

Citation for published version:
Bruscoli, P & Guglielmi, A 1996, A Linear Logic View of Gamma style Computations as proof searches. in J-M
Andreoli, C Hankin & D Le Metayer (eds), Coordination Programming: Mechanisms, Models and Semantics.
Imperial College Press, pp. 249-273. https://doi.org/10.1142/p017

DOI:
10.1142/p017

Publication date:
1996

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jan. 2022

https://doi.org/10.1142/p017
https://doi.org/10.1142/p017
https://researchportal.bath.ac.uk/en/publications/a-linear-logic-view-of-gamma-style-computations-as-proof-searches(42423ca9-e087-45e5-935b-53a123c2f5ec).html

A LINEAR LOGIC VIEW OF GAMMA STYLE COMPUTATIONS

AS PROOF SEARCHES

PAOLA BRUSCOLI

Università di Ancona, Istituto di Informatica, via Brecce Bianche, 60131 Ancona, Italy

and GMD-FIRST, Rudower Chaussee 5, 12489 Berlin-Adlershof, Germany

ALESSIO GUGLIELMI

Università di Pisa, Dipartimento di Informatica, Corso Italia 40, 56125 Pisa, Italy

Abstract Using the methodology of abstract logic programming in linear logic,

we establish a correct and complete translation between the language Nabla and

first order linear logic. Nabla is a modification of the coordination language

Gamma with parallel and sequential composition. Nabla, without modifying

Gamma basic computational model, is amenable to this kind of analysis, at the

price of a weaker expressive power. The translation is correct and complete in

the sense that we establish a two way correspondence between computations in

Nabla and the search for proofs in a suitable fragment of first order linear logic.

Moreover, the translation is not an encoding, meaning that to the algebraic struc-

ture of Nabla programs is assigned logical meaning through a non-trivial use of

linear logic connectives, as opposed to merely reflecting their operational behavior

through a simulation into terms of the logic. In this way we hope that the con-

nection established between the two formalisms can compensate for the diminished

expressive power of Nabla with a powerful analysis tool, which could lead both to

theoretical and practical improvements in semantic foundations of Gamma-style

languages and in the design of efficient implementations of their interpreters. The

main difficulty has been to deal with sequential composition of programs, and to

smoothly integrate its logical treatment in a recursive framework. An intermediate

step is the definition of the language SMR, by which it is possible to specify in a

very intuitive way Nabla operational semantics, and to prove that this specifica-

tion is actually equivalent to the SOS-style one derived from Gamma semantics.

1 Introduction

The Gamma coordination language [1] gave rise to the so-called “chemical
metaphor.” Computations are seen as the concurrent application of “chem-
ical reactions” to an unstructured solution of “molecules,” where reactions
may be thought of as non-deterministic programs which act on data car-
ried by molecules. The Gamma language, which relies essentially on multiset
rewriting, naturally yields a programming methodology that does not impose
artificial sequentiality on the execution. A basic Gamma program is a set
of rules B which transform a multiset M until no rules are applicable; when
this happens the computation stops.

Gamma has been later enhanced with two composition operators on pro-
grams [2]. Q | Q′ and Q ; Q′ stand, respectively, for the parallel and sequen-
tial composition of programs. This paradigm has been proven fruitful and
a number of investigations has been devoted to it (among them see [3, 4] for
issues regarding this work). In this paper we study the problem of specifying
a “chemical,” Gamma-like language in first order linear logic.

Linear logic [5] is a powerful and elegant framework in which many as-
pects of concurrency, parallelism and synchronization find a natural inter-
pretation. The difficulties of dealing with these issues within classical logic
are overcome by the linear logic approach, mainly thanks to the “resource-
orientation” of its multiplicative fragment. This roughly amounts to a good
treatment of logical formulas as processes, or agents, in a distributed envi-
ronment [6, 7]. The richness of the calculus and the deep symmetries of its
proof theory make it an ideal instrument for purposes such as language de-
sign and specification, operational semantics, and it is certainly an interesting
starting point for denotational semantics investigations. We are interested
here in the “(cut-free) proof search as computation” paradigm, as opposed
to the “cut-elimination as computation” one.

We argue in this paper that Gamma with the parallel and sequential
composition operators is not exactly specifiable in linear logic without re-
sorting to some encoding of its structure into terms of the logic. This is
something in general we can always do, provided formalisms are Turing equiv-
alent. Of course, it would be much more interesting if the structural content
of programs and computations were reflected into the connectives of the logic,
instead of recurring to trickeries with terms. In this way one can hope to use
logic in a non-trivial way, and not as a mere elegant suitcase.

Thus, in this paper we define a language, Nabla, which is weaker than
Gamma in its expressive power, but which is amenable to a correct and com-
plete specification in a fragment of first order linear logic. From this analysis
it should be evident which problems one encounters with Gamma and why
some trade between expressive power and good logical specification must be
made. A possible outcome of this investigation could be the need to design
some new logic more suitable to the kind of problems we encounter, and this
work can give some hints about what is needed and what is not.

In fact, to specify Nabla into linear logic, a long journey has to be made.
While the parallel execution of two programs Q | Q′ finds a natural under-
standing as Q O Q′ (or Q � Q′ in a symmetrical interpretation), the same
cannot be said for their sequential composition Q ;Q′. We can naively achieve
sequential composition in an indirect way, through backchaining. This is not

satisfactory for at least two reasons: because it is an unnatural form of encod-
ing, and because backchaining is most naturally thought of, and dealt with, as
a non-deterministic tool, while sequential composition is deterministic. A ma-
jor problem one encounters when trying to express sequentialization is having
to make use of “continuations,” which are, in our opinion, a concept too distant
from a clean, declarative, logical understanding of the subject.

In this paper we deal with sequentiality in a way which certainly does
not have the flavor of continuations. Sequentialization is achieved in linear
logic by a controlled form of backchaining, whose non-determinism is elim-
inated by the linearity of the calculus (linear implication) and a declarative
way of producing unique identifiers (universal quantification). In our case these
two mechanisms, together with the usual O one, are embodied in a translation
with a clear declarative meaning.

We briefly present the language SMR (Sequential Multiset Rewriting) [8]
and give a translation of it into first order linear logic which is both correct
and complete, thus fully relating the two formalisms. Computing in SMR is
in the logic programming style: a goal of first order atoms (agents) has to be
reduced to empty through backchaining by clauses, thus producing a binding
for variables. Goals are obtained from agents by freely composing with the two
connectives ⋄ (parallel) and ⊳ (sequential). Every top agent, i.e. every agent
not preceded by other agents, can give birth to a new subgoal. The declarative
meaning of A ⋄ A′ is that we want to solve problems (to prove) A and A′;
the meaning of A⊳A′ is that we want to solve A and then A′. The simplest way
to introduce synchronization in this framework is having clauses of the form
A1, . . . , Ah ^ G1, . . . , Gh. They state the simultaneous replacement of top
agents A1, . . . , Ah with goals G1, . . . , Gh, respectively. This framework has
been studied by Monteiro in a more complex formal system called “distributed
logic” [9, 10].

