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A B S T R A C T   

In this paper, we investigate both constant and time-varying hedge ratios in terms of the effec
tiveness of CSI300 index futures during the COVID-19 crisis. Using naïve, OLS and EC/ROLS 
strategies to estimate constant hedge ratios, results indicate that the CSI300 spot index presents 
decreased effectiveness using the naïve hedging strategy; however, increased effectiveness of OLS 
and EC hedge ratios are identified. Differential behaviour is identified when considering five 
newly introduced COVID-19 concept-based stock indices. Time-varying hedge ratios indicate the 
weakened effectiveness, ranging between 20% and 40% variance reduction. Evidence suggests 
that the capability of the CSI300 index futures to hedge against the risks of the COVID-19 is 
impaired, regardless of whether constant or time-varying hedge ratios are used. Such results 
provide important implications to both local and foreign investors in the Chinese stock market.   

1. Introduction 

The COVID-19 pandemic has generated interesting questions surrounding whether stock index futures contracts can deliver 
effective hedging functionality against pandemic-related risks, particularly in China due to early origin effects. Effectively answering 
this question is important as not only was China the earliest epicentre of the COVID-19 pandemic, leading to long-range social and 
economic impacts on the local ecosystem, but also a substantial influence upon the pricing dynamics of domestic equity, energy, and 
commodity markets in both the short- and long-term (Corbet, Hou, Hu, and Oxley, 2020). We specifically utilise the China Securities 
Index 300 (CSI300 hereafter) stock index futures, as it was the first futures exchange introduced in China for both domestic and 
qualifying foreign investors. Specifically, it is unclear whether CSI300 index futures are capable of effectively hedging the risk of the 
underlying stock market after the pandemic began. Prior studies have suggested that the CSI300 stock index futures are effective in 
providing a direct hedge over the CSI300 spot index across a variety of hedging strategies (Hou and Li, 2013; Wei et al., 2011; Qu et al., 
2019). We specifically consider how the index futures perform in both direct and cross-hedging scenarios during the COVID-19 
pandemic. 

Furthermore, several sector stock portfolios have been established in China by local financial data providers. These stock portfolios 
consist of several COVID-19-related public firms that operate businesses directly combating COVID-19, such as facemask production, 
virus testing, vaccination research, influenza-related medicine production, and the development and production of disinfectant 
technology (Corbet, Hou, Hu, Oxley, and Xu, 2020). We explore whether Chinese stock index futures offer improved cross-hedging 
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performance against such COVID-19 Chinese concept-based stock indices, providing important evidence as to how efficient the 
Chinese stock index futures are when mitigating the effects of market turmoil developed by the COVID-19 pandemic. To complete such 
analysis, we develop constant hedging strategies including naïve, Ordinary Least Squares (OLS) and Error Correction (EC)/ Revised 
OLS (ROLS) hedging mechanisms. The selected time-varying hedging strategies are based on the bivariate generalised autoregressive 
conditional heteroscedasticity (GARCH) with the specifications of constant conditional correlation (CCC), dynamic conditional cor
relation (DCC) and asymmetric DCC (ADCC) methodologies. Specifically, with the utilisation of these strategies, we construct direct 
hedging portfolios against the CSI300 spot index and cross-hedging portfolios against five COVID-19 concept-based stock indices 
including coronavirus, influenza, facemask, coronavirus detection and disinfectant, by using the CSI300 stock index futures. Hedging 
effectiveness, in light of variance reduction, is assessed for constant and time-varying strategies and compared against each other. We 
examine whether hedging effectiveness differs between the pre-and post-COVID-19 periods while examining the optimal strategy in 
both pre-crisis and crisis periods, the results of which are indicative of the effect of COVID-19 on the optimal level of cross-hedging. The 
effect of transaction costs on hedging effectiveness is also investigated. 

Results indicate that the COVID-19 period enhances estimated hedging effectiveness for two of the three constant hedging stra
tegies (OLS and EC). Concerning constant cross-hedging within the COVID-19 concept-based stock indices, variance reduction falls 
from approximately 49% to 61% in the pre-COVID-19 period to a range between 11% and 45% as the COVID-19 pandemic begins. In 
contrast, time-varying direct hedging based on the CSI300 spot index experiences a reduction in hedging effectiveness between the pre- 
to post-COVID-19 periods. Time-varying cross-hedging over the COVID-19-related stock index portfolios falls, where almost 20% to 
40% of variance reduction is lost in the post-COVID-19 period. The results of the time-varying hedging strategies hold even when 
transaction costs are estimated using daily adjustments of hedge ratios. 

The remainder of the paper is structured as follows. Section 2 presents a brief review of the relevant prior literature. The data and 
methodology used in the paper are presented in Sections 3 and 4, respectively. Section 5 presents empirical results and a discussions. 
Section 6 presents concluding comments. 

2. Previous literature 

The hedging risk of underlying spot assets constitutes one of the fundamental functions of a futures contract. For decades, the 
literature has explored several assumed optimal hedging strategies, particularly those using futures. Originating from Johnson (1976) 
and Stein (1976), a minimum variance (MV) hedging strategy is proposed such that an optimal futures position is pursued to minimise 
the variance of a hedging portfolio consisting of spot assets and futures contract. The optimal position in the futures contract is referred 
to as a minimum variance hedge ratio which is assumed to be constant. Ederington (1979) proposed an ordinary least squares (OLS) 
regression method to obtain a constant MV hedge ratio and recommended a reduction in the variance of the hedging portfolio 
compared to that of an un-hedged case, as a measure of hedging effectiveness. The OLS hedging strategy has been adopted in a set of 
prior studies (Hill and Schneeweis, 1982; Benet, 1992; Malliaris et al., 1991; Chen et al., 2004; Lien and Shrestha, 2007). However, an 
issue based on the underestimation of a constant MV hedge ratio can be identified, since the cointegration of the spot and futures prices 
is not considered in the OLS hedging strategy (Hill and Schneeweis, 1981; Cecchetti et al., 1988; da Hsiang, 1996). To resolve this issue, 
an error correction model that addresses both the long-run equilibrium and the short-run dynamics between spot and futures prices has 
been proposed for the derivation of a constant MV hedge ratio, which is found to provide better performance than the OLS strategy 
(Ghosh, 1993, 1995; Ghosh and Clayton, 1996). In addition, alternative constant optimal hedge ratios have been explored in other 
studies. More complexities are involved in the procedure of generating hedge ratios that aim to either maximise a hedger’s expected 
utility or minimise the downside risk of the hedging portfolio. Typical processes include the mean-Gini coefficient hedging strategy 
(Chen et al., 2004), the generalised semi-variance hedging strategy (Lien and Tse, 2002), the lower partial moment (LPM) method
ology (Demirer and Lien, 2003), the minimum value at risk (VaR) and conditional value at risk (CVaR) hedging strategy (Harris and 
Shen, 2006; Cao et al., 2010), a partial equilibrium model accounting for skewness in the hedger’s utility function (Gilbert et al., 2006), 
and a generalised utility-based framework addressing higher-order moments of joint return distribution (Brooks et al., 2012). 

Constant MV hedging ratios have been questioned in the literature. The conventional methods to derive constant MV ratios are 
underpinned by a ratio of covariance between the hedged asset and futures returns over the variance of futures itself. The literature 
identifies that the variance-covariance matrix of financial time series can exhibit time variations conditioned on the past information 
set, constituting the dynamic nature of joint return distribution (Engle, 1982, 2002; Bollerslev, 1986, 1990; Engle and Kroner, 1995). 
Ignoring the dynamics of second moments of the return distribution in the estimation processes of the MV hedge ratios may lead to 
sub-optimal decisions, especially in periods of high basis volatility. Time-varying MV hedge ratios have been proposed as an alternative 
approach by assuming a bivariate generalised autoregressive conditional heteroscedasticity (BGARCH) model, which suggests ad
justments of the hedge ratios regularly to capture updated market conditions1 (Kroner and Sultan, 1993; Bera et al., 1997; Brooks et al., 

1 Compared to the traditional BGARCH models for hedging strategies, realised measures of the second moments of the return distribution have 
been used to explore effectiveness. Lai and Sheu (2010) incorporate the realised variance into the DCC GARCH model for hedging over the S&P500 
index, identifying improved performance from their modified methodological structure. Markopoulou et al. (2016) suggest a process of utilising 
realised variances and covariances of the hedged assets and futures returns and find improvements in hedging performance. Furthermore, other 
efforts to modify the modelling of time-varying hedge ratios for better performance include the incorporation of marginal skewness and joint excess 
kurtosis parameters in the estimation of the BGARCH hedge ratios (Hou and Holmes, 2020) and an alternative non-parametric estimation approach 
(Fan et al., 2016). 
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2002; Cotter and Hanly, 2006; Baillie et al., 2007; Park and Jei, 2010; Fan et al., 2014; Kim and Park, 2016). Some studies find that 
time-varying hedge ratios can beat the constant competitors given the former’s higher effectiveness (Baillie and Myers, 1991; Park and 
Switzer, 1995). In contrast, other studies disagree where they suggest that utilising time-varying hedging strategies do not improve 
hedging performance over the constant hedging strategies (Lien and Tse, 2002; Collins, 2000). Park and Jei (2010) further find that 
time-varying hedge ratios modestly dominate the constant MV hedging ratios if the former hedge ratios are stable and smooth enough. 
Such superiority, however, is subject to transaction costs incurred by the adjustments of the time-varying hedge ratios. 

