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Abstract

Can deep neural networks super-resolve satellite imagery to a high perceptual

quality? This thesis explores the juxtaposition between the pixel accuracy and

perceptual qualities of super-resolved imagery by comparing and combining a

discriminative and a generative network. Rather than solving a theoretical

problem, we tackle a real-world low-resolution scenario: Sentinel-2 imagery is

super-resolved and evaluated against high-resolution aerial photos as ground

truth; this is in contrast to super-resolving previously down-sampled data,

which is the methodology used in most other studies. An existing feed-forward

network architecture designed for super-resolution, called DeepSUM, is used

to super-resolve multiple low-resolution images by a factor of four to obtain

a single high-resolution image. DeepSUM is trained using a range of loss

functions, to assess the effect on network accuracy. A novel loss function is

created, called variation loss, to help better define edges and textures to create

a sharper, perceptually better product. Using an SSIM (Structural Similarity

Index) loss function gives the best result in terms of pixel-based performance.

Running DeepSUM alone creates a superior output compared to bicubically

up-sampling the input data, but the output is blurry and not photo-realistic.

A probabilistic model from the literature, ESRGAN (Enhanced SRGAN), a

Generative Adversarial Network, is trained against both raw Sentinel-2 data

and the output of DeepSUM. Using ERSGAN for super-resolution, creates a

perceptually better, more realistic looking output. However, the ESRGAN

output is less accurate than the DeepSUM output, as measured using pixel-

based metrics. Combining ESRGAN with DeepSUM is found to inherit some of

the advantages of both approaches. In an end-to-end process, using ESRGAN

with the output of DeepSUM trained using variation loss is found to super-

resolve an image to better show boundaries, textures and detail.
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Chapter 1

Introduction

1.1 Overview

Just as alchemists in the Middle Ages came up with more and more outlandish

formulae for transmutation of base minerals into gold, so too toil data scientists

in a quest to extract and enhance imagery from lower-quality dross. Super-

resolution, by creating detail in images whence none existed before, is as its

name implies, something of a mystical art, yet is ever more likely to be achieved

in a practical and useful sense, given modern processor speeds and deep neural

networks. Similar to gold in the ancient world, the value of super-resolution in

the modern world is immense because of a plethora of potential applications.

Unlike the transmutation of gold, it is not based on an elixir but a series of

ever improving techniques, each built upon the previous iteration.

Super-resolution is the process whereby a higher-resolution image is ob-

tained from a single or multiple lower-resolution image. This process is used

in a wide variety of applications including medical imaging, imaging for se-

curity, and satellite remote sensing [Yang et al., 2019]. Video imaging super-

resolution is an important and growing area, where multiple overlapping im-

ages obtained from video frames together provide the ability to create an en-

hanced picture. Modern cameras including the Pixel 3 from Google utilise this

technique [Wired Magazine, 2019]. Higher-resolution images offer the benefit
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of more detail which can be critical.

This study focuses on using super-resolution in remote sensing. The prob-

lem that super-resolution is trying to solve in this context is the issue of

relatively low resolution of widely-available remote sensing imagery such as

satellite imagery from Sentinel 2 satellites. Most areas of New Zealand are

available as high-resolution aerial photography with a resolution of around

0.1m pixels or lower. However, due to the cost of capturing and processing

the data, imagery is typically procured on a multi-year cycle so that available

high-resolution data may be 4 years out of date. Aerial photography suffers

from another issue in that it typically is taken during the summer months,

during the middle of the day when shadows are minimal and cloud cover is

reduced, and is not generally available over winter months. Typically, aerial

photographs have three visual bands (such as RGB) and an NIR band.

Satellite imagery is generally cheap and has a high temporal return time,

e.g., Sentinel 2 data is available weekly [European Space Agency, 2013], Planet

data is available daily [Planet Labs Inc, 2021]. Satellite data often has multiple

bands in the non-visual spectrum as well as RGB and NIR bands, but is limited

in its usefulness due to its lower resolution. Typically, satellite data is used

to identify large areas of landcover, but is less useful at identifying individual

trees. For example, in remote sensing, a 10m pixel image will show forested

areas, whereas a 1m pixel image will allow individual trees to be distinguished.

As it is costly and sometimes impractical to improve the spatial resolution

of images using enhanced hardware sensors, there is significant interest in

software approaches to create high-resolution data from a lower resolution

input.

This study investigates two super-resolution techniques using different ap-

proaches to the problem. DeepSUM is a feed-forward neural network which

was the winner of the European Space Agency (ESA) PROBA-V Super Res-

olution competition winner in 2020 [Molini et al., 2019]. The approach used

by this method is a more traditional deep neural network approach based on



4

discriminative training that attempts to minimise mean-squared error (MSE)

in the predictions. In the present study, various iterations of this approach are

investigated to replace the default loss MSE function with a function better

suited to modelling super-resolution data. In contrast, ESRGAN is an ad-

vanced generative adversarial network (GAN), which super-resolves imagery

to create a perceptually better output. This generative approach models the

image data distribution and uses that to super-resolve. These approaches have

contrasting strengths and weaknesses around accuracy and perceptual quality

that are explored and analysed in this study. We will see that a combination

of the two processes to some degree is able to use the strengths of each.

Rather than use a purpose-designed dataset such as used by the original

DeepSUM paper [Molini et al., 2019], this study uses readily available satellite

data and pre-processes the data to enable it to work in the algorithm. Unlike

most other super-resolution studies, aerial imagery data is used as a ground

truth, i.e., the high-resolution data and low-resolution data are from different

sources.

Code used in this project is available from these repositories:

• https://github.com/danbull1/superresolution

• https://github.com/danbull1/deepsum

• https://github.com/danbull1/esrgan-tf2

This thesis contains the following chapters: Chapter 2 reviews previous

work in this field, and looks at different loss functions and performance metrics

used in super-resolution. Chapter 3 outlines the data and methodology used in

this study. Results are presented in Chapter 4, and summarised and discussed

in Chapter 5. Chapter 6 concludes the thesis and summarises the findings of

this study.



Chapter 2

Literature Review

Super-resolution is an inherently ill-posed problem as a multiplicity of solu-

tions exist for any given low-resolution pixel [Dong et al., 2015]. To overcome

this issue, many complex super-resolution methodologies exist that attempt to

exploit contextual information to infer missing high-resolution components. It

should be recognised that while the majority of super-resolution studies focus

on generic photo imagery, there is a substantial body of work focusing on super-

resolving satellite imagery [Molini et al., 2019] which has its own unique issues

and advantages over other imagery data (see Section 2.4.1). Looking beyond

still imagery, studies such as [Xiao et al., 2020], [Irani and Peleg, 1991] focus

on improving video quality by using multiple image frames together. Many

studies address super-resolution in the wider context of image processing using

techniques such as de-noising, compressing and imprinting imagery.

2.1 Background

Before the advent of modern machine learning, interpolation-based methods

such as bicubic interpolation and Lanczos resampling were used [Yang et al., 2019].

Bicubic interpolation estimates the value of each pixel based on the surround-

ing pixels. Lanzcos resampling uses a low-pass filter to smoothly interpolate

the value of a digital signal. Although these methods are fast and do not re-

quire any example data to work from, they suffer from low accuracy due to an
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inherent lack of information about how to resolve the pixel values. This tends

to blur high-frequency detail [Sun et al., 2008].

A generic category of super-resolution consists of so-called reconstruction

based methods (also referred to as sparse coding methods). These involve dis-

secting different parts of an image into constituent parts before reassembling

the image at a higher resolution. First, patches are taken from low-resolution

(LR) images and preprocessed to normalise. The patches are sparsely coded

and to create a dictionary that matches the patches from LR to high-resolution

(HR) images [Zhang et al., 2020]. Various improvements to this basic idea

have been proposed, for example, the use of a gradient profile prior or a para-

metric prior describing the shape and sharpness of the image gradients learned

from a number of images [Sun et al., 2008]. It is noted by [Dong et al., 2015]

that the process by which sparsely LR patches are matched to HR patches

can be viewed as a convolutional neural network (CNN). However, the sparse

coding solver is iterative rather than feed-forward, so is less computationally

efficient.

In general, reconstruction based methods generate more defined detail than

the interpolation-based methods, but suffer from disadvantages in that they

require prior knowledge to restrict the possible solution space, and are usually

time-consuming to run. The performance of reconstruction based methods

degrades rapidly as the scale factor increase reducing their usefulness for larger

increases in resolution[Yang et al., 2019].

Machine learning based methods including those using deep learning are

the current focus of most research in super-resolution due to their relatively fast

computation, and better performance than the above methods [Yang et al., 2019].

These methods learn mapping functions from LR to HR imagery. Note that

several machine learning-based super-resolution methods exists that do not

utilize deep learning. In [Li et al., 2019], a random-forest based algorithm is

used to learn a dictionary mapping LR patches to HR patches in a method

called feature augmented random forest (FARF). This method uses the dot
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product of flattened feature vectors to differentiate feature patches when clus-

tering them in the split-nodes of the random-forest. Several enhancements to

this basic method are added, including adding gradient magnitudes to enhance

the edge strength and create better image definition [Li et al., 2019].

2.2 Feed-Forward Networks

With the advent of deep convolutional neural networks (CNN), came the ability

to learn pixel values by exploiting very high-level feature maps. These super-

resolution methods can be divided in to single-image SR (SISR) and multi-

image SR (MISR). As the names suggest, SISR infers HR data from a single

image whereas MISR takes advantage of the information gain presented by

multiple complimentary images of the same scene to better infer pixel values

[Molini et al., 2019].

In one of the first SISR methods using deep CNN [Dong et al., 2015] im-

plicitly learned patches via hidden layers, rather than explicitly learning a

dictionary. In the model, called Super-Resolution Convolutional Neural Net-

work (SRCNN), an LR image is first upscale to the desired size using bicubic

interpolation. This image was then flattened and passed through three fil-

ters to generate an output that proved better than any of the previous SIRS

methods at that time. Some of the learnings from this approach are that a

wider network generates a better result, and that having a larger initial filter

or convolution is advantageous. In both cases, performance is affected, and

the authors suggest that there is a trade-off to be made. They also explore

the idea that a deeper neural network with more layers may perform better.

Although this turns out to be the case, the effect was not as strong as that

for image classification. In general, the experimental results show that deeper

networks, even when relatively shallow by modern standards, often did not

converge, to a solution yielding high accuracy [Dong et al., 2015].

[Kim et al., 2016a] proposed a deep network based on increasing neural net-
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work depth to significantly boost performance, inspired by the VGG network.

Stacking many more filters, leads to filters that responded to a larger region of

pixel space, resulting in an increased amount of contextual information that

can be exploited to infer high-frequency detail. In [Kim et al., 2016a], rather

than predict the ground truth (HR image), a residual image (r) is defined so

that r = y− x where y is the predicted image and x is the output image. The

loss function used is the Euclidean difference between the reconstructed image

(the sum of network input and output) and ground truth. The authors report

that using a network that learns the residual image, converges much faster

than simply learning the standard non-residual network, and shows superior

performance at convergence in terms of a higher peak signal-to-noise ratio

(PSNR) value obtained by the network. It is noteworthy that, additionally,

gradient clipping is used to improve performance of the network. Gradient

clipping is a process whereby gradients are confined to a certain range during

network training in order to attain maximal speed of convergence. Finally, it

is found that training the network using data taken at different scales, out-

performs a network trained using a single scale even when tested against data

from a single scale [Kim et al., 2016a].

Building on this work, [Kim et al., 2016b] proposed a method using a so-

called recursive neural networks for super-resolution. The authors argue that

it is not possible to get a performant network by simply stacking more layers

on top of a network such as SRCNN, as this requires more data and makes the

network prone to over-fitting. In their new method, called Deeply-Recursive

Convolutional Network (DRCN), the network depth is increased by applying

the same convolution 16 times to significantly boost performance. In order to

overcome the problem of exploding or vanishing gradients, the network is mod-

ified to supervise all recursions. A second innovation proposed by the authors

is to add skip connections, which are used to feed input data into the final

stage of the network, the reconstruction stage. This serves to reduce network

capacity required to store the input signal during recursions, and means that
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an exact copy of input signal can be used during target prediction. The DRCN

network is found to out-perform existing networks on super-resolving photos

in [Kim et al., 2016b].

Several MISR techniques have been proposed in the context of video edit-

ing. Traditional video super-resolution (VSR) techniques take multiple LR

frames, and output HR frames by taking in to account sub-pixel motions be-

tween neighbouring frames [Jo et al., 2018]. [Irani and Peleg, 1991] use the

explicit horizontal, vertical, and rotational shifts to create a set of equations

defining an image with respect to another image containing correction factors

in a process called iterative back-projection. Registration of the second im-

age with respect to the first image occurs by iteratively warping the second

image towards the first image to gradually decrease the correction factors un-

til they approach zero. Accurate knowledge of the relative displacements of

scene regions is essential for this process. Super-resolution is carried out on

down-sampled HR video frames in an iterative update process using a back-

projection kernel. In this way each HR pixel is influenced by several of the

surrounding LR pixels, in a fashion that is not too dissimilar to the process

occurring in a modern CNN. Super-resolution is applied on colour images by

converting the image to a YIQ representation. A YIQ representation is an

alternative representation of colours where Y , is luminance, and IQ represent

chrominance. Following the conversion, an average is taken of each of the

chrominance components after registration, and the above technique is used

on the IQ component of the image. The resulting super-resolved images are

observed to be superior to the average of input images [Irani and Peleg, 1991].

In the two-step process described in [Irani and Peleg, 1991], the results

rely heavily on the motion estimation and compensation step. This can lead

to blurry frames. In the Dynamic Upsampling Filters (DUF) method, out-

lined in [Jo et al., 2018], motion information is implicitly utilised to generate

dynamic filters. Rather than using a deep neural network to reconstruct an HR

image in the feature space, the deep neural network learns the best upsampling
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filters, which are then used to directly reconstruct HR frames from given LR

frames. The authors compare the DUF process to other VSR methods, and

find that their method was vastly superior to any comparable technique. The

learnt dynamic filters show different activations for different motions indicat-

ing that they correctly exploit temporal information without explicit motion

compensation. In general, the DUF method produced sharper images with

better PSNR values [Jo et al., 2018].

Other video image super-resolution techniques concentrate on creating super-

sampling algorithms tailored for real-time rendering. As video games get

higher and higher resolution, and more photo-realistic effects, modern game

engines often reduce the computational cost by rendering at a lower resolution,

and up-sampling to the native resolution [Xiao et al., 2020]. There is an in-

herent problem in up-sampling this type of video in that point-sampled pixels

are extremely aliased at edges and shadows, and the information at the target

pixels is missing. The solution implemented in [Xiao et al., 2020] is a neural

network that utilises information from previous frames to super-resolve the

current frame. The network contains four main parts. A Feature Extraction

module contains a 3-layer CNN that processes each frame individually and

shares weights between frames. The output of the CNN is concatenated with

the input data to get a 12-channel output. A Temporal Reprojection module

projects the output of the previous module onto the current frame using the

known motion vectors and warping the frames to fit the current frame. A

Feature Reweighing module, masks out the aliasing by generating a pixel-wise

weighting map for each previous frame. Finally, a Reconstruction module takes

as input, the features of the previous module and outputs an HR image of the

current frame. The loss function used in this network is a weighted sum of

perceptual loss (see Section 2.6) and structural similarity index (SSIM). The

authors find that their method significantly outperforms previous work includ-

ing real-time temporal anti-aliasing, and other state-of-the-art image and video

super-resolution techniques [Xiao et al., 2020].
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2.3 Generative Models

While super-resolution studies initially used feed-forward networks, trained

in a discriminative manner, using standard `1and `2 loss functions, more re-

cent approaches integrate perceptual loss and adversarial loss functions. These

types of approach have been found to yield sharper images with better per-

ceptual qualities [Lugmayr et al., 2020]. Another set of approaches to super-

resolution is based on training generative models. Generative models are a

class of algorithm that learns the probability distribution of data. Examples

of these models include Generative Adversarial Networks (GANs), Variational

Autoencoders, and Normalising Flow models. Learning the distribution of an

image in image space, allows a network to generate photo-realistic images by

finding natural HR images that correspond to the distribution in the LR space

[Wang et al., 2018].

2.3.1 Generative Adversarial Networks

Several recent studies have looked at using Generative Adversarial Networks

(GANs) to enhance the production of super-resolved data. These include

[Hoque et al., 2019], [Jiang et al., 2019], [Ledig et al., 2017] and [Wang et al., 2018].

GANs employ adversarial training by using a Generator network and a Dis-

criminator network. During training, the generator network strives to produce

an HR image similar to the target HR image, whereas the discriminator acts as

a judge and tries to find out whether the input is a fake or not. In this way, the

discriminator guides the generator to produce steadily more realistic images,

until the output image looks real. The discriminator network learns whether a

sample is from the model distribution or the data distribution, and so pushes

the generator to produce more photo-realistic images [Goodfellow et al., 2020].

GANs have been described as implicitly modelling the data distribution,

as they do not directly select from distribution models, but learn to gener-

ate images from this distribution as a consequence of the adversarial model
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[Liu et al., 2021]. In the context of super-resolution, this will likely produce

an image that is not exactly the same as the ground truth, but has percep-

tual qualities that appear the same to the Human Visual System (HVS).