It is natural to associate hypergraphs to goals: nodes are agents and hy-
perarcs express the immediate sequentiality relationship among agents. Thus
the hypergraph relative to G = (A1 ⋄ A2) ⊳ A3 ⊳ (A4 ⋄ A5) is

A1 A2

A3

A4 A5

.

Let us associate to every agent Ai the empty agent ◦i, whose declarative
meaning is “agent in position i has been solved.” A natural description in linear

logic of the goal G is given by the formula

((
A3 −◦ (◦1 O ◦2)

)
�

(
(A4 O A5) −◦ ◦3

)
� (◦4 O ◦5)

)

−◦ (A1 O A2).

Here indices of agents have to be thought of as unique identifiers of the position
of the agent in the goal. Now we need something more: since subgoals ap-
pear during the computation as an effect of resolutions, we need a mechanism
to “localize” goal descriptions in linear logic, so as to fit them to the contingent
goal dynamically. Again, a natural way to do that is describing G as

∀i1i2i3i4i5:
(((

Ai3−◦(◦i1O◦i2)
)
�

(
(Ai4OAi5)−◦◦i3

)
�(◦i4O◦i5)

)

−◦(Ai1OAi2)
)

.

We do not really need � since (A1�· · ·�Ah)−◦A ≡ A1−◦· · ·−◦Ah−◦A. It turns
out that this very simple-minded idea actually works. Moreover, the ◦ goal
behaves as a unity for ⋄ and ⊳, as true does for and in classical logic.

SMR is a plain generalization of Horn clauses logic programming, using ⋄
instead of ∧. As a matter of fact, considering clauses of the form A^A1 ⊳ · · ·⊳
Ah, we grasp Prolog’s left-to-right selection rule, and of course many more
selection rules and much greater control over the order of execution of goals
are possible.

In order to link SMR to linear logic we use a fragment of Forum [11],
which is a presentation of linear logic from an abstract logic programming
perspective [12]. Its choice is rewarding because Forum puts under control
a large amount of the non-determinism of linear logic, which is something
in the direction we are pursuing.

Summarizing, the link between Nabla and linear logic is established in
three steps, which in turn preserve correctness and completeness:

1) Forum ↔ linear logic.

2) SMR ↔ Forum.

3) Nabla ↔ SMR: the final step amounts to a specification of Nabla by
SMR and proving its correspondence to the modified SOS-style operational
semantics of Gamma.

Sect. 2 is devoted to preliminaries and Forum, in sect. 3 we present SMR

and its operational semantics; then, in sect. 4, the translation into Forum

is shown and correctness and completeness are stated. In sect. 5 Nabla is
defined, and in sect. 6 a translation of it into SMR is given, together with
the proof of its correctness and completeness.

2 Basic Notions and Preliminaries

The first subsection fixes the notation for some usual preliminaries. In the
second one a brief exposition of the fragment of Forum we are interested in
is given.

2.1 Notation and Basic Syntax

Let S and S′ be sets: Then S \S′ stands for their difference { s ∈ S | s /∈ S′ };
PF(S) stands for the set of finite subsets of S; if h is a positive integer, Sh

stands for the set S × · · · × S
︸ ︷︷ ︸

h

.

N is the set of the natural numbers {0, 1, 2, . . .}. Given h ∈ N, indicate
with Nh the set {h, h + 1, h + 2, . . . }; given k ∈ N, indicate with Nk

h the set
Nh \ Nk+1. Given h, k ∈ N, if h 6 k then e|kh stands for “eh, . . . , ek”; if h > k
then e|kh and (e|kh) stand for the empty object “”.

Given a set S, indicate with S+ the set
⋃

i∈N1
Si and with S⋆ the set

S+ ∪ {ǫS}, where ǫS /∈ S+. ǫS is the empty sequence (of S) and at times we
shall write ǫ or nothing instead of ǫS. Let S0 = {ǫS}.
On sequences is defined a concatenation operator ‖, with unity ǫ.
Given the (possibly infinite) sequence Q = (s1, s2, . . .) and given f : S → S′, if
s1, s2, . . . ∈ S define f(Q) as (f(s1), f(s2), . . .).

Multisets are sequences of elements where the order among elements does
not count, or, alternatively, are sets in which the arities of elements count.

A multiset whose elements are in set S is a function M : S → N. When
explicitly provided, a multiset M is denoted as {m|h1}+, where every element
of multiplicity k > 0 appears exactly k times. D denotes the submultiset
relation, ⊎ is multiset union and \+ is multiset difference. P+(S) denotes the
set of multisets with elements in S.

In the rest of the paper, we shall frequently adopt the following conven-
tion: cursive roman letters (as P, the set of programs) denote sets whose
generic elements shall be denoted by the corresponding italic letter (as P ,
a generic program). Therefore we shall often consider implicit such state-
ments as P ∈ P. Every newly introduced syntactic symbol or class of symbols
shall be considered different or disjoint from the already introduced ones.

f, x and p are respectively the sets of functions, variables and predicates.
They are denumerable and the functions ar: f → N and ar:p → N (arities) are

defined. 0-arity functions are called constants.
The set of terms t is the least set such that:

1) x ⊂ t.

2) If f ∈ f and t1, . . . , tar f ∈ t then f(t|ar f
1) ∈ t.

Let A = { p(t|ar p
1) | p ∈ p, t1, . . . , tar p ∈ t } be the set of atoms.

Given a formal expression F , ⌈F ⌉ denotes the set of free variables in F .

For substitutions the usual notation and conventions apply. Let σ be
the set of substitutions.

2.2 The Forum
O−◦∀ Presentation of a Fragment of Linear Logic

Abstract logic programming has been defined in [12] as a very general way
to define logic programming over any fragment of a sequent presentation of
a logical system. In the case of linear logic, it has been recently discovered
that the whole of linear logic may be seen as an abstract logic programming
language [11]. In this work Miller shows a logical system, named Forum,
which naturally yields only uniform proofs, and, being this system correct and
complete wrt linear logic, the underlying language is an abstract logic pro-
gramming language. From our point of view this is important because having
an abstract logic programming language naturally provides for sensible im-
plementations. Moreover, in Forum we can find a natural notion of state
of a computation (the linear contexts in Forum sequents). Purpose of this
section is to present the fragment of Forum necessary and sufficient to carry
on our investigation, viz. to use the notion of state we have in order to rep-
resent causality and independence among agents. It should be noted that,
holding for linear logic the cut-elimination property, any further enrichments
of the fragment we present is possible, modularity among linear logic con-
nectives being guaranteed by the cut-elimination property, and the validity
of the consequent subformula property. The reader can find in [11] the details
missing here. Methods are called this way after [13].

The set of methods M is the least set such that:

1) A ⊂ M.

2) If M, M ′ ∈ M then (M O M ′) ∈ M and (M −◦ M ′) ∈ M.