The main focus of previous studies has been on direct hedging over the underlying spot asset using futures. However, cross-hedging 
has also been explored by recent studies in equity and commodity markets. Basher and Sadorsky (2016) employed the dynamic 
conditional correlation (DCC), the asymmetric DCC and the generalised orthogonal GO-GARCH models to estimate time-varying hedge 
ratios for hedging the MCSI Emerging Markets Index with using the West Texas Intermediate (WTI) crude oil futures, gold futures, US 
Treasury bond futures and the VIX. They find that hedge ratios from the ADCC model are most effective for the hedging portfolios 
including oil, VIX, or bonds. The GO-GARCH based hedging strategy is best when using gold to hedge against the emerging stock index. 
Maghyereh et al. (2017) explore cross-hedging over stock indices in the Gulf Cooperation Council (GCC) countries using Brent crude oil 
and gold. By utilising a DCC-GARCH model-based hedging strategy, they find that both crude oil and gold can be cheap hedging tools. 
Belhassine (2020) applied multiple Eurozone sectoral indices to hedge Brent crude oil by utilising a time-varying hedging strategy 
based on a vector autoregressive (VAR)-BEKK-GARCH model. They focus on the dynamics of the time-varying hedge ratios, identifying 
that low-cost hedges could be constructed by small hedge ratios. In addition, the compositions of cheap hedging portfolios vary be
tween pre- to post-crisis periods. Junttila et al. (2018) investigate the cross-hedging of the gold and WTI crude oil futures against risks 
of the S&P500 Composite Total Return Index and the S&P500 Energy IG Price Index. Using dynamic hedging strategies based on the 
DCC- and ADCC-GARCH models, they find that crude oil futures were an attractive instrument during the 2007–2008 financial crisis 
when compared to gold. However, oil futures were less attractive when the market suffered from backwardation. In addition, using oil 
futures to hedge energy sectors was identified to be more expensive than expected. Corbet, Goodell, and Günay (2020) identified 
significant volatility spillovers between the negative WTI price event of April 2020 upon energy sub-sectors, with differential effects 
observed in the markets for both coal and renewables found to be directly attributed to the negative WTI price which was related to the 
onset of the COVID-19 pandemic. 

As the Chinese stock market plays an increasingly important role in the global financial system, the hedging functionality of the 
CSI300 index futures has attracted increased academic attention since its launch in 2010. Wei et al. (2011) utilised a multi-fractal 
volatility (MFV) methodology combined with dynamic copula functions to generate dynamic hedge ratios for the CSI300 index fu
tures. Both direct and cross-hedging over the Chinese stock indices are examined. They find that the copula-MFV model can yield better 
hedging effectiveness than the copula-GARCH-type models and the former model benefits from lower transaction costs. Hou and Li 
(2013) assess the hedging performance of the constant hedging strategies, including both constant and wavelet-based models, against 
B-GARCH-based dynamic hedging strategies for multiple time horizons. They show that direct hedging of the CSI300 index futures 
favours constant strategies in the long-run whereas dynamic strategies are preferred in the short-run. Yan and Li (2018) used a Markov 
regime-switching BEKK-GARCH model to construct a hedging strategy for CSI300 index futures where they suggest that the 
regime-switching BEKK-model provides better performance compared to the BEKK-GARCH and OLS based hedging strategies. Qu et al. 
(2019) develop dynamic hedge ratios using high-frequency data based on the realised minimum variance (RMV) approach and assess 
its hedging performance against a set of alternative constant and time-varying hedging ratios. They show that the RMV hedge ratios 
outperform the other approaches, where the results are found to be robust across several different market structures and volatility 
regimes. 

Substantial changes in social and economic conditions due to COVID-19 have been analysed in detail. Corbet, Larkin, and Lucey 
(2020) investigate the contagion effects of COVID-19 on gold and cryptocurrency markets. Furthermore, Corbet, Hou, Hu, Lucey, and 
Oxley (2020) examine the contagion effects relating to similarities in the COVID name on stock markets2 . Moreover, Conlon et al. 
(2020) explore evidence of safe-haven and flight-to-safety behaviour in the cryptocurrency markets during the COVID-19 pandemic3 . 

3. Data 

To analyse hedging effectiveness during crises, we use the daily close prices of the China Securities Index (CSI300), the China 
Securities Index (CSI300) index futures, and five COVID-19-related stock indices comprised of A-share stocks traded in the Shanghai 

2 Such research builds upon work that investigates contagion and spillover effects due to a variety of behavioural effects relating to crypto
currency dynamics. Important work here includes, (Cioroianu et al., 2020a,b; Meegan et al., 2018; Akhtaruzzaman et al., 2020; Akyildirim, Corbet, 
Cumming, Lucey, and Sensoy, 2020; Hu et al., 2020; Katsiampa et al., 2019a,b) and (Akyildirim, Corbet, Sensoy, and Yarovaya, 2020). A concise 
review of cryptocurrency market behaviour is provided by Corbet et al. (2019). Specific research surrounding the COVID-19 pandemic that was used 
to guide our choice of data and methodological structure include that of Goodell (2020); Goodell and Goutte (2020); Goodell and Huynh (2020), 
along with COVID-19 research based on fiscal response and recovery dynamics (Seven and Yilmaz, 2021; David et al., 2021); market interactions 
(Lin and Su, 2021; Goutte et al., 2020; McIver and Kang, 2020; Ashraf, 2020); supply chain disruption (Tang et al., 2021) and corporate social 
responsibility (Popkova et al., 2021).  

3 (Corbet, Hou, Hu, Larkin, and Oxley, 2020), where accounting for the polarity and subjectivity of social media data based on the development of 
the COVID-19 outbreak, evidence of safe-haven is found in the major cryptocurrency markets and market returns are significantly affected by 
negative sentiment associating to COVID-19. 

S. Corbet et al.                                                                                                                                                                                                         



Research in International Business and Finance 59 (2022) 101510

4

and Shenzhen Stock Exchanges4 . Data for the CSI300 index and index futures were obtained from Thomson Reuters DataStream, while 
data for the five COVID-related stock indices are derived from the WIND database. The WIND database is a China-based financial data 
service provider that serves the domestic financial communities in China as well as foreign qualified investors. Data provided by WIND 
is widely used in the literature when considering Chinese issues (see, for example, Liu et al., 2019; Allen et al., 2019; Corbet, Hou, Hu, 
and Oxley, 2020). Following (Corbet, Hou, Hu, Oxley, and Xu, 2020), the COVID concept-based stock indices considered in this paper 
include the coronavirus index, the facemask index, the influenza index, the coronavirus-detection index, and the disinfectant index. 
These five indices are representative of the influences of COVID-19 on financial markets in China since their constituent stocks are 
closely related to activities related5 to COVID-19 (Corbet, Hou, Hu, Oxley, and Xu, 2020). Within each index portfolio, the constituent 
stocks are equally weighted, and the stocks selected from the WIND database are based upon the relevant industrial linkages and 
characteristics including turnover, market quotation and transaction features. 

The sample period is from January 1, 2012, through to September 30, 2020. The starting point of the sample period varies across 
the other four COVID-related stock indices because they were created later than the coronavirus index by the WIND database. We 
create six samples consisting of paired price series of the CSI300 index futures and one counterpart including the underlying CSI300 
spot and the five COVID-19 related indices. For the continuous index futures price series, we use data from the closest nearby contracts 
in each calendar month and switch to the next nearby in the contract month based on the trading volume. All the price series are 
transformed into natural logarithms. The full sample is split into two sub-periods, the first referred to as the pre-COVID period 
(hereafter labelled as P1), the other is the post-COVID period (hereafter labelled as P2). We follow Corbet, Hou, Hu, Oxley, and Xu 
(2020) when selecting November 17, 2019, as the start date for the COVID-19 outbreak in China as the South China Morning Post had 
reported that the first case of COVID-19 was detected in mainland China on November 17, 2019, then identified as a ‘mystery 
pneumonia’. Therefore, P1 runs from January 1, 2012, to November 16, 2019, while P2 from November 17, 2019, to September 30, 
2020. For both P1 and P2 periods, we use 60% of the sample for the in-sample estimation on the static hedge ratios and the bivariate 
GARCH model estimates. Simultaneously, 40% of the rest of the sample is used for the out-of-sample forecasting on the time-varying 
hedge ratios, the hedged portfolio returns and the hedging effectiveness6 . This aligns with Lien and Shrestha (2007), Lai and Sheu 
(2010), Hou and Li (2013) and Hou and Holmes (2020). 