GANs offer the possibility of photo-realistic images at large up-scaling fac-

tors [Ledig et al., 2017]. On the other hand, some of the fine detail created

by the GAN may be visually pleasing, but may also be inconsistent with

the ground truth [Jiang et al., 2019]. This effect is also commented on by

[Blau and Michaeli, 2018] who described the trade-off between creating a high

perceptual quality image, and an image free from any distortion (see Section

2.7).

While GANs can successfully generate photo-realistic images, their ten-

dency to dream or hallucinate details can be a weakness particularly in the

field of super-resolution where the ideal outcome is consistent with the ground

truth. This ”dreaming” occurs because their loss function is unsupervised and

as long as the output fits in to the probability distribution, then the discrimi-

nator is satisfied [Goodfellow et al., 2020].

2.3.2 SRGAN

The first GAN to be used in the context of super-resolution is the Super-

Resolution Generative Adversarial Network (SRGAN), created by [Ledig et al., 2017],

which super-resolves photos by a factor of four. The generator part of the net-

work consists of several blocks that use a deep residual network (ResNet)[He et al., 2016]

with skip-connections. In residual neural network blocks (or ResNet) blocks,

skip connections help bring the identity function to deeper layers. This means

that network performance does not degrade with a deeper network.

In SRGAN, the generator part of the network consists of a number of resid-

ual blocks, each containing two convolutional layers with small 3Ö3 kernels

and 64 feature maps followed by batch-normalization layers. The discrimina-

tor part of the network contains eight convolutional layers with an increasing

number of 3 Ö 3 filter kernels; more specifically, they repeatedly increase by
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a factor of 2 from 64 to 512. As in a VGG [Simonyan and Zisserman, 2014],

strided convolutions are used to reduce the image resolution. LeakyReLU

is used as the activation function through the network and max-pooling is

avoided throughout. In the network, up-sampling through a dense layer, oc-

curs after the ResNet blocks, as a final step.

SRGAN used a hybrid loss function consisting of a perceptual loss imple-

mented as a pixel based MSE loss, and a VGG-based content loss function as

described in 2.6. To this an adversarial loss function is added that encour-

ages the network to create an image that looks real or is in the ’manifold of

natural images’ [Ledig et al., 2017]. Different VGG versions are considered for

the perceptual loss function, and the VGG54 model is found to perform best,

probably because it is the deepest network and can better capture fine detail.

The authors report that deeper layers in the VGG network for the perceptual

loss yield the most convincing results and speculate that using deeper layers

allows the loss function to focus on content, leaving the adversarial aspect

of the loss to focus on fine-level details. In comparison, when the network

is trained with an MSE loss combined with an adversarial loss it achieves a

higher PSNR value but creates an image that is perceptually too smooth and

less convincing than the results achieved with a loss component more sensitive

to visual perception [Ledig et al., 2017].

Unlike other super-resolution algorithms and GANs, SRGAN is not opti-

mised for yielding perceptually realistic results.

2.3.3 Enhanced SRGAN

The Enhanced SRGAN (ESRGAN) is developed by [Wang et al., 2018] en-

hances SRGAN to achieve more realistic features and textures than the original

GAN. The basic architecture of SRGAN carries out most of the computation

in the LR feature space, before data is upsampled to HR. The stated aim of

ESRGAN is to enhance visual quality of the output image in both sharpness

and detail. This enhancement is achieved by changing several main compo-
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nents of SRGAN. All batch normalisation is removed from the generator part

of the network because it was found empirically that it tended to introduce

artefacts and limit the generalisation ability of the network, especially when

the statistics of the training and test datasets varied considerably. This had the

added advantage of reducing memory usage because it makes training more

stable. The second structural change made to the generator was to replace

the basic residual blocks with a novel basic block called Residual-in-Residual-

Dense-Block (RRDB), where residual learning is used at different levels in a

way that is deeper and more complex than the SRGAN residual block. In

the RRDB block all layers within the residual block are connected directly

with each other. In ESRGAN, as in SRGAN, multi-level ResNet blocks are

used, however the ResNet blocks used in ESRGAN use dense blocks as the

main path so the network benefits from these dense connections. In both net-

works, a residual scaling parameter allows the network to be easily deepened

by increasing the number of ResNet blocks.

The discriminator of ESRGAN, which estimates the probability that an im-

age is real, is improved from the standard discriminator used by SRGAN. The

enhanced discriminator is a ”relativistic” discriminator that tries to predict

the probability that a real image is relatively more realistic than a fake one.

This takes advantage of a factor that the probability of real data being real

decreases as the probability of fake data being real increases. If the discrimi-

nator is fed samples where half the data is fake, and half is real, it can use this

knowledge that finding several fake samples increases the probability that the

rest of the samples are real. Relativistic discriminators have been shown to be

significantly more stable and generate higher quality data samples than their

non-relativistic counterparts [Jolicoeur-Martineau, 2018]. Ablation studies in

[Wang et al., 2018] show that the use of a relativistic discriminator is a key

component in the improvement in performance of ESRGAN over SRGAN.

ESRGAN uses a perceptual loss function, as per SRGAN, but this is applied

to features observed before activation rather than after activation. This is
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found to improve performance as activated features are very sparse, which

provides weak activation, and inconsistent brightness compared with ground

truth.

The generator part of the network is first trained using a PSNR-oriented

network using an `1 loss. This meant that undesirable local optima were

avoided, and helps the discriminator focus on texture discrimination from

the start [Wang et al., 2018]. The learning rate is progressively halved every

200,000 steps. Following the pretraining step, the full GAN is run. Training is

carried out on down-sampled images using a LR patch size of 128 x 128, and

a mini-batch size of 16. In the original paper, two settings are tested for the

generator. Firstly 16 RRDB blocks are tested, and then 23 RRDB blocks are

tested. It is found that a deeper network benefits from a larger patch but this

costs more computing resource. Unsurprisingly, training with more data also

helps the model achieve better results.

A precept is laid out in Section 2.7 of this study, where a GAN can be used

to move along the perception-distortion curve [Blau and Michaeli, 2018]. In

ESRGAN, network interpolation was proposed to balance perceptual quality

and distortion. Network interpolation can be achieved by either interpolating

weights or interpolating pixels in images. Weights are created based on an

intermediate point between the PSNR weights from the pre-training stage and

weights from adversarial training. This is achieved using this equation:

θINTERPG = (1− α)θPSNRG + αθGANG ) (2.1)

where α is the interpolation parameter used to create the balance. The in-

terpolation means that the network only needs to be trained once, and these

training weights can then be used to fine tune the the perception-distortion

balance. In contrast, image interpolation is achieved at a per-pixel level, where

the weighted average of PSNR and GAN outputs is used.

As a seminal super-resolution technique, ESRGAN has been previously

used to super-resolve Sentinel 2 satellite data by [Salgueiro Romero et al., 2020]

who used WorldView satellite as a ground truth. The down-sampled World-
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View satellite data is used for training purposes, as insufficient matching pairs

of WorldView and Sentinel data were available. Training with Sentinel 2 and

WorldView pairs was only carried out at the adversarial stage of training. Sen-

tinel 2 data was upsampled prior to using the algorithm to allow the data to

be more easily registered and aligned, and the ESRGAN algorithm was altered

to remove the built-in up-sampling step. Although the authors report results

using standard metrics to measure accuracy that exceed other techniques, they

also report some GAN generated artefacts. Using network interpolation with

different alpha values in allowed them to minimise these artefacts.

2.3.4 Other Super Resolution GANs

[Hoque et al., 2019] compare the output of two GAN models to the output

of two simple CNN SISR networks. The CNN-based networks performed

vastly better in terms of PSNR, SSIM and other metrics compared to the

GANs, however the GANs generate HR images that are visually sharp and

very photo-realistic. Images generated by the GANs also produce artefacts

that affect overall image quality. Interestingly, when the VGG network used

by the GAN for perception loss, is trained using satellite data, rather than

generic image data, image quality is boosted both visually and quantitatively

[Hoque et al., 2019].

In a similar vein, [Jiang et al., 2019] create a GAN-based edge-enhancement

network (EEGAN) for robust satellite image SR reconstruction. EEGAN has

several interesting features that enhance its performance: The generator com-

ponent of the network contains an Edge Extraction SubNetwork (EESN) that

serves to extract edge features. The EESN also contains a mask branch to

learn a noise mask. This enables the network to focus on the real edge in-

formation and remove noise and artefacts. A Laplacian operator is used to

further refine and extract edges. The other main component of the genera-

tor is a Ultradense Subnetwork block that contains several dense blocks and

a reconstruction block. The two blocks are combined to produce an image
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with clean edges. The discriminator, using a VGG network, takes the output

of the generator and encourages it to produce an image more consistent with

the HR image. When tested on DigitalGlobe imagery, EEGAN exhibits the

highest scores in all indicators, including PSNR, SSIM, and FSIM. Many fewer

artefacts are created than using SRGAN [Jiang et al., 2019].

2.3.5 Other Generative Models

Rather than implicitly exploring the data distribution as a GAN will do, a

variational autoencoder (VAE) explicitly explores the data distribution for

modelling. [Liu et al., 2021] proposes a reference-based super-resolution model

that learns patterns from a reference to guide the super-resolution process. To

do this, the reference patterns are compressed into a latent space using Condi-

tional Variational Inference (CVAE) to learn an explicit probability distribu-

tion, and then these patterns are re-sampled as a prior to super-resolve data.

The model, RefVAE, can select from a range of perceptual or visual qualities

using a perceptual loss function for training.

Another explicit modelling approach for probability distributions is based

on using normalising flows. In normalising flow models, a function f(x) is

created that maps a data distribution px(x) to a different distribution pz(z).

Unlike GANs, normalising flows have a single loss function, the negative log-

likelihood, and are relatively straight-forward to train. A normalising flow

model has another advantage over a GAN in that it allows the exploration

of a multitude of solutions to a super-resolution problem rather than a single

solution, by altering guiding parameters.

A normalising flow model called SRFlow was created to super-resolve im-

agery by [Lugmayr et al., 2020]. In SRFlow, the network is trained using an

HR-LR image pair to learn the the conditional HR-image distribution. The

network is trained by directly minimizing the negative log-likelihood using

standard stochastic gradient descent (SGD) techniques. The network consists

of 23 Residual-in-Residual Dense Blocks (RRDB), used to find the underlying
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representation of the LR data. Following this, an invertible conditional flow

step is used to transform the data density to the conditional HR-image distri-

bution. In inference, HR samples can then be generated from low resolution

data by applying the inverse of the network. Rather than capturing a single

image, SRFlow captures a range of possible outcomes, which can then be ex-

plored by using additional guiding information or randomly sampling outputs.

The authors of SRFlow note that while perceptual information is superior to

ESRGAN, fidelity is also preserved resulting in a high PSNR. Additionally,

they note that the same techniques used to super-resolve data also allow for

image manipulation techniques, for example transfer of image content from

one image to another [Lugmayr et al., 2020].

2.4 Remote Sensing

Remote sensing is the use of electromagnetic energy to measure the physical

properties of distant objects. The history of remote sensing can be traced back

to World War I and World War II, when millions of aerial photographs were

manually analysed for military purposes [Moore, 1979]. The development of

remote sensing platforms progressed rapidly through the twentieth century. A

key moment was the launch of the first Landsat satellites in 1972, the first

dedicated Earth landcover imaging satellites. For the first time, repetitive im-

ages of the earth were easily available for analysis. The first Landsat satellites

(1 and 2) carried a green and red sensor and two NIR sensors. More recent

Landsat satellites (Landsat 8 and 9) can acquire data from 11 spectral bands

at between 15 and 30m resolution, vastly increasing the amount of information

that can be acquired [Wulder et al., 2019]. A parallel effort by the European

Space Agency (ESA) created the SPOT satellites with a relatively high reso-

lution of 2.5m RGB bands, and more recently the Sentinel series of satellites

that collected the data used in this study. In the last decade, cube satellites,

such as those launched by Planet provide a higher return rate with images
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available up to two times daily [Planet Labs Inc, 2021].

With the plethora of data available from remote sensing, comes the problem

of trying to make the information useful for humans. Traditionally, expert

derived algorithms such as Normalized Difference Vegetation Index (NVDI)

have been used, for example, to show whether landcover consists of green plants

or not. These types of algorithms are useful for providing a broad overview of

the image data, but cannot by themselves derive more complex information

[nvd, ]. Hence machine learning has become useful for carrying out tasks such

as crop disease detection. New product creation, bias correction and code

acceleration can require machine learning. Deep neural networks are often

required to interpret the remote sensing images to extract information such as

soil moisture distribution, vegetation, recognition of crop type regions among

others [Lary et al., 2016]. More recently, object detection from satellite data

has been used to detect farm information such as grass cover, or economically

important information such as the fill level of oil storage vessels.

Satellite data is comparatively cheap compared to aerial photography, so it

is used for tasks that require large area coverage or regular coverage over time.

However, it does suffer from the issue that commercial satellite images gen-

erally have a lower resolution than aerial or drone imagery, so cannot always

resolve features to a high enough level to be useful for a given task. In 2020,

the highest-resolution commercially available satellite data was from the satel-

lite WorldView-3 with 30cm ground sample distance (GSD). Other satellites

that provide sub-meter imagery products of GSD 50cm include WorldView-2,

GeoEye-1, Pleiades. This resolution is still not great enough for many tasks,

e.g., traffic monitoring [Zhu et al., 2020]. Super-resolution aims to solve this

problem by providing tools that can enhance data resolution, and open up

further uses for satellite data.
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2.4.1 Satellite Data

Satellite data suffers from an issue that other imagery datasets do not have:

Cloud cover. In 12 years of observations by the Moderate Resolution Imaging

Spectroradiometer (MODIS), it was found that 67% of the Earth’s surface is

covered by clouds on average. This is lower over land, with only 55% of the

area covered in cloud, and cloud cover is much lower on average during late

summer and early autumn [Meraner et al., 2020].

Other issues that are particularly prevalent in satellite data include noise,

and blur. Noise from satellite data is caused partially by inaccuracies in the

point spread function (PSF) of the satellite imaging system [Zhu et al., 2020].

Motion blur is caused by satellite movement sensor scanning. Satellite data is

likely to be processed and resampled, which causes further blur [Zhu et al., 2020].

Atmospheric disturbance is generally accounted for in processing imagery but,

this too causes an effect.

These issues are frequently overlooked in super-resolution studies, which

often use down-sampled higher resolution data to generate low resolution

training data. Using down-sampled data is a feature of many studies includ-

ing [Hoque et al., 2019], [Johnson et al., 2016] and [Wang et al., 2018]. These

types of model have a limitation in that the degradation model might not

match reality [Molini et al., 2019]. These issues are elaborated on in [Zhu et al., 2020],

where the authors created simulated LR data from aerial imagery data using a

corresponding noise kernel to simulate noise, and varied the down-scaling factor

within a small range to simulate the blur and aliasing variation. The simulated

images were used to train a neural network, and the output of this was com-

pared to a network trained with bi-cubically down sampled data. The Mean

Opinion Score (MOS) from the result was significantly better when using the

simulated data compared the bicubically down-sampled data [Zhu et al., 2020].
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2.5 Evaluating Image Quality

For evaluating the accuracy and perceptual quality of super-resolved images,

there are no standard metrics, and the relatively reliable Mean Opinion Score

(MOS) of human observers is time-consuming and expensive to obtain [Wu et al., 2020].

In the absence of humans, Peak Signal to Noise Ratio (PSNR) and Structural

Similarity Index (SSIM) are commonly used metrics to evaluate image quality.

Many studies including [Ledig et al., 2017] use MOS testing. Specifically,

humans are asked to rate images using a numerical scale, and this is used to

derive an overall score to rate an algorithm. However, as this quality is difficult

to standardise, and not easy to use in a research setting, most studies focus

on attempting to mathematically measure image quality.

PSNR is usually used for image processing as a quantity based on for

MSE. In the following equation, L is the dynamic range of allowable image

pixel intensities, e.g., an 8 bit image will have an L value of 82−1 = 255. This

allows the MSE to easily be used to compare images of different bit depths

[Wang and Bovik, 2009]

PSNR = 10 log10

L2

MSE
(2.2)

A higher PSNR value indicates a higher degree of similarity, so that the PSNR

value approaches infinity as the MSE approaches zero. PSNR is used in a

range of context for the reasons described above, and because it makes it easy

to compare to previous studies as it is considered the benchmark measure

[Wang et al., 2004]. However, it is widely accepted that PSNR does not corre-

late well with a human’s perception of image quality [Zhao et al., 2016]. For

example, an image that has undergone small geometrical modifications could

have a large MSE with respect to the original image yet appear identical to the

human viewer. The reverse is also true, in that an image distorted by additive

white Gaussian noise or blurring may have a small MSE with respect to the

original image, yet appear very different [Wang and Bovik, 2009]. These issues

highlight the fact that the Human Visual System (HVS) is highly adapted for
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extracting structural information [Wang et al., 2004], whereas measures such

as PSNR deal with information at a pixel level.

As a consequence of these issues with PSNR, a range of alternate measures

have been explored that attempt to mimic the qualities found in the HVS.

These qualities have been explored using psychological and physiological ex-

periments. Many approaches attempt to estimate the visibility of errors, and

weigh these according to some criteria to adjust the MSE and estimate the

quality of an image. An example of this is an approach whereby an estimate

of the threshold at which stimuli are apparent is made and this is used to

to define visual error sensitivity [Wang et al., 2004]. One of the issues with

studying these type of phenomena is that most psychophysical experiments

are conducted using relatively simple patterns, and this does not necessarily

generalise to the complexity of the real world. Also, it does not always follow

that error visibility leads to loss of quality [Wang et al., 2004].