3) If M ∈ M and x ∈ x then (∀x : M) ∈ M.

O associates to the left and −◦ associates to the right. Instead of (∀x1 :(. . .:
(∀xh : M) . . .)) we shall write (∀x1 . . . xh : M). Outermost parentheses shall be
omitted whenever possible. If h 6 k and f : Nk

h → M, the notation Oi∈Nk
h

f(i)

stands for f(h)O· · ·Of(k); given g: Nk
h → x, the notation∀i∈Nk

h
g(i):M stands

for ∀g(h) . . . g(k):M . If M̄ = (M |h1) ∈ M+ then O M̄ stands for M1O· · ·OMh.
If x̄ = (x|h1) ∈ x⋆ then ∀ x̄ :M stands for ∀x1 . . . xh :M when h > 0, and for M
when h = 0.

We adopt a special kind of sequents, made up from collections of methods
with different structures imposed on them: sets, multisets and sequences. Sets
are used to represent information as in classical logic: this is information
which does not change during the computation; a program is represented as a
set of methods. Multisets are used to represent the state of the computation,
which, of course, changes as the computation goes ahead; here is where linear
logic has its main usefulness. Sequences of atoms appear in our sequents
as a way to limit the choice in the use of right inference rules; this ordering
does not affect correctness and completeness. From the proof theory point of
view, sets are places where weakening and contraction rules are allowed, while
on multisets and sequences these rules are forbidden. In these sequents there is
room for one method (which we call “focused”) which drives the choice of left
inference rules.

The set of sequents Σ contains elements of the form (Ψ ; Γ M ⊢ Λ; Ξ), where
Ψ ∈ PF(M) (the classical context), Γ is a finite multiset of methods (the left

linear context), M ∈ M ∪ {ǫM} (the focused method), Λ ∈ A⋆ (the atomic

context) and Ξ ∈ M⋆ (the right linear context). Instead of (Ψ ; Γ ǫM ⊢ Λ; Ξ)
we shall write (Ψ ; Γ ⊢ Λ; Ξ). In the following Ψ , Γ , Ξ and Λ shall stand for,
respectively, sets, multisets and sequences of methods and sequences of atoms.

We outline a sequent presentation of a fragment of the Forum infer-
ence system. Forum imposes a discipline (wrt full linear logic) on the non-
deterministic bottom-up construction of proofs, thereby drastically reducing
their search space. It turns out that Forum is equivalent to linear logic,
but proofs in Forum are uniform (see [12]). Since Forum is much closer
to the computations we are interested in, it greatly helped us in finding the way
to relate them to linear logic.
The inference system we shall use as an intermediate step from SMR to linear
logic is Forum

O−◦∀, meaning that O, −◦ and ∀ are the only logical connectives
this subsystem of Forum deals with.

Let Forum
O−◦∀ be the set of inference rules obtained by the schemata

in fig. 1. There, with Λ � Λ′, we represent any sequence of atoms obtained
by an ordered merge of Λ and Λ′. For example, (A1, A2)� (A3, A4) may stand
for (A1, A3, A2, A4) or (A3, A1, A2, A4) or

The link between Forum
O−◦∀ and linear logic is established by the follow-

ing proposition, which follows from the result in [11] and the cut-elimination

Structural rules

I
Ψ ; A ⊢ A;

Ψ ; Γ ⊢ Λ, A;Ξ
L

Ψ ; Γ ⊢ Λ;A, Ξ

Ψ ; Γ M ⊢ Λ;
DL

Ψ ; M, Γ ⊢ Λ;

M, Ψ ; Γ M ⊢ Λ;
DC

M, Ψ ; Γ ⊢ Λ;

Left rules

Ψ ; Γ M ⊢ Λ; Ψ ; Γ ′ M ′ ⊢ Λ′;
OL

Ψ ; Γ, Γ ′ M O M ′ ⊢ Λ � Λ′;

Ψ ; Γ ⊢ Λ;M Ψ ; Γ ′ M ′ ⊢ Λ′;
−◦L

Ψ ; Γ, Γ ′ M −◦ M ′ ⊢ Λ � Λ′;

Ψ ; Γ M [t/x] ⊢ Λ;
∀L

Ψ ; Γ ∀x : M ⊢ Λ;

Right rules

Ψ ; Γ ⊢ Λ;M, M ′, Ξ
OR

Ψ ; Γ ⊢ Λ; M O M ′, Ξ

Ψ ; M, Γ ⊢ Λ; M ′, Ξ
−◦R

Ψ ; Γ ⊢ Λ; M −◦ M ′, Ξ

Ψ ; Γ ⊢ Λ;M [x/x′], Ξ
∀R

⋆

Ψ ; Γ ⊢ Λ;∀x′ : M, Ξ

⋆where x is not free in the conclusion

Fig. 1 The Forum
O−◦∀ fragment of Forum

theorem.

2.2.1 Theorem A sequent (M |h1 ; ⊢ ; M) has a proof in Forum
O−◦∀ iff

(!M1 −◦ · · · −◦ !Mh −◦ M) has a proof in linear logic.

3 Syntax and Operational Semantics of SMR

In this section we show how a natural notion of causality and independence
among agents may be obtained in Forum

O−◦∀. Agents are atoms among
which a partial order is defined. Every agent can be reduced into a partial
order of agents, or solved. In any case the structure of the context in which the
reduction takes place is conserved. We define the language SMR as a natural
way to define reduction of agents preserving a partial order. On this language
computations are defined, and in the next section we shall show how SMR

and its computations can be related, respectively, to Forum and the (uni-
form) search for derivations in Forum, respectively. SMR is in the logic
programming style, of course, then we define goals and clauses, and the main
computational mechanism is resolution, or, more appropriately, backchaining.
For a more thorough presentation of SMR we refer the reader to [8].

We build up the language of goals starting from the empty goal ◦ and
the set of atoms A, and freely composing with the two connectives ⋄ and

⊳. The connectives have to be thought of as associative and non-idempotent
operators; moreover, ⋄ is commutative and ⊳ is not. The empty goal ◦ behaves
as a unity for ⋄ and ⊳, like true does for the classical logic connective and.
In the translation from SMR into linear logic it shall be mapped to an atom
of a special class.

Suppose, from now on, that a special 0-arity predicate ◦ is in A. We shall
call ◦ the empty goal. Given a substitution σ, define ◦σ = ◦.

The set of goals G is the least set such that:

1) A ⊂ G.

2) If G, G′ ∈ G then (G ⋄ G′) ∈ G and (G ⊳ G′) ∈ G.

⋄ and ⊳ are, respectively, the parallel and sequential connective; goals of the
form (G ⋄ G′) and (G ⊳ G′) are, respectively, parallel and sequential goals.
Application of substitutions extends naturally to goals.

Commutativity of ⋄ induces an equivalence relation on goals.

Two goals are equivalent if they only differ by the order of goals connected
by ⋄ in parallel subgoals.
From now on we shall consider G as the set of equivalence classes induced
by this equivalence relation.