Table 1 presents the descriptive statistics of the return series. Returns are calculated as the first differences of logarithmic prices. 
The mean performance of all the series is higher in the post-COVID-19 period than in the pre-COVID-19 period. The gap is larger for the 
COVID-concept based indices. The volatility, as represented by the standard deviation, does not differ substantially between the pre- 
and post-COVID-19 periods. The results of the Jarque-Bera test reject the null that the return series follows a normal distribution, such 
that it is important to account for non-normality in the estimation of the GARCH models. The results of the Ljung-Box test reject no 
autocorrelation in the squared returns, suggesting that volatility clustering may exist in each return series. This phenomenon will be 
addressed by the selected GARCH model specification. Fig. 1 presents the daily movements of prices, where it is identified that before 
the COVID-19 outbreak, there are several sharp price increases and decreases7 in the price series of the CSI300 index, the CSI300 index 
futures, the coronavirus index, and the influenza index across the years 2015 and 2016. Secondly, the daily prices of all the COVID- 
concept based stock indices increase during the COVID-19 pandemic. In contrast, sharp decreases in the prices of the CSI300 index and 
index futures are observed after the COVID-19 outbreak. These observations suggest that even though the COVID-19 outbreak broadly 
negatively impacts stock markets in China, the firms that are heavily involved in pandemic-related activities obtained larger returns 
when compared to the pre-COVID-19 period. It is therefore of interest to explore whether the CSI300 stock index futures can provide an 
efficient hedging function compared to the COVID-19 related index portfolios. Unit root tests suggest that all the price series are 
integrated of order 1, I(1), while all the return series are integrated at order 0, I(0), during both the pre- and post-COVID-19 periods. 
We use the Johansen cointegration test to consider the existence of cointegration between the CSI300 index futures and the other 
indices. Note that the test applies to the pre-defined in-sample estimation window of both the pre-and post-COVID-19 sample periods. 
We find that in both periods, the CSI300 spot and index futures prices are cointegrated. In the pre-COVID-19 period, the influenza 
index prices are cointegrated with the CSI300 index futures prices. For the cointegrated series, we employ a vector error correction 
model (VECM) to model the conditional means of the bivariate SNP distribution. The cointegration test rejects cointegration between 
the CSI300 index futures and the other index series in the rest of the sample periods. Henceforth a vector autoregressive (VAR) model is 
used to model the conditional means8 . 

4 Testing of the COVID-related indices enables us to explore the effectiveness of the CSI300 index futures to hedge against risks that the COVID-19 
outbreak imposed on the Chinese financial markets.  

5 The coronavirus index consists of 110 publicly listed Chinese firms that conduct business activities related to producing diagnostic reagents, 
vaccines, antibiotics, antivirals, and masks related to pneumonia. The influenza index comprises 35 A-share companies that produce cold medicines, 
vaccines, R&D, and manufacturing related to the influenza virus which is also an acute respiratory infection. The facemask index consists of 37 listed 
firms in China that produce facemasks and related raw materials. The coronavirus detection index includes 24 publicly listed firms in China that 
focus on research, development, and manufacture of coronavirus testing products. Finally, the disinfectant index is comprised of 21 companies that 
produce disinfectants, disinfectants, peracetic acid and bleaching powder that can assist in reducing the ineffectiveness of the COVID-19 virus.  

6 One reason for the 60%–40% division of sample is that the choice typically leads to higher reliability and accuracy for the estimation of the 
hedge ratios and hedging effectiveness.  

7 Many of these events relate to the Chinese stock market crash from mid-2015 through to early 2016.  
8 The unit root and Johansen cointegration test results are available upon request. 
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4. Methodology 

The hedging and cross-hedging strategies using futures contracts are based upon the concept that uncertainties in the values of a 
hedged position are reduced by a position in futures contracts. Among a set of hedging strategies, the minimum-variance (MV) hedging 
strategy is popular among hedgers whereby the goal of minimising the volatility of the hedging portfolio is pursued. Take a short hedge 
as an example, which is widely analysed in the literature (Chen et al., 2004; Lien and Shrestha, 2007; Park and Jei, 2010; Hou and Li, 
2013; Qu et al., 2019), a portfolio consists of a long asset position of Cs units and a short futures position of Cf units. Denoting the 
natural logarithms of the hedged asset and futures daily prices as St and Ft at the end of date t, respectively, the return of the hedging 
portfolio over one day, in line with Chen et al. (2004) and Lien and Shrestha (2007), is shown as: 

ΔVH,t = CsΔSt − Cf ΔFt (1)  

where ΔSt = St − St− 1 and ΔFt = Ft − Ft− 1 represent logarithmic daily returns of the hedged asset and futures at date t, respectively. 
According to Lien and Shrestha (2007), the hedge ratio that minimises the variance of ΔVH,t is calculated as: 

h∗ =
Cs

Cf
=

Cov(ΔSt,ΔFt)

Var(ΔFt)
(2)  

where Cov(ΔSt ,ΔFt) denotes the unconditional covariance and Var(ΔFt) denotes the unconditional variance. h∗ is referred to as the MV 
hedge ratio. It should be noted that this paper focuses on short hedging/cross-hedging strategies that reduce the volatility of hedged 
positions. 

4.1. Constant hedge ratios 

The first constant hedge ratio artificially sets h∗ in Eq. (2) to unity. Such a ratio is referred to as the naïve hedge ratio. Alternatively, 
to achieve the minimisation of the hedging portfolio’s variance, we follow Eq. (2) by regressing the futures return against the hedged 
asset return. Henceforth, we have the ordinary least square (OLS) hedge ratio as below 

ΔSt = α + βΔFt + et (3)  

where the MV hedge ratio (h∗) is an estimate of β. Although the OLS hedge ratio is simple to estimate and apply, Eq. (3) does not 
consider a latent cointegration between the hedged asset and futures prices as well as the effects of lagged returns on concurrent ones. 

Table 1 
Descriptive statistics of return series.   

CSI300 IF CSI300 COVID Influenza  
P1 P2 P1 P2 P1 P2 P1 P2 

Mean 2.44E-04 7.06E-04 2.45E-04 7.38E-04 4.59E-04 0.003 1.58E-04 0.002 
Median 0.000 5.93E-04 0.000 7.83E-04 0.002 0.003 0.001 0.002 
Max 0.095 0.072 0.065 0.055 0.072 0.067 0.082 0.059 
Min − 0.105 − 0.098 − 0.092 − 0.082 − 0.102 − 0.067 − 0.096 − 0.067 
Std. Dev. 0.015 0.015 0.014 0.014 0.019 0.020 0.020 0.019 
Skewness − 0.463 − 1.029 − 0.742 − 1.071 − 0.839 0.067 − 0.954 − 0.066 
Kurtosis 12.025 12.901 9.29 9.155 6.642 4.113 8.351 4.102 
JB 7.04E+03*** 971.563*** 3.57E+03*** 403.455*** 1.28E+03*** 11.268*** 1.59E+03*** 11.036*** 
Q2(12) 973.501*** 5.096 726.412*** 7.279 1.26E+03*** 91.991*** 1.54E+03*** 46.519***  

Facemask COVID Detection Disinfectant    
P1 P2 P1 P2 P1 P2   

Mean − 4.03E-05 0.003 − 4.62E-04 0.003 0.001 0.001   
Median 0.001 4.43E-04 − 3.54E-04 0.005 0.001 0.002   
Max 0.048 0.125 0.053 0.070 0.046 0.072   
Min − 0.081 − 0.068 − 0.077 − 0.065 − 0.067 − 0.080   
Std. Dev. 0.017 0.026 0.019 0.023 0.018 0.018   
Skewness − 0.646 0.577 − 0.246 − 0.059 − 0.417 − 0.243   
Kurtosis 5.499 5.659 3.829 3.448 4.033 6.237   
JB 61.990*** 75.265*** 17.588*** 1.925 13.815*** 95.977***   
Q2(12) 18.922* 92.595*** 11.916 22.625** 32.784*** 68.096***   

Note: Return series are calculated as the first differences of logarithmic prices. P1 refers to the sample period running from January 1, 2012 to 
November 16, 2019. P2 refers to the sample period running from November 17, 2019 to September 30, 2020. The starting dates of P1 for the 
influenza, facemask, coronavirus detection and disinfectant index vary across. CSI300 IF denotes the CSI300 index futures. Max, maximum; Min, 
minimum; Std. Dev., standard deviation. JB denotes the Jarque-Bera test on normality. Q2(12) denotes the Ljung-Box Q statistic on squared return 
series up to 12 lags. E stands for the scientific notation. 