A different approach to the methodology of trying to mimic the HVS is

measuring structural information change to provide an approximation of im-

age distortion. One of the measures using this approach is the SSIM which

evaluates the signal changes between two complex-structured signals directly.

In SSIM, the luminance, contrast, and structure of the image signal are com-

pared separately [Wang et al., 2004]. While PSNR considers the squared error

between pixels, SSIM takes into account the idea that pixels have a strong

interdependency especially when they are spatially close.

To achieve a measure of this interdependency, SSIM removes the contrast,

and luminance components of an image, and then measures structural at-

tributes. Where there are two aligned image patches x and y from the same

location, luminance is defined based on a comparison of the average signal

intensity for each image being compared. These values are defined as µx and

µy. In this approach, the luminance is the product of the illumination and

the reflectance. To calculate contrast, luminance is then removed from each

signal by subtracting average signal intensity from each pixel value. Contrast
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is defined as a comparison of the standard deviation of each signal, σx and

σy. To estimate structural differences, the signals are first normalized by di-

viding by their own standard deviation, and the covariance, σxy, is calculated.

The structural information therefore represents the structure independent of

contrast and luminance.

Equations to define the concepts luminance, contrast and structure are:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(2.3)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C1

(2.4)

s(x, y) =
σxy + C3

σxσy + C3

(2.5)

In these equations, several constants are introduced, namely C1, C2, C3. These

serve to avoid instability when standard deviation values are close to zero. For

further definition of these constants see [Wang et al., 2004].

The entire SSIM is defined as:

SSIM(x, y) = [l(x, y)α] · [c(x, y)β] · [s(x, y)γ] (2.6)

where α and β and γ are the weightings of the luminance, contrast and struc-

ture which is used to adjust the relative importance of each. In this study

these were left as the default of 1.

As image distortions are likely to be spatially variant, i.e., image quality

will be better in some areas than others, SSIM is calculated locally using local

variance and mean statistics. To calculate SSIM for an entire image, a sliding

window is used to move across the image, pixel by pixel. At each step the SSIM

index is calculated resulting in an SSIM quality index map. This quality map is

essentially a distortion matrix of the two images, so if one image is considered

perfect, then the SSIM index shows where the images differ. The mean of this

quality map is used to calculate the overall image quality. SSIM values range

between 0 to 1 where a perfect reconstruction yields 1.

One issue with this method is what the authors call blocking artifacts. This

is overcome by using a 11 x 11 circular-symmetric Gaussian weighing function
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with standard deviation of 1.5 samples that is used to weigh statistics for each

pixel calculation [Wang et al., 2004]. In this study, the default Gaussian and

sigma values 11 and 1.5 are used for the SSIM calculation.

[Hore and Ziou, 2010] investigate the relationship between PSNR and SSIM

in order to better understand when one metric is better than the other, and

derive a simple analytical relationship between them. Using a variety of image

distortions on images from the Kodak photo database, the authors showed

that the luminance component of SSIM when comparing images f and g,

l(f,g)>0.991 (≈1), for common and well known degradations such as Gaus-

sian blur, additive Gaussian white noise, jpeg and jpeg2000 compression. In

these situations, it can be mathematically proven that PSNR and SSIM are

not independent and essentially have a linear relationship when SSIM > 0.2

and SSIM < 0.8.

Following up on the mathematical proof, [Hore and Ziou, 2010] experimen-

tally measured the sensitivity of PSNR and SSIM to the different types of

degradation applied to different images. Using a group of degraded images, a

function called the F-score is used to calculate the variance of the set of mean

values of the PSNR or SSIM in all groups over the mean value of the within-

group variances. A low F-score indicates that the parameters do not have a

huge effect on the quality measure. It is found that PSNR is very sensitive

to Gaussian noise and slightly more sensitive than SSIM to Gaussian blur,

whereas SSIM is slightly more sensitive than PSNR to the jpeg2000 quality

compression parameter [Hore and Ziou, 2010].

Image quality details, depend on the sampling density of the image, the

distance from the image plane to the observer, and how perceptive the observer

is. SSIM has been extended to take into account the multi-scalar nature of

the HVS. One example of this is MS-SSIM, a multi-scale version of SSIM that

weighs SSIM computed at different scales according to the sensitivity of the

HVS. MS-SSIM works by iteratively passing over the image, applying a low

pass filter and downsampling the filtered image by a factor of two at each
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pass. At each pass, the contrast and structural components of the image are

measured as per SSIM. The luminance quality of the image is only measure at

the final pass. As per SSIM, the final metric is an average of the measurement

for each pixel, or each downsampled area. The different scales are weighed

using constants that have been established by experimentation with the by

HVS to obtain an overall measure. The authors find that the MS-SSIM out

performs single scale SSIM measurements by better correlating with how a

human perceives image quality [Wang et al., 2003]. Another variant of SSIM

is the so called complex wavelet or CW-SSIM, which is more robust to small

geometric distortions [Wang and Bovik, 2009].

Rather than specifically codify an image quality metric to try and esti-

mate human judgement, [Zhang et al., 2018] find that internal activations of

networks trained for high-level classification tasks correspond to human per-

ceptual judgements fair better than mathematical formula such as SSIM. One

of the issues with pixel based metrics such as SSIM is they rely on data match-

ing up spatially, and cannot handle situations where spatial ambiguities are a

factor.

The stronger a neural network performs at classification or detection, the

more closely the model aligns to human perceptual behaviour. In this metric,

the distance between two patches is calculated by normalising the activations

and computing the `2 distance. A scaling vector is applied to the activations

from each layer so that layers with more channels have the same weight as lay-

ers with fewer channels. Distance is then averaged across spatial dimensions

and across layers. The metric, called Learned Perceptual Image Patch Sim-

ilarity (LPIPS), is tested using distorted data with random noise, blurring,

spatial shifts and corruptions. The authors used a Two Alternative Forced

Choice (2AFC) test that asks which of two distortions is more similar to a

reference. From this, it is found that LPIPs performs better than various low-

level metrics in terms of replicating human perception. The different networks

trialled included AlexNet, VGG, and SqueezeNet perform at a similar level to
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each other [Zhang et al., 2018]. The mechanism used for LPIPs quality met-

ric is the same mechanism leveraged by perception loss, which is explored in

further detail in Section 2.7.

2.6 Loss Functions

For a long time, despite being the driver of a network’s learning, the loss func-

tion attracted little attention within the image processing research community.

In recent years, this has changed, and the loss function has become one of the

hot spots of research, with much of the effort focused on improving or con-

structing loss functions for a specific algorithm or problem [Zhao et al., 2016].

Mean Squared Error (MSE) or `2 is the dominant loss function used re-

gression tasks, that is used in a wide range of applications including super-

resolution. The reasons that MSE is so popular are that it is convex and

differentiable, and is often available pre-packaged in software applications that

make it easy to use [Zhao et al., 2016]. In addition, MSE is simple and easy

to understand, and relatively computationally cheap [Wang and Bovik, 2009].

In the context of image processing, MSE quantifies the difference between the

original image and the distorted image. In super-resolution, it quantifies the

error between the HR and upsampled LR images. If N is the number of pixels

and x = (xi|i = 1, 2, · · · , N) and y = (yi|i = 1, 2, · · · , N), then this can be

defined by the equation:

MSE(x, y) =
1

N

N∑
i=1

(xi − yi)2 (2.7)

The `1 loss is also widely used, and differs from `2 in that it does not over-

penalize larger errors, and may therefore have different convergence properties

[Zhao et al., 2016]. The `1 loss can be defined as:

`1(x, y) =
1

N

N∑
i=1

|xi − yi| (2.8)

Pixel-wise loss functions such as MSE struggle to handle the uncertainty in-

herent in recovering lost high-frequency details. As discussed in detail by
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[Ledig et al., 2017], pixel loss functions can appear overly smooth due to the

pixel-wise average of possible solutions in the pixel space. By favouring an av-

erage over the plausible HR solutions, a significant reduction of high-frequency

details occurs [Lugmayr et al., 2020]. Finding pixel-wise averages of plausible

solutions can result in poor perceptual qualities and lack of high-frequency de-

tails at the edges [Rad et al., 2019]. This smoothing factor is known to become

more extreme with higher upscaling factors such as x 4 [Wu et al., 2020]. This

leads to the issue that although using an MSE loss may yield a high PSNR

value, it may correlates poorly with image quality as perceived by a human

observer.

Intriguingly, although SSIM and MS-SSIM are commonly cited functions

to measure image distortion which is discussed in detail in Section 2.5, they are

not commonly used as loss functions in super-resolution. This is despite both

functions being differentiable, and exhibiting obvious advantages over using

MSE in the context of image quality [Zhao et al., 2016].

In a comparison of different loss functions, [Zhao et al., 2016] test the `1,

`2, SSIM and MS-SSIM loss functions with a simple neural network to super-

resolve previously down-sampled images. It is shown that by themselves, SSIM

and MS-SSIM performed slightly worse than the `1 and `2 loss. The perfor-

mance of SSIM and MS-SSIM is strongly related to the sigma value used.

A higher sigma value has the effect of blurring edges, as the calculation for

a given pixel draws information from a large region. Both structural loss

functions are not particularly sensitive to a uniform bias on a flat region, for

example an area of bright sky in a dark image. Both measures preserve the

contrast in high-frequency regions better than the other `1 and `2 losses. Of

the single loss functions, `1 loss is shown to perform the best. The authors of

[Zhao et al., 2016] speculate that this may be because `2 gets stuck more easily

in a local minimum, and for `1 might more easily reach a better minimum. `2

performs well, but creates splotchy artefacts on flat regions of images. The

best results are obtained using multiple loss functions. When the network is
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trained with `1 then `2, it reaches a better minimum than using a single loss

function. To capture both the contrast-preserving characteristics of MS-SSIM

and the performance of the `1 loss, a loss function combining these two is also

evaluated. This combined loss, called mix is found to perform better than any

single loss function or the `1 and `2 combination [Zhao et al., 2016].

In a similar vein, [Yang et al., 2020] uses different loss functions to dehaze

single images using a neural network called Y-net that is named for its struc-

ture. The authors report that when the network architecture was unchanged,

the quality of the results improves significantly with more suitable loss func-

tions. A novel loss function is proposed, extending SSIM by combining it

with the discrete wavelet transform (DWT) called LW−SSIM . This function is

created by dividing images into many patches using DWT with various fre-

quencies. The SSIM loss of each patch is calculated and the weights of each

loss adjusted, to better preserve detail, and prevent halo artefacts. Results

of the study show that for the problem of dehazing images, LSSIM performed

better than an `2 loss when evaluating the quality of the resulting images using

SSIM, but slightly worse when using PSNR.

2.6.1 Perception Loss

The pixel-based loss approach has been used by various authors in work on

super-resolution, colourisation, and other tasks, however, these methods do

not capture stylistic differences between the output and ground-truth image.

Ideally, in super-resolution fine details are inferred from visually ambiguous

low resolution imagery [Johnson et al., 2016]. Both MSE and SSIM have been

found to correlate poorly with human assessment of visual quality, as both

capture low-level differences between pixels.

The perceptual loss function aims to capture differences based on high-level

feature representations rather than pixel based differences enabling a form of

style transfer. The aim of style transfer is to capture the content of a target

content image yc with the style of a target style image ys. In this paradigm,
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content is the larger spatial structures in the image whereas style refers to

the colours and local structures of the image. The insight that allows this

transfer is that higher layers (or the layers closer to the output) in the network

capture the high-level content in terms of objects and their arrangement in the

input image, but do not contain information about detailed pixel values. In

contrast, the lower layers (or the layers closer to the input) of a network capture

information about the style of an image, but not its global arrangement. The

key finding here is that style and content representations are to some extent

separable. When CNNs are trained on object recognition, they develop a

representation of that image that is increasingly explicit, i.e., further along

the network feature maps are increasingly about content rather than style

[Gatys et al., 2015]. This insight has allowed the style transfer process to be

used across a range of spheres in deep learning such as artistic creation, but

also in super-resolution.

To apply style from one image to the content from another image, loss

functions must be devised that allow this transfer. The method used by

[Johnson et al., 2016] to aid super-resolution is to create a network with two

components: an image transfer network and a loss network. As existing net-

works have already learnt to encode perceptual and semantic information, a

network pre-trained for image classification is used as a fixed loss network.

The network most commonly used, and that used by [Johnson et al., 2016], is

VGG pre-trained on ImageNet, or the MS-COCO dataset.

The mechanism behind perception loss is as follows: A Feature Reconstruc-

tion Loss, also known as Content Loss is calculated that encourages pixels of

the output image to have similar feature representations to the target loss by

minimising the squared, normalized Euclidean distance between the feature

map of the output shape from the image transfer network, and the feature

map from the target loss. This uses the fact that the feature maps in the

deeper convolutional layers of a network represent larger-scale features of the

original image. When the image is reconstructed from higher layers, image
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content and overall spatial structure are preserved but colour, texture, and

exact shape may be different. The output image is perceptually similar, but

does not match exactly.

The formula for Content Loss is as follows:

ContentLoss(~p, ~x, l) =
1

2

∑
i,j

(F l
ij(g)− F l

ij(c))
2 (2.9)

Where F l
ij(g) refers to the ground truth feature map for layer l at j th position

of the ith feature and F l
ij(c) refers to the predicted feature map for layer l at

ith feature and j th position.

A second loss function called the Style Reconstruction Loss penalises differ-

ences in style, represented by colours, textures, and common patterns, when

they deviate from the target. To mathematically calculate this deviation, a

concept called the dot product is used. The dot product represents the length

of a projected vectora on vectorb, times the length of vectorb. The larger this

product is, the more similar two vectors are. The sum of all dot products of a

set of flattened feature maps is called the Gram Matrix. This measures overall

style as different feature maps capture different elements of style. A lesser

Gram Matrix means that learnt features differ from target features. A greater

Gram Matrix means that features in each set of feature maps occur together

giving a measure of style similarity [Rupprecht, 2017]. Using a combination

of deep and shallow convolutional layers allows the network to measure style

similarity for different scales [Johnson et al., 2016].

The mathematical foundation of Style Reconstruction Loss is as follows:

StyleLoss(~p, ~x, l) =
1

2

∑
i,j

(Gl
ij(g)−Gl

ij(c))
2 (2.10)

Where Gl
ij(g) refers to the target Gram Matrix for layer l at the j th position

of the ith feature and Fij
l(c) refers to the predicted Gram Matrix for the j th

position of the l layer. In this case, the Gram Matrix G can be defined as:

Gl
ij =

∑
k

(F l
ik(g)F l

jk(c))
2 (2.11)
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or the dot product of the activations for layer l. If the feature maps of the

ground truth and the output are similar, then the same neurons will fire in

the equivalent activation layers, and the gram matrix of each feature will be

similar. This similarity is measured by the MSE (although other similarity

functions can be used).

In addition to the style and content losses, the authors of [Johnson et al., 2016]

used a pixel loss function which is the normalised Euclidean distance between

output and target, and a Total Variation Regularization which encourages

spatial smoothness.

[Johnson et al., 2016] use perceptual loss to super-resolve photos by a fac-

tor of 4 and 8 using the relu2-2 layer from the VGG-16 network (shown in

Figure 2.1) trained with MS-COCO data for the feature reconstruction loss

(content loss). The purpose of the network is to allow transfer of semantic

knowledge from the pre-trained loss network to the super-resolution network.

Style loss is not used in the super-resolution process presumably because the

existing image style is adequate for the task. A histogram match was per-

formed as a post-processing step between the network output and the original

LR data. Resulting images exhibit sharper edges, and a are much clearer than

the comparative pixel based loss methods. However several grid-like artefacts

are present in the images at the pixel level reduced the PSNR and SSIM values

[Johnson et al., 2016].

In a twist on the concept use by [Johnson et al., 2016], [Rad et al., 2019]

use a targeted loss function to favour more realistic textures for different areas.

Images are divided up into different areas: background, boundaries and object.

Then a perceptual loss is computed for each area using a different function

each using a different layer of the VGG loss network. By targeting an area, the

algorithm is able to focus on edges or textures depending on whether the object

is background or foreground. Although this study did not exceed previous

SSIM or PSNR measures for super-resolution, ablation surveys showed that

the images produced are more pleasing to the eye.
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Figure 2.1: VGG-19 architecture: Typically the style feature maps are taken

from the first convolutional block, whereas the content feature maps are from

the fifth block

It is noteworthy that in perceptual loss functions, the VGG CNN is used,

seemingly as this is the CNN used by [Johnson et al., 2016], and works well

for most examples.

The VGG network used has been pre-trained on ImageNet [Simonyan and Zisserman, 2014]

and it is instructive to consider example images from this dataset. Imagenet

images are quite different in colour and texture to image patches created from

satellite imagery. Hence, in this thesis, we also consider using a sparse autoen-

coder to capture feature maps to from the original HR satellite data in order

to better capture feature maps relevant to the original data.

Autoencoders provide a way to learn features from unlabelled data in an

unsupervised manner. In an autoencoder, data in passed through a neural

network to compress the input in to a latent space, and this is then used to

reconstruct the output. In other words, the network tries to reconstruct an

approximation of the input. By creating a bottleneck such as limiting the

number of hidden units, different structures in the data can be discovered

[Ng et al., 2011].

In a so-called sparse autoencoder, this concept is taken further. A sparse
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autoencoder is trained with a penalty, so that only a few nodes are encouraged

to activate in each layer. The idea is that only the most useful structures

relating to the data are discovered rather than redundant information. To

this end, a regularisation term is added to the loss function that penalises the

absolute value of the vector of activations for a layer [Ng et al., 2011].