The top of a goal is the multiset of atoms in the goal not preceded by
other atoms; formally:

The function top:G → P+(G) is defined as

top G =

{
G if G ∈ A,
top G′ ⊎ top G′′ if G = G′ ⋄ G′′,
top G′ if G = G′ ⊳ G′′.

SMR consists of three components: a set of programs, the set of goals
we already defined and a transition relation which models the nondeterministic
transformation of goals into goals.
A program is a finite set of clauses. Each clause specifies the synchronous
rewriting of some atoms in the top of a goal into the same number of goals.
Rewriting takes place in the context of a larger goal, in which the rewritten
atoms, considered as a multiset, are unifiable with the head of the clause, again
considered as a multiset.
The clause specifies also which goal takes the place of which atom (matching
one of the atoms in its head), and the usual logic programming mechanism
of instantiation with the unifier takes place. We do not insist on the unifiers
being mgu’s, though this special case can easily be accommodated in our
setting.

Let
D = { (A|h1 ^ G|h1) | h ∈ N1, A1, . . . , Ah ∈ A \ {◦} }

be the set of (distributed) clauses.
Atoms A1, . . . , Ah constitute the head of the clause; goals G1, . . . , Gh consti-
tute its body.
Application of substitutions is extended in the natural way to clauses.

Variables in clauses are considered as universally quantified. Then two
clauses which only differ by a renaming of variables are to be considered the
same.

Clearly, clauses establish a one-to-one correspondence between atoms in
the head and goals in the body. We shall consider the same clauses which
only differ by the order of atoms in the head and goals in the body, provided
the correspondence is respected.

≈ is the least equivalence relation on clauses such that:

1) D ≈ D′ if D = D′ρ, where ρ is a renaming substitution for all variables
in D;

2) (A1, . . . , Ai, . . . , Aj , . . . , Ah ^ G1, . . . , Gi, . . . , Gj , . . . , Gh) ≈
(A1, . . . , Aj , . . . , Ai, . . . , Ah ^ G1, . . . , Gj , . . . , Gi, . . . , Gh).

From now on we shall consider D as quotiented by the ≈ equivalence on clauses.

Let P = PF(D) be the set of programs.

SMR operational semantics shall be given in the SOS style. We shall
define a transition relation on configurations, a configuration being a program,
a goal, and an optional selected clause which the goal is resolved by.

A configuration is either a triple 〈P, D, G〉 or a pair 〈P, G〉, where P is
a program, D is a clause and G is a goal.

We need a notion of merge of two clauses:

Given two clauses D = (A1, . . . , Ah^G1, . . . , Gh) and D′ = A′
1, . . . , A

′
h′ ^

G′
1, . . . , G

′
h′ , let us define the merge of D and D′ as

D � D′ = A1, . . . , Ah, A′
1, . . . , A

′
h′ ^ G1, . . . , Gh, G′

1, . . . , G
′
h′ .

We are now ready to define the operational semantics of SMR. A more
detailed discussion can be found in [8].

In fig. 2 a SOS-style operational semantics is defined; the rules define
the binary relation → on configurations.
Given P , the resolution relation 7

P
−−−−−−−−−−⋄ ⊂ G2 × σ is such that (G, G′, σ) ∈ 7

P
−−−−−−−−−−⋄

(written G 7
P

σ
−−−−−−−−−−⋄ G′) whenever 〈P, G〉 → 〈P, Dσ′, Gσ〉 → 〈P, G′〉.

Selection of a clause

D ∈ P
,

〈P, G〉 → 〈P, Dρσ′, Gσ〉
where σ and σ′ are substitutions and ρ is a renaming substitution

Atomic resolution

〈P, A ^ G, A〉 → 〈P, G〉

Parallel resolution

〈P, D, G〉 → 〈P, G′〉 〈P, D′, G′′〉 → 〈P, G′′′〉

〈P, D � D′, G ⋄ G′′〉 → 〈P, G′ ⋄ G′′′〉

〈P, D, G〉 → 〈P, G′〉

〈P, D, G ⋄ G′′〉 → 〈P, G′ ⋄ G′′〉

Sequential resolution

〈P, D, G〉 → 〈P, G′〉

〈P, D, G ⊳ G′′〉 → 〈P, G′ ⊳ G′′〉

Reduction of empty goals

〈P, G ⋄ ◦〉 → 〈P, G〉 〈P, G ⊳ ◦〉 → 〈P, G〉 〈P, ◦ ⊳ G〉 → 〈P, G〉

〈P, G〉 → 〈P, G′〉 〈P, G′′〉 → 〈P, G′′′〉

〈P, G ⋄ G′′〉 → 〈P, G′ ⋄ G′′′〉

〈P, G〉 → 〈P, G′〉 〈P, G′′〉 → 〈P, G′′′〉

〈P, G ⊳ G′′〉 → 〈P, G′ ⊳ G′′′〉

Fig. 2 SMR operational semantics

p1(x1) p2(x1) p4(f(x2))

p3(x2) p5(x3)

7
{D}

σ
−−−−−−−−−−⋄

p1(g(f(x2))) p1(f(x2)) p7(x6) p7(x6)

p6(x5)

p3(x2) p5(x3)

D = (p4(x4), p2(g(x4)) ^ p7(x3) ⋄ p7(x3), p1(x4) ⊳ p6(x5)) and σ = [g(f(x2))/x1]

Fig. 3 Example of resolution

The reduction relation � ⊂ G2 is such that G � G′ whenever 〈P, G〉 → 〈P, G′〉.
Define the relation

P
−−−−−−−−−−⋄ ⊂ G2×σ as

P
−−−−−−−−−−⋄ = �×({ǫ}∪ 7

P
−−−−−−−−−−⋄). Instead of (G, G′, σ) ∈

P
−−−−−−−−−−⋄ we shall write G

P

σ
−−−−−−−−−−⋄ G′.

Let SMR be the triple (P, G, {
P
−−−−−−−−−−⋄ | P ∈ P }).

7
P
−−−−−−−−−−⋄ and � represent elementary steps in a computation in SMR. � is

trivial; in fig. 3 an example of resolution is shown.

A transition G0 P

σ1−−−−−−−−−−⋄ · · ·
P

σh−−−−−−−−−−⋄ Gh is a G-computation (by P); if Gh = ◦ it is
a successful G-computation of G0 yielding σ1 · · ·σh.
Define the relation

P
−−−−−−−−−−�⋄ ⊂ G2 × σ as

P
−−−−−−−−−−�⋄ = { (G0, Gh, σ1 · · ·σh) | G0 P

σ1−−−−−−−−−−⋄ · · ·
P

σh−−−−−−−−−−⋄

Gh }. Instead of (G, G′, σ) ∈
P
−−−−−−−−−−�⋄ we shall write G

P

σ
−−−−−−−−−−�⋄ G′.

