species at 89, and 37% of individuals from this station were different species (Table 2.2).  

 

Table 2.2 Number of different species, and percentage of different sponge species that occurred in quadrats at surveyed reefs from each location.  

Species Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti Taranaki total ALL 

Number of different species 56 47 13 14 23 89 153 242 

Percentage of different species (%) 24 19 5 6 9 37 63  

Taranaki percentage of different species (%) 37 31 8 9 15  -    
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Figure 2.4 Pie charts representing percentage of sponge taxa found within each taxonomic order at six locations in Taranaki and Wellington regions including 
Pariokariwa reefs, Waitara reefs, Waiwhakaiho reefs, Hangatahua reefs, Patea Reef, and Kapiti Island reefs. 
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There was a clear trend found within the ordinal level biogeographic distribution of 

sponges within Poecilosclerida with the largest abundance of this group occurring at Kapiti 

Island (35%), Waitara reefs (27%), Pariokariwa reefs (25%), and a smaller abundance 

occurring at Waiwhakaiho reefs (8%) (Fig. 2.4). There were clear spatial affinities and 

distributions seen among sponge taxonomic families across all locations. For example, some 

families such as Ancorinidae, Axinellidae and Halichondriidae were recorded at all locations 

studied and are clearly a commonly distributed taxa on this coastline (Appendix 3: A3.3). 

Moreover, there was large scale spatial patchiness for some taxonomic families such as 

Latrunculiidae, Microcionidae, Mycalidae, and Tedaniidae that were found at Pariokariwa 

reefs and Kapiti Island reefs but were not found near any of the rivers at all coastal stations 

sampled herein including Waitara reefs, Waiwhakaiho reefs and Hangatahua reefs (Appendix 

3: A3.3). A table displaying percentage of sponge taxa found within each taxonomic order at 

the six locations within the current study can be found in Appendix 3: A3.4.  

Table 2.3 Number of unique species at each location (in other words, the number of species that are only 
found at that location), and the percentage of species that are unique to that location (in other words, the 
percentage of species that are only found at that location) from Pariokariwa reefs, Waitara reefs, 
Waiwhakaiho reefs, Hangatahua reefs, Patea Reef, and Kapiti Island reefs.  

Species Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti 

Unique to site—
including Kapiti 

7 36 6 9 11 42 

Unique to site—
including Kapiti (%) 

13 77 46 64 48 47 

Unique to site—
Taranaki only 

44 36 6 9 12 - 

Unique to site—
Taranaki only (%) 79 77 46 64 52 - 
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Figure 2.5 Tentative geographic range of Powell (1955) Mollusca species around New Zealand. The 
geographic range of each marine taxon is indicated by codes (K=Kermadec Islands, A=Aupourian: from the 
Kaipara Harbour, north around North Cape, encompassing the Three Kings Islands and south to East Cape, 
C= Cookian: the remainder of the North Island and the northern part of the South Island, F=Forsterian: 
Otago, Fiordland and Stewart Island, M=Moriorian: Chatham Islands, and An = Antipodean: subantarctic 
islands of New Zealand (after Powell, 1955). Each of these biogeographic zones also tentatively correlate 
to the biogeographic distribution of sponge taxa (M. Kelly, pers. comm., 2020).  
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 Discussion 

As mentioned in the literature review, biogeographic studies are reliant on taxonomic species’ 

descriptions. This study utilized classical Linnaean classification based on morphology 

(skeletal architecture, spicules, colour, and shape), combined with the use of OTUs to 

significantly improve species estimates of biodiversity in Taranaki. An initial objective of this 

project was to explore the hypothesis that the biogeography in Taranaki is complex over 

medium spatial scales, reflecting a combination of geological profiles and potential effects of 

ocean currents.  

This investigation provides novel biogeographic insight into the biodiversity of 

Taranaki sponge fauna at two spatial scales from tens to hundreds of kilometres, providing 

both a regional overview and a local understanding of sponge community composition. The 

current study set out with the aim of qualitatively assessing the diversity of subtidal sponge 

fauna from this region and provides a list of 127 sponge species or OTUs of marine sponges 

collected along the Taranaki region based on taxonomic morphological characters (Appendix 

3: f).  

The results of this study show that Poecilosclerida was the most recorded taxonomic 

order of sponges represented across all locations surveyed from Waitara, Waiwhakaiho and 

Hangatahua reefs (Fig. 2.3). The second most common order recorded from all station was 

Tetractinellida (11%), followed by Dictyoceratida (6%), Suberitida (4%), Axinellida (3%), 

Scopalinida (3%), and Tethyidae (1%) (Fig. 2.3). An important finding from this study was that 

there were 35 sponge species that only occurred at the northernmost and southernmost 

locations at Pariokariwa reefs in North Taranaki and Kapiti Island reefs to the south in the 

Wellington region (Appendix 3: A3.1). The reasons for patchy distribution of species at both 

locations are unknown, but possibly reflects the fact that at both locations, there are 

extensive areas of rocky reef as opposed to small patch reefs and cobble or boulder areas 

found elsewhere. Hence these are arguably ‘preferred’ locations with specific habitat features 

for these taxa in terms of potentially larger abundances of food resources, suitable physical 

structure, possibly an absence of predators, and less sedimentation. Ecionemia alata was the 

most commonly distributed sponge found at all locations examined and the only species that 

was recorded from all six locations (Appendix 3: A3.1). This is unsurprising given how 

commonly distributed this species is around the North and South Islands of New Zealand, with 
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distributions stretching from the Three Kings Islands down to Mernoo Bank and Chatham Rise 

(Kelly & Sim-Smith, 2012).  

Order Tetractinellida was the most abundant group of sponges from all stations 

combined, followed by Suberitida and Axinellida (Fig. 2.4). However, the abundance of 

individuals within orders differed among stations. For example, the largest abundance of  

Poecilosclerida occurred at Kapiti Island (35%), Waitara reefs (27%), Pariokariwa reefs (25%), 

and a smaller abundance occurring at Waiwhakaiho reefs (8%) (Fig. 2.4). In comparison these 

results differ slightly from the abundances of orders found on rocky intertidal zones from the 

mostly temperate Illawarra region of New South Wales, Australia, where the orders 

Haplosclerida (36%), Heteroscleromorpha (14%), and Poecilosclerida (18%) were the most 

abundant orders found in that region (Borges da Silva, 2019). However, much like the current 

study, there are likely geographical affinities of sponges sound at different locations within 

the Illawarra region. A further study of ordinal level diversity conducted by Fromont et al. 

(2016) on rocky reef sponges from the Pilbara region in tropical Western Australia found that 

Haplosclerida (23%, Dictyoceratida (16%), and Poecilosclerida (15%), were the most abundant 

orders found. These changes in diversity within different parts of the world suggest that the 

abundance of sponge orders change not only within geographic regions but also among 

different ecosystems throughout the world.  

Ordinal level diversity was most abundant at Pariokariwa Reef (56 orders) and Kapiti 

Island (86 orders) (Fig. 2.4; Appendix 3: A3.3). There was a clear trend found within the ordinal 

level biogeographic distribution of sponges within Poecilosclerida with the largest abundance 

of this group occurring at Kapiti Island (34%), Waitara reefs (26%), Pariokariwa Reef (25%), 

and a smaller abundance occurring at Waiwhakaiho reefs (7%) (Fig. 2.4). This may be due to 

the higher loading of sediments at these locations, an issue for usually thinly encrusting 

species (Chapter 2). However, it should be noted that the sampling efforts at both locations 

were less intensive than at other locations. It should be noted that there is a critical need to 

conduct a comprehensive ecological study of Patea Reef to gain a better understanding of the 

sponge communities on that reef. Nevertheless, there were clear spatial affinities and 

distributions seen among sponge taxonomic families across all locations. For example, 

families such as Ancorinidae, Axinellidae, and Halichondriidae were recorded at all locations 

studied, and are clearly a commonly distributed taxonomic group in this region (Appendix 3: 

A3.3). Moreover, there was large scale spatial patchiness for some taxonomic families such 
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as Latrunculiidae, Microcionidae, Mycalidae, and Tedaniidae that were recorded at 

Pariokariwa reefs and Kapiti Island reefs but were not recorded near any of the locations 

positioned adjacent to river mouths, including Waitara reefs, Waiwhakaiho reefs, and 

Hangatahua reefs (Appendix 3: A3.3). Some taxonomic groups have not adapted either 

physiologically or behaviourally to survive within some of these microhabitats. As mentioned 

above, the absence of specific taxonomic groups over small spatial scales is also likely 

attributed to the influence of the nearby rivers that may influence the structure and function 

of these sponge communities, particularly those communities adjacent to high sedimentary 

discharges. For example, there was an absence of some families (Latrunculiidae, 

Microcionidae, Mycalidae, and Tedaniidae) at locations positioned adjacent to river mouths. 

This is supported by data in the literature which examined the functioning (survival, 

respiration and morphology) of the New Zealand species Crella incrustans after exposure to 

sediments within a four week experiment and found that the survival rates of individuals were 

high, and that oxygen consumption of the sponges were not affected (Cummings et al., 2020). 

These sponges did, however, experience changes in their morphology, with the development 

of apical fistules, suggesting that it is completely plausible that different sponge species are 

predisposed to having the ability to cope with large amounts of sedimentation compared to 

others. Therefore, selective mortality may occur following passive dispersal  or lack of 

dispersal capabilities via oceanic currents, in contrast to taxa that thrive in habitats located 

near river mouths (see Chapters Two and Three where these relationships are explained in 

further detail). 

 Another important finding was the large number of different sponge species at every 

location examined. Approximately 37% of sponge species at Kapiti Island were different when 

compared to all locations examined (Table. 2.2), perhaps not surprising for an offshore island. 

These results support the findings by Mariani et al. (2006) that some sponge species with 

short-lived larvae favour retention near parental habitats, thus enhancing self-seeding and 

self-recruitment of these populations. There were 242 apparently different sponge species 

present among all locations surveyed (Table. 2.2), with a total of 170 sponge species recorded 

among all locations (Appendix 3: A3.1). Within the Taranaki region alone there were 153 

sponge individuals recorded and a total of 127 species recorded from all surveys conducted 

in this region including all the combined data in literature from Battershill and Page (1996), 

and Kelly et al. (2017) (Appendix 3: A3.1). 
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Of all Taranaki locations surveyed Pariokariwa Reef had the largest number of species 

that were unique to that area (44 unique species) and found at none of the other locations 

examined (Table 2.3). This supports research conducted by Battershill and Page (1996) that 

stated that the sponge populations at Pariokariwa reef have an exceptionally large number 

of unique sponge species for the Taranaki region. Surprisingly, Waitara reefs had the second 

largest number of unique sponge species of all locations in Taranaki (36 unique species), 

followed by Patea reef (12 unique species), Hangatahua (9 unique species), and Waiwhakaiho 

(6 unique species) (Table. 2.3). This was an unexpected outcome as the Waitara reefs are 

positioned adjacent to the largest river and river catchment in the Taranaki region (Waitara 

River), also the most modified catchment with high sedimentary discharges. The suggestion 

is that the species present at the Waitara location, represent a sediment tolerant specialist 

group of sponges. Indeed, they have not been identified even at a generic level. These 

sponges have not been seen elsewhere in New Zealand and await more detailed taxonomic 

assignment (in progress). Overall, Kapiti Island and Waitara reefs had the largest number of 

unique species among all locations examined (Pariokariwa, Waitara reefs, Waiwhakaiho reefs, 

Hangatahua Reef, Patea Reef, and Kapiti Island reefs). These locations represent extremes in 

habitat biophysical character. 

There are several possible explanations for the spatial patchiness of some of the 

taxonomic groups of sponges recorded including but not limited to favourable substrate for 

attachment, random distribution caused by ocean currents, predation, competition, 

adaptation to the effects of riverine sedimentation or lack thereof, presence for dispersal of 

larvae near parent sponges, and food availability from the rivers (see Chapter Four for an 

explanation for riverine sources of food for sponges). Wulff (2012) conducted a 

comprehensive review of factors influencing sponge faunas in all marine habitats and found 

that there were a large number of ecological factors that can play substantial roles in shaping 

the distribution and abundance of sponge species. Experiments have revealed that 

opportunistic predation is one of the primary drivers for distribution boundaries that coincide 

with habitat boundaries in several systems (Wulff, 2012). Moreover, within habitat influences 

of predation can be dramatic as a result of unusually high recruitment rates and unusually 

low mortality rates of predators which often specialise on predating on sponge species (Wulff, 

2012). Competitive interactions have been shown to diminish sponge populations in only a 

few cases. On the contrary competitive interactions often turned out to be neutral or even 

beneficial relationships among sponge species (Wulff, 2012).  
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In predominantly tropical systems sponges can form mutualistic symbiosis with other 

plants or animals which has been shown to increase the abundance, diversity, and habitat 

distribution of all organisms involved (Wulff, 2012). However, although symbionts may boost 

the diversity and abundance of sponges it also makes them more susceptible to impacts of 

environmental changes. Examples of factors that influence the distribution and survivability 

of sponge fauna in all marine habitats include temperature and salinity (Wulff, 2012).  

At 47 sponge species, the Waitara reefs location had the highest diversity of sponge 

species from all locations surveyed in the current study. These results are congruent with 

results from Beaumont et al. (2010) that found a larger diversity of molluscs, echinoderms, 

polychaetes, bryozoans, arthropods, sponges, wading birds, diadromous fishes, rocky reef 

fishes, and macroalgae with a mean rank score of 3.6–4.0 at this location compared to the 

surrounding areas. Moreover, there is also a likely link between the larger organismal 

diversity at this location and a larger spatial distribution and habitat complexity at this site 

with a rank of (2.1–2.5), and a larger diversity of organisms including sponges (Appendix 3: 

A3.A1–A3.1). Three dimensional physical structures likely provide a greater surface area for 

benthic encrusting organisms and other taxa to live, in addition to the provision of structure 

that allows organisms to hide and escape predators.  

 Although the biogeographic range of sponge species in New Zealand do not match 

perfectly with estimated biogeographic boundaries proposed by Powell (1955) found in 

Figure 2.5, there are clear positive correlations between molluscan and sponge biogeographic 

boundaries, especially in the Cookian biogeographic region, as there are many sponge species 

which occur on both sides of the North Island that are inexplicable if not for explanations of 

biogeographic ranges suggested in Powell (1955) (M. Kelly pers, comm., 2020). Nonetheless, 

Spencer et al. (2021) noted that although there are severe limitations with concepts of 

zoogeographical provinces (especially when applied to deep water species), they do give 

some approximation of the range of species. The biogeographical range of taxa may not have 

clear cut distinctions in their exact geographic distribution of sponge species and overlap 

between biogeographic provinces are likely to occur. Sponge taxa examined within this study 

all fall within the Cookian Biogeographic Province regardless of whether they were recorded 

from the Taranaki or Wellington regions (Pariokariwa reefs, Waitara reefs, Waiwhakaiho reefs, 

Hangatahua Reef, Patea Reef, and Kapiti Island reefs). Beaumont et al. (2010) found higher 

numbers of organismal diversity within the areas containing Pariokariwa and Waitara, which 
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is similar to results found here with a larger diversity of sponge species at both locations 

(Appendix 3: A3.1).  

Overall, these findings have important implications for developing conservation 

strategies for marine fauna on this coastline. These results highlight locations of significant 

biological diversity, abundance, and uniqueness. Sponges are a good indicator taxa for coastal 

rocky reefs because after the first day of larval settlement they are sedentary for the most of 

their lifecycle, therefore, any localized impacts can be seen in sponge communities. 

Furthermore, potential restoration strategies for sponges should consider the genetic 

diversity of populations that are being restored to determine if they are native to the area 

being restored or are genetically (minimize genetic pollution) suited to that area to determine 

‘how local is local’ in terms of sponge favoured habitat and biogeographic preference. Further 

work is required to bulk up the survey efforts from other poorly surveyed habitats in this 

region, and further regions throughout New Zealand’s EEZ that are in critical need of attention 

for taxonomic, biogeographic, and ecological investigations.  

Taxonomic Note: 

The appendices for this thesis also include a precursor manuscript which describes two new 

species of Dysidea Johnson, 1842, (Porifera Grant, 1836, Demospongiae Sollas, 1885, 

Dictyoceratida Minchin, 1900, Dysideidae Gray, 1867) from Tauranga Harbour, Bay of Plenty, 

New Zealand. Identifying sponge species within the genus Dysidea is extremely difficult as 

they lack spicules which are diagnostic for identifying most sponges. Within this study I 

examined the skeletal architecture of Dysidea species and reviewed the Dysidea of New 

Zealand validating five species. Taxonomic research on species within the genus Dysidea was 

undertaken to gain expertise in the identification of difficult sponge fauna to permit further 

identification of sponge fauna within the Taranaki region. Overall, the knowledge gained from 

the taxonomic characterization of sponge species from the Bay of Plenty region found in 

Appendices 1 & 2 were utilised to differentiate species within the wider biogeographic study 

conducted herein. 
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Chapter 3 

Environmental factors influencing the distribution and 

abundance of marine sponges around the Taranaki 

region, New Zealand 

 Abstract 

Human-mediated modifications to terrestrial ecosystems have changed the structure and 

functioning of coastal ecosystems, including loss of diversity, ecological function, and resilience. 

Discharges of sediments, nutrients and contaminants from land will invariably affect nearshore 

coastal habitats, with shallow biogenic reefs one of the most impacted. To better understand the 

influence of terrestrial land use on coastal reef systems a range of environmental factors were 

examined. Environmental parameters were studied to determine effects on the distribution and 

abundance of marine sponges and other phyla associated with different riverine and catchment 

discharges. There was a greater diversity and abundance of sponges at rocky reef stations that 

were in closer proximity to river mouths. This suggests that terrestrially derived organic matter 

from rivers may be supporting a greater assemblage and biomass of marine taxa on coastal rocky 

reefs. We also found that the size of sponges in terms of volume were greater at coastal stations 

positioned next to rivers with a relatively large coverage of indigenous terrestrial forests as 

opposed to reef systems adjacent to modified and urbanized catchments. An examination of the 

effects of several physico-chemical factors including turbidity, total phosphates, total nitrogen, 

and Escherichia coli presence, revealed that sponges appear to be resilient to certain degrees of 

exposure to these features of inferior water quality. There appears to be a negative correlation 

between effects of turbidity and nutrient levels on sponges generally, with high levels of turbidity 

associated with decline in sponge characterised reef habitat. In contrast, some sponge species 

appear to thrive in turbid conditions that provide high levels of nutrients in a form that they can 

profit from metabolically. The relationship of sponge diversity and abundance with water quality 

from catchments is complex with species specific responses. I conclude that marine biodiversity 
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loss associated with land-derived sedimentation and turbidity is of increasing concern and that 

there are clear linkages between terrestrial and coastal marine ecosystems.  

 Introduction 

Anthropogenic impacts on marine ecosystems are of continued concern globally. Previous 

studies have reported that marine biodiversity loss is increasingly impairing the oceans capacity 

to provide food, maintain water quality and recover from perturbations (Worm et al., 2006). 

Recent evidence suggests that marine diversity loss may have a significant impact on ecosystem 

function as global climate change stressors became more prevalent (Cardinale et al., 2012; 

Meredith et al., 2019; Cavanagh et al., 2021). A meta-analysis of literature conducted by Hooper 

et al. (2012) shows that impacts of species loss are comparable to the extent of impacts from 

drought, ultraviolet radiation, climate warming, ozone, acidification, elevated CO2, herbivory, fire, 

and certain types of nutrient pollution. These rapid changes are having a serious effect on marine 

ecosystems worldwide, leading to a loss of diversity and ability of ecosystems to provide services. 

Specifically, resource availability, reef assemblage resilience, and water quality were all shown to 

be negatively impacted by marine species diversity loss in ocean ecosystems (Worm et al., 2006).  

 Marine sponges are important for maintaining ecosystem function and integrity in 

benthic communities (Bell et al., 2015a). According to Bell et al. (2015a), less than 30 species of 

sponges are listed as threatened, and all are from the Atlantic and Mediterranean. However, a 

major problem with trying to understand the number of sponge species that are under threat is 

the taxonomic capacity to be able to describe and identify sponges in the first instance, especially 

in isolated and difficult to reach regions such as Taranaki in New Zealand (Chapter 2). Work 

presented in the previous chapter identified that the sponge fauna of Taranaki presented a high 

degree of endemism and biogeographic patchiness. There was a cline from north to south in 

terms of assemblage affinity (sub-tropical to cold temperate), but smaller scale patchiness 

appeared to be associated with coastal biophysical dynamics. This chapter is focused on 

identifying the possible causes for this. 

Sponges perform several important functional roles in marine ecosystems including 

benthic-pelagic coupling, silicon cycling, nitrogen cycling, facilitation of primary production, 

settlement substrate and habitat creation (Bell, 2008a). Their relationship with other 
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components of shallow coastal rocky reef systems is important to understand in the context of 

what drives their distribution, abundance, and trophic function. The presence of certain taxa may 

drive the distribution and abundance of some sponge communities. For example, many sponge 

species are associated with algal forests, and in New Zealand these are characterized by the kelp 

Ecklonia radiata. A recent investigation by Crofskey (2007) on the distribution of E. radiata 

around the North Taranaki Headland and its relationship with key physical characteristics found 

that water turbidity was the primary factor defining the distribution of E. radiata distribution, 

although wave energy and habitat complexity of the reef were also suggested as further 

environmental influences affecting distribution of these populations. The direct effects of fine 

terrigenous fluvial sediments were hypothesised to be the main limiting factor for E. radiata 

distribution on the north-eastern reefs of Taranaki, especially near the Waitara River (Crofskey, 

2007). These findings are congruent with findings from research recognizing terrigenous 

sediments as influential disturbance agents, as fine-grained sediments are prone to smothering 

and killing small marine infauna and settling propagules (Lohrer et al., 2006). However, it should 

be noted that although sponges are clearly impacted to some degree by sediments, current 

evidence suggests that most species have the potential to adapt to and tolerate certain amounts 

of suspended and settled sediments (Bell et al., 2015b). For example, Crella incrustans was found 

to have the physiological capabilities to withstand varying degrees of sedimentation under 

experimental conditions (Cummings et al., 2020). This sponge was found to have the capability 

to remove much of the sediment from its body over a four week period and was capable of 

changing it morphology and quickly adapt to environmental change (Cummings et al., 2020). 

Pineda et al., (2015) found that cup shaped sponges including Callyspongia confoederata and 

other species were more susceptible to mortality or tissue necrosis. Therefore, it is possible that 

cup shaped sponges would be less likely to be found in areas with high sedimentation. 

Maldonado et al., (2008) conducted a study on 660 asexual explants of the sponge Scopalina 

lophyropoda and found that sponges exposed to silt exposure lived shorter in natural habitats 

than sponges that were not exposed to silt, suggesting that harbour silt was deleterious to sponge 

communities. Furthermore, this study found that these impacts of sediments cause reductions 

in sponge species abundance, in addition to the genetic makeup of sponge populations, favouring 

sponges that are ‘genetic’ components involved in the ability of sponges to cope with sediments 

(Maldonado et al., 2008).  
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Interestingly, Cárdenas et al. (2012) found a negative correlation between algal 

abundance and several environmental variables on the distribution of sponges on New Zealand 

rocky reefs. Therefore, we should expect that in areas of high algal abundance in Taranaki such 

as those presented in Crofskey (2007) there should be a decrease in abundance of sponge species. 

Boring clionid sponges studied on West Indian reefs were shown to increase in abundance 

on reefs with increased levels of eutrophication (Holmes, 2000). Sponges subject to experimental 

analysis have also been shown to selectively remove pathogenic microbes from the water column 

including harmful Escherichia coli (Maldonado et al. 2012). However, these results should be 

considered with caution as sponges used for bioremediation of microbial pollution may 

selectively ingest certain bacteria that may end up fuelling growth of harmful bacteria that are 

less grazed, such as Vibrio spp. (Maldonado et al., 2012). 

 The capacity to taxonomically identify marine organisms is a prelude to conservation 

efforts. Taxonomic identification linked to knowledge of the drivers of sponge distribution and 

abundance, are essential to restoration efforts of these taxa if deemed to be under threat. 

Furthermore, a quantification of the presence (or absence) of different sponge species, together 

with assessment of their relative health in relation to biomass and morphology, may be 

important indicators for general rocky reef ecosystem health for an area or region. The research 

reported in this chapter will review a decade of environmental investigation conducted on rivers 

in the Taranaki Region and examine potential influences riverine pollution (poor water quality 

and ecological health) to sponge species distribution and abundance (Taranaki Regional Council, 

2016; 2017; 2018; 2019; 2020; 2021). 

This is the first study to examine the effects of catchment health on nearshore coastal 

biogenic health. The data presented here not only fills gaps in biodiversity analysis for this region, 

but they are also valuable in terms of the ecological knowledge regarding the impacts of 

terrigenous discharges to coastal ecosystems and specifically on the ecology of marine sponges 

in this area. These data provide a baseline for further ecological studies and potential habitat 

degradation of this region caused by anthropogenic stressors.  
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 Materials and methods 

3.3.1 Study region geology and coastal morphology 

The Taranaki region is a temperature, mostly sunny, windswept area with a large supply of evenly 

distributed rainfall and moderate temperatures. This region covers a land area of 9877 km2, 

reaching as far north as the Mohakatino catchment, south to include the Waitōtara catchment 

and inland to the boundary of, but not including the Whanganui catchment. The region extends 

12 nautical miles offshore to include waters of the territorial sea (Thompson et al., 2003). The 

terrestrial landscape is known for its fertile and free-draining volcanic soils centred on the ring 

plain of Mount Taranaki. The ring plain supports intensive pastoral farming, with the most 

intensive dairy farming occurring mainly on the flatter land in south Taranaki. There is an 

abundance of rivers and streams which originate from Mount Taranaki and are extensively 

utilized by the agricultural sector (Taranaki Regional Council, 2021).  

The Taranaki coast is exposed to swells generated in the Tasman Sea and Southern Ocean 

(Pickrill & Mitchell, 1979). Prior to 1998, this high wave energy coastline was composed of narrow 

cobble and boulder beaches surrounding a wave-cut shore platform curved from lahar deposits 

(Cowie et al., 2009). In 1998 there was a massive injection of sand and gravel into the ocean from 

the collapse of several scarps and volcanic detritus from the headwaters of the Hangatahua 

(Stony) River (Cowie, 2009). Black sand and scoriaceous gravel were transported into the coastal 

system and this travelled 22 km to the northeast, which fundamentally altered the characteristics 

of this coastline (Cowie et al., 2009). Taranaki coast has irregular physical characters composed 

of sandy floats and rocky reefs (McComb, 2001). Sediment transport has not been quantified 

along this coastline, but offshore surveys conducted by McComb et al. (2003) suggest that the 

nearshore regions (20–30 m depth) are dominated by rocky reefs, and sandy sediments persisting 

only within bathymetric depressions.  

3.3.2 Land cover in Taranaki 

Roughly half (49%) the total land area of the Taranaki Region is covered by indigenous forest and 

scrub (Fig. 3.1; Table 3.1). Pastures cover the second largest area (35%), followed by exotic forest 

and scrub 10%. Further land is covered by urban areas 3%, wetland, mangroves, and water 1%, 

other 1%, and horticulture <1% (Fig. 3.1; Table 3.1).  
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Figure 3.1 Land cover for Taranaki in 2020. Data is taken from the Land Cover Data Base. Inside of the black 
outlines are the catchments for the three rivers in this study (Waitara, Waiwhakaiho and Hangatahua (Stony) 
rivers). Red dots represent geographic coastal locations sampled locations of rivers.  

 

Table 3.1 Proportion of land cover categories displayed in square kilometres and percentage values in the 
Taranaki Region from 2012. Source: Land Cover Database (Thompson et al., 2003).  

Land cover type 
Area in square 
kilometres (km2) 

Proportion of total (%) 

Indigenous forest and scrub 4867 49 

Exotic forest and scrub 943 10 

Pasture 3505 35 

Horticulture  60 <1 

Urban 265 3 

Wetlands, mangroves, and water 113 1 

Other 121 1 
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3.3.3 State of the environment for river catchments and land-cover in Taranaki  

Waitara River: 

Waitara River is Taranaki’s largest river and has a relatively large catchment of 3102 km2, and 

flows south-west and north-west, travelling through both eastern hill country and the eastern 

side of the Taranaki ring plain. The river passes through the settlement of Waitara (population 

size 7,040 Jun 2020). Slightly less than half (47.7%) of the Waitara River catchment is covered by 

indigenous forest and scrub (Fig. 3.1). The second largest coverage of Waitara River catchment is 

pasture (42.6%), followed by exotic forest and scrub (6.8%). Around 1.1% of the catchment is 

covered by wetlands, mangroves, and water (Fig 3.1). The remainder of the catchment is covered 

by urban (1.0%), horticulture (0.6%), and other (0.2%) (Fig. 3.1).  

 Waitara River is monitored for water quality and ecological health by the Taranaki 

Regional Council at Autawa Road and Bertrand Road, and environmental data regarding the 

Waitara River used in the current study was compiled from freshwater ecological monitoring 

reports conducted by the Taranaki Regional Council (2016; 2017; 2018; 2019; 2020; 2021). The 

Bertrand Road site is also monitored as part of the NIWA (NZ) rivers survey network and is an 

existing hydrological station (Taranaki Regional Council, 2016). Waitara River has a different 

character from other steep ring plain rivers in the region and carries a high silt load (Taranaki 

Regional Council, 2020).  

Waiwhakaiho River: 

The Waiwhakaiho River has a catchment area of 489 km2, and its source is in the Egmont 

National Park. The river flows in an easterly direction through the city of New Plymouth (Fig. 3.1). 

A large proportion (64.5%) of the Waiwhakaiho River catchment is covered by indigenous forest 

and scrub (Fig. 3.1). Roughly a quarter 25.8% is covered by urban areas. The remaining coverage 

includes areas covered by significantly smaller areas including exotic forest and scrub (5.5%), 

pasture (1.7%), wetlands, mangroves, and water (1.2%), other (0.8%), and horticulture (0.7%) 

(Fig. 3.1).  

There are four sites throughout the upper and lower reaches of the river that are 

monitored for the 2002–2003 SEM programme, and environmental data regarding the 

Waiwhakaiho River used in the current study was compiled from freshwater ecological 
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monitoring reports conducted by the Taranaki Regional Council (2016; 2017; 2018; 2019; 2020; 

2021). The lower Waiwhakaiho River is markedly influenced by industrial impacts and is further 

monitored by way of site-specific monitoring (Taranaki Regional Council, 2016). Natural 

headwater erosion including iron-oxide release from tributary systems occasionally happens in 

the headwaters which may affect the water quality within the Waiwhakaiho River (Taranaki 

Regional Council, 2016).  

Hangatahua River 

The Hangatahua (Stony) River has a relatively small catchment covering an area of 347 km2, and 

the river itself originates in the Taranaki ring plain within the Egmont National Park (Fig. 3.1). 

Most of the Hangatahua River catchment (93.9%) is covered by indigenous forest and scrub (Fig. 

3.1). The second largest coverage of the Hangatahua River catchment is other (2.8%), followed 

by wetlands, mangroves, and water (2.0%). Remaining coverage of this catchment includes urban 

(0.7%), pasture (0.3%), and exotic forest and scrub (0.2%) (Fig. 3.1).  

The lower catchment of the Hangatahua River has relatively good water quality and a very 

narrow catchment area, and environmental data regarding the Hangatahua River used in the 

current study was compiled from freshwater ecological monitoring reports conducted by the 

Taranaki Regional Council (2020). The river itself is protected by a local conservation order. 

Hangatahua River has been affected by significant natural erosion events in the headwaters from 

2006–2017 (Taranaki Regional Council, 2020).  