Several other regularisation processes exist, including batch normalisation.

Batch normalisation acts to standardise only the mean and variance of each

unit in order to stabilise learning. Normalising the inputs can dramatically

improve training time and performance by reducing the covariate shift or the

change in distribution of network parameters during training.

In the perception loss function, Total Variation Loss is used to encourage

image smoothness by reducing the amount of variation in the image. This

concept is also used in image de-noising, where it is well-known that it possesses

some properties such as which may be undesirable under some circumstances,

such as staircasing and loss of texture [Chen et al., 2010]. Several algorithms

exist to address this issue for example the total variation minimizing process of

Rudin–Osher–Fatemi (ROF), where the model seeks to preserve image features

such as edges [Rudin et al., 1992].

2.7 Perception-Distortion Trade-Off

[Blau and Michaeli, 2018] argue that there is an inherent trade-off between the

perceptual qualities of an image, and the amount of distortion present when an

image is recreated from noisy data or super-resolved. In this context, distortion

refers to the dissimilarity between the reconstructed image x̂ and the original

image x. Perceptual quality refers to the visual quality of x̂, regardless of its

similarity to x. In other words, perceptual quality determines whether or not

x̂ looks like a valid natural image. x is a member of a set of natural images pX ,

and x̂ is a member of a set of derived images pX̂ . Low perceptual differences

occur when the distribution of reconstructed images approaches that of the
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set of natural images or when d(pX , pX̂) approaches 0, where the divergence

function d corresponding to the HVS, has yet to be fully understood. In

contrast, MSE estimates an average values over all possible explanations which

in itself is not necessarily a valid image, and can be outside the manifold of

natural images.

[Blau and Michaeli, 2018] find empirically and through mathematical proof

that the relationship between distortion and perceptual qualities is a convex

curve. To improve the perceptual qualities of an image to be very close to

the ground truth implies distorting the image, and visa versa. From a prac-

tical point of view, there is an ideal place on the curve where distortion and

perceptual validity are balanced depending on the use-case of the image.

The authors compare different super-resolution algorithms with regards to

perceptual and distortion qualities of generated images. GANs are found on

the perceptual side of the curve, whereas feed-forward networks with an MSE

loss such as DeepSUM are found on the opposite side where distortion is min-

imised. This finding is echoed by the authors of ESRGAN [Wang et al., 2018].

In this continuum there is an unattainable region where both perceptual qual-

ities are very good and distortion is minimised.
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Figure 2.2: Perception-distortion tradeoff from [Blau and Michaeli, 2018]

showing how improving an algorithm in terms of perception occurs only at

the expense of increasing distortion and visa versa

According to the authors of [Blau and Michaeli, 2018], a Generative Adver-

sarial Network (GAN)is the perfect place to explore this balance. As discussed

further in Section 4, the loss function in a GAN can be composed of an adver-

sarial loss and a distortion loss. This can be described as:

`GAN = `distortion + `adversarial (2.12)

where the distortion loss is typically an MSE loss, and the adversarial loss is the

standard GAN adversarial loss which measures the deviation of the generated

images from data distribution. By increasing the relative portion of MSE

versus adversarial loss in a GAN, it is possible to move along the perception-

distortion curve, and move from a blurry accurate image to a sharp but less

accurate image.

It is important to note that based on the literature, the existence of the per-

ception distortion trade-off is not universally accepted. [Lugmayr et al., 2020]

explore normalising flows (see Other Generative Models), which may not have

the same limitations as GANs. However, as this thesis compares feed-forward

networks with the output of GANs, discussion of this trade-off is relevant.



Chapter 3

Methodology

In the experiments presented in this thesis, images cropped from Sentinel 2

satellite data are super-resolved using aerial photography as a ground truth.

We consider three methodologies: Firstly, a feed-forward network called Deep-

SUM is trained and used to super-resolve multiple LR images to a single prod-

uct. Different loss functions are tested to improve on the original process.

Secondly, a GAN called ESRGAN is trained and used to super-resolve single

Sentinel-2 cloud free images. Finally, the two methods, are combined whereby

the product of DeepSUM is super-resolved and then passed through ESRGAN

minus the upscale step, to improve the perceptual qualities of DeepSUM’s

output. These processes are shown diagrammatically in Figure 3.1. In each

super-resolution process, images are super-resolved by a factor of four from

128 x 128 pixels to 512 x 512 pixels.

3.1 DeepSUM

The feed-forward network, DeepSUM is an example of discriminative learning

applied to super-resolution. DeepSUM is a CNN developed by a team at Po-

litecnico di Torino for super-resolving multiple unregistered temporal images

to a single HR image using an upscale factor of three: In the original algorithm,

the LR images are up-sampled from 128 x 128 pixels to 384 x 384 pixels. In

this thesis, the algorithm has been adapted to up-sample imagery by a factor
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of four to 512 x 512 pixels, among other changes.

Given the distortion-perception continuum explored in Section 2.7, Deep-

SUM is expected to produce an output that minimises distortion at the expense

of perception. DeepSUM employs a supervised, discriminative deep learning

approach, where the CNN learns the residual between a bicubic interpolation

and the ground truth. Using multiple images, it aims to exploit the extra

information provided by the temporal depth.

The method won the PROBA-V super-resolution challenge issued by the

European Space Agency (ESA) [Molini et al., 2019]. In the PROBA-V chal-

lenge, teams are given multiple images from each of 78 Earth locations that

need to be super-resolved against an HR image taken from the same satellite.

The satellite data used by PROBA-V is Top-of-Atmosphere reflectances for the

red and NIR spectral bands at 300m (LR) and 100m (HR) resolution. Each

image comes with a quality map indicating pixels affected by cloud, shadow,

ice, water etc. Each data point contains one HR image and several LR im-

ages recorded within 30 days of each other. This set of images is referred

to as an image set. At each location, there are up to 19 different LR im-

ages. The data is not corrected to align with each other [Molini et al., 2019].

The unique feature of this dataset is that both the HR and LR images have

been separately acquired by the same satellite, as opposed to using artificially

downsampled data, i.e., data that has been previously downsampled from an

HR image [Molini et al., 2019]. The competition expected LR images to be

super-resolved from 128 x 128 pixels to a 384 x 384 pixel image.

3.1.1 DeepSUM Architecture

The DeepSUM process is a CNN with three main parts: an SISRNet block that

performs several 2D convolutions followed by instance normalisation on each of

the individual LR images; a RegNet block where the images are registered with

respect to the best image in the group; and a fusion block called FusionNet

where the multiple outputs are fused into a single image using 3D convolutions.
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This fusion happens progressively so that the multiple images are gradually

reduced down to a single image in a slow fusion that allows the network to

learn relevant features from the feature space. Finally, a residual connection

is added to the fusion output as a mean of the input images. DeepSUM is

optimised in an end-to-end fashion so that the registration and fusion tasks

leverage the learning capabilities of the SISRNet block. The output image is

a single super-resolved image. The overall process is shown in Figure 3.2.

3.1.2 DeepSUM Unique Features

The algorithm has unique features that allow it to achieve a top result. The

spatial registration task, which occurs in the RegNet block, occurs inside the

algorithm itself. Registration filters are dynamically computed for each image,

and the network makes use of the features to compute the optimal registration

per image, rather than performing the registration in the pixel space. Accord-

ing to the authors, using the feature space is advantageous as it makes the

algorithm robust to scene variations. The spatial registration step is trained

concurrently as the image is super-resolved rather than doing this as a pre-

processing step as occurs in the majority of other MISR methods. When the

authors tested the network with and without the RegNet block, it was found to

have a small but significant effect on the PSNR values obtained from passing

test data through the network.

Another key aspect of the method is the use of what is called mutual

inpainting, which is the process whereby unreliable areas as defined by the

quality map are filled in with values from feature maps from other images,

with more reliable values. This is important as cloud areas and other similar

quality issues do not provide any useful information and if left in the dataset,

create a lot of noise.

The loss function used in the algorithm is a modified MSE that uses only

HR pixels clear of cloud, and image sets where at least one LR image is clear.

Moreover, as each of the output images and the ground truth HR image can



39

have quite different brightness from each other, the modified loss function

equalises the brightness intensities between the output SR image and the HR

target. Also as each of the LR image could be expected to be shifted by a

certain number of pixels, the output SR image is cropped by the maximum

expected shift. Similarly, the evaluation function for the network, used to

assess performance is a modified PSNR method. The authors note that this

is also the method used by the ESA challenge to compared scores.

DeepSUM uses instance normalisation after each convolution in place of

batch normalisation. This means the network can be trained independently of

brightness differences between the images. Each layer in the network applies

Leaky ReLU activations, except for the last layer, which uses the identity

function.

3.1.3 DeepSUM Training and Metrics

The authors of DeepSUM state that the algorithm is difficult to train end-to-

end from scratch due to several local minima, so they resort to pre-training

the RegNet and SISRNet blocks. They train SISRNet (the initial block) by

resolving single images against the corresponding HR image. This trains the

block to find spatial correlations to generate the best feature maps for the

SIRS task. They train the RegNet step to generate registration filters, i.e., a

set of filters of size K×K that correspond to the set of possible shifts that an

image would need to move.

The measure used by the authors of DeepSUM to rate is efficacy and com-

pare the network to other similar networks is based on PSNR. A modified

PSNR (mPSNR) is used, which only compares pixels where both the LR in-

put images and HR ground truth image are cloudless.

From this, the authors find that the more images are used in an im-

age set, the better the result, to a maximum of around 8 or 9 images, at

which point, more images do not increase the accuracy. In the authors com-

parison of the DeepSUM algorithm and other state-of-the-art deep learn-
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ing super-resolution algorithms such as IBP [Irani and Peleg, 1991] and DUF

[Jo et al., 2018], DeepSUM was found to perform significantly better than

bicubic interpolation, and better than other methods.

3.1.4 DeepSUM Algorithm Changes

For the experiments in this thesis, the DeepSUM algorithm, has been adapted

to super-resolve Sentinel-2 data by a factor of 4 (rather than 3 as used in

the original algorithm), using aerial imagery as ground truth HR images. This

change is made to better match the data, as 10m pixels from Sentinel-2 resolve

well to 4 × 2.5m pixels with no rounding required. This change also means

the up-sampling factor is the same as used in ESRGAN, which make these

methods more comparable. Several changes are made to the algorithm to

facilitate using these datasets with a different up-scaling factor.

Tweaks were required to the algorithm to work with a different size image

set. In the Fusion Net sub-network, feature maps from each of the individual

images are combined to create a single image. The original algorithm used the

best 9 images in a set and these were reduced down to a single image using

four 3× 3× 3 3D convolutional layers. A reduced image set size necessitated a

minor architectural change. If c is the convolution size and t is the size of the

tensor in the temporal dimension, each convolution step reduced the tensor in

the temporal dimension by a factor of t - c + 1. With a reduced set size, this

required a lesser reduction. In place of the four 3 × 3 × 3 3D convolutions,

three 2 × 3 × 3 3D convolutions were used followed by a single 3 × 3 × 3 3D

convolution. These different configurations are shown in 3.3.

Other updates to the original algorithm include the creation of different

loss functions, and addition of several accuracy metrics, notably SSIM and

variation loss (see Section 4.4).
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3.2 Sentinel-2 Imagery

The data used in this study is real LR data, not downsampled HR data. This

represents both a challenge and an opportunity. A challenge in that exten-

sive pre-processing has to occur to make the training data and the ground

truth work within the network. The opportunity is to test assumptions made

in other studies where synthetic data was used, i.e., LR data created by

down-sampling the HR ground truth data, for example [Wang et al., 2018],

[Hoque et al., 2019]. Synthetic data can run in to issues by potentially hiding

shortcomings of the model used [Zhao et al., 2016].

The ESA designed the Copernicus Sentinel-2 mission to monitoring vari-

ability in land surface conditions to replace and provide continuity for the

SPOT satellite data. Sentinel-2 has a wide swath of 290km and high revisit

time of 5 to 10 days for each satellite. The mission comprises a constella-

tion of two polar-orbiting satellites placed in the same sun-synchronous orbit,

phased at 180° to each other. With these characteristics, under cloud-free con-

ditions, mid-latitudes are imaged every 2 to 3 days by one of the two satellites

[European Space Agency, 2013].

Sentinel-2 satellites have a range of sensors at different spatial resolutions

resulting in 13 distinct bands. As shown by the figure above, the four bands

comprising the RGB and near-infra-red (NIR) area of the spectrum have 10m

spatial resolution. These bands were used in this study as they correspond to

the bands that were available in the ground truth HR image used.

The other 9 bands available from Sentinel-2 satellites are mostly in the

short-wave infrared (SWI) and NIR areas of the spectrum and have either

20m or 60m resolution. As no HR data is available in equivalent bands, there

is no way of training these bands.

Sentinel 2 outputs are available as a range of products including uncom-

pressed raw data, and radiometrically corrected radiance data. The Level-

2A product used in this study provides orthorectified Bottom-Of-Atmosphere

(BOA) reflectance with dub-pixel multi-spectral registration. This is a Level
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1C product (top-of-atmosphere) that has been resampled with an atmospheric

correction applied. A scene classification map (cloud, cloud shadows, vegeta-

tion, soils/deserts, water, snow, etc.) is included in the product. The Sentinel

data is disseminated as tiled ortho-images, where each tile is 100km× 100km

in the UTM/WGS84 projection. The tiles are available to users in Sentinel-

SAFE format from the Copernicus data hub[Tona et al., 2018]. Data older

than a year is archived and kept in cold storage for users to access on re-

quest. Of the two satellite currently in orbit, Sentinel-2A was launched in

2015, whereas Sentinel-2B was only launched in March 2017, so no data is

available from this satellite from before this time.

The HR data used in this study is from the Waikato Regional Aerial Pho-

tography Syndicate (WRAPS) dataset owned by the Waikato Regional Coun-

cil. The data is freely available via their download service [LINZ, 2017]. A

related data layer called the Waikato 0.3m Rural Aerial Photos Index Tiles

contains metadata for each data tile including capture date. The dataset has

30cm pixel resolution GeoTiff data in the New Zealand Transverse Mercator

(NZTM) map projection with a spatial accuracy of 0.5m. Data was collected

over the course of the three years from 2016 to 2019 with the majority of data

flown between December and March. As the data was generated from mid-

day closely-spaced flight paths on selected days, it is almost entirely cloud free

with minimal shadows. Included in the data is an auxiliary layer with flight

dates. Using this layer means that data from a certain date period could be

identified.

Data from Sentinel 2 was selected to show an intersection of the following

qualities:

1. Sentinel data that is captured at the same time as WRAPs aerial pho-

tography.

2. Sentinel data that occurred after the launch of Sentinel-2B so as to take

advantage of twice as much temporal data.
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image name image date satellite

S2B MSIL2A 20190116T221559 N0211 R129 T60HUC 20190116T235825 16 Jan S2B

S2A MSIL2A 20190121T221601 N0211 R129 T60HUC 20190121T234234 21 Jan S2A

S2B MSIL2A 20190208T222539 N0211 R029 T60HUC 20190209T000943. 8 Feb S2B

S2A MSIL2A 20190210T221601 N0211 R129 T60HUC 20190214T160249 10 Feb S2A

S2A MSIL2A 20190213T222531 N0211 R029 T60HUC 20190214T000858 13 Feb S2A

S2B MSIL2A 20190215T221309 N0211 R129 T60HUC 20190216T000238 15 Feb S2B

S2B MSIL2A 20190225T221559 N0211 R129 T60HUC 20190226T013517 25 Feb S2B

S2A MSIL2A 20190302T221601 N0211 R129 T60HUC 20190303T001135 2 Mar S2A

Table 3.1: Table showing images used in study

3. Sentinel data that is as cloud free as possible. In the Waikato this means

data from late summer to early autumn is likely to be the best.

4. Data that exhibited a wide range of different landscapes in order to better

train.

5. Data with as few artefacts as possible in both the WRAPs and Sentinel

datasets.

With these criteria, the area of interest selected was from February 2019

in the southern Waikato region of New Zealand. The time span used for the

study was approximately six weeks, i.e. similar to the time span used by the

authors of DeepSUM. The Sentinel images shown in Figure 3.1 were obtained

from the Copernicus site.

3.3 Processing Environment

All data pre-processing occurred on a Windows PC with an Intel(R) Core(TM)

i7-9750H CPU, 2.60GHz, 2592 Mhz, 6 Core(s), 12 Logical Processor(s) with a

RTX 2060 GPU with 6GB on-board memory. Training occurred on a Linux

Ubuntu server using a Nvidia 1080 GPU with 8 GB on-board memory.

Development of models and data processing was coded in Python 3.6 using

Tensorflow and Keras. TensorFlow is an open source library for numerical
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computation and large-scale machine learning. TensorFlow version 1.13.1 was

used in this study for the majority of processing and training DeepSUM. Ten-

sorFlow version 2.1 was used for training and inferring with ESRGAN. Keras

is a high-level neural networks library that runs on the top of TensorFlow. In

this study Keras version 2.2.4 was used in conjunction with TensorFlow 1.13.1.

3.4 Image Processing

A significant series of preprocessing steps needs to occur before data can be

used in DeepSUM and ESRGAN. These steps involve processing the LR, HR

and cloud mask data, then cropping images from these datasets. Finally

patches are taken from the image sets. Figure 3.1 shows these steps at a

high level.