4 SMR and Linear Logic

We shall now briefly present a translation of SMR goals and clauses into
linear logic. In fact, the translation is into Forum

O−◦∀, and we claim that
G-computations are represented by Forum

O−◦∀ derivations in a correct and
complete way. Then, in the end, a G-computation is no more and no less than
the proof of a suitable formula in linear logic.
More details may be found in [8].

Let us augment the set of variables by a denumerable set π of process

variables, which are not allowed to appear in SMR atoms. SMR atoms are
translated into atoms. The terms inside are left untouched, and the relative
position in the goal (coordinate) yields a unique process variable, which is
appended to the resulting atom. Since atoms in SMR do not contain process
variables, name clashes are avoided. The empty goal translates into a special
atom of the kind ◦(π).

Let ◦ be a distinguished predicate of arity 1. The function pJ·K: p → p is
chosen such that it is one-one, it holds arpJpK = ar p + 1 and pJ◦K = ◦.

Let κ = N⋆ be the set of coordinates.

Coordinates shall provide a convenient way to generate distinct process
variables.

While π stands for a generic process variable, object process variables are
φκ1

, φκ2
, . . . , where the indexes are coordinates.

Define AJ·K: A×κ → A as AJp(t|h1), κK = pJpK(t|h1 , φκ). We shall write Aφκ

instead of AJA, κK.
We shall refer to atoms ◦π as success atoms.

In the following translation the structure of the goal is kept by process
variables (identity of atoms in the structure), by the O connective (parallelism
among atoms) and by the −◦ connectives (directionality of sequential connec-
tives).

For every κ define GJ·Kκ: G → M as

GJAKκ = AJA, κK = Aφκ,

GJG ⋄ G′Kκ = GJGKκ‖1 O GJG′Kκ‖2,

GJG ⊳ G′Kκ = (GJG′Kκ‖2 −◦ BJGKκ‖1) −◦ GJGKκ‖1,

where
BJAKκ = AJ◦, κK = ◦φκ,

BJG ⋄ G′Kκ = BJGKκ‖1 O BJG′Kκ‖2,

BJG ⊳ G′Kκ = BJG′Kκ‖2.

Define DJ·K: D → M as

DJA|h1 ^ G|h1 K = ∀⌈A|h1 ^ G|h1⌉ :∀i∈Nh
1

φi : (Oi∈Nh
1

DJGiK
′
i −◦Oi∈Nh

1
Aiφi),

where, for every κ, DJ·K′κ: G → M is defined as

DJGK′κ =

{
Gφκ if G ∈ A

∀V : ((◦φκ −◦ BJGKκ) −◦ GJGKκ) if G /∈ A
,

where V is the set of process variables appearing in GJGKκ.

We are now ready for the main result of this section.

Given a program P and a goal G, let the following sequent be a represen-

tation for configuration 〈P, G〉:

DJP K;⊢ GJGKǫ.

A correctness and completeness theorem may be stated, which can be
chained to the correctness and completeness result between Forum

O−◦∀ and
linear logic, given at the end of section 2.

4.1 Theorem A successful G-computation by P of G yielding σ exists iff

there is a proof in Forum
O−◦∀ of the representation of 〈P, Gσ〉.

5 Nabla Syntax and Operational Semantics

The first subsection deals with basic programs, the second one with their
composition. Differences between Nabla and Gamma are highlighted, but
a discussion about them is postponed to the final conclusions.

5.1 Basic programs in Gamma and in Nabla

Basic programs recursively rewrite a multiset of elements of a certain universe.
We suppose elements of this universe are already terms in the syntax which
SMR and Forum are built upon. This restriction is not actually limiting, since
their replacement with more general structures is allowed by the treatment that
follows.

Let c be a denumerable set of constants and suppose c is a subset of the set
of constants in SMR.

Multiset rewriting occurs (or stops) when some relation is satisfied. We
are interested in decidable relations, and we shall suppose to have at hand
an algorithm, expressed in some language, which decides relations over every
h-uple of constants, when necessary.

For h ∈ N, let δh = { δ ⊆ ch | δ is decidable }. Let δ =
⋃

i∈N δi be the set
of reactions.

Depending on the satisfaction of some relation in δ, an action is performed.
Actions rewrite multisets of constants, and we require that they are total and
computable functions.

For h, k ∈ N, define γh,k = { γ: ch → ck | γ is total and computable }. Let
γ =

⋃

i,j∈N γi,j be the set of actions.

Reactions and actions come together in pairs. Given a multiset M of con-

stants of c, we consider multiset rewritings of the kind M
(δ,γ)
−−−−−→ M ′: such a step

can be performed if there exists (c|h1) such that {c|h1}+ D M and (c|h1) ∈ δ; then
M ′ = (M \+ {c|h1}+) ⊎ {c′|k1}+, where (c′|k1) = γ(c|h1).

For every h, k ∈ N and for every δ ∈ δh and γ ∈ γh,k define the relation
(δ,γ)
−−−−−→ as the set

{
(M, M ′)

∣
∣ M, M ′: c → N, ∃(c|h1) ∈ δ :

(
{c|h1}+ D M ∧ (c′|k1) =

γ(c|h1) ∧ M ′ = (M \+ {c|h1}+) ⊎ {c′|k1}+
) }

.

A basic program in Gamma is a pair (δ, γ), and a configuration is a pair
〈(δ, γ), M〉, where M is a multiset of constants of c. We say that a configuration
is terminating, and we write 〈(δ, γ), M〉↓Γ, if (δ, γ) can not produce any further
computation step from M . So, this is the operational semantics of a single
computation step of Gamma programs, in SOS style:

M
(δ,γ)
−−−−−→ M ′

,
〈(δ, γ), M〉 →Γ 〈(δ, γ), M ′〉

¬∃M ′ : (M, M ′) ∈
(δ,γ)
−−−−−→

.
〈(δ, γ), M〉↓Γ

Then a computation in Gamma terminates whenever the reaction is no more
applicable.

For very general reasons, discussed elsewhere in this paper, we are not
able to deal with this kind of termination in the “proof search as computa-
tion” paradigm in linear logic. To be successful we need to make more explicit
the termination condition. Our position is the following: a program can termi-
nate if some (terminating) reaction is applicable. Then we change the notion
of basic program: the resulting language is called Nabla.

The set of basic programs B is defined as

{ (δN, γN, δT, γT) |

∃hN, kN, hT, kT ∈ N : (δN ∈ δhN ∧ γN ∈ γhN,kN ∧ δT ∈ δhT ∧ γT ∈ γhT,kT) }.

A basic configuration is a triple 〈B, M〉θ, where B ∈ B, M is a multiset M : c →
N and θ ∈ {N, T}. A basic configuration 〈B, M〉N is said non-terminating,
whereas 〈B, M〉T is said terminating.