* significance at the 10% levels. 
** significance at the 5% levels. 
*** significance at the 1% levels. 
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In other words, a conditional mean specification on hedged asset return in a bivariate return distribution of hedged asset and futures 
needs to be considered. Following Lien and Shrestha (2007), the following equation is proposed: 

ΔSt = βecΔFt + a0 + a1ect− 1 +
∑p

i=1
asiΔSt− i +

∑q

j=1
afjΔFt− j + εt (4)  

where ect− 1 is the lagged error correction term if the cointegration exists between St and Ft . Then we have ect− 1 = St− 1 − a − bFt− 1. In 
Eq. (4), the MV hedge ratio (h∗) is an estimate of βec. The hedge ratio is referred to as error correction (EC) hedge ratio. Note that if 
cointegration does not exist between St and Ft, a1 is zero and the lagged error correction term is excluded. In such cases the MV hedge 

Fig. 1. Movements of daily prices. Note: The shaded area refers to the sample period running from November 17, 2019 to September 30, 2020. I 
denotes the first quarter; II refers to the second quarter; III refers to the third quarter; and IV refers to the fourth quarter. 
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ratio βec is referred to here as revised OLS (ROLS) ratio. Compared to Eq. (3), Eq. (4) accounts for the long-run responses of hedged asset 
prices to lagged deviations of a long-run equilibrium via coefficient a1 as well as the temporary effects of lagged asset and futures 
returns on current asset returns. The lag orders of p and q in Eq. (4) are determined by the Akaike Information Criteria (AIC). 

We estimate naïve, OLS and EC/ROLS hedge ratios and apply them to the construction of hedging portfolios. It should be noted that 
all the ratios are assumed to be constant over time, which means that a hedger has to hold the static number of futures contracts until 
the end of the hedging horizon. Static ratios are unlikely to be efficient when faced with the time-varying dynamics of the second 
moments of financial returns. 

4.2. Time-varying hedge ratios 

The existing literature acknowledges that the second moments of financial time series can cluster across time. Such phenomenon is 
explained via an autoregressive conditional heteroscedasticity (ARCH) or a generalised ARCH (GARCH) model (Engle, 1982; Bol
lerslev, 1986). The GARCH family models suggest that the variance and covariance of financial time series may be conditioned on past 
information, exhibiting a time-varying nature. In such cases, the unconditional MV hedge ratio in Eq. (2) can be extended to being 
conditional, as has been explored by a number of prior studies (Bera et al., 1997; Brooks et al., 2002; Baillie and Bollerslev, 2002; Park 
and Jei, 2010; Hou and Holmes, 2020). The conditional MV hedge ratio is represented by: 

h∗
t =

Cov(ΔSt,ΔFt|It− 1)

Var(ΔFt|It− 1))
(5)  

where It− 1 is the available information set up to time t − 1. Time variation of h∗
t is captured by the conditional covariance of the hedged 

asset and futures returns as well as the conditional variance of futures returns. To obtain time-varying MV hedge ratios, we adopt three 
bivariate GARCH models which are widely employed in the literature to specify the conditional variance-covariance matrix of hedged 
asset and futures returns. The conditional mean of hedged asset and futures returns in a bivariate distribution is specified as a Vector 
Error Correction Model (VECM) if cointegration exists between the prices of hedged assets and futures. If cointegration does not exist, 
the VECM reduces to a Vector Autoregressive (VAR) model. The innovations of the VECM/VAR model have the following features: 

εt|It− 1 ∼ F(0,Ht) (6)  

where εt is a 2 × 1 vector of the innovations and Ht is the conditional variance-covariance matrix of εt. F denotes a bivariate conditional 
distribution. 

We consider the constant conditional correlation (CCC) (Bollerslev, 1990), the dynamic conditional correlation (DCC) (Engle, 
2002) and the asymmetric dynamic conditional correlation (ADCC) (Cappiello et al., 2006) GARCH models to specify the conditional 
variance-covariance matrix Ht. The multivariate conditional correlation (CC) family GARCH models are adopted because when 
compared to the alternative, BEKK (Engle and Kroner, 1995) GARCH specification, the CC family specifications can yield better es
timates against a variety of time-varying correlation processes and generate more accurate estimates of conditional variances (Tse and 
Tsui, 2002). Specifically, under the CCC GARCH model, the conditional variance-covariance matrix Ht is specified as 

Ht = DtRDt (7)  

where Dt =

[ ̅̅̅̅̅̅̅̅
h11,t

√
0

0
̅̅̅̅̅̅̅̅
h22,t

√

]

and Rt =

[
1 ρ12
ρ12 1

]

where ρ12 is the constant correlation between the hedged asset and futures returns. h11,t is the conditional variance of hedged asset 
returns and h22,t is the conditional variance of futures return. Further, the individual conditional variances are specified in an expo
nential GARCH (EGARCH) model proposed by Nelson (1991). Henceforth we have: 

log(hii,t) = λ1i + λ2i

⃒
⃒
⃒
⃒
⃒

εi,t− 1
̅̅̅̅̅̅̅̅̅̅̅
hii,t− 1

√

⃒
⃒
⃒
⃒
⃒
+ λ3i

εi,t− 1
̅̅̅̅̅̅̅̅̅̅̅
hii,t− 1

√ + λ4ilog(hii,t− 1), i = 1, 2 (8)  

where log(hii,t) denotes the natural logarithm. λ2i captures the effects of the lagged shocks and λ4i measures the persistence. λ3i captures 
asymmetry in the conditional variance where a negative estimate indicates a negative past shock has a larger effect on volatility than 
an equally positive past shock. The condition for the stationarity of hii,t− 1 is λ4i. In contrast to the standard univariate GARCH spec
ification, the EGARCH model ensures the positivity of conditional variance without imposing any restrictions on the estimation of 
parameters. Furthermore, there are fewer constraints on parameter estimation to guarantee the stationarity of conditional variance. In 
contrast to the CCC-GARCH model, the DCC-GARCH model is specified as: 

Ht = DtRtDt (9)  

where Dt =

[ ̅̅̅̅̅̅̅̅
h11,t

√
0

0
̅̅̅̅̅̅̅̅
h22,t

√

]

and  
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Rt = (diag(Qt))
− 1/2Qt(diag(Qt))

− 1/2 where  

Qt = (1 − θ1 − θ2)Q + θ1εt− 1ε′

t− 1 + θ2Qt− 1  

where εt− 1 is a 2x1 vector of standardised innovations where εt = (ε1t , ε2t)
′

and εit = εit̅̅ ̅̅̅
hiit

√ , i = 1, 2. The conditional variance, hiit 

where (i=1,2), is specified via an EGARCH model, following Eq. (8), Qt is a 2x2 conditional variance-covariance matrix of standardised 
innovations. Q = E

[
εtε

′

t
]
] is the unconditional variance-covariance matrix of standardised innovations. θ1 and θ2 are scalar parameters. 

To ensure the positive definiteness of Qt , θ1 > 0, θ2 > 0, and θ1 + θ2 < 1 measures the effect of the lagged shocks on conditional 
correlation and θ2 examines the persistence of conditional correlation. 

Finally, according to Cappiello et al. (2006), the ADCC-GARCH model modifies Eq. (9) by specifying Qt as follows, with all else the 
same as the DCC model: 

Qt = (1 − δ2
1 − δ2

2)R − δ2
3S + δ2

1εt− 1ε′

t− 1 + δ2
2Qt− 1 + δ2

3st− 1s
′

t− 1 (10)  

where εt = (ε1t, ε2t)
′

. R = e[εtε
′

t ]] is the unconditional variance-covariance matrix of standardised innovations. S = e[εsε
′

s]] is the 
unconditional variance-covariance matrix of St . St = IxεT where it is a 2x1 indicator function that equals to one if εt < 0 and zero 
otherwise. x is the element-by-element multiplication operator. δ1, δ2 and δ3 are scalar parameters. δ2

3 controls the asymmetry in 
conditional correlation in response to the joint past negative shocks. To ensure the positive definiteness of Qt, it is required that δ2

1 +

δ2
2 + ωδ2

3 < 1 where ω is maximal eigenvalue of 
[
R− 1/2SR− 1/2

]
. 