3.4.1 WRAPs Processing

As the WRAPS data and the Sentinel-2 images do not line up completely, the

final data used is the intersection of these two image layers. This shown in

Figure 3.5

WRAPS Index Tiles were merged by month to obtain a data layer. Figure

3.6 shows where large areas of aerial photography data is available from the

same dates. Areas where tiles are sourced from multiple dates, e.g., Feb/Mar

2019 were excluded from the data layer. In this study imagery from February

2019 was used, as this presents an adequately sized area.

The WRAPS data was processed using ArcGIS Pro [Esri, 2021]. The fol-

lowing steps were carried out:

1. The WRAPs image tiles were added to a mosaic dataset, and overview

tiles created. This made subsequent data processing more manageable

and faster .

2. The resulting mosaic was reprojected from NZTM to a single image in

WGS84 projection, so as to use the same projection as the Sentinel data.
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3. The data was resampled down from 0.3m pixels to 2.5m pixels. This

resampling meant that the WRAPS data was now exactly 4 times higher

resolution that the Sentinel RGB images.

4. As part of the resampling, the WRAPS data was aligned with the Sentinel-

2 images so that a single Sentinel-2 image pixel contained exactly 16

WRAPS pixels. WRAPs was aligned to Sentinel rather than the other

way around, as the down-sampling step gave an opportunity for data

alignment without further information loss.

A mask area raster layer was created in order to mask out areas where

either WRAPs data or Sentinel data was not available or where the data was

located in the sea.

3.4.2 Cloud Processing

As the WRAPs data is effectively cloud free, there is no need to account for

cloud issues in this data. However, to make DeepSUM work without further

adjusting tensor sizes, etc., a quality mask with no quality issues was created.

For the original DeepSUM algorithm, a quality map was helpfully supplied

by the ESA. This quality map included cloud, cloud shadow and other ambigu-

ous areas. In order to replicate the quality map for the Sentinel 2 data, the

SNAP tool including the separate IdePix plugin from ESA [ESA, 2020] was

used to process data. Using the .SAFE format, RGB imagery was exported

from SNAP as a PNG file at full resolution for further processing. A quality

map was created using the following process inside the SNAP tool for each

image:

1. In order to create a cloud mask layer IdePix uses several bands other than

RGB. The image was resampled using the S2 Resampling Processor. This

serves to give the lower resolution bands in the image the same resolution

(10m) as the RGB bands.
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2. The IdePix plugin was used to create a cloud layer including cloud

shadow with an eight pixel buffer.

3. A layer was created with any pixels that the IdePix algorithm marked as

invalid, cloud, ambiguous cloud, sure cloud, cloud buffer, cloud shadow,

cloud cirrus, cloud cirrus ambiguous, clustered cloud shadow.

4. The output of this layer was merged with the output of a combined

boundary layer to screen out areas where no image was available for a

particular Sentinel 2 photo.

5. The bit depth of the resulting layer was updated to 1bit in order to

match that used in the original algorithm.

In creating a raster defining areas to mask, a balance was struck between re-

moving too much cloud and useful imagery and removing too little. Inevitably,

there are areas of wispy cirrus cloud around the edges of the more obvious cu-

mulus clouds where IdePix does not always recognise all possible cloud areas.

Adding a buffer to the clouded areas helped ensure the vast majority of cloud

was removed. Figure 3.7 shows an example of a cloud mask.

3.4.3 Image Cropping

DeepSUM works on a single image band at a time, so processing needed to

occur to create input products for each band. DeepSUM uses a data concept

called an image set. An image set is a numbered directory containing a set of

temporal LR images for each band, a corresponding HR image, and a cloud

mask for each of the images in an image set, including the HR image. In the

original DeepSUM, each LR image was 128 x 128 pixels, and each HR image

was 384 x 384 pixels. As mentioned above, this data was supplied by the ESA.

In order to crop images to create image sets a script the following processes

were run:

1. The area of the Sentinel-2 tile was randomly sampled, and a box of 128

x 128 pixels was drawn in the image
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2. If all four corners of the box fell outside the mask area, then a clip was

taken of all Sentinel-2 images (LR), each of the corresponding Quality

Mask (cloud) layers, the single WRAPs image (HR), and the fakecloud

layer. Note that the WRAPs data was clipped at 512 x 512 pixels, i.e.,

16 times the size of the LR data.

3. When the Quality Mask image was clipped, the resulting raster was

reversed so that cloud was 1 and non-cloud is 0 i.e. the opposite of the

original cloud layer created by SNAP.

The result was a set of image sets, so that each image set contained 8 LR

images for each of the three bands, 8 LR RGB images and 8 quality cloud

mask images, each of 128 x 128 pixels. The ground truth in each image set

was a single HR image of 512 x 512 pixels for each band, an HR RGB image,

and a single fakecloud image. As per the original DeepSUM, the LR images

and HR images used were all 8 bit, however the cloud mask image was 1 bit.

3.4.4 DeepSUM Data Preprocessing

Data pre-processing occurred to prepare the data for training and convert the

images into a set of pickled numpy arrays [NumPy, 2021] containing image

patches and metadata to feed in to the network. This is shown in figure 3.1

as the Preprocessing Steps. The amount of data generated is shown in Figure

3.2.

Each of the cropped LR images in an image set was first registered against

the best LR image in the set. The best image was the most cloud-free image.

A Fourier shift was performed on each of the images to move them by up to

4 pixels towards this image. Images where there was more than 70% cloud,

or images which the Fourier shift algorithm tries to move by more than 4

pixels, were discarded. In the original DeepSUM, image sets with fewer than

9 images were discarded and when more than 9 images were present in a set,

the clearest 9 images were used. In this study, as less temporal imagery was
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Data Description

Raw data
• 8 Sentinel-2 temporal images for a single area

• 1 WRAPs mosaic

Image Sets
• 500 (training and validation).

• 100 (test)

Pickled patches
• up to 80 000 patches for each band

• equates to 20 patches per usable temporal image (train-

ing and validation)

• up to 16 000 patches for each band (test)

Inference prod-

uct
• around 90 images inferred (from 100 image sets) for each

band

Table 3.2: The amount of processing output generated at each stage of the

process

available, image sets with fewer than 6 images were discarded. An initial set

size of 6 was chosen as this maximised the use of the available data, while

still maintaining an adequate number of images. As discussed, the authors of

DeepSUM found that a larger image set gave a better result up to 9 images.

The LR images and their corresponding cloud masks were bicubically up-

sampled by a factor of four. An arbitrary 20 patches of 96 x 96 pixels were

taken from each image or cloud image in an image set. 20% of the data was

randomly set aside as a validation set. Finally, the sampled images, masks,

validation sets, and a shift matrix were loaded into blocks of numpy arrays
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which were pickled. In this study, a further numpy array was created contain-

ing the number of the image sets that failed due to too much cloud, or too

large of a Fourier shift. This was done to speed up the network processing

time.

Several aspects of the original study were not implemented in this study.

Some of this was a function of the data used. The data used in this study

consisted of 8 bit images whereas the original DeepSUM PROBA-V data con-

sisted of 14 bit images in 16 bit files. In the original DeepSUM, pixels with

very high values (i.e., over 60000) were removed from the PROBA-V data.

This step was not necessary in this study, as data artefacts such as very high

pixel values were not a factor.

In the original DeepSUM, the preprocessing was done in multiple steps,

however, in this study, these steps were combined in to a single step that also

included data standardisation (discussed in the Section 3.4.5).

3.4.5 Data Standardisation

In the original DeepSUM algorithm, the entire dataset is standardised to have

a mean of 0 and a standard deviation of 1 using the same adjustment for each

image. This aided training as both unscaled input variables and an unscaled

ground truth can result in a slow or unstable learning process. Also, gradient

optimisation methods converge more rapidly with when features have zero

mean and unit variance [Waldner and Diakogiannis, 2020]. Data scaling using

fixed values, probably worked well in the original DeepSUM, as return values

from the ProbaV satellite are more consistent than those from the Sentinel 2

satellites. In the modified DeepSUM process, standardisation is carried out as

a pre-processing step, rather than as part of the algorithm. This is necessary

as it allows mean and standard deviation values to be calculated for each of

the individual photos taken and applied to each component of the image set.

Figure 4.2 shows how the different images of the same area have different pixel

values, so that it is better to calculate the image mean separately for each
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image.

3.5 Data Augmentation

A second set of image sets was created where the image sets were augmented by

adding downsampled HR image crops to each imageset. Three downsampled

HR images were created in each imageset with either no modification, bright-

ness increased by 20% from the existing HR image, or brightness decreased by

20% from the existing HR image.

Using the augmented data meant that the set size could be increased from

6 images per set to 8 images per set. The augmented image sets contained

either 2 or 3 augmented images and 5 or 6 LR images depending on the number

of LR images available (after some images could not be registered during the

pre-processing step), to make a total of 8 images per image set. Memory

capacity issues on the training server meant that 9 images per set could not

be processed, so no further augmentation was tested.

3.6 DeepSUM Pre-training

In the original DeepSUM algorithm shown in Figure 3.2, the authors found

that pre-training the SISR block and the RegNet block improved the ease of

training of the entire network. In order to test that the weights obtained by

pretraining DeepSUM on PROBA-V data would still work for the dataset used

in this study, the pre-training SISR was run on Sentinel-2/WRAPs data using

the Red band only, and compared to the original weights.

Results in Table 3.3 show that the weights from this study and the original

DeepSUM weights are roughly equivalent, and so pre-training on the new data

is not necessary. It was also found that pre-training separately for each band

was not necessary, and using the generic weights was sufficient.
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neuron
Our Weights

(conv up 8/W)

DeepSUM

pretrain weights

1 0.10122343 0.09070993

2 -0.04995382 -0.04984398

3 0.12592246 0.12341627

4 0.27446136 0.2716387

5 0.03364012 0.02915093

6 -0.18003301 -0.17592782

7 0.01882109 0.01274273

8 0.06290359 0.05531104

9 -0.08259003 -0.08596298

10 0.31987825 0.3082205

Table 3.3: Table showing the convup8 weights from DeepSUM and weights

from pretraining SIRS network on Sentinel-2/WRAPs data as an example.

These weights are sufficiently similar that pre-training on our data was not

necessary.

3.7 ESRGAN

The ESRGAN algorithm is the polar opposite of DeepSUM in that it is more

perceptually focussed. The intuition and design of ESRGAN is described in

4.12. The original ESRGAN was created using pytorch, however the implemen-

tation used in this study was run using TensorFlow 2.1. This implementation

of ESRGAN used 23 ResNet blocks. ESRGAN super-resolves RGB images

(not a single band at a time).

To training ESRGAN, pairs of LR and HR data were serialised as tfrecords,

which are sequences of binary strings optimised for fast data reading [Tfrecord, 2021].

As described in Section 4.12, pre-training was carried out, however only 20,000

steps were required, as the loss quickly converged. Following the pre-training

step, the full GAN was run. As per the original paper, a super-resolution
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factor of 4 was used so patches of 128 x 128 were super-resolved to 512 x

512. The LR image size, and the super-resolution factor are the same as was

used in the implementation of DeepSUM. The exception to this was when

ESRGAN was run against the output of DeepSUM, where data had already

been super-resolved by a factor of 4. In this case, the up-sampling step was

removed from the algorithm, as up-sampling was not required. As per the

original implementation, a batch size of 16 was used for training, apart from

when training against the DeepSUM output, where a batch size of 2 proved

necessary to prevent out-of-memory errors.

3.7.1 ESRGAN Data Processing

When training against Sentinel-2 data, only cloud-free images were used, as

ESRGAN has no built in method for imprinting cloud. RGB images were

selected from the image sets created by image cropping (see Section 3.4.3).

Processes carried out prior to the image cropping step were used to create LR

and HR data inputs for ESRGAN (when super-resolving raw Sentinel images),

as well as DeepSUM (see Figure 3.1). As ESRGAN responds well to a large

number of training images, many more image sets were used to train ESRGAN

than DeepSUM. Table 3.4 shows the amount of data used at each stage of the

process.

3.8 Image Colour Adjustment

Initial experiments showed the results from DeepSUM and ESRGAN did not

match the colours used in the original aerial imagery. Hence, in a final step,

colours on test images were adjusted to match the original. Colour adjustment

occurred in all cases after any training or inference steps. This adjustment

occurred via the the process outlined in Figure 3.9
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Data Amount generated or used

Raw data
• 8 Sentinel-2 temporal images for a single area

• 1 WRAPs mosaic

Image Sets
• 5000 (training and validation). Only rgb images were

used to super-resolve data from raw Sentinel images

• 100 rgb images used only (test)

DeepSUM out-

puts
• 5000 DeepSUM outputs used to train ESRGAN (process

3 in 3.1)

• 100 DeepSUM outputs used as test data

Table 3.4: The amount of processing output used at each stage of the ESRGAN

process

Figure 3.9: Colour adjustment process 1. A dictionary of 1000 images from the

training data was created where each ground truth aerial image was matched

to the corresponding DeepSUM output created from training data. 2. The

histogram of each ground truth and output image was calculated. Note this

calculation occurred as part of the match step as this was easier than storing

histograms in a dictionary. Each input (test) image was matched to the Deep-

SUM output dictionary item where the histogram had the closest match. This

match was made using the python cv2 library HISTCMP CORREL option. 3.

Using this match, the output was matched to the corresponding aerial image

from the dictionary using the skimage match histograms function.
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Using a histogram match would not be expected to give an exact colour

match, but given 1000 samples, it would be expected that any given combi-

nation of colours would almost certainly be found in the dictionary. Once the

dictionary was created, using the DeepSUM output to look-up colours from

the dictionary meant that outputs other than DeepSUM for example GAN

outputs could also be colour adjusted. This has the advantage that the ad-

justment can be performed in practice, when HR images are not available.

[Johnson et al., 2016] appear to have used a similar technique, however, in

their study, a match was created between output and a low resolution dictio-

nary.

3.9 Inferring and Measuring Output

In each variation of DeepSUM and ESRGAN, 100 image sets or images were

inferred from test data to create approximately 90 output images. In the case

of DeepSUM, of the 100 image sets used, approximately 10 could not be used

due to issues with excessive cloud cover over many images in a set, or data

alignment as described in Section 3.4.4.

As described above, methods for assessing the accuracy of DeepSUM out-

put are imperfect. In this study PSNR and SSIM values were used to assess

overall accuracy of DeepSUM. Assessing the accuracy of each test run involved

creating an output product from the preprocessed test data, and running a as-

sessment algorithm over the output to calculate PSNR and SSIM values for

both the output data, and bicubic upsamples of the raw Sentinel 2 imagery.

When creating the bicubic upsamples, only completely cloud free images were

used, and the bicubic output was averaged over each image set. LPIPs was

used to measure perceptual qualities of the RGB images for each of the pro-

cesses.
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Figure 3.1: The overall DeepSUM and ESRGAN super-resolution process

showing (1 - yellow) the adapted DeepSUM process, (2 - green) the ESR-

GAN process used on raw Sentinel-2 data, (3 - red) the ESRGAN process

used on DeepSUM outputs.

Figure 3.2: The DeepSUM network showing the three blocks taken from the

original DeepSUM paper [Molini et al., 2019]
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Figure 3.3: Fusion block modifications for different image set sizes

Figure 3.4: The Sentinel-2 satellite 10m spectral band [Tona et al., 2018]
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Figure 3.5: Intersection of Sentinel 2 and WRAPS data

Figure 3.6: The WRAPS data captured with dates showing Area of Interest
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Figure 3.7: Example of cloud raster showing the area where part of an image

has been removed. Cloud areas are black and non-clouded areas are white. In

this case, the algorithm has missed some of the edges of wispy cloud, plausibly

indicating that there could be some noise in the training data
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(a) patch 16 Jan (b) patch 25 Feb (c) patch 3 Mar

(d) histogram showing pixel spread for images

Figure 3.8: Images and pixel histogram: Three example images are shown of

the red band from a single image set (out of a total of 8 possible images) to

show how the images taken on different dates have a different spread of pixel

values. The images shown are skewed towards to the lower end of the spectrum

as they demonstrate mainly bush.



Chapter 4

Results

Experiments were carried out on the DeepSUM algorithm to find out whether

using different data configurations, updating the loss function used, or making

architectural changes to the algorithm improved the accuracy metrics of the

model. Following this, an ESRGAN model was trained using both raw Sentinel

data and DeepSUM outputs in an attempt to improve the perceptual quality

of the output images.

Initial investigative work on DeepSUM was carried out using the red band

of the imagery. Findings from the red band were applied to the blue and green

bands.

4.1 Data Split

Imagery was split into three categories to reflect the major land types found in

the area as shown in Figure 4.1. These types are: farmland, bush, and mixed.

The mixed land use class is any land where more than 25% and less than 75%

of the area could be defined as bush.
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(a) farmland (b) bush (c) mixed

Figure 4.1: Different land classes in study area

Results of running DeepSUM, shown in Table 4.1, show that the DeepSUM

network performs vastly better than using a bicubic upsample to super-resolve

data using both SSIM and PSNR metrics across all land types.

(a) original LR (b) network output (c) HR ground truth

Figure 4.2: Output of DeepSUM compared to ground truth and bicubically

upsampled image using the red band

4.2 Data Transformation Effects

Various data transformation effects were tested to evaluate what works best

in DeepSUM.