3.3.4 Survey design 

Ecological data and sponge specimens were collected using SCUBA over two southern 

hemisphere seasons and three years (autumn, April 4–5, 2019; summer, January 14–17, 2020; 

and summer, January 15–20, 2021), along three transects from Taranaki in the North Island of 

New Zealand (Fig. 3.1). Transects were coastally positioned adjacent to three rivers discharging 

from increasingly ‘pristine’ catchments (respectively—Waitara (WAI), Waiwhakaiho (WAIW) and 

Hangatahua (HAN)) and running from rivers to the open ocean (Fig. 3.2). Transects were 

characterized by differences in terrestrial, freshwater, and marine organic inputs from diverse 

land uses and coverage, and water quality and were selected to provide a representative cross 

section of anthropogenic impact on the land (Taranaki Regional Council, 2018). We sampled 1–2 
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rocky reef stations at each location along latitudinal transects at Waitara (WAI), Waiwhakaiho 

(WAIW), and Hangatahua (HAN) about 1–2 km offshore from the three rivers — Waitara, 

Waiwhakaiho and Hangatahua (Fig. 31). We also collected sponge specimens from two additional 

stations (WAI pilot and WAIW pilot). ‘Pilot’ stations were used as initial collection sites to 

determine the best stations for ecological analysis based on consistent physical characteristics of 

the reef and were not included in subsequent ecological analysis which adopted an optimized 

survey and sampling design. River systems sampled were chosen based on the availability of 

ecological data available for them from the Taranaki Regional council, and rivers were of varying 

sizes in terms of river flow and catchment sizes (Fig. 3.3). At each station, sponges were collected 

at depths between 12–19 m from each rocky reef using a sharp dive knife and placed in 

containers for storage.  

Due to poor visibility (˂4 m) during SCUBA diving at coastal stations (n = 5), a ten-meter 

circular-search-pattern (360°) was used to collect as many sponge species tissue samples as 

possible. Five × 0.25 m2 quadrats were haphazardly placed in the 10 m circular search area. The 

percentage cover of all phyla was recorded within each quadrat using visual approximations of 

the area covered by each organism, in addition to volume (height × width × length of every 

sponge individual, and additional taxa such as algae and other invertebrates). Number of taxa 

within each phyla, number of different sponge species and number of sponge individuals were 

also recorded in each quadrat. Where possible, species names of all taxa were recorded. Habitat 

substratum including percentage cover of substrate (sand, shell hash, and boulders) and height 

× width × length of every boulder within each quadrate were recorded. Furthermore, general 

underwater habitat notes were recorded for each station. All sponges were stored in 70% ethanol 

and transported to the University of Waikato Coastal Marine Field Station laboratory for further 

analysis. Sponge specimens were individually identified to operational taxonomic units (OTUs) 

using skeletal sections and spicule morphology. This system ensured that ‘like’ habitat was 

sampled evenly in an otherwise very patchy reef dynamic. Also, the survey protocol resulted in a 

species accumulation curve within each dive and station suggesting that the method effectively 

permitted collection of most species present at each station. 
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Figure 3.2 Close up of sampling stations along the west coast of Taranaki. Red dots represent geographic 
stations sampled including freshwater and marine environments: A. Waitara (WAI), B. Waiwhakaiho (WAIW), 
C. Hangatahua (HAN), and D. outline of Taranaki area sampled in New Zealand.  

 

   

Figure 3.3 Chosen freshwater rivers from left to right: A. Hangatahua (Stony) River, B. Waiwhakaiho River, and 
C. Waitara River. 
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3.3.5 Coastal rocky reef stations 

Waitara near and distant coastal stations: 

Both dive stations (Fig. 3.1) were largely exposed to westerly winds. Sponges from this area were 

found on rocky reefs down to 18–28 m. Both reef stations sampled were between 12–19 m, 

respectively. See Table 3.1 for further information regarding Waitara near and distant coastal 

stations.  

Waiwhakaiho near and distant coastal stations: 

Diving conditions at both Waiwhakaiho coastal near and distant stations (Fig. 3.1) have relatively 

good sub-tidal visibility for the Taranaki region (>4 m). Rocky reefs are located on either side of 

the Waiwhakaiho River. The seawater at both Waiwhakaiho dive stations becomes murky after 

periods of rain due to sediments and other terrestrially derived matter being ejected by the 

Waiwhakaiho River. Both reef stations sampled were at depths of 18 m. See Table 3.1 for further 

information regarding Waiwhakaiho near and distant dive stations. 

Hangatahua near coastal station: 

The Hangatahua dive station is located near a 1 km long beach that experiences large surf, 

and sediments become suspended sediments and terrestrially derived matter on rough days 

leading to poor visibility at this location (Fig. 3.1). The Hangatahua rocky reef station sampled 

here was located at a depth of 17 m. See Table 3.1 for further information regarding Hangatahua 

near coastal station.  

 Results  

3.4.1 Benthic community structure 

Assessment of the total area covered by various encrusting algae and invertebrate taxa (Fig. 3.4) 

showed large proportions of encrusting coralline algae (above 35% cover at all stations), and 

relatively large proportions of bare substrate (6–23% coverage among all stations). Overall, the 

benthic assemblage of the coastal zone at the survey stations was relatively sparse with 

significant proportions of unoccupied space and large areas of turfing species (Fig 3.4). Crustose 

coralline algae were the most dominant encrusting organisms recorded at all stations. Waitara 
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coastal distant station had the largest percentage cover of crustose coralline algae (83%), 

followed by Waiwhakaiho coastal distant (56%), Hangatahua coastal near (51%), Waitara coastal 

near (51%), and Waiwhakaiho coastal near (35%). It is apparent from Figure 3.4 that the largest 

coverage of sponges was at the Waitara coastal near station (22%). Waiwhakaiho coastal near 

station had the second largest percentage cover of sponges at 16%, followed by Hangatahua 

coastal near (11%), Waiwhakaiho coastal distant (4%), and Waitara coastal distant (4%). These 

results show that percentage cover of sponges decreased with distance from river mouths as 

coastal stations had less coverage than stations located closer to rivers (Fig. 3.4). See appendix 

3:A3.1 for further information of species patchiness among stations.  
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Figure 3.4 Total area covered (%) by taxa represented by species and OTUs (nsp=) distinguished in the study at 
each station; (A) Waiwhakaiho coastal near (nsp=109), (B) Hangatahua coastal near (nsp=58), (C) Waiwhakaiho 
coastal distant (nsp=28), (D) Waitara coastal distant (nsp=16), and (E) Waitara coastal near (nsp=75). 

 

3.4.2 Sponge distribution and abundance patterns 

To assess sponge species abundance and diversity in the Taranaki Region sponges were identified 

to species or species descriptors (operational taxonomic units – OTUs) from each sampling 

station and counted accordingly with their size or and volumes estimated across seven coastal 

rocky reef stations. Ecionemia was the genus with the largest proportion of individuals (n = 13) 
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found at coastal pilot station WAI pilot (Table 3.2). Ecionemia alata was the most common 

sponge species among all stations studied in the Taranaki region. A summary of the physical 

nature of five subtidal habitats was recorded for five rocky reef stations to determine if the three-

dimensional landscape and substrate types influenced the diversity and abundance of sponges 

inhabiting each station (Table 3.1). Hangatahua coastal station had the largest boulders, with 84% 

of boulders larger than 30 cm in diameter, followed by Waiwhakaiho coastal distant with 34% of 

habitat covered by boulders larger than 30 cm in diameter (Table 3.1). Hangatahua coastal station 

had boulders ranging in size from 1–1.5 m, which provide large surface areas for sponges to 

attach to (Table 3.1). Results show that sponges are most common at Waitara coastal near station 

(Fig. 3.4). Moreover, biomass volume correlates with larger boulders >30 cm (Fig. 3.5; Fig. 3.7B—

C, F; Fig. 3.8). Generally, stations sampled closer to shore and river entrances had more sponge 

diversity and abundance, and sponge biomass volumes were generally larger than the biomass 

of sponges at stations located more distantly to river systems (Fig. 3.6B—C; Fig. 3.7B—C, F; Fig. 

3.8). Waitara had the largest total number of taxa across all phyla, in addition to the second 

largest number of sponge individuals and species (Fig. 3.6A—C) and was also positioned adjacent 

to the largest river in terms of volume and land catchment area (Fig. 3.1; Table. 3.1).  
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Table 3.2 Representation of 21 most common species at generic level across seven coastal rocky reef stations 
in the Taranaki Region. Dot diameters represent frequencies of individuals within genera and species. Numbers 
within parentheses where they appear next to a dot represent total number of individuals (n =) within each 
generic identifier across each coastal rocky reef station (total individuals for each station is shown underneath 
abbreviated station names) WAI near (Waitara near coastal), WAI distant (Waitara coastal distant), WAI pilot 
(Waitara pilot), WAIW near (Waiwhakaiho coastal near), WAIW distant (Waiwhakaiho coastal distant), WAIW 
pilot (Waiwhakaiho pilot) and HAN near (Hangatahua coastal near).  

 
Genera 

WAI 
near 
(n = 17) 

WAI 
distant 
(n = 4) 

WAI 
pilot 
(n = 26) 

WAIW 
near 
(n = 8) 

WAIW 
distant 
(n = 4) 

WAIW 
pilot 
(n = 7) 

HAN 
near 
(n = 4) 

Pararhaphoxya   (2)     (2)   (3)    (1) 

Dysidea     (1)     (1)  

Psammocinia      (1)     

Thorecta     (1)     

Tedania (Tedania)  (1)        (1)  

Chondropsis   (2)    (2)     

Crella   (2) 2      

Clathria      (1)     (1)  

Stylissa  2   (1)     

Ciocalypta     (1)     (2)  

Aaptos     (1)   (1)    

Tethya  (1)    (2)     (1)  

Ecionemia   (5)    (13)   (3)     (3) 

Stelletta        (1)  

Haliclona     (1)     

Adocia   (5)       

Thorecta     (1)     

        

Frequency of individuals in genera: 1      5        15 
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Table 3.3  Summary of subtidal habitats surveyed at five coastal rocky reef stations along the Taranaki coastline.  

Site Coordinates 

Sponges as 
percentage of 
total species 
found on reef 
(%) 

Wave exposure Natural habitat features Percentage (%) of area containing boulders 

Waitara coastal 
near  

S38°58.761, 
E174°12.610 

85 
 

North facing reef 
(Highly exposed) 

Predominantly large boulders (flat not regular), 
and sand. Small to medium boulders are less 
common. A large quantity of suspended 
sediments.  

>30 cm boulders = 36%, 10–30 cm boulders = 
21%, < 10 cm boulders = 21%. 

Waitara coastal 
distant  

S38°59.162, 
E174° 10.118 

81 
 

North facing reef 
(Highly exposed) 

Predominantly large and medium boulders, in 
addition to a variety of smaller boulders. 
Approximately 5 % of this habitat is gravelly 
shell-hash.  

>30 cm boulders = 40%, 10–30 cm boulders = 
37%, < 10 cm boulders = 14%. 

Waiwhakaiho 
coastal near 
 

S39°01.434, 
E174°6.700 

79 
 

North facing reef 
(Highly exposed) 

Has the second largest sized boulders of any 
site: some are a meter in diameter. Boulders 
are large enough to create tiny caves and 
overhangs (caves were 40 cm × 30 cm × 20 
cm). Large proportion of medium and small 
boulders packed together (medium 10–30 cm), 
(small 0–10 cm). Limited sand, and it is 
differentiated from sand at other stations with 
a white to cream yellow colouration. 
Abundance of tiny broken shells in the sand. 
Adjacent to this reef is a large area of rippled 
sand. There is a greater amount of three-
dimensional reef structure at this site for 
organisms to grow inhabit.  

>30 cm boulders = 34%, 10–30 cm boulders = 
37%, < 10 cm boulders = 19%. 

Waiwhakaiho 
coastal distant 

S39°01.378, 
E174°05.164 

29 
 

North facing reef 
(Highly exposed) 

Habitat characterised by large boulders. with a 
low number of medium boulders, and 30–50% 
small boulders, sand, gravel, and broken shell. 
Large and small size ranges of boulders mixed 
are common. 

>30 cm boulders = 35%, 10–30 cm boulders = 
25%, < 10 cm boulders = 27%. 

Hangatahua 
coastal near 
 

S39°09.834, 
E173°48.939 
 

64 
 

Northwest facing reef 
(highly exposed) 

Characterised by 1–1.5-meter-wide boulders 
sitting on sand and covered most of the 
quadrats. Smaller boulders covered 15% and 
sand cover roughly 10% of the habitat. The 
sand was a white and black colouration. The 
habitat directly surrounding this reef was 
comprised of sandy substratum.  

>30 cm boulders = 84%, 10–30 cm boulders = 
10%, < 10 cm boulders = 1%. 
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3.4.3 Substrate types of sponge habitats 

Ecological surveys examining the percentage composition of substrate types across all five rocky 

reef stations revealed a wide range in composition of substrates. Hangatahua coastal near had 

the largest proportion of boulders above 30 cm in diameter at over 80%, followed by Waitara 

coastal distant with roughly 40%, Waitara coastal near (37%), Waiwhakaiho coastal distant (35%), 

and Waiwhakaiho coastal near (36%) (Fig. 3.5).  

 

 

Figure 3.5 Total percent composition of substrate at each of the five study stations (Waitara coastal near, 
Waitara coastal distant, Waiwhakaiho coastal near, Waiwhakaiho coastal distant, and Hangatahua coastal 
near). 

There is a clear relationship between the boulder profiles in relation to sponge 

distribution and abundance. For example, 84% of the total reef area at Hangatahua coastal near 

was covered by boulders >30 cm, and this station also had the largest sized sponges in terms of 

volume of any station sampled (Fig. 3.5; Fig. 3.7B—C, F; Fig. 3.8). The station with the largest 

diversity and abundance of sponge taxa was at Waiwhakaiho coastal near, which also had a 

relatively large percentage coverage of large boulders with the 10—30 cm size category 

representing 37% coverage, and the >30 cm size category representing 34% coverage (Fig. 3.5; 

Fig. 3.6A—B).  

Waitara coastal near station had the largest number of all taxa across all phyla with over 

61 taxa recorded (Fig. 3.6A). This was closely followed by Waiwhakaiho coastal near with more 

than 53 taxa recorded. The third highest diversity of taxa across all phyla was recorded at 
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Hangatahua coastal near station with 38 different taxa (Fig. 3.6A). Further stations including 

Waiwhakaiho coastal distant and Waitara coastal distant had 31 and 20 taxa respectively (Fig. 

3.6A). Waiwhakaiho coastal near had the largest diversity of sponge species with 19 (Fig. 3.6B). 

Waitara coastal near had the second highest diversity of sponges with 17 species recorded (Fig. 

3.6B). These were followed by Hangatahua coastal near, Waitara coastal distant, and 

Waiwhakaiho coastal distant with 11, 9 and 6 sponge species respectively (Fig. 3.6B). 

Furthermore, Waiwhakaiho coastal near also had the largest total number of sponge individuals 

at 94 (Fig. 3.6C). Waitara coastal near had the second largest number of sponge individuals at 66, 

followed by Hangatahua coastal near (31), Waitara coastal distant (13), and Waiwhakaiho coastal 

distant (8) (Fig. 3.6C).  
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Figure 3.6 Sponge individuals and taxa among each of the coastal stations with standard error bars. A. total 
number of taxa across all phyla including sponges found at each station, B. total number of sponge species 
found at each station, C. total number of sponge individuals found at each station.  

There were no apparent associations between sponge species diversity and mean 

turbidity (NTU), mean sponge volume (cm3), mean total nitrogen (g N m-3), mean total 

phosphorous (g P m-3), and mean E. coli concentrations (cfu 100 mL-1) (Fig.3. 8 A–B, C, E, G). There 

were associations found between mean sponge volume (cm3) versus turbidity measured in 

Nephelometric Turbidity Units (NTU) with sponges appearing to decrease in overall size with an 

NTU greater than 100 (Fig. 3.7F). Mean sponge volume decrease with an increase in total nitrogen 

(g N m-3) (Fig. 3.7B). Furthermore, there was an increase in the volumes (cm3) of sponges at 

Hangatahua coastal near station with a proportionally large amount of mean total phosphorus 

at this site (Fig. 3.7C).  
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Figure 3.7 Graphical view of combined sponge species data versus environmental parameters including: A. 
Sponge species diversity versus mean total nitrogen (g N m-3), B. Mean sponge volume (cm3) versus mean total 
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nitrogen (g N m-3), C. Mean sponge volume (cm3) versus mean total phosphorus (g P m-3), D. Sponge species 
diversity versus mean total phosphorus (g P m-3), E. Sponge species diversity versus mean turbidity (NTU), F. 
Mean sponge volume (cm3) versus mean turbidity, G. Sponge species diversity versus mean E. coli (Escherichia 
coli) concentrations (cfu 100 mL-1). All environmental parameters measured were from the three rivers 
(Waitara, Waiwhakaiho and Hangatahua) that flow directly into the waters of the five coastal rocky reef 
stations studied herein. Data was derived from a decadal monitoring study of riverine environmental 
parameters collected and supplied by the Taranaki Regional Council (2016; 2017; 2018; 2019; 2020). 

 

Figure 3.7 (continued). 
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 Discussion 

Contrary to expectations for reefs in a high-sediment environments, the station closest to the 

Waitara River plume (Waitara coastal near) had 22% coverage of sponge species, the largest 

percentage for any station (Fig. 3.4E). This station also had the largest diversity of taxa (61) across 

all phyla among all stations (Fig. 3.6A). Moreover, the Waitara coastal near station had the second 

highest sponge diversity, with 17 species (Fig. 3.6B), in addition to the second highest number of 

sponge individuals among all stations at 66 (Fig. 3.6C). These results are interesting because the 

Waitara River catchment is also the largest river catchment in the Taranaki Region (3102 km2) 

and slightly below half of this catchment (47.7%) is covered by indigenous forest and scrub (Fig. 

3.1). A similar amount (42.6%) of the Waitara River catchment is covered by pasture (Fig. 3.1). 

Pasture grasslands are likely to have mostly agricultural grazing land uses including sheep, beef, 

or dairy farming (Thompson et al., 2003). However, some low producing grasslands may have 

recreational, or conservation uses. Furthermore, low producing grasslands are predominantly 

slow growing, and livestock grazing in these areas tend to be grazed over large areas. In 

comparison, high producing grasslands are usually more intensely grazed with a larger proportion 

of fertilizers and irrigation commonly used to improve land productivity (Thompson et al., 2003). 

Therefore, it is surprising to find such a large number and diversity of taxa including sponges 

across all phyla at the Waitara coastal near station as there may be a larger number of pollutants 

coming from intensively farmed catchments, and thus riverine sedimentary discharges (Fig. 3.6A–

C). 

Waitara coastal near station is adjacent to the output of the Waitara River which has the 

largest turbidity (mean 110 NTU, Fig. 3.7E—F; Fig. 3.8), largest total nitrogen (mean 0.44 TN g N 

m-3, Fig. 3.7A—B), and largest E. coli concentrations (mean 702.39 cfu 100 mL-1, Fig. 3.7G) of all 

three rivers analysed. Previous studies have reported on the physiological effects of sediments 

on sponge communities from different geographic locations around the globe. Tjensvoll et al. 

(2013) conducted sedimentation experiments on the deep sea sponge Geodia barretti and found 

that it physiologically shuts down when exposed to sediment concentrations of 100 mg L-1 (86% 

reduction in respiration), with thresholds of responses occurring between 10 to 50 mg L-1. 

Bannister et al. (2012) also found that experimental exposure of the tropical sponge species 

Rhopaloides odorabile to clay and carbonate sediments resulted in an increased metabolic 
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demand (respiration) of up to 40% in response to fine terrigenous (clay) sediments. Furthermore, 

this physiological response supports evidence that the load, size, and minerology of sediments 

are key factors that may affect the distributions and abundance patterns of R. odorabile 

(Bannister et al., 2012). Sponges were shown to be influenced in a number of ways to sediment, 

however, most species are likely to have some ability to tolerate suspended settled sediment 

(Bell et al., 2015a). Moreover, it has been demonstrated in the literature that many New Zealand 

sponge species have specific adaptations and can thrive in sediment impacted areas (Bell et al., 

2015a). Bell et al. (2015a) found that diversity and abundance of sponges appear to be influenced 

by patterns of sediment, and generally sponge assemblages are less diverse and abundant in 

highly sedimented environments. However, these impacts are not seen in all sponges, as some 

species are more abundant than others. This can be seen in an investigation of the New Zealand 

sponge Crella incrustans where it had a high rate of survival, and no effect of oxygen consumption 

after four weeks of experimental exposure to a gradient of suspended sediments (Cummings et 

al., 2020). A more natural study was conducted on tropical sponge assemblages and found that 

the impacts of sedimentation resulted in a reduction of diversity, losses and substitution of 

species, and shifts from relatively mature and stable communities to more unstable communities 

dominated by encrusting species better adapted to local environmental conditions (Carballo, 

2006). These results are similar to those from the current study in that there was a large 

dominance of thinly encrusting species at most stations in Taranaki, and all stations were found 

to have consistent levels of suspended sediments. Therefore, although the diversity of sponges 

may have been higher at some stations compared to others, this diversity would likely be larger 

if the sediments were not present. Nonetheless, it is difficult to determine whether this is the 

case here without further examination of sedimentary impacts along this coastline, and whether 

many of these sediments are the result of natural or anthropogenic  influences.  

 Further studies highlight the adaptive capabilities of sponges as a result of high levels of 

sedimentation. For example, it has been reported that the tropical photosymbiotic sponge 

Lamellodysidea herbacea has the ability to clear its tissue of high levels of settled sediment and 

compensate for metabolic demand by altering its respiration rate (Biggerstaff et al., 2017). This 

species produced large amounts of mucus presumably to attach to and clear settled sediments 

from its tissue (Biggerstaff et al., 2017). This sponge was also found to reduce its pumping rate 
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to avoid clogging in response to increased levels of sedimentation, therefore, suggesting that 

some sponges have the capability to tolerate high levels of sediment (Biggerstaff et al., 2017).  

Waitara coastal near station had up to 36% of its rocky reef covered in boulders larger 

than 30 cm in diameter, and boulders less than 30 cm in diameter represented 21% of the reef 

(Fig. 3.5, Table 3.1). Although not part of the larger ecological survey, a nearby Waitara control 

(WAI control) station also had the largest number of recorded sponge individuals across all of 

stations at 26 (Table 3.2). Similar trends were seen at Waiwhakaiho coastal near station which 

had the second largest percentage cover of sponges at 16%, the second largest diversity of taxa 

(53) across all phyla at all stations, the largest diversity of sponge species at 19 and the largest 

recorded number of sponge individuals 94 among all stations (Fig. 3.6A–C). The Waiwhakaiho 

River has a catchment covering an area of 489 km2 and has a source originating in the Egmont 

National Park (Fig. 3.1). What is interesting about the large coverage, diversity, and abundance 

of sponges at the Waiwhakaiho coastal near station is that a relatively large proportion of the 

nearby Waiwhakaiho River catchment is covered by indigenous forest (64%) (Fig. 3.1).  

Hangatahua coastal near station has the third largest percentage coverage of sponge 

species at 11% (Fig. 4B), and the third largest diversity of taxa (38) across all phyla among all 

stations (Fig. 7A). Furthermore, Hangatahua coastal near station had the third largest diversity of 

sponge species at 11 (Fig. 7B), and the third largest number of sponge individuals among all 

stations at 31 (Fig. 7C). Although Hangatahua River has the smallest catchment of all three rivers 

studied (347 km2), it has by far the largest coverage of indigenous forest (94%) (Fig. 3). While 

Hangatahua coastal near station had the smallest coverage, diversity, and abundance of sponges, 

it had the largest sized sponges in terms of volume from all five rocky reef stations (Fig. 8. B, D, 

F, H). The percentage coverage, diversity, and abundance of sponges were proportionally large 

relative to the small size of the river and river catchment from nearby Waitara River (Fig. 7B–C). 

Perhaps this is a function of the proportionally large coverage of indigenous forest (94%) at this 

coastal station contributing to improved water quality conditions in the Waitara River, and thus 

also at the adjacent Waitara River coastal station.  

 The results of this study show that coastal rocky reef stations located closer to river 

mouths (Waitara coastal near, Waiwhakaiho coastal near, and Hangatahua coastal near) had a 

larger diversity and number of individual taxa across all benthic encrusting phyla than stations 



 

60 

more distant to rivers (Fig. 3.6A–C). Comparatively, coastal rocky reef stations located more 

distantly from each of the river mouths had less percentage coverage of benthic invertebrates 

and a larger dominance of crustose coralline algae (Fig. 3.6A–C).  

There were no clear associations between sponge species diversity and turbidity, sponge 

volume, total nitrogen, total phosphorus, and E. coli (Fig. 3.7A, D—E, G; Fig. 3.8). However, the 

highly turbid waters of Waitara as associated a distinctive assemblage of sponge taxa not seen at 

the other stations surveyed (Fig. 3.2). Nevertheless, there were significant associations found 

between sponge volume and turbidity with sponges appearing to decrease in overall size with an 

NTU greater than 100 (Fig. 3.7F). However, mean sponge volumes appeared to decrease with an 

increase in total nitrogen (g N m-3) (Fig. 3.7B). Furthermore, there was an increase in the volumes 

(cm3) of sponges at Hangatahua coastal near station with a proportionally large amount of mean 

total phosphorus at this site (Fig. 3.7C). Sponge volumes appeared to be largest at Hangatahua 

coastal near station, which may suggest that there is a larger availability of food at this station 

(Fig. 3.7B—C, F; Fig. 3.8). The findings of the current study are consistent with those of Holmes 

(2000) who found an increase in abundance of clionid sponges with increased levels of 

eutrophication on west Indian reefs. Specifically, Holmes (2000) examined several indices of 

water quality including reactive phosphate, nitrate-nitrite-nitrogen, suspended particulate 

matter, volatile particulate matter, particulate organics in sediments, and chlorophyll a from 

seven fringing reefs across a eutrophication gradient. Reef comparisons from Holmes (2000) 

demonstrated that abundance of clionid sponges increased with increasing levels of 

eutrophication. However, the aforementioned study was specific to clionid sponges, and 

different species may have species specific results to increased eutrophication.  

Here we see similar trends with coastal station located closer to river mouths and thus 

sources of eutrophication may have a greater abundance of all encrusting taxa across all phyla 

(including sponges) and a larger number of sponge individuals (Fig. 3.6A–C). There are several 

potential explanations for these results including a greater food availability on reefs that are 

closer to rivers. However, the reason why there may be differences in the number of sponge 

species, individuals and biomass may be entirely different and are the result of a large number 

of biotic and abiotic factors. Wulff (2001) highlighted that the reasons for differences in numbers 

of sponge individuals versus differences in biomass are rarely the same. Sponge biomass can 
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provide a useful way of understanding the functional roles and health of sponges in natural 

systems (Wulff, 2001). However, some sponge species are more susceptible to fragmentation 

including branching and encrusting species and, therefore, the number of individuals is highly 

unstable and does not reflect the number of larval recruitment events (Wulff, 2001). Conversely, 

counting the number of sponge individuals can be useful to determine if they are in decline, but 

it has not yet been clearly demonstrated that important functional roles of sponges are related 

to number of individuals (Wulff, 2001). Furthermore, size-dependant mortality can also cause 

changes in volume and numbers of individuals. For example, Wulff (2001) found that during a 

hurricane shallow reef populations of the erect branching species Amphimedon compressa 

decreased by 43% by number of individuals, but only 5% by volume. 

An investigation by Wulff (2012) found that although abiotic factors are the primary 

drivers for indicating which sponge species can thrive at a particular site, ecological interactions 

can play a substantial roles in influencing distribution, abundance, and diversity. Predation may 

be the primary enforcer of sponge distributional boundaries in some areas if the number of 

predators is high and there is a relatively low rate of predator mortality. Mutualistic relationships 

of sponges with other biota with sponges is generally suggested as a driver for increased 

abundance, diversity and distribution. However, symbiotic relationships, including those of 

sponges with symbionts, can make sponges more susceptible to environmental changes given 

their reliance on other species that may be impacted by these changes such as increased 

temperature negatively influencing their symbiotic algae (Wulff, 2012). Therefore, not only is 

further research required  to decouple abiotic effects on sponges in Taranaki, but future 

investigations should aim to investigate ecological interactions within these communities to 

better understand the drivers for species biomass, diversity and habitat distribution.  

Rivers with larger catchments may provide a greater source of food from existing 

grassland and additional terrestrially produced organic matter. There is evidence that sponges 

consume freshwater derived seston (refer to Chapter 4 in this thesis). Another possible 

explanation for these results is that the habitat types at each of the five stations had different 

physical features which were more suitable for benthic taxa to settle on. However, all five 

stations had relatively similar three-dimensional boulder structures (Fig. 3.5, Table 3). 

Hangatahua was the site with the largest boulders, however, the complexity of structure on the 
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boulders themselves likely influences the settlement and survival behaviour of encrusting taxa. 

These data must be interpreted with caution because without experimentation on individual 

factors, it is difficult to tease apart specific reasons for differences in diversity and abundance of 

taxa among stations.  

There were no apparent associations between sponge species diversity and mean 

turbidity (NTU), mean sponge volume (cm3), mean total nitrogen (g N m-3), mean total 

phosphorous (g P m-3), and mean E. coli concentrations (cfu 100 mL-1) (Fig.3. 8 A–B, C, E, G). Total 

nitrogen and total phosphorus were utilised as a proxy for  land use and do not offer direct 

insights into physiological effects on sponges as there were no clear patterns found within these 

data. These data were analysed in an attempt to understand the levels of potential nutrient 

enrichment as a result of the land use types ranging from indigenous forest and scrub to pasture. 

The three river systems studied here have markedly different sized catchments (Waitara 

1139 km2, Waiwhakaiho 136 km2, and Hangatahua 54 km2), and mean annual flows 

(Waitara 55.74 m3 s-1, Waiwhakaiho 11.13 m3 s-1, and Hangatahua 5.87 m3 s-1) (Jowett, 1998). 

However, these rivers were selected based on the physiochemical data available for them as 

other rivers in the Taranaki region were not as well monitored. Although the Hangatahua river 

catchment is relatively small in comparison to the other two rivers studied, coastal rocky reef 

sponges living adjacent to this river had a proportionally high diversity of taxa across all phyla 

including sponge species, in addition to a relatively large number of sponge individuals (Fig. 3.6A–

C). This is interesting because although this is a significantly smaller river and catchment, it is also 

the river with the catchment with the largest proportion of land covered by indigenous forest 

(94%).  

The data presented here suggests that the diversity and abundance of sponges and other 

benthic encrusting taxa occupying coastal rocky reefs are proportionally larger when they are 

living near rivers with a large proportion of catchment covered by indigenous forest, as opposed 

to mainly grasslands found in the Waitara and Waiwhakaiho river catchments. A possible 

explanation for this is that sponges may prefer feeding on food coming from land covered by 

indigenous forest, or that there is a greater availability of food coming from indigenous forests 

that sponges can potentially consume. These results are supported by data provided in the stable 

isotope analyses that suggest that sponges living at the Hangatahua coastal rocky reef station are 
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obtaining a large proportion of their diet from food coming from the Hangatahua River (Chapter 

4). This finding has implications for land use management and development, as there appears to 

be a link between land use types and the abundance and diversity of encrusting taxa on rocky 

reef systems in Taranaki. Perhaps a greater diversity of indigenous plants on land are positively 

correlated with a greater diversity of coastal benthic encrusting taxa. However, while a greater 

amount of suitable food could possibly explain a greater volume in the sponge tissue, there are 

no current mechanisms or explanations which can explain the greater numbers of individuals or 

species at these stations. The results of this study do not explain the exact occurrence of sponge 

species diversity and abundance, but it sheds some light on potential correlations that may have 

large scale repercussions for the management and preservation of biodiversity on this coastline.  

Further work is required to establish if there is a direct correlation between marine and 

terrestrial diversity. Specifically, further investigations are required to determine whether 

indigenous forests are responsible for supporting a greater diversity and abundance of coastal 

marine taxa via the output of terrestrially derived riverine organic matter. This could be achieved 

by conducting an interdisciplinary study with terrestrial, freshwater and marine ecologists to 

understand whether land and riverine diversity of biota has an influence on coastal reef 

communities. Such a study would provide some fundamental insights into the dependence and 

connectivity of marine organisms on land and riverine based ecosystems.  
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Chapter 4 

From rivers to the sea: using stable isotopes of C and N 

to reveal the critical role of marine sponges in 

processing terrestrially derived carbon 

 

 Abstract 

Sponge meadows play fundamental roles in cycling energy and matter between benthic and 

pelagic regions. Our knowledge of the origin and types of food consumed by sponges on 

temperate rocky reefs is poorly understood so our aim was to better understand the critical role 

sponges play in processing terrestrially derived organic matter. Our isotope analysis revealed that 

marine food sources including coastal seston (>1.2–400 µm), coastal GFX including combined fine 

and coarse glass fibre filter samples (>0.7–1.2 µm), and coastal bacteria (>0.2–0.7 µm) 

contributed the largest proportion to the diet of coastal sponges at 60–73%. This was followed 

by a relatively large proportion of terrestrially derived food sources including freshwater seston 

(>1.2–400 µm), freshwater GFX (>0.7–1.2 µm), and freshwater bacteria (>0.2–0.7 µm) at 27–40%. 