The binary relation → ∆on basic configurations is the least one satisfying:

M
(δN,γN)
−−−−−→ M ′

bN ,
〈(δN, γN, δT, γT), M〉N → ∆〈(δN, γN, δT, γT), M

′〉N

M
(δT,γT)
−−−−−→ M ′

bT .
〈(δN, γN, δT, γT), M〉N → ∆〈(δN, γN, δT, γT), M

′〉T

In this way a computation stops after a certain relation is satisfied, whereas
in Gamma this only happens when a relation can not be satisfied.

5.2 Parallel and Sequential Composition of Basic Programs

We now introduce two composition operators on Nabla programs, viz. parallel
and sequential composition. Again, this is similar to what has been done
for Gamma.

The set of programs Q is the least set such that:

1) B ⊂ Q.

2) If Q, Q′ ∈ Q then (Q | Q′) ∈ Q and (Q ; Q′) ∈ Q.

(Q | Q′) is a parallel program, (Q ; Q′) is a sequential one. A configuration is
a triple 〈Q, M〉θ, where Q ∈ Q, M is a multiset M : c → N and θ can be N,
if Q /∈ B, or, if Q ∈ B, can be either N or T. 〈Q, M〉N and 〈Q, M〉T are said,
respectively, non-terminating and terminating.

〈Q, M〉N → ∆〈Q′, M ′〉N
pNL

〈Q | Q′′, M〉N → ∆〈Q′ | Q′′, M ′〉N

〈Q, M〉N → ∆〈Q, M ′〉T
pTL

〈Q | Q′, M〉N → ∆〈Q′, M ′〉N

〈Q, M〉N → ∆〈Q′, M ′〉N
pNR

〈Q′′ | Q, M〉N → ∆〈Q′′ | Q′, M ′〉N

〈Q, M〉N → ∆〈Q, M ′〉T
pTR

〈Q′ | Q, M〉N → ∆〈Q′, M ′〉N

〈Q, M〉N → ∆〈Q′, M ′〉N
sN

〈Q ; Q′′, M〉N → ∆〈Q′ ; Q′′, M ′〉N

〈Q, M〉N → ∆〈Q, M ′〉T
sT

〈Q ; Q′, M〉N → ∆〈Q′, M ′〉N

Fig. 4 SOS operational semantics of composed Nabla programs

The binary relation → ∆on configurations extends → ∆previously defined
over basic configurations and, moreover, is the least one satisfying the SOS
rules in fig. 4.

Let →→ ∆be the transitive and reflexive closure of → ∆. If 〈Q, M〉N →→ ∆

〈B, M ′〉T we say that there exists a successful (∆

-)computation of M ′ from
〈Q, M〉N, and we write 〈Q, M〉N →→ ∆M ′.

An important difference between Nabla operational semantics and the
Gamma one lies in the treatment of parallel composition: it is asynchronous
in Nabla and synchronous in Gamma. The only parallel termination rule in
Gamma, in fact, is

〈Q, M〉↓Γ 〈Q′, M〉↓Γ

.
〈Q | Q′, M〉↓Γ

Our weaker notion of termination provides for a straightforward specification
in SMR and, hence, in linear logic.

6 Nabla and SMR

We first show that we can use SMR to decide relations in δ and to evaluate
expressions in γ. An encoding of Turing machines into SMR would suffice.
We shall stem from the more intuitive fact that SMR generalizes Horn clauses,
for which a Turing computability result is already known. The following two
propositions hold.

6.1 Proposition Given δ ∈ δh there exist Pδ ∈ P and pδ ∈ p, with

ar pδ = h, such that for every (c|h1) ∈ ch there exists a successful G-computation

of pδ(c|
h
1) iff (c|h1) ∈ δ.

Sketch of proof Since with Horn clauses we can compute every computable
function, we only need to show that SMR generalizes Horn clauses wrt operational
semantics. To see this, transform every Horn goal A1, . . . , Ak into an SMR goal
A1 ⋄ · · · ⋄Ak and every Horn clause A0 ← A1, . . . , Ak into an SMR clause A0 ^ A1 ⋄
· · · ⋄ Ak.
It is trivial to see that to every successful computation on Horn clauses corresponds
a successful SMR computation whose last steps are reduction steps which remove
empty goals.
The converse is trickier. Intuitively, given an SMR computation, one has to delay all
reduction steps towards the end (which is trivial since all the goals remain “flat”).
Then one has to show that the resolution part of the SMR computation can naturally
yield a Horn computation where all unifiers produced are lifted to the corresponding
mgu’s.

6.2 Proposition Given γ ∈ γh,k there exist Pγ ∈ P and pγ ∈ p, with

ar pγ = h + k, such that for every (c|h1) ∈ ch they hold :

.1 if (c′|k1) = γ(c|h1) then there exists a successful G-computation of pγ(c|h1 , x|k1)
by Pγ yielding σ such that σ|{x|k

1
} = [c′1/x1, . . . , c

′
k/xk];

.2 for every successful G-computation of pγ(c|h1 , x|k1) by Pγ yielding σ it holds

σ|{x|k
1
} = [c′1/x1, . . . , c

′
k/xk], where (c′|k1) = γ(c|h1).

Sketch of proof The argument is similar to the previous proof’s one.

We now show how to translate Nabla configurations into SMR programs
and goals. First of all, we need to introduce some special syntactic objects.

Suppose having a distinguished unary predicate ˜: instead of ˜(t) we shall
write t̃. Given a constant c, we say that c̃ is its reification. Furthermore,
suppose to every basic program B corresponds a distinguished 0-arity predicate
Ḃ. Let T be a distinguished atom. These newly defined syntactic objects only
appear where explicitly shown.

Functions J·KG and J·KP on Nabla configurations and programs, with values
in SMR goals and programs, respectively, are defined in figg. 5 and 6.
The choice of variables in JBKPN and JBKPT (fig. 6) is arbitrary, provided they
all are pairwise distinct.
We suppose all programs Pδθ

and Pγθ
(θ ∈ {N, T}) appearing in JQKP are

disjoint wrt to predicates which they are built upon (this does not diminish
generality); in this way they are freely composable without side effects.

Given configuration 〈Q, M〉N, JQK′
G

faithfully represents the ordering struc-
ture of Q in SMR goal J〈Q, M〉NKG; component basic programs are represented
by the markings Ḃ: they shall remain in the goal until the corresponding B is
not terminated.