4.2.1 Image Standardisation

The effect of data standardisation can be seen in Table 4.1. While standardi-

sation had a major effect on PSNR values, it did not affect SSIM to the same
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bicubic upsample not standardised standardised

land use class PSNR SSIM PSNR SSIM PSNR SSIM

overall result 15.1 0.27 17.1 0.32 20.1 0.33

farmland 13.5 0.38 18.1 0.47 19.6 0.46

bush 16.8 0.16 16.6 0.18 20.8 0.2

mixed 15.1 0.23 16.3 0.3 19.8 0.31

Table 4.1: Table showing effects of standardising the data on PSNR and SSIM

values when compared to images upsampled using a bicubic upsampling

degree, indicating that contrary to what some other sources have reported,

[Hore and Ziou, 2010], these metrics are to some degree uncoupled. It can

also be seen that while bush has the best PSNR for both the bicubically up-

sampled images, and the images that have passed through the network, it also

has a worse SSIM value. In a similar vein, the network has the least effect

on improving PSNR and SSIM values for the bush land-use class compared to

either farmland or mixed land-use.

The lower SSIM for the bush land-use class compared to farmland can be

seen clearly illustrated in Figure 4.3, showing that bush has a lower SSIM in

general than farmland.

Figure 4.3: Difference in SSIM values for bush and farmland
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Reasons for this are that bush has more pixel variation than farmland in

the New Zealand context where open paddocks tend to be a uniform colour

(see Section 4.4). A high level of pixel-by-pixel variation means that there

is likely to be a low correlation between a pixel’s value and its surrounding

pixels. Adding to this, even two HR images taken at the same time could

see differences in how bush appears as shadow effects, from the slight angle

differences would cause pixel-wise differences in the image. This would not

appear in farmland due to its more uniform nature.

4.2.2 Image Stretches

Various stretches were applied to the LR images to see if more information

could be elucidated, as shown in Figure 4.4. It was hypothesized that expand-

ing the data, particularly in the lower region of the spectrum, would allow

the network to better show different patterns in bush or another of the land-

use classes. In another experiment, a gamma correction of 0.5 was applied to

the image. The gamma correction does not affect the black or white values

in a raster dataset, but affects the contrast of the middle values of the data

[McHugh, 2013]. Following each stretch, the data was standardised, as per the

original dataset.

standardised stretch 1 stretch 2 gamma

land use class PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

overall result 20.1 0.33 18.8 0.26 19.8 0.33 15.0 0.27

farmland 19.6 0.46 18.0 0.38 19.6 0.45 11.3 0.35

bush 20.8 0.2 20.0 0.15 19.8 0.19 19.5 0.19

mixed 19.8 0.31 18.1 0.23 20.8 0.29 15.4 0.27

Table 4.2: Results of running DeepSUM using data stretched with different

parameters

This hypothesize was disproven, as none of the stretched or gamma-corrected
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Figure 4.4: Histograms of different stretches applied to the red band from a

single image from imageset 12. Left top: Original image, Right top: Stretch

1, Left bottom: Stretch 2, Left bottom: Gamma correction

data performed better than the standardised un-stretched data (see Table 4.2).

In each instance, the un-stretched standardised data created a better model.

4.3 Data Augmentation

Use of augmented imagery can improve performance by increasing the size of

the training set, and create variations of images that can improve the ability

of the fit models to generalize. Imagery was augmented using the process

described in Section 3.5.

In this study, DeepSUM performed at a similar or slightly worse level when

run with augmented imagery. In particular, the farmland land-use class did

not super-resolve well. Reasons for this could be that the different texture

and colours of the augmented HR source imagery caused the network to be

less specific to mapping the Sentinel LR imagery to HR. With a different HR

source, this mapping could be more generalised, and therefore weaker.
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6 images per set 8 images per set

land use class PSNR SSIM PSNR SSIM

overall result 20.1 0.33 19.0 0.33

farmland 19.6 0.46 17.3 0.45

bush 20.8 0.20 20.8 0.19

mixed 19.8 0.31 19.6 0.31

Table 4.3: Effect on DeepSUM of using two extra augmented HR images in

the training data. The 8 image sets with 8 images per set included 2 or 3

augmented images.

4.4 Image Variation

DeepSUM does not resolve the high level texture of the images well, particu-

larly in the areas of bush. This effect is expected given the literature on pixel

based loss functions (see Section 2.6). This can be seen in figure 4.5, where

close inspection of an area of bush shows that the original HR image has a high

level of contrast between adjacent pixels, where the texture of the photo could

be described as doppled. In contrast, the LR output is a much smoother image

and adjacent pixel values rarely vary by more than 2. This lack of variation

will show up much more highly in the SSIM metric than PSNR, as SSIM takes

in to account surrounding pixels when assigning a pixel value.
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(a) DeepSUM output bush (b) HR image bush

(c) DeepSUM output farmland (d) HR image farmland

Figure 4.5: Pixel values for both ground truth HR image and DeepSUM output

for equivalent areas of a selected area of bush and farmland. The bush shows

greater variance than the farmland, with the result that DeepSUM performs

better with regards to SSIM on farmland areas than on bush areas

.

To quantify this contrast, an algorithm was run which samples a 100 mini-

patches of size 5 pixels by 5 pixels and 2 pixels by 2 pixels in each of an area of

bush and an area of farmland from the same image patch. The sampling was

carried out on both a ground truth HR image and the output of DeepSUM.
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High Res Image Image output from DeepSUM (MSE)

minipatch size 5 x 5 pixels 2 x 2 pixels 5 x 5 pixels 2 x 2 pixels

farmland 122.6 64.8 21.9 4.4

bush 184.7 91.4 15.8 2.5

Table 4.4: Variance differences between land-use types and ground truth and

DeepSUM output

Figure 4.6: Location of mini-patches used to show differences in variance. The

yellow dots represent a farmland land-use class mini-patch, whereas the red

dots represent a bush land-use class patch

It can be seen in Table 4.4 that in both the larger 5 x 5 and smaller 2 x 2

mini-patches, bush have quantifiably more variance than farmland. The table

also shows that DeepSUM does not successfully replicate the variance found in

the original image in either land-use class, as in both cases the variance seen in

the output image is far lower than the original HR image. However, contrary
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to what is seen in the HR image, the DeepSUM output has a greater variance

within farmland, and lower variance within the bush land-use class. In general,

the algorithm models variance of farmland far better than the variance of bush.

In fact the output image shows very little variance within the bush land-use

class, i.e., a smooth unrealistic image is produced. This could go some way to

explaining why in the derived output, the bush land-use class has a relatively

high PSNR value, but a low SSIM compared to farmland.

It follows that DeepSUM struggles to replicate the variance of the ground

truth. Apart from the use of the smoothing `1 or `2 loss functions, DeepSUM

also employs a merge of the output of SISR blocks, in the fusion step, which

averages the outputs. The nature of this mechanism ensures that the output

data will converge on a mean value with less variation than the original image.

SSIM and Multiscalar-SSIM loss takes information from surrounding pixels

to estimate the value of a particular pixel. This too does not lend itself to

replicating the variation of the ground truth image.

4.5 Effect of Merge Step

The final step that occurs in the DeepSUM algorithm is a merge of the output

of the RegNet block, i.e., a set of single images, upscaled and passed through

the network but not fused, and the output of the fusion step. It was hypoth-

esized that this final step may negatively impact visual detail, by averaging

detail between images in an imageset, to make the image less clear rather than

improve detail.

Results listed in table 4.5 show that while using no merge function did not

improve overall results, the results of the farmland land class were better when

no merge function was used, whereas the bush and the mixed land-use class

did not perform as well without the merge function.
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merge no merge (`2) no merge (SSIM)

land use class PSNR SSIM PSNR SSIM PSNR SSIM

overall result 20.1 0.33 19.1 0.33 18.8 0.33

farmland 19.6 0.46 20.3 0.45 20.4 0.48

bush 20.8 0.20 17.4 0.19 17.0 0.18

mixed 19.8 0.31 18.6 0.31 19.0 0.31

Table 4.5: Results of running DeepSUM with and with out the merge step

using `2, and SSIM loss functions

4.6 Effect of Loss Functions

The original DeepSUM algorithm was trained using an MSE loss, however

as noted previously, other loss functions that take in to account surrounding

pixels could create an output better correlated with the HVS. In this section,

the effect of pixel based loss functions including `1, `2, SSIM and MS-SSIM

are explored, as well as two variants of a perceptual loss function.

4.6.1 Pixel Based Loss Functions

For each algorithm, training was carried out using the standardised dataset

with 6 images per image set. A step size of 5 × 10−6 was used for six epochs

in each case, as it was found that this was sufficient to converge. The SSIM

function was run using the default parameters as used by [Wang et al., 2004]

i.e., a filter of 11 and power factors of 0.0448, 0.2856, 0.3001, 0.2363, 0.1333.

However, in the result below, a sigma value of 3 is used, as this was found to

perform better than the default. The multiscalar-SSIM function was run using

TensorFlow version 1.15, as this allows filter and sigma values to be updated

from the defaults. When using multiscalar-SSIM, the image was downsampled

three times. When this occurs on a 96 x 96 patch, the final scale level has too

few pixels for the function to operate correctly using the default filter value of

11. Hence the multiscalar-SSIM was run with a filter size of 6 and sigma value
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MSE L1 SSIM MS-SSIM

land use class PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

overall result 20.1 0.33 20.1 0.26 20.3 0.34 20.1 0.33

farmland 19.6 0.46 19.7 0.45 19.7 0.48 19.7 0.46

bush 20.8 0.20 20.8 0.20 20.9 0.19 20.8 0.19

mixed 19.8 0.31 19.8 0.31 21.0 0.32 20.0 0.30

Table 4.6: Results from running DeepSUM using different loss functions

of 1.5.

Results in Table 4.6 show that there is some benefit from using different

loss functions in DeepSUM, but this benefit is fairly minor when measured

using pixel based measurements. The SSIM loss performs better than the

other functions on all land-use classes with the exception of bush. There are

subtle yet unexpected differences between the loss functions. One of these is

the fact that the SSIM loss produces a worse SSIM metric on the bush land

use type than the other loss functions. This is unexpected as the SSIM loss

should be optimised for SSIM. It does however make sense when looking at the

pixel values of the bush land-use class. As the SSIM metric is looking at the

surrounding pixels, given a particular pixel, when the surrounding pixels have

a high degree of variation, or change markedly in the spatial dimension, then

this will potentially produce a smoother image that does not necessarily reflect

the variance and texture seen in the original image. This idea is captured in

Figure 4.7
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(a) SSIM field of view of 2 (b) SSIM field of view of 3

Figure 4.7: Graphic showing the SSIM field of view with two different sigma

values. Each line represents one standard deviation, so that pixels values 3

standard deviations away from a pixel still slightly affect that pixel

The SSIM loss function was run with a range of different sigma values, as

it was hypothesized that using a different field of view for the SSIM function

would have an influence on its performance. For example a smaller sigma value

will only take account of pixels close to the pixel being looked at, whereas a

larger value will take more account of pixels further away. The default value

of 1.5 is often used as this worked well on the original data in the study by

[Wang et al., 2004], however it is possible that different datasets could require

different sigma values.
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Figure 4.8: Graph showing performance of DeepSUM using an SSIM loss func-

tion with different sigma values

From 4.8, it is clear that a sigma value larger than 1.5 works better on the

Sentinel 2 satellite data for SSIM.

4.7 Perception Loss Implementation

A perception loss function was created using VGG-19 and imagenet weights,

and integrated into DeepSUM. The function compared the feature-map out-

puts of VGG-19 neural network for the DeepSUM output and ground truth,

and from this returned a loss as described in Section 2.6.1.

As the data fed through DeepSUM was single-band imagery of 96 by 96

pixel patches, and the data expected by VGG-19 consists of 224 by 224 RGB

images, as a preprocessing step, the loss function resized the input to fit VGG,

and stacked three copies of the input data together to produce an RGB ap-

proximation. Deeper neural network layers were used for the content loss

function, whereas layers from block 1 were used for the style loss function.

The style loss function implemented a Gram Matrix equation. In the original

perception loss function described by [Johnson et al., 2016], a total variation

loss function is used as a smoothing function to reduce variation. In this study,
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(a) block 5 conv 2 (b) block 4 conv 1 (c) block 5 conv 1,2

Figure 4.9: Output of DeepSUM using content loss from VGG19 with different

convolutional layers as the loss layer

a total variational loss was not used, as spatial smoothness was not a desirable

outcome.

As per the paper by [Johnson et al., 2016], a weighting parameter was used

to weight style, content and total variational loss. In this study, a weighting

factor of Wcontent = 1 × 105), and Wstyle = 1 × 103) were used. During

training, this caused content loss to have a greater overall significance until

content loss declined to the point at which style loss becomes more important.

Initially layers used in the perception loss function were the same as those

used by [Johnson et al., 2016], i.e. content loss used block3conv3 and style

loss used block1conv2, block2conv2, block3conv3, block4conv3 from VGG-19.

Other combinations of content and style layers including a total variational

loss were trialled, but output did not score well using PSNR and SSIM metrics

nor was it perceptually very good.

Using content loss only, most of the layers higher in VGG19 in block 4 and

5, produced a strong structural output of the images. However, replicating

the style of the original image was elusive using this methodology, as seen in

Figure 4.9.
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Figure 4.10: Architecture of the autoencoder used to create weights to use

in a perception loss function. The autoencoder is an altered mirrored VGG

network.

4.7.1 Perception Loss Using Weights from Aerial im-

agery

It was hypothesized that the perception loss function would work better when

used with neural network weights trained on aerial imagery, specifically im-

agery similar to that found in the Waikato. A VGG network trained using

imagenet data will contain feature maps with structures found in objects and

photo scenes which are quite different to textures and content found in satel-

lite imagery. Furthermore, networks trained on non-New Zealand satellite or

aerial data will look for features found in cities or more built over countryside,

rather than the bush and farmland as is found in the study area. With this in

mind, an auto-encoder trained on WRAPs imagery, was created to generate

feature-maps representative of those found in New Zealand satellite and aerial

imagery.

The architecture of the auto-encoder used for the perceptual loss function

was essentially a mirror of VGG-19, but, input was a single band image of 96

by 96 (see Figure 4.10). As in VGG, a pooling layer after each block reduced

the size of each feature map by a factor of two, apart from block 4 where

the feature map size was not reduced, and kept at 12 x 12. The bottleneck

used for the autoencoder was a single dense layer with 1000 neurons. Training

the autoencoder with the standard mirrored VGG configuration proved to be

difficult, so regularisation was used to improve the training process and to



75

Figure 4.11: Sample of input data (top) and output data (bottom) of autoen-

coder showing how the basic structural information of the image is preserved.

Loss of textural information appears to occur in the process.

help created stronger internal activations. Several regularisation factors were

used in the dense layer in the autoencoder bottleneck including both `1 and

`2 kernel regularisation with a regularisation factor of 0.01 and 0.1, bias and

activity regularisation, both with a regularisation factor of 0.01. The standard

relu activation function was used, with sigmoid activation used in the final

layer. Potentially leaky relu would have helped improve training, however this

functionality is not supported by keras at TensorFlow 1.13 (DeepSUM uses

this TensorFlow version). Use of batch normalisation after each encode and

each decode block was found to improve autoencoder performance, measure

by reconstruction error. Batch normalisation was not used however, as it was

found that feature maps produced in this way did not work as well in perception

loss function. [Wang et al., 2018] too found that when batch normalisation

was used, the network did not generalise as well. Input and output of the

autoencoder is shown in 4.11.

The autoencoder was built in keras, and trained on 40,000 image patches

taken from HR WRAPs aerial imagery of the study area, 4000 of which were

used as a validation set. The network was trained for 9 epochs using a mini-

batch size of 100.

In general, reducing the depth of the autoencoder, resulted in a better out-

put, but, as the goal was to create a set of layer weights that could adequately

encapsulate perceptual and structural information found in the aerial imagery,

a wider, deeper autoencoder was used.
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Figure 4.12: Graph showing correlation between the gram matrix of feature

maps

In order to ascertain which layers best encapsulated the differences between

styles, feature map outputs from bush imagery and from farmland imagery

were compared. Twenty sample images of each of the bush land use class, and

the farmland land use class were selected from from the autoencoder dataset.

The gram matrix of outputs of each of the 20 pairs of bush and farmland

imagery were compared using the Pearsons Correlation coefficient to find out

which feature maps correlate closely between the land-use types indicating

which layers respond to bush and farmland differently. A number close to 1

indicates a perfect degree of correlation, whereas a number close to 0 indicates

that the layer responds differently to the different land-use types. This is

shown in Figure 4.12.

From this it can be seen that useful layers to pick for use in the style loss

function from the autoencoder were blocks 1 and 2. In these layers, correlation

between the feature maps from different land-use classes is low. Conversely,
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(a) Content Loss

only

(b) Content and

style loss A

(c) Content and style

loss B

Figure 4.13: Output of DeepSUM using perceptual loss function with autoen-

coder weights. Different content and style layers were tested as the loss layers

layers in block 3 were found to correlate more strongly between land-use classes

and so were less likely to encapsulate stylistic difference.