Isotope analyses showed that coastal seston ranging in size from >1.2–400 µm was the largest 

contributor to the diet of temperate rocky reef sponge species (50–60%), and freshwater bacteria 

ranging in size from >0.2–0.7 µm was the second highest contributor to the diet of sponges across 

all reef systems (10–29%). Further, proportional contributions to the diet of sponges included 

suspended particulate organic matter comprising freshwater seston ranging in size from >1.2–

400 µm (6–10%), coastal GFX ranging in size from >0.7–1.2 µm (7–9%), freshwater GFX ranging 

in size from >0.7–1.2 µm (7–8%), and coastal bacteria ranging in size from >0.2–0.7 µm (6–8%). 

Combining our estimated C retention rate with the isotopically-determined contribution of foods 

from terrestrial sources to the diet of coastal sponges (27–40%), suggests that sponge meadows 

may retain approximately 117–173 kg of terrestrially-derived C km−2 day. These results suggest 

that sponges play a crucial role in linking terrestrial and marine food webs and associated carbon 

cycles via recycling of terrestrially derived carbon and nitrogen. 
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 Introduction  

Sponges are an opportunistic group of filter feeders with proven adaptability to survive in a 

diversity of ecological niches. Of significant importance is the ability of sponges to absorb and 

efficiently recycle organic matter and energy. Sponges are predominantly unselective particulate 

feeders that are capable of filter feeding on dissolved organic matter (DOM) and particulate 

matter from ~0.2 µm to 70 µm (Bergquist, 1978; Ribes et al., 1999; Rix et al., 2018). However, 

selective feeding has been reported in some sponge species, potentially creating a mechanism 

for niche structure, and allowing for increased species diversity because different species are not 

competing for the same resources (Banister, 2008). However, feeding experiments measuring 

exactly what food sources are ingested by particular species would bolster this idea of niche 

structure, and provide insights into the diversity of functional roles among sponge species. This 

selective feeding includes coral and algal exudates, picoplankton, and microplankton (Bergquist, 

1978; Ribes et al., 1999; Rix et al., 2018). For example, the heterogeneous filter-feeding diet of 

the temperate sponge Dysidea avara includes a broad range of plankton sizes, from 

heterotrophic bacteria (0.3 µm) to pennate diatoms [70 µm; Ribes et al. (1999)]. Furthermore, 

direct phagocytosis by exo- and endopinacocytes of particles >50 µm can occur (Bergquist, 1978). 

Although phagocytosis extends the upper limit of size particles sponges consume, there is little 

known about how much larger plankton (>50 µm) contribute to the diet of sponges via ectosomal 

phagocytosis. Contributions of different planktonic groups may differ among sponge species 

because of variation in choanocyte numbers and feeding methods (Maldonado et al., 2012, and 

references therein).  

Despite sponges being an important part of the marine carbon cycle (Rix et al., 2016), it 

remains unknown as to whether sponges consume terrestrially derived carbon. Approximately 

0.25 x 109 t of dissolved (<0.5 mm) organic carbon (DOC) and 0.15 x 109 t of particulate organic 

carbon (POC, >0.5 mm) are transported from riverine sources into the ocean per year (Hedges et 

al., 1997). The fate of this riverine organic carbon is an important component of the global carbon 

budget, and these sources alone are enough to sustain annual turnover of the entire pool of 

organic carbon dissolved in the ocean. However, one of the largest remaining enigmas within the 

global carbon cycle budget is that only a small fraction of organic matter dissolved in seawater 

and preserved in marine sediment is land derived (Hedges et al., 1997). Burdige (2005) estimates 
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that only 25–30% of terrestrially-derived organic matter that reaches the ocean is efficiently 

buried in sediments on continental margins. Therefore, perhaps sponges are responsible for 

cycling some of this ‘missing’ terrestrial derived organic matter in the marine environment. 

Sponges transform DOM to particulate organic matter (POM) which is subsequently 

consumed by higher trophic levels (De Goeij et al., 2008; De Goeij et al., 2013; Rix et al., 2017; 

Rix et al., 2018). Neverthless, Rix et al. (2018) suggested that additional studies are required to 

determine the quantitative importance of carbon from sponge detritus to the diet of associated 

fauna. Although extensive research has been carried out on the diet of sponges, no single study 

has investigated their importance in linking terrestrial and marine carbon cycles. Therefore, the 

main aim of this investigation is to determine the origin, and proportion of terrestrially derived 

organic carbon to the diet of temperate rocky reef sponges. To test this, the stable C and N 

isotope ratios of rocky-reef sponges and their putative food sources were sampled as δ13C and 

δ15N ratio’s permit tracing of trophic interactions (Van Duyl et al., 2011). 

The major objectives of this paper were (1) to examine to what degree coastal temperate 

marine sponges rely on food coming from: (a) river water-derived, or (b) coastal and open water-

derived; to (2) investigate the predominant size fractions of ‘food’ items sponges are consuming; 

and finally (3) to determine what proportion of the diet of marine sponges are in the size category 

(>1.2–400 µm) that largely excludes bacteria, henceforth called seston in this study.  

 Materials and methods 

4.3.1 Study stations 

Samples were collected over two seasons and three years (autumn, 4-5 April 2019; summer, 14-

17 January 2020; and summer, 15-20 January 2021), along three transects in the Taranaki Region, 

on the North Island of New Zealand (Fig. 4.1). Transects were positioned along the coast near 

three rivers discharging from modified to increasingly ‘pristine’ catchments (respectively—

Waitara (WAI), Waiwhakaiho (WAIW) and Hangatahua (HAN)) and running from rivers to the 

open ocean (Fig. 4.1). Stations along transects were characterised by differences in terrestrial, 

freshwater, and marine organic inputs from diverse land uses and water quality (Taranaki 

Regional Council, 2018). We sampled 2–3 stations along each transect (WAI, WAIW and HAN):  
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1) a freshwater station on each of the three rivers Waitara River, Waiwhakaiho River, and 

Hangatahua (Stony), 1–6 km inland, depending on how tidally influenced the rivers were, 

to avoid marine contamination: water samples were collected near the surface at a depth 

of 0.5 m. 

2) 1–2 coastal rocky reef stations about 1–2 km offshore (from the three rivers Waitara, 

Waiwhakaiho and Hangatahua). Bottom-water samples were collected approximately 0.5 

m above the reef and sponges at depths between 6–21 m.  

 

Figure 4.1 Areas inside of thick black outlines represent river catchment areas for three rivers (Waitara, 
Waiwhakaiho and Hangatahua) accompanied by their respective coastal rocky reef stations. Coloured lines 
(green, blue and red) represent rivers and their connecting water bodies. Rivers and their coastal stations 
combined collectively form three transects (Waitara (WAI), Waiwhakaiho (WAIW), and Hangatahua (HAN)).  
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Table 4.1 Stream order, catchment area, mean flow and mean annual low flow of the three Taranaki rivers 
adjacent to the marine sampling sites. Source: River Environment Classification layer in Freshwater Fish 
Database Assistant Version 6.1, Jowett, (1998). 

Name

Stream 

order at 

the coast

Catchment 

area

(km2)

Mean 

flow 

(m3 s-1)

Mean annual 

low flow

(m3 s-1)

Hangatahua (Stony) River 3 53.54 5.87 2.39

Waiwhakaiho River 5 135.89 11.13 4.04

Waitara River 6 1138.74 55.74 13.32
 

4.3.2 Sample collection 

Water samples were collected from freshwater and marine stations with a deep well submersible 

pump (12 V and 22 W) attached to a hose and five-stage filtration media (47, 125, 200, 300 and 

400 µm) to obtain different seston sizes as potential food sources for sponges. Additional 

freshwater and marine seston samples were collected using plankton nets from all stations, 

including: (1) river stations using 40-µm and 150 µm-mesh plankton nets, (2) and coastal stations 

using 20 and 350-µm plankton nets. Water was pumped through the five stage filtration media 

for approximately 2 h to obtain seston samples. A portion of this filtrate was collected in clean, 

sample washed 20-L containers. For each station, these 20-L water samples were collected (n = 

65) and transported back to the laboratory for further filtration. The 20-L freshwater and 

seawater samples collected from all stations were filtered over 47-mm-diameter combusted 

glass microfiber filters (Whatman), then over a glass fibre coarse filter (GFC nominal pore size 1.2 

µm), followed by a glass fibre fine filter (GFF nominal pore size 0.7 µm).  

After freshwater and seawater filtration, filters were shortly washed with Milli-Q water 

(MQ) to remove salt (from marine samples only) and were dried at 50°C in an oven and stored in 

aluminium foil until processing. Freezing filtered samples was avoided to limit potential impacts 

on nitrogen isotope values (Lorrain et al., 2003). The remaining bacterioplankton in the GFF 

filtrate was concentrated with an ÄKTA flux tangential flow filtration system using a filter 

cartridge (CFP-1-E-3MA nominal pore size of 0.1 µm). The concentrate was consequently filtered 

over 0.2 µm pore size 25-mm-diameter Anopore discs (aluminium oxide membrane filters, 

Whatman). The discs were briefly washed with MQ (excluding freshwater discs) and dried at 50°C 

in an oven (12 h). Once dry, filters were crumbled in an acid-washed (1 mol L–1 hydrochloric acid) 

glass funnel, the integrated polypropylene support rings of the filters were removed and the filter 
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fragments were transferred to tin capsules, which were closed with tweezers. Subsequently, 

folded capsules were placed in coded trays and stored until processing.  

Due to poor visibility (˂4 m) during SCUBA diving at coastal stations (n = 5), a 10-m 

circular-search-pattern (360°) was used to collect as many sponge species tissue samples as 

possible, between depths of 6–21 m. The phylogenetic range was chosen to represent a large 

trophic cascade. The sponges were brought to the surface in labelled in zip lock bags (27 × 33 

cm) and stored in a 35 litre chilly bin with ice for transport. Any biota found living on, or inside 

sponge samples were removed. Coastal rocky reef sponges were washed with MQ water to 

remove salt and tissue was removed from substratum, if present, using a knife and scalpel. 

Sponges were preserved in 70% ethanol for taxonomic identifications. The remainder of samples 

were collected in aluminium foil cups dried at 50°C for 12 h.  

Sponges and tentative food sources were subject to stable isotope analysis. Both C and N 

isotopic composition of the samples were determined using a Dumas Elemental Analyser (Europa 

Scientific ANCA-SL) interfaced to an isotope mass spectrometer (Europa Scientific 20–20 Stable 

Isotope Analyser), at the University of Waikato Stable Isotope Unit. The C and N isotope ratios 

are expressed as δ13C and δ15N relative to an ANU C4 sucrose standard for carbon and relative to 

urea for nitrogen, respectively, and the standard error of the instrument measurements is ± 0.5 

δ13C and ± 0.2 δ15N. All carbon isotope samples (except bacteria that were caught on aluminium 

filters) were acidified in hydrochloric acid (HCl) (sponge biomass was treated directly with acid in 

a test tube, then processed through glass filters; larger seston portions were treated using HCl 

acid vapour inside a desiccator with a ceramic base) prior to measurements and corrected for 

individual sets of blanks (isotope mass balance corrections). The filter paper was rinsed with MQ 

water at the end of filtration. δ15N values represent total nitrogen.  

Dried sponge samples were first ground up using a ceramic mortar and pestle. For isotope 

measurements, adequate amounts of sponge material were transferred into glass test tubes by 

adding 1 mol L–1 hydrochloric acid drop-by-drop until no further CO2 was released. These were 

oven dried once more at 50°C (12 h) without rinsing to minimize loss of DOM and ground again 

(Jacob et al., 2005; Schlacher & Connolly, 2014). The aforementioned methodology for sample 

treatment was modified from Van Duyl et al. (2011).  
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4.3.3 Analysis of stable isotope data 

The complete collection of stable isotope data was tested for normality using a Shapiro-Wilk test. 

A Levene’s test for homogeneity of variance using δ13C and δ15N values was conducted on coastal 

versus freshwater habitat food sources. A Kruskal-Wallis one-way ANOVA was conducted on 

coastal versus freshwater food sources with a post-hoc Dunne’s test to infer difference in mean 

rankings of each group.  

MixSIAR was used to run a Bayesian mixing model to quantify the contribution of each food 

source to the diet of sponges (Stock & Semmens, 2016; Stock et al., 2018). We assumed trophic 

enrichment factors (TEFs) for sponge consumers of 3.5 ± 0.5 for δ15N and 1 ± 1 δ13C based on 

presumed stable isotope ratios of animals as there are no measured data on TEFs for sponges in 

food web studies (Vander Zanden & Rasmussen, 2001; Behringer & Butler, 2006; Van Duyl et al., 

2011). 

Food sources collected on Anopore filters (>0.2–0.7 µm) were characterised as a proxy 

for bacterial samples in the model input. As there were no significant statistical differences 

between GFF (nominal pore size 0.7 µm) and GFX (nominal pore size 1.2 µm) food sources, and 

for the purpose of simplifying model inputs, we grouped these two similar sized food categories 

into a single GFX category (>0.7–1.2 µm) (Figs. 4.2, 4.3). All larger suspended food sources 

collected were grouped into a single category characterised as seston (>1.2–400 µm) for model 

analysis. The rationale for the grouping of these food categories was to capture the large diversity 

of potential food sources that sponges may be consuming in freshwater and marine 

environments, including picoplankton (>0.2–2 µm), nanoplankton (>2–20 µm), microplankton 

(>20–200 µm), and mesoplankton (>0.2–20 mm) as either whole or broken-down organic matter 

(Omori & Ikeda, 1992).  

R Studio v 4.0.3 software was used for analyses (R Core Team, 2020). MixSIAR, a model 

with a Bayesian framework for constructing stable isotope mixing models was performed on all 

six sponge food sources (bacterioplankton, GFX fractions of suspended matter and seston from 

freshwater and marine ecosystems) to determine the relative consumption of each food (Stock 

& Semmens, 2016).  
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Before Bayesian mixing models are run, they require prior distributions to be specific for 

estimated parameters including proportion of each food source to diet. These priors reflect 

knowledge of the system before models are run, and then updated with data to obtain a result, 

called a posterior distribution (DeVries et al., 2016). We ran the model using uninformed Dirichlet 

priors where sponges consumed all n food sources in equal proportions, 1/n, (α = 1,1,1,1,1,1) 

which gives weight to the model of a generalist diet (DeVries et al., 2016). Three Markov chain 

Monte Carlo (MCMC) chains were utilised to fix the mixing model and assessed the convergence 

with the coda package (Plummer et al., 2006), the Gelman-Rubin diagnostic (Gelman et al., 2003). 

We ran the model with the ‘long’ MCMC setting in MixSIAR, with a chain length of 300,000, a 

burn in of 200,000, and a thin of 100.  

 Results 

Freshwater food sources generally had lower δ13C and δ15N values than their coastal equivalents 

(Fig. 4.2; Table 4.2). For example, there was no overlap in δ13C and δ15N values between 

freshwater and marine seston sources (Fig. 4.2). The significance of these results was important 

because it allowed for the examination of the degree to which coastal sponges relied on food 

coming from riverine versus marine sources.  
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Figure 4.2 Dual isotope plot of sponges (smaller circles: red (Hangatahua (HAN), red; Waitara (WAI), green; 
Waiwhakaiho (WAIH), blue) relative to means of their potential food items (larger circles) corrected for trophic 
enrichment factors (raw δ13C + 1‰, raw δ15N + 3.5‰). For point labels, the first three or four letters are the 
river, and then CS = coastal seston, CGFX = coastal GFX, CB = coastal bacteria, FS = freshwater seston, FGFX = 
freshwater GFX, and FB = freshwater bacteria. For sample sizes of sponge taxa and food sources, see Table 4.1.  
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Table 4.2 Means ± 1 SD for δ13C and δ15N isotope values measured in parts per thousand (‰) of putative food sources and sponge consumers, including 
suspended particulate matter. Glass fibre coarse (GFC), glass fibre fine (GFF), bacteria, and seston collected from reef stations Waiwhakaiho (WAIW), 
Waitara (WAI) and Hangatahua (HAN) (stations, n = 1–8).  

 
Substrate sources 

  WAIW 
Waiwhakaiho 

 WAI 
Waitara 

 HAN 
Hangatahua 

     n       δ13C     δ15N n      δ13C    δ15N n       δ13C   δ15N 

Bacteria (>0.2–0.7 µm)            

   Coastal water  5 −25.8 ± 0.7 3.6 ± 1.3 3 −25.9 ± 0.4 3.6 ± 1.5 5 −26.1 ± 0.6 4.2 ± 0.7 

   Freshwater 7 −25.4 ± 3.6 3.1 ± 1.6 2 −20.8 ± 1.7 7.1 ± 1.8 5 −25.9 ± 3.2 5.1 ± 2.4 

SPM-GFX (>0.7–1.2 µm)           

   Coastal water  12 −23.9 ± 1.9 5.8 ± 0.8 4 −25.4 ± 1.3 6.5 ± 4.3 4 −23.1 ± 1.9 7.0 ± 0.4 

    Freshwater  13 −24.5 ± 1.1 5.1 ± 1.0 7 −26.2 ± 1.0 4.3 ± 0.9 7 −25.3 ± 1.4 3.2 ± 1.8 

Seston (>1.2–400 µm)           

   Coastal water *(h) 3 −18.6 ± 0.9 9.7 ± 1.4 6 −20.4 ± 1.4 9.9 ± 3.2 4 −18.0 ± 3.3 7.2 ± 0.9 

   Freshwater *(h) 2 −20.8 ± 0.4 5.5 ± 0.1 1 −25.4 ± 0 5.8 ± 0 4 −24.1 ± 2.0 1.0 ± 0.2 

Sponges 21 −19.7 ± 1.1 11.0 ± 1.5 39 −20.3 ± 1.1 10.1 ± 1.9 17 −19.7 ± 1.6 9.2 ± 1.4 
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All sponges were morphologically identified to species or operational taxonomic units (OTUs) 

using tissue and skeletal characteristics. Seventy-seven different sponges representing 54 species and 

OTUs were identified and sampled. Sponge values ranged from a mean δ13C of −16.0‰ (Stelletta 

arenaria) to −22.5‰ (Haplosclerida sp. 1), and a mean δ15N of 7.0‰ (Darwinella oxeata) to 14.2‰ 

(Hymeniacidon sphaerodigitata) (Figs. 4.3, 4.4). However, there were no significant differences in δ13C 

and δ15N species values among sponge populations at each reef station (ANOVA, F = 2.17, P = > 0.12). 

For a full individual breakdown of mean isotope signatures of sponge individual species and OTUs 

collected from each reef (see Appendix 4). Putative food source values are uncorrected for isotopic 

discrimination. Significant differences in δ13C or δ15N for food sources only (ANOVA significance value 

of p < 0.05, 8 comparisons) are indicated by a superscript: *(h) = significant difference between habitats 

(freshwater and coastal). n = number of individuals analysed for δ13C and δ15N values. 
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Figure 4.3 Mean ± SD for freshwater and coastal seston and sponge δ15N values for individual taxa from all 
stations.  
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Figure 4.4 Mean ± SD for freshwater and coastal seston and sponge δ13C values for individual taxa from all 
stations. 
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Mean ± SD coastal bacteria δ13C and δ15N values were not within trophic reach of sponges 

(TEFs of ~3.5 ± 0.5 for δ15N and ~1 ± 1 for δ13C) at any of the stations (Fig. 4.5). Freshwater bacteria 

δ13C values were in trophic reach of sponges at Waitara station, and freshwater bacteria δ15N 

values were in trophic reach of sponges at Hangatahua and Waitara stations (Fig. 4.5). GFX δ13C 

values were in trophic reach of sponges at the Hangatahua station, but did not overlap with 

sponges at Waitara or Waiwhakaiho stations, and coastal GFX δ15N values were also in trophic 

reach of sponges at Hangatahua and Waitara stations, but did not overlap with δ15N values at the 

Waiwhakaiho station (Fig. 4.5). Freshwater GFX δ13C and δ15N values were not in trophic reach 

of sponge values at any of the stations sampled (Fig. 4.5). Means ± SD δ13C and δ15N values for 

coastal seston were in trophic reach of sponges at all stations (Fig. 4.5). Freshwater seston values 

were in trophic reach of sponges at Waiwhakaiho, but freshwater seston δ15N values did not 

overlap with sponges at any of the stations (Fig. 4.5).  
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Figure 4.5 Mean ± SE δ13C and δ15N for all sponges, freshwater and coastal seston from three transects, 
Waiwhakaiho, Hangatahua, and Waitara.  
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Mixing models indicated that when combined food sources from all stations are 

separated into freshwater and coastal categories, combined marine sources (coastal seston, 

coastal GFX and coastal bacteria) contributed means of 60–73%, and combined freshwater 

sources (freshwater seston, freshwater GFX, and freshwater bacteria) contributed means of 27–

40% (Table 4.3). Therefore, terrestrial sources represented a significant proportion of the diet of 

sponges at all coastal stations. Across all stations, a substantial fraction of the diet of sponges 

was coastal seston (50–60%) and freshwater bacteria (10–29%), followed by freshwater seston 

(6–10%), coastal GFX (7–9%), freshwater GFX (7–8%), and coastal bacteria (6–8%). The 

proportional contributions of each food source varied among stations (Table 4.3). These results 

suggests that the sponges were feeding predominantly on marine derived food, but also obtained 

a significant portion of their food from terrestrially derived sources. However, the amount of 

terrestrially derived organic matter that sponges were consuming was likely dependent on the 

amounts of terrestrial inputs at different coastal locations.  

 

Table 4.3 Bayesian mixing model mean estimates (± standard deviation, SD), of the percentage (%) proportional 
contribution of each food type to the diet of sponges at each rocky reef station. SPM-GFX is suspended 
particulate matter collected on fine and coarse glass-fibre filters.  

  Proportional contribution to diet 

Food source Waiwhakaiho (WAIW)   Waitara (WAI)   Hangatahua (HAN) 

  Mean   SD   Mean   SD   Mean   SD 

Bacteria (>0.2–0.7 µm)                       

Coastal water 0.060 ± 0.061   0.053 ± 0.053   0.078 ± 0.067 

Freshwater 0.101 ± 0.080   0.293 ± 0.252   0.150 ± 0.098 

SPM-GFX (>0.7–1.2 µm)                       

Coastal water 0.070 ± 0.078   0.051 ± 0.056   0.085 ± 0.077 

Freshwater 0.070 ± 0.074   0.052 ± 0.051   0.081 ± 0.066 

Seston (>1.2–400 µm)                       

Coastal water 0.599 ± 0.091   0.496 ± 0.25   0.521 ± 0.083 

Freshwater 0.100 ± 0.115   0.055 ± 0.057   0.085 ± 0.066 
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For example, sponges at the Waiwhakaiho River station (WAIW) had the largest amount 

of coastal seston in their diet of (60 ± 9%, mean ± SD) followed by freshwater seston (10 ± 12%), 

and the least dietary contribution from freshwater bacteria at all stations with 10 ± 8% (Table 

4.3). Coastal seston was also the largest contributor to the diet of sponges at HAN station with at 

52 ± 8%, followed by freshwater seston (9 ± 7%), freshwater bacteria (15 ± 10%), and minor 

contributions from other sources (Table 4.3). Moreover, sponges at WAI station had the lowest 

proportional contribution of coastal seston of all the river stations in their diet with 50 ± 25%, 

followed by freshwater bacteria (29 ± 25%), and minor contributions from other size fractions 

(Table 4.3). Coastal seston was also the largest contributor to the diet of sponges at HAN station 

with at 52 ± 8%, followed by freshwater seston (9 ± 7%), freshwater bacteria (15 ± 10%), coastal 

GFX (9 ± 8%), freshwater GFX (8 ± 7%), and coastal bacteria (8 ± 7%) (Table 4.3). Moreover, 

sponges at WAI station had the lowest proportional contribution of coastal seston in their diet 

with at 50 ± 25%, followed by freshwater bacteria (29 ± 25%), freshwater seston (6 ± 6%), coastal 

GFX (5 ± 6%), freshwater GFX (5 ± 5%), and coastal bacteria (5 ± 5%) (Table 4.3). Coastal seston 

contributed by far the greatest contribution of food to the diet of coastal sponges among all 

stations (Fig. 4.6). This was followed by the second largest contribution from freshwater bacteria 

which was highest at Waitara station (Fig. 4.6). In comparison coastal bacteria, coastal GFX, 

freshwater seston and freshwater GFX contributed relatively low amounts of food to the diet of 

all sponges (Fig. 4.6).  
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Figure 4.6 Posterior density plots from the best fit Bayesian Mixing Model displaying proportional contributions of 

coastal bacteria (pink, n = 13), coastal GFX (mustard, n = 20), coastal seston (green, n = 13), freshwater bacteria (light 
blue, n = 14), freshwater GFX (violet, n = 27), and freshwater seston (light purple, n = 7) in the diet of coastal rocky 
reef sponges along three transects A. Waiwhakaiho, B. Hangatahua, and C. Waitara. Results show that the largest 
contributors to sponge diet were coastal seston at 50–60%, and freshwater bacteria at 10–29% (peak values). 

 

When the proportional contribution of coastal GFX was high, the contribution from 

coastal seston was low with a negative correlation of –0.45 (Fig. 4.7). The inverse was also true 

for coastal seston. There was also a negative correlation shown between the contribution of 

coastal seston and freshwater bacteria at –0.38 (Fig. 4.7).  



 

82 

 

Figure 4.7 Pairs plot of the posterior diet proportions of the total sponge population. The cell above the 
diagonal displays contour plots with distribution of proportional contributions, and the cells below the diagonal 
show the correlations between the contributions from different dietary sources. 

 

 Discussion 

Bentho-pelagic coupling via the transfer of food and nutrients including carbon, oxygen, silicon, 

and nitrogen are one of the most significant influences sponges have on pelagic ecosystems (Bell, 

2008a). The pelagic microbial food web has been reported as the main food source for sponges 

throughout their entire bathymetric and latitudinal range (Yahel et al., 2005; Pile & Young, 2006; 

Bell, 2008b, Maldonado et al., 2012). In contrast, we found that larger size fractions of food (>1.2–

400 µm) contributed most of the diet (mean 60–73%). However, based on stable carbon and 

nitrogen isotope and fatty acid biomarkers, the main sources of food for sponges on a tropical 

coral reef in the Caribbean was not phytoplankton or bacterioplankton, but coral mucus and 

organic matter from crustose coralline algae (Van Duyl et al., 2011). There were no coral species 

recorded at any station in the current study, and therefore coral mucus was not included as 
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potential of food sources for sponges herein. Mixing model analysis revealed that marine food 

sources including coastal seston (>1.2–400 µm), coastal GFX (>0.7–1.2 µm), and coastal bacteria 

(>0.2–0.7 µm) contributed the largest proportion of combined food to the diet of coastal sponges 

at 67%, followed by a relatively large proportion of freshwater food sources including freshwater 

seston (>1.2–400 µm), freshwater GFX (>0.7–1.2 µm), and freshwater bacteria (>0.2–0.7 µm) at 

40%. This provides novel information on the utilisation of terrestrial carbon and nitrogen as 

sources of food for marine sponges, thus filling this gap in the literature. The probable main 

source of food for sponges in our study were seston that were larger than bacteria ranging 

from >1.2–400 µm. Coastal seston (>1.2–400 µm) contributed up to (50–60%), to the diet of 

sponges based on our dual stable isotope (C and N) analysis. These results were relatively similar 

to those found by Ribes et al. (1999) who found the largest proportion contribution to the diet 

(74%) of the temperate sponge Dysidea avara was prokaryotes ranging in size from 0.5–70 µm. 

Therefore, when combined with the results from this study, temperate sponges appear to be 

obtaining the majority of their food from sources ranging in size from 0.5–400 µm. However, 

these results are different to those presented in Van Duyl et al. (2011) stating that coral mucus-

derived dissolved organic matter may contribute up to 60% to the diet of examined sponges in 

that tropical environment. 

The different niche structures found in sponges from temperate versus tropical reefs 

appears to be related to the most abundant sources of food available within each respective 

system. This further highlights the opportunistic nature of sponges throughout the world’s 

oceans. Moreover, the current study has revealed that freshwater bacteria ranging in size 

from >0.2–0.7 µm was the second highest contributor to the diet of sponges across all reef 

systems (10–29%). Further, proportional contributions to the diet of sponges included suspended 

particulate organic matter comprising freshwater seston ranging in size from >1.2–400 µm (6–

10%), coastal GFX ranging in size from >0.7–1.2 µm (7–9%), freshwater GFX ranging in size 

from >0.7–1.2 µm (7–8%), and coastal bacteria ranging in size from >0.2–0.7 µm (6–8%). However, 

it should be noted that the contributions of terrestrial organic matter to the diet of marine 

sponges may vary depending on several factors including proximity of sponges to freshwater 

sources, amount of terrestrial organic matter input in that area, and the bioavailability of organic 

matter.  



 

84 

The coastal sponges with the largest proportional contribution of freshwater bacteria to 

their diet (29%) were from Waitara (Fig. 6). Coastal sponges with the second largest contribution 

of freshwater bacteria were found at Hangatahua (15%), which was surprising because the 

Hangatahua River and therefore freshwater input was the smallest of the three rivers sampled 

(mean annual flow 5.83 m3 s-1; Table 4.1). This may also be because the Hangatahua River has 

the best water quality out of the three rivers (Taranaki Regional Council, 2020). Furthermore, 

rivers with catchments containing a larger coverage of forested areas may potentially yield more 

organic matter from leaf material, therefore, providing a source of food for sponges living on 

nearby rocky reefs. This is supported by Pawlik et al. (2016) who suggested that dissolved organic 

carbon coming from rivers may be partially responsible for the large abundance of sponges on 

Caribbean coral reefs.  

Trophic enrichment factors (TEFs) are a fundamental part of mixing models (Stock & 

Semmens, 2016) and proxy taxa including benthic invertebrates and animals have been used in 

the past to obtain TEFs for sponges in marine ecosystem mixing models (Vander Zanden & 

Rasmussen, 2001 cited in Van Duyl et al., 2011; and Peterson & Fry, 1987 cited in Van Duyl et al., 

2018). However, TEF data are obtained largely via a combination of field and artificial 

experimentation, and do not necessarily reflect contributions of sponge individuals or species 

(Vander Zanden & Rasmussen, 2001). Assumed trophic enrichment factors, therefore, are the 

weakest part of most applications of stable isotope mixing models for food web studies. 

Nevertheless, no single study exists that investigates TEFs based on sponge taxa. Therefore, 

general TEFs applied for animals were utilized here to allow for consistent comparison between 

other sponge stable isotope mixing model studies such as (Van Duyl et al., 2011; Van Duyl et al., 

2018). Until a TEF estimation for sponges is produced, researchers should aim to consistently 

utilise the same TEF estimation values for sponges to make it easier to compare results across 

relative studies. It is worth noting, however, that the C and N isotopic composition of sponges 

recorded here had significant variation in isotopic values among species (Figs. 4.3, 4.4), which 

suggests that sponge TEFs are likely to be subject to interspecies variation. Large isotopic ranges 

among species data in the current study suggest that the diet of each sponge species is highly 

varied (Figs. 4.3, 4.4). 
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We assumed TEFs for sponge consumers of 3.5 ± 0.5 for δ15N and 1 ± 1 δ13C based on 

presumed stable isotope ratios of animals as there is no data on exact trophic enrichment factors 

for sponges in food web studies (Vander Zanden & Rasmussen, 2001; Behringer & Butler, 2006; 

Van Duyl et al. 2011). The basis for choosing these TEFs for sponge consumers is that they are 

plausible based on previous food-web studies and were used by other authors such as Van Duyl 

et al., (2011). Using TEFs consistent with other sponge studies allows comparisons to be made 

between similar sponge stable isotope data.  

One important component of the global carbon cycle is the modern global fluviatile 

discharge and burial rates of organic carbon into the coastal ocean. Schlünz et al. (1999) 

estimates that approximately 430 × 106 t of terrestrial organic carbon per year are transported 

to the ocean from rivers in modern times. Only 43 × 106 t C year−1 (10%) of terrestrial carbon 

input is likely buried in marine sediments, although it is not known exactly what happens to the 

remaining carbon, or how much terrestrial organic matter is bioavailable to sponges and other 

marine organisms. However, given the relatively high proportion of freshwater carbon to the diet 

of sponges proposed herein, there is evidence to suggest that coastal temperate sponges are 

potentially processing large quantities of terrestrially-derived organic carbon in Taranaki.  

