

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

High-throughput Machine Learning

Algorithms

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

Rory Mitchell

2021

Abstract

The field of machine learning has become strongly compute driven, such that

emerging research and applications require larger amounts of specialised hard-

ware or smarter algorithms to advance beyond the state-of-the-art. This thesis

develops specialised techniques and algorithms for a subset of computationally

difficult machine learning problems. The applications under investigation are

quantile approximation in the limited-memory data streaming setting, inter-

pretability of decision tree ensembles, efficient sampling methods in the space

of permutations, and the generation of large numbers of pseudorandom permu-

tations. These specific applications are investigated as they represent signifi-

cant bottlenecks in real-world machine learning pipelines, where improvements

to throughput have significant impact on the outcomes of machine learning

projects in both industry and research. To address these bottlenecks, we dis-

cuss both theoretical improvements, such as improved convergence rates, and

hardware/software related improvements, such as optimised algorithm design

for high throughput hardware accelerators.

Some contributions include: the evaluation of bin-packing methods for ef-

ficiently scheduling small batches of dependent computations to GPU hard-

ware execution units, numerically stable reduction operators for higher-order

statistical moments, and memory bandwidth optimisation for GPU shuffling.

Additionally, we apply theory of the symmetric group of permutations in re-

producing kernel Hilbert spaces, resulting in improved analysis of Monte Carlo

methods for Shapley value estimation and new, computationally more efficient

algorithms based on kernel herding and Bayesian quadrature. We also utilise

reproducing kernels over permutations to develop a novel, linear-time, statis-

tical test for the hypothesis that a sample of permutations is drawn from a

uniform distribution.

The techniques discussed lie at the intersection of machine learning, high-

performance computing, and applied mathematics. Much of the above work

resulted in open source software used in real applications, including the GPU-

TreeShap library [38], shuffling primitives for the Thrust parallel computing

library [2], extensions to the Shap package [31], and extensions to the XGBoost

library [6].

Acknowledgements

I thank my excellent supervisors, Dr. Eibe Frank and Dr. Geoffrey Holmes, for

consistent guidance and encouragement throughout this process. Thanks to

Dr. Joshua Cooper, for lending his considerable mathematical expertise, and

Daniel Stokes for his ideas and contributions to shuffling algorithms. Thanks

to H2O.ai and Nvidia for funding. Thanks to my colleagues and collaborators

Jiaming Yuan, Philip Cho and John Zedlewski. Thanks to Dr. Tianqi Chen

for supporting and enabling my work on XGBoost, Dr. Scott Lundberg for

guidance around Shapley values, and finally, thanks to those other numerous

developers of open source software, which much of this work is built upon.

Contents

1 Introduction 1

2 Background 6

2.1 Supervised Learning . 7

2.1.1 Decision Trees . 8

2.1.2 Boosting . 9

2.1.3 XGBoost . 15

2.2 GPU Computing . 17

2.2.1 Parallel primitives . 20

2.3 Shapley Values . 23

2.4 Reproducing Kernel Hilbert Spaces 28

3 An Empirical Study of Moment Estimators for Quantile Ap-

proximation 33

4 GPUTreeShap: Massively Parallel Exact Calculation of SHAP

Scores for Tree Ensembles 55

5 Sampling Permutations for Shapley Value Estimation 74

6 Bandwidth-Optimal Random Shuffling for GPUs 121

7 Conclusion 143

7.1 Thesis Summary . 143

7.2 Future Work . 145

Appendices 151

A Co-authorship Forms 152

Chapter 1

Introduction

In 2018, the ACM Turing award was jointly awarded to Yoshua Bengio, Geof-

frey Hinton, and Yann LeCun for “conceptual and engineering breakthroughs

that have made deep neural networks a critical component of computing” [1].

The benefits and application of these machine learning breakthroughs were

widely acknowledged in 2018, yet many of the foundational publications of

key authors occurred long before. See, for example, “Learning Representa-

tions by Back-Propagating Errors” [49], published in 1988, “Long Short-Term

Memory”[22], published in 1997, “Gradient-based learning applied to docu-

ment recognition”[29], published in 1998. This delay can be partly attributed

to the computational demands of the algorithms, requiring increasingly large

amounts of data and more sophisticated optimisation techniques. The avail-

ability of large datasets along with powerful hardware and software frameworks

catalysed the development of new algorithms, software libraries, and hardware

advances, to fully exploit the foundational theoretical work and enable fur-

ther breakthroughs. Thus, the development of the field occurs hand-in-hand

with advances in optimisation, hardware architecture, open-source software

ecosystems, and the application of mathematical tools for further analysis and

improvements of algorithms. In many machine learning applications, better

results can be achieved trivially by increasing the amount of training data [17].

This fact can be taken advantage of, conditional on the availability of cost-

2

effective computing infrastructure and software to collect, store, preprocess,

analyse, train models, and perform inference on that data. This thesis focuses

specifically on the aforementioned computational issues in a subset of machine

learning applications, with relevance to problems encountered in industry and

research. Some common techniques applied towards this goal include spe-

cialised algorithm design, use of graphics processing units as hardware accel-

erators and novel applications of reproducing kernel Hilbert spaces. The core

research proposal of this thesis can be summarised as follows.

Thesis statement: Graphics processing units (GPUs) and specialised algo-

rithm design can significantly improve the throughput of machine learning

pipelines.

Consider the end-to-end deployment of machine learning models in real-

world systems, which may include some or all of the following phases [50, 7, 47]:

• Data collection/preparation.

• Exploratory analysis (e.g. summary statistics, data visualisation).

• Feature transformation.

• Model training.

• Hyper-parameter tuning.

• Model selection.

• Inference.

• Interpretability.

We apply optimisation methodologies from both a hardware and software per-

spective to specific sub-problems in this pipeline, with a view to increasing

overall throughput. The sub-problems are addressed as thesis chapters as fol-

lows.

3

In Chapter 3, we develop methods for density estimation and quantile ap-

proximation, as applied in the exploratory analysis and feature transformation

phases. In particular, the quantile approximation problem forms a key bottle-

neck in gradient boosted tree algorithms (introduced in Section 2.1). We survey

existing solutions to the density estimation/quantile approximation problem

based on the sample moments of the data, where approximation of the respec-

tive probability density function is performed via the method of maximum

entropy or various orthogonal series in a polynomial or trigonometric basis.

Previously identified shortcomings of these methods are addressed using spe-

cialised numerical methods for higher-order moment aggregation, and a high

throughput version based on GPU tree-reduction is developed. The result is

sketching methods with runtime orders of magnitude faster than existing so-

lutions (see the KLL sketch [27]) and excellent empirical performance for low

memory sketches on large data streams.

A significant part of this thesis (Chapters 4 and 5) deals with the emerg-

ing interpretability phase of the above-mentioned machine learning pipeline.

Interpretability has received much attention in light of the so-called “right to

explain” [26] and its impact on the deployment of machine learning systems

in real-world environments. As models become highly complex “black boxes”,

it becomes difficult to explain why a particular result is obtained. One algo-

rithmic solution to the interpretability problem created by black-box machine

learning models is the Shapley value [51]. While the Shapley value has many

desirable characteristics, it is NP-hard in general, and poses significant compu-

tational challenges. Chapter 4 discusses a polynomial-time algorithm for the

Shapley values of decision tree models and its nontrivial adaptation to GPUs.

The result is GPUTreeShap, a scalable software library achieving increases in

throughput of between 15-340x as compared to existing CPU based algorithms

for the Shapley value problem in decision trees. GPUTreeShap is natively in-

tegrated into XGBoost [6], one of the most popular machine learning libraries

in the world [25]. In Chapter 5, we discuss Shapley value approximation in the

4

general case, using quasi Monte Carlo type methods. By applying kernels over

permutations, we develop methods with improved analysis and convergence

rates compared to previous literature.

Finally in Chapter 6, we address a gap in the literature for GPU shuffling

algorithms, developing Bijective shuffle, a highly practical algorithm achieving

orders of magnitude higher throughput than CPU based alternatives. We also

reuse work from Chapter 5 regarding kernels on permutations, developing a

statistical hypothesis test for the uniform distribution of permutations, and

empirically verifying the correctness of our shuffling algorithm. Bijective shuf-

fle is adopted by the Thrust library [2], the standard library for the CUDA

language, and applied at various levels of the machine learning pipeline, in-

cluding sampling without replacement during model training (feature sampling

or bootstrapping), model selection (e.g. cross validation), as well as the Shap-

ley value approximations discussed in Chapter 5, used in the interpretability

phase.

In summary, this thesis contains four primary contributions:

• The development of lightweight, hardware efficient, algorithms for den-

sity estimation and quantile approximation.

• Specialised GPU algorithms for computing Shapley values of decision

tree ensembles, and the accompanying software package, GPUTreeShap.

• The development and analysis of sampling algorithms for Shapley value

estimation using reproducing kernels for permutations.

• A fast algorithm for shuffling data using GPUs, which is adopted by

Thrust [2], the standard library for CUDA, and a kernel test for uniform

distributions of permutations.

These contributions are connected by a common thread of software and algo-

rithm optimisation techniques, and together account for significant improve-

ments in total throughput for real-world machine learning pipelines. In par-

ticular, the above solutions are applied to research projects in computational

5

finance [42] and differential privacy [46], as well as use cases in industry such

as customer retention and loan delinquency prediction (and interpretability of

predictions).

We begin the thesis by discussing relevant background material in Chapter

2, including supervised learning and decision tree models, hardware acceler-

ation via general-purpose GPU computing, Shapley values, and reproducing

kernel Hilbert spaces. Chapters 3-6 include self-contained publications corre-

sponding to the primary contributions of the thesis, and Chapter 7 the con-

clusion.

Chapter 2

Background

This chapter provides an introduction to foundational concepts for understand-

ing the work presented in this thesis. Some material may be repeated as later

chapters are self-contained publications. We begin by introducing supervised

learning in Section 2.1, with a specific focus on decision trees, boosting, and the

XGBoost algorithm. In Chapter 4, we develop fast interpretability methods

for decision trees and apply them as an extension to the open source XGBoost

library. These models are also used to generate an interpretability baseline in

Chapter 5. Furthermore, the quantile sketching methods discussed in Chapter

3 can be applied as a preprocessing step in a quantised version of the XGBoost

algorithm.

In Section 2.2, we introduce GPU computing. GPU acceleration techniques

are used in Chapters 3, 4, and 6 to develop significantly higher throughput

versions of existing algorithms.

In Section 2.3, we introduce Shapley values. This material is relevant

to Chapters 4 and 5, where we specifically discuss the solutions of compute

intensive Shapley value problems for interpretability in machine learning.

Section 2.4 introduces reproducing kernel Hilbert spaces, and specifically,

reproducing kernels on the symmetric group. These kernels are used in the

analysis and development of sampling strategies over permutations in Chapter

5, and to develop a statistical hypothesis test for the output of a shuffling

7

algorithm in Chapter 6.

2.1 Supervised Learning

The methods described in this thesis are applied to end-to-end machine learn-

ing workflows, focusing in particular on supervised learning applications. In-

formally, supervised learning refers to the task of forming a predictive model of

the output of some system, given a number of training examples demonstrating

the expected input/output behaviour of the system. In the standard setting

considered in this thesis, the inputs are denoted by the matrix X, where each

row constitutes an example and each column represents a unique input, or

“feature”. The outputs are represented by the vector y, containing one value

for each row of X. Given the (X, y) input pair, the task is to find some model

f that makes predictions

f(Xi) ≈ yi,

where the index i refers to a single training row. In practical applications of

supervised learning, the hope is that f will continue to make accurate pre-

dictions when given new, unseen, data. Assuming the new data is i.i.d., and

invoking some notion of complexity of the function f , there are theoretical

results providing bounds on the expected accuracy of f a model given its ac-

curacy on the training data and the amount of data it was trained on [54]. The

notion of accuracy can be made precise by the definition of a loss function,

such as mean squared error:

L(X, y, f) =
1

n

n∑

i=1

(yi − f(Xi))
2

Consider the simple linear model

f(Xi) =
m∑

j=1

βjXij = ŷ

with parameter vector β. The supervised learning task in this case simplifies

to finding the parameters β that minimise the loss function L(X, y, f), for a

8

given (X, y) training pair. Substituting the linear model into the loss function

L and using vector notation, we have

L = (y −Xβ)T (y −Xβ).

Differentiating with respect to the parameters β and setting equal to zero

yields

dL

dβ
= XT (y −Xβ) = 0,

with optimal parameters (assuming XTX is non-singular) given by

β = (XTX)−1XTy. (2.1)

The above solution to a linear model with a mean squared error loss function is

known analytically, but this is not the case in general, and more sophisticated

models and loss functions require iterative optimisation methods to converge

to a solution. Furthermore, the solution above happens to be a global minimum

of the loss function, verifiable due to the convexity of the optimisation prob-

lem, which ensures any local minimum is also a global minimum [40]. More

sophisticated models can be used in order to further reduce the loss function,

but the optimisation of model parameters may no longer be convex.

2.1.1 Decision Trees

We now describe a decision tree model, a model commonly learned by attempt-

ing to recursively partition training instances, grouping those with similar la-

bels (y), and making predictions for these groups as a whole. We show an

example of decision tree learning using the Boston housing dataset [19]. This

dataset contains 506 training examples and 13 features, where the features are

characteristics of houses, and the labels to be predicted are the median house

prices. Figure 2.1 shows a depth 2 decision tree model trained on this dataset

using the scikit-learn [43] library. Prediction is performed by testing the ap-

propriate feature values against a condition at each split node. When a leaf

node is reached, the leaf value is returned. In this case, the learning algorithm

9

Figure 2.1: Decision tree model

has chosen to split on the RM (average number of rooms per dwelling) and

LSTAT (% lower status of the population) features. The decision tree learn-

ing algorithm, trained with the mean squared error loss function, evaluates all

possible splits along each feature, greedily subdividing the data at each level

in order to minimise the loss function. In the case of mean squared error, this

corresponds to finding the split that minimises the variance of house prices in

each new partition.

Figure 2.2 plots the entire dataset in terms of the RM and LSTAT features,

with points coloured according to house value. The dotted lines show the

decision tree boundaries, separating the dataset into quadrants with similar

house value characteristics. Given a new house with the RM and LSTAT

attributes, its value can be estimated by the mean house value of the training

data in the appropriate quadrant. From this diagram, we see that the decision

tree algorithm has learned to group houses with approximately eight rooms or

more in a high-value category. When encountering a new property with eight

rooms, the model will predict a correspondingly high house value.

2.1.2 Boosting

While decision trees alone are useful models, multiple trees can be combined

to form models with significantly higher predictive accuracy using a process

10

Figure 2.2: Boston housing data with partitions corresponding to decision tree

in Figure 2.1

known as boosting. Boosting comes from the idea of combining individually

weak models into a more powerful committee of models, where each additional

model refines the predictions of the previous models. This is in contrast to

bagging [4], another popular ensemble method that constructs weak models

simultaneously on different subsamples of the data.

A significant early boosting algorithm is AdaBoost, due to Freund and

Schapire [14]. AdaBoost is a binary classification algorithm that proceeds

by fitting a model ft(x), producing values in {1,−1}, at each time step t

on weighted training instances. At each step t, training instances incorrectly

classified by the ensemble model Ft−1(x) =
∑t−1

i=1 αifi(x), with suitable coeffi-

cients αi, are given increased weight, and training instances that were correctly

classified are given reduced weight. Thus, instances for which the current en-

semble model performs poorly are given greater importance when inducing

ft(x). Algorithm 1 describes the boosting process in greater detail.

11

Algorithm 1: AdaBoost.M1

Input: Training instances X = {x1, x2, . . . , xN}, binary class labels

y = {y1, y2, . . . , yN} ∈ {1,−1}

Output: Ensemble model F (x)

1 F (x)← ∅

2 wi ← 1/N, i = 1, . . . , N

3 for t← 1 to T do

4 ft(x)← learn(X, y, w) // Train weak learner with weights

5 εt ←
∑n

i=1 wi1ft(xi)6=yi∑n
i=1 wi

// Calculate error

6 αt ← log((1− εt)/εt)

7 wi ← wi · exp(αt · 1ft(xi)6=yi), i = 1, . . . , N // Update weights

8 F (x)← F (x) + αtft(x) // Add to ensemble

9 end

10 return F (x)

AdaBoost is a powerful tool for classification, but can be generalised to

a wider variety of objectives, such as real-valued regression, by re-framing

the learning process as functional gradient descent. From this perspective,

AdaBoost space can be seen to minimise an exponential loss function [20],

which, for a single observation x, is defined as

L(y, F (x)) = exp(−yF (x)).

To illustrate this, we now derive an algorithm for minimising this loss function

and then show its equivalence to Algorithm 1 (within some constant factor).

In each iteration of the algorithm, the minimisation problem is

(αt, ft(x)) = arg min
αt,ft(x)

N∑

i=1

exp[−yi(Ft−1(xi) + αtft(xi))]. (2.2)

We proceed by first holding αt constant, finding ft(x) that minimises the

exponential loss, then substituting ft(x) to find αt that further minimises this

loss. Rearranging to extract terms that do not depend on αt or ft(xt) and

12

assuming αt is fixed, we have

arg min
ft(x)

N∑

i=1

exp(−yiFt−1(xi)) · exp(−yiαtft(xi)).

Define wi as an instance weight for training instance i:

wi = exp(−yiFt−1(xi)). (2.3)

The problem is then to find a new ensemble member αtf(x) minimising the

weighted exponential loss.

arg min
ft(x)

N∑

i=1

wi · exp(−yiαtft(xi)).

For each training instance i, ft(xi) outputs either 1 or −1, therefore the term

−yift(xi) will be −1 if yi = ft(xi) and 1 if yi 6= ft(xi). Accordingly, we can

separate the sum into two parts and obtain

arg min
ft(x)

{
N∑

i:yi=ft(xi)

wi · e−αt

}
+

{
N∑

i:yi 6=ft(xi)
wi · eαt

}
. (2.4)

Expressed only in terms of instances where yi 6= ft(xi), we have

arg min
ft(x)

{
N∑

i

wi · e−αt −
N∑

i:yi 6=ft(xi)
wi · e−αt

}
+

N∑

i:yi 6=ft(xi)
wi · eαt .

Rearranging, we get

arg min
ft(x)

{
N∑

i

wi · e−αt +
N∑

i:yi 6=ft(xi)
wi(e

αt − e−αt)

}
.

The first sum and (eαt − e−αt) are constants, so the optimisation problem

becomes

arg min
ft(x)

N∑

i:yi 6=ft(xi)
wi. (2.5)

(2.5) shows that as long as the new model ft(x) minimises the weighted mis-

classification error, subject to our definition of weights, the exponential loss is

minimised.

The loss is further minimised by optimising αt. Assuming ft(x) is fixed in

(2.4), we have the following optimization problem:

αt = arg min
αt

{
N∑

i:yi=ft(xi)

wi

}
e−αt +

{
N∑

i:yi 6=ft(xi)
wi

}
eαt .

13

Taking derivatives with respect to αt and solving, we have

∂

∂αt
= −

{
N∑

i:yi=ft(xi)

wi

}
e−αt +

{
N∑

i:yi 6=ft(xi)
wi

}
eαt = 0

{
N∑

i:yi 6=ft(xi)
wi

}
eαt

e−αt
=

{
N∑

i:yi=ft(xi)

wi

}

e2αt =

∑N
i:yi=ft(xi)

wi
∑N

i:yi 6=ft(xi)wi

αt =
1

2
ln

(∑N
i:yi=ft(xi)

wi
∑N

i:yi 6=ft(xi)wi

)

αt =
1

2
ln

(
1−

∑N
i:yi 6=ft(xi)

wi∑N
i wi∑N

i:yi 6=ft(xi)
wi∑N

i wi

)

αt =
1

2
ln

(
1− ε
ε

)
. (2.6)

We now show that (2.6) is equivalent to Line 6 from Algorithm 1 up to a

factor of 1
2

by showing that the weight update from Equation 2.3 is equivalent

to Line 7 from Algorithm 1. Based on our weight update in (2.3), the weight

function for the next iteration is given by

wi,t+1 = exp(−yFt(xi)).

Expanding Ft(xi) and rearranging,

wi,t+1 = exp(−y(α0f0(xi) + α1f1(xi) + · · ·+ αtft(xi)))

= exp(−yFt−1(xi) + (−αtyft(xi)))

= exp(−yFt−1(xi)) · exp(−αtyft(xi))

= wi,t · exp(−αtyft(xi)).

Remembering y, ft(x) ∈ {−1, 1}, see that

−yft(xi) = |ft(xi)− yi| − 1

So we can write

wi,t+1 = wi,t · exp(αt(|ft(xi)− yi| − 1))

= wi,t · exp(αt · |ft(xi)− yi|) · exp(−αt)

14

The term exp(−αt) is the same for all training instances so it has no effect in

terms of the relative change in weights between training instances. Hence the

weight update derived from the exponential loss function has the same effect

as Line 7 from Algorithm 1, and AdaBoost is minimising the exponential loss

function.

Gradient boosting [15] is a variation on boosting which represents the learn-

ing problem as gradient descent on arbitrary differentiable loss functions. More

specifically, the boosting algorithm executes T boosting iterations to learn a

function F (x) that outputs predictions ŷ = F (x) minimising some loss function

L(y, ŷ). As before, at each iteration, we add a new estimator f(x) attempting

to correct the predictions of the previous iteration:

Ft+1(x) = Ft(x) + f(x) = y.

In the case of the squared error loss function, the ensemble is updated by

setting f(x) to:

f(x) = y − Ft(x).

The f(x) for the current boosting iteration is learned according to the residuals

y − Ft(x) of the previous iteration. In practice, we approximate f(x), for

example, by using a depth limited decision tree. This iterative process can be

shown to be a gradient descent algorithm when the loss function is the squared

error:

L(y, F (x)) =
1

2
(y − F (x))2.

To see this, consider that the loss over all training instances can be written as

J =
∑

i

L(yi, F (xi)).

J is minimised by adjusting F (xi). The gradient for a particular instance xi

is given by

dJ

dF (xi)
=
d
∑

i L(yi, F (xi))

dF (xi)
=
dL(yi, F (xi))

dF (xi)
= Ft(xi)− yi,

and so the residuals are the negative gradient of the squared error loss function:

f(x) = y − Ft(x) = −dL(y, F (x))

dF (x)
.

15

Assuming an appropriate learning rate, adding a model approximating the

negative gradient moves the ensemble closer to a local minimum of the loss

function, thus implementing gradient descent.

2.1.3 XGBoost

The XGBoost algorithm by Chen and Guestrin [6] brought several improve-

ments to the standard gradient boosting algorithm. Their algorithm and soft-

ware implementation is used in several places in this thesis. The standard

gradient boosting algorithm by Friedman specifies a model update of the form

Ft(x) = Fm−1(x) + αtf(x),

where the new model f(x) is fit using first-order gradients and a line-search

procedure is applied to find αt. XGBoost differs in that it calculates second-

order functional gradients for each training instance, finding decision tree leaf

weights by exact minimisation of a second-order Taylor expansion. This re-

moves the need for a line-search procedure and allows the magnitude of the

individual leaf weights in the tree to vary independently. Additionally, XG-

Boost introduces the idea of a regularisation penalty to the learning objective

to prevent individual decision trees in the ensemble from growing too large..

Given some learning objective, such as minimising mean squared error, we add

an additional function Ω(f) that is large when the model is complicated and

small when the model is simple. The regularisation term forces the learning

algorithm to trade off model complexity for accuracy on the training data, and

can help prevent the overfitting of highly complicated models to the training

data.

We derive the XGBoost algorithm below, closely following [6]. An objective

function with two parts is defined, a loss function over the training set and a

regularisation term penalising model complexity:

Obj =
∑

i

L(yi, ŷi) +
∑

k

Ω(fk)

16

L(yi, ŷi) can be any convex, twice differentiable, loss function measuring the

difference between the prediction and true label for a given training instance.

Ω(fk) describes the complexity of tree fk and is defined as

Ω(fk) = γT +
1

2
λw2 (2.7)

where T is the number of leaves of tree fk and the vector w contains the leaf

weights (i.e., the predicted values stored at the leaf nodes). When Ω(fk) is

included in the objective function, the algorithm optimises for a less complex

model that simultaneously minimizes L(yi, ŷi). γT provides a constant penalty

for each additional tree leaf and λw2 penalises extreme weights. γ and λ are

user-configurable parameters.

Given that boosting proceeds in an iterative manner, the objective function

for the current iteration m is stated in terms of the prediction of the previous

iteration ŷi
(m−1), adjusted by the newest tree fk:

Objm =
∑

i

L(yi, ŷi
(m−1) + fk(xi)) +

∑

k

Ω(fk).

The objective is then minimised via choice of fk. Taking the second-order

Taylor expansion of the objective function about the point ŷ
(m−1)
i , we have

Objm '
∑

i

[L(yi, ŷi
(m−1)) + gifk(xi) +

1

2
hifk(xi)

2] +
∑

k

Ω(fk) + constant,

where gi and hi are the first and second derivatives for instance i:

gi =
dL(yi, ŷi

(m−1))

dŷi
(m−1)

hi =
d2L(yi, ŷi

(m−1))

d(ŷi
(m−1))2

.

Note that the model ŷi
(m−1) is left unchanged during the optimisation process.

The simplified objective function with constants removed is

Objm =
∑

i

[gifk(x) +
1

2
hifk(x)2] +

∑

k

Ω(fk).

With the observation that a decision tree predicts constant values within a

leaf, fk(x) is represented as wq(x), where w is the vector containing scores for

17

each leaf and q(x) maps instance x to a leaf:

Objm =
T∑

j=1

[(
∑

i∈Ij
gi)wq(x) +

1

2
(
∑

i∈Ij
hi)w

2
q(x)] + γT +

1

2
λ

T∑

j=1

w2.

Here, Ij refers to the set of training instances in leaf j. Define Gj, Hj as follows:

Gj =
∑

i∈Ij
gi

Hj =
∑

i∈Ij
hi.

As wq(x) is a constant within each leaf and can be represented as wj, we have

Objm =
T∑

j=1

[Gjwj +
1

2
(Hj + λ)w2

j] + γT. (2.8)

The weight wj for each leaf minimises the objective function at

∂Objm

∂wj
= Gj + (Hj + λ)wj = 0,

and the best leaf weight wj given the current tree structure is

w∗j = − Gj

Hj + λ
.

Substituting w∗j into Equation 2.8, the objective function for the tree structure

becomes

Objm = −1

2

T∑

j=1

G2
j

Hj + λ
+ γT. (2.9)

Equation 2.9 is used in XGBoost as a measure of the quality of a given tree.

Decision tree splits are greedily selected to minimise this objective, and the

tree structure can be expanded arbitrarily while additional nodes continue to

reduce the objective.

2.2 GPU Computing

In this thesis, we make extensive use of graphics processing units (GPUs) as

hardware accelerators, developing massively parallel, hardware-optimised algo-

rithms to improve the performance of several machine learning sub-problems.

18

__global__ void example(float *d_a, float *d_b,

float *d_output, int n){

int global_tid = blockIdx.x * blockDim.x + threadIdx.x;

if(global_tid < n){

d_output[global_tid] = d_a[global_tid] + d_b[global_tid];

}

}

Listing 1: Example CUDA Kernel

GPUs can be thought of as specialised processing units optimised for through-

put instead of latency, where traditional CPUs optimise for latency over through-

put. GPUs achieve high throughput by launching large numbers of indepen-

dent operations simultaneously and without order guarantees. For GPUs,

memory load operations commonly incur significantly higher latencies than

subsequent control flow or arithmetic instructions [41]. The lack of ordering

guarantees allows the processor to schedule computation so as to amortise ex-

pensive memory read operations. In effect, a single on-chip processing unit

(called a streaming multiprocessor in CUDA) swaps between a number of ac-

tive tasks while waiting for memory load instructions, minimising stalling and

maximising total throughput by hiding memory latency [53].

Without loss of generality, implementations in this thesis, are described

in terms of the CUDA programming model [41]. Simple programs (kernels)

in CUDA can be expressed as operations performed by thousands of parallel

threads. Listing 1 shows a most basic kernel that adds two arrays together,

with one thread per data element.

More sophisticated programs can be constructed to take advantage of lower-

latency memory types, communicate between threads, synchronise threads, or

perform atomic memory updates. Figure 2.3 shows an overview of the CUDA

19

Figure 2.3: CUDA Memory Hierarchy (from CUDA Programminng Guide [41])

memory model, with the individual threads organised into blocks, and blocks

organised into grids. Of the three tiers of memory, global memory is the

most abundant, has the highest latency, and may be accessed by any thread.

A limited amount1 of shared memory is available to threads in a block at

considerably reduced latency compared to global memory. Typically shared

memory is used as working space for thread blocks, for example, loading an

image tile from global to shared memory for further cooperative processing

by a thread block. Threads cannot read or write shared memory for a thread

block of which they are not a member. Furthermore, each thread has access

to local registers with even lower latency than shared memory. Importantly,

threads inside a so-called warp (group of 32 adjacent threads) may read/write

each others registers via special intrinsics.

1Up to 164kB for GPUs at the time of writing.

20

Figure 2.4: Sum parallel reduction

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

⊕ ⊕

2.2.1 Parallel primitives

Parallel primitives are versatile algorithms that are commonly used as building

blocks in more sophisticated algorithms. Here we describe two primitives,

reduction and prefix-sum, which are used in Chapters 3 and 6 respectively.

Parallel reduction applies a binary associative operator successively to ele-

ments of a vector, returning a single value. The associative property guarantees

the same result regardless of the order the operator is applied. Given a binary

associative operator ⊕ and an array of elements the reduction returns

(a1 ⊕ a2 ⊕ ...⊕ an). (2.10)

The reduction operation is easily implemented in parallel by passing partial

reductions up a tree, taking O(log n) iterations given n input items and n

processors. This is illustrated in Figure 2.4.

In practice, optimised implementations of reduction do not launch one

thread per input item, instead performing parallel reductions over tiles of

input items, then summing the tiles together sequentially. The size of a tile

varies according to the optimal granularity for a given hardware architecture.

Note that floatingpoint addition is not strictly associative. This means any

reordering of operations is likely to result in a slightly different answer (the

same applies to the scan operation described below). Results for the same

data can change, for example, when the GPU block size is modified.

CUDA implementations of reduction are typically tiered into three layers -

21

__device__

float warp_reduce(float x) {

for (int d = 16; d > 0; d /= 2)

x += __shfl_down(x, d);

return x;

}

Listing 2: Warp Reduction

warp, block and kernel, with each level of the reduction taking advantage of fast

instructions or shared memory as available. Individual warps can efficiently

perform partial reductions over 32 items using shuffle instructions introduced

from Nvidia’s Kepler GPU architecture onwards. These partial reductions can

then be combined at the block level to complete a title of input. Individual

thread blocks can iterate over many input tiles sequentially, summing the

reduction from each. When thread blocks finish processing all assigned tiles,

each writes a single output to global memory, where a final kernel consisting

of a single block sums these partial results into the final output. Reductions

are very efficient operations on GPUs. An implementation is given in [34] that

approaches the maximum bandwidth of the device tested.

Listing 2 shows a possible implementation of warp level reduction, utilis-

ing shuffle intrinsics to communicate between threads in the same warp. The

algorithm requires five iterations to sum over 32 items. Shuffle intrinsics are

particularly useful for cooperatively solving problems requiring communication

between small thread groups, as they consume significantly fewer cycles than

shared memory or global memory operations, and do not require synchronisa-

tion between warps. Warp intrinsics are used extensively in Chapter 4 to solve

batches of small dynamic programming problems with very high throughput.

In contrast to reduction, prefix-sum accepts the vector a and binary asso-

ciative operator ⊕, returning the vector

22

Algorithm 2: Hillis and Steele scan

1 for d=1 to log2n do

2 for k in parallel do

3 if k ≥ 2d−1 then

4 x[k] := x[k – 2d−1] + x[k]

5 end

6 end

7 end

Figure 2.5: Simple Parallel Scan Example

1 1 1 1 1 1 1 1

d = 1 1 2 2 2 2 2 2 2

d = 2 1 2 3 4 4 4 4 4

d = 3 1 2 3 4 5 6 7 8

[a1, (a1 ⊕ a2), ..., (a1 ⊕ a2, ..., an)] (2.11)

The simple parallel prefix-sum algorithm of Hillis and Steele [21] is given

in Algorithm 2.

Figure 2.5 illustrates the process for a vector of length eight, containing

all 1s. Assuming eight parallel threads, the algorithm takes log2(8) = 3 itera-

tions to complete, applying the operator ⊕ O(n log(n)) times. As a sequential

prefix-sum operation using a single thread performs only O(n) operations, this

parallel prefix-sum implementation is not work efficient. Under the work-time

framework for the analysis of parallel algorithms [23], the work performed by

p parallel processors is the total number of primitive operations performed by

those processors. A parallel algorithm is said to be work-efficient when it has

23

the same complexity of total operations as the best known sequential algo-

rithm. A more complicated work-efficient prefix-sum is given by Blelloch in

[3], with a GPU implementation described in [18].

Like reduction, prefix-sum may also be implemented at warp, block and

then grid level to take advantage of faster localised operations. Listing 3

shows a warp level implementation of Algorithm 2 using shuffle intrinsics.

State-of-the-art prefix-sum implementations combine multiple strategies, for

example, using the work-inefficient Hillis and Steele scan at the warp level, then

switching to a work efficient version at the block or grid level. An excellent

summary of GPU prefix-sum strategies is given in [35].

__device__

float warp_prefix_sum(float x) {

int lane_id = threadIdx.x % 32;

for (int d = 1; d < 32; d *= 2){

float tmp = __shfl_up(x, d);

if (lane_id >= offset){

x += tmp;

}

}

return x;

}

Listing 3: Warp Prefix-Sum

2.3 Shapley Values

In Chapters 4 and 5, we deal with computationally intensive interpretability

algorithms for supervised learning models. In particular, we focus on the

Shapley value, which is widely used to interpret supervised learning models.

Shapley values [51], named after Lloyd Shapley, are a solution to a coop-

erative game that attributes the ‘winnings’ of the game among the players by

24

measuring the marginal contributions of each player to the final outcome. It

is based on considering all possible subgroups of players called “coalitions”.

Shapley values have become particularly relevant to machine learning in light

of the so-called “right to explanation” [26], where consumers affected by au-

tomated decision making systems may have the right to have those decisions

explained. Thus, the use of black-box machine learning models in domains

such as credit score evaluation may be constrained. The Shapley value can

provide a principled attribution of inputs with respect to the final classifica-

tion or regression output of a machine learning model, without regard to its

internal complexity or structure.

The Shapley value Shi for coalition member i is defined as

Shi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)) (2.12)

where S is a partial coalition, N is the grand coalition (consisting of all players),

and v is the so-called “characteristic function” that is assumed to return the

proceeds (i.e., value) obtained by any coalition.

The Shapley value function may also be conveniently expressed in terms of

permutations

Shi(v) =
1

|N |!
∑

σ∈S|N|

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]
(2.13)

where [σ]i−1 represents the set of players ranked lower than i in the ordering

σ, and S|N | is the set of all permutations of length |N |. The Shapley value is

unique and has the following desirable properties:

Efficiency: The sum of Shapley values for each coalition member is the

value of the grand coalition N .

Proposition 2.1. Assuming v({}) = v([σ]0) = 0,

|N |∑

i=1

Shi(v) = v(N)

25

Proof.

n∑

i=1

Shi(v) =

|N |∑

i=1

1

|N |!
∑

σ∈S|N|

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]

=
1

|N |!
∑

σ∈S|N|

|N |∑

i=1

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]

=
1

|N |!
∑

σ∈S|N|

[|N |∑

i=1

v([σ]i)−
|N |−1∑

i=0

v([σ]i)
]

=
1

|N |!
∑

σ∈S|N|

v([σ]|N |)

= v(N)

Symmetry: If two players have the same marginal effect on each coalition,

their Shapley values are the same.

Proposition 2.2. If, ∀S ⊆ N \{i, j}, v(S∪{i}) = v(S∪{j}), then Shi = Shj .

Proof. Straightforward from the definition of (2.12)

Linearity: The Shapley values of a sum of games is the sum of the Shapley

values of the respective games.

Proposition 2.3.

Shi(u+ w) = Shi(u) + Shi(w)

Proof. Define characteristic function v(S) = u(S) + w(S). Substituting into

(2.12)

Shi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |! (u(S ∪ {i}) + w(S ∪ {i})− u(S)− w(S))

= Shi(u) + Shi(w)

Dummy: The coalition member whose marginal impact is always zero has

a Shapley value of zero.

26

Proposition 2.4. If, ∀S ⊆ N \ {i}, v(S ∪ {i}) = v(S), then Shi = 0

Proof. Substituting v(S ∪ {i}) = v(S) into (2.12):

Shi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S))

Shi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |! (0)

Shi(v) = 0

The original work of Shapley [51] dealt with superadditive games, meaning

that for two disjoint subsets of N , S and T , v(S∪T) ≥ v(S)+v(T). Effectively,

adding more players to a coalition is at least as valuable as the separate coali-

tions. Under this condition, the Shapley value is the unique value satisfying

the axioms of efficiency, symmetry, linearity and dummy.

In the machine learning context, Shapley values are used as an attribution

of feature relevance to model outputs ([9, 52, 55, 32]). In the terminology of

supervised learning, we have some learned model f(x) = y that maps a vec-

tor of features x to a prediction y. The value of the characteristic function

is assumed to be given by y, and the grand coalition is given by the full set

of features. In a partial coalition, only some of the features are considered

“active” and their values made available to the model to obtain a prediction.

Applying the characteristic function for partial coalitions requires the defini-

tion of f(xS), where the input features x are perturbed in some way according

to the active subset S. A taxonomy of possible approaches is given in [10],

ranging from simply setting inactive features to zero, to filling inactive features

with some conditional expectation based on a background distribution.

Shapley values used in machine learning have some slight differences from

the formulation of [51]. The characteristic function evaluated on the empty

set v({}) is not necessarily zero, and may instead correspond to a global bias

27

term in the model. This leads to the modified efficiency axiom

v(N) = v({}) +

|N |∑

i=1

Shi(v).

Consider the simple linear model evaluated at training example x, with a bias

term β0, set to the average of the training labels y.

f(x) = β0 +
n∑

i=1

βixi.

Assuming inactive features are considered to have value zero, f(x) can be

represented as a game as follows

v(S) = β0 +
n∑

i=1

1i∈Sβixi

where the indicator function 1i∈S is one if feature i is contained in S, or zero

otherwise. In this example, there are no interactions between features, so

v(S ∪ T) = v(S) + v(T) for disjoint subsets S and T , and the Shapley values

are trivially given by

Shi(v) = βixi.