We utilise a bivariate semi non-parametric (SNP) distribution to obtain estimates of the CCC-, DCC- and ADCC-GARCH models. 
Compared to some alternatives such as the bivariate conditional normal, Student’s t and skew Student’s t distributions, the SNP 
distribution has merit in terms of the estimation of the conditional correlation GARCH-family of models, provided that the conditional 
distributions of financial time series exhibit asymmetry and fat tails against normality (Bollerslev, 1987; Engle and Gonzalez-Rivera, 
1991; Bauwens and Laurent, 2005; Park and Jei, 2010). According to Del Brio et al. (2011), Ñíguez and Perote (2016) and Del Brio 
et al. (2017), the SNP distribution straightforwardly adds the marginal skewness and kurtosis terms to the bivariate normal probability 
density function (PDF), which enables the flexible incorporation of asymmetry and excess kurtosis in a non-normal multivariate 
distribution. Such features also facilitate the estimation of higher-order moments via a maximum log-likelihood estimation (MLE) 
procedure via two separate steps. In so doing, the consistency and efficiency of the model estimation can be maintained. 

The log-likelihood of a bivariate standardised SNP density that each observation at time t contributes to, excluding unnecessary 
constant component, is written as: 

lt = −
1
2

ln|Rt| −
1
2

ln
⃒
⃒ε′

tR
− 1
t εt

⃒
⃒+ ln

{
∑2

i=1
ω− 1

i ψ2
i (xit)

}

(11)  

where ωi = 1 + s2
i + k2

i ,

ψ(xit) = 1 + si(x3
it − 3xit) + ki(x4

it − 6x2
it + 3),

xt = (x1t, x2t) = R− 1/2
t εt  

εt = [ε1t, ε2t]
′

where si (i=1,2) is the parameter of marginal skewness and ki (i=1,2) is the parameter of marginal excess kurtosis. Rt is the conditional 
correlation matrix that is specified in the CCC, DCC and ADCC GARCH models. Note that in the CCC model Rt changes to R that is the 
unconditional correlation matrix. The model estimations are obtained via maximising the following equation 

L =
∑T

t=1
lt(Θ) (12)  

where T is the sample size and Θ is a vector of parameters. There are two steps required for the derivation of the GARCH model es
timates. In the first step, the conditional variance equations are estimated via Quasi MLE (QMLE) assuming Gaussian innovations. In 
the second step, the parameters of the conditional correlations and marginal skewness and excess kurtosis are estimated by maximising 
the log-likelihood of the bivariate standardised SNP distribution. 

4.3. Measurement of hedging effectiveness 

A hedging strategy is an ex-ante process, which requires a two-step process for implementation (Lai and Sheu, 2010; Lien and 
Shrestha, 2007; Hou and Li, 2013; Hou and Holmes, 2020). In doing so, we split the full sample into an in-sample estimation window 
and an out-of-sample forecasting window. Firstly, in-sample estimation is conducted via the in-sample estimation window to derive 
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static hedge ratios for a constant hedging strategy. Concerning time-varying hedging strategies, in-sample estimation is used to obtain 
the GARCH model estimates. Secondly, for constant hedging strategies, we apply static hedge ratios to construct the hedging portfolios 
via the out-of-sample forecasting window. Aligning with Eq. (1), we obtain the hedging portfolio returns as follows: 

ΔVH,t = ΔSt − h∗ΔFt (13)  

where h∗ is the estimated static hedge ratio. In terms of the time-varying hedging strategies, we use the GARCH model estimates for 
recursive forecasting based on conditional variances and covariances, through the out-of-sample forecasting window. The time- 
varying MV hedge ratios are then derived via the forecasted second moments using Eq. (5). Henceforth returns of the hedging port
folio are denoted as: 

ΔVH,t = ΔSt − h∗
t− 1ΔFt (14)  

where h∗
t− 1 is the forecasted time-varying MV hedge ratio at time t-1. For both constant and time-varying MV hedging strategies, 

hedging effectiveness is measured by the following equation 

VR = 1 −
Var(ΔVH,t)

Var(ΔSt)
(15)  

where VR is variance reduction. Var(.) denotes variance. VR measures the percentage reduction in the variance of the hedged asset 
(ΔSt) by the implementation of hedging strategies (ΔVH,t)). Variance reduction is extensively employed to measure hedging effec
tiveness for the MV hedging strategies in the literature. Furthermore, we consider the hedging effectiveness with transaction costs for 
the time-varying hedging strategies because the MV hedge ratio is updated based upon the past information; and thus, we have to 
adjust the units of futures contracts in the hedging portfolio. This incurs transaction fees against the hedging portfolio returns as the 
adjustments are implemented. Following Hou and Holmes (2020), the returns of the hedging portfolio under transaction fees is shown 
as: 

ΔVH,t = ΔSt − h∗
t− 1ΔFt −

⃒
⃒h∗

t− 1 − h∗
t− 2

⃒
⃒Ft− 1C∗

⃒
⃒St− 1 − h∗

t− 1Ft− 1
⃒
⃒

(16)  

where c∗ is scaled trading fees relating to one unit of hedged asset. According to the contract specification of the CSI300 index futures, 
c∗ = c/300 and 300 is the contract multiplier9 . As per the trading rules of the China Financial Future Exchange (CFFEX), c is the 
proportion of the transaction amount of index futures contracts and its maximum value is 0.005%. Here, we adopt the maximal c value 
of 0.005% to calculate the hedged portfolio returns via Eq. (16). Variance reduction is then calculated by Eq. (15). We, therefore, 
consider the hedging effectiveness of the time-varying hedging strategies assuming the maximal transaction cost. 

5. Empirical results 

5.1. Constant hedge ratios and hedging effectiveness 

Constant hedge ratios and associated hedging effectiveness statistics are presented in Table 2, where we observe the results for P1 
and P2, respectively. For each sample period, 60% of the data is used to estimate OLS and EC/ROLS hedge ratios and 40% is used to 
calculate hedging effectiveness. From the results, concerning the hedging strategies against the CSI300 spot index, variance reduction 
decreases moderately for the naïve strategy post the COVID-19 pandemic occurrence. However, the OLS and EC strategies present 
significant variance reduction in the same analysed period, suggesting that the outbreak of the COVID-19 had little impact on hedging 
effectiveness for the constant hedging strategies that use the CSI300 index futures contracts to hedge against the CSI300 spot index. In 
contrast, the constant cross-hedging strategies for the COVID concept-based stock indices using index futures are found to be signif
icantly affected by the COVID-19 pandemic in terms of hedging performance. For example, between 49% and 61% of the volatility of 
the hedged positions are removed by constant cross-hedging strategies in the pre-COVID-19 period. While between 11% and 45% of 
the volatility of the hedged positions are eliminated by constant strategies post the pandemic occurring. Furthermore, the OLS and 
ROLS strategies fail to provide hedging effectiveness for the facemask index in the post-COVID-19 period given the negative reduction 
in variance. 

The estimated variance reduction of the optimal constant hedging strategies is found to vary across the hedged stock indices. The 
optimal strategy for the CSI300 spot index is estimated to be the EC strategy in the period before COVID-19. In the post-COVID-19 
period, the best strategies are EC and OLS. Moreover, in the P1 period, the optimal cross-hedging strategies for the COVID concept- 
based stock indices are the naïve (for coronavirus index), OLS (for influenza index), naïve and OLS (for the facemask index), naïve 
and ROLS (for the coronavirus detection index), and OLS and naïve (for the disinfectant index) strategies. Analysing the P2 period, the 
optimal strategies for the COVID concept-based stock indices transition to the naïve (for coronavirus, facemask, and coronavirus 
detection indices), ROLS (for influenza index), and OLS (for disinfectant index) strategies. Overall, the cross-hedging strategy for the 
COVID-related stock indices, the naïve hedging strategy is the most effective before the COVID-19 pandemic, followed by the OLS 

9 Relevant information is accessed via the China Financial Futures Exchange website. 
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strategy. However, in the post-COVID-19 period, the naïve strategy performs best compared to the others considered. The results 
suggest that the COVID-19 pandemic affects the choice of the optimal constant hedging strategy, especially when it is required to hedge 
against the COVID-related stock portfolios. The naïve hedging strategy is estimated to be the most optimal to select when demand for 
cross-hedging of COVID-19 stock portfolios arises. 

5.2. Time-varying hedge ratios and hedging effectiveness 

Table 3 presents the estimation results for the bivariate CCC-, DCC-, and ADCC-GARCH models. The volatility of the CSI300 spot 
index is significantly affected by the recent shocks. Persistence in the estimated volatility is also apparent. Result holds for the P1 
period. While in the P2 period, a similar result is maintained, and also recent negative shocks present differing impacts on volatility 
compared to recent positive shocks, as do the estimated volatilities of the stock index futures. Concerning the COVID-19-related stock 
indices, volatilities are found to be conditional on past information. Both recent shocks and lagged volatility significantly impact 
current volatility. Negative shocks behave differently from recent positive shocks in terms of explanatory power, particularly in the P2 
period. 