Feeding efficiency and metabolic experiments conducted in New Zealand and Australia 

suggest that an average retention rate of 500 µg C L−1 for water pumped through each sponge 

(Bannister, 2008; Bannister et al., 2007, 2012). Based on an average pumping efficiency of 

sponges of 100 mL m−2 s−1 across a typical sponge meadow (Battershill & Bergquist, 1990; Bell, 

1998), approximately 432 kg C km−2 day−1 could be retained. This is an estimate based on 

conservative estimates for carbon retention and pumping efficiencies, which nevertheless falls 

within the estimates for carbon retention calculated from other studies. For instance, Gili and 

Coma (1998) report an ingestion rates of 29–1970 kg C km−2 day−1 for a range of temperate and 

tropical sponge species. Combining our estimated C retention rate with the isotopically-

determined contribution of foods from terrestrial sources to the diet of coastal sponges (27–

40%), suggests that sponge meadows may retain approximately 117–173 kg of terrestrially-

derived C km−2 day−1.  

When all proportional values of freshwater carbon were combined across the river stations, 

there were significant mean contributions of terrestrial carbon sources to the diet of sponges 
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(freshwater bacteria, 18%; freshwater seston, 8%; and freshwater GFX, 7%), which suggests that 

a strong link exists between terrestrial and coastal food webs. Therefore, for the first time we 

report large-scale benthic processing of terrestrial organic matter by sponges in river-dominated 

margins. Consequently, revealing an important role sponges have in linking terrestrial-marine 

food webs. There is abundant room for further progress in determining how much of this 

terrestrially derived carbon is being processed by marine sponges, and what implications this is 

having on coastal ecosystems globally.  

 Conclusions 

We aimed to investigate the role of sponges in processing terrestrial carbon. The main goal of 

the current study was to determine to what extent coastal temperate sponges consume food 

coming from river-derived and coastal-derived food sources. We also set out to determine the 

predominant sources and proportions of each of these putative food sources to the diet of 

sponges, and what size categories of food sponges consumed the most. This study has shown 

that coastal seston and freshwater bacteria appear to be the main food sources for sponges on 

temperate, coastal rocky reefs in Taranaki. Interspecies variation in δ13C and δ15N stable isotope 

values may be the result of differential feeding mechanisms and dietary preferences among 

sponge species.  

One of the largest remaining enigmas within the global carbon cycle budget is that only a 

small fraction of organic matter dissolved in seawater and preserved in marine sediment is 

derived from the land (Burdige, 2005; Hedges et al., 1997). This data indicates for the first time 

that sponges consume terrestrially derived organic carbon and provides a mechanistic link for 

incorporation of terrestrial carbon into coastal marine environments (the ‘missing’ terrestrial 

carbon; Burdige, 2005; Hedges et al., 1997; Kandasamy & Nagender Nath, 2016). This research 

shows that sponges can process a wide range of types of organic matter from both freshwater 

and marine environments. Further work could be undertaken to determine which portion of this 

land derived organic matter (labile versus refractory) is bioavailable to sponges in marine 

environments.  

Sponges have been shown to transfer DOM, which is the largest resource produced on 

reefs to higher trophic levels via the rapid expulsion of choanocyte filter cells as detritus 
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consumed by larger fauna (De Goeij et al., 2013). This suggests that sponges act as ecosystem 

engineers by potentially channelling terrestrially derived organic carbon towards higher trophic 

level organisms, and creating sponge based biogenic habitats (Bell, 2008a; De Goeij et al., 2013). 

This would account for a portion of the ‘missing’ terrestrial carbon in both continental marine 

sediments and seawater. The current research extends our knowledge of the roles that sponges 

play in linking benthic-pelagic zones, but in also linking terrestrial-marine zones.  
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Chapter 5 

General discussion 

 Summary of key findings 

This thesis investigated aspects of environmental drivers of sponge assemblages over time, and 

some of the terrestrially derived inputs that may be influencing them. Land-sea connectivity 

between river and marine ecosystems were investigated. This thesis also set out to understand 

the critical role of marine sponges in processing terrestrially derived organic matter in marine 

ecosystems. However, sponge taxonomy which includes the characterisation and identification 

of species is fundamental to sponge ecology. This thesis had four main aims: (1) Chapter 2 aimed 

provide a quantitative baseline of sponge species diversity and abundance at a regional level 

along the Taranaki coastline, and provide a baseline of the biodiversity from this region; (2) 

Chapter 3 examined environmental factors influencing the distribution and abundance of marine 

sponges link to land coverage use around the Taranaki region; (3) Chapter 4 examined land-sea 

connectivity using stable isotopes (δ13C and δ15N) to understand the role of marine sponges in 

processing terrestrially derived carbon; (4) Chapter 5 provides a synthesis of findings. 

Two appendices are provided as some preliminary taxonomic work was required in order 

to provide a basis for accurate species and operational taxonomic unit identifications in the field. 

Appendix 1 provides an update to the descriptions of five common sponge species from New 

Zealand using a combination of locally and nationally collected specimens from around the 

country; Appendix 2 provides a publication on two species that were described from Pilot Bay, 

Tauranga Harbour, New Zealand. This paper also constitutes a review of the Dictyoceratida also 

necessary for investigation in Taranaki (on-going taxonomic writeup for publication). 

The key findings of this thesis were: (1) a baseline record of sponge species diversity 

estimates from Taranaki and greater detail in knowledge of a spatially patchy biogeography 

around the Taranaki coastline with both warm temperate and cold temperate affinities in 

addition to some unique species assemblages. These findings have important implications for 

developing conservation strategies for marine fauna on this coastline, highlighting locations of 

significant biological diversity, abundance, and uniqueness; (2) there was a greater diversity, 
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abundance and larger sized sponges in rocky reef communities that were positioned closer to 

river outputs from three major rivers in the Taranaki Region, likely as a result of increased food 

from terrestrially derived sources; (3) isotope analyses reveal that that marine food sources 

including coastal seston (>1.2–400 µm), coastal GFX including combined fine and coarse glass 

fibre filter samples (>0.7–1.2 µm), and coastal bacteria (>0.2–0.7 µm) contributed the largest 

proportion to the diet of coastal sponges at 60–73%, followed by a relatively large proportion of 

terrestrially derived food sources including freshwater seston (>1.2–400 µm), freshwater GFX 

(>0.7–1.2 µm), and freshwater bacteria (>0.2–0.7 µm) at 27–40%. These results suggest that 

sponges could play a crucial role in linking terrestrial and marine food webs and associated 

carbon cycles via recycling of terrestrially derived carbon and nitrogen; (4) an improved 

characterisation of five common sponge species that extends our knowledge on the geographical 

range of these species within New Zealand’s Exclusive Economic Zone; (5) the characterisation of 

two novel sponge species which will allow researchers to better understand them, and protect 

them into the future 

 In this chapter, I discuss my results in a broader context of sponge taxonomy and 

biogeography, ecology, important functional roles, while considering the general implications of 

land cover types and associated catchment runoff on coastal reef communities. This chapter will 

also discuss the critical role of sponges in cycling carbon from both terrestrial and marine 

ecosystems. I will explain why sponges may constitute a hitherto unexamined trophic link 

explaining some of the conundrum of where the “missing’ terrestrial organic matter coming from 

freshwater sources is going. Finally, I summarise the results of this thesis to provide suggestions 

for future research efforts on sponge ecology and taxonomy.  

 Biogeographic patterns  

In Chapter 2 I showed that the biogeography of Taranaki sponges is unique over small 

spatial scales, and the distribution of species is patchy. The results of this study show that 

Poecilosclerida were the most recorded taxonomic group of sponges represented across all 

locations surveyed in the current study from Waitara, Waiwhakaiho and Hangatahua reefs. The 

second most common order recorded from all station was Tetractinellida (11%), followed by 

Dictyoceratida (6%), Suberitida (4%), Axinellida (3%), Scopalinida (3%), and Tethyidae (1%). An 

important finding from this study was that there were 35 sponge species that only occurred at 
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the northernmost and southernmost locations at Pariokariwa reefs in North Taranaki and Kapiti 

Island reefs to the south in the Wellington region. 

This study also highlights areas with particularly high biodiversity including Waitara and 

Pariokariwa reefs. Results from this investigation provide a baseline species diversity estimate 

with a total of 127 sponge species recorded from all shallow water stations in Taranaki surveyed 

herein, with an index estimation of 2.4 sponge species per m2 of rocky reefs surveyed. 

Pariokariwa Reef had the largest number of sponge species unique to that area (44 unique 

species). Surprisingly, Waitara reefs, arguably the most sediment impacted, had the second 

largest number of unique sponge species among all locations in Taranaki (36 unique species), 

followed by Patea reef (12 unique species), Hangatahua (9 unique species), and Waiwhakaiho (6 

unique species). Biodiversity estimates from Taranaki are difficult to compare to other regions of 

New Zealand because of differentiated sampling methods, varying degrees of sampling effort, 

and the differences in habitats sampled among sponge biodiversity surveys. Nevertheless, sixty-

five different sponge species from 27 families and eleven orders of Demospongiae, and four 

families and three orders of calcareous sponges were reported from the Wellington Region of 

New Zealand (Berman & Bell, 2010). There are a small number of additional regional surveys of 

sponge biodiversity in the grey literature from between North Cape and Cape Reinga at the very 

tip of the North Island (Cryer et al., 2000); and a sponge species survey recorded from Cape 

Rodney to Okari Point Marine Reserve located approximately 90 km from Auckland (Ayling, 1979; 

Pritchard et al., 1994).  

There are several possible explanations for the spatial patchiness of some of the 

taxonomic groups of sponges recorded including, but not limited to, favourable substrate for 

attachment, random distribution caused by ocean currents, predation, competition, adaptation 

to the effects of riverine sedimentation or lack thereof, presence for dispersal of larvae near 

parent sponges, and food availability from the rivers (see Chapter 4 for an explanation for riverine 

sources of food for sponges). At 47 sponge species, the Waitara location had the highest diversity 

of sponge species from all stations surveyed herein. These results are congruent with results from 

Beaumont et al. (2010) that found a larger diversity of molluscs, echinoderms, polychaetes, 

bryozoans, arthropods, sponges, wading birds, diadromous fishes, rocky reef fishes, and 

macroalgae with a mean rank score of 3.6–4.0 at this location compared to the surrounding areas. 
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Overall, these findings have important implications for developing conservation strategies for 

marine fauna on this coastline, highlighting locations of significant biological diversity, abundance, 

and uniqueness. 

Two taxonomic reviews of sponge taxa were used to develop the taxonomic expertise to 

undertake this larger scale biogeographic study (see Appendix 1 & 2). Although these reviews 

were conducted in the Bay of Plenty region, they are relevant to the current study because many 

of the described and reviewed species are also found in the Taranaki region, and delineated the 

techniques used in delineating differences between species. Therefore, this taxonomic work is 

important and relevant to the major aims of this thesis, which uses taxonomic and operational 

assignments of sponge taxa to better understand their biogeographic patterns, ecological 

interactions, and important roles in marine systems.  

Prior studies that have noted the importance of consulting local iwi, the importance of 

naming Māori language communities and language experts to understand the rules of naming 

species using Māori names within the Linnaean characterization system (Whaanga et al., 2013). 

Furthermore, with the aim of preserving cultural heritage and with respect for Māori authors 

consulted local Tauranga Iwi and consulted Caine Taiapa and Reon Tuanau from Manaaki Te 

Awanui for approval and blessing to use meaningful te reo Māori names of the two species names 

described in Appendix 2 (Dysidea tuapokere Kelly, Mc Cormack & Battershill, 2020 and D. 

teawanui Kelly, Mc Cormack & Battershill, 2020). Named for the beautiful, translucent, pale lilac 

colouration of this species in life (tuapokere, violet; te reo Māori). This species name was 

accepted and approved by local Tauranga Moana iwi, Ngāti Ranginui, Ngāi Te Rangi and Ngāti 

Pūkenga. Dysidea teawanui was named for Tauranga Moana, Te Awanui, a spiritual symbol of 

identity for all whanau, hapu and iwi living in the harbour catchment area (Te Awanui, Tauranga 

Moana; te reo Māori). This species name was accepted and approved by local Tauranga Moana 

iwi, Ngāti Ranginui, Ngāi Te Rangi and Ngāti Pūkenga.  

 Improved taxonomic descriptions of sponge including individuals from difficult groups to 

characterize are important because they help us understand the diversity of sponge species 

worldwide. Some of the issues relating to sponge taxonomic work are inadequate historical 

descriptions that require updating. Some issues emerging from this finding relate specifically to 

a dearth of biologists working on the ecology of the phylum Porifera in New Zealand. If sponges 
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were easier to differentiate and recognize in the field it would make it easier to study and 

understand some of the potential threats they are facing in changing ecosystems. Accurate 

measures of sponge biodiversity are difficult but would allow us to detect changes in their 

abundance and diversity over time and allow resource managers to implement specific 

conservation strategies to protect ecologically important communities.  

Overall, sponges have affinities with both cool and temperate regions but also have a high 

level of uniqueness in key places (Paraninihi and Waitara) where there are species that are not 

found anywhere else in the country. This is especially the case at Waitara reefs which had the 

second largest number of sponge species of all the stations in Taranaki (36 unique species to that 

area), followed by followed by Patea reef (12 unique species), Hangatahua (9 unique species), 

and Waiwhakaiho (6 unique species). These results are congruent with results from a study by 

Beaumont et al. (2010) who found a large diversity of marine taxa from all of the phyla they 

examined from around the Waitara area.  

 Importance of land cover for distribution and abundance of sponge 

communities  

In chapter three I showed that sponge abundance, diversity, percentage cover and volumes were 

greatest at coastal stations positioned near river mouths. I also showed that sponge volumes 

were highest at the coastal site that was adjacent to the most ecologically healthy river 

(Hangatahua River), which also had the largest catchment coverage of indigenous forest (93%). 

This suggests that sponges grow larger in areas where freshwater sources are more ‘pristine’, 

which may be the results of potentially greater abundance of food coming from indigenous 

forests compared to land covered by pastures or urban area. However, it should be noted that 

these influences require further investigation to determine if catchment and land use type were 

the underlying reasons for these ecological patterns in abundance, diversity, percentage cover 

and volumes of sponges, and are statistically tested. Based on the literature it has been suggested 

that some clionid sponges thrive in areas with increased eutrophication (Holmes, 2000). The 

findings from the current study support research of Pawlik et al. (2016) who suggested that a 

large abundance of sponges on Caribbean coral reefs may be partially the result of large inputs 

of dissolved organic carbon from riverine sources. However, many of these studies are species 
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specific and do not support the broad influence of eutrophication on different sponge species. 

The influence of water quality including eutrophication and sedimentation has been shown to 

influence the reproductive output of a sponge species Rhopaloeides odorabile on the Great 

Barrier Reef (Whalan et al., 2007). The levels of female reproduction increased with increasing 

distance from the coastline with oocytes from offshore sponges found to be significantly larger 

than oocytes from coastal sponges and sponges from offshore reefs had a reproductive index 

approximately 15 times greater than coastal reef sponges (Whalan et al., 2007). Moreover, an 

investigation by Polónia et al. (2015) found that although the composition of sponges was 

primarily related to habitat variables, satellite imagery revealed that water quality parameters 

including coloured dissolved organic matter index, and remote sensing reflectance at 645 nm 

proved significant predictors in variation of the composition for sponges. Therefore, differences 

in water quality or increased eutrophication may influences the community structure of sponges 

along the Taranaki coastline. However, further studies using remote sensing data may provide 

additional supporting information to bolster these claims. 

 Land cover types appear to be affecting the diversity and abundance of coastal marine 

sponge communities. However, further research is required to ascertain whether these land 

cover attribution patterns are affecting the diversity of sponge fauna as there are many physical 

and biological variables that were not measured in the current study. For example, further study 

could determine the effects of sediments, temperature, salinity, and chlorophyll on the 

abundance and diversity of sponge populations among stations. Nevertheless, Waiwhakaiho 

‘coastal near’ rocky reef station positioned near Waiwhakaiho River which has a river catchment 

with a relatively large coverage of indigenous forest (64%) Waiwhakaiho coastal reef station had 

the largest diversity and abundance of sponge species. Dudley et al. (2020) conducted a national-

scale investigation in New Zealand examining the effects of land cover effects on coastal water 

quality from rivers while controlling for marine dilution. Dudley et al. (2020) found that sites with 

greater freshwater influence had higher nutrient and faecal indicator bacteria concentrations and 

turbidity, indicating that open coast and estuarine water quality is reduced predominantly via 

flows from land. Concentrations of nitrate, ammonium, total and dissolved reactive phosphorus, 

and water column chlorophyll-a concentrations were greater in estuaries with higher urban land 

cover and total phosphorus concentrations were greater with higher agricultural land cover 
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(Dudley et al., 2020). Therefore, not surprisingly the largest diversity and abundance of sponges 

was seen at more eutrophic coastal near stations that were positioned near the Waitara and 

Waiwhakaiho river mouths. What is surprising is that the largest sponges in terms of volume 

occurred at the smallest river with the smallest river catchment (Hangatahua River), this may be 

attributed to the greater quality of food coming from the river catchment with a greater 

proportion of indigenous forest (94%). The next steps for studying this would be to conduct a 

study that clearly distinguishes influences of indigenous forests versus other land cover types on 

the food quality of coastal filter feeders like sponges and other benthic biota.  

This chapter also aimed to examine potential environmental factors influencing the 

diversity and abundance of benthic marine taxa along the Taranaki coastal zone. The outcome 

was that there were no correlations observed between sponge species diversity versus mean 

turbidity (NTU), mean sponge volume (cm3), mean total nitrogen (g N m-3), mean total 

phosphorous (g P m-3), and mean E. coli concentrations (cfu 100 mL-1). The adaptability of 

sponges to survive in water with large amounts of E. coli are not surprising, however, as sponges 

have been recorded selectively feeding on pathogenic microbes including harmful E. coli in 

experimental conditions (Maldonado et al., 2012). However, those results should be considered 

with caution as sponges used for bioremediation of microbial pollution may selectively ingest 

certain bacteria that may end up fuelling growth of harmful bacteria that are less grazed, such as 

Vibrio spp. (Maldonado et al., 2012). There were associations found here between mean sponge 

volume (cm3) versus turbidity (NTU) with sponges appearing to decrease in overall size with a 

turbidity NTU greater than 100. These results support research conducted by Bell et al. (2015a) 

which found that sedimentation has several effects on sponges including pumping rates, feeding, 

respiration, reproductive output, growth, impacts of sediment on sponge symbionts, larval 

success and mortality and abundance and diversity patterns. However, sediment impacts on 

sponges are dependent on the quantity, particle size and mineralogy (Bannister et al., 2012; Bell 

et al., 2015a). The results from the current study must be treated with caution as there is no 

universal relationship between turbidity and sediment, but a good correlation can be established 

for individual rivers, and therefore this data can be supported by future work examining this 

correlation the rivers studied here. Nevertheless, for the purpose of this work, and given the 

limited time and resources for this study turbidity was utilized as a proxy for sedimentation. 



 

95 

Mean sizes of sponge individuals (volume) appeared to decrease with an increase in total 

nitrogen (g N m-3), and there was also an increase in volumes of sponges at Hangatahua coastal 

near station with a proportionally large amount of mean total phosphorus at this site. However, 

the exact reasons for both the decrease and increase of sponge volumes with total nitrogen and 

phosphorus respectively are not known, and one cannot assume that these correlations are the 

cause for changes in sponge volumes without experimentally understanding these relationships.  

Hangatahua River is the river with the best ecological health of all three rivers studied 

(Taranaki Regional Council, 2020). Waitara coastal near station had the largest percentage 

coverage of sponge species at 22%, and the largest diversity of taxa (61) across all phyla among 

all stations. Moreover, the Waitara coastal near station had the second highest diversity of 

sponge species at 17 in addition to the second highest number of sponge individuals among all 

stations at 66. These results are interesting because the Waitara River catchment is also the 

largest river catchment in the Taranaki region and is largely covered by a combination of 

indigenous forest (48%), and pasture (43%). Pastures are likely to have mostly agricultural grazing 

land uses including sheep, beef, or dairy farming.  

The evidence from this study suggests that sponges are a resilience group of animals that 

have adapted to survive in eutrophic environments with large amounts of turbidity, total nitrogen, 

phosphorus, and E. coli. There is also evidence that sponge diversity and abundance increase 

closer to river mouths. Although correlation does not imply causation, there was also a 

correlation between a decrease in the volume of sponges with an increase in total nitrogen 

coming from rivers.  

This research extends our knowledge of sponge species diversity and abundance in 

Taranaki. It also extends our knowledge of potential environmental factors affecting the 

distribution of benthic taxa on this coastline. Despite its exploratory nature, this study offers 

some insight into the influence of rivers and river catchment coverage on populations of marine 

organisms. Finally, several important limitations need to be considered: (1) It is difficult to 

determine exact reasons why the diversity, abundance and volume of taxa change from station 

to station without performing individual experiments on each of the potential factors that may 

be affecting these taxa; (2) This study was limited to available data collected by the Taranaki 

Regional Council, and there is scope to examine other potential factors that may be influences 
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coastal taxa including sedimentation from rivers. However, due to limited time and resources we 

could only examine the aforementioned factors; (3) All three rivers were different in terms of 

their mean annual flow, catchment size and catchment land cover, and therefore it is difficult to 

make definitive statements that draw comparisons between rivers.  

Additionally, general trends can be drawn from individual rivers, especially between sites 

near and distant to rivers. It would be preferable to also increase the sample size of rivers and 

conduct a larger scale study examining the effects of river catchments with a larger proportion 

of indigenous forests on the diversity and abundance of coastal marine taxa. What is now needed 

is a cross-national study involving large scale geographical information of land coverage types 

and studies of benthic fauna to determine if specific land use types can increase our coastal 

biodiversity and abundance of taxa, and thus the resilience of these systems into the future. 

Another important practical implication is that although some of the river catchments including 

Waitara had a relatively large proportion of grasslands, they had a larger diversity of coastal taxa 

located closer to river mouths than distant stations. Therefore, rivers are clearly important for 

benthic fauna, and sponges may thrive near river mouths with a larger proportion of indigenous 

forest. Management to enhance sponge populations might involve setting up terrestrial reserves 

on land that have a large coverage of indigenous forest to protect coastal marine communities.  

 Role of sponges in processing terrestrially derived carbon 

In Chapter 3, the MixSIAR model found a high proportional content of terrestrially derived 

organic matter in the diet of coastal marine sponges. This outcome has significant implications 

for the functional role of sponges in processing terrestrial carbon entering marine systems 

throughout the world. However, the exact amounts of terrestrial carbon sponges are consuming 

is still unknown. The benefits of sponges processing carbon, including dissolved organic carbon 

on coral reefs has been found to provide significant benefits to higher trophic levels (Rix et al., 

2016). Therefore, if sponges are consuming potentially large amounts of terrestrially derived 

carbon this may also have a knock-on effect to other taxa by sponges either creating food via the 

production of sponge cell detritus or via the direct consumption of sponge biomass by other 

invertebrates such as nudibranchs. Results from chapter four reveal that sponges were mainly 

consuming larger seston (>1.2–400 µm) from both marine and freshwater sources.  
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Prior studies have noted that not all sponges are created equal and that sponge expansion 

on coral reefs in the future may be limited by nutrient availability, including higher concentrations 

of particulate, and dissolved organic matter (McMurray et al., 2018; Rovellini, 2019). Previous 

authors suggested that sponges on some coral reefs may be food limited and rely on food coming 

from rivers and from wind-borne dust (Pawlik et al., 2018; Rovellini, 2019). However, sponges 

living on temperate coastal reefs are usually not as food limited as tropical oligotrophic 

environments. Sponges living on temperate rocky reefs are also obtaining large portions of dual 

sources of food from both terrestrial and marine sources. Although the results of chapter 3 show 

that sponges on these temperate reefs obtained most of their food from marine sources, there 

is also a clear reliance in some cases on food coming from terrestrially derived sources (up to 40% 

of diet) and therefore the connectivity between freshwater sources providing food for coastal 

marine ecosystems is highlighted.  

 Future research 

Analysis of the abundance and diversity of sponges in chapter two allowed an in-depth 

assessment of the state of five coastal rocky reef stations along the Taranaki coastline. For the 

first time, a species list including taxa from all phyla examined here provided a baseline for rocky 

reef fauna on this coastline. However, further experimental work on environmental factors is 

required to better understand why there were a greater diversity and abundance of sponge taxa 

at some of the stations studied. For example, diversity and abundance of sponges was largest at 

the Waitara coastal near station, which has the largest river and river catchment, but it remains 

unclear if this is related to the larger food availability at these stations that may sustain larger 

populations of sponges. Therefore, further experimentation is required to understand specific 

and cumulative effects of each of the environmental factors investigated here on the physiology 

and populations structure of sponge populations. For example, the literature states that 

sedimentation has clear physiological effects on sponges, but the degree to which is affects 

sponges is dependent on the characteristics of the sediment and the volumes of sedimentation 

that the sponge is experiencing. However, if a river transporting large amounts of sediments that 

were having a negative physiological effect on sponges in that area, but the river was also 

providing large amount of food in the form of terrestrially derived organic matter that was 

benefiting the sponges it may be difficult to tease apart whether this river system was beneficial 
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overall to the coastal sponge communities. Therefore, understanding the tolerances of 

sediments specific to each river and or the tolerance to other pollutants is important as these 

need to be monitored in terms of their effects on sedentary coastal taxa including sponges. 

Nevertheless, it is clear from the research conducted in chapter two that there is a larger diversity 

and abundance of sponges located closer to river systems. Therefore, understanding exact 

interactions between freshwater ecological health, land coverage types and river pollutants on 

coastal marine communities requires further investigation.  

 Research described in Chapter 3 highlights the importance of sponges for cycling 

terrestrially derived organic matter. However, there is further work required to quantitatively 

assess how much terrestrially derived organic matter sponges are processing. Previous studies 

have shown that sponges are important to coral reefs because they are cycling energy and matter 

providing food to higher trophic levels via the production of particulate organic matter via the 

sponge loop. However, it is not clear what functional roles marine sponges play in terms of 

nutrient cycling in food rich temperate waters where higher trophic levels may not be as reliant 

on sponges producing particulate organic matter. Therefore, sponges may fill a different 

ecological niche in temperate systems. Future research should focus on what effects sponges are 

having in food-rich environments by cycling terrestrial and marine organic matter and determine 

how much land derived organic matter sponges are consuming in these systems.  

 Concluding remarks 

In summary, the results presented in this thesis suggests that sponge meadows and other coastal 

taxa are supported by freshwater systems. Sponge communities are relatively resilient to 

environmental change and have proven adaptability within their environment. Increased 

abundances of sponges in coastal areas will likely depend on the influence of lard-derived 

anthropogenic activities including land cover and land use. However, the current study highlights 

the importance of terrestrially derived carbon to the diet of sponges on temperate rocky reefs in 

the Taranaki region. Ecological interactions between sponges and terrestrially derived matter will 

largely shape coastal communities in the future, thus determining the biogenic complexity of 

sponge habitats that provide significant benefits to diversity of taxa including commercially 

important fisheries species. The exact amounts of terrestrially derived carbon that sponges are 

consuming in globally is not yet known. Sponge terrestrial organic processing is likely having 
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ecological benefits through the direct production of sponge tissue for fishes and invertebrates, 

to the production of particulate organic matter for other detritivores. The specific ecological 

health of sponge communities along the Taranaki coastal zone is not known, however, this work 

provides a baseline to measure future impacts to this area and provides a reference for a before-

after-control-impact assessment (BACI) for potential future environmental disasters, including 

sedimentation from climate change induced flooding.  

 The taxonomic tools provided from this study are important for both descriptions of 

taxonomically difficult groups to classify and groups that require taxonomic redescriptions. Given 

the logistical difficulties of assessing the sponge diversity on the Taranaki coastline this study 

provides a critical baseline for understanding the taxonomic, functional, and ecological 

significance of these sponge communities. This research extends our knowledge of land-sea 

connectivity, and specifically the role of sponges in linking these two systems. A key policy priority 

therefore should be to plan for long-term care of sponge communities by gaining an increased 

understanding of their health at local, national, and international scales and research the key 

anthropogenic activities and land use practices that are influencing them either negatively or 

positively. Perhaps a combination of terrestrial reserves grouped with adjacent marine reserves 

would improve the overall health and wellbeing of coastal marine ecosystems and would offer 

ecologically unique and highly biodiverse coastal locations improved protection.  
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Appendix 1  

Redescription of five sponge species from Pilot Bay, 

Tauranga Harbour, Bay of Plenty, New Zealand 

 

Authors: Mc Cormack, Kelly, & Battershill, 2021.  
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Abstract 

A collection of sponges (Porifera, Demospongiae) from Pilot Bay, Tauranga Harbour, Bay of 

Plenty, New Zealand, has facilitated the re-examination and redescription of five common New 

Zealand sponge species: Aaptos globosa Kelly-Borges and Bergquist, 1994  (Subertida, 

Subertidae), Acanthoclada prostrata Bergquist, 1970 (Axinellida, Stelligeridae), Biemna 

rufescens Bergquist & Fromont, 1988 (Biemnida, Biemnidae), Halichondria (Halichondria) 

moorei Bergquist, 1961 (Suberitida, Halichondriidae), and Stylissa haurakii Brøndsted, 1924 

(Scopalinida, Scopalinidae). The results progress the modern requirements of description from 

those described in early New Zealand literature which lack adequate and detailed descriptions 

of species and images of these sponges in life.  

 

Key words:  

Porifera, Demospongiae, taxonomy, New Zealand EEZ 

 

Introduction 

Sponges (Porifera Grant, 1836, Demospongiae Sollas, 1885) collected from Pilot Bay in 

Tauranga Harbour, Bay of Plenty, have facilitated redescription of five common New Zealand 

species: Aaptos globosa Kelly-Borges and Bergquist, 1994 (Subertida Chombard & Boury-

Esnault, 1999, Suberitidae Schmidt, 1870), Acanthoclada prostrata Bergquist, 1970 

(Axinellida Lévi, 1953, Stelligeridae Lendenfeld, 1898, Biemna rufescens Bergquist & 

Fromont, 1988 (Biemnida Morrow et al., 2013, Biemnidae Hentschel, 1923), Halichondria 

(Halichondria) moorei Bergquist, 1961 (Subertida Chombard & Boury-Esnault, 1999, 
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mailto:christopher.battershill@waikato.ac.nz
mailto:michelle.kelly@niwa.co.nz


 

126 

Halichondriidae Gray, 1867), and Stylissa haurakii (Scopalinida Morrow & Cárdenas, 2015, 

Scopalinidae Morrow et al. 2012). Fresh material from Pilot Bay and examination of preserved 

material from the National Institute of Water & Atmosphere (NIWA) Invertebrate collection 

(NIC), and the Museum of New Zealand Te Papa Tongarewa, Wellington (NMNZ) has helped 

extend our understanding of the morphological boundaries of each species within the Bay of 

Plenty region. We have focussed on spicule analysis, skeletal characteristics and the use of in-

situ photographs that enhance our knowledge of their morphology and ecology in life.  

There is a dearth of information regarding the biodiversity and systematics of sponges 

from Tauranga Harbour, and indeed, many shallow coastal seas around New Zealand. Recently, 

Mc Cormack et al. (2020) addressed this through describing two new species of Dysidea 

Johnston, 1842 (Demospongiae, Dictyoceratida Minchin, 1900, Dysideidae Gray, 1867) from 

Tauranga Harbour: Dysidea tuapokere Kelly, Mc Cormack and Battershill, 2020 and D. 

teawanui Kelly, Mc Cormack and Battershill, 2020, both in Mc Cormack et al. (2020) (see 

thesis appendix).  

Species redescriptions here extend our knowledge on the general morphology, and 

diagnostic characters of these species. Collated information from NIWA, NMNZ and 

specimens collected from Tauranga Harbour expands our knowledge on the geographical 

distribution and depth ranges of these species. Original or subsequent descriptions of species 

such as H. (H.) moorei have poor information on general morphological characters. 