The decision tree model shown in Figure 2.1 is somewhat more complicated,

containing interactions between features. Even more complicated models such

as large decision tree ensembles or neural networks can be described as “black-

boxes”, difficult to manually interpret by machine learning practitioners. In

these cases, Shapley values take on the important role of describing feature im-

portance, taking into account complex interactions and providing an axiomatic

summary coinciding with human intuition [30].

A downside of Shapley values is the exponential time complexity of di-

rectly evaluating (2.12). For specific classes of games (for example, the linear

model described above), faster algorithms exist, but the problem is NP-hard

in general [11]. Chapter 4 discusses optimised polynomial-time algorithms for

ensembles of decision trees, and Chapter 5 discusses sampling algorithms for

approximation of the Shapley value in the general case.

28

2.4 Reproducing Kernel Hilbert Spaces

In Chapter 5, we make use of reproducing kernel Hilbert spaces over the sym-

metric group (the group whose elements are the bijections from the set to

itself) to formulate approximate algorithms for solving Shapley value prob-

lems, and to experimentally evaluate the quality of point sets in the space

of permutations. We use these techniques again in Chapter 6 to formulate

a kernel-based statistical tests for detecting uniform distributions of random

permutations.

Consider a bivariate function K : X ×X → R, whose Gram matrix associ-

ated with the arbitrary set X is positive semi-definite. This function, or kernel,

induces a reproducing kernel Hilbert space (RKHS) FK , the set of functions

defined as the closure of the span of {K(x, ·) | x ∈ X}. For two functions f

and g,

f =
n∑

i=1

aiK(xi, ·)

g =
m∑

j=1

bjK(xj, ·),

with n,m ≤ |X |, define the inner product

〈f, g〉K =
∑

i

∑

j

aibiK(xi, xj)

and norm

||f ||K =
√
〈f, f〉K .

The RKHS FK may also be expressed in terms of a feature map ϕ : X → FK
where

K(x, x′) = 〈ϕ(x), ϕ(x′)〉K .

Thus, the kernel implicitly represents an inner-product on feature transforma-

tions of elements of X .

Aside from being positive semi-definite, certain kernels may also be univer-

sal and characteristic, two properties which become critical in later chapters.

A continuous kernel on a compact metric space X is said to be universal if FK

29

is dense in C(X), the space of continuous functions on X [36]. In other words,

for any g ∈ C(X) and any ε > 0 there is a function in the RKHS f ∈ FK such

that

||f − g||∞ ≤ ε.

A kernel is said to be characteristic if the kernel mean embedding of any

distribution over X is unique to that distribution [16]. Define the kernel mean

embedding µK,P ∈ FK for distribution P as

µK,P (t) = 〈µK,P , K(t, ·)〉 = Ex∼P [K(t, x)] = Ex∼P [ϕ(x)],

and maximum mean discrepancy for two distributions P and Q as

MMDK(P,Q) = ||µK,P − µK,Q||K .

Given a characteristic kernel, P = Q if and only if MMDK(P,Q) = 0.

We now describe the Kendall and Mallows kernels over the symmetric group

Sd and summarise the result of [33], showing that the Mallows kernel is both

characteristic and universal while the Kendall kernel is neither. We use the

universal property in Chapter 5 to extend a convergence result for functions of

permutations in a RKHS to the set of all continuous functions on permutations.

The characteristic property is used in Chapter 6 to develop a statistical test

for the uniform distribution of permutations, using the fact that the mean

embedding of this distribution in the RKHS induced by the Mallows kernel is

unique.

The Kendall and Mallows kernels were first introduced in [24]. Given two

permutations σ and σ′ of the same length, both kernels are based on the

number of concordant and discordant pairs between the permutations:

ncon(σ, σ′) =
∑

i<j

[1σ(i)<σ(j)1σ′(i)<σ′(j) + 1σ(i)>σ(j)1σ′(i)>σ′(j)]

ndis(σ, σ
′) =

∑

i<j

[1σ(i)<σ(j)1σ′(i)>σ′(j) + 1σ(i)>σ(j)1σ′(i)<σ′(j)]

Assuming the length of the permutation is d, the Kendall kernel, corre-

sponding to the well-known Kendall tau correlation coefficient [28], is

Kτ (σ, σ
′) =

ncon(σ, σ′)− ndis(σ, σ
′)(

d
2

) ,

30

or equivalently

Kτ (σ, σ
′) = 1− 2ndis(σ, σ

′)(
d
2

) .

The Mallows kernel, for λ ≥ 0, is defined as

Kλ
M(σ, σ′) = e−λndis(σ,σ

′)/(d
2).

While the straightforward implementation of the Kendall and Mallows ker-

nels has time complexity O(d2), an efficient O(d log d) version can be imple-

mented using a Fenwick tree [13].

Note that Kτ can also be expressed in terms of a feature map of
(
d
2

)
ele-

ments,

ϕτ (σ) =


 1√(

d
2

)(21σ(i)<σ(j) − 1)




1≤i<j≤d

(2.14)

so that

Kτ (σ, σ
′) = ϕ(σ)Tϕ(σ′).

The Mallows kernel corresponds to a more complicated feature map, al-

though still finite dimensional, given in [33].

Let us now consider why the Kendall kernel is not universal, and why the

Mallows kernel is both universal and characteristic. Recall that functions in

the RKHS induced by the kernel take the form

f(·) =
d!∑

i=1

aiK(σi, ·). (2.15)

Define the d! × d! kernel Gram matrix MK with elements MK,ij = K(σi, σj).

See that the linear span of (2.15) is the span of MK . Thus, the ‘expressiveness’

of the RKHS relates to the rank of MK , and the kernel K is universal if MK

has full rank [33]. The Kendall tau kernel can be expressed as an inner product

of its feature map (2.14), so its Gram matrix can be written

ATA = Mτ ,

where A is a
(
d
2

)
×d! matrix with each column the feature map of a permutation.

As rank(ATA) = rank(A), and rank(A) is at most
(
d
2

)
, the Kendall tau kernel

is not a universal kernel.

31

We can show the Mallows kernel is a universal kernel using Theorem 2.2

of [8], which states that for a separable Hilbert space F , compact metric space

X , and an injective (one-to-many) function φ : X → FK , the kernel

K(σ, σ′) = exp(−λ||φ(σ)− φ(σ′)||2F)

is universal. Applying the Kendall tau kernel’s feature map (2.14) as φ = ϕ,

we have

K(σ, σ′) = exp(−λ||ϕ(σ)− ϕ(σ′)||2F)

= exp(−λ
[
ϕ(σ)Tϕ(σ)− 2ϕ(σ)Tϕ(σ′) + ϕ(σ′)Tϕ(σ′)

]
)

= exp(−λ
[
1− 2ϕ(σ)Tϕ(σ′) + 1

]
).

Substituting Kτ = ϕ(σ)Tϕ(σ′) = 1− 2ndis(σ,σ
′)

(d
2)

, we have

K(σ, σ′) = exp(−λ
[

2− 2(1− 2ndis(σ, σ
′)(

d
2

))

]
)

= exp(−λ4
ndis(σ, σ

′)(
d
2

))

which is equivalent to the Mallows kernel up to a constant, and so the Mallows

kernel is universal.

From the universal property we can also prove the Mallows kernel is char-

acteristic [16]. The following lemma from [12] (where d represents a metric,

not to be confused with d in Sd) states the uniqueness of a distribution in

terms of its mean in the space of bounded continuous functions.

Lemma 2.5. For a metric space (X , d) with two Borel probability measures

P,Q defined on X , P = Q if and only if Ex∼P [f(x)] = Ey∼Q[f(y)] for all

bounded continuous functions f ∈ C(X).

While Lemma 2.5 offers a means of discriminating between distributions,

it is not practical to work with C(X) [16]. Recall that a kernel is characteristic

when

|µK,P − µK,Q| = 0, (2.16)

32

if and only if P = Q. Consider the universal RKHS FK , where for any ε > 0,

f ∈ C(X), there exists g ∈ FK such that

||f(x)− g(x)||∞ ≤ ε.

Therefore, we can write

|E[g(x)]− E[g(y)]| ≤ |E[f(x)]− E[f(y)]|+ |E[f(x)]− E[g(x)]|+ |E[g(y)]− E[f(y)]|

|E[g(x)]− E[g(y)]| ≤ |E[f(x)]− E[f(y)]|+ 2ε

|E[f(x)]− E[f(y)]| − |E[g(x)]− E[g(y)]| ≤ 2ε.

As the function g is a member of our RKHS, then

E[g(x)]− E[g(y)] = 〈µP,K , g〉 − 〈µQ,K , g〉

= 〈µP,K − µQ,K , g〉.

Thus, if ||µP,K − µQ,K ||K = 0, then |E[g(x)]− E[g(y)]| = 0 and

|E[f(x)]− E[f(y)]| ≤ 2ε,

for any ε > 0, and by Lemma 2.5, P = Q if and only if ||µP,K − µQ,K ||K = 0.

Therefore the Mallows kernel is both a universal and characteristic kernel

on the symmetric group Sd, properties which become useful in later chapters.

Chapter 3

An Empirical Study of Moment

Estimators for Quantile

Approximation

1

An Empirical Study of Moment Estimators forQuantile
Approximation

RORY MITCHELL, Nvidia and University of Waikato, New Zealand
EIBE FRANK, University of Waikato, New Zealand
GEOFFREY HOLMES, University of Waikato, New Zealand

We empirically evaluate lightweight moment estimators for the single-pass quantile approximation problem,
including maximum entropy methods [13] and orthogonal series with Fourier, Cosine, Legendre, Chebyshev
and Hermite basis functions. We show how to apply stable summation formulas to offset numerical precision
issues for higher-order moments, leading to reliable single-pass moment estimators up to order 15. Addition-
ally we provide an algorithm for GPU-accelerated quantile approximation based on parallel tree reduction.
Experiments evaluate the accuracy and runtime of moment estimators against the state-of-the-art KLL [17]
quantile estimator on 14,072 real-world datasets drawn from the OpenML [2] database. Our analysis highlights
the effectiveness of variants of moment-based quantile approximation for highly space efficient summaries:
their average performance using as few as five sample moments can approach the performance of a KLL
sketch containing 500 elements. Experiments also illustrate the difficulty of applying the method reliably and
showcases which moment-based approximations can be expected to fail or perform poorly.

CCS Concepts: •Mathematics of computing→ Distribution functions; Statistical software; • Information
systems → Data mining; • Computing methodologies→ Machine learning algorithms.

Additional Key Words and Phrases: density estimation, quantiles, data streams

ACM Reference Format:
Rory Mitchell, Eibe Frank, and Geoffrey Holmes. 2020. An Empirical Study of Moment Estimators for Quantile
Approximation. ACM Trans. Datab. Syst. 1, 1, Article 1 (January 2020), 21 pages. https://doi.org/10.1145/3442337

1 INTRODUCTION
Quantile estimators are fundamental for characterising and manipulating data in a wide range of
applications, either as building blocks for other algorithms or as data inspection and visualization
tools in their own right. The moments sketch algorithm [13] is a method for extracting approximate
quantile information from a data stream using a data structure based on the sample moments
of the input stream. This approach is unique and appealing for a number of reasons. The sketch
uses a fixed size data structure with a constant memory requirement, typically less than 200 bytes,
making it suitable for tracking many data streams concurrently using cache memory only, and
rendering it a good candidate for implementation on devices like graphics processing units (GPUs).
Incremental updates and merge operations to the moments sketch are trivial and require only basic
arithmetic. Across a distributed system, merge operations can be implemented using a single call

Authors’ addresses: Rory Mitchell, ramitchellnz@gmail.com, Nvidia, University of Waikato, Department of Computer
Science, New Zealand; Eibe Frank, eibe.frank@waikato.ac.nz, University of Waikato, Department of Computer Science,
New Zealand; Geoffrey Holmes, geoffrey.holmes@waikato.ac.nz, University of Waikato, Department of Computer Science,
New Zealand.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0362-5915/2020/1-ART1 $15.00
https://doi.org/10.1145/3442337

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:2 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

to AllReduce [12], a widely available primitive for efficient communication. Moreover, quantile
estimates derived from the sketch typically produce estimates of less than 1% error (as we show in
this paper), making it a useful tool in applications where this level of error is acceptable.

However, the basic algorithm presented in [13] suffers from drawbacks that make it difficult to
use in practice. The primary challenge is numerical imprecision caused by maintaining higher-order
moments using finite-precision arithmetic across a large range of real number inputs. In exact math,
the algorithm works in a single pass, but in practice this is only true for well conditioned data. Our
empirical evaluation shows that estimates for sample moments on many real-world inputs have
unacceptable loss of precision.
In this paper, we investigate the behaviour of moments sketching on 14,072 datasets extracted

from the OpenML database [2], evaluating accuracy, speed, and reliability. These datasets vary
greatly in size, number of duplicate values, and proportion and scale of floating point values,
providing a challenging testbed for an algorithm relying on numerical optimisation and numerical
integration for accurate approximations. Considering the presence of duplicate values in real-world
data, it is important to note that the theory of some of the quantile approximation methods we
consider is based on the assumption of a density function. Our experiments with real-world data
containing duplicates give an indication of how well these methods perform when this assumption
is violated.

We consider several modifications of the basic moments sketch method: using stable higher order
moment summation to improve accuracy on poorly conditioned inputs, using massively parallel
GPUs to accumulate sample moments, and solving for the output distribution using Legendre
polynomials instead of the more complicated maximum entropy method. Additionally, we compare
the accuracy of the moments sketch to a related family of two-pass orthogonal series estimators
and the state-of-the-art KLL [17] quantile sketch under a set of space constraints.

2 QUANTILE APPROXIMATION BACKGROUND
The ϕ-quantile qϕ is defined as qϕ = F−1(ϕ), where F (x) = P(X ≤ x) is the cumulative distribution
function of random variable X , and F−1 is the generalised inverse, where F−1(u) = min{x : F (x) ≥
u}. Given a finite sample dataset S of size n that is sorted in ascending order, an estimate of qϕ
is the element in S whose rank is ⌊nϕ⌋, where rank(x) is defined as the number of elements in S
smaller than x . The median is equivalent to the ϕ = 0.5 quantile.
The naïve algorithm for computing quantiles is to sort the input data and extract the element

at index ⌊nϕ⌋. One of the earliest efficient approaches is the selection algorithm [3], which can
find any given quantile in linear time. The problem of approximating quantiles using sublinear
memory and a single pass is well studied. In [23], it was shown that computing the median using p
passes over the data requires Ω(n1/p) space. As a result, any algorithm that computes quantiles in
sublinear space, and in a single pass, must be an approximation. Approximate algorithms become
necessary in the streaming setting, where only a partial view of the dataset can be observed at any
given point, or in a distributed setting, where it becomes computationally infeasible to provide
access to the entire dataset at each node.
The performance of quantile approximation algorithms delivering a quantile approximation

q̂ is typically described in terms of space required to achieve ϵ accurate quantile queries, where
the true rank is bounded by (ϕ − ϵ)n and (ϕ + ϵ)n. The algorithm of Greenwald and Khanna (GK
sketch) [14] accumulates samples from an input stream into a buffer and applies a pruning scheme
to the active set that maintains error bounds. The algorithm uses O(1ϵ log(n)) space and is widely
considered to be state-of-the-art. The Q-Digest algorithm of Shrivastava et. al. [29] operates on
a fixed size universe [u] (for example, the representable range of a floating-point variable). The

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:3

algorithm constructs a sparse tree representation of incoming data over the input universe using
dyadic ranges, achieving space complexity of O(1ϵ log(u)).
The count-sketch [6] and related count-min-sketch [8] algorithm were designed for tracking

frequent elements in data streams. Input elements are accumulated into a set of constant-size hash
tables, allowing well-defined probabilistic queries for summary statistics. Both algorithms may
be adapted to return approximate quantile queries by partitioning the input universe into dyadic
ranges and maintaining hash tables for the corresponding ranges (see [20]). The approximation
guarantee of these algorithms relative to size is inferior to the GK sketch or Q-Digest, but they
have the advantage of allowing deletions as well as insertions.

We recommend [20] for an in-depth and accessible summary of the above methods. More recent
methods such as T-Digest [10] and DDSketch [22] provide improved performance for quantile
queries on heavily skewed data and around the tails of the distribution. Of particular relevance
to this paper is the KLL sketch [17], which is a randomized sketch providing ϵ accurate quantiles
with probability 1 − δ using space O(1ϵ log log(1/δ)).

The above quantile approximation algorithms are sample based — they store a sub-linear num-
ber of input elements as a sketch, approximating the empirical quantile function F−1(ϕ) as a
discontinuous step function via queries to these stored elements. Another approach is to define
some parameterised uniformly continuous function closely approximating F−1(ϕ). The moments
sketch [13], which we discuss in detail in the next section, uses this approach. Another example
is [30], in which an orthogonal Hermite series is used to generate quantile estimates. We discuss
approaches based on orthogonal series in Section 4 and consider estimation using Legenrde series
in particular in Section 5.

3 MOMENTS SKETCH
The strength of the moments sketch [13] lies in providing a low-memory, constant-size data
structure that can be trivially updated and merged. It maintains a working set of power sums from
orders 0 to l , where the sum at order k is

Sk =
n∑
i=0

xki . (1)

The sample moments µk = E[xk] are obtained from the sketch as

µk =
Sk
S0
. (2)

The moments sketch also maintains the valuesmin andmax bounding the range of the input data so
that moments can be scaled and centered into the range −1 ≤ x ≤ 1. This rescaling and centering is
necessary so that operations to obtain a density estimate from sample moments will be sufficiently
well conditioned.

We rescale the moments using s = 2
max−min to obtain

µ̂k = s
k µk (3)

and then shift by −c = −s · min+max
2 using the binomial formula:

µ̃k =
k∑
i=0

(
k

i

)
µ̂i (−c)k−i . (4)

Given sample moments in the range [−1, 1], a matching distribution based on a density function
f (x) is constructed. Many distributions may exist that match a finite set of sample moments [1].

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

One method of obtaining a unique distribution makes use of the principle of maximum entropy [19].
The entropy of a distribution’s density function f (x) is

H = −
∫ ∞

−∞
f (x) log f (x)dx .

Based on the maximum entropy principle, we search for the density function f (x) that maximises
H subject to the moment matching constraint

µk =

∫ ∞

−∞
xk f (x)dx .

This maximum entropy density represents the least informative (i.e., "simplest") distribution that
matches the moments. It is unique and has the form

f (x) = exp(
l∑

k=0
θkx

k). (5)

The parameters θk are determined by minimising the loss function

L(θ) =
∫ xmax

xmin

exp(
l∑

k=0
θkx

k)dx −
l∑

k=0
θk µk . (6)

Minimising this convex loss function yields the distribution of maximum entropy among those
that match the sample moments [16]. This minimisation can be performed by applying Newton’s
method with gradient

∂L(θ)
∂θa

=

∫ xmax

xmin

xa exp(
l∑

k=0
θkx

k)dx − µa (7)

and Hessian

∂2L(θ)
∂θa∂θb

=

∫ xmax

xmin

xaxb exp(
l∑

k=0
θkx

k)dx . (8)

Note that xaxb = x (a+b), leading to computational efficiencies because integrals from Equation 7
can be reused.

Figure 1 depicts the order l = 10 maximum entropy distribution fit to a range of simple datasets,
comparing it to the fit obtained using other moment-based methods discussed in Section 4. In
particular, we can see the maximum entropy distribution avoids the oscillations of approximations
based on Legendre polynomials or the Fourier series.
It was noted in [13] that Chebyshev polynomials of the first kind improve the conditioning of

the optimisation problem. This can be achieved by converting the moments E[xk] to ‘Chebyshev
moments’ E[Tk (x)], using expressions derived from the recurrence relations of Chebyshev poly-
nomials [21] and replacing occurrences of xk with Tk (x). Our implementation uses this variant.
See [9] for a more in-depth discussion of solving maximum entropy problems using Chebyshev
polynomials instead of monomials. Additionally, in [13], the authors define a variant of the moments
sketch utilising log momentsTk (log(x)), although this requires strictly positive inputs. In Section 8,
we evaluate versions of the moments sketch using log Chebyshev moments.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:5

Fig. 1. Various density estimates of order l = 10

3.1 Solving for qϕ from a density function
Given the moment-matching distribution of maximum entropy, numerical integration techniques
can be used to find qϕ satisfying ϕ = F (qϕ) =

∫ qϕ
−∞ f (x)dx , for example, integrating f (x) with

the trapezoid rule to approximate F (x) and applying binary search to find qϕ . Alternatively, the
problem can be posed as a system of ordinary differential equations (ODEs) so that widely available
software packages will output qϕ for given ϕ. Consider the first-order differential equation

y ′(t) = д(t ,y)
y(t0) = y0

where we seek the value of function y(t) at time points t1, t2, · · · and have access to the function д
and y0. We substitute t for ϕ, y(t) for the inverse F−1(ϕ), and y0 for F−1(0) = q0 = xmin . To apply
an ODE solver, we need д(t) = (F−1)′(ϕ). We know that

F (F−1(ϕ)) = ϕ

and taking derivatives with respect to ϕ using the chain rule yields

f (F−1(ϕ))(F−1)′(ϕ) = 1

which means
(F−1)′(ϕ) = 1

f (F−1(ϕ))

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

Algorithm 1Moments sketch algorithm
Input: Datastream (x0,x1, · · · ,xn), maximum order l , (ϕ0,ϕ1, · · · ,ϕm)
Output: Quantiles (qϕ0 ,qϕ1 , · · · ,qϕm)
1: Compute power sums (S0, S1, · · · , Sl) from the input stream (Eq. 1)
2: Obtain sample moments (µ0, µ1, · · · , µl) (Eq. 2)
3: Rescale sample moments to get (µ̂0, µ̂1, · · · , µ̂l) (Eq. 3)
4: Shift sample moments to get (µ̃0, µ̃1, · · · , µ̃l) (Eq. 4)
5: Solve θ ∗ = argminθ

∫ xmax

xmin
exp(∑l

k=0 θkx
k)dx −∑l

k=0 θk µ̃k (Eq. 6)
6: Solve ODE with y ′(t ,y) = 1

exp(∑l
k=0 θ

∗
ky

k) , y0 = xmin and (t0, t1, · · ·) = (ϕ0,ϕ1, · · ·), yielding
(q̃ϕ0 , q̃ϕ1 , · · · , q̃ϕm)

7: Shift and scale (q̃ϕ0 , q̃ϕ1 , · · · , q̃ϕm) back to original domain, output (qϕ0 ,qϕ1 , · · · ,qϕm)

where f is the density function from Equation 5. Now, when applying the ODE solver, F−1(ϕ)
corresponds to the state variable y provided by the solver on each iteration.
The end-to-end moments sketch algorithm for quantile approximation based on maximum

entropy density estimation is summarised in Algorithm 1.

4 ORTHOGONAL FUNCTION DENSITY ESTIMATION
An alternative method of approximating a density function for the purposes of quantile approxima-
tion is possible via orthogonal functions. A set of functions д0(x), д1(x) . . .дk (x) is defined to be
orthogonal over the interval a < x < b when∫ b

a
дi (x)дj (x)w(x)dx = δi jci

wherew(x) is a weight function, ci is some scaling constant, and δi j is the Kronecker delta yielding
0 when i , j and 1 when i = j.

A function f (x) may be represented by an infinite series in a basis of orthogonal functions

f (x) =
∞∑
i=0

aiдi (x) (9)

with coefficients

ai =
1
ci

∫ b

a
f (x)дi (x)w(x)dx .

This is of practical relevance because the truncation of this series gives a useful approximation to
f (x). Some examples of orthogonal basis functions are listed in Table 1. As the table shows, the
first three expansions are only applicable to restricted domains, but it is possible to map arbitrary
data to the corresponding ranges. Note that the Fourier series is also an example of an orthogonal
expansion, but it generates two sets of coefficients instead of one.

The series expansion based on orthogonal functions can naturally be used to estimate a probability
density f (x) from samples in the domain [a,b] by realising that∫ b

a
f (x)дi (x)w(x)dx = E[дi (x)w(x)] ≈ 1

n

n∑
j=0

дi (x j)w(x j) (10)

In Equation 10, the series coefficients ai from Equation 9 are estimated by a weighted average of the
orthogonal basis functions applied to sample data, yielding a simple and computationally efficient
density estimate.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:7

Table 1. Orthogonal expansions

Expansion Weight Constant Domain
Cosine 1 c0 = π , ci =

π
2 [0,π]

Chebyshev 1√
1−x 2 c0 = π , ci =

π
2 [−1, 1]

Legendre 1 ci =
2

2i+1 [−1, 1]
Hermite e−

x2
2 ci =

√
2π · i! [−∞,∞]

This method of density estimation goes back to Cencov [4]. For a more recent summary, see [11].
Note that most work on orthogonal density estimation is concerned with the estimation of the
unobserved density from sample data and truncates the series to obtain a smoother estimate. In
contrast, for the quantile approximation problem, we aim to approximate the sample quantiles as
closely as possible, and will not truncate the series except out of computational necessity.
A drawback of density estimation based on orthogonal functions is that the estimate may be

negative in places. Correspondingly, the cumulative distribution function may not be monotonically
increasing, as it would for a true probability density function. Simple corrections can be made
by shifting the density function upwards and rescaling such that

∫
f (x)dx = 1. However, these

corrections are not required for obtaining valid quantile estimates (see Section 5) and consistently
have a negative effect on accuracy, so we do not consider them in this paper.
In Section 8, we provide an evaluation for the methods in Table 1 implemented as two-pass

estimators, using a first pass to compute the range of the data, and a second pass to compute the
orthogonal series coefficients (Equation 10) on the data mapped into the relevant domain. The
Legendre series is an exception, and can be implemented in one pass directly from the moments
sketch as explained in the next section. Note that, while the domain of the Hermite series is
technically unbounded, its weight function e−

x2
2 is poorly conditioned away from 0 and requires

scaling to use in practice, so we implement it as a two-pass estimator.

5 LEGENDRE POLYNOMIAL SERIES
The Legendre series can be implemented as a one-pass estimator directly from the moments sketch
as an alternative to the method of maximum entropy, providing the second moment-based quantile
approximation method we consider in this paper. Given the Legendre polynomials defined by the
recurrence relation

L0(x) = 1
L1(x) = x

(n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x),
the truncated Legendre series of order k is

f (x) ≈
k∑

n=0
anLn(x)

where the coefficients an are

an =
2n + 1

2

∫ 1

−1
f (x)Ln(x)w(x)dx

and the weight function isw(x) = 1. We can form the coefficients an directly from the scaled and
shifted sample moments of the moments sketch, using the fact that these sample moments represent

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

data in the domain [−1, 1], the weight function w(x) = 1 cancels out, and there are expressions
directly converting monomials to Legendre polynomials.

To obtain the coefficients from samplemoments, we use the following formula relatingmonomials
to the Legendre polynomials:

L0(x) = 1
L1(x) = x

Ln(x) =
⌊ n2 ⌋∑
k=0

(−1)k
2n

(
n

k

) (
2n − 2k

n

)
xn−2k . (11)

Applying the above formula with xn−2k replaced by the samplemoments µn−2k gives us the Legendre
moments µLeдn =

∫ 1
−1 f (x)Ln(x)dx , and we have the series coefficients by

an =
2n + 1

2 µ
Leд
n .

To get the cumulative distribution function F (x) ≈ ∑k
n=0 an

∫ x
−1 Ln(y)dy, we use the integral of

the Legendre polynomials ∫
Ln(x)dx = Ln+1(x) − Ln−1(x)

2n + 1 .

As discussed in the context of the other orthogonal series estimators considered in the previous
section, the density estimate can be negative in places, the cumulative distribution function F (x)
may not be monotonic and so its direct inverse—the quantile function F−1(y)—may not exist. We
can still find solutions to the inverse, with the caveat that they may not be unique. A standard
root finding algorithm such as the bracketed Newton-Raphson approach of [27] is effective. In
our implementation, we take the first root found by the algorithm. In practice, if multiple roots
occur, they occur close together and all represent valid solutions, so any deterministic method for
selecting roots could be used.
Considering the two moment-based density estimation approaches for quantile approximation

we have now discussed, the Legendre series has some advantages over the maximum entropy
distribution. It is comparatively simple to compute, avoiding the need to solve an optimisation prob-
lem with numerical integrals. The series is a polynomial and therefore has an analytic cumulative
distribution function, useful for computing quantiles. Its disadvantage is also that it is a polynomial.
The series will be effective for functions that are sufficiently smooth to be well approximated by a
polynomial, otherwise it is common to encounter ringing artefacts as in Runge’s phenomenon [28].
We include experiments comparing it to the maximum entropy approach in Section 8, concluding
that it is a less accurate but considerably simpler one-pass method than the moments sketch with
maximum entropy.

6 NUMERICALLY STABLE POWER SUMS
Methods based on the collection of sample moments suffer from limited available numerical
precision when implemented on floating-point hardware. Early works such as [31] and [5] discuss
the accumulation of rounding errors in the sample variance calculation and propose single-pass
update formulas with significantly improved conditioning over naïve methods. More recently,
Pébay et al. [26] generalise these formulas to higher-order central moments, providing both an
incremental update formula for processing elements one at a time and a parallel update formula
for merging partial sample moment estimates. The latter enables us to compute the power sum

Mk =

N∑
i=0

(xi − µ)k ,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:9

Fig. 2. Parallel reduction

Sketchx0 · · ·x7

Sketchx0 · · ·x3

Sketchx0,x1

Sketchx0 Sketchx1

Sketchx2,x3

Sketchx2 Sketchx3

Sketchx4 · · ·x7

Sketchx4,x5

Sketchx4 Sketchx5

Sketchx6,x7

Sketchx6 Sketchx7

⊕ ⊕

where µ is the sample mean, by splitting the full dataset into two multisets A and B of sizes NA

and N B and combining the central moment estimates for those two multisets MA
k and MB

k in a
numerically stable manner. Define δB,A as

δB,A = µB − µA.

where µA, µB are the means of the respective multisets, then, for any integer k ≥ 2,

Mk = NA
(−N B

N
δB,A

)k
+ N B

(NA

N
δB,A

)k
+

k−2∑
i=0

(
k

i

) [
MA

k−i
(−N B

N
δB,A

) i
+MB

k−i
(NA

N
δB,A

) i]
(12)

Equation 12 facilitates numerically stable merging of power sums in parallel or distributed
environments. In the case of incrementally summing elements, where N B = 1 and MB

k = 0 for
k > 0, the formula simplifies to

Mk =

[
N − 1
(−N)k +

(
N − 1
N

)k]
δkB,A +

k−2∑
i=0

(
k

i

)
MA

k−i

(−δB,A
N

) i
. (13)

Given centred power sums from the above formulas, the moment estimates of Section 3 are
trivially obtained, replacing Sk withMk and shifting by (µ − c) instead of (−c) in Equation 4.
In Section 8, we perform experiments comparing the naïve power sums of Equation 1 to the

above formulas, showing that they significantly extend the usable order of sample moments at the
cost of some speed due to extra computation.

7 GPU IMPLEMENTATION
Moment-based sketching is an attractive option for GPU accelerated quantile approximation.
Computation of power sums by naïve summation or by the pairwise method of Section 6 can
be performed in a data-parallel manner, taking advantage of the small fixed-size data structure
and simple merge operations of the sketch. Other quantile sketch algorithms such as GK [14] or
KLL [17] enable merging of sketches, but effective implementation of these algorithms on GPUs is
nontrivial, due to dynamic resizing of the sketch and limited register and shared memory resources
available to each GPU thread. In contrast, moment-based sketches can be stored entirely in registers
on a per thread basis.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

Implementing moment-based sketching in parallel using tree reduction on a GPU provides fast
sketching at large input sizes as well as some numerical advantages over incremental sketching.
The standard GPU tree reduction algorithm (see [7, 24] for reference) illustrated in Figure 2 takes an
array [x0,x1,x2, · · · ,xn−1] and a binary associative operator ⊕, returning as a single output value
the result of (x0 ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn−1). In the context of moment-based sketching, we can perform
a massively parallel reduction by initialising n sketches in n threads, each with a single data point,
implementing an operator ⊕ for merging two sketches, and applying reduction from the pycuda
library [18]. When performing moment-based sketching by maintaining power sums (Equation 1) as
in the original moments sketch implementation of [13], two sketches are merged trivially by adding
together the pair of power sums for each moment and establishing the minimum and maximum
data point over both sketches. Using the numerically stable method from Section 6 instead, the
two centered power sums for each moment are merged via Equation 12, and the minimum and
maximum element are updated as before.
As well as providing the opportunity for faster sketching, parallel merging of sketches has the

advantage of reducing round-off error in floating-point summation. [15] shows that the round-off
error from tree-based summation grows proportionally to O(ϵ log2(n)), whereas the error from
naïve summation grows proportionally to O(ϵn). Reduced round-off error is a useful property that
arises naturally from parallel reduction on GPUs. As we will see from the experiments in Section 8,
the number of usable sample moments is heavily constrained by available numerical precision.

8 EVALUATION
We perform numerical experiments evaluating the accuracy, speed, and numerical stability of
moment-based sketching methods. We also include the KLL algorithm (specifically the first of two
algorithms described in [17]) as a baseline state-of-the-art one-pass quantile estimator. Additionally,
we compare against two-pass algorithms based on orthogonal density estimation. Algorithms are
evaluated against the OpenML-CC18 benchmark suite [2], containing 72 machine learning datasets.
Each dataset consists of tabular data with varying numbers of rows and columns. Sketches are
evaluated for all columns of each dataset, for a combined total of 14,072 unique sketch inputs. We
differentiate between an OpenML ‘dataset’ and ‘sketch input’ as each dataset contains multiple
columns used independently in our experiments. Figure 3 shows a histogram of the sizes of the
OpenML sketch inputs, and Figure 4 shows a histogram of the proportion of unique values contained
in each sketch input. It is noteworthy that many sketch inputs contains duplicate values, showing
the importance of considering each method’s ability to deal with such inputs even if their theoretical
derivation requires the existence of a probability density.

8.1 Measuring the accuracy of the quantile approximations
To evaluate the accuracy of the quantile approximations provided by the methods considered in
this paper, we use the normalised integrated absolute error (NIAE):

NIAE =
1

b − a

∫ 1.0

0.0
|F̂−1(ϕ) − F−1(ϕ)|dϕ (14)

where F̂−1(ϕ) is the approximation of the quantile function, F−1(ϕ) is the empirical quantile function,
and (a,b) is the range of the data.
Note that the NIAE error metric has an equivalent formulation in terms of the cumulative

distribution function F (x), i.e.,

NIAE =
1

b − a

∫ b

a
|F̂ (x) − F (x)|dx .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:11

Fig. 3. Histogram of OpenML sketch input size Fig. 4. Histogram of OpenML unique value ratio

(a)
∫ b
a |F̂ (x) − F (x)|dx (b)

∫ 1.0
0.0 |F̂−1(ϕ) − F−1(ϕ)|dϕ

Fig. 5. Integrated absolute error visualised

It can be seen from Figure 5 that the two formulations are equivalent. This gives another inter-
pretation of NIAE as the expected value of |F̂ (x) − F (X)| assuming x is drawn uniformly from the
range (a,b):

X ∼ U (a,b)
NIAE = E[|F̂ (X) − F (X)|].

In our experiments, we evaluate the integral from Equation 14 using the trapezoid rule with 1000
function evaluations. For each of the 14,072 sketch inputs obtained from OpenML, we evaluate the
NIAE for our variants of the two moment-based sketching methods based on maximum entropy
and Legendre polynomials respectively, and the KLL sketch as one-pass estimators, and various
orthogonal series as two-pass estimators. We report overall performance of each estimator using
violin plots of the distribution of the NIAE across the 14,072 sketch inputs and also provide the
mean NIAE, its standard deviation, the median NIAE, and the minimum and maximum NIAE.
Additionally, we report the number of failures due to numerical error, and exclude failures from
final statistics (mean, median, std, min, max).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

NIAE

ME-naive-gpu (l=15)

ME-naive-gpu (l=10)

ME-naive-gpu (l=5)

ME-naive (l=15)

ME-naive (l=10)

ME-naive (l=5)

ME-central-gpu (l=15)

ME-central-gpu (l=10)

ME-central-gpu (l=5)

ME-central (l=15)

ME-central (l=10)

ME-central (l=5)

KLL (m=500)

KLL (m=50)

KLL (m=10)

Fig. 6. Violin plot of NIAE measured on OpenML datasets - KLL and ME

8.1.1 One-pass Estimators. Figure 6, Figure 7, and Table 2 summarise the accuracy of the one-pass
estimators. We evaluate several variants of the moment-based quantile approximation methods,
differentiating on the number of moments l , the method of fitting the distribution (maximum
entropy or Legendre polynomials), the algorithm used to accumulate moments (central moment
formulas (Eq. 12) or naïve summation (Eq. 1)), and whether the moments were computed using
tree reduction on the GPU, or in the standard manner on the CPU. The KLL estimator provides
a state-of-the-art baseline. Them in KLL(m=10), etc. indicates the maximum size of the quantile
summary.
Results verify the effectiveness of moment-based quantile estimators for answering queries

with low memory requirements. Maximum entropy moment-based estimators (ME) with l = 5
store only 8 elements in memory (l + 1 moments, min and max) while providing a mean error of
approximately 0.0084—very close to the mean error of 0.0081 for the KLL (m=500) estimator, which
requires storing 500 elements in memory. The Legendre polynomial moment-based estimators (see
Figure 7) are all outperformed by the equivalent maximum entropy estimators in terms of mean,
median, and maximum error, but they compare favourably to KLL estimators as a low memory
summary. Assuming some degree of error can be tolerated, they provide a simpler alternative to
the method of maximum entropy, not requiring numerical integrals or the solution of a nonlinear
optimisation problem.