Moreover, constant conditional correlations between stock indices and index futures are all significant across samples. The constant 
correlations are positive with a large magnitude. The DCC-GARCH result suggests that the pairwise correlations can be significantly 
explained by recent COVID-19-related shocks, where some also exhibit persistence. Recent joint negative shocks in both markets play a 
critical role in driving conditional correlations. Finally, we find that the marginal excess kurtosis parameter is significant across 
samples, suggesting that it is important for explaining the non-normality of the bivariate return distribution. The Ljung-Box test result 
indicates that there are no autocorrelations in either the standardised residuals or their squares. The bivariate GARCH models, 
therefore, seem well specified, with the results holding for both P1 and P2. 

The results of the forecasted time-varying MV hedge ratios from the bivariate GARCH models are presented in Table 4, in terms of 
their means, medians, and standard deviations. For the CCC-GARCH model, the mean hedge ratio for the coronavirus index decreases 
from P1 to P2, whereas the mean hedge ratios for the CSI300 spot index and the other four COVID-19 concept-based stock indices 
increase from P1 to P2. The situation changes for the DCC-GARCH model where the mean hedge ratios for all the stock index portfolios 
decrease from P1 to P2. The result from the ADCC-GARCH model appears to be less clear. The mean hedge ratios for the CSI300 spot 
index, the coronavirus index, the facemask index, and the disinfectant index decrease from P1 to P2. In contrast, the means for the 
other two COVID-19 related indices increase from P1 to P2. Furthermore, the standard deviations of the time-varying MV hedge ratios 
increase from P1 to P2, which is evidenced for all the GARCH models and all the stock indices. One exception is the standard deviation 
of the time-varying hedge ratio for the CSI300 spot index forecasted from the CCC model, which decreases from P1 to P2. The results 
presented in Table 4 suggest that taking account of the dynamics of the conditional correlation between the hedged asset and the index 
futures affects the behaviour of the hedge ratios in terms of their magnitudes. The COVID-19 pandemic appears to affect such 
behaviour. Moreover, accounting for the dynamics of the conditional correlation influences the volatility of the time-varying hedge 

Table 2 
Constant MV hedge ratios and hedging performance.   

CSI300 COVID Influenza Facemask COVID detection Disinfectant 

Naïve 
P1 
Hedge ratio 1.000 1.000 1.000 1.000 1.000 1.000 
VR 0.919 0.488 0.605 0.538 0.597 0.527 
P2 
Hedge ratio 1.000 1.000 1.000 1.000 1.000 1.000 
VR 0.915 0.349 0.328 0.293 0.203 0.397 
OLS 
P1 
Hedge ratio 0.871 0.825 0.930 0.983 0.976 1.007 
VR 0.921 0.485 0.614 0.538 0.596 0.527 
P2 
Hedge ratio 0.916 0.158 0.206 − 0.138 0.221 0.817 
VR 0.925 0.137 0.170 − 0.141 0.114 0.453 
EC/ROLS 
P1 
Hedge ratio 0.903 0.830 0.973 0.949 0.993 0.974 
VR 0.924 0.486 0.609 0.535 0.597 0.526 
P2 
Hedge ratio 0.923 0.260 0.941 − 0.165 0.232 0.838 
VR 0.925 0.209 0.344 − 0.171 0.118 0.449 

Note: This table reports constant MV hedge ratios and their resulted hedging effectiveness during both the pre- and post-COVID-19 periods. The first 
row shows stock index portfolios that are hedged against using the CSI300 index futures. P1 refers to the sample period running from January 1, 2012 
to November 16, 2019. P2 refers to the sample period running from November 17, 2019 to September 30, 2020. The starting dates of P1 for the 
influenza, facemask, coronavirus detection and disinfectant index vary across. For each sample period, 60% of the sample is used to estimate hedge 
ratios and the rest 40% of the sample is employed to forecast hedging effectiveness. Naïve, the naïve hedging strategy; OLS, the OLS hedging strategy; 
EC/ROLS, the Error Correction/Revised OLS hedging strategy. VR denotes variance reduction. 
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Table 3 
The bivariate GARCH models.   

CSI300-CSI300F COVID-CSI300F Influenza-CSI300F Facemask-CSI300F C19Detect.-CSI300F Disinfectant-CSI300F  
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

Panel A: Individual EGARCH estimates 
λ11  − 0.190*** − 1.301*** − 0.184*** − 1.400* − 0.148*** − 6.605* − 14.644*** − 7.013*** − 0.708** − 0.944** − 1.77 − 2.948** 
λ21  0.119*** − 0.188*** 0.131*** 0.194 0.121*** 0.347* − 0.092 0.760*** − 0.129** 0.026 0.162 0.816*** 
λ31  4.12E-04 − 0.822*** − 0.008 0.281** − 0.004 0.307** 0.235* 0.316*** − 0.095** 0.431*** − 0.032 − 0.1 
λ41  0.988*** 0.835*** 0.989*** 0.844*** 0.994*** 0.233 − 0.839*** 0.123 0.898*** 0.881*** 0.789*** 0.723*** 
λ12  − 0.269*** − 1.742*** − 0.295*** − 3.044*** − 0.141*** − 2.661*** − 4.119** − 3.719*** − 1.494** − 4.073*** − 15.473*** − 2.854*** 
λ22  0.143*** − 0.291*** 0.174*** 0.103 0.122*** 0.121 − 0.577*** 0.071 0.165 0.157 0.334*** 0.147 
λ32  − 0.01 − 0.764*** − 0.027*** − 0.714*** − 0.006 − 0.704*** − 0.189 − 0.757*** − 0.166*** − 0.741*** 0.105 − 0.698*** 
λ42  0.981*** 0.778*** 0.980*** 0.665*** 0.995*** 0.709*** 0.463** 0.589*** 0.840*** 0.555*** − 0.827*** 0.689***              

Panel B: Conditional correlations 
CCC             
ρ12  0.979*** 0.981*** 0.807*** 0.570*** 0.857*** 0.713*** 0.774*** 0.737*** 0.874*** 0.789*** 0.733*** 0.742*** 
DCC             
θ1  0.133*** 0.618* 0.032 0.561*** 0.282*** 0.747*** 0.501*** 0.385*** 0.291*** 0.836*** 0.638*** 0.295*** 
θ2  0.410*** − 0.02 0.379* − 0.104 0.035 0.002 − 0.047 − 0.07 0.306*** − 0.002 0.258* − 0.186 
ADCC             
δ1  5.22E-10 5.79E-09 1.64E-09 0.324*** 0.332*** 0.150** − 3.54E-12 0.524*** 2.67E-11 − 9.85E-12 0.388* 0.454*** 
δ2  0.893*** 0.428*** − 0.994*** 0.966*** 0.949*** 0.956*** 0.752*** 1.52E-10 0.999*** 0.981*** 0.772*** 0.712*** 
δ3  0.495*** 0.659*** − 0.306*** 1.01E-09 0.357*** 0.432*** 0.848*** − 0.447* 0.150*** 0.370*** 0.175 0.629**              

Panel C: Marginal skewness and kurtosis parameters         
CCC             
s1  0.05 0.17 0.176 198.848 0.911** − 0.837 2.127 1.486 − 3.606 − 4.073 − 1.545 0.182 
k1  12.530*** 5.758*** 11.564*** − 63.831 9.971*** 7.920*** 20.954 33.228 30.057 48.341 12.48 9.255** 
s2  − 0.026 − 0.565 0.204 − 0.538 0.455 − 0.865* 0.038 0.012 0.055 0.221 − 0.124 − 1.739** 
k2  13.490*** 6.880*** 6.982*** 4.503*** 9.341*** 6.166*** 5.909*** 2.676*** 10.773*** 17.961 5.007*** 7.972*** 

(continued on next page) 
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Table 3 (continued )  

CSI300-CSI300F COVID-CSI300F Influenza-CSI300F Facemask-CSI300F C19Detect.-CSI300F Disinfectant-CSI300F  
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

DCC             
s1  − 0.255 − 0.058 − 0.37 0.513 0.39 0.258 0.086 0.495 − 0.841 − 22.223 − 0.967* − 0.022 
k1  6.397*** 4.158*** 10.643*** 11.505 6.988*** 8.908*** 8.307 7.525 10.804*** 134.65 7.310*** 8.203 
s2  0.043 − 0.622** 0.238 − 0.717** 0.08 − 0.857** − 0.057 − 0.027 0.577 1.761* − 0.498 − 0.533 
k2  6.223*** 4.836*** 5.314*** 3.476*** 6.048*** 5.298*** 5.444 2.942 8.092*** 9.171*** 6.258*** 7.23 
ADCC             
s1  − 0.059 − 0.609 0.056 2.332 0.653 − 0.27 0.151 0.617 − 1.149 − 1.958 − 1.267 − 0.466 
k1  6.973*** 6.476* 9.828*** 16.606 6.987* 12.683** 10.194 6.974 17.022 25.915 7.195 8.106 
s2  0.439* 0.8 0.388* − 0.428 0.026 − 0.74 0.095 − 0.003 0.379 − 0.535 − 0.475 − 0.507 
k2  6.494*** 7.511 6.834*** 4.485*** 6.824* 6.960*** 5.553* 2.946*** 7.519** 5.098** 5.367* 6.235*              