Furthermore, many early species descriptions such as those found in Bergquist (1970) lack 

photographs of external morphology (and/or they are monochromatic), spicules, and skeletal 

characters, making them challenging to identify. Therefore, there is a critical need for clear 

descriptions of these species that emphasise diagnostic characters and include photographs of 

morphology, skeletal architecture, and spicules. 

Kelly et al., (2009) provided a thorough review of the history of sponge studies, 

estimates of species diversity and a list of valid sponge species recorded from New Zealand to 

the year 2000. Kelly et al., (2009) found there were 724 extant marine sponge species known 

in the New Zealand Exclusive Economic Zone (EEZ), including 76 hexactinellid or glass 

sponges (class Hexactinellida Schmidt, 1870), 54 calcareous sponges (class Calcarea 

Bowerbank, 1862), and 594 demosponges (Class Demospongiae).  

Kelly & Sim-Smith (in prep) are revising the sponge species list for the New Zealand 

EEZ. Preliminary indications suggest the number of known species has doubled. However, a 

serious deterrent to obtaining accurate estimates of sponge species remains and that is the poor 
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state of early and original descriptions, confirming the need for work such as provided in this 

study. 

 

Materials and methods 

Specimens were collected using SCUBA by Samuel Mc Cormack (SMcC) from Tauranga 

Harbour, Bay of Plenty, between January and October 2014, September and October 2017, and 

in August 2020 (Fig. X). Photographs of specimens in-situ, ex-situ, and after preservation in 

70% ethanol, were taken using a Canon EOS 60D camera. Specimens were deposited at the 

National Institute of Water and Atmospheric Research Invertebrate collection. Histological 

sections were prepared by embedding a small cutting of sponge in paraffin wax followed by 

sectioning with a microtome at 50 and 100 μm. Spicules and skeletons were photographed and 

measured on slides in Canada Balsam dissolved in xylene using an Olympus CX41RF 

compound microscope fitted with a Pixelink M15C-PRO-CYL camera using uScope-PRO 

imaging software (Pixelink®, a Navitar Company, Ottawa, Canada). Spicule dimensions and 

skeletal characters were measured at 40–400× magnification. Spicule measurements in the 

species descriptions are given as the mean length (range) × mean width (range) of twenty 

spicule measurements per specimen unless stated otherwise and are based on measurements 

from the holotype or paratypes and confirmed through examination of all other specimens. 

Abbreviations used in text. NIC, NIWA Invertebrate Collection, Evans Bay, 

Wellington; NIWA, National Institute of Water & Atmospheric Research, Evans Bay, 

Wellington; NMNZ, The Museum of New Zealand Te Papa Tongarewa, Wellington.  

 

Systematics 

General classification and the names of the class, subclass, order, and suborders follow the 

classification proposal by Morrow  & Cardenas (2015). 

 

 

Class Demospongiae Sollas, 1885 

 

Subclass Heteroscleromorpha Cárdenas, Pérez & Boury-Esnault, 2012 

 

Order Suberitida Chombard & Boury-Esnault, 1999 

  

Family Suberitidae Schmidt, 1870 
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Genus Aaptos Gray, 1867  

 

Type species. Aaptos adriatica Gray, 1867  

 

Diagnosis. Lobate or spherical sponges with a radial skeleton, often consisting of confluent 

globular or lobate units. Surface smooth or tuberculate-papillate, usually rough to touch. Some 

species show a distinct colour change when taken out of the water. In cross section, the outer 

region is often fibrous and may be considered as a cortex which grades into the choanosome. 

Skeleton strictly radiate, with tracts and single spicules issuing from the centre of the lobe or 

globular body. At the surface the tracts fan out and form a dense palisade consisting of smaller 

spicules intermingled between the ends of the larger spicules. Spicules are strongyloxeas, in 

three overlapping size categories; the intermediate and smaller spicules are occasionally oxeas, 

styles or tylostyles. The genus is cosmopolitan. Several species produce a distinctive compound 

aaptamine (Soest & Braekman, 1999), which appears to be a good marker of the genus 

(modified from Soest, 2002).  

 

Aaptos globosa Kelly-Borges & Bergquist, 1994 

Figs. 1–3, table 1 

 

Aaptos aaptos, Ayling 1979: 47; Pritchard et al. 1984: 80–81, 135.  

Aaptos globosa Kelly-Borges & Bergquist, 1994: 305, 309–310; Fig. 4, pl.C on p. 305. 

Aaptos globosa (as A. globosum), Cryer et al. 2000: 86, 96, 152; Battershill et al. 2010: 114; Kelly et al. 2009: 

43; Kelly 2018: 11, 45.  

 

Material examined. Holotype—NMNZ PO.000133, Cornwallis Beach, Manukau Harbour, 

Auckland, New Zealand, 37.016° S, 174.6° E, 1 m, 14 Dec 1989.  

Pilot Bay, Tauranga Harbour, Bay of Plenty: NIWA 92972, 37.637° S, 176.171° E, 10 

m, 27 Sep 2017. 

Other material. Spirits Bay, North Cape, Northland: NIWA 51121, NIWA Stn 

KAH9901/24, 34.364° S, 172.841° E, 57 m, 25 Jan 1999; NIWA 51133, NIWA Stn 

KAH9901/25, 34.369° S, 172.825° E, 55 m, 25 Jan 1999; NIWA 51281, NIWA Stn 

KAH9901/47, 34.374° S, 172.701° E, 53 m, 27 Jan 1999; NIWA 51408, NIWA Stn 

KAH9901/61, 34.324° S, 172.749° E, 69 m, 28 Jan 1999; NIWA 51649, NIWA Stn Z9096, 



 

129 

34.370° S, 172.768° E, 44 m, 5 May 1998; NIWA 51654, RV Benn Gunn Stn BG9701/64, 

34.368° S, 172.768° E, 44 m, 28 Feb 1997; NIWA 62301, NIWA Stn Z18247 (SDCC/NZ496), 

34.422° S, 172.846° E, 17 m, 23 Mar 2007; NIWA 101826, NIWA Stn KAH9901/24, 34.364° 

S, 172.841° E, 57 m, 25 Feb 1999; NIWA 101842, NIWA Stn KAH9901/25, 34.369° S, 

172.825° E, 55 m, 25 Feb 1999; NIWA 101962, NIWA Stn KAH9901/47, 34.375° S, 172.701° 

E, 53 m, 27 Jan 1999; NIWA 101995, NIWA Stn KAH9901/61, 34.324° S, 172.749° E, 69 m, 

28 Jan 1999.  

Kahuwhera Bay, Bay of Islands, Northland: NIWA 62171, 62176 NIWA Stn 

KWB_Feb, 35.263° S, 174.182° E, 6 m, 9 Feb 2010. 

Home Point, Bream Bay, Northland: NIWA 86755, NIWA Stn Z16096, 35.850° S, 

174.525° E, 8 m, 17 Feb 2007.  

Great Barrier Island, Hauraki Gulf: NIWA 101219, NIWA Stn Z15892, 36.203° S, 

175.337° E, 20 m, 27 Apr 1999.  

Goat Island Bay, Leigh, Hauraki Gulf: NMNZ PO.000430, 36.266° S, 174.791° E, 16 

m, 8 Mar 1991.  

Rakino Island, Hauraki Gulf: NIWA 62353, NIWA Stn Z18568, 36.428° S, 175.188° 

E, 8 Jun 2009. 

Motuketekete Island, Kawau, Hauraki Gulf: NIWA 52281, NIWA 52282, NIWA Stn 

WREB03, 36.471°S, 174.807°E, 6–10 m, identified 19 June 2007. 

Cornwallis Beach, Manukau Harbour, Auckland: NMNZ PO.000428, 37.016° S, 

174.6° E, 1 m, 14 Dec 1989. 

South Taranaki Bight, Taranaki:; NIWA 86707, NIWA Stn Z18389, 2 Mar 2013     

Tatapouri Bay, Gisborne: NIWA 100821, NZOI Stn X724, 38.660° S, 178.394° E, 72 

m, 13 Mar 1998.  

Distribution. Northland, Hauraki Gulf, Auckland, Bay of Plenty, Taranaki, Gisborne 

and Nelson; 1–70 m.  

Diagnosis. Spherical, solitary sponge ranging from 3–10 cm diameter × 2–8 cm in high 

(Fig. 1A). Sponge may produce large buds during February and April from basal stolons which 

remain attached to parent individual for extended periods. A large basal skirt attaches the 

sponge to the substratum (Fig. 1C). When inflated, the surface is irregular to lumpy with blunt 

conules 1–5 mm high and 1–2 mm in diameter (Fig. 1A). When visible, oscules are compound 

in mature specimens, occuring in surface depressions around 1 cm in diameter, that may be 

surrounded by an elevated rim (Fig. 1A). Surface is slightly compressible when inflated in life, 

and incompressible and hard when contracted in preservation. Texture is smooth and rubbery 
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to touch. Colour ranges from deep red-brown, red-pink (Fig. 1A–B), to yellow-brown in life, 

and mustard to yellow brown internally. Sponge turns mustard in air (Fig. 1C), and chocolate 

brown to grey after preservation.  

Choanosomal skeleton (Fig. 2A–B) composed of dense radiating tracts tracts 500–700 

µm wide comprised of large primary megascleres radiating through choanosome and branching 

into bouquets near surface (Fig. 2A). These ectosomal branching tracts are comprised of 

intermediate sized megascleres. Small tylostyles and slightly larger subtylostyles form an erect 

superficial palisade; spicules do not penetrate surface (Fig. 2A). Collagen is found throughout 

ectosome as small diffuse tracts around 1200 µm wide, and collagen  is found in a much greater 

abundance throughout choanosome.  

Megascleres (Table. 5, Fig. 2C–H) large strongyloxeas finely tappered to a fusiform 

distal end, 1689 (1021–2337) ×  21 (5–39) µm, n=160 (Fig. 2G–H). Intermediate sized 

strongyloxeas finely tappered with a fusiform distal end, 947 (481–1500) × 14 (4–30) µm, 

n=160 (Fig. 2E–F). Tylostyles, with a pin-like morphology and hastate oxeote ends, 

occasionally slightly curved, 344 (106–1215) ×  9 (3–30) (Fig. 2D). Subtylostyles, faint 

subterminal expansion with a slender curved shaft, 401 (110–1444) × 10 (4–36) µm, n=160 

(Fig. 2C).  

Remarks. Aaptos globosa has a highly characteristic spherical to subspherical 

morphology with compound, apical oscules and bright orange red colouration. It differs from 

other spherical sponges such as S. perfectus Ridley and Dendy, 1886, due to lack of solitary 

raised oscules, a perfectly spherical morphology and smooth surface (Kelly, 2018). Note that 

this species was originally described as A. globosum by Kelly-Borges & Bergquist (1994) but 

this was corrected to A. globosa to match the gender of the genus name, in 2015, by Kelly in 

the World Porifera Database (http://www.marinespecies.org/porifera/).  

Kelly-Borges and Bergquist (1994) found a similarity in the dimensions of spicules 

among Aaptos globosa and Aaptos tenta Kelly-Borges and Bergquist, 1994, but noted that 

primary and intermidiate megascleres of the latter species were slightly longer and thicker than 

those of A. globosa. Kelly-Borges and Bergquist (1994) further differentiated A. globosa from 

A. tenta by spicule morphology, with the second category of superficial megascleres of A. 

globosa being either styles or weak subtylostyles, as opposed to the equivilant spciules in A. 

tenta representing subtylostyles only. Spicule tracts between each species can also be 

differentiated with tracts of A. globosa branching several times in the ectosomal region (Fig. 

2A–B), compared to fanned unbranched spcicule tracts found in the ectosome of A. tenta 

http://www.marinespecies.org/porifera/
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(Kelly-Borges and Bergquist, 1994, Fig. 3). Furthermore, the spicules in the ectosomal region 

of A. globosa are more dense than those found in A. tenta, with no brushes or bouquets forming 

in the latter species (Kelly-Borges and Bergquist, 1994). Ectosomal collagen scattered below 

the surface of A. globosa is characterised by random formations of collagen wisps, compared 

to A. tenta that has two marked bands of parallel collagen tracts seperated by a region relatively 

devoid of collagen (Kelly-Borges and Bergquist, 1994). A final point of  morphological 

difference between A. gobosa and A. tenta is that A. globosa appears as almost perfectly 

spherical solitary individuals with incompressible texture in life and low flattened mounds, 

compared to A. tenta which is commonly found as an irregular mass of basally confluent 

individuals (Kelly-Borges and Bergquist, 1994).   

We note here that the length and thickness of tylostyles [692 (184–1215) × 20 (5–30)] 

and subtylostyles [905 (121–1444) × 22 (4–36)] within the holotype (PO.000133) were larger 

on average than those from other specimens around the North Island (Table 1). However, large 

[1620 (1229–2091) × 25 (15–36)] and intermediate sized strongyloxeas [915 (593–1159) × 19 

(11–30)] found in PO.000133 were more consistently similar to those from the other North 

Island specimens (Table 1). These differences are in part due to the difficulty of being able to 

strictly differentiate the three size categories of megascleres in this genus.  

 

Key diagnostic characters 

 spherical morphology 

 basal skirt  

 irregularly lumpy with blunt conules 

 oscules occuring in depressions 

 slightly compressible in life and incompresible in preservation 

 plumose choanosome with ectosomal bouquets  

 

 

Class Demospongiae Sollas, 1885 

 

Subclass Heteroscleromorpha Cárdenas, Pérez & Boury-Esnault, 2012 

 

Order Axinellida Lévi, 1953 

 

Family Stelligeridae Lendenfeld, 1889 

 



 

132 

Genus Acanthoclada Bergquist, 1970  

 

Type species. Acanthoclada prostrata Bergquist, 1970: 22–23 (by original designation).  

 

Diagnosis. Thickly encrusting; choanosomal skeleton lax, fibrous, consisting of ascending 

fibres and tracts reinforced with small quantities of collagen, without distinctive axis; basal 

skeleton composed of tangled bundles of spicules containing rhabdostyles in plumose or 

‘hymedesmioid’ tracts erect on a substrate base of larger choanosomal styles embedded in these 

bundles, with abundant microscleres lying on the basal spongin; ascending fibres cored by 

smooth styles forming multispicular tracts, with smooth rhabdostyles scattered within and 

protruding fibres. Long styles also protrude through fibres and abundant microscleres are 

scattered throughout the mesohyl producing a lax halichondrioid skeleton. Subectosomal fibres 

terminate in brushes of long centragulate oxeas which form conulose surface projections. 

Ectosome is also packed with acanthose microscleres. Megascleres include smooth styles, 

rhabdostyles and oxeas which are usually centrangulate or toxiform. Microscleres acanthose 

cladotoxas and birotules are present (after Hooper 2002).  

 

Acanthoclada prostrata Bergquist, 1970 

Figs. 4–5, table 2 

Acanthoclada prostrata Bergquist, 1970: 22–23; pl. 5B, 10A, F, 16A–B; table 2. 

Acanthoclada prostrata, Gordon & Ballantine 1976: 99; Ayling 1979: 70; Pritchard et al. 1984: 135; Dawson 

1993: 21, 87; Cryer et al. 2000: 92, 100, 103, 152; Hooper 2002: 756–758; fig. 1; Kelly et al. 2009: 28, 

34, 44; Battershill et al. 2010: 107–108, 605; Morrow et al. 2019: 9, 34.  

 

Material examined. Holotype—NMNZ PO.000027, North (Takatu) Channel, between 

Tāwharanui Peninsula and Kawau Island, Hauraki Gulf, Auckland, New Zealand, 36.383° S, 

174.85° E, 18 m. 

Other material. Spirits Bay, North Cape, Northland: NIWA 51699, RV Benn Gunn 

Stn BG9701/64, 34.368° S, 172.768° E, 44 m, 28 Feb 1997; NIWA 51168, 101862, NIWA Stn 

KAH9901/27, 34.360° S, 172.720° E, 48 m, 26 Jan 1999; NIWA 62213, NIWA Stn 

KAH1005/33, 34.359° S, 172.756° E, 51 m, 14 May 2010; NIWA 51108, 101850, NIWA Stn 

KAH9901/24, 34.364° S, 172.841° E, 57 m, 25 Jan 1999.  

Leigh, Rodney Coast, Hauraki Gulf: NIWA 52789. 

http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=192844
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North (Takatu) Channel, between Tāwharanui Peninsula and Kawau Island, Hauraki 

Gulf, Auckland: NMNZ PO.000145, 36.383° S, 174.85° E, 11 m, Nov 1960. 

Takatu Point, east of Warkworth, Auckland, Hauraki Gulf: NMNZ PO.000148, 36.366° 

S, 174.883° E.  

Pilot Bay, Tauranga Harbour, Bay of Plenty: NIWA 113639, 37.637° S, 176.171° E, 

12 m, 27 Sep 2017. 

Distribution. Northland; Hauraki Gulf; Bay of Plenty; 3–57 m. 

Diagnosis. Morphology thickly encrusting with a low mounded surface, typically up to 

10 cm diameter × 4 cm wide × 2.5 cm thick (Fig. 4A–B). Surface has abundant conules up to 

1–2 mm in height giving it a shaggy appearance (Fig. 14A–B), the ectosome appears 

translucent. Oscules are 1–2 mm in diameter, inconspicuous, flush with ectosome. Texture 

granular, slightly compressible, and easily torn. Colour in life orange to yellow externally with 

slight purple surface tinges (Fig. 4A–B), cream throughout after preservation. Sponge exudes 

mucus upon being damaged and removal from substrate. 

Choanosomal skeleton (Fig. 4C–D) composed of ascending fibres, cored by styles and 

echinated by rhabdostyles (Fig. 4H). Spongin can be found in small amounts around spicule 

tracts. Ectosomal membrane is filled with birotules and cladotoxas. Fibres terminate with 

bundles of oxeas, which elevate the dermal membrane into conules, and penetrate surface (Fig. 

4C). Sponge encrusts bivalves, subtidal reef slopes and sponge gardens, and is typically found 

between 3–57 m. 

Megascleres (Table 2, Fig. 4) are centrangulate oxeas of varying widths, fine forms 

resemble large toxas, 525 (61–1509) × 8 (1–35) µm, n=400 (Fig. 4G). Rhabdostyles (Fig. 4H), 

shorter, more slender than styles, smooth, curved sharply near the anterior end, with prominent 

basal rhabd, 293 (178–602) × 9 (4–18) µm, n=400; Styles (Fig. 4E–F), straight, curved, or 

slightly curved with evenly rounded, slightly subtylote or occasionally subterminal tylote 

swellings, 1119 (162–2655) × 12 (4–23) µm, n=400.  

Microscleres (Table 2, Fig. 4), birotules (Fig. 4J), small, curved or slightly curved, with 

small spines distributed evenly over the shaft with nail-like apical heads, encircled by a ring of 

backwardly directed spines, 52 (37–86) × 5 (2–11) µm, n=400, clad width 7 (3–12) µm, n=200. 

Cladotoxas (Fig. 4I), curved, smooth shaft, with spines on one or both sides of shaft, spines 

may be reduced to only one. Apical clads are curved with 3–8 sharp spines and no constant 

disposition, 89 (62–119) × µm n=400, clad width 6 (2–13), n=200. 
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Remarks. Acanthoclada is a monospecific genus characterised by the possession of 

unique cladotoxa microscleres. Using 28S gene sequences, Morrow et al., (2019) found A. 

prostrata clustered with family Stelligeridae, resulting in transfer of the genus Acanthoclada 

to that family. Tauranga and Spirits Bay specimens examined here conform to Bergquist’s 

(1970) original and Hooper’s (2002) descriptions of the holotype, in terms of their thickly 

encrusting morphology, shaggy surface, conulose formation and granular texture.  

We note considerable variability in the size ranges of spicules in all specimens 

examined (Table 2) and the smaller size of the centrangulate oxeas in four specimens from 

Spirits Bay (NIWA 51168, 51699, 52789, 101862). These spicules are much smaller [334 (61–

1191) × 8 (4–14) µm, n=60] than the lengths of the same spicules in other specimens recorded 

from the North Island [607 (130–1509) × 7 (1–35) µm, n=140]. Remaining Spirits Bay 

specimens (NIWA 51108, 62213, 101850) have centrangulate oxeas that fall within the range 

of those in other North Island specimens and are simply noted at this time.  

 

Key diagnostic characters 

 thickly encrusting 

 low mounded surface 

 abundance of surface conules (1–2 mm high) 

 granular slightly compressible texture 

 surface orange to yellow, with slight tinges of purple in life 

 exudes mucus after damage or removal 

 ascending choanosomal fibres cored by styles and echinated by rhabdostyles 

 globally unique cladotoxa microscleres 

 

 

 

 

Class Demospongiae Sollas, 1885 

 

Subclass Heteroscleromorpha Cárdenas, Pérez & Boury-Esnault, 2012 

 

Order Biemnida Morrow et al., 2013 

 

Family Biemnidae Hentschel, 1923 
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Genus Biemna Gray, 1867  

 

Type species. Halichondria variantia represented as Biemna variantia Bowerbank, 1858: 

286; Fig. 39 (by original designation).  

 

Diagnosis. Massive, cup-shaped, or tubular sponges, with uneven surface. Plumose or 

plumoreticulate choanosomal skeleton, with variable development of spongin fibres cored by 

(subtylo-) styles of a single size, occasionally replaced by oxeote spicules; ectosomal skeleton 

made of brushes of megascleres making the surface often shaggy; microscleres include sigmas, 

raphides, microxeas, commata, microstrongyles and spheres. Most species cause a dermatitis-

like reaction when in touch with bare skin (after Hadju & Soest, 2002).  

 

Biemna rufescens Bergquist & Fromont, 1988 

Figs. 6–8, table 3 

Biemna rufescens Bergquist & Fromont, 1988: 32–33; Pl. 9D–F; 10A; Table. 13. 

Biemna rufescens, Cryer et al. 2000: 94, 103; Kelly et al. 2009: 43; Battershill et al. 2010: 59, 89, 608; Kelly 

2018: 11, 68.   

Biemna sp. Ayling 1979: 71; Pritchard et al. 1984: 40–41.  

 

Material examined. Holotype— NMNZ PO.000087, Middle Arch, Poor Knights Islands, 

Northland, New Zealand: 35.458° S, 174.731° E, 15 m.  

Other material. Spirits Bay, North Cape, Northland: NIWA 51025, NIWA Stn 

KAH9901/3, 34.405° S, 172.832° E, 29 m, 24 Jan 1999; NIWA 51340, NIWA Stn 

KAH9901/57, 34.398° S, 172.923° E, 34 m, 27 Jan 1999; NIWA 62272, NIWA Stn Z18253 

(SDCC/NZ435), 34.417° S, 172.954° E, 20 m, 22 Mar 2007; NIWA 62295, NIWA Stn Z18287 

(SDCC/NZ488), 34.430° S, 172.730° E, 23 m, 24 Mar 2007; NIWA 101813, NIWA Stn 

KAH9901/3, 34.405° S, 172.833° E, 29 m, 24 Jan 1999.  

  Houhora Harbour, Northland: NIWA 101308, NIWA Stn Z15913, 34.822° S, 

173.151° E, 3 m, 30 Nov 2002. 

Home Point, Bream Bay, Northland: NIWA 62387, NIWA Stn Z18386, 35.849° S, 

174.523° E, 12 m, 20 Sep 2011. 

Man of War Passage (Governor Pass) north side, Great Barrier Island, Hauraki Gulf: 

NIWA 101032, NIWA Stn Z15852, 36.184° S, 175.315° E, 10 m, 9 Jun 2006.  

Sponge Garden, Goat Island, Leigh: NMNZ PO.000258, 36.266° S, 174.8° E, 16 m; 

NMNZ 000214, 36.266° S, 174.8° E, 18 m.  
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Kawau Bay, Hauraki Gulf: NIWA 52297, 28 May 2007, no additional data. 

Rakino Island, Auckland, Hauraki Gulf: NIWA 62356, NIWA Stn Z18243, 36.720° S, 

174.940° E, 08 June 1999. 

Pilot Bay, Tauranga Harbour, Bay of Plenty: NIWA 92967, 37.637° S, 176.171° E, 11 

m, 27 Sep 2017; NIWA 113659 (Spon00262), 37.380° S, 176.102° E, 10 m, 25 Aug 2020. 

Patea, South Taranaki Bight, Taranaki: NIWA 81612, NIWA Stn TQI1201/71, 

39.802° S, 174.296° E, 27 m, 12 Mar 2012.  

Sugar Loaf Islands, New Plymouth, Taranaki: NIWA 101176, NIWA Stn Z15882, 

39.057° S, 174.03° E, 20 m, 1999.  

Distribution. Endemic to New Zealand. Found in coastal waters of the North Island: 

Northland, Hauraki Gulf, Bay of Plenty, Taranaki, living at depths of 3–34 m.  

Diagnosis. Spherical, hemispherical to massive or thickly encrusting sponge with 

shaggy oscular turrets, 4–10 mm high, on the upper surface of the sponge. Turrets have apical 

oscules, 2–5 mm wide, that are slightly tattered around the edges (Fig. 6A–C). Encrusting 

specimens can cover areas up to 1 m2. Texture soft, velvety, microscopically hispid, with a 

compressible and easily torn body. Specimens with foreign debris incorporated into their 

superficial layers have a grainier texture. In situ sponge is a purple maroon to red-brown 

external colour and dirty yellow to dull-gold internally (Fig. 6A–B). In preservation sponge is 

coloured cream to light brown both internally and externally. Irritating to the skin when 

touched.  

Choanosomal skeleton (Fig. 7A) composed of plumose tracts of styles about 50 µm 

wide that run perpendicular to the surface (Fig. 7A). Styles are predominantly positioned with 

the distal end facing outwards and to the surface. Skeleton is confused between tracts, and 

styles are predominantly found loose in choanosome at right angles to the primary tracts (Fig, 

7A). These columns can be traced to the ectosome where they form bouquets which penetrate 

the surface (Fig. 7B). Trichodragmata form short tracts within choanosome. Oxeas and 

raphides are also interspersed haphazardly within choanosome. 

Ectosomal skeleton composed of styles in bouquets with distal ends facing outwards 

and echinating through ectosome (Fig. 7B). Trichodragmas or lax bundles of raphides and 

sigmas are positioned transversely along ectosome. Ectosomal layer may also incorporate 

foreign material. A thin, dark ectosomal layer of collagen can be found along ectosome (Fig. 

7B), but its quantity varies in different sections of dermal tissue. Subdermal chambers are 

sometimes found directly below surface, lined by sigmas. 
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Megascleres (Fig. 7C–H; Table 3) are styles, long, slender with bent or wavy and 

occasional oxeote forms, 449 (282–629) × 11 (2–25) µm, n=640 (Fig. 7C).  

Microscleres are fusiform microxeas with two size classes; the smaller size class of 

microxeas is shorter and thicker [58 (42–80) × 3 (1–5) µm, n=640] than the larger size class 

[111 (64–194) ×  2 (1–3) µm, n=640] (Fig. 7D–F). Sigmas, morphologically variable, 

predominantly C-shaped, or hooks, in three size classes: small, 14 (10–20) × 2 (1–3) µm, 

n=640; medium, 24 (16–44) × 2 (1–4) µm, n=640; large 42 (27–59) × 3 (1–5) µm, n=640, of 

which the largest size is thicker than both smaller classes (Fig. 7F–H).  

 Remarks. Biemna rufescens is a well-known endemic to New Zealand, with an easily 

recognisable purple colouration and turreted surface structure. It is commonly found off the 

east coast between Northland and the Bay of Plenty but has also been recorded in Taranaki on 

the west coast of the North Island. This species can be differentiated from other Biemna in New 

Zealand by its hemispherical morphology, oscular fistules, and three size classes of sigma 

microscleres. Biemna rufescens is easily distinguished from the two other known New Zealand 

species of Biemna: B. rhabderemioides Bergquist, 1961 (Fig. 10A–B), has an encrusting or 

cushion-like morphology; B. flabellata Bergquist, 1970 (Pl. 5C, 17A) has an erect and lamellate 

form. 

The length and thickness of all spicules in all categories within the holotype are average 

for specimens around the North Island which vary with different latitudes and degrees of 

exposure; those from sheltered harbour environment of Pilot Bay (NIWA 92967, 113659) 

consistently have the longest and thickest of all spicules in all categories, possibly reflecting 

the greater amount of food availability. 

 

Key diagnostic characters 

 Spherical to hemispherical or thickly encrusting 

 Surface covered in prominent oscular fistules tattered around edges 

 purple to maroon externally in life 

 velvety texture and irritating to the touch 

 three size classes of sigma microscleres 

 choanosome composed of plumose tracts of spicules 

 ectosome composed of projecting bouquets of styles  

 

 

Heteroscleromorpha Cárdenas, Pérez & Boury-Esnault, 2012 
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Order Subertida Chombard & Boury-Esnault, 1999  

 

Family Halichondriidae Gray, 1867 

  

Genus Halichondria Fleming, 1828  

 

Type species. Spongia panicea Pallas, 1766: 388 (by original designation).  

 

Diagnosis. Encrusting, massive, occasionally irregularly branching, or digitate sponges with 

smooth or papillate surface. Oscules often on conical elevations. Surface skeleton well-

developed with tangential bundles of spicules and single spicules intercrossing to form a lighter 

or heavier built surface crust. Subectosomal spaces usually well-developed causing the surface 

crust to be often rather independent of the main skeleton and easily peeled off. Choanosomal 

skeleton of rather ill-defined bundles of spicules, which at the surface become orientated 

perpendicular to the surface crust. They often fan out and carry the surface crust. Many single 

spicules distributed randomly. Spongin not visibly present. Spicules oxeas with gradually 

tapering sharp points, in a wide size range, often seemingly divisible into smaller and a larger 

category but overlap is extensive. Occasionally style-like modifications occur at a low 

frequency (after Erpenbeck & Soest, 2002).  

 

Subgenus Halichondria (Halichondria) Fleming, 1828 

 

Type species. Spongia panicea Pallas, 1766: 388 (by original designation).  

 

Diagnosis. Halichondria with smooth or digitate surface (after Erpenbeck & Soest, 2002).  

 

Halichondria (Halichondria) moorei Bergquist, 1961 

Figs. 9–11, table 4 

Halichondria moorei Bergquist, 1961: 40–41: Fig. 11A–B. 

Halichondria moorei, Battershill et al. 2010: 105–106; Bergquist 1970: 12, 32–34; Bergquist 1978: 106; Bergquist 

& Bedford 1978: 217–218, table 1, table. 3; Bergquist & Glasgow 1986, 113–116, 118–119, figs. 1–3, 

5, 8; Bergquist & Green 1977: 85–86; Bergquist & Hogg 1969: 212; Bergquist & Sinclair 1968: 426–

427, 429, 430–431, 434, 436, fig.1, table 1; Bergquist et al. 1970: 248, 254, 258, table. 1; Bergquist et 

al. 1980: 424–425, 427, Tables 1, 2 & 4; Bradstock 1985: 105; Dawson 1993: 47–48, 91; Evans 1977: 

427, 432, Pl. I–III;  Evans & Bergquist 1977: 197; Gordon & Ballantine 1977: 97; Green & Bergquist 

http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=132410
http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=132410
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1980: 153; Gregson et al. 1979: 1108; Hogg 1966: 58; Kelly 2018: 10, 54; Kelly et al. 2009: 44; Lawson 

et al. 1986: 19, 21–24, fig. 1, table 1–2; Morton & Miller 1973: 66, 97, 112, 389,  Pl. 5; Pritchard et al. 

1984: 134. 

 

Material examined. Holotype—NMNZ PO.000008, Te Tokaroa Reef, Point Chevalier, 

Auckland, New Zealand, 36.841° S, 174.711° E, May 1958.  

Other material. NIWA 51669, no additional data available. 

Te Tokaroa Reef, Point Chevalier, Hauraki Gulf, Auckland: NMNZ PO.000144, 

36.841° S, 174.711° E. 

Pilot Bay, Tauranga Harbour, Bay of Plenty: NIWA 113671, 37.637° S, 176.171° E, 

10 m, 31 Aug 2020; NIWA 113672, 37.380° S, 176.102° E, 11 m, 31 Aug 2020; NIWA 

113673, 37.380° S, 176.102° E, 10 m, 31 Aug 2020.  

Distribution. North Island, including Northland, Auckland, Bay of Plenty, 1–12 m.  