Of the two strategies for sample moment summation, the naïve method quickly becomes unstable
at l > 5, resulting in a number of failures and considerably reduced accuracy when solving for the
output distribution using either the method of maximum entropy or the Legendre series. Using the
central moment formulas of Pébay et al. [26] improves numerical stability dramatically, allowing the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:13

Table 2. Error statistics on OpenML datasets

Estimator mean std median min max failures
KLL (m=10) 0.107872 0.096799 0.103475 0.000014 0.673525 0
KLL (m=50) 0.046058 0.037219 0.045693 0.000000 0.242182 0
KLL (m=500) 0.008104 0.004924 0.007611 0.000000 0.056235 0
Legendre-central (l=5) 0.081809 0.067712 0.083347 0.000062 0.163962 0
Legendre-central (l=10) 0.057979 0.050471 0.055742 0.000063 0.120809 0
Legendre-central (l=15) 0.048106 0.042234 0.046309 0.000052 0.100216 0
Legendre-central-gpu (l=5) 0.081809 0.067712 0.083347 0.000062 0.163962 0
Legendre-central-gpu (l=10) 0.057979 0.050471 0.055742 0.000063 0.120809 0
Legendre-central-gpu (l=15) 0.048106 0.042234 0.046309 0.000052 0.100216 0
Legendre-naive (l=5) 0.081811 0.067714 0.083355 0.000062 0.163962 1
Legendre-naive (l=10) 0.059386 0.054452 0.056886 0.000063 0.938904 131
Legendre-naive (l=15) 0.051749 0.051907 0.049966 0.000052 0.992505 467
Legendre-naive-gpu (l=5) 0.081811 0.067712 0.083347 0.000062 0.163962 0
Legendre-naive-gpu (l=10) 0.058923 0.052333 0.056635 0.000063 0.918821 87
Legendre-naive-gpu (l=15) 0.052065 0.054244 0.049645 0.000052 0.964786 355
ME-central (l=5) 0.008444 0.008461 0.005030 0.000570 0.096600 0
ME-central (l=10) 0.006171 0.008792 0.003628 0.000232 0.151073 0
ME-central (l=15) 0.005955 0.010254 0.003081 0.000119 0.233678 0
ME-central-gpu (l=5) 0.008444 0.008461 0.005030 0.000570 0.096600 0
ME-central-gpu (l=10) 0.006178 0.008791 0.003632 0.000232 0.151073 0
ME-central-gpu (l=15) 0.005962 0.010467 0.003048 0.000120 0.233682 0
ME-naive (l=5) 0.008447 0.008479 0.005030 0.000570 0.096600 0
ME-naive (l=10) 0.007116 0.015522 0.003754 0.000232 0.707496 20
ME-naive (l=15) 0.009518 0.032835 0.003232 0.000170 0.982960 155
ME-naive-gpu (l=5) 0.008447 0.008479 0.005030 0.000570 0.096600 0
ME-naive-gpu (l=10) 0.007112 0.019299 0.003701 0.000232 0.891338 15
ME-naive-gpu (l=15) 0.009329 0.033306 0.003212 0.000170 0.955920 112

Table 3. Two Pass Orthogonal Estimators: Error statistics on OpenML datasets

Estimator mean std median min max failures
Chebyshev (l=5) 0.063520 0.052235 0.067856 0.002066 0.975388 30
Chebyshev (l=10) 0.073640 0.067511 0.062730 0.001530 0.970769 30
Chebyshev (l=15) 0.032477 0.036878 0.037495 0.001335 0.969974 30
Cosine (l=5) 0.054256 0.043132 0.062123 0.001364 0.103496 0
Cosine (l=10) 0.031929 0.025494 0.033809 0.001363 0.062232 0
Cosine (l=15) 0.023803 0.018731 0.025451 0.001363 0.045502 0
Fourier (l=5) 0.220277 0.207780 0.166646 0.000053 0.499986 0
Fourier (l=10) 0.216825 0.208501 0.156493 0.000052 0.499986 0
Fourier (l=15) 0.215401 0.208858 0.151379 0.000051 0.499986 0
Hermite (l=5) 0.227591 0.195979 0.253604 0.001332 0.518415 0
Hermite (l=10) 0.255721 0.237913 0.229341 0.001083 0.593443 0
Hermite (l=15) 0.241525 0.223023 0.227826 0.001115 0.568650 0

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

NIAE

Legendre-naive-gpu (l=15)

Legendre-naive-gpu (l=10)

Legendre-naive-gpu (l=5)

Legendre-naive (l=15)

Legendre-naive (l=10)

Legendre-naive (l=5)

Legendre-central-gpu (l=15)

Legendre-central-gpu (l=10)

Legendre-central-gpu (l=5)

Legendre-central (l=15)

Legendre-central (l=10)

Legendre-central (l=5)

Fig. 7. Violin plot of NIAE measured on OpenML datasets - Legendre series

use of up to l = 15 moments without failures. Use of higher-order moments with stable summation
allows a moderate reduction in mean error for both the maximum entropy and Legendre series
estimators.
Parallel summation of moments on the GPU has a moderate effect on accuracy when naïve

summation is used: for example, the mean error of ME-naïve (l=15) reduces from 0.009518 to
0.009329 with ME-naïve-gpu (l=15), and the number of failures reduces from 155 to 112. Overall, it
is less effective than the use of stable central moment formulas; when parallel summation is applied
in addition to stable moment summation, its effect is not significant.
We also evaluate a variant of the ME estimator using ‘log Chebyshev moments’ E[Tk (log(x))]

instead of Chebyshev moments E[Tk (x)], with the goal of improving stability for large-valued
positive inputs. We test three estimators on the subset of 1,421 OpenML datasets where xmin > 0.
ME-central acts as a baseline (although differing from the above charts as only positive datasets
are considered), ME-log-naive computes moments using standard summation on log-transformed
inputs, andME-log-central computesmoments using stable summation formulas on log-transformed
inputs. The results are summarised by Figure 9 and Table 4.
In general, the use of log moments instead of conventional moments results in significantly

reduced accuracy, and requires a priori knowledge that data is positive, limiting its usefulness for
general database queries. Stable summation formulas provide considerable benefits even on log
transformed inputs, showing that log transformation is not a solution to precision loss during
summation.
Additionally, to test the robustness of one pass methods on large inputs, we draw 109 samples

from the normal distribution X ∼ N(1000, 1), numerically challenging due to its offset from zero.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:15

Fig. 8. Two Pass Orthogonal Estimators: Violin plot of NIAE measured on OpenML datasets

Table 4. ME Estimators: Error statistics on positive OpenML datasets

Estimator mean std median min max failures
ME-central (l=5) 0.009323 0.009896 0.004281 0.000913 0.063738 0
ME-central (l=10) 0.005444 0.005474 0.002916 0.000381 0.077327 0
ME-central (l=15) 0.005803 0.006204 0.002591 0.000330 0.080504 0
ME-log-central (l=5) 0.087116 0.107243 0.035912 0.002847 0.714728 1
ME-log-central (l=10) 0.085741 0.104820 0.033300 0.002477 0.779287 1
ME-log-central (l=15) 0.088461 0.109431 0.032717 0.002098 0.788754 1
ME-log-naive (l=5) 0.089040 0.106900 0.042254 0.002849 0.714728 1
ME-log-naive (l=10) 0.149801 0.127953 0.094661 0.003077 0.780095 2
ME-log-naive (l=15) 0.253283 0.161318 0.252858 0.002282 0.756054 35

Table 5 shows the resulting NIAE for one-pass moment estimators. Central moment summation
formulas provide robust results, even on poorly conditioned inputs and at large sizes.

8.1.2 Two-pass Estimators. Figure 8 and Table 3 summarise the accuracy of the two-pass estimators
based on orthogonal series. The estimators perform a first pass to establish the range of the data
and then compute an orthogonal series per Equation 10 after the data has been scaled into the
applicable domain. The Chebyshev estimator encounters some numerical failures, attributable
to the weight function w(x) = 1√

1−x 2 , which approaches infinity at the endpoints of the domain

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

Fig. 9. Violin plot of NIAE measured on positive OpenML datasets

Table 5. NIAE for 109 samples from X ∼ N(1000, 1)

Estimator NIAE
Legendre-central (l=5) 0.042877
Legendre-central (l=10) 0.005369
Legendre-central (l=15) 0.000997
Legendre-central-gpu (l=5) 0.042877
Legendre-central-gpu (l=10) 0.005369
Legendre-central-gpu (l=15) 0.000997
Legendre-naive (l=5) 1.000000
Legendre-naive (l=10) 1.000000
Legendre-naive (l=15) 1.000000
ME-central (l=5) 0.001777
ME-central (l=10) 0.001777
ME-central (l=15) 0.001808
ME-central-gpu (l=5) 0.001777
ME-central-gpu (l=10) 0.001777
ME-central-gpu (l=15) 0.001924
ME-naive (l=5) 0.225655
ME-naive (l=10) 1.000000
ME-naive (l=15) 1.000000

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:17

Table 6. Summary: Error statistics on OpenML datasets for the top performers

Estimator mean std median min max failures
Cosine (l=15) 0.023803 0.018731 0.025451 0.001363 0.045502 0
KLL (m=500) 0.008104 0.004924 0.007611 0.000000 0.056235 0
Legendre-central-gpu (l=15) 0.048106 0.042234 0.046309 0.000052 0.100216 0
ME-central-gpu (l=5) 0.008444 0.008461 0.005030 0.000570 0.096600 0
ME-central-gpu (l=15) 0.005962 0.010467 0.003048 0.000120 0.233682 0

(−1.0, 1.0). The standout performer of the two-pass orthogonal estimators is Cosine (l = 15), with
a mean error of 0.023803, being outperformed only by the maximum entropy estimators and KLL
atm = 500 when comparing to the results in Table 2. It also has the lowest maximum error of any
estimator tested, at 0.045502. This, as well as the simpler implementation of the cosine series, make
it a compelling quantile estimator in settings where the range of the data is known or two passes
are acceptable.

8.1.3 Comparing All Estimators. Table 6 summarises estimators with the lowest mean error using
either one or two passes. For the moment-based estimators we show the most accurate summation
method, using central moment update formulas and GPU tree reduction. ME-central-gpu (l=15) is
the most accurate of all estimators in terms of mean and median NIAE, but with a significantly
higher maximum error. KLL (m=500) follows closely behind in mean and median NIAE, but uses
more than an order of magnitude more space. ME-central-gpu (l=5) is slightly less accurate on
average than its (l=15) version, but benefits from a much lower maximum error and smaller space
footprint, while being almost as accurate as KLL (m=500). Legendre-central-gpu (l=15) has more
than 5 times the mean or median error of the KLL or maximum entropy methods, but its maximum
error is significantly smaller than the maximum entropy estimator and its implementation is simpler.
The two-pass Cosine (l=15) estimator sits between KLL and Legendre polynomials in terms of mean
and median error, but notably, it has the lowest maximum error of any estimator and a simple
implementation.

8.2 Sketch Time
We measure the runtime of sketches with respect to data size, evaluated on the standard normal
distribution at varying sizes. Runtime is measured as time taken to accumulate the data stream into
the sketch (excluding time to return quantile queries). All algorithms are implemented in native
code and run on an AMD Ryzen 7 2700 @3.2GHz CPU and Nvidia 1080Ti GPU.

8.2.1 One-pass. Figure 10 shows the runtime of moment-based sketches and the KLL sketch
implemented on the CPU. There is a considerable gap in performance between the KLL sketch and
moment based sketches. This is in part due to the simplicity of accumulating power sums with
basic arithmetic operations on a static data structure compared to maintaining a more complicated
dynamic data structure in memory. Moment-based sketching using the stable central moment
formulas is noticeably slower than naïve summation as the algorithmic complexity of Equations 12
and 13 is quadratic in the number of moments. GPU versions of the moments sketch are shown in
Figure 11. The GPU versions computing the central moment formulas are considerably faster than
CPU versions at sizes > 105 and GPU versions using naïve summation are moderately faster than
their CPU alternatives at sizes > 107. This is an expected result as GPU architecture is comparatively
optimised for throughput over latency whereas CPU architecture is optimised for latency over

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

103 104 105 106 107 108

sketch input size

10−4

10−3

10−2

10−1

100

101

102

103

T
im

e(
s)

naive (l=5)

naive (l=10)

naive (l=15)

central (l=5)

central (l=10)

central (l=15)

KLL (m=10)

KLL (m=50)

KLL (m=500)

Fig. 10. Runtime of one-pass sketches on CPU

throughput [25]. Naïve summation implemented on the CPU remains the fastest method at smaller
input sizes, but the GPU central moments sketch provides a compelling way to compute stable
sample moments at higher orders while still retaining good performance.

8.2.2 Two-pass. Figure 12 shows the runtime of orthogonal estimators implemented on the CPU,
including a first pass to establish the bounds of the data. This represents the cost of evaluating
Equation 10 with different basis functions and weight functions. According to Figure 12, the effective
speed of the orthogonal series estimators varies by a constant factor depending on the selection of
basis and number of coefficients. Comparing to Figure 10, performance is similar to the moments
sketch (in scenarios where the domain of the data is known).

9 CONCLUSION
We perform a study of moment-based sketching methods for the quantile estimation problem
on 14,072 real-world datasets, comparing the state-of-the-art KLL estimator, a moment-based
maximum entropy method, and orthogonal series estimation based on Legendre polynomials. We
verify the result of [13] that moment-based sketching is effective at approximating quantiles with
low memory requirements, but we show that its numerical stability deteriorates rapidly at order
l > 5. We propose the use of stable higher-order moment summation formulas to address issues of
numerical stability, and show that a reliable sketching based on higher-order moments is possible
at the cost of some extra computation. We show that GPUs can be used to efficiently aggregate
stable moment-based sketches at higher orders, allowing moment-based sketches that are both
accurate and fast.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:19

103 104 105 106 107 108

sketch input size

10−3

10−2

10−1

100

T
im

e(
s)

naive-gpu (l=5)

naive-gpu (l=10)

naive-gpu (l=15)

central-gpu (l=5)

central-gpu (l=10)

central-gpu (l=15)

Fig. 11. Runtime of one-pass sketches on GPU

Additionally, we compare single-pass estimators against a related set of two-pass orthogonal
series estimators, concluding that the cosine series is also a competitive, space-efficient estimator
where two passes over the dataset are acceptable or the domain of the data is known.

Our primary conclusions for practitioners are the following:
• Moments sketch is accurate and fast in space-constrained settings compared to the state-of-
the-art sample-based estimator, KLL.

• Moment-based sketching with naïve summation of sample moments is unstable at order
l > 5.

• More sophisticated moment summation formulas can be used to improve reliability at some
computational cost.

• Implementation of moment-based sketching for GPUs is practical and has benefits for speed
and accuracy.

• The method of maximum entropy can be substituted with Legendre polynomials for a simpler
implementation with reduced accuracy.

• If the domain of the input data is known or two passes are acceptable, we recommend the
cosine orthogonal series as a simple, accurate estimator.

REFERENCES
[1] Naum IlÊźich Akhiezer. 1965. The classical moment problem: and some related questions in analysis. Vol. 5. Oliver &

Boyd, Edinburgh.
[2] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G. Mantovani, Jan N. van Rijn,

and Joaquin Vanschoren. 2017. OpenML Benchmarking Suites. arXiv:stat.ML/1708.03731

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Rory Mitchell, Eibe Frank, and Geoffrey Holmes

103 104 105 106 107 108

sketch input size

10−4

10−3

10−2

10−1

100

101

102

T
im

e(
s)

Fourier (l=5)

Fourier (l=10)

Fourier (l=15)

Cosine (l=5)

Cosine (l=10)

Cosine (l=15)

Chebyshev (l=5)

Chebyshev (l=10)

Chebyshev (l=15)

Hermite (l=5)

Hermite (l=10)

Hermite (l=15)

Fig. 12. Runtime of two-pass sketches

[3] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. 1973. Time Bounds for Selection.
J. Comput. Syst. Sci. 7, 4 (Aug. 1973), 448–461. https://doi.org/10.1016/S0022-0000(73)80033-9

[4] Nikolai N Cencov. 1962. Estimation of an unknown distribution density from observations. Soviet Math. 3 (1962),
1559–1566.

[5] Tony F. Chan, Gene H. Golub, and Randall J. LeVeque. 1983. Algorithms for Computing the Sample Variance: Analysis
and Recommendations. The American Statistician 37, 3 (1983), 242–247. http://www.jstor.org/stable/2683386

[6] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent Items in Data Streams. In Proceedings
of the 29th International Colloquium on Automata, Languages and Programming (ICALP ’02). Springer-Verlag, Berlin,
Heidelberg, 693–703. http://dl.acm.org/citation.cfm?id=646255.684566

[7] John Cheng, Max Grossman, and Ty McKercher. 2014. Professional CUDA C Programming (1st ed.). Wrox Press Ltd.,
GBR.

[8] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its
applications. Journal of Algorithms 55, 1 (2005), 58–75.

[9] Jiu Ding, Noah H. Rhee, and Chenhua Zhang. 2016. On Polynomial Maximum Entropy Method for Classical Moment
Problem. Advances in Applied Mathematics and Mechanics 8, 1 (2016), 117–127. https://doi.org/10.4208/aamm.2014.m504

[10] Ted Dunning andOtmar Ertl. 2019. Computing Extremely Accurate Quantiles Using t-Digests. arXiv:stat.CO/1902.04023
[11] Sam Efromovich. 2010. Orthogonal series density estimation. Wiley Interdisciplinary Reviews: Computational Statistics

2, 4 (2010), 467–476.
[12] Message P Forum. 1994. MPI: A Message-Passing Interface Standard. Technical Report. MPI Forum, Knoxville, TN, USA.
[13] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018. Moment-based quantile sketches for

efficient high cardinality aggregation queries. Proceedings of the VLDB Endowment 11, 11 (2018), 1647–1660.
[14] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient Online Computation of Quantile Summaries. SIGMOD

Rec. 30, 2 (May 2001), 58–66. https://doi.org/10.1145/376284.375670
[15] Nicholas J. Higham. 1993. The Accuracy Of Floating Point Summation. SIAM J. Sci. Comput 14 (1993), 783–799.
[16] Edwin T Jaynes. 1957. Information theory and statistical mechanics. Physical review 106, 4 (1957), 620.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Empirical Study of Moment Estimators for Quantile Approximation 1:21

[17] Z. Karnin, K. Lang, and E. Liberty. 2016. Optimal Quantile Approximation in Streams. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, New Brunswick, NJ, USA, 71–78.

[18] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and Ahmed Fasih. 2012. PyCUDA and
PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel Comput. 38, 3 (2012), 157–174.

[19] Solomon Kullback. 1997. Information theory and statistics. Dover Publications, Massachusetts.
[20] Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. 2016. Quantiles over Data Streams: Experimental Comparisons, New

Analyses, and Further Improvements. The VLDB Journal 25, 4 (Aug. 2016), 449–472. https://doi.org/10.1007/s00778-
016-0424-7

[21] John C Mason and David C Handscomb. 2002. Chebyshev polynomials. Chapman and Hall/CRC.
[22] Charles Masson, Jee E. Rim, and Homin K. Lee. 2019. DDSketch. Proceedings of the VLDB Endowment 12, 12 (Aug

2019), 2195–2205. https://doi.org/10.14778/3352063.3352135
[23] J Ian Munro and Mike S Paterson. 1980. Selection and sorting with limited storage. Theoretical computer science 12, 3

(1980), 315–323.
[24] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable Parallel Programming with CUDA. Queue

6, 2 (March 2008), 40–53. https://doi.org/10.1145/1365490.1365500
[25] CUDA Nvidia. 2011. Nvidia cuda c programming guide. Nvidia Corporation 120, 18 (2011), 8.
[26] Philippe Pébay, Timothy B Terriberry, Hemanth Kolla, and Janine Bennett. 2016. Numerically stable, scalable formulas

for parallel and online computation of higher-ordermultivariate central moments with arbitraryweights. Computational
Statistics 31, 4 (2016), 1305–1325.

[27] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. 2007. Numerical recipes 3rd edition:
The art of scientific computing. Cambridge university press, Cambridge.

[28] Carl Runge. 1901. Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Zeitschrift für
Mathematik und Physik 46, 224-243 (1901), 20.

[29] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. 2004. Medians and Beyond:
New Aggregation Techniques for Sensor Networks. In Proceedings of the 2Nd International Conference on Embedded
Networked Sensor Systems (SenSys ’04). ACM, New York, NY, USA, 239–249. https://doi.org/10.1145/1031495.1031524

[30] Michael Stephanou, Melvin Varughese, Iain Macdonald, et al. 2017. Sequential quantiles via Hermite series density
estimation. Electronic Journal of Statistics 11, 1 (2017), 570–607.

[31] Edward A Youngs and Elliot M Cramer. 1971. Some results relevant to choice of sum and sum-of-product algorithms.
Technometrics 13, 3 (1971), 657–665.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Chapter 4

GPUTreeShap: Massively

Parallel Exact Calculation of

SHAP Scores for Tree

Ensembles

GPUTreeShap: Massively Parallel Exact
Calculation of SHAP Scores for Tree
Ensembles
Rory Mitchell1, Eibe Frank2, and Geoffrey Holmes2

1Nvidia Corporation
2Department of Computer Science, University of Waikato, New Zealand

Corresponding author:
Rory Mitchell1

Email address: ramitchellnz@gmail.com

ABSTRACT

SHAP (SHapley Additive exPlanation) values (Lundberg and Lee, 2017) provide a game theoretic
interpretation of the predictions of machine learning models based on Shapley values (Shapley, 1953).
While exact calculation of SHAP values is computationally intractable in general, a recursive polynomial-
time algorithm called TreeShap (Lundberg et al., 2020) is available for decision tree models. However,
despite its polynomial time complexity, TreeShap can become a significant bottleneck in practical machine
learning pipelines when applied to large decision tree ensembles. Unfortunately, the complicated
TreeShap algorithm is difficult to map to hardware accelerators such as GPUs. In this work, we present
GPUTreeShap, a reformulated TreeShap algorithm suitable for massively parallel computation on graphics
processing units. Our approach first preprocesses each decision tree to isolate variable sized sub-
problems from the original recursive algorithm, then solves a bin packing problem, and finally maps
sub-problems to single-instruction, multiple-thread (SIMT) tasks for parallel execution with specialised
hardware instructions. With a single NVIDIA Tesla V100-32 GPU, we achieve speedups of up to 19x
for SHAP values, and speedups of up to 340x for SHAP interaction values, over a state-of-the-art
multi-core CPU implementation executed on two 20-core Xeon E5-2698 v4 2.2 GHz CPUs. We also
experiment with multi-GPU computing using eight V100 GPUs, demonstrating throughput of 1.2M rows
per second—equivalent CPU-based performance is estimated to require 6850 CPU cores.

1 INTRODUCTION
Explainability and accountability are important for practical applications of machine learning, but the
interpretation of complex models with state-of-the-art accuracy such as neural networks or decision
tree ensembles obtained using gradient boosting is challenging. Recent literature (Ribeiro et al., 2016;
Selvaraju et al., 2017; Guidotti et al., 2018) describes methods for “local interpretability” of these models,
enabling the attribution of predictions for individual examples to component features. One such method
calculates so-called SHAP (SHapley Additive exPlanation) values quantifying the contribution of each
feature to a prediction. In contrast to other methods, SHAP values exhibit several unique properties
that appear to agree with human intuition (Lundberg et al., 2020). Although exact calculation of SHAP
values generally takes exponential time, the special structure of decision trees admits a polynomial-time
algorithm. This algorithm, implemented alongside state-of-the-art gradient boosting libraries such as
XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke et al., 2017), enables complex decision tree
ensembles with state-of-the-art performance to also output interpretable predictions.

However, despite improvements to algorithmic complexity and software implementation, computing
SHAP values from tree ensembles remains a computational concern for practitioners, particularly as model
size or size of test data increases: generating SHAP values can be more time-consuming than training
the model itself. We address this problem by reformulating the recursive TreeShap algorithm, taking
advantage of parallelism and increased computational throughput available on modern GPUs. We provide
an open source module named GPUTreeShap implementing a high throughput variant of this algorithm

1

using NVIDIA’s CUDA platform. GPUTreeShap is integrated as a backend to the XGBoost library,
providing significant improvements to runtime over its existing multicore CPU-based implementation.

2 BACKGROUND
In this section, we briefly review the definition of SHAP values for individual features and the TreeShap
algorithm for computing these values from decision tree models. We also review an extension of SHAP
values to second-order interaction effects between features.

2.1 SHAP Values
SHAP values are defined as the coefficients of the following additive surrogate explanation model g, a
linear function of binary variables

g(z′) = φ0 +
M

∑
i=1

φiz′i (1)

where M is the number of features, z′ ∈ {0,1}M , and φi ∈ R. z′i indicates the presence of a given feature
and φi its relative contribution to the model output. The surrogate model g(z′) is a local explanation of a
prediction f (x) generated by the model for a feature vector x, meaning that a unique explanatory model
may be generated for any given x. SHAP values are defined by the following expression:

φi = ∑
S⊆M\{i}

|S|!(|M|− |S|−1)!
|M|! [fS∪{i}(x)− fS(x)] (2)

where M is the set of all features and fS(x) describes the model output restricted to feature subset S.
Equation 2 considers all possible subsets, and so has runtime exponential in the number of features.

We consider models that are decision trees with binary splits. Given a trained decision tree model f
and data instance x, it is not necessarily clear how to restrict model output f (x) to feature subset S—when
feature j is not present in subset S along a given branch of the tree, and a split condition testing j is
encountered, then how do we choose which path to follow to obtain a prediction for x? Lundberg et al.
(2020) define a conditional expectation for the decision tree model E[f (x)|xS], where the split condition
on feature j is represented by a Bernoulli random variable with distribution estimated from the training
set used to build the model. In effect, when a decision tree branch is encountered, and the feature to be
tested is not in the active subset S, we take the output of both the left and right branch. More specifically,
we use the proportion of weighted instances that flow down the left or right branch during model training
as the estimated probabilities for the Bernoulli variable. This process is also how the C4.5 decision tree
learner deals with missing values (Quinlan, 1993). It is referred to as “cover weighting” in what follows.

Given this interpretation of missing features, Lundberg et al. (2020) give a polynomial-time algorithm
for efficiently solving Equation 2, named TreeShap. The algorithm exploits the specific structure of
decision trees: the model is additive in the contribution of each leaf. Equation 2 can thus be independently
evaluated for each unique path from root to leaf node. These unique paths are then processed using a
quadratic-time dynamic programming algorithm. The intuition of the algorithm is to keep track of the
proportion of all feature subsets that flow down each branch of the tree, weighted according to the length
of each subset |S|, as well as the proportion that flow down the left and right branches when the feature is
missing.

We reproduce the recursive polynomial-time TreeSHAP algorithm as presented in Lundberg et al.
(2020) in Algorithm 1, where m is a list representing the path of unique features split on so far. Each
list element has four attributes: d is the feature index, z is the fraction of paths that flow through the
current branch when the feature is not present, o is the corresponding fraction when the feature is present,
and w is the proportion of feature subsets of a given cardinality that are present. The decision tree is
represented by the set of lists {v,a,b, t,r,d}, where each list element corresponds to a given tree node,
with v containing leaf values, a pointers to the left children, b pointers to the right children, t the split
condition, r the weights of training instances, and d the feature indices. The FINDFIRST function returns
the index of the first occurrence of a feature in the list m, or a null value if the feature does not occur.

At a high level, the algorithm proceeds by stepping through a path in the decision tree of depth D from
root to leaf. According to Equation 2, we have a different weighting for the size of each feature subset,

2/18

Algorithm 1 TreeShap

1: function TS(x, tree)
2: φ = array of len(x) zeroes
3: function RECURSE(j,m, pz, po, pi)
4: m = EXTEND(m, pz, po, pi)
5: if v j == lea f then
6: for i← 2 to len(m) do
7: w = sum(UNWIND(m, i).w)
8: φmi.d = φmi.d +w(mi.o−mi.z)v j
9: else

10: h,c = xd j ≤ t j?(a j,b j) : (b j,a j)
11: iz = io = 1
12: k = FINDFIRST(m.d,d j)
13: if k 6= nothing then
14: iz, io = (mk.z,mk.o)
15: m = UNWIND(m,k)
16: RECURSE(h,m, izrh/r j, io,d j)
17: RECURSE(c,m, izrc/r j,0,d j)
18: function EXTEND(m, pz, po, pi)
19: l = len(m)
20: m = copy(m) {m is copied so recursions down other branches are not affected.}
21: ml+1.(d,z,o,w) = (pi, pz, po, l = 0 ? 1 : 0)
22: for i← l to 1 do
23: mi+1.w = mi+1.w+ po ·mi.w · i/(l +1)
24: mi.w = pz ·mi.w · (l +1− i)/(l +1)
25: return m
26: function UNWIND(m, i)
27: l = len(m)
28: n = ml .w
29: m = copy(m1···l−1)
30: for j← l−1 to 1 do
31: if mi.o 6= 0 then
32: t = m j.w
33: m j.w = n · l/(j ·mi.o)
34: n = t−m j.w ·mi.z · (l− j)/l
35: else
36: m j.w = (m j.w · l)/(mi.z · (l− j))
37: for j← i to l−1 do
38: m j.(d,z,o) = m j+1.(d,z,o)
39: return m
40: RECURSE(1, [],1,1,0)
41: return φ

3/18

although we can accumulate feature subsets of the same size together. As the algorithm advances down
the tree, it calls the method EXTEND, taking a new feature split and accumulating its effect on all possible
feature subsets of length 1,2, . . . up to the current depth. The UNWIND method is used to undo addition
of a feature that has been added to the path via EXTEND. UNWIND and EXTEND are commutative
and can be called in any order. UNWIND may be used to remove duplicate feature occurrences from
the path and to compute the final SHAP values. When the recursion reaches a leaf, the SHAP values φi
for each feature present in the path are computed by calling UNWIND on feature i (line 7), temporarily
removing it from the path; then, the overall effect of switching that feature on or off is adjusted by adding
the appropriate term to φi.

Given an ensemble of T decision trees, Algorithm 1 has time complexity O(T LD2), using memory
O(D2 +M), where L is the maximum number of leaves for each tree, D is the maximum tree depth, and
M the number of features (Lundberg et al., 2020). In this paper, we reformulate Algorithm 1 for massively
parallel GPUs.

2.2 SHAP Interaction Values
In addition to the first-order feature relevance metric defined above, Lundberg et al. (2020) also provide
an extension of SHAP values to second-order relationships between features, termed SHAP Interaction
Values. This method applies the game-theoretic SHAP interaction index (Fujimoto et al., 2006), defining
a matrix of interactions as

φi, j = ∑
S⊆M\{i, j}

|S|!(M−|S|−2)!
2(M−1)!

∇i j(S) (3)

for i 6= j, where

∇i j(S) = fS∪{i, j}(x)− fS∪{i}(x)− fS∪{ j}(x)+ fS(x) (4)

= fS∪{i, j}(x)− fS∪{ j}(x)− [fS∪{i}(x)− fS(x)] (5)

with diagonals

φi,i = φi−∑
j 6=i

φi, j. (6)

Interaction values can be efficiently computed by connecting Eq. 5 to Eq. 2, for which we have the
polynomial time TreeShap algorithm. To compute φi, j, TreeShap should be evaluated twice for φi, where
feature j is alternately considered fixed to present and not present in the model. To evaluate TreeShap
for a unique path conditioning on j, the path is extended as normal, but if feature j is encountered, it is
not included in the path (the dynamic programming solution is not extended with this feature, instead
skipping to the next feature). If j is considered not present, the resulting φi is weighted according to the
probability of taking the left or right branch (cover weighting) at a split on feature j. If j is considered
present, we evaluate the decision tree split condition x j < t j and discard φi from the path not taken.

To compute interaction values for all pairs of features, TreeShap can be evaluated M times, leading to
time complexity of O(T LD2M). Interaction values are challenging to compute in practice, with runtimes
and memory requirements significantly larger than decision tree induction itself. In Section 3.5, we show
how to reformulate this algorithm to the GPU and how to improve runtime to O(T LD3) (tree depth D is
normally much smaller than the number of features M present in the data).

2.3 GPU Computing
GPUs are massively parallel processors optimised for throughput, in contrast to conventional CPUs,
which optimise for latency. GPUs in use today consist of many processing units with single-instruction,
multiple-thread (SIMT) lanes that very efficiently execute a group of threads operating in lockstep. In
modern NVIDIA GPUs such as the ones we use for the experiments in this paper, these processing
units, called “streaming multiprocessors” (SMs), have 32 SIMT lanes, and the corresponding group of
32 threads is called a “warp”. Warps are generally executed on SMs without order guarantees, enabling
latency in warp execution (e.g., from global memory loads) to be hidden by switching to other warps that
are ready for execution (NVIDIA Corporation, 2020).1

1AMD GPUs have similar basic processing units, called “compute units”; the corresponding term for a warp is “wavefront”.

4/18

Large speed-ups in the domain of GPU computing commonly occur when the problem can be
expressed as a balanced set of vector operations with minimal control flow. Notable examples are
matrix multiplication (Fatahalian et al., 2004; Hall et al., 2003; Changhao Jiang and Snir, 2005), image
processing (Bo Fang et al., 2005; Moreland and Angel, 2003), deep neural networks (Perry et al., 2014;
Coates et al., 2013; Chetlur et al., 2014), and sorting (Green et al., 2012; Satish et al., 2010). Prior work
exists on decision tree induction (Sharp, 2008; Mitchell and Frank, 2017) and inference (Sharp, 2012) on
GPUs, but we know of no prior work on tree interpretability specifically tailored to GPUs. Related work
also exists on solving dynamic programming type problems (Liu et al., 2006; Steffen et al., 2010; Boyer
et al., 2012), but dynamic programming is a broad term, and the referenced works discuss significantly
different problem sizes and applications (e.g., Smith-Waterman for sequence alignment).

In Section 3, we discuss a unique approach to exploiting GPU parallelism, different from the above-
mentioned works due to the unique characteristics of the TreeShap algorithm. In particular, our approach
efficiently deals with large amounts of branching and load imbalance that normally inhibits performance
on GPUs, leading to substantial improvements over a state-of-the-art multicore CPU implementation.

3 GPUTREESHAP
Algorithm 1 has properties that make it unsuitable for direct implementation on GPUs in a performant way.
Conventional multi-threaded CPU implementations of Algorithm 1 achieve parallel work distribution
by instances (Chen and Guestrin, 2016; Ke et al., 2017). For example, interpretability results for input
matrix X are computed by launching one parallel CPU thread per row (i.e., data instance being evaluated).
While this approach is embarrassingly parallel, CPU threads are different from GPU threads. If GPU
threads in a warp take divergent branches, performance is reduced, as all threads must execute identical
instructions when they are active (Harris and Buck, 2005). Moreover, GPUs can suffer from per-thread
load balancing problems—if work is unevenly distributed between threads in a warp, finished threads stall
until all threads in the warp are finished. Additionally, GPU threads are more resource-constrained than
their CPU counterparts, having a smaller number of available registers due to limited per-SM resources.
Excessive register usage results in reduced SM occupancy by limiting the number of concurrent warps. It
also results in register spills to global memory, causing memory loads at significantly higher latency.

To mitigate these issues, we segment the TreeShap algorithm to obtain fine-grained parallelism,
observing that each unique path from root to leaf in Algorithm 1 can be constructed independently because
the φi obtained at each leaf are additive and depend only on features encountered on that unique path
from root to leaf. Instead of allocating one thread per tree, we allocate a group of threads to cooperatively
compute SHAP values for a given unique path through the tree. We launch one such group of threads for
each (unique path, evaluation instance) pair, computing all SHAP values for this pair in a single GPU
kernel. This method requires preprocessing to arrange the tree ensemble into a suitable form, avoid some
less GPU-friendly operations of the original algorithm, and partition work efficiently across GPU threads.
Our GPUTreeShap algorithm can be summarised by the following high-level steps:

1. Preprocess the ensemble to extract all unique decision tree paths.

2. Combine duplicate features along each path.

3. Partition path subproblems to GPU warps by solving a bin packing problem.

4. Launch a GPU kernel solving the dynamic programming subproblems in batch.

These steps are described in more detail below.

3.1 Extract Paths
Figure 1 shows a decision tree model, highlighting a unique path from root to leaf. The SHAP values

computed by Algorithm 1 are simply the sum of the SHAP values from every unique path in the tree. Note
that the decision tree model holds information about the weight of training instances that flow down paths
in the cover variable. To apply GPU computing, we first preprocess the decision tree ensemble into lists
of path elements representing all possible unique paths in the ensemble. Path elements are represented as
per Listing 1.

As paths share information that is represented in a redundant manner in the collection of lists
representing a tree, reformulating trees increases memory consumption: assuming balanced trees, it

5/18

Figure 1. Unique decision tree path

struct PathElement {
// Unique path index
size_t path_idx;
// Feature of this split, -1 is root
int64_t feature_idx;
// Range of feature value
float feature_lower_bound;
float feature_upper_bound;
// Probability of following this path
// when feature_idx is missing
float zero_fraction;
// Leaf weight at the end of path
float v;

};

Listing 1. Path element structure

increases space complexity from O(T L) to O(T DL) in the worst case. However, this additional memory
consumption is not significant in practice.

Considering each path element, we use a lower and an upper bound to represent the range of feature
values that can flow through a particular branch of the tree when the corresponding feature is present.
For example, the root node in Figure 1 has split condition f0 < 0.5. Therefore, if the feature is present,
the left branch from this node contains instances where −∞ ≤ f0 < 0.5, and the right branch contains
instances where 0.5≤ f0 < ∞. This representation is useful for the next preprocessing step, where we
combine duplicate feature occurrences along a decision tree path.

Figure 2 shows two unique paths extracted from Figure 1. An entire tree ensemble can be represented
in this form. Crucially, this representation contains sufficient information to compute the ensemble’s
SHAP values.

3.2 Remove Duplicate Features
Part of the complexity of Algorithm 1 comes from a need to detect and handle multiple occurrences of a
feature in a single unique path. In Line 12, the candidate feature of the current recursion step is checked
against existing features in the path. If a previous occurrence is detected, it is removed from the path
using the UNWIND function. The pz and po values for the old and new occurrences of the feature are
multiplied, and the path extended with these new values.

Unwinding previous features to deal with multiple feature occurrences in this manner is problematic
for GPU implementation because it requires threads to cooperatively evaluate FINDFIRST and then
UNWIND, introducing branching as well as extra computation. Instead, we take advantage of our
representation of a tree ensemble in path element form, combining duplicate features into a single
occurrence. To do this, recognise that a path through a decision tree from root to leaf represents a single
hyperrectangle in the M dimensional feature space, with boundaries defined according to split conditions
along the path. The boundaries of the hyperrectangle may alternatively be represented with a lower and
upper bound on each feature. Therefore, any number of decision tree splits over a single feature can
be reduced to a single range, represented by these bounds. Moreover, note that the ordering of features
within a path is irrelevant to the final SHAP values. As noted in (Lundberg et al., 2020), the EXTEND

6/18

Figure 2. Two unique paths from the decision tree in Figure 1.

and UNWIND functions defined in Algorithm 1 are commutative; therefore, features may be added
to or removed from a path in any order, and we can sort unique path representations by feature index,
combining consecutive occurrences of the same feature into a single path element.