Panel D: Residual diagnosis 
Q(12) (i=1) 4.319 10.333 3.96 7.923 5.142 8.016 12.629 10.104 4.29 12.24 9.7487 10.119 
Q2(12) (i=1) 18.657 7.599 18.882 3.946 18.244 11.933 7.755 3.474 7.741 8.44 5.3038 7.49 
Q(12) (i=2) 12.664 8.812 10.562 10.192 11.851 10.323 11.537 8.471 12.733 9.76 9.4798 11.959 
Q2(12) (i=2) 25.052 7.233 18.83 5.376 9.26 4.566 4.518 8.485 16.372 6.59 5.4393 4.542 
AIC (CCC) − 5.845 − 6.587 − 4.093 − 2.74 − 4.322 − 3.66 − 4.279 − 4.536 − 4.215 − 3.724 − 4.027 − 3.908 
AIC (DCC) − 5.586 − 5.041 − 3.906 − 3.206 − 3.982 − 3.395 − 4.078 − 4.679 − 4.021 − 3.417 − 3.993 − 3.711 
AIC (ADCC) − 5.603 − 6.223 − 4.051 − 3.432 − 4.109 − 3.773 − 4.123 − 4.656 − 4.095 − 3.421 − 3.926 − 3.841 

Note: This table reports the estimation result of the bivariate CCC, DCC and ADCC GARCH models. P1 refers to the sample period running from January 1, 2012 to November 16, 2019. P2 refers to the 
sample period running from November 17, 2019 to September 30, 2020. The starting dates of P1 for the influenza, facemask, coronavirus detection and disinfectant index vary across. For each sample 
period, 60% of the sample is used to estimate the GARCH models. CSI300 IF denotes the CSI300 index futures. CCC, constant conditional correlation model; DCC, dynamic conditional correlation model; 
ADCC, asymmetric dynamic conditional correlation model. Q(12) (i=1) and Q2(12) (i=1) are the Ljung-Box Q test statistic up to 12 lag orders for standardized residuals and its squares of stock index 
return series, respectively. Q(12) (i=2) and Q2(12) (i=2) are the Ljung-Box Q test statistic up to 12 lag orders for standardized residuals and its squares of stock index futures return series, respectively. 
AIC, Akaike Information Criterion. E denotes the scientific notation. Figures in the parentheses are p value for associated t test statistic. 

* significance at the 10% levels. 
** significance at the 5% levels. 
*** significance at the 1% levels. 
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ratio. The COVID-19 pandemic increases the extent of the ratio’s variation over time. This result corresponds to heightened market 
turbulence once COVID-19 contagion effects begin in China. 

Next, we focus on the hedging effectiveness of the time-varying hedge ratios based on the GARCH models. Table 5 presents the 
results for both the P1 and P2 periods, initially without the adjustment for transaction costs from adjusting hedge ratios daily. First, 
hedge ratios based on the CCC-, DCC- and ADCC-GARCH models provide evidence of variance reduction in the P1 period, with 
approximately 92% to 93% of the variance in the CSI300 spot index removed. However, hedging effectiveness decreases substantially 
from P1 to P2 as to hedge ratios from the DCC and ADCC models are approximately 68% to 89% of the variance in the hedged position 
is eliminated in the post-COVID-19 period. Staying with the P2 period, the hedge ratio from the CCC model also leads to variance 
reduction compared to that in P1. However, approximately 91% of the variance in the hedged position can still be removed. Con
cerning hedging effectiveness of the time-varying cross-hedging strategy over the COVID concept-based stock indices, it is apparent 
from Table 5 that variance reduction from P1 to P2 falls substantially, which is evidenced for all of the analysed indices. In the P2 
period, we find that the CSI300 index futures fail to provide an effective cross-hedging function to the facemask and coronavirus 
detection indices, due to the negative variance reduction given by the CCC- and DCC-hedge ratios for the facemask index and the DCC 
hedge ratio for the coronavirus detection index. In the P1 period, between 47% and 61% of the variance in the hedged COVID related 
stock index is removed by the GARCH based hedge ratios. In contrast, only approximately 5% to 41% of the variance in the hedged 
position is removed in the P2 period. The outbreak of the COVID-19 pandemic significantly reduces the hedging performance of the 
CSI300 index futures when the GARCH based cross-hedging strategies apply to the COVID concept-based stock index portfolios. 

We also explore the best GARCH hedging strategy for each stock index in Table 5. In the P1 period, the DCC hedge ratio presents the 
highest variance reduction, while the best strategy changes to the CCC model when moving to the P2 period. Considering cross- 
hedging over the coronavirus index, the best strategy in P1 is the ADCC model whereas the best one in P2 is the CCC model. 
Turning to the influenza index, the best strategy in P1 is the CCC model, which changes to the ADCC model in P2. For the cross-hedging 
of the facemask and coronavirus detection indices, the best strategy remains the ADCC model in both P1 and P2. When we look at the 
cross-hedging over the disinfectant index, the CCC model remains the best strategy in both P1 and P2. Hence, we find that the best 
GARCH hedging strategy varies across stock indices to be hedged against. In the pre-COVID-19 period, the ADCC hedging strategy 
performs best with the CCC next. In the post-COVID-19 period, the CCC and ADCC hedging strategies are equally optimal for the three 
stock indices. Overall, the ADCC hedging strategy seems to be the optimal time-varying strategy to hedge against the risk of the CSI300 
index and the COVID concept-based stock indices using the CSI300 index futures. 

Table 6 presents the results of the analysis based on the hedging effectiveness of the time-varying GARCH hedging strategies in P1 

Table 4 
Time-varying MV hedge ratios.   

CSI300 - CSI300 IF COVID - CSI300 IF Influenza - CSI300 IF  
P1 P2 P1 P2 P1 P2 

CCC       
Mean 0.946 1.033 1.035 0.938 0.945 0.988 
Median 0.978 1.034 1.035 0.882 0.946 0.938 
Std. Dev. 0.058 0.024 0.157 0.226 0.005 0.229 
DCC       
Mean 0.921 0.610 0.809 0.659 0.878 0.585 
Median 0.949 0.741 0.812 0.685 0.886 0.686 
Std. Dev. 0.058 0.400 0.120 0.652 0.102 0.658 
ADCC       
Mean 0.932 0.723 0.901 0.883 0.820 0.927 
Median 0.961 0.734 0.925 1.136 0.867 0.975 
Std. Dev. 0.065 0.090 0.244 0.593 0.165 0.333  

Facemask - CSI300 IF COVID Det. - CSI300 IF Disinfectant - CSI300 IF  
P1 P2 P1 P2 P1 P2 

CCC       
Mean 0.811 1.697 1.168 1.470 0.933 1.005 
Median 0.797 1.633 1.174 1.381 0.921 0.960 
Std. Dev. 0.140 0.350 0.015 0.349 0.150 0.192 
DCC       
Mean 0.734 0.621 0.961 0.689 0.890 0.771 
Median 0.707 0.677 0.971 0.887 0.960 0.798 
Std. Dev. 0.186 0.645 0.142 1.076 0.305 0.369 
ADCC       
Mean 0.844 0.667 1.127 1.146 0.895 0.825 
Median 0.827 0.632 1.143 1.315 0.884 0.844 
Std. Dev. 0.172 0.496 0.051 0.422 0.153 0.338 

Note: This table reports the mean, median and standard deviation of the time-varying MV hedging ratios. The hedge ratios are forecasted based on the 
CCC, DCC and ADCC GARCH model estimates. P1 refers to the sample period running from January 1, 2012 to November 16, 2019. P2 refers to the 
sample period running from November 17, 2019 to September 30, 2020. The starting dates of P1 for the influenza, facemask, coronavirus detection 
and disinfectant index vary across. For each sample period, 60% of the sample is used to estimate the GARCH models and the rest 40% of the sample is 
used to forecast the time-varying hedging ratios. CCC, constant conditional correlation model; DCC, dynamic conditional correlation model; ADCC, 
asymmetric dynamic conditional correlation model. CSI300 IF is the CSI300 index futures. Std. Dev. denotes standard deviation. 
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and P2 when the maximal transaction cost of adjusting hedge ratios daily is considered. Compared to Table 5, most results in Table 6 
suggest that with transaction costs, variance reduction falls, however, this reduction is small. Furthermore, from Table 6, the outbreak 
of the COVID-19 pandemic decreases the hedging effectiveness of the GARCH hedging strategies. The best GARCH hedging strategy in 
P1 is the ADCC model and the second best is the CCC model. In P2, both the CCC and ADCC models offer the best performance 
respectively for three stock indices. The ADCC hedging strategy remains the most appropriate model around the time windows of the 
COVID-19 pandemic. These results are similar to Table 5. When we include transaction cost their influence on the performance of the 
GARCH hedging strategies is limited. 