Diagnosis. Massive, thickly encrusting to globular sponge, with a smooth to irregularly 

mounded, verrucose surface resulting from projecting spicule tracts, typically up to 1.2 m 

diameter × 80 cm wide × 11 cm thick (Fig. 9). Oscules are prominent with a translucent 

membrane surrounding them, 2–5 mm diameter. Texture, relatively firm, easy to tear, fleshy 

to the touch, and compressible. Colour in life salmon pink, dull orange to light brown internally 

and externally, in spirit orange-light brown to almost white. The body is often infested by 

polychaete worms visible as black dots at the surface and as sandy canals throughout 

choanosome. 

Choanosomal skeleton confused with occasional radially disposed loose tracts of oxeas 

which may raise the surface. Dark pigmented cells are abundant throughout entire body. 

Ectosome a tangential reticulation of oxeas.  

Megascleres (Fig. 10, table 4) are smooth, straight, or curved oxeas with fusiform tips, 

370 (242–739) × 10 (4–21) µm, n=140. Oxeas are the same size in both the ectosome and 

choanosome.  

Remarks. Bergquist (1961) originally noted an abundance of opaque darkly pigmented 

cells in H. (H.) moorei, also noted in the specimens examined here. Bergquist (1970) 

considered (H.) moorei to be extremely common in the mid-intertidal, especially in crevices, 

under stones, and most abundantly around the edges of rock pools. Bergquist (1970) also found 

that H. (H.) moorei was commonly associated with red-pink turfing coralline algae, Corallina 

officinalis Linnaeus, 1758, and the sponge Hymeniacidon perlevis Montague, 1814 species. 
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Halichondria (H.) moorei can also be found in the shallow subtidal., such as in Pilot Bay. The 

species is known to be highly abundant on the intertidal Meola Reef in Waitematā Harbour 

(Fenn, 1982).  

 

Key diagnostic characters 

 Irregularly mounded external morphology  

 slightly transparent dermal membrane 

 visible surface fibre reticulation  

 easy to tear, delicate, soft and fleshy 

 salmon pink, dull orange to light brown in life 

 ectosome a tangential reticulation of oxeas 

 choanosome confused or radially disposed mass of oxeas 

 straight or curved oxeas  

 

 

Class Demospongiae Sollas, 1885 

 

Heteroscleromorpha Cárdenas, Pérez & Boury-Esnault, 2012 

 

Order Scopalinida Morrow & Cárdenas, 2015 

  

Family Scopalinidae Morrow et al., 2012 

 

Genus Stylissa Hallman, 1914 

 

Type species. Stylotella flabelliformis Hentschel, 1912: 298, 355–356 (by original 

designation).  

   

Diagnosis. Erect, flabellate, or compressed-lobate sponges with irregularly conulose and/or 

ridged surface. Conules blunt. Surface smooth between conules often with a slight colour 

difference between smooth and conulose parts. Colours usually red, orange or yellowish. 

Skeleton confused, but some plumose reticulation usually recognizable. In the interior and in 

the stem of erect forms there is axial condensation. Styles curved, usually stout, relatively short 

and of a single size category. Several species are common in the Indo-West Pacific, one is 

recorded from the Caribbean (after Soest et al. 2002).  
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Stylissa haurakii Brøndsted, 1924 

Fig. 12–14, table 5 

Hymeniacidon haurakii Brøndsted, 1924: 477, fig. 30.  

Hymeniacidon haurakii, Bergquist 1970: 12, 35–36, pl. 8C–D, pl. 17B; Ayling, 1979: 38; Dawson 1993: 49, 92; 

Gordon & Ballantine 1976: 97; Bergquist et al. 1980: 424–425, tables 1–2; Pritchard et al. 1984: 54–55, 

149, fig. on p. 55; Kelly et al. 2009: 34, 44; Battershill et al. 2010: 106; Kelly 2018: 10, 37.  

Axiamon erecta, Bergquist 1961: 41, fig. 12. 

Stylissa haurakii, Kelly et al. 2009: 44.  

  

Material examined. NIWA 92920, Pilot Bay, Tauranga Harbour, Bay of Plenty, New Zealand, 

37.637° S, 176.171° E, 11 m, 4 Aug 2014.  

Other material. Spirits Bay, North Cape, Northland: NIWA 101445, NIWA Stn 

Z15929, 34.397° S, 172.863° E, 33 m, 23 Jul 2003.  

North Cape, Northland: NIWA 100995, NIWA Stn Z15758, 34.400° S, 173.034° E, 3 

m, 19 Apr 1999.  

 Kahuwhera Bay, Bay of Islands, Northland: NIWA 62175, NIWA Stn KWB_Feb, 

35.263° S, 174.182° E, 5 m, 9 Feb 2010.  

Sponge Gardens, Leigh Marine Reserve, Cape Rodney, Hauraki Gulf: NIWA 94721, 

94723, 94793, 94794 NIWA Stn Z9033, 36.267° S, 174.800° E, 18 m, 6 Jul 1997; NIWA 

94803, NIWA Stn Z9035, 35.589° S, 174.541° E, 18 m, 12 Jul 1997.  

Tryphena Harbour, Great Barrier Island, Hauraki Gulf: NIWA 101194, NIWA Stn 

Z15889, 36.333° S, 175.474° E, 6 m, 28 Apr 1999. 

North (Takatu) Channel, between Tawharanui Peninsula & Kawau Island, Hauraki 

Gulf: NMNZ PO.000330, 36.383° S, 174.85° E, 11 m.  

South Taranaki Bight: NIWA 81583, NIWA NZOI Stn KAH1206/26, 39.929° S, 

174.238° E, 31 m, 20 Apr 2012; NIWA 81592, NIWA Stn KAH1206/15, 39.960° S, 174.152° 

E, 36 m, 19 Apr 2012; NIWA 81599, NIWA Stn KAH1206/12, 39.982° S, 174.110° E, 43 m, 

19 Apr 2012; NIWA 81609, NIWA 81618, NIWA Stn TQI1201/73, 39.789° S, 174.283° E, 27 

m, 12 Mar 2012. 

Manawatū-Whanganui coast, North Island: NIWA 82408, NIWA Stn TAN1202/29, 

40.14° S, 174.716° E, 80 m, 2 Feb 2012. 

Distribution. Three Kings Islands, Northland, Hauraki Gulf, Bay of Plenty, Taranaki, 

Manawatū-Whanganui; 3–80 m. 

https://en.wikipedia.org/wiki/Manawat%C5%AB-Whanganui


 

142 

Diagnosis. Generally spherical to hemispherical sponge, with a shaggy surface of 

conulose digitate projections (Fig. 12A–C) that may be quite elongate (Fig. 12A), or short and 

stubby (Fig. 12B). Sponge ranges from 4–15 cm diameter and 3–10 cm high. Surface composed 

of conulose, digitate projections, 2–6 cm high, and oscules are not visible (Fig. 12A–C). Each 

conule is formed by brushes of dermal styles that stop short of the ectodermal membrane (Fig. 

13B). Dermal membrane is translucent. Texture soft and fleshy. Colour in life bright orange to 

dull orange-gold internally (Fig. 12A–C). Colour becomes dull orange after preservation. 

Produces large amounts of mucus after removal from substratum. This species is commonly 

found in areas of broken shell or sand 5–30 cm deep.  

Skeleton. Choanosome composed of a confused mass of styles that form loose, semi-

plumose tracts, that ascend towards the ectosome (Fig. 13A). Ectosomal skeleton composed of 

tufts of styles emerging towards a translucent membrane, about 0.1 mm thick (Fig. 13B). 

Subectosome slightly cavernous (Fig. 13B).  

Megascleres (Fig. 13C–D; table 5) are a single size class of curved, to slightly curved 

styles, 737 (541–935) × 17 (6–29) µm, n=160.  

Remarks. Stylissa haurakii is a relatively common endemic New Zealand species with 

a distinctive shaggy surface and characteristic bright orange colour in life. The specimens 

examined here are morphologically similar to other specimens recorded from New Zealand in 

Bergquist (1970).  

 

Key diagnostic characters 

 shaggy conulose surface tufts 

 bright orange colouration in life 

 large amounts of exudates after removal 

 

 

Discussion 

This study set out to provide comprehensive redescriptions of species commonly found in 

Tauranga Harbour. Prior studies including Mc Cormack et al. (2020) have noted the importance 

of key morphological characters such as gross morphology, in-situ colouration, and skeletal 

architecture to identify sponge taxa. The current study provides updated descriptions of five 

common species found in Tauranga Harbour and elsewhere (e.g. Taranaki) as new ecological 

work examines previously less well explored coastlines, in partnership with NIWA, extending 
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our knowledge on their depth and geographic distribution around the North Island of New 

Zealand.  

Considerable variability was seen in the size ranges of spicules in the specimens of all 

species; the more specimens examined the better we approach the true ranges of spicule 

dimensions in the species. One of the characters we noted was the increase in length and 

thickness of all spicule categories in B. rufescens from harbour environments including 

Tauranga Harbour and the Taranaki coast. 
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TABLE 1. Spicule dimensions (μm) of Aaptos globosa Kelly-Borges & Bergquist, 1994, given as length [mean (min–max)] × width [mean (min–

max)], n=20 unless stated otherwise.  

 
Specimen No.  

 
Location 

Megascleres 

Large Strongyloxeas Intermediate 
Strongyloxeas  

 
Tylostyles 

 
Subtylostyles 

NR* (Kelly-Borges and 
Bergquist, 1994: 305, 309–
310; Fig. 4, pl.C on p. 305) 

Combined locations cited in 
Kelly-Borges and Bergquist, 
1994 

1793 (980–2401) × 27 (18–
33) 

695 (332–1029) × 11 (8–
16) 

161 (104–198) × 5 
(4–5) 

317 (208–458) × 7 
(5–8) 

NMNZ P0.000133 
(Holotype) 

Cornwallis Beach, Manukau 
Harbour, Auckland 

1620 (1229–2091) × 25 (15–
36) 

915 (593–1159) × 19 
(11–30) 

692 (184–1215) × 20 
(5–30) 

905 (121–1444) × 22 
(4–36) 

NIWA 51281 Spirits Bay, North Cape, 
Northland 

1754 (1406–2290) × 16 (10– 
26) 

1038 (499–1500) × 10 
(6–17) 

183 (112–344) × 5 
(3–8) 

299 (125–449) 6 × 6 
(4–7) 

NIWA 62353 Rakino Island, Hauraki Gulf, 
Auckland 

1727 (1298–1967) × 25 (15–
34) 

870 (481–1119) × 19 
(11–29) 

150 (106–488) × 5 
(3–7) 

185 (110–394) × 6 
(4–7) 

NIWA 92972 Pilot Bay, Tauranga Harbour, 
Bay of Plenty 

1655 (1021–2337) × 18 (5–
39) 

964 (551–1170) × 8 (4–
18) 

352 (140–948) × 7 
(4–13) 

214 (121–433) × 6 
(4–8) 

NR*= No registered number for specimen.  

 

 

 

 

TABLE 2. Spicule dimensions (μm) of Acanthoclada prostrata Bergquist, 1970, given as length [mean (min–max)] × width [mean (min–max)], 

n=20 unless stated otherwise.  

Specimen No. Location 
Megascleres Microscleres 

Centrangulate oxeas Styles Rhabdostyles Cladotoxas Birotules 

Holotype 
NMNZ PO.000027 
 

North 
Channel, 
between 
Tāwharanui 
Peninsula and 

1206 (960–1320) × 7 
(1–9) 

1420 (677–1850) 
× 7 (1–9)   

420 (213–600) × 7 
(6–8)     

90 (80–96) × 5 (5–6) 
spines up to 12 long 
cladome 28–34 wide 

66 (52–72) × (3–4) 
clad width 8–10 

NMNZ PO.000145 
 

589 (130–914) × 6 
(4–10) 

865 (204–1967) × 
11 (4–18) 

281 (201–460) × 8 
(5–15) 

92 (76–107) × 7 (6–7) 
spines 13 (7–18) long 

53 (44–65) × 5 (3–7) 
clad width 6 (2–12) 
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Kawau Island, 
Hauraki Gulf, 
Auckland 

cladome 28 (21–32) 

NMNZ PO.000148 
 

545 (223–1060) × 6 
(1–9) 

948 (392–1924) × 
14 (5–23)  

294 (188–419) × 8 
(5–15) 

98 (77–119) × 6 (3–8) 
spines 12 (6–15) long 
cladome 26 (15–38)  

53 (37–66) × 5 (2–7) 
clad width 7 (3–10) 

NIWA 113639 
 

Pilot Bay, 
Tauranga 
Harbour, Bay 
of Plenty 

893 (629–1178) × 5 
(4–7)      

1246 (660–1773) 
× 11 (4–22)  

267 (178–512) × 8 
(5–15)  

85 (73–95) × 7 (6–8) 
spines 10 (7–12) long 
cladome 25 (17–28) wide 

47 (41–55) × 6 (4–11) 
clad width 7 (5–12)  

NIWA 51108 
 

Spirits Bay, 
North Cape, 
Northland 
 

681 (244–1417) × 7 
(4–10) 

618 (244–1793) × 
9 (5–16) 

268 (211–327) × 7 
(4–9) 

86 (72–103) × 6 (5–9) 
spines 14 (10–21) long 
cladome 29 (21–36) wide 

52 (39–68) × 5 (4–6) 
clad width 6 (4–9) 

NIWA 51168 
 

420 (198–1190) × 8 
(4–14) 

948 (392–1924) × 
14 (8–22)  

339 (231–457) × 11 
(6–18)  

92 (83–102) × 6 (5–8) 
spines 12 (7–20) 
cladome width 29 (21–35) 

52 (45–61) × 5 (3–6) 
clad width 7 (4–9) 

NIWA 51699 
 

274 (185–321) × 7 
(4–6) 

956 (162–1833) × 
12 (6–16) 

285 (201–367) × 9 
(4–15) 

78 (62–89) × 7 (5–9) 
spines 13 (9–17) long 
 cladome width 28 (24–33) 

53 (41–65) × 6 (4–8) 
clad width 8 (5–12)  

NIWA 62213 
 

648 (193–1509) × 15 
(5–35)  

1563 (357–2283) 
× 12 (7–19)  

305 (224–436) × 10 
(5–15) 

89 (70–114) × 5 (2–8) 
spines 14 (6–19) long 
cladome width 27 (19–38) 

53 (37–63) × 4 (2–7) 
clad width 6 (4–9)   

NIWA 101862 
 

306 (61–794) × 9 (4–
14)  

1505 (377–2139) 
× 14 (9–19) 

335 (247–602) × 12 
(8–16) 

96 (81–112) × 7 (4–13) 
spines 13 (9–17) long 
cladome width 28 (22–36) 

58 (48–86) × 7 (4–8) 
clad width 8 (4–10) 

NIWA 101850 
 

558 (181–1494) × 7 
(4–10) 

1588 (310–2655) 
× 11 (7–18) 

297 (205–350) × 8 
(5–12)  

83 (80–91) × 7 (6–7) 
spines 11 (8–12) long 
cladome width 26 (25–28) 

54 (42–82) × 5 (2–8) 
clad width 6 (3–8) 

NIWA 52789 
 

Leigh, 
Auckland 

334 (205–730) × 7 
(5–16)  

923 (278–1899) × 
10 (5–17) 

276 (204–365) × 7 
(5–10)  

87 (68–100) × 6 (3– 8) 
spines 13 (5–19) long 
cladome width 27 (12–43) 

50 (39–64) × 5 (3–7) 
clad width 7 (3–11) 
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TABLE 3. Spicule dimensions (μm) of Biemna rufescens Bergquist & Fromont, 1988, given as length [mean (min–max)] × width [mean (min–

max)], n=20 unless stated otherwise. 

Specimen No. Location Megascleres Microscleres 

Styles Small 
microxeas 

Large microxeas Small sigmas  Medium sigmas Large sigmas 

Holotype 
(remeasured) 
NMNZ PO.000087 

Middle Arch, Poor 
Knights Islands  

454 (380–582) × 7 
(4–11) 

54 (46–62) × 2 
(2–3) 

108 (95–120) × 2 
(1–3) 
 

15 (13–20) × 2 
(1–3) 

23 (17–27) × 2 
(1–3) 

40 (35–45) × 2 
(1–3) 

NMNZ PO.000214 Goat Island, Leigh, 
Cape Rodney  

427 (376–467) × 10 
(3–12) 

53 (45–61) × 2 
(2–3) 

106 (89–123) × 2 
(2–3) 

14 (12–15) × 2 
(1–3) 

25 (21–31) × 2 
(1–3) 

40 (34–51) × 3 
(2–3) 

 
 
 
NR* (Bergquist & 
Fromont, 1988: 
32–33, Table 13) 

Middle Arch, Poor 
Knights Islands  

430 (390–470) × 6 
(5–8)  

53 (50–58) 111 (103–115) 16 (13–17) 23 (21–25) 37 (30–45) 

Waterfall Reef, Leigh, 
Cape Rodney  

421 (360–465) × 6 
(6–7)  

54 (48–60) 117 (100–125) 16 (14–20) 26 (23–31) 42 (33–48) 

Sponge Garden, Leigh, 
Cape Rodney 

465 (410–480) × 9 
(8–12) 

60 (55–73)  119 (103–130) 15 (14–19) 25 (21–40) 43 (33–50) 

Sponge Garden, Leigh, 
Cape Rodney  

403 (370–440) × 8 
(6–9) 

65 (45–63) 103 (90–113) 15 (14–17) 24 (20–30) 44 (38–50) 

Māori Island, Leigh, 
Cape Rodney 

412 (350–440) × 8 
(6–9) 

54 (48–59) 106 (95–118) 15 (13–16) 25 (22–32) 42 (37–46) 

NIWA 51025  
 
 
 
Spirits Bay, Northland 

457 (352–512) × 9 
(3–12) 

56 (46–63) × 3 
(2–4) 

118 (106–133) × 2 
(1–3) 

14 (12–15) × 2 
(1–2)  

23 (20–28) × 2 
(1–3) 

42 (29–48) × 3 
(2–4) 

NIWA 51340 413 (363–475) × 7 
(4–11) 

56 (42–71) × 2 
(2–3) 

90 (78–101) × 2 (1–
3) 

14 (11–16) × 2 
(1–2) 

23 (18–29) × 2 
(1–3) 

39 (34–46) × 2 
(2–4) 

NIWA 62272 427 (361–491) × 10 
(6–14) 

63 (54–71) × 2 
(2–4) 

116 (104–194) × 2 
(2–3) 

15 (12–19) × 2 
(1–3) 

25 (20–27) × 2 
(1–3) 

42 (36–49) × 2 
(2–4) 

NIWA 62295 425 (359–484) × 6 
(4–7) 

52 (43–58) × 3 
(2–4) 

105 (88–115) × 2 
(1–3) 

14 (12–16) × 2 
(1–3) 

24 (19–31) × 2 
(1–3) 

40 (30–47) × 3 
(2–5) 

NIWA 101813 467 (417–515) × 9 
(3–13) 

58 (50–68) × 2 
(2–3) 

119 (106–133) × 2 
(1–2) 

15 (12–16) × 2 
(1–3) 

24 (21–28) × 2 
(1–4) 

43 (37–48) × 3 
(2–4) 

NIWA 101308 Houhora Harbour, 
Northland 

495 (335–565) × 8 
(4–12) 

64 (53–73) × 2 
(2–3) 

115 (99–127) × 2 
(1–3) 

15 (13–17) × 2 
(1–3) 

23 (18–28) × 2 
(1–3) 

43 (35–51) × 3 
(2–3) 

NIWA 62387 Home Point, Bream 
Bay, Northland 

464 (290–549) × 10 
(7–14) 

63 (58–79) × 2 
(1–3) 

106 (79–119) × 2 
(1–3) 

14 (10–16) × 2 
(1–2) 

22 (16–28) × 2 
(1–3) 

48 (44–52) × 2 
(1–3) 
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NIWA 62356 Rakino Island, Hauraki 
Gulf 

431 (282–489) × 7 
(2–11) 

54 (49–66) × 3 
(2–4) 

112 (101–127) × 2 
(1–2) 

13 (11–16) × 1 
(1–2) 

21 (18–28) × 2 
(1–2) 

40 (31–49) × 2 
(1–3) 

NIWA 101032 Great Barrier Island, 
Hauraki Gulf 

468 (405–520) × 9 
(4–13) 

61 (47–73) × 3 
(2–4) 

119 (106–127) × 2 
(1–3) 

15 (14–17) × 2 
(1–2) 

23 (19–25) × 2 
(1–3) 

41 (31–46) × 2 
(2–3) 

NIWA 52297 Kawau Bay, Hauraki 
Gulf 

424 (308–472) × 10 
(5–17) 

66 (56–72) × 3 
(2–4) 

110 (64–127) × 2 
(1–3) 

15 (13–17) × 1 
(1–2) 

26 (21–30) × 2 
(1–2) 

45 (40–59) × 3 
(2–5) 

NIWA 92967  
Pilot Bay, Tauranga 
Harbour 

462 (425–520) × 15 
(8–25) 

57 (49–65) × 4 
(3–5) 

115 (103–127) × 2 
(1–3) 

15 (12–18) × 2 
(1–2) 

23 (20–28) × 2 
(1–3) 

42 (31–46) × 4 
(2–6) 

NIWA 113659 497 (433–629) × 15 
(7–21) 

62 (49–69) × 4 
(3–5) 

119 (104–147) × 2 
(2–3) 

16 (13–18) × 2 
(1–2) 

26 (21–37) × 2 
(2–3) 

46 (39–53) × 3 
(1–4) 

NIWA 81612 Patea, South Taranaki 
Bight 

406 (333–505) × 9 
(3–13)  

51 (44–58) × 2 
(1–3) 

105 (84–171) × 2 
(1–3) 

15 (12–17) × 1 
(1–2) 

22 (17–27) × 2 
(1–2) 

37 (28–44) × 2 
(1–3) 

NIWA 101176 Sugar Loaf Islands, 
Taranaki 

466 (377–527) × 8 
(4–13) 

58 (52–70) × 3 
(2–5) 

115 (99–126) × 2 
(1–3) 

14 (12–17) × 2 
(1–2) 

23 (19–27) × 2 
(1–3) 

41 (36–47) × 3 
(2–5) 

NR*= No registered number for specimen.  
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TABLE 4. Spicule dimensions (μm) of Halichondria (Halichondria) moorei Bergquist, 1961, 

given as length [mean (min–max)] × width [mean (min–max)], n=20 unless stated otherwise.  

 
Specimen No. 

 
Location 

Megascleres 

Oxeas 

Holotype NMNZ PO.000008 Te Tokaroa Reef, Point 
Chevalier, Hauraki Gulf, 
Auckland 

300–800 × 5–17 

Holotype NMNZ PO.000008 
(remeasured) 

431 (291–771) × 12 (9–21) 

NMNZ PO.000144 Te Tokaroa Reef, Point 
Chevalier, Hauraki Gulf, 
Auckland 

380 (242–786) × 10 (7–18) 

NIWA 113671  
Pilot Bay, Tauranga 
Harbour, Bay of Plenty 

390 (298–739) × 12 (9–19) 

NIWA 113672 365 (299–735) × 10 (4–21) 

NIWA 113673 431 (309–766) × 12 (8–22) 

NIWA 92914 352 (304–540) × 10 (6–12) 

NIWA 51669 Unknown location 353 (265–681) × 9 (4–12) 

 

TABLE 5. Spicule dimensions (µm) of Stylissa haurakii Brøndsted, 1924, given as length 

[mean (min–max)] × width [mean (min–max)], n=20 unless stated otherwise. 

 
Specimen No. 

 
Location 

Megascleres 

Oxeas 

Brøndsted, North (type) Kawau Island, North 
Channel, Hauraki Gulf 

(400–800) × (up to 14) 

NMNZ P0.000330, 
Bergquist 1970 

North (Takatu) Channel, 
between Tawharanui 
Peninsula & Kawau Island 

720 (605–847) × 13 (6–15) 

NMNZ P0.000330 
(remeasured) 

North (Takatu) Channel, 
between Tawharanui 
Peninsula & Kawau Island 

644 (541–780) × 14 (7–20) 

NIWA 113657 Pilot Bay, Tauranga 
Harbour, Bay of Plenty 

746 (617–935) × 19 (13–27) 

NIWA 113660 765 (655–926) × 22 (15–29) 

NIWA 92920 793 (675–932) × 15 (6–20) 
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FIGURE 1. Aaptos globosa Kelly-Borges & Bergquist, 1994, NIWA 92972: A. In-situ image 

showing the conulose surface features in life and distinct clusters of oscules (compound 

oscules) in depressions; B. In-situ, showing blunt raised conules; C. Out of water, showing the 

broad basal skirt of attachement. 
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FIGURE 2. Aaptos globosa Kelly-Borges & Bergquist, 1994, NIWA92972: A. With dense 

plumose tracts comprised of large primary megascleres radiating through choanosome and 

branching into bouquets near surface; B. Dense choanosonal tracts of megascleres; C. 

Subtylostyle with faint subterminal expansion with a slender curved shaft; D. Tylostyle with a 

pin-like morphology and hastate oxeote end and slight curvature; E. Close view of a head and 

base of intermediate sized strongyloxea; F. Intermediate sized strongyloxea that is finely 

tappered with a fusiform distal end; G. Close view of a head and base of large sized 

strongyloxea; H. Large sized strongyloxeas finely tappered with a fusiform distal end.  
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FIGURE 3. Distribution of Aaptos globosa Kelly-Borges & Bergquist, 1994, around New 

Zealand. The white outline shows New Zealand’s Exclusive Economic Zone.  
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FIGURE 4. Acanthoclada prostrata Bergquist, 1970, NIWA 113639: A. NIWA 113639, deck 

photo before preservation; B. NIWA 113639, in life; C. Spicule tracts protruding through 

ectosome; D. Subectosomal spicule tracts echinating through ectosome; E. Complete 

choanosomal style; F. Close view of a head and base of a choanosomal style; G. Centrangulate 

Oxea; H. Rhabdostyle; I. Cladotoxa; J. Birotule. 
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FIGURE 5. Distribution of Acanthoclada prostrata Bergquist, 1970, around New Zealand. 

The white outline shows New Zealand’s Exclusive Economic Zone. 
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FIGURE 6. Biemna rufescens Bergquist & Fromont, 1988, NIWA 113659: A. Specimen 

showing the highly digitate surface typical of this species (NIWA 113659); B. NIWA 92967 

showing closeup of irregular turrets; C. Encrusting growth form shown in NIWA 92967. 
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FIGURE 7. Biemna rufescens Bergquist & Fromont, 1988, NIWA 92967: A. Plumose 

choanosomal skeleton; B. Spicule bouquets protruding through surface of ectosomal skeleton; 

C. Style; D. Small microxea; E. Large microxea; F. Small sigma; G. Medium sigma; H. Large 

sigma. 
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FIGURE 8. Distribution of Biemna rufescens Bergquist & Fromont, 1988, around New 

Zealand. The white outline shows New Zealand’s Exclusive Economic Zone. 
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FIGURE 9. Halichondria (Halichondria) moorei Bergquist, 1961: A. In-situ image of NIWA 

113673 when living, showing an irregular surface structure B. In-situ image of NIWA 113672 

showing the raised surface and large oscules; C. In-situ image of NIWA 113671 showing the 

membranous rim around each oscule.  
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FIGURE 10. Halichondria (Halichondria) moorei Bergquist, 1961, NIWA 92914: A. 

Choanosome showing irregular loose tracts of megascleres with isolated interstitial 

megascleres in a confused arrangement; B. Ectosome (left) showing extreme density of 

pigmented cells and loose tract of megascleres centrally, with a generally confused 

arrangement; C. curved oxeas; D. Less common relatively straight oxeas. 
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FIGURE 11. Distribution of Halichondria (Halichondria) moorei Bergquist, 1961, around 

New Zealand. The white outline shows New Zealand’s Exclusive Economic Zone.  
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FIGURE 12. Stylissa haurakii Brøndsted, 1924: A. NIWA 92920 showing shaggy conulose 

surface projections and bright orange colouration; B. NIWA 113660 juvenile specimens with 

smaller conules and a more spherical morphology; C. Close view of shaggy surface conules 

shown in NIWA 113660.  
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FIGURE 13. Stylissa haurakii Brøndsted, 1924, NIWA 92920: A. Choanosomal skeleton with 

a confused mass of spicules forming tracts of styles; B. Ectosomal skeleton with thin membrane 

and styles penetrating through ectosome; C. Curved style; D. Slightly curved style. 
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FIGURE 14. Distribution of Stylissa haurakii Brøndsted, 1924, around New Zealand. The 

white outline shows New Zealand’s Exclusive Economic Zone.  
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Appendix 2  

Description of two new species of Dysidea (Porifera, 

Demospongiae, Dictyoceratida, Dysideidae) from 

Tauranga Harbour, Bay of Plenty, New Zealand 

 

Authors: Mc Cormack, Kelly & Battershill, 2020.  
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Abstract

Differentiation of species within the genus Dysidea Johnston, 1842 (Order Dictyoceratida Minchin, 1900, Family 
Dysideidae Gray, 1867) is extremely difficult as they lack spicules which are strongly diagnostic in other Demospongiae, 
and their primary and secondary fibres and the mesh that they form, may be irregular in shape and thickness, thus difficult 
to measure for comparisons. Here we review species of Dysidea known from the New Zealand Exclusive Economic Zone 
(EEZ), validating five species: Dysidea cristagalli Bergquist, 1961a, from the Hauraki Gulf; D. hirciniformis (Carter, 
1885a) sensu Dendy (1924), from North Cape; D. navicularis Lendenfeld, 1888, from Port Lyttleton on the east coast 
of the South Island; D. ramsayi (Lendenfeld, 1888) from the Chatham Islands; D. spiculivora Dendy, 1924, from Cape 
Maria Van Diemen and the Three Kings Islands to the north of New Zealand. Dysidea fragilis (Montagu, 1818) sensu 
Bergquist (1961b), from Mernoo Bank on Chatham Rise, is now considered to be invalid, and D. elegans (Nardo, 1847) 
sensu Brøndsted (1927), from the Coromandel Peninsula, is considered unrecognisable. Several partially characterised 
species have also been cited in the literature. Two new species from Tauranga Harbour, on the northeast coast of the North 
Island, Dysidea tuapokere sp. nov. and D. teawanui sp. nov., are described. These descriptions are based on fresh material 
and in situ photography, facilitating clear, informative descriptions, that will enable ease of identification of these species 
in the future.

Key words: Sponges, morphology, taxonomy, biodiversity, systematics, New Zealand EEZ, Porifera

Introduction

Differentiation of species within the genus Dysidea Johnston, 1842 (Order Dictyoceratida Minchin, 1900, Family 
Dysideidae Gray, 1867) is extremely difficult; the skeletal fibres of most species are irregular in shape, making 
standard measurements difficult, and they also lack spicules which are strongly diagnostic in other Demospongiae 
(Cook & Bergquist 2002). Globally, there are 62 species considered to be valid (Van Soest et al. 2020). 

Species of Dysidea are considered to be fairly homogeneous as each possesses a skeleton of pithed and lami-
nated primary and secondary fibres, axially or fully cored to varying degrees with sand and spicule debris, differing 
only in small dimensional differences and perhaps, the degree of coring. Species can be differentiated, however, if 
details of external morphology in life are available (when the sponge is fully inflated), and in-situ and ex-situ colou-
ration is known, but these data are rarely available in earlier New Zealand collections. 

Two North Atlantic/Mediterranean species names have been applied to New Zealand material from Coroman-
del Peninsula on the North Island and Mernoo Bank on the South Island’s Chatham Rise: D. elegans (Nardo, 1847) 
sensu Brøndsted (1927) and D. fragilis (Montagu, 1818) sensu Bergquist (1961b), respectively. One South Aus-
tralian species of Dysidea has been attributed to New Zealand material from North Cape [D. hirciniformis (Carter, 
1885a) sensu Dendy (1924)], and a further species attributed to New Zealand material was originally described from 
Mauritius (Dysidea ramsayi Lendenfeld, 1888). 
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Three species were described de novo from the New Zealand region: Dysidea navicularis (Lendenfeld, 1888) 
from Port Lyttleton (as the type species of the now synonymised genus Haastia); Dysidea spiculivora Dendy, 1924, 
from Cape Maria Van Diemen and the Three Kings Islands, and D. cristagalli Bergquist, 1961a, from the Hauraki 
Gulf. Several additional, partially characterised species have been cited in the literature: Dysidea sp. a and b in 
Brøndsted (1924) from the Auckland Islands; Dysidea sp. nov. (Battershill et al. 2010) from Three Kings Islands, 
Poor Knights Islands and the Hauraki Gulf; Dysidea sp. in Perry et al. (1987) and a further nine species in Kelly 
et al. (2009) from Spirits Bay, Northland (Table 1). These latter species are in critical need of characterisation and 
description but are beyond the scope of this work. 