3.3 Bin Packing For Work Allocation
Each unique path sub-problem identified above is mapped to GPU warps for hardware execution. A
decision tree ensemble contains L unique paths, where L is the number of leaves, and each path has
length between 1 and maximum tree depth D. To maximise throughput on the GPU, it is important to
maximise utilisation of the processing units by saturating them with threads to execute. In particular,
given a 32-thread warp, multiple paths may be resident and executed concurrently on a single warp. It is
also important to assign all threads processing the same decision tree path to the same warp as we wish to
use fast warp hardware intrinsics for communication between these threads and avoid synchronisation
cost. Consequently, in our GPU algorithm, sub-problems are constrained to not overlap across warps.
This implies that the maximum depth of a decision tree processed by our algorithm must be less than
or equal to the GPU warp size of 32. Given that the number of nodes in a balanced decision tree
increases exponentially with depth, and real-world experience showing D ≤ 16 in high-performance
boosted decision tree ensembles almost always, we believe this to be a reasonable constraint.

To achieve the highest device utilisation, path sub-problems should be mapped to warps such that
the total number of warps is minimised. Given the above constraint, this requires solving a bin packing
problem. Given a finite set of items I, with sizes s(i) ∈ Z+, for each i ∈ I, and maximum bin capacity
B, I must be partitioned into the disjoint sets I0, I1, . . . , IK such that the sum of sizes in each set is less
than B. The partitioning minimising K is the optimal bin packing solution. In our case, the bin capacity,
B = 32, is the number of threads per warp, and our item sizes, s(i), are given by the unique path lengths
from the tree ensemble. In general, finding the optimal packing is strongly NP-complete (Garey and
Johnson, 1979), although there are heuristics that can achieve close to optimal performance in many cases.
In Section 4.1, we evaluate three standard heuristics for the off-line bin packing problem, Next-Fit (NF),
First-Fit-Decreasing (FF), and Best-Fit-Decreasing (BFD), as well as a baseline where each item is placed
in its own bin. We briefly describe these algorithms and refer the reader to Martello and Toth (1990)
or Coffman et al. (1997) for a more in-depth survey.

Next-Fit is a simple algorithm, where only one bin is open at a time. Items are added to the bin
as they arrive. If bin capacity is exceeded, the bin is closed and a new bin is opened. In contrast,
First-Fit-Decreasing sorts the list of items by non-increasing size. Then, beginning with the largest item,
it searches for the first bin with sufficient capacity and adds it to the bin. Similarly, Best-Fit-Decreasing
also sorts items by non-increasing size, but assigns items to the feasible bin with the smallest residual
capacity. FFD and BFD may be implemented in O(n logn) time using a tree data structure allowing bin
updates and insertions in O(logn) operations (see Johnson (1974) for specifics).

Existing literature gives worst-case approximation ratios for the above heuristics. For a given set of
items I, let A(I) denote the number of bins used by algorithm A, and OPT (I) be the number of bins for

7/18

Table 1. Bin packing time complexities and worst-case approximation ratios

ALGORITHM TIME RA

NF O(n) 2.0
FFD O(n logn) 1.222
BFD O(n logn) 1.222

the optimal solution. The approximation ratio RA ≤ A(I)
OPT (I) describes the worst-case performance ratio

for any possible I. Time complexities and approximation ratios for each of the three above bin packing
heuristic are listed in Table 1, as per Coffman et al. (1997).

As this paper concerns the implementation of GPU algorithms, we would ideally formulate the above
heuristics in parallel. Unfortunately, the bin packing problem is known to be hard to parallelise. In
particular, FFD and BFD are P-complete, indicating that it is unlikely that these algorithms may be sped
up significantly via parallelism (Anderson and Mayr, 1984). An efficient parallel algorithm with the
same approximation ratio as FFD/BFD is given in Anderson et al. (1989), but the adaptation of this
algorithm to GPU architectures is nontrivial and beyond the scope of this paper. Fortunately, as shown by
our evaluation in Section 3.3, CPU-based implementations of the bin packing heuristics give acceptable
performance for our task, and the main burden of computation still falls on the GPU kernels computing
SHAP values in the subsequent step. We perform experiments comparing the three bin packing heuristics
in terms of runtime and impact on efficiency for GPU kernels in Section 4.1.

3.4 The GPU Kernel for Computing SHAP Values
Given a unique decision tree path extracted from a decision tree in an ensemble predictor, with duplicates
removed, we allocate one path element per GPU thread and cooperatively evaluate SHAP values for each
row in a test dataset X . The dataset X is assumed to be queryable from the device. Listing 2 provides a
simplified overview of the GPU kernel that is the basis of GPUTreeShap, further details can be found
at https://github.com/rapidsai/gputreeshap. A single kernel is launched, parallelising
computation of Shapley values across GPU threads in three dimensions:

1. Dataset rows.

2. Unique paths in tree model from root to leaf.

3. Elements in each unique path.

GPU threads are launched according to the solution of the bin-packing problem described in Section
3.3, which allocates threads efficiently to this unevenly sized, three-dimensional problem space. A
contiguous thread group of size ≤ 32 is launched and assigned to each dataset row and model path
sub-problem.

To enable non-recursive GPU-based implementation of Algorithm 1, it remains to describe how to
compute permutation weights for each possible feature subset with the EXTEND function (Line 4), as
well as how to UNWIND each feature in the path and calculate the sum of permutation weights (Line 7).
The EXTEND function represents a single step in a dynamic programming problem. In the GPU version
of the algorithm, it processes a single path in a decision tree, represented as a list of path elements. As
discussed above, all threads processing the same path are assigned to the same warp to enable efficient
processing. Data dependencies between threads occur when each thread processes a single path element.
Figure 3 shows the data dependency of each call to EXTEND on previous iterations when using GPU
threads for the implementation. Each thread depends on its own previous result and the previous result of
the thread to its “left”.

This dependency pattern leads to a natural implementation using warp shuffle instructions, where
threads directly access registers of other threads in the warp at considerably lower cost than shared or
global memory. Algorithm 2 shows pseudo-code for a single step of a parallel EXTEND function on the
device. In pseudocode, we define a shuffle function analogous to the corresponding function in NVIDIA’s
CUDA language, where the first argument is the register to be communicated, and the second argument is
the thread to fetch the register from—if this thread does not exist, the function returns 0, else it returns

8/18

__device__ float GetOneFraction(
const PathElement& e, DatasetT X, size_t row_idx) {

// First element in path (bias term) is always zero
if (e.feature_idx == -1) return 0.0;
// Test the split
// Does the training instance continue down this
// path if the feature is present?
float val = X.GetElement(row_idx, e.feature_idx);
return val >= e.feature_lower_bound &&

val < e.feature_upper_bound;
}

template <typename DatasetT>
__device__ float ComputePhi(

const PathElement& e, size_t row_idx,
const DatasetT& X,
const ContiguousGroup& group,
float zero_fraction) {

float one_fraction = GetOneFraction(e, X, row_idx);
GroupPath path(group, zero_fraction, one_fraction);
size_t unique_path_length = group.size();
// Extend the path
for (auto unique_depth = 1ull;

unique_depth < unique_path_length;
unique_depth++) {

path.Extend();
}
float sum = path.UnwoundPathSum();
return sum * (one_fraction - zero_fraction) * e.v;

}

template <typename DatasetT, size_t kBlockSize,
size_t kRowsPerWarp>

__global__ void ShapKernel(
DatasetT X, size_t bins_per_row,
const PathElement* path_elements,
const size_t* bin_segments, size_t num_groups,
float* phis) {

__shared__ PathElement s_elements[kBlockSize];
PathElement& e = s_elements[threadIdx.x];
// Allocate some portion of rows to this warp
// Fetch the path element assigned to this
// thread
size_t start_row, end_row;
bool thread_active;
ConfigureThread<DatasetT, kBlockSize, kRowsPerWarp>(

X, bins_per_row, path_elements,
bin_segments, &start_row, &end_row, &e,
&thread_active);

if (!thread_active) return;
float zero_fraction = e.zero_fraction;
auto labelled_group =

active_labeled_partition(e.path_idx);
for (int64_t row_idx = start_row;

row_idx < end_row; row_idx++) {
float phi =

ComputePhi(e, row_idx, X, labelled_group,
zero_fraction);

// Write results
if (!e.IsRoot()) {
atomicAdd(&phis[IndexPhi(

row_idx, num_groups, e.group,
X.NumCols(), e.feature_idx)],

phi);
}

}
}

Listing 2. GPU kernel overview — Threads are mapped to elements of a path sub-problem, then groups
of threads are formed. These small thread groups cooperatively solve dynamic programming problems,
accumulating the final SHAP values using global atomics.

9/18

Figure 3. Data dependencies of EXTEND — 5 GPU threads communicate using warp shuffle intrinsics
to solve a dynamic programming problem instance.

Algorithm 2 Parallel EXTEND

1: function PARALLEL EXTEND(m, pz, po, pi)
2: l = len(m)
3: ml+1.(d,z,o,w) = (pi, pz, po, l = 0 ? 1 : 0)
4: for i← 2 to l +1 in parallel, do
5: le f t w = shuffle(mi.w, i−1)
6: mi.w = mi.w · pz · (l +1− i)/(l +1)
7: mi.w = mi.w+ po · le f t w · i/(l +1)
8: return m

the register value at the specified thread index. In Algorithm 2, the shuffle function is used to fetch the
element mi.w from the current thread’s left neighbour if this neighbour exists, and otherwise returns 0.

Given the permutation weights for the entire path, it is also necessary to establish how to UNWIND the
effect of each individual feature from the path to evaluate its relative contribution (Algorithm 1, Line 7).
We distribute this task among threads, with each thread “unwinding” a unique feature. Pseudo-code for
UNWOUNDSUM is given in Algorithm 3, where each thread i is effectively undoing the EXTEND
function for a given feature and returning the sum along the path. Shuffle instructions are used to fetch
weights w j from other threads in the group. The result of UNWOUNDSUM is used to compute the final
SHAP value as per Algorithm 1, Line 8.

3.5 Computing SHAP Interaction Values
Computation of SHAP interaction values makes use of the same preprocessing steps as above, and
the same basic kernel building blocks, except that the thread group associated with each row/path pair
evaluates SHAP values multiple times, iterating over each unique feature and conditioning on that feature
being fixed to present or not present respectively. There are some difficulties in conditioning on features
with our algorithm formulation so far—conditioning on a feature j requires ignoring it and not adding
it to the active path. This introduces complexity when neighbouring threads are communicating via
shuffle instructions (see Figure 3). Each thread must adjust its indexing to skip over a path element being
conditioned on. We found a more elegant solution is to swap a path element used for conditioning to
the end of the path, then simply stop before adding it to the path (taking advantage of the fact that the
ordering of path elements is irrelevant). Thus, to evaluate SHAP interaction values, we use a GPU kernel
similar to the one used for computing per-feature SHAP values, except that we loop over each unique
feature, conditioning on that feature as on or off.

One major difference that arises between our GPU algorithm and the CPU algorithm of Lundberg
et al. (2020), is that we can easily avoid conditioning on features that are not present in a given path. It is
clear from Equation 5 that fS∪{i, j}(x) = fS∪{i}(x), fS∪{ j}(x) = fS(x) and ∇i j(S) = 0 if we condition on

10/18

Algorithm 3 Parallel UNWOUNDSUM

1: function PARALLEL UNWOUNDSUM(m, pz, po, pi)
2: l = len(m)
3: sum = [] array of l zeroes
4: for i← 1 to l +1 in parallel, do
5: next = shuffle(mi.w, l)
6: for j← l to 1 do
7: w j = shuffle(mi.w, j)
8: tmp = (next · (l−1)+1)/ j
9: sumi = sumi + tmp · po

10: next = w j− tmp · (l− j) · pz/l
11: sumi = sumi +(1− po) ·w j · l/((l− j) · pz)
12: return sum

Table 2. Datasets used to train XGBoost models for Shapley value evaluation.

NAME ROWS COLS TASK CLASSES REF

COVTYPE 581012 54 CLASS 8 BLACKARD (1998)
CAL HOUSING 20640 8 REGR - PACE AND BARRY (1997)
FASHION MNIST 70000 785 CLASS 10 XIAO ET AL. (2017)
ADULT 48842 14 CLASS 2 KOHAVI (1996)

feature j that is not present in the path. Therefore, our approach has runtime proportional to O(T LD3)
instead of O(T LD2M) by exploiting the limited subset of possible feature interactions in a tree branch.
This modification has a significant impact on runtime in practice (because, normally, M >> D).

4 EVALUATION
We train a range of decision tree ensembles using the XGBoost algorithm on the datasets listed in Table 2.
Our goal is to evaluate a wide range of models representative of different real-world settings, from simple
exploratory models to large ensembles of thousands of trees. For each dataset, we train a small, medium,
and large variant by adjusting the number of boosting rounds (10, 100, 1000) and maximum tree depth (3,
8, 16). The learning rate is set to 0.01 to prevent XGBoost learning the model in the first few trees and
producing only stumps in subsequent iterations. Using a low learning rate is also common in practice
to minimise generalisation error. Other hyperparameters are left as default. Summary statistics for each
model variant are listed in Table 3, and our testing hardware is listed in Table 4.

4.1 Evaluating Bin Packing Performance
We first evaluate the performance of the NF, FFD, and BFD bin packing algorithms from Section 3.3. We
also include “none” as a baseline, where no packing occurs and each unique path is allocated to a single
warp. All bin packing heuristics are single-threaded and run on the CPU. We report the execution time (in
seconds), utilisation, and number of bins used (K). Utilisation is defined as ∑i∈I s(i)

32K , the total weight of all
items divided by the bin space allocated, or for our purposes, the fraction of GPU threads that are active
for a given bin packing. Poor bin packings waste space on each warp and underutilise the GPU.

Results are summarised in Table 5. “None” is clearly a poor choice, with utilisation between 0.1 and
0.3, with worse utilisation for smaller tree depths–for example, small models with maximum depth three
allocate items of size three to warps of size 32. The simple NF algorithm often provides competitive
results with fast runtimes, but it can lag behind FFD and BFD when item sizes are larger, exhibiting
utilisation as low as 0.79 for fashion mnist-large. FFD and BFD achieve better utilisation than NF in
all cases, reflecting their superior approximation guarantees. Interestingly, FFD and BFD achieve the
same efficiency on every example tested. We have verified that they can produce different packings on
contrived examples, but there is no discernible difference for our application. FFD and BFD have longer
runtimes than NF due to their O(n logn) time complexity. FFD is slightly faster than BFD because it

11/18

Table 3. XGBoost models used for evaluation. Small, medium and large variants are created for each
dataset.

MODEL TREES LEAVES MAX DEPTH

COVTYPE-SMALL 80 560 3
COVTYPE-MED 800 113888 8
COVTYPE-LARGE 8000 6636440 16
CAL HOUSING-SMALL 10 80 3
CAL HOUSING-MED 100 21643 8
CAL HOUSING-LARGE 1000 3317209 16
FASHION MNIST-SMALL 100 800 3
FASHION MNIST-MED 1000 144154 8
FASHION MNIST-LARGE 10000 2929521 16
ADULT-SMALL 10 80 3
ADULT-MED 100 13074 8
ADULT-LARGE 1000 642035 16

Table 4. Details of Nvidia DGX-1 used for benchmarking.

PROCESSOR DETAILS

CPU 2X 20-CORE XEON E5-2698 V4 2.2 GHZ
GPU 8X TESLA V100-32

uses a binary tree packed into an array, yielding greater cache efficiency, but its implementation is more
complicated. In contrast, BFD is implemented easily using std::set.

Based on these results, we recommend BFD for its strong approximation guarantee, simple imple-
mentation, and acceptable runtime when packing jobs into batches for GPU execution. Its runtime is
at most 1.6s in our experiments, for our largest model (covtype-large) with 6.7M items, and is constant
with respect to the number of test rows because the bin packing occurs once per ensemble and is reused
for each additional data point, allowing us to amortise its cost over improvements in end-to-end runtime
from improved kernel efficiency. The gains in GPU thread utilisation from using BFD over NF directly
translate into performance improvements, as fewer bins used means fewer GPU warps are launched. On
our large size models, we see improvements in utilisation of 10.1%, 3.2%, 16.7% and 9.6% from BFD
over NF. We use BFD in all subsequent experiments.

4.2 Evaluating SHAP Value Throughput
We evaluate the performance of GPUTreeShap as a backend to the XGBoost library (Chen and Guestrin,
2016), comparing its execution time against the existing CPU implementation of Algorithm 12. The
baseline CPU algorithm is efficiently multithreaded using OpenMP, with a parallel for loop over all test
instances. See https://github.com/dmlc/xgboost for exact implementation details for the
baseline and https://github.com/rapidsai/gputreeshap for GPUTreeShap implementa-
tion details.

Table 6 reports the runtime of GPUTreeShap on a single V100 GPU compared to TreeShap on 40 CPU
cores. Results are averaged over five runs and standard deviations are also shown. We observe speedups
between 13-18x for medium and large models evaluated on 10,000 test rows. We observe little to no
speedup for the small models as insufficient computation is performed to offset the latency of launching
GPU kernels.

Figure 4 plots the time to evaluate varying numbers of test rows for the cal housing-med model. We
plot the average of five runs; the shaded area indicates the 95% confidence interval. This illustrates the
throughput vs. latency trade-off for this particular model size. The CPU is more effective for < 180 test
rows due to lower latency, but the throughput of the GPU is significantly higher at larger batch sizes.

2We do not benchmark against TreeShap implementations in the Python SHAP package or LightGBM because they are written
by the same author, also in C++, and are functionally equivalent to XGBoost’s implementation.

12/18

Figure 4. The crossover point where the V100 GPU outperforms 40 CPU cores occurs at around 200
test rows for the cal housing-med model.

SHAP value computation is embarrassingly parallel over dataset rows, so we expect to see linear
scaling of performance with respect to the number of GPUs or CPUs, given sufficient data. We set the
number of rows to 1 million and evaluate the effect of additional processors for the cal housing-med
model, measuring throughput in rows per second. Figure 5 reports throughput up to the eight GPUs
available on the DGX-1 system, showing the expected close to linear scaling and reaching a maximum
throughput of 1.2M rows per second. Reported throughputs are from the average of five runs—error bars
are too small to see due to relatively low variance. Figure 6 shows linear scaling with respect to CPU cores
up to a maximum throughput of 7000 rows per second. The shaded area indicates the 95% confidence
interval from 5 runs. We speculate that the dip at 40 cores is due to contention with the operating system
requiring threads for other system functions, and so ignore it for this scaling analysis. We can reasonably
approximate from Figure 6, using a throughput of 7000 rows/s per 40 cores, that it would require 6850
Xeon E5-2698 v4 CPU cores, or 343 sockets, to achieve the same throughput as eight V100 GPUs for this
particular model.

4.3 SHAP Interaction Values
Table 7 compares single GPU vs. 40 core CPU runtime for SHAP interaction values. For this experiment,
we lower the number of test rows to 200 due to the significantly increased computation time. Computing
interaction values is challenging for datasets with larger numbers of features, in particular for fashion mnist
(785 features). Our GPU implementation achieves moderate speedups on cal housing and adult due
to the relatively low number of features; these speedups are roughly comparable to those obtained for
standard SHAP values (Table 6). In contrast, for covtype-large and fashion mnist-large, we see speedups
of 114x and 340x, in the most extreme case reducing runtime from six hours to one minute. This speedup
comes from both the increased throughput of the GPU over the CPU and the improvements to algorithmic
complexity due to omission of irrelevant features described in Section 3.5. Note that it may be possible to
reformulate the CPU algorithm to take advantage of the improved complexity with similar preprocessing
steps, but investigating this is beyond the scope of this paper.

5 CONCLUSION
SHAP values have proven to be a useful tool for interpreting the predictions of decision tree ensembles.
We have presented GPUTreeShap, an algorithm obtained by reformulating the TreeShap algorithm to
enable efficient computation on GPUs. We exploit warp-level parallelism by cooperatively evaluating
dynamic programming problems for each path in a decision tree ensemble, thus providing massive

13/18

Figure 5. GPUTreeShap scales linearly
with 8 V100 GPUs for the cal housing-med
model.

Figure 6. TreeShap scales linearly with 40
CPU cores, but at significantly lower
throughput than GPUTreeShap.

parallelism for large ensemble predictors. We have shown how standard bin packing heuristics can be
used to effectively schedule problems at the warp level, maximising GPU utilisation. Additionally, our
rearrangement leads to improvement in the algorithmic complexity when computing SHAP interaction
values, from O(T LD2M) to O(T LD3). Our library GPUTreeShap provides significant improvement to
SHAP value computation over currently available software, allowing scaling onto one or more GPUs, and
reducing runtime by one to two orders of magnitude.

REFERENCES
Anderson, R. and Mayr, E. (1984). Parallelism and greedy algorithms. Technical Report 1003, Computer

Science Department, Stanford University.
Anderson, R. J., Mayr, E. W., and Warmuth, M. K. (1989). Parallel approximation algorithms for bin

packing. Inf. Comput., 82(3):262–277.
Blackard, J. A. (1998). Comparison of Neural Networks and Discriminant Analysis in Predicting Forest

Cover Types. PhD thesis, Colorado State University.
Bo Fang, Guobin Shen, Shipeng Li, and Huifang Chen (2005). Techniques for efficient dct/idct imple-

mentation on generic gpu. In 2005 IEEE International Symposium on Circuits and Systems, pages
1126–1129 Vol. 2.

Boyer, V., El Baz, D., and Elkihel, M. (2012). Solving knapsack problems on gpu. Computers &
Operations Research, 39(1):42–47. Special Issue on Knapsack Problems and Applications.

Changhao Jiang and Snir, M. (2005). Automatic tuning matrix multiplication performance on graphics
hardware. In 14th International Conference on Parallel Architectures and Compilation Techniques
(PACT’05), pages 185–194.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In KDD, pages 785–794.
ACM.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., and Shelhamer, E. (2014).
cudnn: Efficient primitives for deep learning.

Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A. Y., and Catanzaro, B. (2013). Deep learning with
cots hpc systems. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, page III–1337–III–1345. JMLR.org.

Coffman, E. G., Garey, M. R., and Johnson, D. S. (1997). Approximation algorithms for bin packing: A
survey. In Hochbaum, D. S., editor, Approximation Algorithms for NP-Hard Problems, pages 46–93.
PWS Publishing.

Fatahalian, K., Sugerman, J., and Hanrahan, P. (2004). Understanding the efficiency of gpu algorithms for
matrix-matrix multiplication. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, HWWS ’04, page 133–137, New York, NY, USA. Association for Computing
Machinery.

14/18

Fujimoto, K., Kojadinovic, I., and Marichal, J.-L. (2006). Axiomatic characterizations of probabilistic
and cardinal-probabilistic interaction indices. Games and Economic Behavior, 55:72–99.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman &; Co.

Green, O., McColl, R., and Bader, D. A. (2012). Gpu merge path: A gpu merging algorithm. In
Proceedings of the 26th ACM International Conference on Supercomputing, ICS ’12, page 331–340,
New York, NY, USA. Association for Computing Machinery.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (2018). A survey of
methods for explaining black box models. ACM Comput. Surv., 51(5).

Hall, J. D., Carr, N. A., and Hart, J. C. (2003). Cache and bandwidth aware matrix multiplication on the
gpu.

Harris, M. and Buck, I. (2005). GPU flow-control idioms. In Pharr, M., editor, GPU Gems 2, pages
547–555. Addison-Wesley.

Johnson, D. S. (1974). Fast algorithms for bin packing. J. Comput. Syst. Sci., 8(3):272–314.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). LightGBM: A

highly efficient gradient boosting decision tree. In NIPS, pages 3149–3157. Curran Associates.
Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In KDD,

pages 202–207. AAAI Press.
Liu, Y., Huang, W., Johnson, J., and Vaidya, S. (2006). Gpu accelerated smith-waterman. In Alexandrov,

V. N., van Albada, G. D., Sloot, P. M. A., and Dongarra, J., editors, Computational Science – ICCS
2006, pages 188–195, Berlin, Heidelberg. Springer Berlin Heidelberg.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J.,
Bansal, N., and Lee, S.-I. (2020). From local explanations to global understanding with explainable ai
for trees. Nature Machine Intelligence, 2(1):2522–5839.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. In NIPS,
pages 4765–4774. Curran Associates.

Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementations. John
Wiley & Sons.

Mitchell, R. and Frank, E. (2017). Accelerating the xgboost algorithm using gpu computing. PeerJ
Computer Science, 3:e127.

Moreland, K. and Angel, E. (2003). The fft on a gpu. In Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware, HWWS ’03, page 112–119, Goslar, DEU. Eurograph-
ics Association.

NVIDIA Corporation (2020). CUDA C++ programming guide. Version 11.1.
Pace, R. K. and Barry, R. (1997). Sparse spatial autoregressions. Statistics & Probability Letters,

33(3):291–297.
Perry, M., Prosper, H. B., and Meyer-Baese, A. (2014). GPU implementation of bayesian neural network

construction for data-intensive applications. Journal of Physics: Conference Series, 513(2):022027.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”Why Should I Trust You?”: Explaining the predictions

of any classifier. In KDD, pages 1135–1144. ACM.
Satish, N., Kim, C., Chhugani, J., Nguyen, A. D., Lee, V. W., Kim, D., and Dubey, P. (2010). Fast sort on

cpus and gpus: A case for bandwidth oblivious simd sort. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’10, page 351–362, New York, NY, USA.
Association for Computing Machinery.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-CAM:
Visual explanations from deep networks via gradient-based localization. In ICCV, pages 618–626.
IEEE.

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28):307–317.
Sharp, T. (2008). Implementing decision trees and forests on a gpu. In Forsyth, D., Torr, P., and Zisserman,

A., editors, Computer Vision – ECCV 2008, pages 595–608, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Sharp, T. (2012). Evaluating decision trees on a gpu. US Patent 8,290,882.
Steffen, P., Giegerich, R., and Giraud, M. (2010). Gpu parallelization of algebraic dynamic programming.

15/18

In Wyrzykowski, R., Dongarra, J., Karczewski, K., and Wasniewski, J., editors, Parallel Processing
and Applied Mathematics, pages 290–299, Berlin, Heidelberg. Springer Berlin Heidelberg.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv, abs/1708.07747.

16/18

Table 5. Bin packing performance

MODEL ALG TIME(S) UTILISATION BINS

COVTYPE-SMALL NONE 0.0018 0.105246 560
COVTYPE-SMALL NF 0.0041 0.982292 60
COVTYPE-SMALL FFD 0.0064 0.998941 59
COVTYPE-SMALL BFD 0.0086 0.998941 59
COVTYPE-MED NONE 0.0450 0.211187 113533
COVTYPE-MED NF 0.0007 0.913539 26246
COVTYPE-MED FFD 0.0104 0.940338 25498
COVTYPE-MED BFD 0.0212 0.940338 25498
COVTYPE-LARGE NONE 0.0346 0.299913 6702132
COVTYPE-LARGE NF 0.0413 0.851639 2360223
COVTYPE-LARGE FFD 0.8105 0.952711 2109830
COVTYPE-LARGE BFD 1.6702 0.952711 2109830
CAL HOUSING-SMALL NONE 0.0015 0.085938 80
CAL HOUSING-SMALL NF 0.0025 0.982143 7
CAL HOUSING-SMALL FFD 0.0103 0.982143 7
CAL HOUSING-SMALL BFD 0.0001 0.982143 7
CAL HOUSING-MED NONE 0.0246 0.181457 21641
CAL HOUSING-MED NF 0.0126 0.931429 4216
CAL HOUSING-MED FFD 0.0016 0.941704 4170
CAL HOUSING-MED BFD 0.0031 0.941704 4170
CAL HOUSING-LARGE NONE 0.0089 0.237979 3370373
CAL HOUSING-LARGE NF 0.0225 0.901060 890148
CAL HOUSING-LARGE FFD 0.3534 0.933114 859570
CAL HOUSING-LARGE BFD 0.8760 0.933114 859570

MODEL ALG TIME(S) UTILISATION BINS

FASHION MNIST-SMALL NONE 0.0022 0.123906 800
FASHION MNIST-SMALL NF 0.0082 0.991250 100
FASHION MNIST-SMALL FFD 0.0116 0.991250 100
FASHION MNIST-SMALL BFD 0.0139 0.991250 100
FASHION MNIST-MED NONE 0.0439 0.264387 144211
FASHION MNIST-MED NF 0.0008 0.867580 43947
FASHION MNIST-MED FFD 0.0130 0.880279 43313
FASHION MNIST-MED BFD 0.0219 0.880279 43313
FASHION MNIST-LARGE NONE 0.0140 0.385001 2929303
FASHION MNIST-LARGE NF 0.0132 0.791948 1424063
FASHION MNIST-LARGE FFD 0.3633 0.958855 1176178
FASHION MNIST-LARGE BFD 0.8518 0.958855 1176178
ADULT-SMALL NONE 0.0016 0.125000 80
ADULT-SMALL NF 0.0023 1.000000 10
ADULT-SMALL FFD 0.0061 1.000000 10
ADULT-SMALL BFD 0.0060 1.000000 10
ADULT-MED NONE 0.0050 0.229014 13067
ADULT-MED NF 0.0066 0.913192 3277
ADULT-MED FFD 0.0575 0.950010 3150
ADULT-MED BFD 0.1169 0.950010 3150
ADULT-LARGE NONE 0.0033 0.297131 642883
ADULT-LARGE NF 0.0035 0.858728 222446
ADULT-LARGE FFD 0.0684 0.954377 200152
ADULT-LARGE BFD 0.0954 0.954377 200152

17/18

Table 6. Speedups for V100 vs. 40 CPU cores on 10,000 test rows

MODEL CPU(S) STD GPU(S) STD SPEEDUP

COVTYPE-SMALL 0.04 0.02 0.02 0.01 2.27
COVTYPE-MED 8.25 0.07 0.45 0.03 18.23
COVTYPE-LARGE 930.22 0.56 50.88 0.21 18.28
CAL HOUSING-SMALL 0.01 0.01 0.01 0.01 0.96
CAL HOUSING-MED 1.27 0.02 0.09 0.02 14.59
CAL HOUSING-LARGE 315.21 0.30 16.91 0.34 18.64
FASHION MNIST-SMALL 0.35 0.14 0.17 0.04 2.09
FASHION MNIST-MED 15.10 0.07 1.13 0.08 13.36
FASHION MNIST-LARGE 621.14 0.14 47.53 0.17 13.07
ADULT-SMALL 0.01 0.00 0.01 0.01 1.08
ADULT-MED 1.14 0.00 0.08 0.01 14.59
ADULT-LARGE 88.12 0.20 4.67 0.00 18.87

Table 7. Feature interactions — Speedups for V100 vs. 40 CPU cores on 10000 test rows

MODEL CPU(S) STD GPU(S) STD SPEEDUP

COVTYPE-SMALL 0.14 0.01 0.02 0.01 8.32
COVTYPE-MED 21.50 0.32 0.19 0.02 114.41
COVTYPE-LARGE 2055.78 4.19 28.85 0.06 71.26
CAL HOUSING-SMALL 0.01 0.00 0.01 0.00 1.44
CAL HOUSING-MED 0.53 0.04 0.04 0.01 12.05
CAL HOUSING-LARGE 93.67 0.28 8.55 0.04 10.96
FASHION MNIST-SMALL 11.35 0.87 4.04 0.67 2.81
FASHION MNIST-MED 578.90 1.23 4.91 0.71 117.97
FASHION MNIST-LARGE 21603.53 622.60 63.53 0.78 340.07
ADULT-SMALL 0.06 0.09 0.01 0.00 11.25
ADULT-MED 1.74 0.30 0.04 0.01 39.38
ADULT-LARGE 67.29 6.22 2.76 0.00 24.38

18/18

Chapter 5

Sampling Permutations for

Shapley Value Estimation

Journal of Machine Learning Research 1 (2000) 1-48 Submitted 4/00; Published 10/00

Sampling Permutations for Shapley Value Estimation

Rory Mitchell ramitchellnz@gmail.com
Nvidia Corporation
Santa Clara
CA 95051, USA

Joshua Cooper cooper@math.sc.edu
Department of Mathematics
University of South Carolina
1523 Greene St.
Columbia, SC 29223, USA

Eibe Frank eibe@cs.waikato.ac.nz
Department of Computer Science
University of Waikato
Hamilton, New Zealand

Geoffrey Holmes geoff@cs.waikato.ac.nz

Department of Computer Science

University of Waikato

Hamilton, New Zealand

Editor: Some editors

Abstract

Game-theoretic attribution techniques based on Shapley values are used to interpret black-
box machine learning models, but their exact calculation is generally NP-hard, requiring
approximation methods for non-trivial models. As the computation of Shapley values
can be expressed as a summation over a set of permutations, a common approach is to
sample a subset of these permutations for approximation. Unfortunately, standard Monte
Carlo sampling methods can exhibit slow convergence, and more sophisticated quasi-Monte
Carlo methods have not yet been applied to the space of permutations. To address this, we
investigate new approaches based on two classes of approximation methods and compare
them empirically. First, we demonstrate quadrature techniques in a RKHS containing
functions of permutations, using the Mallows kernel in combination with kernel herding and
sequential Bayesian quadrature. The RKHS perspective also leads to quasi-Monte Carlo
type error bounds, with a tractable discrepancy measure defined on permutations. Second,
we exploit connections between the hypersphere Sd−2 and permutations to create practical
algorithms for generating permutation samples with good properties. Experiments show
the above techniques provide significant improvements for Shapley value estimates over
existing methods, converging to a smaller RMSE in the same number of model evaluations.

Keywords: Interpretability, quasi-Monte Carlo, Shapley values

1. Introduction

The seminal work of Shapley (1953) introduces an axiomatic attribution of collaborative
game outcomes among coalitions of participating players. Aside from their original appli-

©2000 Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v1/meila00a.html.

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

cations in economics, Shapley values are popular in machine learning (Cohen et al. (2007);
Strumbelj and Kononenko (2010); Štrumbelj and Kononenko (2014); Lundberg and Lee
(2017)) because the assignment of feature relevance to model outputs is structured ac-
cording to axioms consistent with human notions of attribution. In the machine learning
context, each feature is treated as a player participating in the prediction provided by a
machine learning model and the prediction is considered the outcome of the game. Feature
attributions via Shapley values provide valuable insight into the output of complex models
that are otherwise difficult to interpret.

Exact computation of Shapley values is known to be NP-hard in general (Deng and
Papadimitriou (1994)) and approximations based on sampling have been proposed by several
authors: Mann and Shapley (1960); Owen (1972); Castro et al. (2009); Maleki (2015); Castro
et al. (2017). In particular, a simple Monte Carlo estimate for the Shapley value is obtained
by sampling from a uniform distribution of permutations. The extensively developed quasi-
Monte Carlo theory for integration on the unit cube shows that careful selection of samples
can improve convergence significantly over random sampling, but these results do not extend
to the space of permutations. Here, our goal is to better characterise ‘good’ sample sets for
this unique approximation problem, and to develop tractable methods of obtaining these
samples, reducing computation time for high-quality approximations of Shapley values.
Crucially, we observe that sample evaluations, in this context corresponding to evaluations
of machine learning models, dominate the execution time of approximations. Due to the
high cost of each sample evaluation, considerable computational effort can be justified in
finding such sample sets.

In Section 3, we define a reproducing kernel Hilbert space (RKHS) with several possi-
ble kernels over permutations by exploiting the direct connection between Shapley values
and permutations. Using these kernels, we apply kernel herding, and sequential Bayesian
quadrature algorithms to estimate Shapley values. In particular, we observe that kernel
herding, in conjunction with the universal Mallows kernel, leads to an explicit convergence
rate of O(1

n) as compared to O(1√
n

) for ordinary Monte Carlo. An outcome of our investi-

gation into kernels is a quasi-Monte Carlo type error bound, with a tractable discrepancy
formula.

In Section 4, we describe another family of methods for efficiently sampling Shapley
values, utilising a convenient isomorphism between the symmetric group Sd and points on
the hypersphere Sd−2. These methods are motivated by the relative ease of selecting well-
spaced points on the sphere, as compared to the discrete space of permutations. We develop
two new sampling methods, termed orthogonal spherical codes and Sobol permutations, that
select high-quality samples by choosing points well-distributed on Sd−2.

Our empirical evaluation in Section 5 examines the performance of the above methods
compared to existing methods on a range of practical machine learning models, tracking
the reduction in mean squared error against exactly calculated Shapley values for boosted
decision trees and considering empirical estimates of variance in the case of convolutional
neural networks. Additionally, we evaluate explicit measures of discrepancy (in the quasi-
Monte Carlo sense) for the sample sets generated by our algorithms. This evaluation of
discrepancy for the generated samples of permutations may be of broader interest, as quasi-
Monte Carlo error bounds based on discrepancy apply to any statistics of functions of
permutations and not just Shapley values.

2

Sampling Permutations for Shapley Value Estimation

In summary, the contributions of this work are:

• The characterisation of the Shapley value approximation problem in terms of repro-
ducing kernel Hilbert spaces.

• Connecting the Shapley value approximation problem to existing quasi-Monte Carlo
approaches, using kernels and connections between the hypersphere and symmetric
group.

• Experimental evaluation of these methods in terms of discrepancy, and the error of
Shapley value approximations on tabular and image datasets.

2. Background and Related Work

We first introduce some common notation for permutations and provide the formal defi-
nition of Shapley values. Then, we briefly review the literature for existing techniques for
approximating Shapley values.

2.1 Notation

We refer to the symmetric group of permutations of d elements as Sd. We reserve the use
of n to refer to the number of samples. The permutation σ ∈ Sd assigns rank j to element
i by σ(i) = j. For example, given the permutation written in one-line notation

σ =
(
1 4 2 3

)

and the list of items

(x1, x2, x3, x4),

the items are reordered such that xi occupies the σ(i) coordinate

(x1, x3, x4, x2),

and the inverse σ−1(j) = i is

σ−1 =
(
1 3 4 2

)
.

An inversion is a pair of elements in the permutation (σi, σj) such that i < j and
σ(i) > σ(j). The identity permutation,

I =
(
1 2 3 · · ·

)
,

contains 0 inversions, and its reverse

Rev(I) =
(
· · · 3 2 1

)
,

contains the maximum number of inversions,
(
d
2

)
.

3

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

2.2 Shapley Values

Shapley values (Shapley (1953)) provide a mechanism to distribute the proceeds of a cooper-
ative game among the members of the winning coalition by measuring marginal contribution
to the final outcome. The Shapley value Shi for coalition member i is defined as

Shi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)) (1)

where S is a partial coalition, N is the grand coalition (consisting of all members), and v is
the so-called “characteristic function” that is assumed to return the proceeds (i.e., value)
obtained by any coalition.