5.3. A comparison of hedging performance 

Finally, we compare the best constant strategies from Table 2 with the best time-varying GARCH strategies in Table 6 in terms of 
hedging effectiveness. During P1, when considering hedging against the CSI300 spot index, the DCC-GARCH strategy outperforms the 
constant EC strategy as can be evidenced through slightly improved variance reduction. The result aligns with Hou and Li (2013) and 
Qu et al. (2019) where the time-varying MV hedge ratios outperform the constant counterparts before the COVID-19 pandemic occurs. 

Table 5 
Hedging performance of time-varying MV hedge ratios.   

CSI300 - CSI300 IF COVID - CSI300 IF Influenza - CSI300 IF  
P1 P2 P1 P2 P1 P2 

CCC       
VR 0.923 0.906 0.468 0.362 0.613 0.337 
DCC       
VR 0.925 0.682 0.470 0.227 0.606 0.172 
ADCC       
VR 0.924 0.886 0.481 0.242 0.606 0.406  

Facemask - CSI300 IF COVID Det. - CSI300 IF Disinfectant - CSI300 IF  
P1 P2 P1 P2 P1 P2 

CCC       
VR 0.509 − 0.197 0.590 0.046 0.500 0.404 
DCC       
VR 0.488 − 0.049 0.567 − 0.361 0.441 0.374 
ADCC       
VR 0.539 0.233 0.597 0.256 0.488 0.385 

Note: This table reports hedging effectiveness of time-varying MV hedge ratios based on the CCC, DCC and ADCC GARCH models. P1 refers to the 
sample period running from January 1, 2012 to November 16, 2019. P2 refers to the sample period running from November 17, 2019 to September 
30, 2020. The starting dates of P1 for the influenza, facemask, coronavirus detection and disinfectant index vary across. For each sample period, 60% 
of the sample is used to estimate the GARCH models and the rest 40% of the sample is used to forecast the time-varying hedging ratios and their 
hedging effectiveness. CCC, constant conditional correlation model; DCC, dynamic conditional correlation model; ADCC, asymmetric dynamic 
conditional correlation model. VR, variance reduction. CSI300 IF is the CSI300 index futures. 

Table 6 
Hedging performance of time-varying MV hedge ratios and transaction cost.   

CSI300 - CSI300 IF COVID - CSI300 IF Influenza - CSI300 IF  
P1 P2 P1 P2 P1 P2 

CCC       
VR 0.923 0.905 0.468 0.356 0.616 0.330 
DCC       
VR 0.925 0.678 0.470 0.218 0.609 0.162 
ADCC       
VR 0.924 0.884 0.480 0.233 0.609 0.399  

Facemask - CSI300 IF COVID Det. - CSI300 IF Disinfectant - CSI300 IF  
P1 P2 P1 P2 P1 P2 

CCC       
VR 0.505 − 0.205 0.589 0.035 0.493 0.399 
DCC       
VR 0.483 − 0.052 0.562 − 0.378 0.434 0.368 
ADCC       
VR 0.534 0.234 0.596 0.248 0.481 0.385 

Note: This table reports hedging effectiveness of time-varying MV hedge ratios based on the bivariate GARCH models where transaction cost is taken 
into account for returns of the hedged portfolios. Maximal trading fee for the CSI300 index futures contracts is considered in the calculation. P1 refers 
to the sample period running from January 1, 2012 to November 16, 2019. P2 refers to the sample period running from November 17, 2019 to 
September 30, 2020. The starting dates of P1 for the influenza, facemask, coronavirus detection and disinfectant index vary across. For each sample 
period, 60% of the sample is used to estimate the GARCH models and the rest 40% of the sample is used to forecast the time-varying hedging ratios and 
their hedging effectiveness. CCC, constant conditional correlation model; DCC, dynamic conditional correlation model; ADCC, asymmetric dynamic 
conditional correlation model. VR, variance reduction. CSI300 IF is the CSI300 index futures. 

S. Corbet et al.                                                                                                                                                                                                         



Research in International Business and Finance 59 (2022) 101510

15

However, analysing the effects of the COVID-19 pandemic during P2, the constant OLS and EC strategies outperform the CCC strategy 
given the higher variance reduction offered by the former. 

Further comparisons are made as to cross-hedging over the COVID concept-based stock indices. Considering the coronavirus and 
coronavirus detection indices to be hedged against, the constant Naïve or ROLS strategies perform better than the time-varying 
counterparts in the P1 period. The choice changes to the time-varying ADCC or CCC GARCH hedging strategies in the P2 period. 
To hedge against the influenza index, the best strategy remains the time-varying GARCH strategies with the CCC model for P1 and the 
ADCC model for P2. A third observation is that to hedge against the facemask and disinfectant indices, the best choice remains the 
constant strategies with the Naïve or OLS strategies in P1. In P2, to hedge against the same indices, the best choice is the OLS strategy 
for the disinfectant index while the Naïve strategy for the facemask index. In sum, it is found that the COVID-19 pandemic affects the 
choice of the best hedging strategy where the choice also varies across the stock indices to be hedged against. Using only one strategy 
over time is found to be sub-optimal. 

6. Conclusion 

Since the first case of COVID-19 was detected in China in November 2019, this fatal and highly infectious respiratory virus began to 
significantly impact the financial system both locally and globally. In this paper, we focus on the question of whether the Chinese index 
futures market acted as an effective tool to hedge risk in Chinese stock markets, particularly during the COVID-19 pandemic. Spe
cifically, we examine the effectiveness of the CSI300 stock index futures to hedge against risks to the underlying CSI300 spot index as 
well as five COVID-19 concept-based stock index portfolios. The results of hedging against the COVID related stock indices consider 
whether the major stock market derivatives in China are an efficient tool to protect local investors from financial volatility and 
instability brought about by a critical public health disaster. We also revisit a debate on whether time-varying hedge ratios outperform 
constant hedge ratios in terms of hedging effectiveness by examining the hedging effectiveness of two types of hedging strategies and 
track any changes that occur between the pre- and post-COVID-19 periods. Results from this paper contribute to the literature through 
the identification of the direct effects of the COVID-19 pandemic on the functionality of the Chinese stock index futures and also 
provide important implications about significant shocks affecting the economy that should be noted by both local and foreign investors 
in the Chinese stock market. 

To address our main question, we use naïve, OLS and EC/ROLS hedging strategies to represent constant hedge ratios. Results 
indicate that hedging over the CSI300 spot index shows that the outbreak of the COVID-19 pandemic decreased the effectiveness of the 
naïve strategy only moderately in terms of variance reduction. However, it increased the effectiveness of both the OLS and EC hedge 
ratios. The CSI300 index futures achieve variance reduction of approximately 49% to 61% when hedging over the five COVID related 
stock indices in the period before COVID-19. Effectiveness declines by approximately 11% to 45% as the COVID-19 pandemic occurs. 
For the time-varying hedge ratios, we use CCC-, DCC- and ADCC-GARCH models for estimation. The result of hedging the CSI300 spot 
index suggest that COVID-19 weakens the effectiveness, which is substantial for the DCC- and ADCC-based hedge ratios. Time-varying 
cross-hedging over the COVID related stock index portfolios is also affected by COVID-19 by between 20% and 40% in terms of 
variance reduction. The effectiveness of time-varying hedge ratios is retained when transaction costs are accounted for. The COVID-19 
pandemic directly influenced the effectiveness of hedging and cross-hedging when considering the CSI300 index futures. Considering 
direct hedging, the effect is mostly positive for constant hedge ratios, whereas the effect is adverse for time-varying hedge ratios. 
However, the ability of the CSI300 index futures to hedge against the risks of COVID-19 is reduced regardless of whether a constant or 
time-varying hedge strategy is selected. 

However, the optimal hedging strategy is identified to be the DCC-GARCH-based time-varying hedge ratio, which is identified to 
best hedge against the CSI300 spot index pre-COVID-19, while during the COVID-19 pandemic, OLS or EC constant strategies 
dominate. Focusing on cross-hedging procedures over the coronavirus index, a transition from the naïve strategy to the CCC-GARCH 
strategy when transitioning between the pre- to post-COVID-19 period performs optimally, with the results holding even when 
transaction costs are considered. Finally, the results presented here strongly suggest that the optimal hedging strategy will vary over 
time, and across hedged assets, especially when an economy faced a significant shock as was evidenced by the recent COVID-19 
pandemic. 
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