TABLE 1. The status of previously described species of Dysidea, within the New Zealand EEZ, and proposed changes.
Taxon name Comment Status
Dysidea cristagalli Bergquist 1961a
Bergquist (1961a: 33–34, fig. 1b); 
Dawson (1993: 24); Kelly et al. 
(2009: 45)

Waitemata Harbour: Noises Islands, 
coll. L. B. Moore, 2 May 1937, 
intertidal; Rangitoto Island, coll. P. 
R. Bergquist, 7 Jun 1957, intertidal 
rock pools in caves

Erect, tubular, or conjoined tubes with common base; oscules 
apical with deep cloacae; firm, friable; colour ash-grey; 
skeleton irregular, close-knit reticulation of fibres, 20–200 
μm diameter, no obvious distinction between primary and 
secondary fibres, fibres filled with broken spicules; no special 
dermal skeleton (from Bergquist 1961a)

Valid 

Dysidea cf. cristagalli, Kelly in Mc-
Namara et al. (2005) Supplementary 
information; Spirits Bay, 33 m, coll. 
M. Page

Sub-spherical mass of meandering ridges and interconnected, 
short, blunt, branches; oscules situated on ends of short 
branches; surface sandy to the touch, distinctly conulose, 
raised by the sub-surface sandy fibres; texture in life some-
what compressible, reasonably elastic, but is brittle when 
torn; colour in life greyish white, deep brown with a magenta 
tinge, in preservative. Skeleton a loose reticulation of large 
sand-grains cemented into fibres with clearly visible spongin, 
numerous smaller secondary spongin fibres contain predomi-
nantly spicule debris (after McNamara et al. 2005)

Dysidea sp. indet.

Dysidea elegans Nardo, 1847 sensu Brøndsted (1927)
Brøndsted (1927: 296)

Coromandel Peninsula: Slipper 
Island (Whakahau), off Pauanui, 
intertidal

Brøndsted (1927) was uncertain about the identification of his 
“fragments of a lobose or lump-shaped sponge” as Spongelia 
elegans Nardo, 1847, and probably based his identification 
on Lendenfeld’s (1889) description of a sponge from Broken 
Bay, New South Wales. Spongelia elegans sensu stricto is 
now synonymised with Dysidea tupha (Pallas, 1766) and is 
restricted in distribution to the Mediterranean Sea.

Unrecognisable

Dysidea fragilis (Montagu, 1818) sensu Bergquist (1961b)
Bergquist (1961b: 211–212, fig. 3a, 
b); Dawson (1993: 25)

Mernoo Bank, Chatham Rise, 75 m

Irregular sponge, 5 cm long, 3 cm wide, with cylindrical 
process arising from a basal mass, oscule apical, 1–1.5 mm 
diameter; surface conulose, 3 mm high, 1–3 mm apart; fibres 
densely cored with sand and spicules; primary fibres 150–340 
μm; secondary fibres 35–48 μm; colour in life brownish 
grey (after Bergquist 1961b). The application of the name, 
Dysidea fragilis (Montagu, 1818), to New Zealand material, 
is doubtful (Battershill et al. 2010). The species is restricted 
to the Northeastern Atlantic and Mediterranean regions.

Invalid

Dysidea sp. indet.

......continued on the next page
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TABLE 1. (Continued)
Taxon name Comment Status
Evans & Bergquist (1977: 191–199; 
table 2)

A histological study tested the suggestion that the cytological 
localization of acid mucopolysaccharides (AMPs) within the 
Class Demospongiae may prove of taxonomic value. It was 
found that AMPS in dictyoceratid species were generally 
dispersed throughout the mesohyl although some localization 
was apparent in the amoebocytes of Dysidea fragilis [(after 
Evans & Bergquist (1977)].

Dysidea sp. indet.

Perry et al. (1987: 373–376; table 1) Perry et al. (1987) extracted Dictyoceratida for the sesterter-
pene variabilin, represented by three specimens identified as 
Dysidea fragilis. Variabilin was absent in all Dysideidae. 

Dysidea sp. indet.

Pritchard et al. (1984: 133); Gordon 
& Ballentine (1976: 98)

Cited in Appendix 1 as being present in the Cape Rodney to 
Okakari Point Marine Reserve.

Dysidea sp. indet.

Dysidea hirciniformis (Carter, 1885a) sensu Dendy (1924)
Carter (1885a: 217); Lendenfeld 
(1889: 665); Dendy (1924: 383–
384)

Port Phillip Heads, South Australia, 
34.7 m; North Cape, 26–66 m

Originally described from Port Phillip Heads, South Aus-
tralia, by Carter (1885a) as forming a bunch of cylindrical, 
digitate, upright branches, arising from a common stem that 
divides two to three times, ending in pointed extremities. The 
consistency was soft, delicate, and the colour in life, pale 
buff with purple tips; oscules scattered on the branches; with 
vertical and lateral fibres, all sandy. Lendenfeld (1889) added 
dimensions for the branches (about 15 mm thick, 150 mm 
long), surface conules (2.5 mm high, 2.5 mm apart), oscules 
(scarce, 3–4 mm diameter), fibres (packed, arenaceous, 
primary fibres 180 μm thick, secondary fibres 80–150 μm 
thick), and meshes (about 80 μm wide). 
Dendy’s (1924) specimens are thin (R.N.XXIII.b: 4–8 mm 
thick, 120 mm long; R.N.XXIII.a: 10 mm thick, 330 mm 
long), ramose, with no evidence of branching. Skeleton is 
axial, formed of laminated, dark-coloured spongin fibres, pri-
maries (up to 340 μm thick), and are abundantly cored with 
sand and spicules, the secondaries much less so. Choano-
cyte chambers are eurypylous and 120 μm diameter. Dendy 
considered the North Cape specimens to be “merely a more 
robust variety” of Carter’s Australian species, with the former 
having less robust fibres, but greater development of the 
subectosomal peripheral fibres.
Despite the disjunct distribution, the likelihood of conspecifi-
city of North Cape specimens with a South Australian species 
is moderate as there are several clear precedents.

Valid as Dysidea 
cf. hirciniformis 
(Carter, 1885a) 
sensu Dendy 
(1924)

......continued on the next page
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TABLE 1. (Continued)
Taxon name Comment Status
Dysidea navicularis (Lendenfeld, 1888)
Lendenfeld (1888: 204). Bergquist 
(1980: 482); Kelly et al. (2009: 45)

Lyttleton Harbour, South Island, 
New Zealand

Lendenfeld (1888) described a sponge consisting of a bunch 
of erect, cylindrical, digitate processes, about 15 mm thick, 
growing from an incrusting basal mass, height 150 mm. The 
surface had uniform conules, 1 mm high, 1.5–2 mm apart; 
oscules were confined to summits of the digitate processes. 
Bergquist (1980: 482) stated that the genus Haastia Lend-
enfeld, 1888, erected for H. navicularis, from southern New 
Zealand, is in every respect a typical Dysidea, close in sur-
face and skeletal characteristics to Dysidea fragilis. Bergquist 
retained the species name as valid because of the geographi-
cal separation of the type material in Lyttleton Harbour.

Valid

Dysidea ramsayi (Lendenfeld, 1888)
Lendenfeld (1888: 209)

Mauritius
Chatham Islands 

Lendenfeld (1888) described this sponge as a hard, “irregular, 
meandrically-folded, lamellar sponge, which attains a maxi-
mum diameter of 140 mm; oscules, 2 mm diameter, situated 
on one face of the lamella; main (primary) fibres very knotty, 
charged with sand-grains, average 250 μm diameter; connect-
ing (secondary) fibres containing scattered foreign bodies, 
100 μm diameter.

Valid

Dysidea spiculivora (Dendy, 1924)
Dendy (1924: 384–385); Kelly et al. 
(2009: 45); Dawson (1993: 25)

Near Three Kings Islands, 183 m
Near Cape Maria van Diemen, 
64–73 m

Dendy (1924) described this species as irregularly massive, 
sub-digitate, 54 mm long, 20 mm diameter, probably repent; 
surface coarsely sub-conulose, conules low and far apart; no 
aquiferous pores visible; interior cavernous; texture in etha-
nol firm, tough; colour white, with a “curiously translucent 
appearance”. Skeleton an irregular jumble of spicules only; 
no dermal skeleton.

Valid 

Dysidea sp. ‘a’ of Brøndsted (1924)
Brøndsted (1924: 164–165)

Carnley Harbour, Auckland Islands, 
6 Dec 1914, sandy clay, 82.3 m

Brøndsted (1924) admitted a lack of experience with the 
genus Dysidea, considering the Australian species of Lenden-
feld to be, “in most places, incompletely described, that I for 
one cannot recognise them; and besides, it seems to me that 
the genus Spongelia needs a critical monographic revision; 
I will therefore not further complicate the matter by adding 
new uncertain species”.
Dysidea sp. a was partially characterised as irregularly 
shaped, consisting of densely anastomosing, thick, even 
branches, 40–50 mm long, with a conulose surface, conules 
2 mm high, 2–4 mm apart, oscules 1 mm diameter; dermal 
membrane thin, pellucid; consistency soft, a little elastic, 
colour fleshy.

Only partially 
characterised; 
valid for Auckland 
Islands 

......continued on the next page
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TABLE 1. (Continued)
Taxon name Comment Status
Dysidea sp. ‘b’ of Brøndsted (1924) 
Brøndsted (1924: 165)

Coleridge Bay, Carnley Harbour, 
Auckland Islands, 4 Dec 1914, 
sandy mud, 45.7 m

Dysidea sp. b was partially characterised as variable, oblong, 
lumpy in shape, 50 mm long, attached to shell; dermal mem-
brane tough, large subdermal cavities; primary fibres about 
160 μm thick, packed with foreign matter; secondary fibres 
are “almost devoid of detritus”. Texture soft, elastic; colour 
pale grey to yellowish grey.

Only partially 
characterised; 
valid for Auckland 
Islands 

Dysidea sp. nov. of Battershill et al. (2010)
Cook (2000: 111–112, fig. 6.1F–G); 
Dysidea sp. ‘A’ Cook & Bergquist 
in Kelly et al. (2009: 45); Battershill 
et al. (2010: 79–80) Dysidea n. sp. 
2 Kelly & Wilkinson in Cryer et al. 
(2000: 96, 98–99, 105, 107)

Three Kings Islands, Poor Knights 
Islands, Hauraki Gulf, Spirits Bay

Battershill et al. (2010) partially characterised a species first 
recognised in Cook (2000). The sponge has been recorded 
from the Hauraki Gulf and sheltered areas of offshore islands, 
5–30 m. It is delicate, lobate with digitate projections, 2–3 cm 
high, 2 cm diameter, overall dimensions 6 cm high with an 
average basal diameter of 5–10 cm; apical oscules 5 mm di-
ameter; texture soft, highly compressible, easily torn; colour 
in life pastel pink, yellow or blue.

Only partially 
characterised; valid 
for Northeastern 
New Zealand 

Dysidea spp. of Perry et al. (1987)
Perry et al. (1987: 373–376; table 1) Perry et al. (1987) extracted Dictyoceratida for the sester-

terpene variabilin, represented by what were thought to 
be several species of Dysidea. Variabilin was absent in all 
Dysideidae. 

Dysidea spp. indet.

Characters of the living sponge such as external morphology and colouration in life, coupled with differences 
in the dimensions and coring of the fibres, the degree of surface armouring which governs the morphology and 
distribution of surface conules, and the density and distribution of collagen in the mesohyl, are key to the clear rec-
ognition of species of Dysidea, globally. Here we describe two new species from Tauranga Harbour, Bay of Plenty: 
Dysidea tuapokere sp. nov. and D. teawanui sp. nov., the descriptions of which are based on living material and in 
situ imaging to facilitate clear descriptions that will ensure ease of identification, in the field and lab, in the future. 

The validity of known, documented species, is considered in the light of this new material, and the morphologi-
cal characters of living species are highlighted for future ease of identification in the field.

Materials and methods

Specimens were collected using SCUBA by Samuel Mc Cormack (SMcC) from Tauranga Harbour, Bay of Plenty, 
between January and October 2014, and in October 2017 (Fig. 1). Photographs of specimens in-situ, ex-situ, and 
after preservation in 70% ethanol, were taken using a Canon EOS 60D camera. Histological sections of the sponges 
were prepared by embedding a small piece of sponge in paraffin wax and then sectioning with a microtome at 50 
and 100 μm. The overall architecture of the cored fibres was captured by macerating pieces of sponge in 10% so-
dium hypochlorite (NaOCl) for 2–5 minutes, dropping this solution directly on to the section with a pipette, until 
the surrounding tissue had dissolved to expose the delicate skeletal structure (see Bergquist & Kelly-Borges 1995). 
Skeletons were photographed in water with a Nikon SMZ1000 stereomicroscope using a Canon EOS 60D camera. 
Fibres and other dimensions are presented as the mean length [mean (min–max)] × mean width [mean (min–max)], 
n = 10, unless stated otherwise. Abbreviations used in the text: NIC, NIWA Invertebrate Collection, Evans Bay, 
Wellington; NIWA, National Institute of Water & Atmospheric Research, Evans Bay, Wellington. Primary and sec-
ondary type materials are accessioned within NIC at NIWA (prefix NIWA). The taxonomic authority is to be cited 
as Kelly, Mc Cormack & Battershill.
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Systematics

The names of class, order, and family follow the classification proposal by Morrow & Cárdenas (2015). 

Class Demospongiae Sollas, 1885

Order Dictyoceratida Minchin, 1900

Family Dysideidae Gray, 1867

Genus Dysidea Johnston, 1842

Type species. Spongia fragilis Montagu, 1814: 78 (by subsequent designation). 

Diagnosis. Thickly encrusting, massive or branching growth form, often with a marked conulose surface and a 
distinct net or web-like surface pattern, interconnecting conules. Species with heavy intra-mesohyl detritus are not 
conulose. Skeleton consists of a relatively regular, usually rectangular arrangement of concentrically laminated 
primary and secondary fibres, with primary fibres orientated perpendicular to the surface, but may also be less 
regular, with divaricating primary fibres and secondary fibres supported by fine auxiliaries. All fibres are axially or 
fully cored, although this may be in the form of scattered fragments rather than a dense core. Primary fibres are also 
pithed though this is usually obscured by the coring material. The sponge is soft and compressible, sometimes made 
fragile by large amounts of sand etc. incorporated into the sponge tissue. There is only light collagen deposition in 
the mesohyl, and the sponges are histologically simple, with few secretory cell types present (modified from Cook 
& Bergquist, 2002). 

Dysidea tuapokere sp. nov. 
Figs 1–4
urn:lsid:zoobank.org:act:F79D832D-AD90-44CE-A18C-83DB4E29306C

Material examined. Pilot Bay, Tauranga Harbour, Bay of Plenty: Holotype—NIWA 92974, 37.380° S, 176.102° E, 
5–12 m, 27 Sep 2017. Paratypes—NIWA 113646–113649, 37.380° S, 176.102° E, 13 m, 05 Feb 2019.

Type location & distribution. Pilot Bay, Tauranga Harbour, Bay of Plenty, New Zealand, 12–13 m. 
Description. Sponge forms a cavernous mass of interconnected lobate digits, sprawling across the substrate, 

up to 4–23 cm long, 14–15 cm wide, 2–4 cm high, in general dimensions, digits about 1–3 cm thick (Fig. 2A). Sur-
face conulose in life, conules predominantly clustered on the tips of the lobes (Fig. 2B), but scattered irregularly 
on the surface, about 0.5–1.0 mm high; conule apices resemble hairs in the preserved specimen (Fig. 2C). Dermal 
membrane thin and translucent in life and after preservation. Cobwebs of fibrillar collagen in the surface membrane 
are visible, stretching between the tips of primary fibres, between which are set membranous oscules, about 2 mm 
diameter (Fig. 2A, B). Conules accentuated in the shrunken, preserved condition (Fig. 2C). Texture soft, compress-
ible, slightly elastic and fragile due to the incorporation of large amounts of detritus in the fibres. Colour in life, 
translucent lilac under natural lighting in situ (Fig. 2A, C), and tan in shaded sections (Fig. 2C). Cream to tan in 
preservative.

Skeleton. Primary fibres heavily cored with sand and foreign spicule fragments, about 308 (200–500) μm thick 
(Fig. 3A), frequently bifurcating or divaricating further below the surface (Fig. 3B). Secondary fibres are variable 
in thickness, often flanged where they join the primary fibre, and generally only partially cored, in which case the 
laminated golden spongin is visible surrounding the inclusions in histological sections (Fig. 4A, B); 69 (50–100) 
μm thick. The secondary fibres are supported by cored auxiliary fibres that link the secondary and primary fibres; 
10–15 μm thick (Fig. 3B). 

The overall architecture is extremely irregular and mesh size difficult to provide meaningful dimensions for 
but range from about 0.5–3 mm wide. The irregularity of the overall skeleton is evident in Figs 2A and B which 
show the surface conules clustered in groups on the tips of the branches, being evidence of extensive divarication 
below the surface [compare to the regularity of the surface in D. cf. cristagalli (Fig. 5) and D. teawanui sp. nov. 
(Fig. 6D)]. 
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FIGURE 1. Map showing type localities for new species, Dysidea tuapokere sp. nov. and D. teawanui sp. nov., from Tauranga 
Harbour, Bay of Plenty, New Zealand. 

The ectosome consists of a dense band of pigmented collagen fibrils (Fig. 4C) and appears cavernous in sec-
tions; about 30–100 μm deep, strands of which stretch between the apex of the primary fibres. A translucent dermal 
membrane is raised by large primary fibres, rarely with any inclusions of detritus; unarmoured (Fig. 4C). The cho-
anocyte chambers are eurypylous, 30–50 μm diameter, and clearly visible in the choanosome (see Fig. 3A, 4A, B). 
Detritus is scattered lightly through the choanosome and ectosome.

Substrate, depth range and ecology. Found predominantly on rocky reefs within a relatively sheltered loca-
tion. Associated with kelp forests or sponge gardens. Depth range is 5–12 m.

Etymology. Named for the beautiful, translucent, pale lilac colouration of this species in life (tuapokere, violet; 
te reo Māori). This species name was accepted and approved by local Tauranga Moana iwi, Ngāti Ranginui, Ngāi 
Te Rangi and Ngāti Pūkenga. 

Remarks. Dysidea tuapokere sp. nov. is a shallow-water harbour species, with a cavernous lobo-digitate mor-
phology, similar to several species described or noted from New Zealand waters. Most of these species are, however, 
inadequately described and figured, so only a limited comparison can be made in most cases. The most recently 
described species, D. cristagalli Bergquist, 1961a, was collected from the intertidal zone on Rangitoto Island in the 
North Island’s Waitemata Harbour, and the Noises Islands in the inner Hauraki Gulf (Table 1). Dysidea cristagalli 
differs morphologically from D. tuapokere sp. nov. in being, “erect, tubular in shape, with several tubes coalescing 
to give a tubula-flabellate condition” (Bergquist 1961a: Fig. 1b). The oscules were “apical, giving access to deep 
cloacae”, a completely different morphology to the cavernous lobo-digitate form of D. tuapokere sp. nov. which 
has small, flush oscules scattered across the sponge. Additional key differences are the colouration in life (D. cris-
tagalli: “ash-grey”; D. tuapokere sp. nov.: translucent lilac) and skeletal architecture: Bergquist (1961a) stated that 
she could not distinguish between the primary and secondary fibres, which ranged in diameter from 20–200 μm, 
whereas in D. tuapokere sp. nov. the secondary fibres are much smaller than the primaries which can be up to 500 
μm thick. Bergquist (1961a) also noted that the fibres of D. cristagalli are exclusively packed with broken sponge 
spicules.
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Several specimens have been attributed to D. cristagalli with hesitation, including one by Kelly in McNamara 
et al. (2005). That sponge (NIWA 101432) was described as forming a “spherical mass of meandering ridges and 
interconnected short blunt branches”, with oscules situated on the ends of branches and along the tops of ridges (Fig. 
5). While this arrangement is superficially similar to the “tubula-flabellate” condition of Bergquist’s D. cristagalli, 
the oscules in NIWA 101432 do not lead to deep cloacae (Fig. 5). Although the colour of NIWA 101432 was cited 
as “greyish white”, the in-situ image was taken in natural lighting and is misleading with red light absorption at 
depth. The skeleton of NIWA 101432 is comprised of a loose reticulation of large sand-grains cemented into fibres 
with spongin clearly visible, connected to each other by numerous fibres containing predominantly spicule debris, 
features not noted by Bergquist (1961a). With the benefit of hindsight, the sponge NIWA 101432 is almost certainly 
not Dysidea cristagalli, most likely representing a new species. Dysidea tuapokere sp. nov. is distinct from NIWA 
101432 in the sandy surface texture of the latter (implying a dermal membrane charged with detritus), and in the 
extremely regular disposition of the surface conules, compared to that in D. tuapokere sp. nov. (compare Fig. 2A, B).

FIGURE 2. Dysidea tuapokere sp. nov., holotype NIWA 92974: A. Before collection, showing the irregular, bulbous, digitate 
morphology, and irregularly dispersed conules; B. Close-up, showing the irregularly spaced conules that appear opaque, due to 
the presence of abundant sand, and between which stretch collagenous fibrils giving the surface a tent-like appearance; C. Ex-
situ photograph showing the shrunken, cavernous appearance upon collection, and the lilac colouration. 
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FIGURE 3. Dysidea tuapokere sp. nov., holotype NIWA 92974: A. Histological section showing a heavily cored primary fibre 
extending beneath a surface conule, and eurypylous choanocyte chambers in the surrounding mesohyl which is relatively clear 
of detritus, and unarmoured surface; B. Macerated, heavily cored, highly irregular, divaricating primary fibre, connected by 
slender, cored secondary fibres with fine auxiliary struts attaching the secondary fibre to the primary fibre.
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FIGURE 4. Dysidea tuapokere sp. nov., holotype NIWA 92974: A. Laminated spongin less visible in more heavily cored pri-
mary fibres; B. Laminated golden spongin visible in lightly cored secondary fibres; C. Ectosomal membrane containing fibrillar 
collagen in the surface. Note only traces of detritus in mesohyl. 

Dysidea spiculivora (Dendy, 1924) was described as “irregularly massive, sub-digitate, 54 mm long, 20 mm 
diameter, probably repent,” with a “coarsely sub-conulose surface with conuli low and far apart”. The interior was 
cavernous and no oscules were seen. The colour in life was described as “white, with a curiously translucent ap-
pearance”. Dendy described the skeleton as an irregular jumble of spicules and a dermal skeleton was not noted by 
Dendy (Table 1). Two specimens closely comparable to this, NIWA 52374 and NIWA 52390, have been collected 
since this first description: the defining characteristics are the translucent white colouration in life, the cavernous 
interior and broadly sub-conulose surface.

Dysidea sp. ‘a’ Brøndsted, 1924, from the Auckland Islands (Table 1), is closely comparable to D. tuapokere 
sp. nov. in morphology, composed of “densely anastomosing, evenly thick branches” about 40–50 mm long, with 
a regular, abundantly conulose surface and small oscules, a “thin, pellucid dermal membrane”, a soft consistency 
and the colour of flesh. However, no skeletal description was attempted as Brøndsted admitted to unfamiliarity with 
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the genus; a direct comparison is not possible in this work. The likelihood of conspecificity of D. tuapokere sp. 
nov. with this ill-defined, almost unrecognisable Auckland Island specimen, is low: there are only a few precedents 
of well-characterised, deep subtidal species, existing off both the North Island and Subantarctic New Zealand (see 
Sim-Smith & Kelly 2019). 

Key diagnostic characters:
• mass of interconnected lobate digits
• surface with irregularly disposed conules clustered on lobes, unarmoured
• texture soft, elastic 
• oscules flush, membranous 
• colour in life, translucent lilac
• skeleton irregular, sparse, with dominating fingers and lobes
• primary fibres divaricate in the subsurface region; 308 (200–500) μm thick
• secondary fibres with clear spongin around core; 69 (50–100) μm thick
• auxiliary secondary fibres that attach secondaries to primaries; 10–15 μm thick
• overall mesh shape highly irregular, 0.5–3 mm wide
• eurypylous choanocyte chambers, 30–50 μm diameter

FIGURE 5. A. Dysidea cf. cristagalli (NIWA 101432, MNP7240, UKNHM 2004.10.5.1) collected from a reef flat at 33 m, in 
Spirits Bay, North Cape, in 2002.
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Dysidea teawanui sp. nov. 
Figs 1, 6–8
urn:lsid:zoobank.org:act:6476B247-9085-46A4-B7DE-7D8F97BEFBCA

Material examined. Tauranga Harbour, Bay of Plenty: Holotype—NIWA 113650, 37.681° S, 176.171° E, 8 m, 27 
Nov 2018. Paratypes—Pilot Bay, Tauranga Harbour, Bay of Plenty: NIWA 113651–113655, 37.681° S, 176.171° 
E, 12 m, 09 Dec 2018, SCUBA dive.

Distribution. Tauranga Harbour, Bay of Plenty, New Zealand, 8–12 m. 
Description. Massive, spherical to hemispherical, multilobed cushions, frequently conjoined, forming broad 

matts covering up to 2.5 m2 (Fig. 6A–E), typically 10–50 cm long, 6–50 cm wide, 7.5–10 cm high; immature speci-
mens spherical with low surface mounds (Fig. 6C), often 3–4 cm long, 1.5–3 cm wide, 1.5–2.5 cm high. Larger 
specimens frequently only alive in the top 4–5 cm of the sponge; when torn, the base is usually dead with only the 
ladder-like primary fibres visible (Fig. 7A). Surface with regularly spaced conules, 1–3 mm in height (Fig. 6C–E), 
granular to the touch. Cobwebs of fibrillar collagen in the surface membrane are clearly visible, stretching between 
the tips of primary fibres, joining adjacent conules (Fig. 6E). Oscules are relatively large, up to 5 mm diameter, 
scattered over the surface, with raised translucent collars (Fig. 6C, E). Texture in life, soft, slightly elastic, compress-
ible. In life, the sponge is covered in sediment, appearing as rock substrate. Colour in life beneath surface sediment, 
powder blue-grey externally (Fig. 6C–E; 7A), cream to tan, sometimes orange-tinged in the non-illuminated base, 
cream in ethanol. Dermal membrane translucent.

Skeleton. Large, thick, primary fibres, 483 (300–800) μm diameter, relatively uniform in their thickness, domi-
nate the skeleton (Fig. 7A), forming an irregular, laddered reticulation (Fig. 7B) with thin secondary fibres 113 (80–
160) μm diameter, flanged where they join the primary fibres (Fig. 8A, B). Thin, clear, auxiliary secondary fibres 
are visible in places; about 15 μm thick (Fig. 7B). All secondary fibres are solidly cored, spongin along the edges 
of the fibres is not visible. The secondary fibres directly link the primary fibres or may form a reticulation between 
the primary fibres (Fig. 8A, B). Primary fibres diverge from the base of the sponge (Fig. 7A), forming meshes about 
814–2567 μm long and 800–1500 μm wide. All fibres heavily cored with sand and foreign spicule fragments.

Ectosome cavernous, mesohyl shrinking between the fibres in the preserved specimen (Fig. 7A). Canals filled 
with detritus and sediment, possibly resultant from worm activity in the aquiferous canals. Ectosome about 108 
(105–140) μm deep, reinforced by a thin layer of fibrillar collagen (Fig. 8C), strands of which stretch between the 
apex of the primary fibres (Fig. 6E). A translucent dermal membrane is raised by large primary fibres, rarely with 
any inclusions of detritus; unarmoured (Fig. 8C). Choanocyte chambers are obscured by the abundant detritus in 
the mesohyl. 

Substrate, depth range and ecology. Found on sheltered rocky reef substrate, covering rocks and boulders to 
a depth of 10 cm, and on wharf pilings, 5–8 m deep. The clown nudibranch, Ceratosoma amoenum (Cheeseman, 
1886) predates on this species, and fan worms are often integrated into the matrix of the sponge. 

Etymology. Named for Tauranga Moana, Te Awanui, a spiritual symbol of identity for all whanau, hapu and iwi 
living in the harbour catchment area (Te Awanui, Tauranga Moana; te reo Māori). This species name was accepted 
and approved by local Tauranga Moana iwi, Ngāti Ranginui, Ngāi Te Rangi and Ngāti Pūkenga. 

Remarks. Dysidea teawanui sp. nov. has a highly characteristic morphology and colouration that separates 
it clearly, in the field, from D. tuapokere sp. nov. in the same location; D. teawanui sp. nov. forms massive, pale 
blue-grey, multi-lobed cushions or spheres while D. tuapokere sp. nov. forms a cavernous lilac mass of lobed 
branches. Only two species noted from New Zealand waters, Dysidea sp. ‘b’ of Brøndsted (1924) and D. elegans 
(Nardo, 1847) sensu Brøndsted (1927) (Table 1), vaguely resemble the characteristic cushion-shape of D. teawanui 
sp. nov. 

Dysidea sp. ‘b’ Brøndsted, 1924, from a “sandy mud” seabed, at 46 m in Carnley Harbour on the Auckland 
Islands (see Brøndsted 1924: 165), provides a reasonable description of a sponge attached to shell, with a variable 
shape, but generally “oblong, lump-shaped”. The “greatest extent” was about 50 mm, the colour in life was “pale 
grey to greyish yellow” and the surface was conulose, conules being 1 mm high and 4 mm apart. The primary fibres 
formed an irregular network, generally running perpendicular to the surface and were about 160 μm thick. The thin-
ner spongin fibres were “almost devoid of foreign particles”, and the primary fibres cored with sand grains and bro-
ken spicules. While the general form and colour in life are reminiscent of D. teawanui sp. nov., the fibres are much 
thinner than in the latter. Furthermore, as for D. tuapokere sp. nov., the possibility of conspecificity of D. teawanui 
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sp. nov. with a Subantarctic New Zealand sponge, is low. Finally, with relatively clear secondary fibres, the sponge 
may be more closely comparable to several Chatham Rise species described by Bergquist (1961b) as Leiosella levis 
(Lendenfeld, 1886), Polyfibrospongia australis (Lendenfeld, 1888) [now considered to be Fasciospongia turgida 
(Lamarck, 1814) (Van Soest et al. 2018a)], or Euryspongia arenaria Bergquist, 1961b. 

FIGURE 6. Dysidea teawanui sp. nov.: A. Massive, hemispherical, to multilobed specimens covering rocks and boulders at 
Dive Crescent, Tauranga Harbour at a depth of 5 m; B. Spherical specimen with predatory sea slugs Ceratosoma amoenum; 
C. Holotype NIWA 113650, showing the almost spherical morphology of smaller specimens, the regular conulose surface with 
raised, membranous oscules visible in profile on the surface; D. Surface of a massive specimen showing large apical oscules 
with raised membranous collars; E. Apical oscule showing regular distribution of conules and collagen fibrils stretching be-
tween conules.
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FIGURE 7. Dysidea teawanui sp. nov., holotype NIWA 113650: A. Dense, ladder-like architecture of the primary and second-
ary fibres, showing the powder bluey-grey colouration of the freshly collected sponge; B. Macerated fibrous skeleton, showing 
densely aligned and anastomosing primary fibres, connected by slender, cored secondary fibres.
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Dysidea laxa (Lendenfeld, 1889: 671), from 30–40 m in Port Philip Bay, Australia, is the only other Southwest 
Pacific species of Dysidea that has a massive, lobose morphology with a light bluish-violet colour in life. How-
ever, unlike for D. teawanui sp. nov., the surface is tuberculate, sand-armoured and the oscules are arranged in a 
longitudinal series along the sides of the lobes. The fibres of D. laxa are quite large (200–500 mm thick) but they 
form a highly irregular, angular network in which the primary fibres are not clearly pronounced, differentiating it 
further from D. teawanui sp. nov., which has a highly regular ladder-like architecture. While all fibres in D. laxa are 
charged with small, abundant sand grains, these are more irregularly scattered in the slender fibres (after Lendenfeld 
1889). 

FIGURE 8. Dysidea teawanui sp. nov., holotype NIWA 113650: A. Two primary fibres joined by slender, fully cored, flanged, 
secondary fibres; B. Branching secondary fibres between two primary fibres; C. Ectosomal membrane containing fibrillar col-
lagen in the surface. Note only traces of detritus in mesohyl.