The Shapley value function may also be conveniently expressed in terms of permutations

Shi(v) =
1

|N |!
∑

σ∈Sd

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]
(2)

where [σ]i−1 represents the set of players ranked lower than i in the ordering σ. To see the
equivalence between (1) and (2), consider that |S|! is the number of unique orderings the
members of S can join the coalition before i, and (|N | − |S| − 1)! is the number of unique
orderings the remaining members N \ S ∪ {i} can join the coalition after i. The Shapley
value is unique and has the following desirable properties:

1. Efficiency :
∑n

i=1 Shi(v) = v(N). The sum of Shapley values for each coalition member
is the value of the grand coalition N .

2. Symmetry : If, ∀S ⊆ N \ {i, j}, v(S ∪{i}) = v(S ∪{j}), then Shi = Shj . If two players
have the same marginal effect on each coalition, their Shapley values are the same.

3. Linearity : Shi(v + w) = Shi(v) + Shi(w). The Shapley values of sums of games are
the sum of the Shapley values of the respective games.

4. Dummy : If, ∀S ⊆ N \ {i}, v(S ∪ {i}) = v(S), then Shi = 0. The coalition member
whose marginal impact is always zero has a Shapley value of zero.

Evaluation of the Shapley value is known to be NP-hard in general (Deng and Papadim-
itriou (1994)) but may be approximated by sampling terms from the sum of either Equation
1 or Equation 2. This paper focuses on techniques for approximating Equation 2 via care-
fully chosen samples of permutations. We discuss characteristic functions v that arise in
the context of machine learning models, with the goal of attributing predictions to input
features.

Shapley values have been used as a feature attribution method for machine learning in
many prior works (Cohen et al. (2007); Strumbelj and Kononenko (2010); Štrumbelj and
Kononenko (2014); Lundberg and Lee (2017)). In the terminology of supervised learning,
we have some learned model f(x) = y that maps a vector of features x to a prediction y. In
this context, the Shapley values will be used to evaluate the weighted marginal contribution
of features to the output of the predictive model. The value of the characteristic function
is assumed to be given by y, and the grand coalition is given by the full set of features. In

4

Sampling Permutations for Shapley Value Estimation

a partial coalition, only some of the features are considered “active” and their values made
available to the model to obtain a prediction. Applying the characteristic function for
partial coalitions requires the definition of f(xS), where the input features x are perturbed
in some way according to the active subset S. A taxonomy of possible approaches is given
in Covert et al. (2020).

2.3 Monte Carlo

An obvious Shapley value approximation is the simple Monte Carlo estimator,

S̄hi(v) =
1

n

∑

σ∈Π

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]
, (3)

for a uniform sample of permutations Π ⊂ Sd of size n. Monte Carlo techniques were used
to solve electoral college voting games in Mann and Shapley (1960), and a more general
analysis is given in Castro et al. (2009). Equation 3 is an unbiased estimator that converges
asymptotically at a rate of O(1/

√
n) according to the Central Limit Theorem.

From a practical implementation perspective, note that a single sample of permutations
Π can be used to evaluate Shi for all features i. For each permutation σ ∈ Π of length
d, first evaluate the empty set v({}), then walk through the permutation, incrementing i
and evaluating v([σ]i), yielding d + 1 evaluations of v that are used to construct marginal
contributions for each feature. v([σ]i−1) is not evaluated, but reused from the previous
function evaluation, providing a factor of two improvement over the naive approach.

2.4 Antithetic Sampling

Antithetic sampling is a variance reduction technique for Monte Carlo integration where
samples are taken as correlated pairs instead of standard i.i.d. samples. The antithetic
Monte Carlo estimate (see Rubinstein and Kroese (2016)) is

µ̂anti =
1

n

n/2∑

i=1

f(Xi) + f(Yi)

with variance given by

Var(µ̂anti) =
σ

n
(1 + Corr(f(X), f(Y)), (4)

such that if f(X) and f(Y) are negatively correlated, the variance is reduced. A common
choice for sampling on the unit cube is X ∼ U(0, 1)d with Yi = 1−Xi. Antithetic sampling
for functions of permutations is discussed in Lomeli et al. (2019), with a simple strategy
being to take permutations and their reverse. We implement this sampling strategy in our
experiments with antithetic sampling.

2.5 Multilinear Extension

Another Shapley value approximation method is the multilinear extension of Owen (1972).
The sum over feature subsets from (1) can be represented equivalently as an integral by

5

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

introducing a random variable for feature subsets. The Shapley value is calculated as

Shi(v) =

∫ 1

0
ei(q)dq (5)

where

ei(q) = E[v(Eq ∪ i)− v(Eq)]

and Eq is a random subset of features, excluding i, where each feature has probability q
of being selected. ei(q) is estimated with samples. In our experiments, we implement a
version of the multilinear extension algorithm using the trapezoid rule to sample q at fixed
intervals. A form of this algorithm incorporating antithetic sampling is also presented in
Okhrati and Lipani (2020), by rewriting Equation 5 as

Shi(v) =

∫ 1
2

0
ei(q) + ei(1− q)dq

where the sample set Ei is used to estimate ei(q) and the ‘inverse set’, {N \{Ei, i}}, is used
to estimate ei(1 − q). In Section 5, we include experiments for the multilinear extension
method both with and without antithetic sampling.

2.6 Stratified Sampling

Another common variance reduction technique is stratified sampling, where the domain of
interest is divided into mutually exclusive subregions, an estimate is obtained for each subre-
gion independently, and the estimates are combined to obtain the final estimate. For integral
µ =

∫
D f(x)p(x)dx in domain D, separable into J non-overlapping regions D1,D2, · · · ,DJ

where wj = P (X ∈ Dj) and pj(x) = w−1
j p(x)1x∈Dj , the basic stratified sampling estimator

is

µ̂strat =

J∑

j=1

wj
nj

nj∑

i=1

f(Xij),

where Xij ∼ pj for i = 1, · · · , nj and j = 1, · · · , J (see Owen (2003)). The stratum size
nj can be chosen with the Neyman allocation (Neyman (1934)) if estimates of the variance
in each region are known. The stratified sampling method was first applied to Shapley
value estimation by Maleki (2015), then improved by Castro et al. (2017). We implement
the version in Castro et al. (2017), where strata D`i are considered for all i = 1, · · · , d and
` = 1, · · · , d, where D`i is the subset of marginal contributions with feature i at position `.

This concludes discussion of existing work; the next sections introduce the primary
contributions of this paper.

3. Kernel Methods

A majority of Monte Carlo integration work deals with continuous functions on Rd, where
the distribution of samples is well defined. In the space of permutations, distances between
samples are not implicitly defined, so we impose a similarity metric via a kernel and select
samples with good distributions relative to these kernels.

6

Sampling Permutations for Shapley Value Estimation

Given a positive definite kernel K : X × X → R over some input space X , there is an
embedding φ : X → F of elements of X into a Hilbert space F , where the kernel computes
an inner product K(x, y) = 〈φ(x), φ(y)〉K given x, y ∈ X . Hilbert spaces associated with a
kernel are known as reproducing kernel Hilbert spaces (RKHS). Kernels are used extensively
in machine learning for learning relations between arbitrary structured data. In this paper,
we use kernels over permutations to develop a notion of the quality of finite point sets for
the Shapley value estimation problem, and for the optimisation of such point sets. For this
task, we investigate three established kernels over permutations: the Kendall, Mallows, and
Spearman kernels.

The Kendall and Mallows kernels are defined in Jiao and Vert (2015). Given two per-
mutations σ and σ′ of the same length, both kernels are based on the number of concordant
and discordant pairs between the permutations:

ncon(σ, σ′) =
∑

i<j

[1σ(i)<σ(j)1σ′(i)<σ′(j) + 1σ(i)>σ(j)1σ′(i)>σ′(j)]

ndis(σ, σ
′) =

∑

i<j

[1σ(i)<σ(j)1σ′(i)>σ′(j) + 1σ(i)>σ(j)1σ′(i)<σ′(j)].

Assuming the length of the permutation is d, the Kendall kernel, corresponding to the
well-known Kendall tau correlation coefficient (Kendall (1938)), is

Kτ (σ, σ′) =
ncon(σ, σ′)− ndis(σ, σ

′)(
d
2

) .

The Mallows kernel, for λ ≥ 0, is defined as

Kλ
M (σ, σ′) = e−λndis(σ,σ

′)/(d2).

Here, the Mallows kernel differs slightly from that of Jiao and Vert (2015). We normalise
the ndis(σ,σ′) term relative to d, allowing a consistent selection of the λ parameter across
permutations of different length.

While the straightforward implementation of Kendall and Mallows kernels is of order
O(d2), a O(d log d) variant based on merge-sort is given by Knight (1966).

Note that Kτ can also be expressed in terms of a feature map of
(
d
2

)
elements,

Φτ (σ) =


 1√(

d
2

)(1σ(i)>σ(j) − 1σ(i)<σ(j))




1≤i<j≤d

so that
Kτ (σ, σ′) = Φ(σ)TΦ(σ′).

The Mallows kernel corresponds to a more complicated feature map, although still finite
dimensional, given in Mania et al. (2018).

We also define a third kernel based on Spearman’s ρ. The (unnormalised) Spearman
rank distance

dρ(σ, σ
′) =

d∑

i=1

(σ(i)− σ′(i))2 = ||σ − σ′||22

7

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

is a semimetric of negative type (Diaconis (1988)), therefore we can exploit the relationship
between semimetrics of negative type and kernels from Sejdinovic et al. (2013) to obtain a
valid kernel. Writing

∑d
i=0 σ(i)σ(i)′ using vector notation as σTσ′, we have

d(σ, σ′) = K(σ, σ) +K(σ′, σ′)− 2K(σ, σ′)

dρ(σ, σ
′) = σTσ + σ′Tσ′ − 2σTσ′

=⇒ Kρ(σ, σ
′) = σTσ′

and the kernel’s feature map is trivially

Φρ(σ) = σ.

Before introducing sampling algorithms, we derive an additional property for the above
kernels: analytic formulas for their expected values at some fixed point σ and values drawn
from a given probability distribution σ′ ∼ p. The distribution of interest for approximating
(2) is the uniform distribution U . The expected value is straightforward to obtain for the
Spearman and Kendall kernel:

∀σ ∈ Π, Eσ′∼U [Kρ(σ, σ
′)] =

d(d+ 1)2

4

∀σ ∈ Π, Eσ′∼U [Kτ (σ, σ′)] = 0.

The Mallows kernel is more difficult. Let X be a random variable representing the number
of inversions over all permutations of length d. Its distribution is studied in Muir (1898),
with probability generating function given as

φd(x) =

d∏

j=1

1− xj
j(1− x)

.

There is no convenient form in terms of standard functions for its associated density func-
tion. From the probability generating function of X, we obtain the moment generating
function:

Md(t) = φd(e
t)

=
d∏

j=1

1− etj
j(1− et)

= E[etX].

The quantity ndis(I, σ), where I is the identity permutation, returns exactly the number of
inversions in σ. Therefore, we have

Md(−λ/
(
d
2

)
) = E[e−λX/(

d
2)]

= Eσ′∼U [KM (I, σ′)].

8

Sampling Permutations for Shapley Value Estimation

The quantity ndis is right-invariant in the sense that ndis(σ, σ
′) = ndis(τσ, τσ

′) for τ ∈ Sd

(Diaconis (1988)), so

∀τ ∈ Sd, Eσ′∼U [KM (I, σ′)] = Eσ′∼U [KM (τI, τσ′)]

= Eσ′∼U [KM (τI, σ′)]

∀σ ∈ Sd, Eσ′∼U [KM (I, σ′)] = Eσ′∼U [KM (σ, σ′)]

=
d∏

j=1

1− e−λj/(d2)

j(1− e−λ/(d2))
,

We now describe two greedy algorithms for generating point sets improving on simple
Monte Carlo—kernel herding and sequential Bayesian quadrature.

3.1 Kernel Herding

A greedy process called “kernel herding” for selecting (unweighted) quadrature samples in
a reproducing kernel Hilbert space is proposed in Chen et al. (2010). The sample n+ 1 in
kernel herding is given by

xn+1 = arg max
x

[
Ex′∼p[K(x, x′)]− 1

n+ 1

n∑

i=1

K(x, xi)
]

(6)

which can be interpreted as a greedy optimisation process selecting points for maximum
separation, while also converging on the expected distribution p. In the case of Shapley
value estimation, the samples are permutations σ ∈ Sd and p is a uniform distribution with
p(σ) = 1

σ! ,∀σ ∈ Sd.

Kernel herding has time complexity O(n2) for n samples, assuming the argmax can
be computed in O(1) time and Ex′∼p[K(x, x′)] is available. We have analytic formulas for
Ex′∼p[K(x, x′)] from the previous section for the Spearman, Kendall, and Mallows kernels,
and they give constant values depending only on the size of the permutation d. We compute
an approximation to the argmax in constant time by taking a fixed number of random
samples at each iteration and retaining the one yielding the maximum.

If certain conditions are met, kernel herding converges at the rate O(1
n), an improvement

over O(1√
n

) for standard Monte Carlo sampling. According to Chen et al. (2010), this

improved convergence rate is achieved if the RKHS is universal, and mild assumptions are
satisfied by the argmax (it need not be exact). Of the Spearman, Kendall and Mallows
kernels, only the Mallows kernel has the universal property (Mania et al. (2018)).

Next, we describe a more sophisticated kernel-based algorithm generating weighted sam-
ples.

3.2 Sequential Bayesian Quadrature

Bayesian Quadrature (O’Hagan (1991); Rasmussen and Ghahramani (2003)) (BQ) formu-
lates the integration problem

Zf,p =

∫
f(x)p(x)dx

9

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Algorithm 1: Sequential Bayesian Quadrature

Input: n, kernel K, sampling distribution p, integrand f
1 X0 ← RandomSample(p)
2 K−1 = I // Inverse of covariance matrix

3 z0 ← Ex′∼p[K(X0, x
′)]

4 for i← 2 to n do
5 Xi ← arg min

x
Ex,x′∼p[K(x, x′)]− zTK−1z

6 y ← ~0
7 for j ← 1 to i do
8 yj = K(Xi, Xj)

9 K−1 ← CholeskyUpdate(K−1, y)
10 zi ← Ex′∼p[K(Xi, x

′)]

11 w = zTK−1

12 return wT f(X)

as a Bayesian inference problem. Standard BQ imposes a Gaussian process prior on f with
zero mean and kernel function K. A posterior distribution is inferred over f conditioned
on a set of points (x0, x1, · · · , xn). This implies a distribution on Zf,p with expected value

EGP [Z] = zTK−1f(X)

where f(X) is the vector of function evaluations at points (x0, x1, · · · , xn), K−1 is the inverse
of the kernel covariance matrix, and zi = Ex′∼p[K(xi, x

′)]. Effectively, for an arbitrary set
of points, Bayesian quadrature solves the linear system Kw = z to obtain a reweighting of
the sample evaluations, yielding the estimate

Z ' wT f(X).

An advantage of the Bayesian approach is that uncertainty is propagated through to
the final estimate. Its variance is given by

V[Zf,p|f(X)] = Ex,x′∼p[K(x, x′)]− zTK−1z. (7)

This variance estimate is used in Huszár and Duvenaud (2012) to develop sequential Bayesian
quadrature (SBQ), a greedy algorithm selecting samples to minimise Equation 7. This pro-
cedure, summarised in Algorithm 1, is shown by Huszár and Duvenaud (2012) to be related
to optimally weighted kernel herding. Note that the expectation term in (7) and Algorithm
1 is constant and closed-form for all kernels considered here.

SBQ has time complexity O(n3) for n samples if the argmin takes constant time, and
an O(n2) Cholesky update algorithm is used to form K−1, adding one sample at a time.
In general, exact minimisation of Equation 7 is not tractable, so as with kernel herding, we
approximate the argmin by drawing a fixed number of random samples and choosing the
one yielding the minimum variance.

3.3 Error Analysis in RKHS

Canonical error analysis of quasi Monte-Carlo quadrature is performed using the Koksma-
Hlawka inequality (Hlawka (1961); Niederreiter (1992)), decomposing error into a product

10

Sampling Permutations for Shapley Value Estimation

of function variation and discrepancy of the sample set. We derive a version of this in-
equality for Shapley value approximation in terms of reproducing kernel Hilbert spaces.
Our derivation mostly follows Hickernell (2000), with modification of standard integrals
to weighted sums of functions on Sd, allowing us to calculate discrepancies for point sets
generated by kernel herding and SBQ with permutation kernels. The analysis is performed
for the Mallows kernel, which is known to be a universal kernel (Mania et al. (2018)).

Given a symmetric, positive definite kernel K, we have a unique RKHS F with inner
product 〈·, ·〉K and norm || · ||K , where the kernel reproduces functions f ∈ F by

f(σ) = 〈f,K(·, σ)〉K .

Define error functional

Err(f,Π, w) =
1

d!

∑

σ∈Sd

f(σ)−
∑

τ∈Π

wτf(τ),

where Π is a sample set of permutations and wτ is the associated weight of sample τ .
Because the Mallows kernel is a universal kernel, the bounded Shapley value component
functions f(σ) belong to F . Given that Err(f,Π, w) is a continuous linear functional on F
and assuming that it is bounded, by the Riesz Representation Theorem, there is a function
ξ ∈ F that is its representer: Err(f,Π, w) = 〈ξ, f〉K . Using the Cauchy-Schwarz inequality,
the quadrature error is bounded by

|Err(f,Π, w)| = |〈ξ, f〉K | ≤ ||ξ||K ||f ||K = D(Π, w)V (f)

where D(Π, w) = ||ξ||K is the discrepancy of point set Π with weights w and V (f) = ||f ||K
is the function variation. The quantity D(Π, w) has an explicit formula. As the function ξ
is reproduced by the kernel, we have:

ξ(σ′) = 〈ξ,K(·, σ′)〉K = Err(K(·, σ′),Π, w)

=
1

d!

∑

σ∈Sd

K(σ, σ′)−
∑

τ∈Π

wτK(τ, σ′).

11

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Then the discrepancy can be obtained, using the fact that Err(f,Π, w) = 〈ξ, f〉K , by

D(Π, w) = ||ξ||k =
√
〈ξ, ξ〉K =

√
Err(ξ,Π, w)

=


 1

d!

∑

σ∈Sd

ξ(σ)−
∑

τ∈Π

wτξ(τ)




1
2

=

(
1

d!

∑

σ∈Sd


 1

d!

∑

σ′∈Sd

K(σ, σ′)−
∑

τ∈Π

wτK(τ, σ)




−
∑

τ∈Π

wτ


 1

d!

∑

σ∈Sd

K(σ, τ)−
∑

τ ′∈Π

wτ ′K(τ, τ ′)



) 1

2

=

(
1

(d!)2

∑

σ,σ′∈Sd

K(σ, σ′)− 2

d!

∑

σ∈Sd

∑

τ∈Π

wτK(τ, σ) +
∑

τ,τ ′∈Π

wτwτ ′K(τ, τ ′)

) 1
2

=

(
Eσ,σ′∼U [K(σ, σ′)]− 2

∑

τ∈Π

wτEσ∼U [K(τ, σ)] +
∑

τ,τ ′∈Π

wτwτ ′K(τ, τ ′)

) 1
2

(8)

It can be seen that kernel herding (Equation 6) greedily minimises D(Π, w)2 with con-
stant weights 1

n , by examining the reduction in D(Π, 1
n)2 obtained by the addition of a

sample to Π. The kernel herding algorithm for sample σn+1 ∈ Π is

σn+1 = arg max
σ

[
Eσ′∼U [K(σ, σ′)]− 1

n+ 1

n∑

i=1

K(σ, σi)

]

Note that, since K(·, ·) is right-invariant, the quantity Eσ′∼U [K(σ, σ′)] does not depend on
σ, so the argmax above is simply minimizing

∑n
i=1K(σ, σi). On the other hand, denoting

the identity permutation by I, for a newly selected permutation sample π:

D(Π, 1
n)2 −D(Π ∪ {π}, 1

n+1)2 = 2
∑

τ∈Π∪{π}

1

n+ 1
Eσ∼U [K(τ, σ)]− 2

∑

τ∈Π

1

n
Eσ∼U [K(τ, σ)]

+
∑

τ,τ ′∈Π

1

n2
K(τ, τ ′)−

∑

τ,τ ′∈Π∪{π}

1

(n+ 1)2
K(τ, τ ′)

= 2
n+ 1

n+ 1
Eσ∼U [K(I, σ)]− 2

n

n
Eσ∼U [K(I, σ)]

+
∑

τ,τ ′∈Π

2n+ 1

n2(n+ 1)2
K(τ, τ ′)− 2

∑

τ∈Π

1

(n+ 1)2
K(τ, π)

=
K(I, I)

(n+ 1)2
+
∑

τ,τ ′∈Π

2n+ 1

n2(n+ 1)2
K(τ, τ ′)

− 2

(n+ 1)2

∑

τ∈Π

K(τ, π),

12

Sampling Permutations for Shapley Value Estimation

where both equalities use right-invariance. Note that the first two summands in the last
expression are constants (i.e., do not depend on the choice of π), so maximizing this quantity
is the same as minimizing

∑
τ∈ΠK(τ, π), i.e., the same as the kernel herding optimization

subproblem.

Furthermore, we can show that Bayesian quadrature minimises squared discrepancy via
optimisation of weights. Writing zi = Eσ′∼p[K(σi, σ

′)] and switching to vector notation we
have

D(Π, w)2 = c− 2wT z + wTKw,

where the first term is a constant not depending on w. Taking the gradient with respect to
w, setting it to 0, and solving for w, we obtain:

∇D(Π, w)2 = −2z + 2wTK = 0

w∗ = zTK−1, (9)

where (9) is exactly line 11 of Algorithm 1.

We use the discrepancy measure in (8) for numerical experiments in Section 5.4 to
determine the quality of a set of sampled permutations in a way that is independent of the
integrand f .

4. Sampling Permutations on Sd−2

Kernel herding and sequential Bayesian quadrature directly reduce the discrepancy of the
sampled permutations via greedy optimisation. We now describe two approaches to sam-
pling permutations of length d based on a relaxation to the Euclidean sphere Sd−2 ={
x ∈ Rd−1 : ‖x‖ = 1

}
, where the problem of selecting well-distributed samples is simpli-

fied. We describe a simple procedure for mapping points on the surface of this hypersphere
to the nearest permutation, where the candidate nearest neighbours form the vertices of
a Cayley graph inscribing the sphere. This representation provides a natural connection
between distance metrics over permutations, such as Kendall’s tau and Spearman’s rho, and
Euclidean space. We show that samples taken uniformly on the sphere result in a uniform
distribution over permutations, and evaluate two unbiased sampling algorithms. Our ap-
proach is closely related to that of Plis et al. (2010), where an angular view of permutations
is used to solve inference problems.

4.1 Spheres, Permutohedrons, and the Cayley Graph

Consider the projection of permutations σ ∈ Sd as points in Rd, where the i-th coordinate is
given by σ−1(i). These points form the vertices of a polytope known as the permutohedron
(Guilbaud and Rosenstiehl (1963)). The permutohedron is a d − 1 dimensional object
embedded in d dimensional space, lying on the hyperplane given by

d∑

i=1

σ−1(i) =
d(d+ 1)

2
,

13

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Figure 1: Cayley Graph of d = 3 Figure 2: Cayley Graph of d = 4

with normal vector

~n =




1√
d

1√
d
...
1√
d



, (10)

and inscribing the hypersphere Sd−2 lying on the hyperplane, defined by

d∑

i=1

σ−1(i)2 =
d(d+ 1)(2d+ 1)

6
.

Inverting the permutations at the vertices of the permutohedron gives a Cayley graph
of the symmetric group with adjacent transpositions as the generating set. Figure 1 shows
the Cayley graph for S3, whose vertices form a hexagon inscribing a circle on a hyperplane,
and Figure 2 shows the Cayley graph of S4 projected into three dimensions (its vertices
lie on a hyperplane in four dimensions). Each vertex σ−1 in the Cayley graph has d − 1
neighbours, where each neighbour differs by exactly one adjacent transposition (one bubble-
sort operation). Critically for our application, this graph has an interpretation in terms of
distance metrics on permutations. The Kendall-tau distance is the graph distance in the
vertices of this polytope, and Spearman distance is the squared Euclidean distance between
two vertices (Thompson (1993)). Additionally, the antipode of a permutation is its reverse
permutation. With this intuition, we use the hypersphere as a continuous relaxation of the
space of permutations, where selecting samples far apart on the hypersphere corresponds
to sampling permutations far apart in the distance metrics of interest.

We now describe a process for sampling from the set of permutations inscribing Sd−2.
First, shift and scale the permutohedron to lie around the origin with radius r = 1. The
transformation on vertex σ−1 is given by

σ̂−1 =
σ−1 − µ
||σ−1|| , (11)

where µ = (d+1
2 , d+1

2 , · · ·) is the mean vector of all permutations, and ||σ−1|| =
√∑d

i=1 σ
−1(i)2.

14

Sampling Permutations for Shapley Value Estimation

Now select some vector x of dimension d− 1, say, uniformly at random from the surface
of Sd−2. Project x onto the hyperplane in Rd using the following (d− 1)× d matrix:

U =




1 −1 0 . . . 0
1 1 −2 . . . 0

...
. . .

1 1 1 . . . −(d− 1).




It is easily verifiable that this basis of row vectors is orthogonal to hyperplane normal ~n.
Normalising the row vectors of U gives a transformation matrix Û used to project vector x
to the hyperplane by

x̃ = ÛTx,

so that

x̃T~n = 0.

Given x̃, find the closest permutation σ̂−1 by maximising the inner product

ŷ = arg max
σ̂−1

x̃T σ̂−1. (12)

This maximisation is simplified by noting that σ̂−1 is always a reordering of the same con-
stants (σ̂−1 is a scaled and shifted permutation). The inner product is therefore maximised
by matching the largest element in σ̂−1 against the largest element in x̃, then proceeding to
the second-largest, and so on. Thus the argmax is performed by finding the permutation
corresponding to the order type of x̃, which is order-isomorphic to the coordinates of x̃.
The output ŷ is a vertex on a scaled permutohedron — to get the corresponding point on
the Cayley graph, undo the scale/shift of Eq. 11 to get a true permutation, then invert
that permutation:

y = inverse(ŷ||σ−1||+ µ). (13)

In fact, both Eq. 12 and 13 can be simplified via a routine argsort, defined by

argsort(a) = b

such that

ab0 ≤ ab1 ≤ · · · ≤ abn .

In other words, b contains the indices of the elements of a in sorted position.

Algorithm 2 describes the end-to-end process of sampling. We use the algorithm of
Knuth (1997) for generating points uniformly at random on Sd−2: sample from d− 1 inde-
pendent Gaussian random variables and normalise the resulting vector to have unit length.
We now make the claim that Algorithm 2 is unbiased.

Theorem 1 Algorithm 2 generates permutations uniformly at random, i.e., Pr(σ) = 1
d! ,∀σ ∈

Sd, from a uniform random sample on Sd−2.

15

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Algorithm 2: Sample permutation from Sd−2

Output: σ, a permutation of length d
1 x← N(0, 1) // x is a vector of d− 1 i.i.d. normal samples

2 x← x
||x|| // x lies uniformly on Sd−2

3 x̃ = ÛTx
4 σ ← argsort(x̃) // σ is a uniform random permutation

Proof The point x ∈ Sd−2 from Algorithm 2, line 2, has multivariate normal distribution
with mean 0 and covariance Σ = aI for some scalar a and I as the identity matrix. x̃ = ÛTx
is an affine transformation of a multivariate normal and so has covariance

Cov(x̃) = ÛTΣÛ

= aÛT IÛ

= aÛT Û

The d× d matrix ÛT Û has the form

ÛT Û =




d−1
d

−1
d . . . −1

d−1
d

d−1
d . . . −1

d
...

. . .
−1
d

−1
d . . . d−1

d




with all diagonal elements d−1
d and off diagonal elements −1

d , and so x̃ is equicorrelated. Due
to equicorrelation, x̃ has order type such that ∀x̃i, x̃j ∈ x, i 6= j : Pr(x̃i < x̃j) = 1

2 . In other
words, all orderings of x̃ are equally likely. The function argsort implies an order-isomorphic
bijection, that is, argsort returns a unique permutation for every unique ordering over its
input. As every ordering of x̃ is equally likely, Algorithm 2 outputs permutations σ ∈ Sd

with p(σ) = 1
d! ,∀σ ∈ Sd.

Furthermore, Equation 12 associates a point on the surface of Sd−2 to the nearest per-
mutation. This implies that there is a Voronoi cell on the same surface associated with
each permutation σi, and a sample x̃ is associated with σi if it lands in its cell. Figure 3
shows the Voronoi cells on the hypersphere surface for d = 4, where the green points are
equidistant from nearby permutations. A corollary of Theorem 1 is that these Voronoi cells
must have equal measure, which is easily verified for d = 4.

4.2 Orthogonal Spherical Codes

Having established an order isomorphism Sd−2 → Sd, we consider selecting well-distributed
points on Sd−2. Our first approach, described in Algorithm 3, is to select 2(d−1) dependent
samples on Sd−2 from a basis of orthogonal vectors. Algorithm 3 uses the Gram-Schmidt
process to incrementally generate a random basis, then converts each component and its re-
verse into permutations by the same mechanism as Algorithm 2. The cost of each additional
sample is proportional to O(d2). This sampling method is related to orthogonal Monte Carlo

16

Sampling Permutations for Shapley Value Estimation

Algorithm 3: Sample k = 2(d− 1) permutations from Sd−2

1 X ∼ N(0, 1)k/2,d // iid. normal random Matrix

2 Y ← 0k,d // Matrix storing output permutations

3 for i← 1 to k/2 do
4 for j ← 1 to i do
5 Xi ← Xi −XjX

T
i ·Xj // Gram-Schmidt process

6 Xi ← Xi

||Xi||
7 Y2i ← argsort(ÛTXi)

8 Y2i+1 ← argsort(ÛT (−Xi))

9 return Y

techniques discussed in Choromanski et al. (2019). Writing v([σ]i−1∪{i})−v([σ]i−1) = gi(σ),
the Shapley value estimate for samples given by Algorithm 3 is

S̄h
orth
i (v) =

1

n

n/k∑

`=1

k∑

j=1

gi(σ`j), (14)

where (σ`1, σ`2, · · · , σ`k) are a set of correlated samples and n is a multiple of k.

Proposition 1 S̄h
orth
i (v) is an unbiased estimator of Shi(v).

Proof The Shapley value Shi(v) is equivalently expressed as an expectation over uniformly
distributed permutations:

Shi(v) =
1

|N |!
∑

σ∈Sd

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]

Shi(v) = Eσ∼U [gi(σ)]

The distribution of permutations drawn as orthogonal samples is clearly symmetric, so
p(σ`,j) = p(σ`,m) for any two indices j,m in a set of k samples, and E[gi(σ`,j)] = E[gi(σ`,m))] =
E[gi(σ

ortho)]. As the estimator (14) is a sum, by the linearity of expectation

E[S̄h
orth
i (v)] =

1

n

n/k∑

`=1

k∑

j=1

E[gi(σ`j)] = E[gi(σ
ortho)].

By Theorem 1, the random variable σortho has a uniform distribution if its associated sample
x ∈ Sd−2 is drawn with uniform distribution. Let x be a component of a random orthogonal
basis. If the random basis is drawn with equal probability from the set of orthogonal
matrices of order d − 1 (i.e. with Haar distribution for the orthogonal group), then it
follows that E[gi(σ

ortho)] = Eσ∼U [gi(σ)]. The Gram-Schmidt process applied to a square
matrix with elements as i.i.d. standard normal random variables yields a random orthogonal
matrix with Haar distribution (Mezzadri (2006)). Therefore

Shi(v) = Eσ∼U [gi(σ)] = Eσ∼U [gi(σ)]

= E[S̄h
orth
i (v)]

17

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

The variance of the estimator (14) can be analysed similarly to the antithetic sampling
of Section 2.4, extended to k correlated random variables. By extension of the antithetic
variance in Equation 4, we have

Var(S̄h
orth
i (v)) =

1

n

n/k∑

`=1

k∑

j,m=1

Cov(g(σ`j), g(σ`m)).

The variance is therefore minimised by selecting k negatively correlated samples. Our
experimental evaluation in Section 5 suggests that, for the domain of interest, orthogonal
samples on the sphere are indeed strongly negatively correlated, and the resulting estimators
are more accurate than standard Monte Carlo and antithetic sampling in all evaluations.

Samples from Algorithm 3 can also be considered as a type of spherical code. Spherical
codes describe configurations of points on the unit sphere maximising the angle between
any two points (see Conway et al. (1987)). A spherical code A(n, φ) gives the maximum
number of points in dimension n with minimum angle φ. The orthonormal basis and its
antipodes trivially yield the optimal code A(d− 1, π2) = 2(d− 1).

From their relative positions on the Cayley graph we obtain bounds on the Kendall
tau kernel Kτ (σ, σ′) from Section 3 for the samples of Algorithm 3. The angle between
vertices of the Cayley graph is related to Kτ (σ, σ′) in that the maximum kernel value of
1 occurs for two permutations at angle 0 and the minimum kernel value of -1 occurs for a
permutation and its reverse, separated by angle π. As the angle between two points (x, x′)
on Sd−2 increases from 0 to π, the kernel Kτ (σ, σ′) for the nearest permutations (σ, σ′)
decreases monotonically and linearly with the angle, aside from quantisation error. If the
angle between two distinct points (x, x′) in our spherical codes is π

2 , we obtain via the map,
Sd−2 → Sd, the permutations (σ, σ′) such that

|Kτ (σ, σ′)| ≤ 1/2 + ε,

with some small constant quantisation error ε. Figure 4 shows k = 6 samples for the d = 4
case. This is made precise in the following result. Note that the statement and its proof are
in terms of σ and σ′ instead of their inverses (which label the vertices of the permutohedron
in our convention), for simplicity; without this change, the meaning is the same, since
ndis(σ, σ

′) = ndis(σ
−1, σ′−1) and A(σ)TA(σ′) = A(σ−1)TA(σ′−1) for any permutations σ,

σ′. First, let ρ =
√
d(d2 − 1)/12, so that the map A(y) = (y−µ)/ρ maps the permutohedron

to an isometric copy of Sd−2 centered at the origin in Rd, the intersection of the unit sphere
Sd−1 with the hyperplane orthogonal to ~n.

Theorem 2 Suppose σ, σ′ ∈ Sd. Then

−2+4

(
1−Kτ (σ, σ′)

2

)3/2

≤ A(σ)TA(σ′)−3Kτ (σ, σ′)+O(d−1) ≤ 2−4

(
1 +Kτ (σ, σ′)

2

)3/2

and, if A(σ)TA(σ′) = o(1), then

|Kτ (σ, σ′)| ≤ 1/2 + o(1).

18

Sampling Permutations for Shapley Value Estimation

Proof of the above can be found in Appendix A. Theorem 2 is a kind of converse to the
so-called Rearrangement Inequality, which states that the maximum dot product between
a vector and a vector consisting of any permutation of its coordinates is maximized when
the permutation is the identity and minimized when it is the reverse identity. Here, we
show what happens in between: as one varies from the identity to its reverse one adjacent
transposition at a time, the dot product smoothly transitions from maximal to minimal, with
some variability across permutations having the same number of inversions. Interestingly,
we do not know if the above bound is the best possible. A quick calculation shows that,
letting k ≈ d2−1/3 be an integer, the permutation

π = (k, k − 1, . . . , 2, 1, k + 1, k + 2, . . . , d− 1, d)

has ν(π) = ITπ = d3(1/4 + o(1)), i.e, A(I)TA(π) ≈ 0. However, π admits d2(2−5/3 + o(1))
inversions, whence Kτ (I, π) ≈ 1− 2−2/3 ≈ 0.37 < 1/2.

Figure 5 shows the distribution of pairs of unique samples taken from random vectors,
versus unique samples from an orthogonal basis, at d = 10. Samples corresponding to
orthogonal vectors are tightly distributed around Kτ (σ, σ′) = 0, and pairs corresponding to
a vector and its antipodes are clustered at Kτ (σ, σ′) = −1. Figure 6 plots the bounds from
Theorem 2 relating the dot product of vectors on Sd−2 to the Kendall tau kernel at d = 15.

4.3 Sobol Sequences on the Sphere

We now describe another approach to sampling permutations via Sd−2, based on standard
quasi-Monte Carlo techniques. Low discrepancy point sets on the unit cube [0, 1)d−2 may
be projected to Sd−2 via area preserving transformations. Such projections are discussed
in depth in Brauchart and Dick (2012); Hardin et al. (2016), where they are observed to
have good properties for numerical integration. Below we define transformations in terms
of the inverse cumulative distribution of the generalised polar coordinate system and use
transformed high-dimensional Sobol sequences to obtain well-distributed permutations.

In the generalised polar coordinate system of Blumenson (1960), a point on Sd−2 is
defined by radius r (here r = 1) and d− 2 angular coordinates (r, ϕ1, ϕ2, · · · , ϕd−2), where
(ϕ1, · · · , ϕd−3) range from [0, π] and ϕd−2 ranges from [0, 2π].

The polar coordinates on the sphere are independent and have probability density func-
tions

f(ϕd−2) =
1

2π
,

and for 1 ≤ j < d− 2:

f(ϕj) =
1

B(d−j−1
2 , 1

2)
sin(d−j−2)(ϕj),

where B is the beta function. The above density function is obtained by normalising the
formula for the surface area element of a hypersphere to integrate to 1 (Blumenson (1960)).
The cumulative distribution function for the polar coordinates is then

Fj(ϕj) =

∫ ϕj

0
fj(u)du.

19

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Figure 3: Voronoi cells for permutations
on the n-sphere have equal measure. Uni-
form samples on the n-sphere mapped to
these cells result in uniform samples of
permutations.

Figure 4: Orthogonal spherical codes:
The permutations associated with each
orthogonal vector on the n-sphere must
be separated by a certain graph distance.

Figure 5: Kernel density estimate of the
Kτ similarity of pairs of unique permu-
tations drawn from orthogonal vectors or
random vectors on the n-sphere. The left-
most peak for orth corresponds to the an-
tipode samples. Orthogonal samples do
not generate similar permutations.

Figure 6: The dot product of two points
on Sd−2 is closely related to the graph
distance Kτ (I, σ) between the associated
permutations.

20

Sampling Permutations for Shapley Value Estimation

Figure 7: Sobol sphere Figure 8: Sobol permutations

As per standard inverse transform sampling, we draw samples x ∈ [0, 1)d−2 uniformly from
the unit cube and project them to polar coordinates uniformly distributed on the sphere
as ϕj = F−1

j (xj). F−1
j can be obtained quickly via a root finding algorithm, such as the

bracketing method described in Press et al. (2007).