Several different combinations of style loss layers and content loss layers

were tested. The combinations tested were:

1. Content Loss only: Using content layers block1-conv1, block1-conv2,

block5-conv1, block5-conv2

2. Content and style loss A: Using content layers block1-conv1, block1-

conv2, block5-conv1, block5-conv2, and style loss from layer block2-

conv2, block4-conv4, block2-conv1

3. Content and style loss B: Using content layers block1-conv1, block1-

conv2, block4-conv4, block4-conv3, and style loss from layer block1-

conv1, block2-conv1

DeepSUM was trained using a perception loss function using each of the

above layers from the autoencoder in the style and content loss functions. As

per perception loss using the VGG network, a total variational loss function

was not used, so as to maintain some of the texture of the imagery. Results

are shown in Table 4.7 with example image outputs from DeepSUM in Figure

4.13.
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bicubic upsample
content loss

only

content

style loss A

content

style loss B

land use class PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

overall result 15.1 0.27 18.1 0.32 17.7 0.32 17.7 0.31

farmland 13.5 0.38 19.3 0.44 18.5 0.44 18.7 0.43

bush 16.8 0.16 16.5 0.17 16.6 0.17 16.5 0.17

mixed 15.1 0.23 18.1 0.30 18.2 0.29 17.5 0.28

Table 4.7: Results of running DeepSUM with a perception loss function using

different content and style layers from the autoencoder

Results on test data show that although a perception loss function performs

better than bicubically upsampling images, it does not perform (using standard

PSNR and SSIM metrics) to the same accuracy as pixel based loss methods. To

see this compare results in Table 4.7 with Table 4.6. Perhaps unsurprisingly,

the best performing loss function using these metrics did not include the style

loss function. This follows the perception-distortion curve described in Chapter

2, where improving perception has a negative effected on distortion. In general

the perception loss function created more sharply defined features and stronger

colours and textures than the pixel based loss methods.

4.8 Variation Loss

As described above, the super-resolved images from DeepSUM using a range

of loss functions often produced a smooth output as pixel values trend towards

the mean. In particular bush appears as a monochrome, and lacks the texture

of the ground truth. As discussed in 2.7, the best possible perceptual qualities

occur when the output of an algorithm follow the natural distribution of an

image.

In an attempt to better replicate the variation and, by proxy, the perceptual

qualities of the ground truth, a variation-based loss function was created to
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encourage pixel-by-pixel variance with the intuition that this would lead to

an improved texture on the standard loss functions, and appearance more

similar to the ground truth HR images. It should be noted that although

variation type loss functions such as total variation loss are commonly used,

these functions are designed to reduce variation, and smooth the image. In

this study, the variation loss function attempts to preserve the variation found

in an area, and as this is dependent on spatial differences in variation, this will

vary throughout the image. A loss function encouraging variation in this way

has not been found in the literature.

The mechanism by which variation loss was achieved was as follows: For

each mini-batch of output imagery and ground truth, nine copies of the mini-

batch were created, and each of those nine copies was moved by each of [-

1,0,1] in the x-dimension and y-dimension. To account for border effects, the

matrices were cropped at the border by a border parameter. This was the same

parameter as used by DeepSUM to crop image borders. Following this, the off

centre copies of the original mini-batch (and the images which were not moved

or moved by (0,0)) were stacked together and a variance matrix created using

only the stack dimension (see Figure 2.7). This effectively created a mini-

batch of image variances. The output imagery and the prediction imagery

were compared, and the difference calculated using both mean squared error

and absolute error. The variance loss was combined with other loss functions

using a variance factor hyper-parameter to weight its effect on the overall loss.

To define variance loss mathematically, if N is the number of samples and

x = (xi|i = 1, 2, · · · , N) is the predicted output and y = (yi|i = 1, 2, · · · , N)

is the ground truth, then Vx is the variance of output and Vy is the variance

of the ground truth HR image. Variance loss can be defined by the equation:

Lvar(x, y) =
1

N

N∑
i=1

(Vxi − Vyi)2 (4.1)

Using this definition, and using LMSE loss as the pixel based loss function, and

using αV as the weighting of the variance loss or the variance factor the total
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Figure 4.14: Variance is captured by stacking a copy of each image on top of

each other, move each image by 1 or 2 pixels in an X and Y direction, and

calculating the variance through the z axis.

loss, L(x, y), is defined by the equation:

L(x, y) = LMSE(x, y) + αV (Lvar(x, y)) (4.2)

As discussed, variance loss was calculated using an `1 as or an `2 loss. Natu-

rally, different weightings were appropriate when used with the different loss

functions. In a twist on the basic concept where the 8 pixels surrounding a

pixel were used to calculate variance, a wider variance was calculated using

the two pixels on either side of a particular pixel, i.e. calculating variance from

the surrounding 24 pixels.

Results from using a variance loss component in the loss function showed an

improvement on output quality in two ways. Land cover texture appeared more

realistic and similar to the ground truth HR image, and less of a monolithic

colour. This effect can simply be explained by the variance loss serving to

somewhat recreate the pixel-by-pixel variation seen in the ground truth.

A second more surprising effect was that boundaries between features were
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more detailed with finer texture and sharper edges when a variance loss com-

ponent was used. This effect can be explained by the variance loss working

to preserve high variance in boundary areas by forcing the high pixel values

higher and the low pixel values lower, and so enhancing the edge effect, that is

otherwise blurred by an MSE loss. The effect is the same as seen when a trac-

tor drives over a muddy track, and existing ruts are deepened, but flat areas

remain flat. In the HR ground truth image, boundary areas will naturally have

a high variance as different features have different pixel intensities. Without

the variance loss, pixels are more likely to fall in to a grey zone between the

highs and lows creating a soft edge effect.

A low variance factor reducing the weighting of variance on the total loss

seemed to work best when measured against pixel based measurements. When

the αV was increased to increase the weighting of variance loss, a less visually

pleasing Van Gogh like texture appeared where bush in particular appeared

slightly blotchy and less real. When DeepSUM with a high variance factor was

trained using all three RGB bands the image had a very low LPIPs reading,

making this perceptually almost as good as an ESRGAN output (See Section

4.14)

In general, adding a low amount of the variance loss factor markedly im-

proved the image quality in a human visual sense (see Figure 4.15), however

improved PSNR and SSIM values only slightly (see Figure 4.16). Using the

MSE loss and a 9-pixel variance, the best variance weighting was 0.3. The

lack of improvement in PSNR, and SSIM metrics is expected, as unlike hu-

man perception, these metrics do not favour replicating imagery texture and

variance. Any improvement in image sharpness will not necessarily appear in

these metrics either for the same reason.

It can be seen from the tensor board of the training run using MSE and

variance loss that the variance loss makes up only a small portion of the over-

all loss function, i.e., between 2 to 10% of the overall loss when using the

variancefactor = 0.3 option. While pixel-based losses declines quickly then



82

Figure 4.15: Images showing the effect of the variance loss on image quality.

Zoomed in samples taken from top right of test image-52. Top-left to bottom-

right: HR/ground-truth image, LR image bicubically upsampled, output using

MSE loss only - no variance loss, output using MSE loss inc variance loss (0.3)

BEST, output using MSE loss inc variance loss (0.6), output using MSE loss

inc variance loss (1.0), output using MSE loss inc variance loss (0.3) with a 25

pixel sample size, output using L1 loss inc variance loss (0.1)

flattens off, the variance loss rises quickly, with the reduction in overall loss,

then declines slowly after that, as see in Figure 4.17. From this, it can be

surmised that using the variance loss function serves primarily to preserve the

original variance of the imagery, which would otherwise be smoothed off by

the MSE loss function.

Variance loss was tested as part of the overall loss component using both

`1 and `2 losses with both a 9 pixel and 25 pixel sampling component. Overall,

it had a relatively minor positive effect on PSNR and SSIM metrics, with the

best result obtained using an `2 loss with a 9 pixel sampling component, and

a variance factor of 0.3 (see Table 4.8). Of the three land classes, only bush

performed worse when using an variance loss component, although this was

visually more pleasing.

The effect of the different variance factors on pixel variance was explored
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Figure 4.16: Graph showing the effect of variance factor weights on PSNR and

SSIM of output image using an MSE loss. Variance was calculated using 9

pixels

(see Table 4.9). As expected, as the variance factor is increased, and the loss

function is tilted towards increasing the pixel variance, the resulting output

image has a higher variance. However, even using the highest variance factor,

the output image still has a lower variance than the corresponding HR image.

DeepSUM outputs created using variance loss function with a high variance

loss factor were used to train ESRGAN with the intention of producing super-

resolved images with stronger edges and textures (see Section 4.13.1).

4.9 Ablation Studies

The SISRNet subnetwork consists of 8 blocks each containing a single 2D

convolution, instance normalisation followed by leaky relu activation. Con-

volutional blocks were removed and added to the subnetwork to assess the

effect of a deeper or shallower network on the final output. These changes

were tested using the normalised red band data with an MSE loss. In order to

test differences, in each instance, pretraining data had to be re-created as the

network architecture changes meant that the original pre-training data could
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Figure 4.17: Tensorboard showing validation data performance on a training

run. Loss shown are Variance Loss (diffinvar) and overall loss which includes

MSE loss and variance loss. PSNR here is directly correlated to MSE loss.

The graph shows both the smoothed curve (darker) and the un-smoother loss

(lighter)

L2 using 9px

var loss

L2 using 25px

var loss

L1 using 9px

var loss

L1 using 25px

var loss

Benchmark:

MSE loss only

land use class PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

overall result 20.2 0.34 19.9 0.33 19.9 0.33 20.0 0.33 20.1 0.33

farmland 19.7 0.47 19.4 0.47 19.4 0.47 19.6 0.47 19.6 0.46

bush 20.7 0.18 20.3 0.17 20.3 0.17 20.5 0.17 20.8 0.20

mixed 20.7 0.31 20.5 0.30 20.5 0.30 20.7 0.30 19.8 0.31

Table 4.8: Effect of a variance loss component in an on PSNR and SSIM metric

when `1 and `2 loss are used

not be used. To create the pre-train weights, the SISRNet subnetwork was run

against ground truth data for 2 epochs prior to training the entire network.

In general, it was found that more convolutional blocks caused very little

change to the accuracy of DeepSUM with a slight increase in PSNR with more

blocks and a decrease in SSIM, as shown in Table 4.18.

Different Fusion Net block architectures of DeepSUM were also tested. In

this subnetwork, feature-maps from each of the individual images are combined

to create a single image via a series of 3D convolutions followed by instance

normalisation. The existing structure was made deeper via more smaller con-

volutions, and shallower by using fewer larger convolutions. It was found that a
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no var

factor

var factor

0.3

var factor

0.6

var factor

1.0

var factor

3.0

Benchmark:

L2 loss no var loss

farmland 4.4 5.9 17.7 38.6 59.4 64.8

bush 2.5 2.8 20.9 38.4 72.0 91.4

Table 4.9: Effect of a variance loss component weighting (i.e. variance factor)

on pixel variance in images

Figure 4.18: Effect of number of convolutional blocks on in SISR subnetwork

on overall network

structure containing three convolution worked best, but the difference between

the different architectures was minor, as shown in Table 4.10.

4.10 Other Colour Bands

Although Sentinel imagery contains 11 bands, only the visible bands (red, blue,

green) were studied in this thesis, as good quality HR training data does not

exist for other bands. DeepSUM was run using the blue and green band data.

Pre-training data for SISR subnetwork was created specifically for each band,

but it was found that this did not perform better than using pre-training data

from the red band of the network.
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Fusion

architecture
PSNR SSIM

2,2,2,2,2 20.3 0.33

2,2,2,3 (original) 20.2 0.33

3,3,2 20.3 0.34

4,3 20.2 0.33

Table 4.10: Effect of different fusion architectures on DeepSUM accuracy

4.10

Red band Blue band Green band

land use class PSNR SSIM PSNR SSIM PSNR SSIM

overall result 19.1 0.27 23.0 0.41 19.9 0.27

farmland 17.7 0.45 20.9 0.51 20.4 0.47

bush 19.8 0.17 24.0 0.35 19.5 0.32

mixed 18.8 0.32 22.7 0.44 20.3 0.31

Table 4.11: Accuracy of different spectral bands trained with DeepSUM using

an MSE loss

Results from the DeepSUM running the MSE loss function and the SSIM

(best performing on the red band) were tested, as shown in Tables 4.11 and

4.12.

It was found that DeepSUM with SSIM performed better when using an

SSIM loss, with the exception of PSNR values on the blue band.

4.11 Colour Adjustment

Histogram matching with a look-up dictionary of images was used to adjust

the colour values of the outputs to match the aerial image ground truth using

methodology outlined in Section 3.8. The output of DeepSUM already applies

the mean and standard deviation from a configuration file to the data, but
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Red band Blue band Green band

land use class PSNR SSIM PSNR SSIM PSNR SSIM

overall result 19.2 0.29 22.8 0.41 20.0 0.28

farmland 18.1 0.46 21.4 0.52 20.6 0.43

bush 20.0 0.18 23.9 0.34 19.7 0.20

mixed 18.8 0.34 22.3 0.43 19.5 0.29

Table 4.12: Accuracy of different spectral bands trained with DeepSUM using

an SSIM loss

histogram matching perceptually improves on this result, and makes images

more comparable to each other.

Figure 4.19: Example of colour adjustment showing Left: red, green and blue

histograms of original output of DeepSUM, Mid: histogram of ground truth

HR image, Right: Histogram of output after colour adjustment

It can be seen in Figure 4.20 how the colour adjustment process moves

the spectral characteristics of an image towards that found in the HR ground

truth, and so makes the image perceptually more similar.
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4.12 ESRGAN

ESRGAN was run with the aim of comparing to the results of DeepSUM,

and enhancing the results of DeepSUM. With this aim, an implementation

of ESRGAN was used to super-resolved raw Sentinel data to compare this

to the output of DeepSUM. In a second experiment, ESRGAN was used to

enhance the output of DeepSUM to make it more photo-realistic, without

further increasing the resolution. As described above, the output of DeepSUM

lacks the pixel-by-pixel variation of the ground truth images, and some of the

sharpness and detail is not recreated by the network particularly when an MSE

loss is used.

4.12.1 Down-sampled WRAPs Data

As an initial proof of concept, 10,000 patches of WRAPs data (the HR data

used to train DeepSUM) were down-sampled using nearest neighbour. A model

was trained using 6x105 steps, and inference carried out after each 2x105 steps.

The model successfully created the look and feel of the original image, but

also changed the appearance of features and created features not present in

the original image, as shown in Figure 4.21.
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Figure 4.21: Output from ESRGAN on down-sampled HR image. Top left:

Down-sampled image, Top right: GAN output after 200,000 steps, Bottom

left: GAN output after 400,000 steps, Bottom right: ground truth. It can

be seen that the model easily finds the high-level style of the data, but fails

to replicate some of the fine level details, or incorrectly recreates detail. For

example, the paddock boundary in the bottom left of the original image is

square shaped, whereas the GAN recreates this as rounded, and fails to recreate

some boundaries.

4.12.2 ESRGAN Trained Using Sentinel 2 Imagery

LR Sentinel 2 data was super-resolved in a similar fashion to the down-sampled

HR data with the difference that each HR image was matched with up to 8
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separate Sentinel 2 images, as each imageset used in DeepSUM contained 8

temporal images. Only cloud-free Sentinel 2 images were used (which excludes

about a third of the available images), as unlike in DeepSUM there was no

way of replacing clouded or shadowed areas with patches of image. Up to

eight temporally different Sentinel 2 images were available from each image

set, but not all of these were cloud free. Therefore this process yielded many

more training patches than the DeepSUM output (around 30 000).

4.12.3 ESRGAN Trained Using DeepSUM Output

In a final step, output images from DeepSUM were paired with the original

HR data to train an ESRGAN model. In the original ESRGAN network, an

upsampling step occurs after a sequence of Resnet blocks that increases the

resolution by a factor of four. As DeepSUM outputs images of 512 x 512

(the same size as the HR data), this upsampling was no longer necessary so

was removed. To run samples of a higher resolution through the network, the

batch size needed to be reduced from 16 to 2 to prevent out of memory errors.

ESRGAN was run with 16 ResNet blocks for 2 000 000 steps, with the learning

rate halved every 200 000 steps. This took approximately two weeks to train

on a GTX 1080 GPU with 12 GB on board memory.

In order to create enough training data for ESRGAN, 6000 image sets were

created to create approximately 5500 DeepSUM output images (using an MSE

loss). These output images were used to train ESRGAN. It was originally as-

sumed that the ESRGAN training weights from training using DeepSUM with

an MSE loss would be sufficient to test other DeepSUM outputs. However,

doing this was found to produced a blurred result, and it was necessary to gen-

erate DeepSUM outputs for each loss function and train ESRGAN separately.

Due to the length of time required to both create large numbers of DeepSUM

output images, and train ESRGAN, it was not possible to train ESRGAN on

DeepSUM outputs with every different loss functions.

As per the DeepSUM output, colour adjustment was carried out on the
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bicubic

upsample

DeepSUM

only

ESRGAN

only

DeepSUM

then ESRGAN

land use class PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

overall result 19.1 0.30 0.34 20.1 0.31 0.35 19.5 0.22 0.21 19.7 0.25 0.20

farmland 18.1 0.44 0.25 20.1 0.46 0.25 19.3 0.30 0.16 19.7 0.40 0.15

bush 19.8 0.23 0.38 20.1 0.24 0.40 19.6 0.18 0.24 19.6 0.19 0.22

mixed 18.1 0.38 0.30 20.2 0.38 0.30 19.8 0.27 0.17 19.8 0.30 0.16

Table 4.13: The effect of various steps on the on accuracy and perceptual

metrics

ESRGAN output to align colour values with those from the ground truth.

Both low level metrics (PSNR and SSIM) and perceptual metrics (LPIPs)

were used to compare output images. In the Table 4.13, all images have been

colour adjusted to be similar to the ground truth.