Key diagnostic characters:
• massive cushion up to 2.5 m2 diameter
• surface with regularly spaced conules, unarmoured



MC CORMACK ET AL.538  ·  Zootaxa 4780 (3) © 2020 Magnolia Press

• texture firm 
• oscules with raised membranous collars 
• colour in life, powder blue-grey
• skeleton a regular, laddered reticulation
• primary fibres uniform, diverging from the base; 483 (300–800) μm diameter
• secondary fibres thin, flanged against primary fibres, forming a reticulation in places; 113 (80–160) μm diam-

eter
• overall mesh shape rectangular, about 814–2567 μm long and 800–1500 μm wide

Additional remarks on New Zealand EEZ Dysidea

Of the seven species of Dysidea now considered valid for the New Zealand EEZ (Table 1) (D. cristagalli, D. hircin-
iformis, D. navicularis, D. ramsayi, D. spiculivora, D. tuapokere sp. nov., and D. teawanui sp. nov.), three have not 
yet been considered thus far (Dysidea hirciniformis, D. navicularis and D. ramsayi), as they are sufficiently different 
from either of the new species to be discounted as conspecific. Dysidea fragilis (Montagu, 1818) sensu Bergquist 
(1961b), from Mernoo Bank on Chatham Rise, is now considered to be invalid, and D. elegans (Nardo, 1847) sensu 
Brøndsted (1927), from the Coromandel Peninsula is unrecognisable. 

Dysidea hirciniformis (Carter, 1885a) sensu Dendy (1924)
Dendy (1924) considered his highly characteristic, thin, ramose, deep subtidal North Cape specimens, to be similar 
to Dysidea hirciniformis, from Port Phillip Heads, South Australia. Lendenfeld (1889) described them as forming a 
bunch of cylindrical, digitate, upright branches, about 15 mm thick, 150 mm long, with a conulose surface, conules 
being 2.5 mm high and the same distance apart, with rare oscules, 3–4 mm diameter. The colour in life was pale 
buff with purple tips and the fibres were packed with sand-grains, the primary fibres 180 μm thick, secondary fibres 
80–150 μm thick, forming a mesh about 80 μm wide (Lendenfeld 1889: 665). 

Without histological examination of the original specimens and comparison with Dendy’s material, it is impos-
sible to say with certainty whether the name hirciniformis is valid for the North Cape specimens: Dendy (1924: 
384) indicated that there were differences. Despite the disjunct distribution, the likelihood of conspecificity of 
North Cape specimens with a South Australian species is moderate, as there are several clear precedents including 
Polymastia cf. massalis Carter, 1886 (in Kelly-Borges & Bergquist 1997), Tethya bergquistae Hooper in Hooper 
& Wiedenmayer, 1994 (in Bergquist & Kelly-Borges 1991), and Chondropsis kirkii (Bowerbank, 1841), Crella 
incrustans (Carter, 1885b), Callyspongia ramosa (Gray, 1843), Callyspongia cf. annulata (Ridley & Dendy, 1886), 
and Dactylia varia (Gray, 1843) (in Kelly & Herr 2018). 

Dysidea navicularis (Lendenfeld, 1888)
Dysidea navicularis is one of only three species described de novo from New Zealand waters, and the second spe-
cies described from a harbour environment (Lyttleton Harbour). Lendenfeld established this species as the type of 
his new genus Haastia Lendenfeld, 1888, named for Lendenfeld’s late friend and famous New Zealand explorer, Sir 
Julius von Haast. This species also forms bunches of long, thin, cylindrical branches, about 15 mm thick, growing 
from an incrusting basal mass, height 150 mm. The surface has uniform conules, 1 mm high, 1.5–2 mm apart, and 
oscules are confined to summit of digitate processes. The sponge was described as pinkish-grey in life. Bergquist 
(1980: 482) considered Haastia navicularis to be, in every way, typical of the genus Dysidea. She retained the spe-
cies name as separate because of the geographical separation of the type material in Lyttleton. 

Dysidea ramsayi (Lendenfeld, 1888)
Lendenfeld (1888) described Dysidea ramsayi from the Chatham Islands as a hard, irregular, meandrically-folded 
lamellar sponge, diameter 140 mm, with 2 mm diameter oscules situated on one face of the lamella. The primary 
fibres were very knotty and charged with sand-grains, about 250 μm diameter; connecting fibres contain scattered 
foreign bodies, 100 μm thick (after Lendenfeld 1888). As there are no illustrations of this species in Lendenfeld 
(1888) and the species is not treated in detail in Lendenfeld (1889), histological examination of the material is re-
quired to determine the integrity of this species. In the meantime, the species is considered recognisable, and thus 
valid, on the basis of the unique morphology and texture.
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‘Dysidea sp. nov.’ of Battershill et al. (2010)
Dysidea sp. nov. [=Dysidea sp. ‘A’ Cook & Bergquist in Kelly et al. (2009: 45), from the Hauraki Gulf and offshore 
islands, can be compared to Dysidea cristagalli in terms of morphology with a lobo-digitate form and regular sur-
face, but the colouration seems to be distinct, being pastel pink, yellow or blue (Battershill et al., 2010). No material 
is available for study.

Dysidea fragilis (Montagu, 1818) sensu Bergquist (1961b) 
Bergquist (1961b) applied the name fragilis to poorly described material from Mernoo Bank on the Chatham Rise: 
the sponge was irregular, about 5 cm long and 3 cm wide, with cylindrical projections arising from a basal mass. 
The fibres were relatively thick, being 150–340 μm wide with secondary fibres 35–48 μm thick, and the colour, 
presumably in life, brownish grey (after Bergquist 1961b). Application of the species name fragilis to New Zealand 
material, is doubtful (Battershill et al. 2010), as the species is restricted to the Northeastern Atlantic and Mediter-
ranean regions (Van Soest et al. 2018b). 

In more recent times, the name fragilis has been applied widely to Dysidea specimens from various environ-
ments around New Zealand, in biodiversity inventories (Gordon & Ballantine 1976; Pritchard et al. 1984), or marine 
natural products investigations (Evans & Bergquist 1977; Perry et al. 1987), yet none of these publications provide 
descriptions suitable for evaluation. Examination and redescription of the original Bergquist (1961b) and subse-
quent specimens is beyond the scope of this contribution and probably impossible due to loss of voucher specimens. 
We concur with Battershill et al. (2010) that use of the name Dysidea fragilis in New Zealand waters is invalid.

Dysidea elegans (Nardo, 1847) sensu Brøndsted (1927)
Brøndsted (1927: 296) briefly and hesitantly compared a “lump-shaped” sponge from Slipper Island, off Pauanui on 
the Coromandel Peninsula, with the type of D. elegans, a Mediterranean species now recognised as D. tupha (Pallas, 
1766) (Van Soest et al. 2018c). While the external appearance did not conform to the type, Brøndsted considered 
that the height of the conules and their separation on the surface, and the fibre dimensions and their mode of anasto-
mosing, did conform. No dimensions or illustrations of the New Zealand specimen were given, however. Brøndsted 
(1927) also cited Lendenfeld’s (1889: 655) record of D. elegans from Broken Bay, New South Wales, but this is a 
palmate species, now recognised as a species of Hyrtios Duchassaing & Michelotti, 1864 (Van Soest et al. 2018d). 
Dysidea elegans (Nardo, 1847) sensu Brøndsted (1927) is unrecognisable. 

Discussion

This study emphasises key morphological characters for the differentiation of Dysidea species in New Zealand 
waters: gross morphology, in-situ colouration, skeletal architecture, and degree of coring of the fibres. The taxo-
nomic difficulty in characterising ‘heterogeneous’ species within Dysidea has been noted in the literature (Cook and 
Bergquist 2002 and references therein), and historical literature often lacks adequate photographs and little informa-
tion on the colour in life. Histologically, Dysidea species are relatively simple, but can be differentiated on the form 
of the skeleton (of pithed and laminated primary fibres) and the degree to which the fibres are cored (with sand and 
spicule debris). The differences are, however, often small, and because the architecture of the skeleton is irregular, 
the skeleton is difficult to describe systematically. 

We have found that Dysidea species can be quite clearly differentiated if freshly collected material and histo-
logical sections are available. Both new species described here have markedly different, highly distinctive gross 
morphologies and in-situ colouration: D. tuapokere sp. nov. forms a translucent, lilac, mass of interconnected lobate 
digits, while D. teawanui sp. nov. forms a powder blue-grey, massive cushion, up to 2.5 m2 diameter. Both also have 
markedly different skeletal characters: D. tuapokere sp. nov. has an irregular, sparse skeleton and D. teawanui sp. 
nov. has a more regular, laddered skeletal reticulation. 

A total of seven species of Dysidea are presently considered valid species from the New Zealand EEZ: D. cris-
tagalli; D. cf. hirciniformis sensu Dendy, D. navicularis, D. ramsayi, D. spiculivora, D. tuapokere sp. nov., and D. 
teawanui sp. nov. (Table 1). Dysidea fragilis sensu Bergquist (1961b), is now considered to be invalid, D. elegans 
sensu Brøndsted (1927) is unrecognisable, and D. sp. nov. sensu Battershill et al. (2010) requires a collection of 
sponge material in order to identify this species. Numerous additional specimens of Dysidea are available in the NIC 
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collections and Marine Invasives Taxonomy (MITS) collection, at NIWA, Wellington, but none have in-situ images, 
or images of freshly collected sponges. These specimens require careful histological, skeletal and morphological 
examination, but such work is beyond the scope of this project.
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Appendix 3 

The biogeography of Taranaki sponges 

Table A3.1 Geographic distribution of sponges recorded from stations in the Taranaki and Wellington 

Regions. 

Species Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti 

Aaptos √         √ 

Aaptos globosa   √     √   

Aaptos rosacea         √   

Aaptos sp.           √ 

Ancorina bellae           √ 

Ancorina sp.           √ 

Aplysilla rosea √         √ 

Aplysilla sulfurea √         √ 

Astrophorina         √ √ 

Axinella n. sp.            

Axinellida sp. (or spp.) √         √ 

Biemna sp. √         √ 

Cacospongia sp. √         √ 

Callyspongia (Callyspongia) nuda √         √ 

Callyspongia (Cladochalina) diffusa           √ 

Callyspongia cf. ramosa         √   

Callyspongia cf. stellata         √   

Callyspongia fistulosa       √     

Callyspongia sp.           √ 

Chelonaplysilla violacea √         √ 

Chondropsis kirkii √         √ 

Chondropsis sp.           √ 

Chondropsis sp. 1   √         

Chondropsis sp. 2   √         

Chondropsis wilsoni √         √ 

Cinacyra sp. √         √ 

Ciocalypta cf. polymastia √           

Ciocalypta polymastia       √ √   

Ciocalypta sp. (cf C. polymastia)           √ 

Clathria (Microciona) sp. √         √ 

Clathria (Microciona) sp.2 (pink)           √ 

Clathria (Microciona) sp.3 (orange)           √ 

Clathria (Microciona) sp.4 (red thinly 
encrusting)           √ 

Clathria coriacea √           

Clathria sp.           √ 

Clathrina coriacea           √ 

Cliona celata √         √ 

Crella incrustans √ √     √ √ 

Cymbastela lamellata           √ 

Cymbastela tricalcyformis         √   

Dactylia varia         √   

Darwinella oxeata   √     √   

Demospongiae sp. 1   √         
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Species Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti 

Demospongiae sp. 2   √         

Desmacella dendyii √   √     √ 

Desmacidon mamillatum         √   

Dictyoceratida sp. 1   √         

Dictyoceratida sp. 2   √         

Dictyoceratida sp. 3   √         

Dragmacidon australe           √ 

Dysidea sp. 1 √         √ 

Dysidea sp. 2           √ 

Dysidea sp.2 (light grey to light purple)           √ 

Ecionemia alata √ √ √ √ √ √ 

Geodia regina √         √ 

Geodia sp.      √       

Halichondria cf. moorei         √   

Halichondria sp. (or spp.) √         √ 

Haliclona (Gellus) sp.   √         

Haliclona (Haliclona) sp. (or spp.) √       √ √ 

Haliclona (Haliclona) sp.2 (yellow)           √ 

Haliclona (Reniera) sp. √         √ 

Haliclona (Rhizoniera) brondstedi           √ 

Haliclona (Rhizoniera) rosea   √         

Haliclona sp.3 (purple)           √ 

Haliclona spp. √           

Haliclona venustina           √ 

Haplosclerida sp. 1       √     

Haplosclerida sp. 2       √     

Haplosclerida sp. 3    √         

Heteroscleromorpha sp.      √       

Homaxinella sp. √           

Hymedesmia (Stylopus) sp.1 (red)           √ 

Hymedesmia (Stylopus) sp.2 (orange)           √ 

Hymedesmia (Stylopus) sp.3 (yellow)           √ 

Hymedesmia sp.           √ 

Hymedesmia sp.2 (orange)           √ 

Hymedesmia sp.2 (pink)           √ 

Hymedesmia sp.3 (orange)           √ 

Hymedesmia sp.3 (pink)           √ 

Hymenacidon sp.1           √ 

Hymeniacidon perlevis       √     

Hymeniacidon sp. (or spp.) √         √ 

Hymeniacidon sp. 1       √     

Hymeniacidon sp. 2   √         

Hymeniacidon sphaerodigitata     √       

Hymeniacidonidae    √         

Hyrtios sp.           √ 

Iophon minor √   √   √   

Iophon proximum         √   

Ircinia sp. √         √ 

Ircinia sp. 1     √       

Ircinia sp. 2     √       

Ircinia sp.2 (grey or white)           √ 

Latrunculia sp. √         √ 

Leucosolenia sp. √           

http://www.marinespecies.org/aphia.php?p=taxdetails&id=166637
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Species Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti 

Mycale (Carmia) hentscheli √           

Mycale (Carmia) sp.           √ 

Mycale sp. (or spp.) √         √ 

Myxilla (Styloptilon) fromontae   √         

Myxillidae   √         

Pararhaphoxya sinclairi   √ √ √     

Pararhaphoxya sp. √         √ 

Penares tylaster √           

Phorbas sp. √ √       √ 

Poecilosclerid – unidentified √         √ 

Poecilosclerid - unidentified (purple)           √ 

Poecilosclerida   √         

Polyfibrospongia sp.           √ 

Polymastia cf. massalis         √   

Polymastia crassa √           

Polymastia crocea           √ 

Polymastia echinus           √ 

Polymastia fusca √         √ 

Polymastia granulosa √         √ 

Polymastia massillis      √       

Polymastia pepo   √         

Polymastia sp. √   √     √ 

Psammocinia papillata       √     

Psammocinia sp. √         √ 

Psammoclema sp. or Chrondropisis sp.         √   

Raspailia (Clathriodendron) arbuscula √         √ 

Raspailia (Raspaxilla) topsenti √       √ √ 

Sponge—encrusting           √ 

Sponge—encrusting orange (small)   √         

Sponge—encrusting orange sp. 1   √         

Sponge—orange   √         

Sponge—orange finger   √         

Sponge—orange globular   √         

Sponge—orange turret   √         

Sponge—purple   √         

Sponge—purple turret       √     

Sponge—purple turret (thickly 
encrusting)   √         

Sponge—red   √         

Sponge—red turret   √         

Sponge—rock   √         

Sponge—thickly encrusting orange   √         

Sponge—thin encrusting orange sp. 1   √         

Sponge—thinly encrusting orange   √   √     

Sponge—thinly encrusting orange sp. 1   √         

Sponge—thinly encrusting orange sp. 2   √         

Sponge—thinly encrusting orange with 
turrets   √         

Sponge—unidentified mix           √ 

Sponge—unidentified sp.1 (thin yellow)           √ 

Sponge—white   √         

Sponge—white with turrets   √         

Sponge—yellow   √   √     

Sponge—yellow finger   √         
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Species Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti 

Sponge—yellow turret       √     

Spongia sp. √       √   

Stelletta arenaria       √     

Stelletta columna         √   

Stelletta conulosa √   √   √ √ 

Stelletta crater √ √       √ 

Stelletta sandalinum √         √ 

Strongylacidon conulosum           √ 

Strongylacidon sp. (blue or grey)           √ 

Stylissa haurakii   √         

Suberites axinelloides √         √ 

Suberites sp. √ √         

Sycon sp. √         √ 

Tedania (Tedania) battershilli √         √ 

Tedania (Tedania) connectens √         √ 

Tedania (Tedania) sp. √         √ 

Tedania sp. (orange encrusting)           √ 

Tethya aurantium √         √ 

Tethya bergquistae   √ √   √ √ 

Tethya ingalli √         √ 

Thorecta sp. √         √ 
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Table A3.2 Individual taxon names, number of individuals, total volume of all individuals representing the 

taxon and total area covered by taxa at each station along the Taranaki coastline. 

Site name Individual taxa 
Number of 
individual Taxa 

Total volume of 
combined 
individual taxa 
(cm3) 

Total area covered 
by taxa (cm2) 

Hangatahua coastal 
near, depth 17 m 

Brown shell 
(unidentified) 

2 NA NA 

Cooks turban — 
(Cookia sulcata) 

1 NA NA 

Curly bryozoans — 
(Cornuticella 
taurina) 

1 NA NA 

Kelp — (Ecklonia 
radiata) 

3 1500  375  

Sponge — 
(Pararhaphoxya 
sinclairi) 

1 NA NA 

Sponge — 
(Ecionemia alata) 

3 5800 588 

Sponge — Purple 
turret 

2 1212 216 

Sponge — Thinly 
encrusting orange 

28 265 265 

Sponge — Yellow 1 27 9 

Sponge — Yellow 
turret 

2 800 200 

Spotted tiger top-
shell (Meurea 
selectum) 

14 NA NA 

Waitara coastal 
distant, 19 m. 

Ascidian — Purple 
(Botrylloides 
leachii) 

1 NA NA 

Hydroid 1 18 9 

Sponge — (Stylissa 
haurakii) 

4 1680 270 

Sponge — 
(Pararhaphoxya 
sinclairi) 

6 254 84 

Sponge — Orange 
finger 

1 84 42 

Sponge — Red 
(Crella incrustans) 

2 16 8 

Sponge — Thinly 
encrusting orange 

5 78 74 

Spotted tiger top-
shell — (Meurea 
selectum) 

1 NA NA 
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Site name Individual taxa 
Number of 
individual taxa 

Total volume of 
combined 
individual taxa 
(cm3) 

Total area covered 
by taxa (cm2) 

Waitara coastal 
Near, 12 m. 
 

Black nerita — 
(Nerita 
malanotragus) 

1 NA NA 

Coralline — knobby 
(Sporolithon 
durum) 

1 NA NA 

Clam, morning star 
— (Tawera spissa) 

1 NA NA 

Hydroid 1 NA NA 

Nudibranchs — 
(Goniobranchus 
aureomarginatus) 

2 NA NA 

Oyster borer — 
(Haustrum scobina) 

1 NA NA 

Red turfing algae  1 150 25 

Sponge — (Aaptos 
globosa) 

1 1000 100 

Sponge — Orange 
turret 

4 160 40 

Sponge — 
(Pararhaphoxya 
sinclairi) 

1 300 50 

Sponge — 
(Polymastia pepo) 

1 480 80 

Sponge — Purple 
turret (thickly 
encrusting) 

3 
 

264 78 

Sponge — Red 
turret 

2 58 14 

Sponge — Thickly 
encrusting orange 

2 1200 600 

Sponge — 
encrusting orange 
sponge sp. 1 

8 800 400 

Sponge — Thinly 
encrusting orange 
sp. 2 

39 2050 1596 

Sponge — White 
with turrets 

1 125 25 

Sponge — Yellow 1 25 25 

Sponge — Yellow 
finger 

1 18 9 

Spotted tiger top-
shell — (Meurea 
selectum) 

1 NA NA 

Top shells — 
(Diloma aethiops) 

2 NA NA 

Tube worm sp. 1 2 NA NA 

Tube worms sp. 2 1 NA NA 

Variable triple fin — 
(Forsterygion 
varium) 

2 NA NA 
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Site name Individual taxa 
Number of 
individual taxa 

Total volume of 
combined 
individual taxa 
(cm3) 

Total area covered 
by taxa (cm2) 

 
 
Waiwhakaiho 
coastal distant 

Ascidian (small) 1 12 6 

Brachiopods — 
(Neothyris 
lenticularis) in a 
clump 

6 NA NA 

Sponge — 
(Ecionemia alata) 

1 NA NA 

Hydroid 1 NA NA 

Razor clam — 
(Siliqua patula) 

1 NA NA 

Red algae — 
(Pterocladia sp.) 

1 4000 400 

Scarlet wrasse — 
(Pseudolabrus 
miles) [female] 

1 NA NA 

Sponge — Thinly 
encrusting orange 
sp. 1 

3 59 59 

Sponge – Thinly 
encrusting orange 
sp. 2 

2 8 8 

Sponge — Thinly 
encrusting orange 
with turrets 

2 
90 
 

30 

Spotted tiger top-
shell — (Meurea 
selectum) 

8 NA NA 

 
 
 
 
 
 
 
 
 
 
 
 
Waiwhakaiho 
coastal near, 18 m. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clam, morning star 
— Tarawera spissa 

1 NA NA 

Hydroid 2 NA NA 

Scarlet wrasse 
(female) — 
(Pseudolabrus 
miles)  

1 NA NA 

Snake brittle star — 
(Opiopsammus 
maculata) 

1 NA NA 

Sponge — 
(Ecionemia alata) 

1 4000 400 

Sponge — 
Encrusting orange 
(small) 

40 1000 1000 

Sponge — Orange 6 900 300 

Sponge — Orange 
globular 

10 270 90 

Sponge — 
(Pararhaphoxya 
sinclairi) 

2 228 42 

Sponge — Purple 1 100 25 

Sponge — Red 1 48 16 

Sponge — Rock 1 120 30 

Sponge — Thin 
encrusting orange 
sp. 1 

8 200 200 
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Site name Individual taxa 
Number of 
individual taxa 

Total volume of 
combined 
individual taxa 
(cm3) 

Total area covered 
by taxa (cm2) 

 
 
 
 
 
 
 
Waiwhakaiho 
coastal near, 18 m. 
 
 
 
 
 

Sponge — Thinly 
encrusting orange 
sp. 2 

11 2225 1225 

Sponge — White 4 124 34 

Sponge — Yellow 1 27 9 

Spotted tiger top-
shell — (Meurea 
selectum) 

8 NA 
 
NA 

Clam, morning star 
— Tawera spissa  

1 NA NA 

Turfing red algae — 
(Pterocladia lucida) 

1 600 600 

Unidentified curvy 
turret shaped 
gastropod 

1 NA NA 

Variable triple fin 
— (Forsterygion 
varium) 

7 NA NA 
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Table A3.3 Taxa presence, and total number of taxa in each taxonomic family at each station: Pariokariwa reefs, Waitara reefs, Waiwhakaiho reefs, Hangatahua reefs, Patea 

reef, and Kapiti Island reefs. 

Class Sub-class Order Sub-order Family Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti  

Calcarea Calcaronea Leucosolenida  - Leucosoleniidae  1           1 

Calcarea Calcaronea Leucosolenida  - Sycettidae  1         1 2 

Calcarea Calcinea Clathrinida  - Clathrinidae  1         1 2 

Demospongiae  -  -  -  -   2         2 

Demospongiae Heteroscleromorpha  -  -  -     1       1 

Demospongiae Heteroscleromorpha Axinellida  -  - 1         1 2 

Demospongiae Heteroscleromorpha Axinellida  - Axinellidae  1 1 1 1 1 3 8 

Demospongiae Heteroscleromorpha Axinellida  - Raspailiidae  2       1 2 5 

Demospongiae Heteroscleromorpha Biemnida  - Biemnidae 1         1 2 

Demospongiae Heteroscleromorpha Desmacellida  - Desmacellidae 1   1     1 3 

Demospongiae Heteroscleromorpha Haplosclerida  -  -   1   2     3 

Demospongiae Heteroscleromorpha Haplosclerida  - Chalinidae 3 2     1 6 12 

Demospongiae Heteroscleromorpha Haplosclerida   - Callyspongiidae  1     1 3 3 8 

Demospongiae Heteroscleromorpha Poecilosclerida  -  - 1 1       2 4 

Demospongiae Heteroscleromorpha Poecilosclerida  - Acarnidae 1   1   2   4 

Demospongiae Heteroscleromorpha Poecilosclerida  - Chondropsidae 2 2     1 5 10 

Demospongiae Heteroscleromorpha Poecilosclerida  - Crellidae 1 1     1 1 4 

Demospongiae Heteroscleromorpha Poecilosclerida  - Desmacididae         1   1 

Demospongiae Heteroscleromorpha Poecilosclerida  - Hymedesmiidae 1 1       9 11 

Demospongiae Heteroscleromorpha Poecilosclerida  - Latrunculiidae  1         1 2 

Demospongiae Heteroscleromorpha Poecilosclerida  - Microcionidae  2         6 8 

Demospongiae Heteroscleromorpha Poecilosclerida  - Mycalidae 2         2 4 

Demospongiae Heteroscleromorpha Poecilosclerida  - Tedaniidae 1         1 2 

Demospongiae Heteroscleromorpha Poecilosclerida  - Tedaniidae 2         3 5 

Demospongiae Heteroscleromorpha Poecilosclerida  Myxillidae   2         2 



 

199 

Class Sub-class Order Sub-order Family Pariokariwa Waitara Waiwhakaiho Hangatahua Patea Kapiti  

Demospongiae Heteroscleromorpha Polymastiida   - Polymastiidae  4 1 2   1 5 13 

Demospongiae Heteroscleromorpha Scopalinida  - Scopalinidae    1         1 

Demospongiae Heteroscleromorpha Suberitida  - Halichondriidae 3 2 1 3 2 4 15 

Demospongiae Heteroscleromorpha Suberitida  - Suberitidae 4 2     2 3 11 

Demospongiae Heteroscleromorpha Tethyida  - Tethyidae  2 1 1   1 3 8 

Demospongiae Heteroscleromorpha Tetractinellida Astrophorina  -         1 1 2 

Demospongiae Heteroscleromorpha Tetractinellida Astrophorina Ancorinidae 4 2 2 2 3 4 17 

Demospongiae Heteroscleromorpha Tetractinellida Astrophorina Geodiidae  2   1     1 4 

Demospongiae Heteroscleromorpha Tetractinellida Spirophorina Tetillidae 1         1 2 

Demospongiae Heteroscleromorpha Tetractinellida  Ancorinidae           2 2 

Demospongiae Keratosa  Dendroceratida  - Darwinellidae 3 1     1 3 8 

Demospongiae Keratosa  Dictyoceratida  -  -   3         3 

Demospongiae Keratosa  Dictyoceratida  - Dysideidae 1         3 4 

Demospongiae Keratosa  Dictyoceratida  - Irciniidae 2   2 1 1 3 9 

Demospongiae Keratosa  Dictyoceratida  - Spongiidae  1           1 

Demospongiae Keratosa  Dictyoceratida  - Thorectidae 2         4 6 

TOTALS     56 26 13 10 23 86 214 
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Table A3.4 Taxa presence, and percentage of total number of taxa in each taxonomic family at each station: Pariokariwa reefs, Waitara reefs, Waiwhakaiho reefs, Hangatahua 

reefs, Patea reef, and Kapiti Island reefs. 

Orders Pariokariwa Reefs Waitara Reefs 
Waiwhakaiho 
Reefs 

Hangatahua 
Reefs 

Patea 
Reef 

Kapiti Island 
Reefs 

Axinellida 7.14 0.00 7.69 0.00 18.40 6.98 

Biemnida 1.79 0.00 0.00 0.00 9.80 1.16 

Clathrinida 1.79 3.85 0.00 0.00 0.00 1.16 

Dendroceratida 5.36 3.85 0.00 0.00 0.00 3.49 

Desmacellida 1.79 0.00 7.69 0.00 0.00 1.16 

Dictyoceratida 10.71 11.54 15.40 10.00 36.40 11.63 

Haplosclerida  7.14 11.54 7.69 30.00 0.00 10.47 

Leucosolenida  3.57 0.00 0.00 0.00 0.00 1.16 

Poecilosclerida  25.00 26.92 7.69 0.00 0.00 34.88 

Polymastiida 7.14 3.85 0.00 0.00 0.00 5.81 

Suberitida  12.50 15.38 15.38 30.00 35.40 8.14 

Scopalinida  0.00 3.85 0.00 0.00 0.00 0.00 

Tetractinellida 12.50 7.69 23.08 20.00 0.00 10.47 

Tethyida 3.57 3.85 7.69 0.00 0.00 3.49 

Unknown 0.00 7.69 7.69 10.00 0.00 0.00 
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Appendix 4 

From rivers to the sea: using stable isotopes C and N to 

reveal the critical role of marine sponges in processing 

terrestrially derived carbon 

Table A4.1 Mean isotope signatures of sponge individual species and OTUs collected from each reef, 
Waiwhakaiho (WAIW), Waitara (WAI), and Hangatahua (HAN) (replicates, n = 1–5, ± SD not included). 

Cryptic biota  
WAIW 

Waiwhakaiho 
WAI 

Waitara 
HAN 

Hangatahua 

 n δ13C δ15N δ13C δ15N δ13C δ15N 

Callyspongia fistulosa 1     -20.92 13.08 

Chondropsis sp. 1 1   -20.18 9.09   

Chondropsis sp. 2 1   -19.98 9.12   

Ciocolypta polymastia  1     -21.11 9 

Darwinella oxeata  1   -21.88 6.95   

Demospongiae sp. 1 1   -21.2 10.98   

Demospongiae sp. 2 1   -22.17 8.2   

Desmacella dendyi 1 -19.6 9.95     

Dictyoceratida sp. 1 1   -20.1 9.26   

Dictyoceratida sp. 2 1   -20.35 10.08   

Dictyoceratida sp. 3 1   -19.85 8.86   

Ecionemia alata 28 -18.32 9.64 -19.27 11.52 -18.8 8.01 

   -18.78 12.29 -19.28 9.75 -18.76 8.52 

   -18.64 9.71 -19.53 11.58 -18.82 8.92 

   -18.56 8.98 -19.48 11.81 -18.9 8.57 

   -18.99 9.35 -18.71 9.96 -18.89 9.28 

   -19.27 9.17 -18.99 11.88 -19.03 9.02 

   -18.84 9.88 -19.29 11.7   

   -19.07 9.22 -18.83 8.46   

   -19.12 10.65 -19.05 7.25   

     -19.1 7.65   

     -19.25 7.82   

     -19.12 9.92   

     -18.86 7.7   

Geodia sp. 1  1 -19.61 12.11     

Haliclona heterofibrosa  1   -18.54 8.59   

Haplosclerida sp. 1 1     -22.58 12.07 

Haplosclerida sp. 2  1   -21.28 8.05   

Heteroscleromorpha sp.  1 -21.31 12.28     

Hymeniacidon perlevis 1     -20.83 7.84 

Hymeniacidon sp. 1 1     -21.16 10.06 

Hymeniacidon sp. 2 1   -20.99 11.38   
Hymeniacidon 
sphaerodigitata 

1 -20.89 14.21 
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Cryptic biota  
WAIW 

Waiwhakaiho 
WAI 

Waitara 
HAN 

Hangatahua 

 n δ13C δ15N δ13C δ15N δ13C δ15N 

Hymeniacidonidae  1   -20.9 10.47   

Iophon minor  1 -22.21 12.13     

Ircinia sp. 1 1 -19.3 10.09     
Myxilla (Styloptilon) 
fromontae 

1 
  -21.04 9.4 

  

Myxillidae sp.  1   -21.4 13.07   

Myxillidae 1   -22.28 13.38   

Pararhaphoxya sinclairi  3 -20.62 12.54 -20.29 10.6   

    -21.21 12.81   

Phorbas sp. 1 1   -21.1 10.05   

Poecilosclerida 1   -21.03 14.06   

Polymastia massillis  1 -20.3 11.91     

Polymastia sp. 1 1 -20.9 11.87     

Psammocinia papillata 1     -18.27 8.28 

Sigmadocia n. sp.  1   -21.45 13.16   

Stelleta crater  1   -19.02 8.14   

Stelletta arenaria 1     -16.03 8.62 

Stelletta conulosa 1 -19.52 12.38     

Suberites sp. 1   -21.5 12.99   

Tethya berguistae 1   -20.69 9.38   

Tethya berguistae 1 -21.23 8.92     

 

 
 

 

 

 