The only purpose of T is to allow rewriting in case of reactions and actions

J〈Q, {c|h1}+〉NKG = JQK′G ⋄ T ⋄ c̃1 ⋄ · · · ⋄ c̃h

J〈B, {c|h1}+〉TKG = T ⋄ c̃1 ⋄ · · · ⋄ c̃h

JQ | Q′K′G = JQK′G ⋄ JQ′K′G

JQ ; Q′K′G = JQK′G ⊳ JQ′K′G

JBK′G = Ḃ

Fig. 5 Translation of configurations into SMR goals

JQ | Q′KP =

JQ ; Q′KP = JQKP ∪ JQ′KP

JBKP = {JBKPN, JBKPT} ∪ PδN
∪ PγN

∪ PδT
∪ PγT

JBKPN = Ḃ, T, x̃1, . . . , x̃hN
^ Ḃ, T ⋄ pδN

(x|
hN
1) ⋄

`
pγN

(x|
hN
1 , x′|

kN
1) ⊳ (x̃′

1 ⋄ · · · ⋄ x̃′
kN

)
´
, ◦, . . . , ◦
| {z }

hN

JBKPT = Ḃ, T, x̃1, . . . , x̃hT
^ ◦,T ⋄ pδT

(x|
hT
1) ⋄

`
pγT

(x|
hT
1 , x′|

kT
1) ⊳ (x̃′

1 ⋄ · · · ⋄ x̃′
kT

)
´
, ◦, . . . , ◦
| {z }

hT

where B = (δN, γN, δT, γT), δN ∈ δhN , γN ∈ γhN,kN , δT ∈ δhT , γT ∈ γhT,kT ,

pδN
, PδN

, pδT
, PδT

satisfy prop. 6.1 and pγN
, PγN

, pγT
, PγT

satisfy prop. 6.2

Fig. 6 Translation of Nabla programs into SMR programs

in δ0 and γ0,k.

So, a goal is a ⋄ composition of T, JQK′
G

(for non-terminating config-
urations) and of all the reified constants in a corresponding configuration.
The SMR program JQKP is just the union of the clauses relative to all basic SOS
rules deduced from Q: every basic program B in Q contributes with two main
clauses (JBKPN and JBKPT); the one for termination erases Ḃ from the goal when
executed.
Please notice that the top of the goal is kept ground by allowing new constants
to reach the top only after they are actually computed by some pγθ

(· · ·).

It should not be difficult to convince oneself that the proposed specification
provides for a maximally parallel and asynchronous execution in SMR.

Correctness of the translation is stated this way, for a single step compu-
tation:

6.3 Theorem If 〈Q, M〉N → ∆〈Q′, M ′〉θ then

J〈Q, M〉NKG JQKP

σ
−−−−−−−−−−�⋄ J〈Q′, M ′〉θKG, for all Q,Q′ ∈ Q, M,M ′: c → N, θ ∈ {N, T}

and for some substitution σ.

Generalizing this result to →→ ∆is straightforward:

6.4 Theorem If 〈Q, M〉N →→ ∆〈Q′, M ′〉θ then

J〈Q, M〉NKG JQKP

σ
−−−−−−−−−−�⋄ J〈Q′, M ′〉θKG, for all Q,Q′ ∈ Q, M,M ′: c → N, θ ∈ {N, T}

and for some substitution σ.

Completeness requires a different approach. We have to show that no mat-
ter how SMR (then, in the end, linear logic) computes on a given J〈Q, M〉NKG

by a program JQKP, it actually performs a ∆-computation. Of course, it has
to be taken into account the fact that SMR carries a finer notion of compu-
tation step than Nabla does.

6.5 Theorem If J〈Q, M〉NKG JQKP

σ
−−−−−−−−−−�⋄ J〈Q′, M ′〉θKG then

〈Q, M〉N →→ ∆〈Q′, M ′〉θ, for all Q,Q′ ∈ Q, M, M ′: c → N, θ ∈ {N, T} and

σ ∈ σ.

Proofs of the correctness and completeness theorems are given in the ap-
pendix.

7 Conclusions

The first step on the way from linear logic to Nabla is the definition of Forum.
This step stems from very general considerations about logic programming
[12]. It essentially provides a way to eliminate a great deal of non-determinism
by resorting to a fragment of logic sound from the point of view of language
design [11].

The second step, performed in this paper, is motivated by the need to have
a minimum specification language with sequentiality, with strong grounds
in first order linear logic. Here the key design analysis is about commutativity
vs. non-commutativity of non-idempotent conjunctions. Of course the lan-
guage must be expressive enough to allow recursion. This led us to SMR, and
to the definition of the Forum

O−◦∀ fragment.

We obtained both a declarative and operational understanding of sequenc-
ing by associating to every task a pair of statements: 1) that the task i has
to be performed by an agent (say Ai) and 2) that when the task is accom-
plished a signal (◦i) is issued. The above treatment of sequentiality clearly
encompasses paradigms more general than SMR. SMR by itself is a powerful
language, as many examples show [9, 14].

The translation makes use of the full O−◦∀ fragment of linear logic, thus
making full logical use of these connectives. This is opposed to, for exam-

ple, classical logic programming, in which ⇒ and ∀ are only used in left
rules. An important point is that all structural information in SMR goes
into the logic, with no need to resort to trickeries with terms. We are also
pleased by the correspondence between parts in the sequences of Forum and
our framework: the program in the classical context, the structure of the
goal in the left linear context and the top of the goal in the atomic con-
text. The translation is very conservative wrt computational complexity, and
Forum guarantees good operational properties.

The third step, from SMR to Nabla, is no more than an exercise in pro-
gramming. SMR has enough expressive power to express every Turing equiva-
lent algorithm, so it is adequate for basic programs, and has of course the abil-
ity to express a suitable sequential composition.

The key point here is in the design of Nabla itself. Two modifications
to the Gamma paradigm have been performed:

1) The termination condition for basic programs. Instead of terminating when
no reactions are applicable, a program terminates when some termination
reaction is applicable.

2) Synchronous termination of parallel programs is removed in favor of asyn-
chronous one.

Both aspects have in common a local vs. global dichotomy. In 1, to termi-
nate a Gamma program we have to test on the entire multiset every possible
reaction. We would need then a way to say, into the logic, that something
is not provable. This is the same difficulty of giving proof-theoretical dig-
nity to “negation as failure” in logic programming. Linear logic negation
is, of course, a different thing. In other words, one has probably to change
the logic, in ways not clear yet, to encompass such a “global” feature. As
for the second aspect, the change is directly inspired by the nature of the O
connective. In the parallel “dimension” of the languages studied here there
is really a smooth transition from O to ⋄ to |. The proposed semantics for |,
both the SOS-style and the SMR specification, are very natural and aesteth-
ically appealing. Moreover, a synchronous termination again would require
a global view of the multiset by the program. One can, of course, have this
kind of global computations at the price of encoding the language into terms,
which, by their nature, are entirely available for inspection by logical formulas.
But this is contrary to the spirit this investigation has been inspired by, i.e.

analyzing the logical content of Gamma-like languages from the linear logic
point of view.

The analysis presented represents a satisfying solution to the problem,
given the constraints we imposed on our work: the use of linear logic, and in

particular its abstract logic programming presentation Forum, the first-order
restriction and the will not to use continuations.

Better solutions can possibly be found in the future. They will require
more structural logics than linear logic, and logics able at the same time to
better cope with globality. At present, non-commutative linear logic is not a
feasible solution, since it has non-commutativity but lacks a natural notion of
commutativity. Other approaches to globality, such as borrowing techniques
from “negation as failure” frameworks, are destined to be only partial solutions
since the beginning. In our opinion, pomset logic [15] shall provide an excellent
framework for this kind of analysis, once we shall be able to define abstract
logic programming in it. This is our active research field.