The points x ∈ [0, 1]d−2 are generated using the Sobol sequence (Sobol’ (1967)), also
referred to as (t, s)-sequences in base 2. Analogously to our discrepancy for functions of
permutations in Equation 8, derived with the Mallows kernel, Sobol points can be shown
to minimise a discrepancy for the kernel

K(x, x′) =
d∏

i=1

min(1− xj , 1− x′j)

with x, x′ ∈ [0, 1]d, where the discrepancy decreases at the rate O((logn)d

n) (see Dick and
Pillichshammer (2010)). Sobol points are relatively inexpensive to generate compared with
other algorithms discussed in this paper, although explicit convergence rates for discrepancy
on the cube do not translate to Sd−2 or Sd.

Combining Sobol points with inverse transform sampling yields uniformly distributed
points on Sd−2. To map these points to permutations, we project from [0, 1)d−1 to the
hyperplane in Rd containing the permutohedron (such that points are orthogonal to the
normal in Eq. 10) using the matrix Û , and apply argsort to obtain permutations.

Combining all of the above, Algorithm 4 describes the process of generating permutation
samples from a Sobol sequence. Figure 7 shows 200 Sobol points distributed on the surface
of the sphere. As our Sobol sequence and inverse CDF sampling generate points uniformly
distributed on the n-sphere, Theorem 1 applies, and Algorithm 4 samples permutations
from a uniform distribution in an unbiased way. Figure 8 shows the distribution of 1000
permutations sampled with d = 4, which is clearly uniform.

In Section 3, we proposed sampling methods for the Shapley value approximation prob-
lem based on directly optimising discrepancy for the symmetric group. While these meth-
ods have some more explicit guarantees in terms of quadrature error they also suffer from
expensive optimisation processes. The methods discussed in this section, based on the hy-
persphere, have the advantage of being linear-time in the number of samples n. Table 1

21

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Algorithm 4: Sobol Permutations

1 Function PolarToCartesian((r, ϕ1, ϕ2, · · · , ϕd−2)):
Output: ~x

2 for i← 1 to d− 1 do
3 xi ← r
4 for j ← 1 to i− 1 do
5 xi ← xi sinϕj

6 if i < d− 2 then
7 xi ← xi cosϕi

8 return x

9

10 Function SobolPermutations(n, d):
Output: Π

11 for i← 1 to n do
12 x← SobolPoint(i, n, d) // x has d− 2 elements

13 ϕ← ~0
14 for j ← 1 to d− 2 do
15 ϕj ← F−1j (xj) // Inverse CDF transformation

16 y ←PolarToCartesian(1, ϕ) // y has d− 1 elements

17 z ← ÛT y // z has d elements

18 Πi ← argsort(z)

19 return Π

20

Table 1: Complexity in n

Algorithm Complexity

Herding O(n2)
SBQ O(n3)
Orthogonal O(n)
Sobol O(n)

summarises the complexity of the proposed algorithms. In the next section, we evaluate
these algorithms in terms of quadrature error and runtime.

5. Evaluation

We evaluate the performance of permutation sampling strategies on tabular data, image
data, and in terms of data-independent discrepancy scores. Table 2 describes a set of
six tabular datasets. These datasets are chosen to provide a mixture of classification and
regression problems, with varying dimensionality, and a mixture of problem domains. For
this analysis, we avoid high-dimensional problems, such as natural language processing, due
to the difficulty of solving for and interpreting Shapley values in these cases. For the image

22

Sampling Permutations for Shapley Value Estimation

Table 2: Tabular datasets

name rows cols task ref

adult 48842 107 class Kohavi (1996)
breast cancer 699 30 class Mangasarian and Wolberg (1990)
bank 45211 16 class Moro et al. (2014)
cal housing 20640 8 regr Pace and Barry (1997)
make regression 1000 10 regr Pedregosa et al. (2011)
year 515345 90 regr Bertin-Mahieux et al. (2011)

Table 3: Permutation sampling algorithms under evaluation

Sampling algorithm Already proposed for Shapley values Description and references

Monte-Carlo Yes Section 2.3
Monte-Carlo Antithetic Yes Section 2.4
Owen Yes Section 2.5
Owen-Halved Yes Section 2.5
Stratified Yes Section 2.6
Kernel herding No Section 3.1
SBQ No Section 3.2
Orthogonal Spherical Codes No Section 4.2
Sobol Sequences No Section 4.3

evaluation we use samples from the ImageNet 2012 dataset of Russakovsky et al. (2015),
grouping pixels into tiles to reduce the dimensionality of the problem to 256.

Experiments make use of a parameterised Mallows kernel for the kernel herding and SBQ
algorithms, as well as the discrepancy scores reported in Section 5.4. To limit the number of
experiments, we fix the λ parameter for the Mallows kernel at λ = 4 and use 25 samples to
approximate the argmax for the kernel herding and SBQ algorithms. These parameters are
chosen to give reasonable performance in many different scenarios. Experiments showing
the impact of these parameters and justification of this choice can be found in Appendix B.

To examine different types of machine learning models, we include experiments for
gradient boosted decision trees (GBDT), a multilayer perceptron with a single hidden layer,
and a deep convolutional neural network. All of these models are capable of representing
non-linear relationships between features. We avoid simple models containing only linear
relationships because their Shapley value solutions are trivial and can be obtained exactly in
a single permutation sample. For the GBDT models, we are able to compute exact Shapley
values as a reference, and for the other algorithms we use unbiased estimates of the Shapley
values by averaging over many trials. More details are given in the respective subsections.

The sampling algorithms under investigation are listed in Table 3. The Monte-Carlo,
antithetic Monte-Carlo, stratified sampling, Owen sampling, and Owen-halved methods
have been proposed in existing literature for the Shapley value approximation problem.
The kernel herding, SBQ, Orthogonal and Sobol methods are the newly proposed methods
and form the main line of enquiry in this work.

The experimental evaluation proceeds as follows:

23

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

• Section 5.1 first evaluates existing algorithms on tabular data using GBDT models,
reporting exact error scores. MC-Antithetic emerges as the clear winner, so we use
this as a baseline in subsequent experiments against newly proposed algorithms.

• Section 5.2 examines Shapley values for newly proposed sampling algorithms as well
as MC-Antithetic using GBDT models trained on tabular data, and reports exact
error scores.

• Section 5.3 examines Shapley values for newly proposed sampling algorithms as well
as MC-Antithetic using multilayer perceptron models trained on tabular data, and
reports error estimates.

• Section 5.4 reports data-independent discrepancy and execution time for newly pro-
posed sampling algorithms and MC-Antithetic.

• Section 5.5 evaluates Shapley values for newly proposed sampling algorithms and MC-
Antithetic using a deep convolutional neural network trained on image data, reporting
error estimates.

5.1 Existing algorithms - Tabular data and GBDT models

We train GBDT models on the tabular datasets listed in Table 2 using the XGBoost library
of Chen and Guestrin (2016). Models are trained using the entire dataset (no test/train
split) using the default parameters of the XGBoost library (100 boosting iterations, max-
imum depth 6, learning rate 0.3, mean squared error objective for regression, and binary
logistic objective for classification). The exact Shapley values are computed for reference
using the TreeShap Algorithm (Algorithm 3) of Lundberg et al. (2020), a polynomial-time
algorithm specific to decision tree models.

Recall from Section 2.2, to define Shapley values for a machine learning model, features
not present in the active subset must be marginalised out. To compare our results to the
exact Shapley values, we use the same method as Lundberg et al. (2020). A small fixed set
of ‘background instances’ is chosen for each dataset. These form a distribution with which
to marginalise out the effect of features. To calculate Shapley values for a given row (a
‘foreground’ instance), features not part of the active subset are replaced with values from
a background instance. The characteristic function evaluation v(S) is then the mean of a set
of model predictions, where each time, the foreground instance has features not in subset
S replaced by a different background instance. For details, see Lundberg et al. (2020) or
the SHAP software package. For classification models, we examine the log-odds output,
as the polynomial-time exact Shapley Value algorithm only works when model outputs are
additive, and because additive model outputs are consistent with the efficiency property of
Shapley values.

For each dataset/algorithm combination, Shapley values are evaluated for all features
of 10 randomly chosen instances, using a fixed background dataset of 100 instances to
marginalise out features. Shapley values are expensive to compute, and are typically evalu-
ated for a small number of test instances, not the entire dataset. The choice of 10 instances
is a balance between computation time and representing the variation of Shapley values
across the dataset. The approximate Shapley values for the 10 instances form a 10 × d

24

Sampling Permutations for Shapley Value Estimation

matrix, from which we calculate the elementwise mean squared error against the reference
Shapley values. For 10× d matrix Z, the MSE for our approximation Ẑ is defined as

MSE(Z, Ẑ) =
1

10d

10∑

i

d∑

j

(Zi,j − Ẑi,j)2 (15)

As the sampling algorithms are all randomised, we repeat the experiment 25 times (on the
same foreground and background instances) to generate confidence intervals.

The results are shown in Figure 9. Algorithms are evaluated according to number of
evaluations of v(S ∪ i) − v(S), written as ‘marginal evals’ on the x-axis of figures. If the
algorithm samples permutations, the number of marginal evaluations is proportional to nd,
where n is the number of permutations sampled. The stratified sampling method is missing
for the adult and year datasets because it requires at least 2d2 samples, which becomes
intractable for the higher-dimensional datasets. The shaded areas show a 95% confidence
interval for the mean squared error. Of the existing algorithms, MC-antithetic is the most
effective in all experiments. For this reason, in the next sections, we use MC-Antithetic as
the baseline when evaluating the kernel herding, SBQ, orthogonal and Sobol methods.

5.2 Proposed algorithms - Tabular data and GBDT models

Here, we perform experiments using the same methodology in the previous section, exam-
ining the mean squared error of the proposed algorithms kernel herding, SBQ, orthogonal
and Sobol, against MC-antithetic as the baseline. Figure 10 plots the results. For the
lower-dimensional cal housing and make regression datasets, we see good performance for
the herding and SBQ methods. This good performance does not translate to the higher-
dimensional datasets adult and year, where herding and SBQ are outperformed by the
baseline MC-antithetic method. On the problems where herding and SBQ are effective,
SBQ outperforms herding in terms of mean squared error, presumably due to its more ag-
gressive optimisation of the discrepancy. The Sobol method is outperformed by the baseline
MC-antithetic method in four of six cases. The orthogonal method shows similar perfor-
mance to MC-antithetic for a small number of samples, but improves over MC-antithetic as
the number of samples increases in all six problems. This is because the orthogonal method
can be considered an extension of the antithetic sampling scheme — increasing the number
of correlated samples from 2 to 2(d− 1). The orthogonal method also appears preferable to
the Sobol method on this collection of datasets: it loses on two of them (cal housing and
make regression) but the difference in error is very small on these two datasets.

5.3 Proposed algorithms - Tabular data and MLP models

Now, we examine error estimates for the proposed algorithms on tabular data using a
multi-layer perceptron (MLP) model, presenting the results in Figure 11. As for the GBDT
models, we use the entire dataset for training. The model is trained using the scikit-learn
library (Pedregosa et al. (2011)) with default parameters: a single hidden layer of 100
neurons, a relu activation function, and trained with the adam optimiser (Kingma and
Ba (2014)) for 200 iterations with an initial learning rate of 0.001. MSE is optimised for
regression data, and log-loss for classification data.

25

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

(a) adult (b) breast cancer

(c) bank (d) cal housing

(e) make regression (f) year

Figure 9: Existing algorithms - Tabular data, GBDT models

For Shapley value computation, features are marginalised out using background features
in exactly the same way as for GBDT models. As we do not have access to exact Shapley

26

Sampling Permutations for Shapley Value Estimation

(a) adult (b) breast cancer

(c) bank (d) cal housing

(e) make regression (f) year

Figure 10: Proposed algorithms - Tabular data, GBDT models

values, and all sampling algorithms are randomised, we use standard Monte Carlo error

27

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

estimates based on an unbiased sample estimate. The exact Shapley values Z are substituted
with the elementwise mean of the estimates over 25 trials.

For the MLP models, we generally see similar results to the GBDT models: herding and
SBQ converging quickly for the lower dimensional cal housing and make regression datasets,
and the orthogonal method consistently outperforming MC-antithetic across datasets. The
orthogonal method also again appears preferable overall to Sobol sampling. For some
datasets, such as adult, results are more tightly clustered than for the GBDT model. This
could indicate fewer higher-order feature interactions in the single layer MLP model, lead-
ing to lower variance in the Shapley value characteristic function with respect to the input
subsets. In other words, the choice of permutation samples may matter less when strong
features interactions are absent.

5.4 Proposed algorithms - Discrepancy scores

Table 4 shows mean discrepancies over 25 trials for the various permutation sampling al-
gorithms, calculated as per Equation 8 using the Mallows kernel with λ = 4. Runtime
(in seconds) is also reported, where permutation sets are generated using a single thread
of a Xeon E5-2698 CPU. We omit results for SBQ at n = 1000 due to large runtime. At
low dimension, the methods directly optimising discrepancy (herding and SBQ) achieve
significantly lower discrepancies than the other methods. For d = 10, n = 1000, herding
achieves almost a twofold reduction in discrepancy over antithetic sampling, directly cor-
responding to an almost twofold lower error bound under the Koksma-Hlawka inequality.
Antithetic sampling has a higher discrepancy than all other methods here, except in one
case (d = 200, n = 10) where it achieves lower discrepancy than herding and SBQ. In gen-
eral, we see the orthogonal and Sobol methods are the most effective at higher dimensions,
collectively accounting for the lowest discrepancies at d = 200. When n is large, the runtime
of the herding and SBQ methods becomes impractical. Herding takes as long as 242s to
generate n = 1000 permutations at d = 200. The Sobol and Orthogonal methods have
more reasonable runtimes, the longest of which occurs with Sobol at n = 1000, d = 200,
taking 2s. These results show that no single approach is best for all problems but significant
improvements can be made over the baseline MC-antithetic method.

The discrepancies computed above are applicable beyond the particular machine learning
problems discussed in this paper. Table 4 provides a reference for how to select samples of
permutations at a given computational budget and dimension, not just for Shapley value
approximation, but for any bounded function f : Sd → R.

5.5 Proposed algorithms - Image data and deep CNN models

We continue by evaluating the effectiveness of the proposed sampling algorithms for an
image classification interpretability problem. Figure 12 depicts eight images randomly se-
lected from the ImageNet 2012 dataset of Russakovsky et al. (2015). We use approximate
Shapley values to examine the contribution of the different image tiles towards the output
label predicted by a ResNet50 (He et al. (2016)) convolutional neural network. Images are
preprocessed as per He et al. (2016), by cropping to a 1:1 aspect ratio, centering along
the larger axis, resizing to 224x224, and subtracting the mean RGB values of the ImageNet
training set. We examine the highest probability class output for each image. The predicted

28

Sampling Permutations for Shapley Value Estimation

(a) adult (b) breast cancer

(c) bank (d) cal housing

(e) make regression (f) year

Figure 11: Proposed algorithms - Tabular data, MLP models

labels are displayed above each image in Figure 12. Note that labels may be incorrect (e.g.
“vacuum”). To examine the Shapley values for each image, we group pixels into 14x14x3

29

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Table 4: Discrepancy (lower is better) of permutation samples using Mallows kernel λ = 4

.

Discrepancy Time
mean std mean std

d n Algorithm

10

10

Herding 0.241113 0.002430 0.008067 0.001414
MC-antithetic 0.263626 0.009881 0.000096 0.000083
Orthogonal 0.244233 0.002904 0.000788 0.000100
SBQ 0.240285 0.002483 0.111968 0.397417
Sobol 0.258403 0.006546 0.003190 0.005711

100

Herding 0.058985 0.000718 0.979663 0.602856
MC-antithetic 0.083784 0.004493 0.000718 0.001173
Orthogonal 0.070014 0.001722 0.011655 0.028917
SBQ 0.055803 0.000410 41.546244 9.239474
Sobol 0.068875 0.001716 0.047935 0.167501

1000

Herding 0.013353 0.000098 52.961361 4.024325
MC-antithetic 0.026816 0.001522 0.018554 0.039945
Orthogonal 0.021802 0.000622 0.110050 0.239145
SBQ - - - -
Sobol 0.017830 0.000405 0.049177 0.138812

50

10

Herding 0.270276 0.001269 0.022578 0.047269
MC-antithetic 0.272373 0.001582 0.001219 0.003305
Orthogonal 0.269126 0.000275 0.023522 0.045404
SBQ 0.270045 0.001410 0.343958 0.879071
Sobol 0.270824 0.000995 0.009038 0.007187

100

Herding 0.079701 0.000242 1.129456 0.483339
MC-antithetic 0.086087 0.000603 0.000522 0.000333
Orthogonal 0.072479 0.000158 0.054071 0.170046
SBQ 0.079182 0.000163 27.135371 7.967242
Sobol 0.078587 0.000350 0.009147 0.006215

1000

Herding 0.022585 0.000033 85.038503 3.604017
MC-antithetic 0.027253 0.000190 0.048581 0.201433
Orthogonal 0.022904 0.000040 0.351684 1.165377
SBQ - - - -
Sobol 0.022337 0.000108 0.960075 0.712597

200

10

Herding 0.280202 0.000991 0.111566 0.400984
MC-antithetic 0.273105 0.000257 0.000280 0.000425
Orthogonal 0.272387 0.000042 0.196384 0.050607
SBQ 0.280004 0.001052 0.098380 0.184844
Sobol 0.272416 0.000259 0.795164 1.435970

100

Herding 0.083784 0.000119 3.429252 1.765489
MC-antithetic 0.086434 0.000157 0.043272 0.120758
Orthogonal 0.083187 0.000019 0.463764 1.133650
SBQ 0.083656 0.000115 39.163286 10.229544
Sobol 0.083928 0.000075 0.691592 0.778084

1000

Herding 0.025508 0.000018 242.515501 6.934064
MC-antithetic 0.027318 0.000042 0.007029 0.002159
Orthogonal 0.023420 0.000010 0.560501 0.212319
SBQ - - - -
Sobol 0.023411 0.000040 1.995500 0.782391

tiles, considering each tile to be a single feature. This reduces the dimensionality of the
interpretability problem from 224 · 224 · 3 = 150, 528 to a more tractable 256 dimensions.

30

Sampling Permutations for Shapley Value Estimation

Permutation time (s) Other time (s)
mean std mean std

Algorithms

Herding 3.050258 0.431358 40.791352 0.491466
MC 0.000986 0.000444 40.586155 0.537534
MC-antithetic 0.000701 0.000202 40.898156 0.553361
Orthogonal 0.230704 0.012352 40.665781 0.459624
SBQ 6.253297 1.125828 40.479887 0.437312
Sobol 0.050369 0.019457 40.621966 0.546090

Table 5: Time to generate Shapley values for a single image, separated into time to generate
100 permutations, and other (model evaluation and averaging of model evaluations).

When a tile is not part of the active feature set, its pixel values are set to (0,0,0) (black). For
the purpose of computing Shapley values, we examine the log-odds output of the ResNet50
model, as the additivity of these outputs is consistent with the efficiency property of Shapley
values. Sampling algorithms are applied to the Shapley value problem 25 times, each with a
different seed. As computing an exact baseline is intractable, we estimate the mean squared
error in the same manner as Section 5.3. Error estimates are presented as a bar chart in
the third column of Figure 12. The second column displays a heat map of the estimated
Shapley values for the first trial of the sampling algorithm with the lowest error estimate
for the corresponding image. Yellow areas show image tiles that contribute positively to
the predicted label, darker purple areas correspond to areas contributing negatively to the
predicted label. From this analysis, we see that the Sobol method has the lowest error es-
timate in all cases. While the herding, orthogonal and SBQ methods generally show lower
sample variance than plain Monte Carlo, they do not appear to generate significantly better
solutions than the much simpler MC-antithetic method for this problem. This raises the
question of whether the herding and SBQ methods could do better with a better choice of
λ parameter. However, Figure 15 in Appendix B shows that alternative parameter values
do not significantly improve the performance of herding and SBQ for this problem.

Table 5 shows the execution time of permutation generation compared compared to
other computation needed to generate the Shapley values for a single image. This other
computation consists of evaluating ResNet50 and performing weighted averages. Generat-
ing Shapley values for an image using 100 permutation samples and 256 features requires
100 · (256 + 1) = 25700 model evaluations, taking around 40s on an Nvidia V100 GPU. Per-
mutations are generated using a single thread of a Xeon E5-2698 CPU. Of the permutation
sampling algorithms, we see that the linear-time algorithms (MC, MC-antithetic, Orthog-
onal, Sobol) do not significantly affect total runtime, however the runtime of the Herding
and SBQ algorithms is significant relative to the time required for obtaining predictions
from the model.

31

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Figure 12: MSE estimates for 100 permutation samples applied to image classifications
made by ResNet50

32

Sampling Permutations for Shapley Value Estimation

Figure 12 (Cont.): MSE estimates for 100 permutation samples applied to image classifica-
tions made by ResNet50

33

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

6. Conclusion

In this work, we propose new techniques for the approximation of Shapley values in machine
learning applications based on careful selection of samples from the symmetric group Sd.
One set of techniques draws on theory of reproducing kernel Hilbert spaces and the opti-
misation of discrepancies for functions of permutations, and another exploits connections
between permutations and the hypersphere Sd−2. We perform empirical analysis of approxi-
mation error for GBDT and neural network models trained on tabular data and image data.
We also evaluate data-independent discrepancy scores for various sampling algorithms at
different dimensionality and sample sizes. The introduced sampling methods show improved
convergence over existing state-of-the-art methods in many cases. Our results show that
kernel-based methods may be more effective for lower-dimensional problems, and methods
sampling from Sd−2 are more effective for higher-dimensional problems. Further work may
be useful to identify the precise conditions under which optimising discrepancies based on a
Mallows kernel is effective, and to clarify the impact of dimensionality on choice of sampling
algorithm for Shapley value approximation.

References

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million
song dataset. In Proceedings of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), 2011.

LE Blumenson. A derivation of n-dimensional spherical coordinates. The American Math-
ematical Monthly, 67(1):63–66, 1960.

Johann S Brauchart and Josef Dick. Quasi–Monte Carlo rules for numerical integration
over the unit sphere S2. Numerische Mathematik, 121(3):473–502, 2012.

Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shap-
ley value based on sampling. Computers & Operations Research, 36(5):1726–1730,
2009. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2008.04.004. URL https:

//www.sciencedirect.com/science/article/pii/S0305054808000804. Selected pa-
pers presented at the Tenth International Symposium on Locational Decisions (ISOLDE
X).

Javier Castro, Daniel Gómez, Elisenda Molina, and Juan Tejada. Improving polynomial
estimation of the shapley value by stratified random sampling with optimum alloca-
tion. Computers & Operations Research, 82:180–188, 2017. ISSN 0305-0548. doi: https:
//doi.org/10.1016/j.cor.2017.01.019. URL https://www.sciencedirect.com/science/

article/pii/S030505481730028X.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In KDD,
pages 785–794. ACM, 2016.

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. In Pro-
ceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI’10,
page 109–116, Arlington, Virginia, USA, 2010. AUAI Press. ISBN 9780974903965.

34

Sampling Permutations for Shapley Value Estimation

Krzysztof Choromanski, Mark Rowland, Wenyu Chen, and Adrian Weller. Unifying or-
thogonal Monte Carlo methods. In International Conference on Machine Learning, pages
1203–1212. PMLR, 2019.

Shay Cohen, Gideon Dror, and Eytan Ruppin. Feature selection via coalitional game theory.
Neural Computation, 19(7):1939–1961, 2007.

J. H. Conway, N. J. A. Sloane, and E. Bannai. Sphere-Packings, Lattices, and Groups.
Springer-Verlag, Berlin, Heidelberg, 1987. ISBN 038796617X.

Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework
for model explanation. arXiv preprint arXiv:2011.14878, 2020.

Xiaotie Deng and Christos H Papadimitriou. On the complexity of cooperative solution
concepts. Mathematics of operations research, 19(2):257–266, 1994.

Persi Diaconis. Group representations in probability and statistics. Institute of Mathematical
Statistics Lecture Notes—Monograph Series, 11. Institute of Mathematical Statistics,
Hayward, CA, 1988. ISBN 0-940600-14-5. URL http://projecteuclid.org/euclid.

lnms/1215467407.

Josef Dick and Friedrich Pillichshammer. Digital nets and sequences: discrepancy theory
and quasi–Monte Carlo integration. Cambridge University Press, 2010.

G. Th. Guilbaud and P. Rosenstiehl. Analyse algébrique d’un scrutin. Mathématiques et
Sciences humaines, 4:9–33, 1963. URL www.numdam.org/item/MSH_1963__4__9_0/.

Doug P Hardin, TJ Michaels, and Edward B Saff. A comparison of popular point configu-
rations on S2. Dolomites Research Notes on Approximation, 9:16–49, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Fred J. Hickernell. What affects the accuracy of quasi-Monte Carlo quadrature? In Harald
Niederreiter and Jerome Spanier, editors, Monte-Carlo and Quasi-Monte Carlo Methods
1998, pages 16–55, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-
642-59657-5.

Edmund Hlawka. Funktionen von beschränkter variatiou in der theorie der gleichverteilung.
Annali di Matematica Pura ed Applicata, 54(1):325–333, 1961.

Ferenc Huszár and David Duvenaud. Optimally-weighted herding is bayesian quadra-
ture. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial In-
telligence, UAI’12, page 377–386, Arlington, Virginia, USA, 2012. AUAI Press. ISBN
9780974903989.

Yunlong Jiao and Jean-Philippe Vert. The kendall and mallows kernels for permutations.
In Proceedings of the 32nd International Conference on International Conference on Ma-
chine Learning - Volume 37, ICML’15, page 1935–1944. JMLR.org, 2015.

35

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

William R. Knight. A computer method for calculating kendall’s tau with ungrouped data.
Journal of the American Statistical Association, 61(314):436–439, 1966. ISSN 01621459.
URL http://www.jstor.org/stable/2282833.

Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., USA, 1997. ISBN
0201896842.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
KDD, pages 202–207. AAAI Press, 1996.

Maria Lomeli, Mark Rowland, Arthur Gretton, and Zoubin Ghahramani. Antithetic and
Monte Carlo kernel estimators for partial rankings. Statistics and Computing, 29(5):
1127–1147, 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 4765–4774. Curran Associates, Inc., 2017. URL http://papers.nips.cc/

paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala
Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local expla-
nations to global understanding with explainable ai for trees. Nature Machine Intelligence,
2(1):2522–5839, 2020.

Sasan Maleki. Addressing the computational issues of the Shapley value with applications
in the smart grid. PhD thesis, University of Southampton, 2015.

Olvi L Mangasarian and William H Wolberg. Cancer diagnosis via linear programming.
Technical report, University of Wisconsin-Madison Department of Computer Sciences,
1990.

Horia Mania, Aaditya Ramdas, Martin J Wainwright, Michael I Jordan, and Benjamin
Recht. On kernel methods for covariates that are rankings. Electronic Journal of Statis-
tics, 12:2537–2577, 2018.

Irwin Mann and Lloyd S Shapley. Values of large games, IV: Evaluating the electoral college
by Montecarlo techniques. Rand Corporation, 1960.

Francesco Mezzadri. How to generate random matrices from the classical compact groups.
arXiv preprint math-ph/0609050, 2006.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success
of bank telemarketing. Decision Support Systems, 62:22–31, 2014.

36

Sampling Permutations for Shapley Value Estimation

Thomas Muir. On a simple term of a determinant. In Proc. Royal Society Edinburg,
volume 21, pages 441–477, 1898.

Jerzy Neyman. On the two different aspects of the representative method: The method of
stratified sampling and the method of purposive selection. Journal of the Royal Statistical
Society, 97(4):558–625, 1934. ISSN 09528385. URL http://www.jstor.org/stable/

2342192.

Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Society
for Industrial and Applied Mathematics, USA, 1992. ISBN 0898712955.

A. O’Hagan. Bayes–hermite quadrature. Journal of Statistical Planning and Inference, 29
(3):245–260, 1991. ISSN 0378-3758. doi: https://doi.org/10.1016/0378-3758(91)90002-V.
URL https://www.sciencedirect.com/science/article/pii/037837589190002V.

Ramin Okhrati and Aldo Lipani. A multilinear sampling algorithm to estimate shapley
values. In Proc. of ICPR, ICPR, 2020.

Art B Owen. Quasi-Monte Carlo sampling. Monte Carlo Ray Tracing: Siggraph, 1:69–88,
2003.

Guillermo Owen. Multilinear extensions of games. Management Science, 18(5):P64–P79,
1972. ISSN 00251909, 15265501. URL http://www.jstor.org/stable/2661445.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability
Letters, 33(3):291–297, 1997.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

S. M. Plis, T. Lane, and V. D. Calhoun. Permutations as angular data: Efficient inference in
factorial spaces. In 2010 IEEE International Conference on Data Mining, pages 403–410,
2010. doi: 10.1109/ICDM.2010.122.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numer-
ical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press,
USA, 3 edition, 2007. ISBN 0521880688.

Carl Edward Rasmussen and Zoubin Ghahramani. Bayesian Monte Carlo. Advances in
neural information processing systems, pages 505–512, 2003.

Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method, vol-
ume 10. John Wiley & Sons, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of computer vision, 115(3):211–
252, 2015.

37

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. Equiv-
alence of distance-based and rkhs-based statistics in hypothesis testing. The Annals of
Statistics, pages 2263–2291, 2013.

Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):
307–317, 1953.

Il’ya Meerovich Sobol’. On the distribution of points in a cube and the approximate eval-
uation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):
784–802, 1967.

Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifications
using game theory. J. Mach. Learn. Res., 11:1–18, March 2010. ISSN 1532-4435.

G. L. Thompson. Generalized permutation polytopes and exploratory graphical methods
for ranked data. The Annals of Statistics, 21(3):1401–1430, 1993. ISSN 00905364. URL
http://www.jstor.org/stable/2242202.

Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual pre-
dictions with feature contributions. Knowl. Inf. Syst., 41(3):647–665, December 2014.
ISSN 0219-1377. doi: 10.1007/s10115-013-0679-x. URL https://doi.org/10.1007/

s10115-013-0679-x.

Appendix A. Proof of Theorem 2 (See page 18)

Theorem 2 Suppose σ, σ′ ∈ Sd. Then

−2+4

(
1−Kτ (σ, σ′)

2

)3/2

≤ A(σ)TA(σ′)−3Kτ (σ, σ′)+O(d−1) ≤ 2−4

(
1 +Kτ (σ, σ′)

2

)3/2

and, if A(σ)TA(σ′) = o(1), then

|Kτ (σ, σ′)| ≤ 1/2 + o(1).

Proof For 1 ≤ a ≤ d−1, write ta ∈ Sd for the adjacent transposition of a and a+1, i.e., the
permutation so that ta(j) = j for j 6= a, a+ 1, ta(a) = a+ 1 and ta(a+ 1) = a. We interpret
a product of permutations to be their composition as functions. For a permutation π ∈ Sd,
write ν(π) for the quantity

∑d
j=1 jπ(j), and note that ν(I) =

∑d
j=1 j

2 = d(d+1)(2d+1)/6.
It is well-known that the number of inversions ndis(I, π) = |{(i, j) : i < j and π(i) >

π(j)}| in a permutation π equals the least k so that there exist a1, . . . , ak with

π =
k∏

i=1

tai . (16)

This quantity k is known as the “length” of π and is exactly the distance in the 1-skeleton
of the permutohedron representation of Sd. Furthermore, the ai can be obtained via bubble
sort, i.e., the product (16) begins with

tπ(1)−1tπ(1)−2 · · · t1

38

Sampling Permutations for Shapley Value Estimation

and proceeds recursively on π|{2,...,d}. Write πj for the product of the first j terms in (16)

for 1 ≤ j ≤ k, i.e., πj =
∏j
i=1 tai , with π0 = I. Then the pairs ej = {πj(aj), πj(aj + 1)}

are all distinct, because entries of π in one-line notation switch places at most once when
applying the adjacent transpositions, i.e., a larger value a, once it switches places with a
smaller value b immediately to its left, never switches place with b again. Furthermore, note
that

ν(πj+1)− ν(πj) = (jπj+1(aj) + (j + 1)πj+1(aj + 1))− (jπj(aj) + (j + 1)πj(aj + 1))

= (jπj(aj + 1) + (j + 1)πj(aj))− (jπj(aj) + (j + 1)πj(aj + 1))

= πj(aj + 1)− πj(aj),

a quantity which is always negative because the sequence of transpositions obtained above
only ever increases the number of inversions. Therefore, the collection {ej}kj=1 consists of k
distinct edges of a complete graph on {1, . . . , d} and

ν(π) = ν(πk) = ν(πk)− ν(I) +
d(d+ 1)(2d+ 1)

6

=
d(d+ 1)(2d+ 1)

6
+

k∑

j=1

πj(aj + 1)− πj(aj)

=
d(d+ 1)(2d+ 1)

6
−

k∑

j=1

wt(ej)

where wt({a, b}) = |b− a|. By greedily selecting the highest-weight or lowest-weight edges
of the complete graph Kd weighted by wt(·), the quantity

∑k
j=1 wt(ej) is always at least

1 · (d− 1) + 2 · (d− 2) + · · ·+ (d−m) ·m =
(d+ 2m− 1)(d−m+ 1)(d−m)

6

where m is the smallest integer so that
∑d−m

j=1 (d− j) = (d+m− 1)(d−m)/2 ≤ k, because
the summands correspond to d− 1 edges of weight 1, d− 2 edges of weight 2, and so on up
to m edges of weight d−m. Similarly,

∑k
j=1 wt(ej) is at most

(d− 1) · 1 + (d− 2) · 2 + · · ·+M · (d−M) =
(d+ 2M − 1)(d−M + 1)(d−M)

6

where M is the largest integer so that
∑d−M

j=1 j = (d−M)(d−M + 1)/2 ≥ k, since in this
case we bound the total edge weight via 1 edge of weight d− 1, 2 edges of weight d− 2, and
so on up to d−M edges of weight M . Then, letting α = k/

(
d
2

)
(so that α ∈ [0, 1]),

m =

⌊√
4d2 − 4d− 8k + 1 + 1

2

⌋
= d
√

1− α± 1

M =

⌈
2d−

√
8k + 1 + 1

2

⌉
= d(1−√α)± 1

39

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

It is straightforward to verify that, if f(s) = (d+ 2s− 1)(d− s+ 1)(d− s)/6, then s = O(d)
implies f(s± 1) = f(s) +O(d2). So, letting α = k/

(
d
2

)
(so that α ∈ [0, 1])

ν(π) ≤ d(d+ 1)(2d+ 1)

6
− f(M)

=
d(d+ 1)(2d+ 1)

6
− f(d

√
1− α) +O(d2)

=
d3

3
− d3(1 + 2

√
1− α)(1−

√
1− α)2

6
+O(d2)

= d3

(
2

3
− α

2
− (1− α)3/2

3

)
+O(d2)

and

ν(π) ≥ d(d+ 1)(2d+ 1)

6
− f(m)

=
d3

3
− f(d(1−√α)) +O(d2)

=
d3

3
− d3(1 + 2(1−√α))(1− (1−√α))2

6
+O(d2)

= d3

(
1

3
− α

2
+
α3/2

3

)
+O(d2).

(Note that the functions in parentheses meet for α = 0, 1.) Thus, applying the fact that
ν(σ′ ◦ σ−1) = IT (σ′ ◦ σ−1) = σTσ′, where we regard permutations both as functions π of
{1, . . . , d} and as vectors (π(1), . . . , π(d)),

2 + 2α3/2 ≤ 6σTσ′

d3
+O(d−1) + 3α ≤ 4− 2(1− α)3/2

Then, since

Kτ (σ, σ′) = 1− 2ndis(I, σ
′σ−1)(

d
2

) = 1− 2α

we have

1

4
+

(
1−Kτ (σ, σ′)

2

)3/2

≤ 3σTσ′

d3
+O(d−1)− 3Kτ (σ, σ′)

4
≤ 5

4
−
(

1 +Kτ (σ, σ′)
2

)3/2

.

Writing σ = ρx+ µ and σ′ = ρx′ + µ yields the first claim of the result, since then

σTσ′ =
d(d2 − 1)

12
A(σ)TA(σ′) +

d(d+ 1)2

4
.

For the second claim, note that, if σTσ′ = d3(1/4 + o(1)) (the expected value for random
permutations, corresponding to A(σ)TA(σ′) ≈ 0),

−2 + 4

(
1−Kτ (σ, σ′)

2

)3/2

≤ −3Kτ (σ, σ′) +O(d−1) ≤ 2− 4

(
1 +Kτ (σ, σ′)

2

)3/2

,

40

Sampling Permutations for Shapley Value Estimation

i.e.,
|Kτ (σ, σ′)| ≤ 1/2 + o(1).

Appendix B. Selection of parameters for the Mallows kernel

The experimental analysis of Section 5 requires the selection of a Mallows kernel λ parameter
for the kernel herding and SBQ algorithms, and for the calculation of discrepancies reported
in Table 4. As a matter of practicality, we limit the comparisons to a single version of the
Mallows kernel due to space constraints. In theory, this parameter could be tuned and the
optimal performance reported for each dataset, however, we consider this an unfair reflection
of the algorithms performance, as the total number of samples, including the tuning phase,
would be considerably higher than for the other algorithms. For kernel-based methods to be
effective in practice they should not require extensive parameter tuning. Therefore, we fix
λ = 4, choosing this as an acceptable value based on experiments on different data sources
presented below.

Figures 13, 14, and 15 show the error of the kernel herding algorithm using 100 permu-
tation samples and various λ values. As usual, the shaded areas represent 95% confidence
intervals. We perform these experiments for tabular datasets with GBDT models, tabular
datasets with MLP models, and image data with a ResNet50 model, corresponding to the
experiments of Section 5. For some dataset/model combinations a smaller λ value appears
to be preferable, for others a larger value is preferable. In the case of image data, the impact
of the parameter is small in terms of total MSE, and for tabular data, it is difficult to assign
any particular trend due to the volatility of the results. In summary, we compromise with
a selection of λ = 4, which appears to perform acceptably in a wide range of cases.

It is also necessary to choose the number of argmax samples for the herding and SBQ
algorithms. Recall from Section 3.1 that we approximate the argmax in herding and SBQ,
choosing a new permutation sample by selecting a set of uniform random permutations and
selecting one to minimise the discrepancy. Figure 16 shows the effect of varying the number
of argmax samples on mean squared error for tabular datasets and GBDT models. We
find that 5 to 10 samples is too low for optimal performance, but there is little difference
between 25 and 50 samples, so choose 25 samples as a compromise for good accuracy and
reasonable runtime.