Results show that as expected DeepSUM has the best PSNR and SSIM

results, but using a combination of DeepSUM and ESRGAN gives the best

LPIPS perceptual measure. The combination result is also better than ESR-

GAN alone for PSNR and SSIM values, with SSIM in particular showing much

higher values than using ESRGAN alone.

Using ESRGAN alone created several obvious artefact. For example in

the zoomed in views in Figure 4.23, the third image from the left shows a

track, whereas the combination product and the HR image does not. The

combination product is not immune to possible artefacts, as both the GAN

output and combination output show the track disappearing (right image in

4.23), whereas the HR image does not.

4.13 Network Interpolation

In order to see the perception distortion trade-off, images and weights were

interpolated. As described in Section 4.12 both intermediate points were found

using a set of alpha values. Result can be seen in Figure 4.25 where the image

is more or less perceptually driven.
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Figure 4.25: Top: Network interpolation, Bottom: Image interpolation.

In both cases a single image was interpolated using alpha values of

(1.0,0.8,0.6,0.4,0.2,0), so far left image is more perceptually driven and far

right image is more PSNR oriented. Note that the images are shown before

colour adjustment was used.

4.13.1 ESRGAN Trained Using DeepSUM Output with

Variation Loss

It was hypothesised that using the DeepSUM output from the variation loss

function as an input to ESRGAN would produce a better result than using

DeepSUM with the MSE loss. The intuition behind this was that the vari-

ation loss function produces a DeepSUM result with enhanced contrasts at

boundaries, and deeper if somewhat contrived textures. Passing this imagery

through the GAN may allow the end to end process to show finer features, and

elucidate enhanced textures. In this instance, a high variation loss factor of

3 was used, as though this created some artefacts and unnatural looking tex-

tures, it provided a higher level of contrast than a lower variation loss factor.

It was hypothesised that ESRGAN would be able to overcome artefacts.

Initially DeepSUM with variation loss outputs were inferred using the ESR-

GAN model trained using the DeepSUM with MSE loss data. This approached

failed to produce an adequate result, as the resulting images were were not an

improvement on the process used in Section 4.12.3. To overcome this effect,

an ESRGAN model was trained using DeepSUM with variation loss outputs.
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Due to the time taken for the end-to-end process, only 4000 image pairs were

used in training.

As can be seen in Figure 4.26 both the ESRGAN product and DeepSUM

with variation loss produce cleaner lines and better definitions than using the

same with the MSE loss only. This can be seen in the boundary between bush

and paddock, and also in the definition of the track. In many examples of the

ESRGAN output with the MSE loss roads and tracks become smoothed over,

and do not re-appear in the ESRGAN output. This effect is greatly reduced

when using DeepSUM with the variation loss. The boundary between bush

and paddock is much cleaner and more natural in ESRGAN product trained

with DeepSUM with variation loss output.

The DeepSUM output using variation loss (without passing through ESR-

GAN) has an LPIPs value almost as good as the GAN outputs (see Table 4.14).

But, despite subjectively appearing perceptually better, the ESRGAN output

from DeepSUM with variation loss does not produce better PSNR or SSIM or

LPIPs metrics. Rather than suggesting that the DeepSUM with variation loss

is perceptually inferior, it suggests that these metrics do not do adequately

match human perception.



94

bicubic

upsample

DeepSUM

only

DeepSUM

then ESRGAN

DeepSUM loss func PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

MSE loss 19.1 0.30 0.34 20.1 0.31 0.35 19.7 0.25 0.20

Var loss 19.0 0.23 0.23 19.0 0.21 0.21

SSIM loss* 20.3 0.33 0.33 18.1 0.19 0.26

Perception Loss 17.6 0.32 0.33 19.4 0.21 0.19

Table 4.14: The effect of loss function on DeepSUM output and ESRGAN

output. In each case ESRGAN was trained on the DeepSUM output inferred

with weights from the different loss function. *Note that ERSGAN was not

specifically trained on the DeepSUM output from the SSIM loss, but rather

used the training weights from training DeepSUM with an MSE loss. This

could account for the lower SSIM and PSNR on ESRGAN output values when

DeepSUM with SSIM loss is used
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Figure 4.20: Output from four test samples showing colour adjust on bicubi-

cally upsampled LR data and DeepSUM output process. Top image: bicubic

upsample with no adjustment, Second row images: bicubic upsample colour

adjusted, Third row images: Output of DeepSUM (mse loss) with no adjust-

ment, Fourth row images: Output of DeepSUM (mse loss) colour adjusted,

Bottom row images: Ground truth HR data
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Figure 4.22: Output from four test samples showing different stages of Deep-

SUM and ESRGAN process. Top image: Original Sentinel 2 image patch

bicubically upsampled by a factor of 4 to be 512x512 pixels, Second row im-

ages: Output of ESRGAN working directly on a single Sentinel 2 image, Third

row images: Output of DeepSUM (mse loss) using all three bands, Fourth row

images: Output of DeepSUM passed through ESRGAN without upsampling,

Bottom row images: Ground truth HR data
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Figure 4.23: Zoomed in output from four test samples showing different stages

of DeepSUM and ESRGAN processes. Each image is a 50 x 50 sample of

the original 512 x 512 output. Top image: Original Sentinel 2 image patch

bicubically upsampled by a factor of 4 to be 512x512 pixels, Second row images:

Output of ESRGAN working directly on a single Sentinel 2 image, Third row

images: Output of DeepSUM (mse loss) using all three bands, Fourth row

images: Output of DeepSUM passed through ESRGAN without upsampling,

Bottom row images: Ground truth HR data
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Figure 4.24: Zoomed in output from four test samples showing different stages

of DeepSUM and ESRGAN processes. Each image is a 12 x 12 sample of

the original 512 x 512 output showing only the red band where (darker is a

stronger red colour). Top image: Original Sentinel 2 image patch bicubically

upsampled by a factor of 4 to be 512x512 pixels, Second row images: Output

of ESRGAN working directly on a single Sentinel 2 image, Third row images:

Output of DeepSUM (mse loss) using all three bands, Fourth row images:

Output of DeepSUM passed through ESRGAN without upsampling, Bottom

row images: Ground truth HR data
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Figure 4.26: Output from two test samples showing effect of using the varia-

tion loss function on feature definition. Top row: Output of DeepSUM using

an MSE loss with second and fourth column showing a zoomed in area of the

first and third columns, Second row: Output of DeepSUM using the varia-

tion loss, Third row: ESRGAN product from DeepSUM (MSE loss), Fourth

row: ESRGAN product from DeepSUM (variation loss), Bottom row images:

Ground truth HR data
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Discussion

Satellite and aerial imagery have a myriad of purposes, some of which require

absolute accuracy, for example identifying exact areas of landscape features

such as buildings. Other uses are more fluid, for example, mapping vegetation

types. Given these varied use cases, it is clear that both the perceptually

enhanced, and visually more accurate images are valid for certain tasks.

5.1 An Image as a Representation of Reality

Reproducing the ground truth image will never occur exactly, as both the

DeepSUM, and DeepSUM plus ESRGAN image are an amalgamation of sev-

eral temporal images with images taken in different light, with different sea-

sonal patterns. In this light, what is being created is a representation of reality,

rather than reality. For example vegetation will show different shades of green

and yellow depending on the length of grass and time of year. An image amal-

gamation will select the mid-point shade, while replicating the basic pattern.

Only the ESRGAN output from a single raw image could reflect a reality, as

this is a SISR process showing an image at a point in time. In a similar way,

any SISR process is unlikely to exactly match the time when the aerial image

(ground truth) was taken, so will too have pattern misalignments.

Because reality will never be achieved by an image derived from multi-

ple sources, in some ways the perception-distortion dichotomy is an artificial
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construct.

5.2 DeepSUM Algorithm

DeepSUM successfully super-resolved the Sentinel 2 satellite imagery using

the aerial ground truth. The intuition that the information gain from using

several different temporal images would aid super-resolution was not tested in

this study. However, a superficially realistic image was produced with higher

PSNR and SSIM values than using a bicubically upsampled image. Of the

loss functions tested for use with DeepSUM, using an SSIM loss was shown to

improve the accuracy of the original algorithm. Other loss functions produced

enhanced results superior to that of the default MSE loss.

Using pixel based loss functions such as `1, `2, SSIM or MS-SSIM will

always give a smooth unnatural looking result due to the averaging effect.

In short, this effect is the blurring of hard lines, and smoothing of textures

that can be seen in the results from DeepSUM. The cause of this effect is

the mathematical imperative (in the case of an MSE loss) to find the least

squared error. SSIM has a similar effect however this also takes into account

surrounding pixels, but the end result is also a smoothed, compared to the

ground truth.

As an example of how this works, in a raw image as used in this study, a

single pixel of 10m x 10m could represent the edge of a road. If as is likely, this

pixel does not fall exactly on the boundary of the road, then it will contain

light return values from both the road and the vegetation on the side of the

road. In an ideal world, this pixel will partially super-resolve to 16 pixels of

2.5m x 2.5m, some of which are road and some of which are vegetation. In the

absence of exact information as to where the road boundary is, a mid-point

pixel value is likely to be selected as having the least squared error compared

to both the road and the surrounding vegetation.

This effect will be exacerbated by any minor misalignments of features.
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Misalignment could occur by a number of mechanisms: As the ground truth

imagery is photographed from an aeroplane (not a satellite), some effect of

camera angle on feature location will be seen, so that even perfectly geo-

referenced data may not always line up at a pixel level. Even imagery which

has been correctly registered will have some minor misalignment with the

ground truth. Similarly, as textures are being measured on a pixel-by-pixel

basis, misalignment of patterns will mean that patterns are averaged, even if

the basic pattern is the same. As DeepSUM is super-resolving multiple images,

to some degree the averaging effect is possibly more pronounced than it would

be for a single image. PSNR and SSIM type metrics reward this averaging

effect. They do not favour the output of realistic textures or hard boundaries.

The perceptual loss function is theoretically able to define textures similar

to the ground truth. As the style loss component is rewarded in finding similar

textures to the ground truth, in theory this should work against the averaging

effect, to attain a more perceptually accurate image. However, the content

loss function which is used to define the overall structure of the image, uses an

MSE loss on feature maps rather than on the image itself. This has a similar

effect to the MSE pixel-based loss function. In this study, the perceptual loss

function did not greatly enhance an image using either perceptual or pixel-

based metrics.

The variation loss could be described as a pixel-based metric. As this works

to preserve variation and contrast, the blurring effect is mitigated. However,

when a low variation loss factor is used, this function has minimal effect on

the image with some degree of enhanced contrasts, and textures. Using a high

variation factor loss causes textures, and lines to appear artificial. Despite

this, the DeepSUM output created using a high variation loss did exhibit a

low LPIPs value, potentially indicating that LPIPs responds to the higher

variation rather than specific textures of the variation.

Used alone, from this evidence and from the literature, it is clear that

a feed-forward network such as DeepSUM will struggle to accurately render
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textures that look correct to a human due to the smoothing effect of using

a pixel based loss function. On the distortion-perception graph, its output is

located far towards minimising distortion.

5.3 Effect of ESRGAN

Adding ESRGAN to the DeepSUM output was used to attempt to better ren-

der the contrasts and textures. Using the ESRGAN algorithm alone to super-

resolve images produced a more photo-realistic image from Sentinel 2 data.

This can be seen in texture of a zoomed in view of the ESRGAN products.

However, the super-resolution process hallucinated details, and decreased pixel

accuracy compared to a bicubically up-sampled image. On the dichotomy of

the distortion-perception graph, this result is far towards the perception side.

The combination of DeepSUM and ESRGAN created an image with en-

hanced accuracy and better perceptual qualities compared to the bicubically

upsampled images than using either DeepSUM or ESRGAN alone (see Figure

4.22). For example, in the zoomed-in image patches of the DeepSUM output,

the fourth test image has a darker grassy area to the top right, which has

been given the texture of bush. In contrast, when the same image is inferred

using ESRGAN to process the DeepSUM output, the grassy area is given a

less smoother texture more in fitting with the ground truth image. The 12×12

image patches shown in Figure 4.23, clearly illustrate how ESRGAN replicates

the texture of the ground truth.

Using ESRGAN with the DeepSUM output, some minor detail was hallu-

cinated, but far less than was created using the ESRGAN alone. Accuracy loss

occurred when measured using PSNR and SSIM. Some of this loss in accuracy

could be due to hallucination of detail, but a more significant cause is likely

to be pixel misalignment of textures. As the detailed patterns produced by

ESRGAN could not be expected to line up exactly against the patterns in the

ground truth accuracy loss would be expected with a greater pixel-by-pixel
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variation causing much larger differences in squared error.

The DeepSUM with variation loss and ESRGAN created the cleanest look-

ing output as shown in Figure 4.26. ESRGAN appeared to respond to the

greater contrasts produced by the variation loss by rendering crisper lines,

and more perceptually accurate textures. Artefacts produced by the Deep-

SUM with variation loss disappeared after running images through ESRGAN.

This quality improvement was not quantifiable using any of the pixel or

perceptually based metrics, as none of these metrics seem to favour sharp

lines and boundaries. Interestingly, LPIPs does not improve markedly after

running ESRGAN on the DeepSUM output with variation loss, despite the

textures and lines becoming clearer.

5.4 Process Improvements

Other studies using a GAN such as [Hoque et al., 2019] and [Wang et al., 2018]

used vastly more data to train the GAN than we have in this study. Us-

ing an MISR model as an input to the GAN, such as DeepSUM, meant

that each output photo for the end-to-end process required 8 input images.

[Wang et al., 2018] showed that a larger dataset and larger patch size leads

to better results. They also found using a wider variety of data sources al-

lowed different types of feature to be super-resolved better. In this study, we

bumped up against the memory limits of the available servers, constraining

the size of the patch we could use. However more data and a wider variety of

data may have helped. In particular, the ESRGAN model used did not super-

resolve buildings or roads well. This is probably because very few buildings

were found in the training data. The model could be improved by adding more

training data focused on buildings, and more built up areas.

Running ESRGAN from a DeepSUM output created with a variation loss

factor of 3 was found to produce a sharp result. However, even with a high

variation loss factor, its possible or likely this could be improved. Even the
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variation loss of 3 did not create all the variation seen in the HR data. Poten-

tially, a higher factor would create better data for the GAN to further refine.

As an end-to-end process, using DeepSUM as an example of a MISR process

and ESRGAN together could potentially be integrated into a single process

whereby multiple images are super-resolved with a combination adversarial

loss and variation loss function.

5.5 Human Perception

There is some evidence from the literature that human perception is more

complicated than it is often given credit for. In particular, the Lines-as-Edges

hypothesis states that the human visual cortex includes cells that are respon-

sive to edge patterns and fire strongly in response to lines and edges. Drawings

simulate natural images because lines are drawn where edges often occur in

natural images [Hertzmann, 2021]. It appears that if human are drawn to anal-

yse patterns in edges and boundaries, when those boundaries are weaker, then

this will affect a human’s perception of this pattern. Enhancing edge patterns

will produce a perceptually better image for the human viewer. When the

purpose of image data is to identify features, areas, and boundaries, running

DeepSUM with variation loss through the ESRGAN model is a clear winner,

despite worse metrics than some of the other algorithms.

The metrics used in this study (PSNR, SSIM, LPIPs) do not favour creation

of hard lines, and defined edges, in a way that is useful to a person. As LPIPs

is a CNN, on some level it may respond to the presence of defined edges, but

this does not show in the data from this study. Possibly, as defined lines are

a small portion of any image, any effect they might have is dwarfed by the

large areas of less defined vegetation or open land. In this light, the gap in

knowledge here is less around the algorithm required to super-resolve an image,

and more in field of defining a set of measurements which replicate the HVS.



106

5.6 Measurement improvements

The use-case of satellite and aerial imagery has some unique aspects that are

not as important when using other imagery: Imagery is often used at different

scales, and zoomed in closely. There is no background/foreground component,

and an image does not reflect a scene people are used to seeing in every day

life. Often images are not true to life, as for example cloud has been removed

and images from different times or dates amalgamated.

For these reasons, it makes sense to create a metric to measure similarity

and accuracy specifically for satellite and aerial imagery. An ideal measure-

ment metric would favour defined clear boundaries and lines, correct textures

and colours and depiction of detail. Should such a measurement be created,

used as a loss function it would then favour the creation of images with these

properties.

Given the artificial nature of the image being created, and its intended pur-

pose, using a process that somewhat alters the image to improve its perceptual

quality makes sense.
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Conclusion

This study explores different techniques for super-resolving satellite data, in

particular the trade-off between optimising a result against pixel-based met-

rics such as SSIM and PSNR, and optimising for more perceptually-based

metrics. Different loss functions were run, showing that the original CNN algo-

rithm DeepSUM, could be improved. The addition of ESRGAN to the process

showed how the data could be made much more photo-realistic. In particular,

the GAN created much more realistic textures and fine detail; however, this

came at some uncertainty as to accuracy of minor detail. Using the novel loss

function variation loss with DeepSUM produced a much crisper final output

with stronger edges and boundaries, and better textures. However, this result

did not reflect in measurement metrics.

In the study, as each output image is an amalgamation of several tem-

porarily different inputs, the result is not a true representation of any real

image. In this sense, using a GAN to make the DeepSUM output appear more

realistic-looking to a human is appropriate, as the output image is only ever a

representation of reality. From running these processes, it is clear than none

of the metrics used to measure output, namely PSNR, SSIM and LPIPs, suc-

cessfully measure what is useful to a human. Better quantifying how humans

perceive satellite data will advance this field.
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