Given the parameters for the Mallows kernel above, we can also compare it to the
Spearman and Kendall tau kernels introduced in Section 3 using the herding algorithm.
Figure 17 compares the performance of these kernels on tabular data with GBDT models.
The Mallows kernel is applied with λ = 4, and all kernels are using 25 argmax samples. The
Spearman kernel is clearly outperformed by both other kernels. The Kendall Tau kernel is
effective for 4 out of 6 datasets, but lags behind for make regression and cal housing. The
Mallows kernel is either the most effective, or within a 95% confidence interval of the most
effective kernel for all datasets. For this reason, as well as its universal property, we use the
Mallows kernel exclusively in the experiments of Section 5.

41

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

(a) adult (b) breast cancer

(c) bank (d) cal housing

(e) make regression (f) year

Figure 13: Varying λ for 100 herding samples - Tabular data and GBDT models

42

Sampling Permutations for Shapley Value Estimation

(a) adult (b) breast cancer

(c) bank (d) cal housing

(e) make regression (f) year

Figure 14: Varying λ for 100 herding samples - Tabular data and MLP models

43

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

Figure 15: Varying λ for 100 herding samples - Image data and ResNet50 model

44

Sampling Permutations for Shapley Value Estimation

(a) adult (b) breast cancer

(c) bank (d) cal housing

(e) make regression (f) year

Figure 16: Varying argmax samples for herding algorithm (λ = 4) - Tabular datasets and
GBDT models.

45

Rory Mitchell, Joshua Cooper, Eibe Frank and Geoffrey Holmes

(a) adult (b) breast cancer

(c) bank (d) cal housing

(e) make regression (f) year

Figure 17: Comparing permutation kernels for kernel herding using tabular data and GBDT
models.

46

Chapter 6

Bandwidth-Optimal Random

Shuffling for GPUs

Bandwidth-Optimal Random Shuffling for GPUs

RORY MITCHELL∗, Nvidia, USA and Waikato University, New Zealand

DANIEL STOKES∗,Waikato University, New Zealand and Nyriad Ltd., New Zealand

EIBE FRANK and GEOFFREY HOLMES,Waikato University, New Zealand

Linear-time algorithms that are traditionally used to shuffle data on CPUs, such as the method of Fisher-Yates, are not well suited
to implementation on GPUs due to inherent sequential dependencies, and existing parallel shuffling algorithms are unsuitable for
GPU architectures because they incur a large number of read/write operations to high latency global memory. To address this, we
provide a method of generating pseudo-random permutations in parallel by fusing suitable pseudo-random bijective functions with
stream compaction operations. Our algorithm, termed ‘bijective shuffle’ trades increased per-thread arithmetic operations for reduced
global memory transactions. It is work-efficient, deterministic, and only requires a single global memory read and write per shuffle
input, thus maximising use of global memory bandwidth. To empirically demonstrate the correctness of the algorithm, we develop a
statistical test for the quality of pseudo-random permutations based on kernel space embeddings. Experimental results show that the
bijective shuffle algorithm outperforms competing algorithms on GPUs, showing improvements of between one and two orders of
magnitude and approaching peak device bandwidth.

CCS Concepts: • Computing methodologies→ Massively parallel algorithms.

Additional Key Words and Phrases: shuffling, GPU

ACM Reference Format:
Rory Mitchell, Daniel Stokes, Eibe Frank, and Geoffrey Holmes. 2018. Bandwidth-Optimal Random Shuffling for GPUs. 1, 1 (Octo-
ber 2018), 21 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Shuffling is a fundamental computer science problem, the objective of which is to rearrange a set of input elements into
some pseudo-random order. The classical method of Fisher-Yates [19] (popularised by Knuth in [34]) randomly removes
elements from an input buffer, one at a time, appending them to the output buffer. This algorithm runs optimally in𝑂 (𝑛)
time, outputs uniformly distributed permutations, has a simple in-place variant, and is straightforward to implement.
As such, sequential shuffling has long been considered a solved problem. However, modern computing hardware such
as GPUs offer massively parallel computation that cannot be effectively exploited by the standard sequential shuffling
approach due to dependencies inherent in Fisher-Yates type algorithms. The work presented in this paper was motivated
by a gap in GPU-oriented parallel primitive libraries, such as Thrust [6], Cub [41], and Boost.Compute [62], which aim
∗Both authors contributed equally to this research.

Authors’ addresses: Rory Mitchell, ramitchellnz@gmail.com, Nvidia, 2788 San Tomas Expressway, Santa Clara, CA, USA, 95051 and Waikato University,
Hillcrest Road, Hamilton, New Zealand, 3240; Daniel Stokes, Waikato University, Hillcrest Road, Hamilton, New Zealand, 3240 and Nyriad Ltd., New
Zealand; Eibe Frank; Geoffrey Holmes, Waikato University, Hillcrest Road, Hamilton, New Zealand, 3240.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Mitchell and Stokes, et al.

to implement the C++ standard library in equivalent form for GPUs, that prior to the method presented in this paper all
lacked shuffling algorithms. The primary contributions of this paper are:

• ‘Bijective shuffle’: A new shuffling algorithm, carefully optimised for GPUs.
• A novel statistical test for shuffling algorithms, based on kernel space embeddings.

Some applications motivating this work are: permutation Monte Carlo tests [21], bootstrap sampling [45], approxima-
tion of Shapley values for feature attribution [44], differentially private variational inference [50], and shuffle operators
in GPU accelerated dataframe libraries [63]. More generally, whenever shuffling forms part of a high-performance
GPU-based algorithm, performance is lost when data is copied back to the host system, shuffled using the CPU, and
copied back to the GPU. Host-to-device copies are limited by PCIE bandwidth, which is typically an order of magnitude
or more smaller than available device bandwidth [16].

Informally, an ideal parallel algorithm would be capable of assigning elements of the input sequence randomly
to unique output locations without contention, communicate minimally between processors, evenly distribute work
between processors, use minimal working space, and have deterministic run-time. To achieve this goal, we utilise pseudo-
random bijective functions, defining mappings between permutations. These bijective functions allow independent
processors to write permuted elements to an output buffer, in parallel, without collision. Critically, we allow bijective
functions defining permutations of larger sets to be applied to smaller shuffling inputs via a parallel compaction
operation that preserves the pseudo-random property. The result is an 𝑂 (𝑛) work algorithm for generating uniformly
random permutations. We perform thorough experiments to validate the empirical performance and correctness of
our algorithm. To this end, we also develop a novel test on distributions of permutations via unique kernel space
embeddings.

We begin in Section 2 by introducing notation, summarising existing parallel shuffling algorithms, and describing
GPUs. Section 3 introduces the idea of bijective functions, explaining their connection to shuffling and proposing two
candidate bijective functions. Section 4 explains how compaction operations can be combined with bijective functions
to generate bijections for arbitrary length sequences, forming the ‘bijective shuffle’ algorithm. Section 5 describes a
statistical test comparing the kernel space embedding of a shuffling algorithm’s output with its expected value. This
test is used to evaluate the quality of the proposed shuffling algorithms and to select parameters. Finally, in Section 6,
we evaluate the runtime and throughput of the proposed GPU shuffling algorithm.

2 BACKGROUND

Before discussing existing work, we briefly describe some notation. The order of elements in the shuffled version of an
input sequence can be defined as a permutation. We refer to the symmetric group of permutations of 𝑛 elements as
𝔖𝑛 . The permutation 𝜎 ∈ 𝔖𝑛 assigns rank 𝑗 to element 𝑖 by 𝜎 (𝑖) = 𝑗 . For example, given the permutation written in
one-line notation:

𝜎 =
(
0 3 1 2

)
and the list of items

(𝑥0, 𝑥1, 𝑥2, 𝑥3)
the items are reordered such that 𝑥𝑖 occupies the 𝜎 (𝑖) coordinate

(𝑥0, 𝑥2, 𝑥3, 𝑥1).
Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 3

Note that we are using non-traditional zero-based indexing of permutations for notational convenience: this simplifies
description of the functions used for our shuffling approach later in this paper.

The product of permutations 𝜎𝜏 refers to the composition operator, where the element 𝑖 is assigned rank 𝜎 (𝜏 (𝑖)) = 𝑗 .
Shuffling is a reordering of the elements of an array of length 𝑛 by a random permutation on the finite symmetric

group, 𝜎 ∈ 𝔖𝑛 , such that each possible reordering is equally likely, i.e., 𝑝 (𝜎) = 1
𝑛! ,∀𝜎 ∈ 𝔖𝑛 .

2.1 Existing Work on Parallel Shuffling

We analyse the computational complexity of shuffling algorithms in terms of the work-time framework [31], where an
algorithm is described in terms of a number of rounds, where 𝑝 processors perform operations in parallel. GPUs are
assumed to be data parallel processors such that there is an independent processor for each data element. Algorithms
are evaluated based on the notion of work complexity, or the total number of operations performed on all processors.
As the Fisher-Yates shuffle runs in optimal 𝑂 (𝑛) work on a single processor, a parallel algorithm is said to be work
efficient if it achieves 𝑂 (𝑛) work complexity.

A parallel divide-and-conquer shuffling algorithm is independently proposed by Rao [53] and Sandelius [57] (we
refer to this algorithm as RS). The input is recursively divided into subarrays by selecting a random number 0 · · ·𝑘 − 1
until each subarray contains one element. The final permutation is obtained via an in-order traversal of all subarrays.
Bacher et al. [4] provide a variant of this algorithm named MergeShuffle, taking a bottom-up approach where the input
is partitioned into 𝑘 subarrays that are randomly merged with their neighbours until the entire array is shuffled. The
parallel work complexity of these recursive divide-and-conquer approaches is 𝑂 (𝑛 log(𝑛)). The RS and MergeShuffle

algorithms have strong parallels to integer sorting algorithms. In particular, RS is equivalent to a most significant
digit (MSD) radix sort [5] on a sequence, where each element in the sequence is an infinite length random bit stream.
Likewise, MergeShuffle has strong parallels to merge sort, differing in the definition of the merge operator for each pass.
We provide experiments in Section 6 for divide-and-conquer style shuffling algorithms using GPU sorting.

Anderson [2] proves that each of the swaps in the Fisher-Yates algorithm can be reordered without biasing the
generated permutation, assuming parallel processors implement an atomic swap operation and that atomic swaps are
serialised fairly. Note that current GPU architectures do not serialise atomic swaps fairly, as no assumptions can be
made as to the ordering of operations [47], so such an approach would be unsuitable for GPUs. Shun et al. [60] take a
similar approach, proving that the Fisher-Yates algorithm has an execution dependence graph with a depth of𝑂 (log(𝑛))
with high probability, allowing parallel execution of the swaps, while generating the same output as the sequential
approach.

The literature also has divide-and-conquer shuffling algorithms that focus on distributed environments. Sanders [58]
describes an algorithm for external memory and distributed environments where each item is allocated to a separate
processor and permuted locally. A prefix sum is then used to place each element in the final output buffer. Langr et
al. [35] provide a concrete extension of Sander’s algorithm for use with the MPI library. Gustedt [25] also expands on
this approach, describing a method of constructing a random communication matrix that ensures work is distributed
fairly between all processors.

Reif [54] describes an algorithm that assigns each element a random integer key between 1 and 𝑝 , where 𝑝 represents
the number of processors. Elements are then assigned to processors by a sorting operation, where they are shuffled by
the sequential Fisher-Yates method. The work complexity of the integer sort can be achieved in 𝑂 (log(𝑛)) time using
𝑛/log(𝑛) processors using the sort algorithm described by Reif [54]. A limitation of this approach is non-deterministic

Manuscript submitted to ACM

4 Mitchell and Stokes, et al.

load balancing. One processor may receive significantly more work than others, limiting the algorithm to the speed of
the slowest processor.

Alonso and Schott [1] define a custom representation with an associated total ordering that can be ‘sorted’ using
a variant of merge-sort to produce a random permutation, falling into the class of divide-and-conquer algorithms.
Their method forms a bijection between a so-called ‘lower-exceeding sequence’ of length n and a permutation of n
elements. It can be shown that there are exactly n! such sequences of length n. Given a uniformly selected random
lower-exceeding sequence, the algorithm outputs the corresponding random permutation.

Czumaj et al. [14] make use of network simulation to define a shuffling algorithm. Their work describes two methods
for randomly generating a network mapping input elements to a random output location. The first constructs a network
representing a random Fisher-Yates shuffle. The network is processed to produce 𝑛 distinct keys. After sorting these
keys, elements are efficiently mapped to output locations. All pre/post-processing steps require 𝑂 (log(𝑛)) time using
𝑛/log(𝑛) processors in linear space. The second method proposed by Czumaj et al. [14], composes n-way ‘splitters’ to
construct a network randomly permuting the input array. Each splitter randomly divides the input into two equal sized
groups. For each splitter, the first group is ordered before the second in the final output. Each group is recursively split
until the size of each group is one. At this stage, the network defines a random permutation, and is traversed to find
the output position of each element. The algorithm runs in 𝑂 (𝑐 log log(𝑛)) time using 𝑛1+1/𝑐 log log(𝑛) processors, for
an arbitrary positive constant 𝑐 . Granboulan and Pornin [22] use this method to generate a bijective function over an
arbitrary input domain using 𝑂 (log(𝑛)) space and 𝑂 (log(𝑛)) time, but find the cost of the hyper-geometric random
number generator used to construct splitters prohibitive.

‘Dart-throwing’ algorithms place input items randomly in an array of size 𝑂 (𝑛) until each item is placed in a unique
location. A compaction operation is applied to place items in a dense output array. When a placement collides with
an occupied space, the process is retried until the element is placed successfully. Reif and Miller [43] and later Reif
and Rajasekaran [52] describe a simple method in which a parallel prefix sum is used to perform the compaction.
Matias and Vishkin [39] describe a method using the canonical cycle representation to perform the compaction step,
and Hagerup [26] provides an alternative method for computing the min prefixes used when generating the cycle
representation. Dart-throwing approaches achieve parallel work complexity of 𝑂 (𝑛) in expectation, however, non-
determinism makes them unsuitable for many practical applications. In our work, we similarly utilise prefix sum to
perform compaction, but show how to obtain permutations in a completely deterministic way, using pseudo-random
bijective functions in place of dart-throwing.

Cong and Bader [13] compare four divide-and-conquer, integer sorting, and dart-throwing algorithms and evaluate
their performance relative to a sequential Fisher-Yates shuffle on up to 12 processors. They find that the sorting based
approach is substantially worse than the other approaches, with Anderson’s [2] approach tending to perform the best.

Closest to our work is the linear congruential generator (LCG) based approach of Andrés and Pérez [3], where
permutations are generated by an LCG of full period. This approach is limited by the need to find viable LCG parame-
terisations for arbitrary length inputs, where the subset of available parameters is dramatically smaller than the space
of permutations. In this paper we describe how any bijective function can be applied to the process of generating
random permutations; in particular, we look at a more flexible use of LCGs and the use of n-bit block ciphers with much
stronger pseudo-random properties.

The above algorithms all suffer from one or more drawbacks with respect to an ideal GPU implementation. The divide-
and-conquer approaches have sub-optimal𝑂 (𝑛 log𝑛) work complexity. The Rao-Sandelius [53] additionally suffers from
load balancing issues, where the partitions generated by the divide-and-conquer process can be unevenly sized. The
Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 5

parallel Fisher-Yates algorithm of [2] is non-deterministic and relies on fairly serialised atomics for correctness (GPU
atomics are not fairly serialised). The network simulation algorithm of [14] has a complicated implementation difficult to
adapt to GPUs. Dart-throwing algorithms are non-deterministic both in terms of shuffle output and runtime. The simple
LCG approach of [3] offers no solution for arbitrary length sequences and suffers from poor quality pseudorandom
outputs. In subsequent sections, we develop a new approach addressing these issues.

2.2 Graphics Processing Units

GPUs are massively parallel processors optimised for throughput, in contrast to conventional CPUs, which optimise
for latency. GPUs in use today consist of processing units with single-instruction, multiple-thread (SIMT) lanes that
efficiently execute instructions for groups of threads operating in lockstep. In the CUDA programming model, execution
units called “streaming multiprocessors” (SMs), have 32 SIMT lanes. The corresponding group of 32 threads is called a
“warp”. Warps are generally executed on SMs without order guarantees, enabling latency of global memory loads to be
hidden by switching between warps [47].

Large speed-ups in the domain of GPU computing commonly occur when problems are expressed as a balanced set
of vector operations with minimal control flow, and coalesced memory access patterns. Notable examples are matrix
multiplication [10, 17, 27], image processing [9, 46], deep neural networks [11, 12, 48], and sorting [23, 59].

Implementation of shuffling algorithms poses a particular challenge for GPUs. The SIMD architecture favours a
data-parallel approach, where work is evenly distributed among threads belonging to an execution unit — if any one
thread is slow to complete, the entire execution unit is stalled. This rules out approaches from Section 2.1 with uneven
work distribution per processor. Dart-throwing algorithms may be implemented for GPUs, using atomic compare
and swap operators available in CUDA, although collisions for atomic compare and swap operations imply global
synchronisation and are extremely costly. Of the existing approaches, sort-based approaches appear the most promising,
given the availability of state-of-the-art GPU sorting. Highly optimised algorithms exist for both merge-sort and LSB
radix sort via the Thrust [6] library. As mentioned in Section 2.1, the problem of shuffling can be expressed as a sort over
a list whose elements are infinite length random bit strings. In fact, the keys do not need to be infinite, only long enough
to break any ties in comparisons between elements. One baseline GPU algorithm we consider is to generate random
integer sort keys of machine word length (assumed to be 64 bits) and perform a key-value sort. GPU sorting algorithms
such as merge-sort and LSB radix sort perform several passes (𝑂 (log𝑛) for merge-sort and 𝑂 (𝑘) for radix sort, with 𝑘
proportional to the sort key size in bits) scattering elements in memory. These scatter passes are particularly expensive
for random keys, as memory writes cannot be coalesced together efficiently, and represent the largest performance
bottleneck for this shuffling algorithm.

While the above algorithms are candidates for implementation on GPUs, we may improve shuffle throughput and
device utilisation significantly by devising a new algorithm tailored to the architecture. As the shuffle operation must at
minimum reorder elements using a gather or scatter operation, we posit that the maximum bandwidth of any random
shuffle algorithm implemented for GPUs is that of a random gather or scatter. Figure 1 demonstrates a parallel random
gather operation, where threads read from noncontiguous memory locations in the input buffer and write to contiguous
memory locations in the output buffer. A scatter operation is the inverse, where threads read from contiguous memory
locations and write to noncontiguous memory locations. Scatter/gather operations for GPUs are discussed in detail in
[29]. As our experiments show that gather operations have a higher bandwidth than scatter operations, we focus on the
former.

Manuscript submitted to ACM

6 Mitchell and Stokes, et al.

Fig. 1. Parallel random gather — Threads read from non-contiguous memory locations and write to contiguous memory locations.

Having established an upper bound on GPU bandwidth, we develop an optimised shuffling algorithm operating in a
single gather pass, to approach the theoretical peak performance of the device.

3 SHUFFLINGWITH BIJECTIVE FUNCTIONS

Our proposed approach is based on applying bijective functions. The symmetric group𝔖𝑛 , defined over any set of 𝑛
distinct items, contains all bijections of the set onto itself, or all distinct permutations of 𝑛 elements. A bijection is a
one-to-one map between the elements of two sets, where each element from the first set is uniquely paired with an
element from the second set. A bijection between two sets 𝑋,𝑌 with |𝑋 |, |𝑌 | = 𝑛 is characterised by some function
𝑓𝑛 : 𝑋 → 𝑌 . The bijective function 𝑓𝑛 admits a corresponding inverse 𝑓 −1𝑛 : 𝑌 → 𝑋 , which is also a bijection. For
any two such functions (𝑓𝑛, 𝑔𝑛), their composition 𝑓𝑛 ◦ 𝑔𝑛 is also a bijection. As we are dealing with bijections from
the symmetric group𝔖𝑛 , we define functions of the form 𝑓𝑛 : 𝑋 → 𝑋 . Without loss of generality, consider the set of
nonnegative integers 𝑋 = {0, 1, · · · , 𝑛 − 1}. An example of a bijection 𝜎 ∈ 𝔖4 is

𝑓4 (0) = 2

𝑓4 (1) = 3

𝑓4 (2) = 1

𝑓4 (3) = 0

If each of the 𝑛 functions can be executed on a processor 𝑝𝑖 , independently of any other processor, without commu-
nication and in reasonable time, then this defines a simple parallel algorithm for reordering elements. If 𝑓𝑛 furthermore
exhibit suitable pseudo-random properties such that 𝑝 (𝜎) = 1

𝑛! ,∀𝜎 ∈ 𝔖𝑛 (or close enough for practical application),
then we have an effective parallel shuffling algorithm. We now discuss potential candidate bijective functions.

3.1 Linear Congruential

A first candidate is based on the common linear congruential random number generator (LCG). Given constants 𝑎, 𝑐,
and 𝑛, the LCG outputs

𝑦 = (𝑎𝑥) + 𝑐 mod 𝑛 (1)
Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 7

Fig. 2. Feistel Network construction — Successive rounds of the function 𝐹 are applied to the input, each time with a unique key.

If 𝑎 and 𝑛 are co-prime, it is well-known that the input 𝑥 ∈ 0, 1, · · · , 𝑛 − 1 maps to a unique output location in the
integer ring Z/𝑛Z. Therefore, Equation 1 defines a bijective function and may be used to create permutations over
inputs of length 𝑛. For now, assume 𝑛 is fixed at the length of the input sequence. To find a bijection for a fixed 𝑛,
the task reduces to finding some 𝑎 co-prime to 𝑛 (𝑐 is unrestricted). Finding 𝑎 is trivial if 𝑛 has certain properties, for
example, any 𝑎 < 𝑛 where 𝑛 is prime, or odd 𝑎 < 𝑛 where 𝑛 is a power of two. We will later show how to modify the
length of the input sequence such that co-prime 𝑎 is always easily available.

The method described above is simple to implement and computationally inexpensive; however, linear congruential
generators are known to have weaknesses as random number generators [51]. For our use case in particular, assuming
some 𝑛 fixed relative to input length and varying 𝑎 and 𝑐 from the above, we can achieve at most 𝑛2 unique permutations
— significantly less than the 𝑛! possible permutations. Hence, permutations generated by this method may be appropriate
for basic applications, but a more robust permutation generator is desirable.

3.2 Feistel Network

A second candidate bijective function is a block cipher construction known as a Feistel network [18]. A cryptographic
block cipher, accepting an encryption key and a 𝑏-bit plain-text block, provides a bijective mapping to a 𝑏-bit cipher-text
block. A perfect block cipher outputs cipher-text computationally indistinguishable from a random bit string, when
the key is unknown. Thus, for a random choice of key, the output should be computationally indistinguishable from a
random permutation. The Feistel network construction is a core component of many modern encryption algorithms,
such as the Data Encryption Standard (DES) and so represents a significant improvement over the LCG in terms of the
quality of its pseudo-random outputs [7].

The construction for a 𝑏-bit Feistel network consists of multiple applications of a round function as shown in Figure 2.
In round 𝑖 , the input is split into a ⌊𝑏/2⌋-bit binary string 𝐿, representing the left half of the input block and a ⌈𝑏/2⌉-bit
binary string 𝑅 representing the right half of the input block. A round function 𝐹 is applied to 𝑅 and a round key 𝑘𝑖 . 𝐹
does not need to be bijective. The first ⌊𝑏/2⌋-bit output from 𝐹 is combined with 𝐿 using the exclusive-or operation to
give the right half for round 𝑖 + 1. The right half from round 𝑖 becomes the left half for round 𝑖 + 1. Thus, the 𝑖th round
of the Feistel Network is defined as

Manuscript submitted to ACM

8 Mitchell and Stokes, et al.

𝑓𝑖 (𝐿 |𝑅) = 𝑅 | (𝐿 ⊕ 𝐹 (𝑅, 𝑘𝑖)), (2)

with ⊕ the bitwise exclusive-or operation. Consequently, a block cipher constructed using a Feistel Network
construction with 𝑟 rounds can be defined as

𝑔(𝐿 |𝑅) = 𝑓𝑟 ◦ · · · 𝑓2 ◦ 𝑓1 (𝐿 |𝑅) (3)

Luby and Rackoff [37] proved that a three-round Feistel network is a pseudo-random permutation if the round
function 𝐹 is a pseudo-random function. Therefore, a Feistel Network with 𝑟𝑜𝑢𝑛𝑑𝑠 ≥ 3 can be used to generate a
pseudo-random permutation for any set of size 𝑛 = 2𝑏 .

Feistel networks have been shown to be effective for parallel random number generation. Salmon et al. [56] describe
two hardware-efficient pseudo-randomnumber generators (PRNGs), named Philox and Threefry, based on simplifications
of cryptographic block ciphers. These PRNGs are sometimes called counter-based, as generation of the 𝑖’th random
number 𝑥𝑖 is stateless, requiring only the index 𝑖 and a random seed. Advancing the series does not require 𝑥𝑖−1, and
so may be performed trivially by parallel threads. This is in contrast to the canonical Mersenne twister [40], which
requires a state of 2.5kB and cannot advance the series arbitrarily from 𝑥𝑖 to 𝑥𝑖+𝑚 in constant time with respect to
𝑚. The Philox and Threefry generators are shown to produce at least 264 independent streams of random numbers,
with a period of 2128 or more, and pass BigCrush [36] statistical tests. Figure 3 shows one step of the Philox PRNG,
which differs from the standard Feistel network in the addition of the function 𝐵𝑘 , which is strictly a bijection. Philox
makes use of fast integer multiplication instructions, where multiplication by a carefully chosen, odd constant, yields
upper bits forming 𝐹 and lower bits modulo 2𝑤 form the bijection 𝐵. 𝐵 is guaranteed to be a bijection because the odd
multiplicand is always coprime to the integer ring modulo 2𝑤 .

Although these PRNGs happen to have the bijective property, the connection between bijections and the symmetric
group𝔖𝑛 is not exploited in [56]. In this paper, we adapt the Philox cipher to generate bijections with lengths of arbitrary
powers of two instead of 264, while preserving the invertibility of the process, terming our modification VariablePhilox.
For example, shuffling a sequence of size 27 results in halves with sizes |𝐿 | = 3, |𝑅 | = 4 and the bijective property is
lost for the standard Philox cipher. Figure 4 shows a modified construction, where 𝑏 is the odd bit and |𝐿 | = |𝑅 |. 𝐹𝑘 is a
pseudo-random key-dependent function, and 𝐵𝑘 is a key-dependent bijective function. 𝐺 is a function mixing bit 𝑏 into
𝑅′, where for 𝐺 (𝐵𝑘 (𝐿), 𝑏) = (𝑅′, 𝑏 ′), 𝑏 is inserted in the least significant position of 𝐵𝑘 (𝐿), yielding 𝑅′. Then the most
significant bit of 𝑅′ is removed and returned as 𝑏 ′.𝐺 is clearly invertible such that𝐺−1 (𝑅′, 𝑏 ′) = (𝐵𝑘 (𝐿), 𝑏). Defining ⊕
as bitwise exclusive-or, VariablePhilox encodes inputs as

𝐿′ = 𝐹𝑘 (𝐿) ⊕ 𝑅
(𝑅′, 𝑏 ′) = 𝐺 (𝐵𝑘 (𝐿), 𝑏)

This process is inverted to retrieve (𝐿, 𝑅, 𝑏) by computing (in order):

(𝐵𝑘 (𝐿), 𝑏) = 𝐺−1 (𝑅′, 𝑏 ′)
𝐿 = 𝐵−1𝑘 (𝐵𝑘 (𝐿))
𝑅 = 𝐹𝑘 (𝐿) ⊕ 𝐿′

Invertibility guarantees the bijective property, so VariablePhilox is a bijection for arbitrary power-of-two length
sequences. C++ reference code is given in Listing 1.
Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 9

Fig. 3. Philox cipher — Bijective function 𝐵𝑘 is
added to the standard Feistel cipher

Fig. 4. VariablePhilox cipher — the odd bit 𝑏 (if it exists) is mixed into
𝑅′ by function𝐺 .

We have now described several methods of generating bijections with pseudo-random properties, but these bijections
do not apply to arbitrary input lengths. In particular, the Feistel bijective functions are available for sequences of power
of two length. We now show how to efficiently extend these to arbitrarily sequences.

4 ARBITRARY LENGTH BIJECTIONS

The key observation for generating bijections of arbitrary length is this: given an input vector 𝑋 = [0, 1, 2, · · · ,𝑚 − 1]
of length𝑚, there may not be a readily available bijective function 𝑓𝑚 of the same length, however, we can find the
nearest applicable 𝑓𝑛 such that𝑚 ≤ 𝑛 and apply the bijective function to the padded vector 𝑋 = [0, 1, 2, · · · , 𝑛 − 1]. The
output is a vector𝑊 of length 𝑛, containing the randomly permuted input indices. By ‘deleting’ all𝑤 ≥ 𝑚 from𝑊 , we
obtain a permutation 𝑌 of length𝑚. Using this process, we form an algorithm generating longer permutations of length
𝑛 ≥ 𝑚, then compacting them to form permutations of length𝑚. This compaction of a longer random permutation is
still an unbiased random permutation as per the following proposition.

Proposition 1. Define the function 𝑡 : 𝔖𝑛 → 𝔖𝑚 removing elements of 𝜎 ∈ 𝔖𝑛 where 𝜎 (𝑖) > 𝑚, returning the

permutation 𝜏 ∈ 𝔖𝑚 of length𝑚. If 𝑝 (𝜎) = 1
𝑛! ,∀𝜎 ∈ 𝔖𝑛 , then 𝑝 (𝜏) = 1

𝑚! .

Proof. The function 𝑡 (𝜎) = 𝜏 is a surjective map from𝔖𝑚 →𝔖𝑛 . For each 𝜏 ∈ 𝔖𝑛 , there exists a non-overlapping
subset Π𝜏 ⊆ 𝔖𝑚 such that ∀𝜋 ∈ Π𝜏 , 𝑡 (𝜋) = 𝜏 . Clearly |Π𝜏 | = 𝑚!

𝑛! ,∀𝜏 ∈ 𝔖𝑛 and so, if 𝑝 (𝜎) = 1
𝑚! ,∀𝜎 ∈ 𝔖𝑚 , then

𝑝 (𝜏) = 1
𝑛! . □

To achieve the compaction in parallel, we use the work-efficient exclusive scan of Blelloch [8]. Flagging each element
of the extended permutation𝑊 with 0 if𝑤𝑖 ≥ 𝑚 or 1 if𝑤𝑖 < 𝑚, the output of the exclusive scan over these flags gives

Manuscript submitted to ACM

10 Mitchell and Stokes, et al.

uint64_t VariablePhilox(const uint64_t val) const
{

static const uint64_t M0 = UINT64_C(0xD2B74407B1CE6E93);
uint32_t state[2] = { uint32_t(val >> right_side_bits),

uint32_t(val & right_side_mask)
};
for (int i = 0; i < num_rounds; i++)
{

uint32_t hi;
uint32_t lo = mulhilo(M0, state[0], hi);
lo = (lo << (right_side_bits - left_side_bits)) |

state[1] >> left_side_bits;
state[0] = ((hi ^ key[i]) ^ state[1]) & left_side_mask;
state[1] = lo & right_side_mask;

}
// Combine the left and right sides together to get result
return (uint64_t) state[0] << right_side_bits |

(uint64_t) state[1];
}

Listing 1. VariablePhilox implementation — M0 is a constant selected in [56], mulhilo performs 64 bit integer multiplication, returning
the result as the upper and lower 32 bits.

Fig. 5. Shuffle compaction — Dashed boxes represent dummy elements used to extend the sequence to a power of two. The bijective
function is evaluated for each thread, yielding𝑊 . We flag any𝑊 > 4, then the scan of these flags provides the destination address
for each 𝑋 [𝑊𝑖], where𝑊𝑖 ≤ 4.

Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 11

Algorithm 1: Bijection Shuffle
input :𝑚,𝑛,𝑋, 𝑓𝑛
output :𝑌
for 𝑖 = 0 to 𝑛 − 1 in parallel do

// Evaluate bijective function

𝑏 = 𝑓𝑛 (𝑖);
𝑓 𝑙𝑎𝑔 = 1;
if 𝑏 ≥ 𝑚 then

𝑓 𝑙𝑎𝑔 = 0;
// Find output location of valid elements

𝑜𝑢𝑡_𝑖𝑑𝑥 = 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒_𝑠𝑐𝑎𝑛(𝑓 𝑙𝑎𝑔);
// Gather elements to output

if 𝑏 < 𝑚 then
𝑌 [𝑜𝑢𝑡_𝑖𝑑𝑥] = 𝑋 [𝑏];

the scatter indices into the shuffled output vector 𝑌 . This process is shown in Figure 5 for𝑚 = 5, 𝑛 = 8, and pseudocode
is given in Algorithm 1. Given 𝑝 = 𝑛 independent threads, the exclusive scan operation has work complexity 𝑂 (𝑛). Our
bijective function, executed in parallel for each element, also has work complexity 𝑂 (𝑛), and so the final algorithm
has optimal work complexity 𝑂 (𝑛). Note that, using the bijective functions described in Section 3, the padded array of
length 𝑛 will have at most 2𝑚 elements (the nearest power of two length), so the work complexity holds regardless of
input length.

Algorithm 1 can be implemented easily in several steps using a GPU parallel primitives library, for example, evaluating
the bijective function, gathering elements to an output buffer, then applying a stream compaction algorithm. Achieving
“bandwidth optimality”, i.e., a single global memory read and write per element, is more challenging, requiring the
fusion of all operations into a single GPU kernel. The standard GPU parallel prefix sum of [28] uses two passes through
global memory, the first to perform block-level scans and the second to propagate partial block-level results globally.
This can be improved upon by using the specialised single-pass scan implementation of [42], using a technique termed
‘decoupled look-back’ to achieve non-blocking communication between thread blocks, achieving optimal 𝑛 global
memory reads/writes. In Section 6, we evaluate three versions of our GPU shuffling algorithm, incorporating varying
levels of kernel fusion and demonstrating the effectiveness of optimising global memory read/writes for the shuffling
problem.

5 STATISTICAL TESTS

We now consider statistical tests for pseudo-random permutations to assess the suitability of the methods discussed in
Section 3 and 4 for practical applications, and to select the number of rounds for the VariablePhilox cipher. Testing the
distribution of permutations is challenging as the sampling space grows super-exponentially with the length of the
permutation. In particular, 21! > 264, so any computer algorithm for shuffling that uses a 64 bit integer seed cannot
generate all permutations for 𝑛 ≥ 21.

Our first test considers the distribution of random permutations at 𝑛 = 5, where 5! = 120, using a standard 𝜒2

test with 119 degrees of freedom, under the null hypothesis that permutations are uniformly distributed, i.e., each
permutation occurs with probability 𝑝 = 1

120 . Figure 6 shows the change in the 𝜒2 statistic as the number of rounds in
Manuscript submitted to ACM

12 Mitchell and Stokes, et al.

the VariablePhilox cipher is increased. Each data point is computed from 100,000 random permutations. We also plot
the acceptance thresholds for 𝛼 = 0.05, corresponding to the probability of observing a value of the 𝜒2 statistic above
the line indicated on the figure, if the null hypothesis is true. Considering the results shown in the figure, it is unlikely
that samples from VariablePhilox with less than 20 rounds are drawn from a uniform distribution. This is somewhat
surprising given that only 10 rounds are recommended for the original Philox cipher in the PRNG setting [56]. The
LCG bijective function generates a 𝜒2 statistic in the region of 500,000, so it clearly fails the test and is not included in
this figure.

The 𝜒2 test is useful for small 𝑛, but is intractable otherwise. We develop another test statistic suited to larger 𝑛, based
on the maximum mean discrepancy (MMD) in a reproducing kernel Hilbert space (RKHS). Two-sample hypothesis tests
using MMD are developed in [24]. In a similar spirit, we derive a one sample test comparing the uniform distribution of
permutations against a finite sample generated by a shuffling algorithm. The MMD2 between two distributions 𝑝 (𝑋)
and 𝑞(𝑌) in a RKHSH , equipped with positive definite kernel 𝐾 , is defined as

MMD2 (𝑝, 𝑞) = E𝑥,𝑥 ′ [𝐾 (𝑥, 𝑥 ′)] − 2E𝑥,𝑦 [𝐾 (𝑥,𝑦)] + E𝑦,𝑦′ [𝐾 (𝑦,𝑦′)] . (4)

If the kernel 𝐾 is a characteristic kernel, the mean embedding of a distribution induced by the kernel is injective [20].
In other words, the mean embedding of a distribution is unique to that distribution. As a consequence, MMD(𝑝, 𝑞) = 0
if and only if 𝑝 = 𝑞. Thus, a strategy for statistical testing is to form the null hypothesis that 𝑝 = 𝑞, compute the sample
estimate ˆMMD2 (𝑝, 𝑞) as the test statistic, and evaluate the probability of obtaining a sample estimate greater than some
threshold, assuming 𝑝 = 𝑞, using a concentration inequality. If the observed test statistic is sufficiently unlikely, this
provides evidence that 𝑝 ≠ 𝑞.

To implement this idea, a characteristic kernel measuring the similarity of two permutations is needed. The Mallows
kernel, for 𝜆 ≥ 0, is defined for permutations as

𝐾𝜆
𝑀 (𝜎, 𝜎 ′) = 𝑒−𝜆𝑛dis (𝜎,𝜎′)/(𝑛2) .

where
𝑛dis (𝜎, 𝜎 ′) =

∑
𝑖< 𝑗

[1𝜎 (𝑖)<𝜎 (𝑗)1𝜎′ (𝑖)>𝜎′ (𝑗) + 1𝜎 (𝑖)>𝜎 (𝑗)1𝜎′ (𝑖)<𝜎′ (𝑗)] .

We (somewhat arbitrarily) use the parameter 𝜆 = 5 throughout this paper. The Mallows kernel is introduced in [32] and
shown to be characteristic in [38]. It may be implemented in time 𝑂 (𝑛 log𝑛) using the procedure presented in [33]. In
the following, we make use of the fact [44] that the expected value of the Mallows kernel under a uniform distribution
of permutations is

∀𝜎 ∈ 𝔖𝑛, E𝜎′ [𝐾 (𝜎, 𝜎 ′)] =
𝑛∏
𝑗=1

1 − 𝑒−𝜆𝑗/(𝑛2)
𝑗 (1 − 𝑒−𝜆/(𝑛2))

.

The Mallows kernel is right-invariant in the sense that 𝐾 (𝜎, 𝜎 ′) = 𝐾 (𝜏𝜎, 𝜏𝜎 ′) for any 𝜏 ∈ 𝔖𝑑 [15]. Also note that the
uniform distribution of permutations is invariant to composition. Using right invariance in conjunction with 𝜏 = 𝜎−1,
and assuming 𝑝 denotes the uniform distribution over permutations, then

E𝜎′∼𝑝 [𝐾 (𝜎, 𝜎 ′)] = E𝜎′∼𝑝 [𝐾 (𝜏𝜎, 𝜏𝜎 ′)]
= E𝜎′∼𝑝 [𝐾 (𝐼 , 𝜏𝜎 ′)]
= E𝜎′∼𝑝 [𝐾 (𝐼 , 𝜎 ′)]

Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 13

with 𝐼 the identity permutation. Using the above, and assuming that 𝑝 is a uniform distribution of permutations, the
MMD2 from (4) is simplified as

MMD2 (𝑝, 𝑞) = E𝑥 [𝐾 (𝐼 , 𝑥)] − 2E𝑥 [𝐾 (𝐼 , 𝑥)] + E𝑦,𝑦′ [𝐾 (𝑦,𝑦′)]
= E𝑦,𝑦′ [𝐾 (𝑦,𝑦′)] − E𝑥 [𝐾 (𝐼 , 𝑥)]

= E𝑦,𝑦′ [𝐾 (𝑦,𝑦′)] −
𝑛∏
𝑗=1

1 − 𝑒−𝜆𝑗/(𝑛2)
𝑗 (1 − 𝑒−𝜆/(𝑛2))

.

Replacing 𝑞 with a sample of random permutations Π, of size |Π | and with |Π | ≡ 0 (mod 2), we obtain an unbiased
sample estimate via

ˆMMD2 (𝑝,Π) = 2
|Π |

|Π |/2∑
𝑖

𝐾 (Π2𝑖−1,Π2𝑖) −
𝑛∏
𝑗=1

1 − 𝑒−𝜆𝑗/(𝑛2)
𝑗 (1 − 𝑒−𝜆/(𝑛2))

, (5)

where E[ˆMMD2 (𝑝,Π)] = 0 if and only if 𝑝 = 𝑞. We derive two tests based on the ˆMMD2 (𝑝,Π) statistic. The first is a
distribution-free bound. Applying Hoeffding’s inequality [30], with the fact that 0 ≤ 𝐾 (𝜎, 𝜎 ′) ≤ 1, we have

𝑃 (| ˆMMD2 (𝑝,Π) | ≥ 𝑡) ≤ 2 exp(−|Π |𝑡2)

Let 𝛼𝐻 be the level of significance under the Hoeffding bound. With null hypothesis 𝑝 = 𝑞, the acceptance region of the
test is

| ˆMMD2 (𝑝,Π) | <
√

log(2/𝛼𝐻)
|Π | . (6)

The second test uses the central limit theorem, implying that ˆMMD2 (𝑝,Π) approaches a normal distribution as
|Π | → ∞. The variance of the Mallows kernel may be computed directly from its expectation as

Var(𝐾 (𝜎, 𝜎 ′)) = E[𝐾 (𝜎, 𝜎 ′)2] − E[𝐾 (𝜎, 𝜎 ′)]2

= E[𝑒−2𝜆𝑛dis (𝜎,𝜎′)/(𝑛2)] − E[𝑒−𝜆𝑛dis (𝜎,𝜎′)/(𝑛2)]2

=
𝑛∏
𝑗=1

1 − 𝑒−2𝜆𝑗/(𝑛2)
𝑗 (1 − 𝑒−2𝜆/(𝑛2))

− ©­«
𝑛∏
𝑗=1

1 − 𝑒−𝜆𝑗/(𝑛2)
𝑗 (1 − 𝑒−𝜆/(𝑛2))

ª®¬
2

.

So we have
Var(ˆMMD2 (𝑝,Π)) = 2 · Var(𝐾 (𝜎, 𝜎 ′))

|Π | .

The factor of two arises because the sum in (5) is of size |Π |/2. According to a normal distribution with mean 0 and
variance as above,

𝑃 (| ˆMMD2 (𝑝,Π) | ≥ 𝑡) = 1 − erf
©­­«

𝑡√
2Var(ˆMMD2)

ª®®¬
,

where erf is the canonical error function. The acceptance region for 𝛼𝑁 is

| ˆMMD2 (𝑝,Π) | <
√
2Var(ˆMMD2) erf−1 (1 − 𝛼𝑁) . (7)

The threshold for 𝛼𝐻 should be used for small |Π | (i.e. < 100), as it makes no assumptions on the distribution of
ˆMMD2 (𝑝,Π). For larger sample sizes, the asymptotic 𝛼𝑁 threshold is significantly tighter and should be preferred.

Manuscript submitted to ACM

14 Mitchell and Stokes, et al.

Fig. 6. 𝜒2 statistic vs. rounds, |Π | =100,000 Fig. 7. | ˆMMD2 (𝑝,Π) | statistic, 𝑛 = 5, |Π | =100,000

Fig. 8. | ˆMMD2 (𝑝,Π) | statistic, 𝑛 = 100, |Π | =100,000 Fig. 9. | ˆMMD2 (𝑝,Π) | statistic, 𝑛 = 1000, |Π | =100,000

Comparing Figures 6 and 7, we see the MMD tests with the asymptotic acceptance threshold roughly coincide with the
𝜒2 test at n = 5, where some tests fail for VariablePhilox with fewer than 20 rounds, but VariablePhilox with 24 rounds or
more passes all tests. Figures 7, 8, and 9 plot the | ˆMMD2 (𝑝,Π) | statistic for VariablePhilox, LCG, and std::shuffle using
|Π | =100,000, for varying permutation lengths. These experiments lead us to recommend a 24 round VariablePhilox
cipher for random permutation generation, and we use this configuration in all subsequent experiments.

6 EVALUATION OF THROUGHPUT

We now evaluate the throughput of our bijective shuffling method, where throughput refers to (millions of keys)/time(s).
Unless otherwise stated, experiments are performed on an array of 64-bit keys of length 2𝑤 + 1, where𝑤 ranges from 8
to 29. This represents the worst-case scenario, where our bijective shuffle algorithm must redundantly evaluate 2𝑤 − 1
elements. For all throughput results, we report the average of five trials.
Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 15

Fig. 10. GPU kernel fusion for bijective shuffle — increasing kernel fusion decreases memory transactions and approaches the gather
throughput upper bound.

To consider the effect of code optimisations, we evaluate three CUDA implementations of Algorithm 1 with varying
levels of GPU kernel fusion:

• Bijective0: The transformation (𝑏 = 𝑓𝑛 (𝑖)), stream compaction, and gather are implemented in separate passes.
• Bijective1: The transformation, stream compaction, and gather are fused into a single scan operation. The two-pass
scan algorithm of [28] is used.

• Bijective2: The transformation, stream compaction, and gather are fused into a single scan operation. The single
pass scan algorithm of [42] is used, for𝑚 total global memory reads/writes.

Figure 10 plots the throughput of these variants, on a Tesla V100-32GB GPU, using VariablePhilox as the bijective
function. For reference, the line labeled “gather” shows an upper bound on throughput for 𝑛 random gather operations
in global memory. The optimised algorithm Bijective2 closely matches the optimal throughput of random gather, and is
equivalent in performance for sizes > 221. Bijective2(n=m) indicates the best-case performance of the algorithm, where
the sequence is exactly a power of two length. The best-case and worst-case performance do not differ greatly because
redundant elements do not incur global memory transactions, and are therefore relatively inexpensive to evaluate. The
performance of random gather peaks around 220, where there is sufficient L2 cache to mitigate the effects of uncoalesced
reads/writes. At this size, there is a gap between Bijective2 and random gather due to arithmetic operations required in
evaluating multiple rounds of the VariablePhilox function, and because the prefix-sum must be redundantly evaluated
up to the nearest power of two (although no global memory transactions occur for these redundant elements). This gap
disappears at larger sizes when the runtime of the kernel becomes dominated by memory operations.

Manuscript submitted to ACM

16 Mitchell and Stokes, et al.

Table 1. GPU shuffling throughput (millions items/s) - Tesla V100

Gather VarPhilox LCG DartThrowing SortShuffle
Input size

28 + 1 24.64 14.61 16.21 2.459 1.845
211 + 1 188.8 115.4 124.8 15.83 8.191
214 + 1 1471 810.6 851.4 97.3 26.17
217 + 1 9696 3836 3968 145. 69.26
220 + 1 13830 5800 5642 159.8 127.3
223 + 1 5036 4527 4476 150.9 132.6
226 + 1 4465 4172 4143 133.8 118.4
229 + 1 4409 4018 4011 123.2 111.8

Table 2. GPU shuffling throughput (millions items/s) - GeForce RTX 2080

Gather VarPhilox LCG DartThrowing SortShuffle
Input size

28 + 1 35.63 13.73 14.19 2.98 2.16
211 + 1 273.70 109.07 112.40 18.10 8.54
214 + 1 2183.41 776.85 846.42 66.74 30.62
217 + 1 12225.35 3649.39 3759.00 95.38 71.17
220 + 1 4187.73 3641.61 3437.88 89.55 80.63
223 + 1 2238.91 2232.61 2260.85 80.67 75.03
226 + 1 2097.25 2096.47 2105.51 71.44 67.35

We now proceed to a comparison of different shuffling algorithms. Table 1 and Figure 11 show the throughput in
millions of items per second, for the Tesla V100-32GB GPU, and Table 2 and Figure 12 show data for the GeForce RTX
2080 GPU. LCG and VariablePhilox implement optimised bijective shuffling using the methods described in Section 3.
The dart-throwing algorithm uses CUDA atomic exchange instructions to attempt to place items randomly in a buffer
of size 2𝑛, a stream compaction operation is then applied to the buffer to provide the final shuffled output. SortShuffle
applies the state-of-the-art radix sort algorithm of [41] to randomly generated 64-bit keys. As discussed in Section 2.1,
many existing work on shuffling reduce to sorting algorithms on infinite length keys. Thus, SortShuffle is representative
of a wide class of divide-and-conquer algorithms.

The bijective shuffle algorithms with the VariablePhilox and LCG functions achieve near-optimal throughput at large
sizes, where performance is dominated by global memory operations. Throughput for these methods is more than an
order of magnitude higher than the DartThrowing or SortShuffle methods. The lesser throughput of DartThrowing can
be explained by the overhead of generalised atomic instructions in the CUDA architecture, as well as contention among
threads when multiple threads attempt to write to the same memory location. SortShuffle relies on radix sort, where
prefix sum is applied to 4 bits in each pass, requiring 16 passes over the data to fully sort 64-bit keys. In comparison,
bijective shuffle is designed to require only a single prefix sum operation. Bijective shuffle is also fully deterministic,
unlike DartThrowing, and requires no global memory for working space, whereas DartThrowing and SortShuffle use
memory proportional to 𝑂 (𝑛).

We also evaluate the performance of our shuffling method using 2x Intel Xeon E5-2698 CPUs, with a total of 40
physical cores. Results are presented in Table 3 and Figure 13. The bijective shuffle method is not designed for CPU
Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 17

Fig. 11. GPU shuffling algorithms - Tesla V100 Fig. 12. GPU shuffling algorithms - GeForce RTX 2080

Table 3. CPU shuffling throughput (millions items/s) - 2x Xeon E5-2698

Gather VarPhilox DartThrowing std::shuffle RS MergeShuffle SortShuffle
Input size

28 + 1 128.03 2.81 0.09 40.77 41.18 46.24 2.45
211 + 1 635.04 17.65 0.69 63.83 63.82 64.95 6.26
214 + 1 935.55 89.88 4.76 68.05 68.00 67.85 8.30
217 + 1 434.46 207.94 21.69 63.05 78.71 52.03 18.60
220 + 1 353.72 246.79 39.53 59.38 99.76 32.94 79.30
223 + 1 108.23 157.88 21.37 45.67 108.78 23.44 60.11
226 + 1 64.32 49.02 16.04 24.93 111.15 18.38 47.45
229 + 1 54.12 44.06 15.63 21.66 104.99 15.03 39.23

architectures, but the results are informative nonetheless. The Gather, VariablePhilox (bijective shuffle) and SortShuffle
algorithms are implemented using the Intel Thread Building Blocks (TBB) library [55]. The Rao-Sandelius (RS) [53] and
MergeShuffle [4] algorithms use the implementation of [4], and std::shuffle is the single-threaded C++ standard library
implementation. VariablePhilox has the highest throughput for medium-sized inputs, although it is outperformed
by RS when 𝑛 > 224. Curiously, RS has higher throughput at large sizes than the TBB gather implementation. This
could indicate that RS has a more cache-friendly implementation, despite having a worse computational complexity of
𝑂 (𝑛 log𝑛), or simply a suboptimal implementation in TBB. Further work is needed to properly investigate these effects
for CPU architectures.

7 LIMITATIONS AND FUTURE RESEARCH

While the presented algorithm for GPUs is highly effective in terms of throughput and the quality of its pseudorandom
outputs, its parameterisation differs from that of typical standard library implementations of shuffle. For example, the
C++ standard library implementation accepts any ‘uniform random bit generator’ [61], such as the common Mersenne-
twister generator [40]. Our implementation is instead parameterised by the selection of a bijective function, and a key
of length log(𝑛)𝑘 bits, where 𝑛 is the length of the sequence to be shuffled, and 𝑘 is the number of rounds in the cipher.

Manuscript submitted to ACM

18 Mitchell and Stokes, et al.

Fig. 13. CPU shuffling algorithms - 2x Intel Xeon E5-2698

Future work may explore other useful constructions of bijective functions, beyond the LCG and Feistel variants
discussed in this paper.

It also should be noted that the Fisher-Yates and Rao-Sandelius algorithms may operate in-place, and our proposed
GPU algorithm does not, requiring the allocation of an output buffer. This is not unexpected, as there are few truly
in-place GPU algorithms that reorder inputs ([49] is a notable exception). For future work, it would be interesting to
consider if an in-place parallel shuffling algorithm is possible for GPU architectures.

8 CONCLUSION

We provide an algorithm for random shuffling specifically optimised for GPU architectures, using modified bijective
functions from cryptography. Our algorithm is highly practical, achieving performance approaching the maximum
possible device throughput, while being fully deterministic, using no extra working space, and providing high-quality
distributions of random permutations. An outcome of this work is also a statistical test for uniform distributions of
permutations based on the Mallows kernel that we expect to be useful beyond shuffling algorithms.

REFERENCES
[1] Laurent Alonso and René Schott. 1996. A parallel algorithm for the generation of a permutation and applications. Theoretical Computer Science 159,

1 (1996), 15 – 28.
[2] R. Anderson. 1990. Parallel Algorithms for Generating Random Permutations on a Shared Memory Machine. In Proceedings of the Second Annual

ACM Symposium on Parallel Algorithms and Architectures (Island of Crete, Greece) (SPAA ’90). Association for Computing Machinery, New York, NY,
USA, 95–102.

[3] David Miraut Andrés and Luis Pastor Pérez. 2011. Efficient Parallel Random Rearrange. In International Symposium on Distributed Computing and
Artificial Intelligence, Ajith Abraham, Juan M. Corchado, Sara Rodríguez González, and Juan F. De Paz Santana (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 183–190.

Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 19

[4] Axel Bacher, Olivier Bodini, Alexandros Hollender, and Jérémie O. Lumbroso. 2015. MergeShuffle: A Very Fast, Parallel Random Permutation
Algorithm. CoRR abs/1508.03167 (2015). arXiv:1508.03167 http://arxiv.org/abs/1508.03167

[5] Axel Bacher, Olivier Bodini, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. 2017. Generating Random Permutations by Coin Tossing: Classical Algorithms,
New Analysis, and Modern Implementation. ACM Trans. Algorithms 13, 2, Article 24 (Feb. 2017), 43 pages.

[6] Nathan Bell and Jared Hoberock. 2012. Thrust: A productivity-oriented library for CUDA. In GPU computing gems Jade edition. Elsevier, 359–371.
[7] Alex Biryukov and Christophe De Cannière. 2005. Data encryption standard (DES). Springer US, Boston, MA, 129–135.
[8] Guy E. Blelloch. 1990. Prefix Sums and Their Applications. Technical Report CMU-CS-90-190. School of Computer Science, Carnegie Mellon

University.
[9] Bo Fang, Guobin Shen, Shipeng Li, and Huifang Chen. 2005. Techniques for efficient DCT/IDCT implementation on generic GPU. In 2005 IEEE

International Symposium on Circuits and Systems. 1126–1129 Vol. 2.
[10] Changhao Jiang and M. Snir. 2005. Automatic tuning matrix multiplication performance on graphics hardware. In 14th International Conference on

Parallel Architectures and Compilation Techniques (PACT’05). 185–194.
[11] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient

Primitives for Deep Learning. arXiv:1410.0759 [cs.NE]
[12] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Y. Ng, and Bryan Catanzaro. 2013. Deep Learning with COTS HPC Systems. In

Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28 (Atlanta, GA, USA) (ICML’13). JMLR.org,
III–1337–III–1345.

[13] Guojing Cong and David A. Bader. 2005. An Empirical Analysis of Parallel Random Permutation Algorithms ON SMPs. In Proceedings of the ISCA
18th International Conference on Parallel and Distributed Computing Systems, September 12-14, 2005 Imperial Palace Hotel, Las Vegas, Nevada, USA,
Michael J. Oudshoorn and Sanguthevar Rajasekaran (Eds.). ISCA, 27–34.

[14] A. Czumaj, P. Kanarek, M. Kutylowski, and K. Lorys. 1998. Fast Generation of Random Permutations Via Networks Simulation. Algorithmica 21, 1
(1998), 2–20.

[15] Persi Diaconis. 1988. Group representations in probability and statistics. Institute of Mathematical Statistics, Hayward, CA. vi+198 pages.
[16] Rob Farber. 2011. CUDA application design and development. Elsevier.
[17] K. Fatahalian, J. Sugerman, and P. Hanrahan. 2004. Understanding the Efficiency of GPU Algorithms for Matrix-Matrix Multiplication. In Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (Grenoble, France) (HWWS ’04). Association for Computing Machinery,
New York, NY, USA, 133–137.

[18] Horst Feistel. 1973. Cryptography and Computer Privacy. Scientific American 228, 5 (1973), 15–23.
[19] Ronald A Fisher and Frank Yates. 1943. Statistical tables for biological, agricultural and medical research. Oliver and Boyd Ltd, London.
[20] Kenji Fukumizu, Francis R. Bach, and Michael I. Jordan. 2004. Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert

Spaces. J. Mach. Learn. Res. 5 (Dec. 2004), 73–99.
[21] Phillip I Good. 2006. Permutation, parametric, and bootstrap tests of hypotheses. Springer Science & Business Media.
[22] Louis Granboulan and Thomas Pornin. 2007. Perfect Block Ciphers with Small Blocks. In Fast Software Encryption, Alex Biryukov (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 452–465.
[23] Oded Green, Robert McColl, and David A. Bader. 2012. GPU Merge Path: A GPU Merging Algorithm. In Proceedings of the 26th ACM International

Conference on Supercomputing (San Servolo Island, Venice, Italy) (ICS ’12). Association for Computing Machinery, New York, NY, USA, 331–340.
[24] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. 2012. A Kernel Two-Sample Test. J. Mach. Learn.

Res. 13 (March 2012), 723–773.
[25] Jens Gustedt. 2003. Randomized permutations in a coarse grained parallel environment. In Proceedings of the 6th European Conference on Computer

Systems.
[26] Torben Hagerup. 1991. Fast parallel generation of random permutations. In Automata, Languages and Programming, Javier Leach Albert, Burkhard

Monien, and Mario Rodríguez Artalejo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 405–416.
[27] Jesse D Hall, Nathan A Carr, and John C Hart. 2003. Cache and bandwidth aware matrix multiplication on the GPU. (2003).
[28] Mark Harris, Shubhabrata Sengupta, and John D Owens. 2007. Parallel prefix sum (scan) with CUDA. GPU gems 3, 39 (2007), 851–876.
[29] Bingsheng He, Naga K Govindaraju, Qiong Luo, and Burton Smith. 2007. Efficient gather and scatter operations on graphics processors. In Proceedings

of the 2007 ACM/IEEE conference on Supercomputing. 1–12.
[30] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random Variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13–30.
[31] Joseph JéJé. 1992. An introduction to parallel algorithms. Reading, MA: Addison-Wesley.
[32] Yunlong Jiao and Jean-Philippe Vert. 2015. The Kendall and Mallows kernels for permutations. In International Conference on Machine Learning.

PMLR, 1935–1944.
[33] William R. Knight. 1966. A Computer Method for Calculating Kendall’s Tau with Ungrouped Data. J. Amer. Statist. Assoc. 61, 314 (1966), 436–439.
[34] Donald E. Knuth. 1997. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA.
[35] Daniel Langr, Pavel Tvrdik, Tomas Dytrych, and J. Draayer. 2014. Algorithm 947: Paraperm-Parallel Generation of Random Permutations with MPI.

ACM Trans. Math. Software 41 (10 2014), 5:1–5:26.

Manuscript submitted to ACM

20 Mitchell and Stokes, et al.

[36] Pierre L’Ecuyer and Richard Simard. 2007. TestU01: AC library for empirical testing of random number generators. ACM Transactions on Mathematical
Software (TOMS) 33, 4 (2007), 1–40.

[37] Michael Luby and Charles Rackoff. 1988. How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM J. Comput. 17, 2
(1988).

[38] Horia Mania, Aaditya Ramdas, Martin J Wainwright, Michael I Jordan, Benjamin Recht, et al. 2018. On kernel methods for covariates that are
rankings. Electronic Journal of Statistics 12, 2 (2018), 2537–2577.

[39] Yossi Matias and Uzi Vishkin. 1991. Converting high probability into nearly-constant time - With applications to parallel hashing. Proc. 23rd Ann.
ACM Symp. on Theory of Computing (01 1991), 307–316.

[40] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator. ACM Trans. Model. Comput. Simul. 8, 1 (Jan. 1998), 3–30.

[41] Duane Merrill. 2015. Cub. NVIDIA Research (2015).
[42] Duane Merrill and Michael Garland. 2016. Single-pass parallel prefix scan with decoupled look-back. NVIDIA, Tech. Rep. NVR-2016-002 (2016).
[43] G. L. Miller and J. H. Reif. 1985. Parallel tree contraction and its application. In 26th Annual Symposium on Foundations of Computer Science (sfcs

1985). 478–489.
[44] Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. 2021. Sampling Permutations for Shapley Value Estimation. arXiv preprint

arXiv:2104.12199 (2021).
[45] Rory Mitchell and Eibe Frank. 2017. Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science 3 (2017), e127.
[46] Kenneth Moreland and Edward Angel. 2003. The FFT on a GPU. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics

Hardware (San Diego, California) (HWWS ’03). Eurographics Association, Goslar, DEU, 112–119.
[47] NVIDIA Corporation. 2020. CUDA C++ Programming Guide. Version 11.1.
[48] Michelle Perry, Harrison B Prosper, and Anke Meyer-Baese. 2014. GPU Implementation of Bayesian Neural Network Construction for Data-Intensive

Applications. Journal of Physics: Conference Series 513, 2 (jun 2014), 022027.
[49] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. 2009. Fast in-place sorting with cuda based on bitonic sort. In International

Conference on Parallel Processing and Applied Mathematics. Springer, 403–410.
[50] Lukas Prediger, Niki Loppi, Samuel Kaski, and Antti Honkela. 2021. d3p–A Python Package for Differentially-Private Probabilistic Programming.

arXiv preprint arXiv:2103.11648 (2021).
[51] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing

(3 ed.). Cambridge University Press, New York, NY, USA.
[52] Sanguthevar Rajasekaran and John H. Reif. 1989. Optimal and Sublogarithmic Time Randomized Parallel Sorting Algorithms. SIAM J. Comput. 18, 3

(06 1989), 594–14. Copyright - Copyright] © 1989 © Society for Industrial and Applied Mathematics; Last updated - 2012-07-02.
[53] C. Radhakrishna Rao. 1961. Generation of Random Permutations of Given Number of Elements Using Random Sampling Numbers. Sankhyā: The

Indian Journal of Statistics, Series A (1961-2002) 23, 3 (1961), 305–307.
[54] J. H. Reif. 1985. An optimal parallel algorithm for integer sorting. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985). 496–504.
[55] James Reinders. 2007. Intel threading building blocks: outfitting C++ for multi-core processor parallelism. " O’Reilly Media, Inc.".
[56] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. 2011. Parallel random numbers: As easy as 1, 2, 3. In SC ’11: Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis. 1–12.
[57] Martin Sandelius. 1962. A Simple Randomization Procedure. Journal of the Royal Statistical Society. Series B (Methodological) 24, 2 (1962), 472–481.
[58] Peter Sanders. 1998. Random permutations on distributed, external and hierarchical memory. Inform. Process. Lett. 67, 6 (1998).
[59] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, Daehyun Kim, and Pradeep Dubey. 2010. Fast Sort on CPUs

and GPUs: A Case for Bandwidth Oblivious SIMD Sort. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data
(Indianapolis, Indiana, USA) (SIGMOD ’10). Association for Computing Machinery, New York, NY, USA, 351–362.

[60] Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. 2015. Sequential Random Permutation, List Contraction and Tree
Contraction Are Highly Parallel. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (San Diego, California)
(SODA ’15). Society for Industrial and Applied Mathematics, USA, 431–448.

[61] Bjarne Stroustrup. 2013. The C++ programming language. Pearson Education.
[62] Jakub Szuppe. 2016. Boost.Compute: A Parallel Computing Library for C++ Based on OpenCL. In Proceedings of the 4th International Workshop on

OpenCL (Vienna, Austria) (IWOCL ’16). Association for Computing Machinery, New York, NY, USA, Article 15, 39 pages.
[63] RAPIDS Development Team. 2018. RAPIDS: Collection of Libraries for End to End GPU Data Science. https://rapids.ai

A RUNTIME OF GPU AND CPU SHUFFLING ALGORITHMS

Figures 14 and 15 reproduce Figures 11 and 13, reporting runtime in seconds instead of throughput ((millions of
keys)/time(s)).

Manuscript submitted to ACM

Bandwidth-Optimal Random Shuffling for GPUs 21

Fig. 14. GPU shuffling algorithms runtime - Tesla V100 Fig. 15. CPU shuffling algorithms runtime - 2x Intel Xeon E5-2698

Manuscript submitted to ACM

Chapter 7

Conclusion

This thesis introduces a set of improvements to widely used machine learning

algorithms from a theoretical and software optimisation perspective. The tech-

niques discussed provide significant improvements in throughput in a number

of application domains.

7.1 Thesis Summary

The thesis consists of four primary contributions addressing different sub-

problems relating to computationally demanding tasks in the machine learning

pipeline. These contributions are related by the common thread of software

and algorithm optimisation techniques shared between chapters. Common

themes explored in pursuit of throughput improvements are the application

of non-standard GPU-based techniques to achieve large throughput improve-

ments for unusual problems, the provision of open-source software as a con-

tribution to benefit industry and research, and the use of reproducing kernel

Hilbert space techniques in the domain of permutations. The specific contri-

butions are as follows.

Chapter 3 discusses methods for density estimation and approximate quan-

tiles based on extremely compact sketches containing sample moments. Our

empirical analysis compares methods of fitting probability density functions to

sample moments, including the method of maximum entropy, and orthogonal

144

series in a polynomial or trigonometric basis. We show that these sketches are

highly practical if care is taken to avoid loss of numerical precision, and also

show their suitability for execution on GPUs via tree reduction algorithms.

Chapter 4 introduces GPUTreeShap, an adaptation of interpretability al-

gorithms for decision trees to GPU architectures. We apply a novel scheduling

technique using bin-packing to efficiently map a nontrivial recursive algorithm

to efficient hardware execution units on the GPU. Our open-source software

package provide speed ups of between 15-340x over existing CPU based sys-

tems, allowing practitioners to solve compute intensive interpretability prob-

lems significantly faster.

Chapter 5 addresses an important NP-hard class of interpretability prob-

lems from the perspective of quasi-Monte Carlo methods. We investigate re-

producing kernel Hilbert spaces over the symmetric group and use them to

establish convergence results for quasi-Monte Caro methods based on these

kernels. We also examine another family of quasi Monte Carlo sampling meth-

ods based on relations between the symmetric group and the n-sphere and

compare them empirically to existing Shapley value approximations.

Finally, in Chapter 6, we develop a shuffling algorithm specially designed

for GPUs, filling a gap in current parallel primitive algorithms. Our bijective-

shuffle algorithm borrows from cryptography and pseudo random number gen-

eration, resulting in a parallel shuffling algorithm that is work efficient, ac-

curate with respect to the distributions generated, and orders of magnitude

faster than existing algorithms for GPUs or multicore CPUs.

In summary, revisiting the thesis statement, the above mentioned improve-

ments successfully utilise specialised algorithm design and graphics processing

units to significantly improve the throughput of real-world machine learning

pipelines.

145

7.2 Future Work

Broadly speaking, opportunities remain to leverage algorithmic improvements

and compute hardware to improve the outcomes of machine learning projects.

The continued development of open-source software ecosystems is likely to

play a key role in advancing the field — not only due to the provision of useful

software tools for practitioners, but also as an efficient mechanism for later

authors to build upon, and as a means of addressing a reproducibility crisis

in machine learning [48, 45]. Furthermore, GPU-computing is still a subfield

in its infancy. While many embarrassingly parallel problems have been con-

vincingly solved, there remain a number of important emerging applications

for which no effective GPU-acceleration techniques have been developed. Be-

low, we highlight some more specific unanswered questions or opportunities

encountered in individual chapters of this thesis.

The sketching methods introduced in Chapter 3 have further applications

in decision tree algorithms. In particular, the mean absolute error criterion

is difficult to optimise effectively for decision tree models [5], as the calcu-

lation of the value of any given split requires the median of the respective

partitions of labels. This can be addressed in the sequential algorithm using

data structures for the streaming median calculation. In a parallel decision

tree induction algorithm (such as [37]), it is unclear how a similar approach

would be possible. The moment-based quantile sketching methods [39] offer a

data structure capable of estimating the median to reasonable accuracy, while

also being compact and forming an associative operator. Thus, the quantile

sketches can be used in a prefix sum computation in parallel decision tree

induction algorithms such that the mean absolute error criterion can be op-

timised in parallel. This insight may extend to other regression error criteria

beyond absolute error that do not make assumptions of normality.

In Chapter 4, we discuss methods for computing second-order feature inter-

actions in decision tree models. As the number of features grows, the matrix

of second-order interactions grows quadratically such that the computation in-

146

creases dramatically and the usefulness of manual inspection of Shapley values

diminishes. A useful improvement would be an algorithm capable of finding

and generating the top-k interactions only, at a reduced complexity than that

of simply enumerating and filtering all interactions.

Another possible extension would be an in-place shuffling variant of the

algorithm presented in Chapter 6. Most GPU algorithms that require rear-

rangement of inputs, such as sorting, are not in-place (a notable exception

is bitonic sorting [44]). This is also true for the parallel shuffling methods

discussed in Chapter 6. An open question is whether an effective in-place

GPU shuffling algorithm can be formulated. Regardless of whether this is the

case, it would be useful to establish the best-case time complexity for such an

algorithm under the CUDA programming model.

References

[1] ACM. Fathers of the deep learning revolution receive acm a.m. turing

award, March 2019.

[2] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library

for cuda. In GPU computing gems Jade edition, pages 359–371. Elsevier,

2012.

[3] Guy E. Blelloch. Prefix sums and their applications. Technical Report

CMU-CS-90-190, School of Computer Science, Carnegie Mellon Univer-

sity, November 1990.

[4] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, August

1996.

[5] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.

Classification and regression trees. CRC press, 1984.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting sys-

tem. In Proceedings of the 22Nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New

York, NY, USA, 2016. ACM.

[7] Francois Chollet. Deep learning with Python. Simon and Schuster, 2017.

[8] Andreas Christmann and Ingo Steinwart. Universal kernels on non-

standard input spaces. In J. Lafferty, C. Williams, J. Shawe-Taylor,

R. Zemel, and A. Culotta, editors, Advances in Neural Information Pro-

cessing Systems, volume 23. Curran Associates, Inc., 2010.

[9] Shay Cohen, Gideon Dror, and Eytan Ruppin. Feature selection via coali-

tional game theory. Neural Computation, 19(7):1939–1961, 2007.

[10] Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by remov-

ing: A unified framework for model explanation. arXiv preprint

arXiv:2011.14878, 2020.

148

[11] Xiaotie Deng and Christos H Papadimitriou. On the complexity of coop-

erative solution concepts. Mathematics of operations research, 19(2):257–

266, 1994.

[12] Richard M Dudley. Real analysis and probability. CRC Press, 2018.

[13] Peter M Fenwick. A new data structure for cumulative frequency tables.

Software: Practice and experience, 24(3):327–336, 1994.

[14] Yoav Freund and Robert E Schapire. A decision-theoretic generalization

of on-line learning and an application to boosting. J. Comput. Syst. Sci.,

55(1):119–139, August 1997.

[15] Jerome H. Friedman. Greedy function approximation: A gradient boost-

ing machine. The Annals of Statistics, 29(5):1189–1232, 2001.

[16] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard

Schölkopf, and Alexander Smola. A kernel two-sample test. The Journal

of Machine Learning Research, 13(1):723–773, 2012.

[17] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable

effectiveness of data. IEEE Intelligent Systems, 24(2):8–12, 2009.

[18] Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix

sum (scan) with CUDA. GPU gems, 3(39):851–876, 2007.

[19] David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and

the demand for clean air. Journal of environmental economics and man-

agement, 5(1):81–102, 1978.

[20] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Boosting and

Additive Trees, pages 337–387. Springer New York, New York, NY, 2009.

[21] W Daniel Hillis and Guy L Steele Jr. Data parallel algorithms. Commu-

nications of the ACM, 29(12):1170–1183, 1986.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-

ral Comput., 9(8):1735–1780, November 1997.

[23] Joseph JéJé. An introduction to parallel algorithms. Reading, MA:

Addison-Wesley, 1992.

[24] Yunlong Jiao and Jean-Philippe Vert. The kendall and mallows kernels

for permutations. In Proceedings of the 32nd International Conference on

International Conference on Machine Learning - Volume 37, ICML’15,

page 1935–1944. JMLR.org, 2015.

149

[25] Kaggle. Kaggle machine learning & data science survey, 2020. data re-

trieved from, https://www.kaggle.com/c/kaggle-survey-2020.

[26] Margot E Kaminski. The right to explanation, explained. Berkeley Tech.

LJ, 34:189, 2019.

[27] Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approxi-

mation in streams. In 2016 ieee 57th annual symposium on foundations

of computer science (focs), pages 71–78. IEEE, 2016.

[28] Maurice G Kendall. A new measure of rank correlation. Biometrika,

30(1/2):81–93, 1938.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[30] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M.

Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal,

and Su-In Lee. From local explanations to global understanding with

explainable ai for trees. Nature Machine Intelligence, 2(1):2522–5839,

2020.

[31] Scott M Lundberg and Su-In Lee. A unified approach to interpreting

model predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 4765–4774. Curran Associates,

Inc., 2017.

[32] Scott M Lundberg and Su-In Lee. A unified approach to interpreting

model predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 4765–4774. Curran Associates,

Inc., 2017.

[33] Horia Mania, Aaditya Ramdas, Martin J Wainwright, Michael I Jordan,

and Benjamin Recht. On kernel methods for covariates that are rankings.

Electronic Journal of Statistics, 12:2537–2577, 2018.

[34] Pedro J Mart́ın, Luis F Ayuso, Roberto Torres, and Antonio Gavilanes.

Algorithmic strategies for optimizing the parallel reduction primitive in

cuda. In 2012 International Conference on High Performance Computing

& Simulation (HPCS), pages 511–519. IEEE, 2012.

150

[35] Duane Merrill and Michael Garland. Single-pass parallel prefix scan with

decoupled look-back. NVIDIA, Tech. Rep. NVR-2016-002, 2016.

[36] Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal ker-

nels. Journal of Machine Learning Research, 7(12), 2006.

[37] Rory Mitchell and Eibe Frank. Accelerating the xgboost algorithm using

gpu computing. PeerJ Computer Science, 3:e127, 2017.

[38] Rory Mitchell, Eibe Frank, and Geoffrey Holmes. Gputreeshap: Fast

parallel tree interpretability, 2020.

[39] Rory Mitchell, Eibe Frank, and Geoffrey Holmes. An empirical study of

moment estimators for quantile approximation. ACM Transactions on

Database Systems (TODS), 46(1):1–21, 2021.

[40] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer

Science & Business Media, 2006.

[41] NVIDIA Corporation. CUDA C++ programming guide, 2020. Version

11.1.

[42] Jochen Papenbrock, Peter Schwendner, Markus Jaeger, and Stephan

Krügel. Matrix evolutions: synthetic correlations and explainable ma-

chine learning for constructing robust investment portfolios. The Journal

of Financial Data Science, 3(2):51–69, 2021.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[44] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. Fast in-

place sorting with cuda based on bitonic sort. In International Conference

on Parallel Processing and Applied Mathematics, pages 403–410. Springer,

2009.

[45] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lar-

ivière, Alina Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo

Larochelle. Improving reproducibility in machine learning research (a re-

port from the neurips 2019 reproducibility program). Journal of Machine

Learning Research, 22, 2021.

151

[46] Lukas Prediger, Niki Loppi, Samuel Kaski, and Antti Honkela. d3p–a

python package for differentially-private probabilistic programming. arXiv

preprint arXiv:2103.11648, 2021.

[47] Alexandre Quemy. Two-stage optimization for machine learning workflow.

Information Systems, 92:101483, 2020.

[48] Edward Raff. A step toward quantifying independently reproducible ma-

chine learning research. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems, volume 32. Curran Associates, Inc., 2019.

[49] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-

ing Representations by Back-Propagating Errors, page 696–699. MIT

Press, Cambridge, MA, USA, 1988.

[50] Amazon Web Services. Machine learning with Amazon Sage-

Maker. https://docs.aws.amazon.com/sagemaker/latest/dg/

how-it-works-mlconcepts.html. Accessed: 2021-07-18.

[51] Lloyd S Shapley. A value for n-person games. Contributions to the Theory

of Games, 2(28):307–317, 1953.

[52] Erik Strumbelj and Igor Kononenko. An efficient explanation of individual

classifications using game theory. J. Mach. Learn. Res., 11:1–18, March

2010.

[53] Vasily Volkov. Understanding latency hiding on GPUs. PhD thesis, UC

Berkeley, 2016.

[54] Ulrike Von Luxburg and Bernhard Schölkopf. Statistical learning the-

ory: Models, concepts, and results. In Handbook of the History of Logic,

volume 10, pages 651–706. Elsevier, 2011.

[55] Erik Štrumbelj and Igor Kononenko. Explaining prediction models and

individual predictions with feature contributions. Knowl. Inf. Syst.,

41(3):647–665, December 2014.

Appendix A

Co-authorship Forms