The problem, as should be clear by the previous exposition, is that while
parallel composition (independence wrt the next step of computation) is very
easy to deal with, the same is not true for sequential composition (causality).
To deal with causality one has to make use of the implicit synchronization
(i.e. causality!) obtainable by logic provability: one has to resort to linear
implication. This fact is simply observable in the syntax of linear logic: while
O is commutative, −◦ is not, and then we use −◦.

This approach has at least one weak point: the partially ordered state
is not directly represented. What is represented in linear contexts of Forum

fragments is a program which guarantees the exact dependencies of actions
over the state. This is satisfactory from the operational point of view, because
it guarantees all and only the correct computations. It is not satisfactory from
the logical point of view because at this point one should expect to treat
the structuring of state at a more direct level. In fact, in pomset logic, there
are two connectives to use to build states: one commutative and the other
non-commutative.

At the moment, a cut-elimination theorem for the sequent presentation of
pomset logic is not proved, while it is proved for its proof nets. We hope that,
when that theorem is finally proved, as we are convinced it is true, this work
can immediately lead to a useful application of pomset logic. If not else, this
kind of investigation is a challenging exercise to put on trial logical formalisms
wrt the first class exploitation of state in concurrent computations.

Acknowledgments

We thank Paolo Ciancarini and Dale Miller for the many fruitful discussions.

Paola Bruscoli has been funded by ESPRIT BRA Project 9102 Coordination,
Alessio Guglielmi by ESPRIT ParForCE (EP 6707).

Appendix

Proof of theorem 6.3 By induction on the definition of→ ∆(i.e. on the struc-
ture of Q).
As a general remark, please notice the following fact. In J〈Q,M〉NKG the subgoal JQK′G
is in parallel with T and the reified multiset, and is made up by unique basic program
identifiers Ḃ. In a G-computation the only modifications one can have on the initial
JQK′G are successive erasings of identifiers Ḃ in the top, until eventually it becomes
◦. A careful understanding of this is necessary in order to fill gaps in this proof,
especially for the sequential cases.

1) Base case.
Rule bN; let Q = Q′ = (δN, γN, δT, γT) and θ = N. It holds M

(δN,γN)
−−−−−→ M ′: let

(c|
hN
1) ∈ δN such that M ′ = (M \+ {c|

hN
1 }+) ⊎ {c′|

kN
1 }+, where (c′|

kN
1) = γN(c|

hN
1).

Using propp. 6.1 and 6.2, and supposing M = {c|hN
1 }+ ⊎ {c

′′|h1}+, where h ∈ N,
we have:

J〈Q, M〉NKG = Q̇ ⋄ T ⋄ c̃1 ⋄ · · · ⋄ c̃hN
⋄ c̃

′′
1 ⋄ · · · ⋄ c̃

′′
h

7
JQKP

σ1−−−−−−−−−−⋄ Q̇ ⋄ T ⋄ pδN
(c|hN

1) ⋄
`

pγN
(c|hN

1 , x
′|kN

1) ⊳ (x̃′
1 ⋄ · · · ⋄ x̃

′
kN

)
´

⋄ c̃
′′
1 ⋄ · · · ⋄ c̃

′′
h

JQKP

σ2−−−−−−−−−−�⋄ Q̇ ⋄ T ⋄
`

pγN
(c|hN

1 , x
′|kN

1) ⊳ (x̃′
1 ⋄ · · · ⋄ x̃

′
kN

)
´

⋄ c̃
′′
1 ⋄ · · · ⋄ c̃

′′
h

JQKP

σ3−−−−−−−−−−�⋄ Q̇ ⋄ T ⋄ c̃
′
1 ⋄ · · · ⋄ c̃

′
kN
⋄ c̃

′′
1 ⋄ · · · ⋄ c̃

′′
h

= J〈Q, M
′〉NKG,

where σ = σ1σ2σ3 for some σ1, σ2 and σ3.

Rule bT; let Q = Q′ = (δN, γN, δT, γT) and θ = T. It holds M
(δT,γT)
−−−−−→ M ′: let

(c|hT
1) ∈ δT such that M ′ = (M \+ {c|

hT
1 }+) ⊎ {c′|kT

1 }+, where (c′|kT
1) = γT(c|

hT
1).

Using propp. 6.1 and 6.2, and supposing M = {c|
hT
1 }+ ⊎ {c

′′|h1}+, where h ∈ N,
we have:

J〈Q,M〉NKG = Q̇ ⋄ T ⋄ c̃1 ⋄ · · · ⋄ c̃hT
⋄ c̃

′′
1 ⋄ · · · ⋄ c̃

′′
h

7
JQKP

σ1−−−−−−−−−−⋄ T ⋄ pδT
(c|

hT
1) ⋄

`

pγT
(c|

hT
1 , x

′|
kT
1) ⊳ (x̃′

1 ⋄ · · · ⋄ x̃
′
kT

)
´

⋄ c̃
′′
1 ⋄ · · · ⋄ c̃

′′
h

JQKP

σ2−−−−−−−−−−�⋄ T ⋄
`

pγT
(c|

hT
1 , x

′|
kT
1) ⊳ (x̃′

1 ⋄ · · · ⋄ x̃
′
kT

)
´

⋄ c̃
′′
1 ⋄ · · · ⋄ c̃

′′
h

JQKP

σ3−−−−−−−−−−�⋄ T ⋄ c̃
′
1 ⋄ · · · ⋄ c̃

′
kT
⋄ c̃

′′
1 ⋄ · · · ⋄ c̃

′′
h

= J〈Q,M
′〉TKG,

where σ = σ1σ2σ3 for some σ1, σ2 and σ3.

2) Inductive case.
Rule pNL; suppose 〈Q |Q′′, M〉N → ∆〈Q′ |Q′′, M ′〉N. We have:

J〈Q |Q′′
, M〉NKG = JQ′′K′G ⋄ J〈Q,M〉NKG

JQ|Q′′KP

σ
−−−−−−−−−−�⋄ JQ′′K′G ⋄ J〈Q′

, M
′〉NKG = J〈Q′ |Q′′

, M
′〉NKG,

by induction hypothesis.
Rule pTL; suppose 〈Q |Q′, M〉N → ∆〈Q′, M ′〉N. We have:

J〈Q |Q′
, M〉NKG = JQ′K′G ⋄ J〈Q,M〉NKG JQ|Q′KP

σ
−−−−−−−−−−�⋄ JQ′K′G ⋄ J〈Q,M

′〉TKG = J〈Q′
, M

′〉NKG,

by induction hypothesis.
Rules pNR and pTR: see above.
Rule sN; suppose 〈Q ; Q′′, M〉N → ∆〈Q′ ; Q′′, M ′〉N. Supposing M = {c|h1}+ and

M ′ = {c′|h
′

1 }+, we have:

J〈Q ; Q
′′
, M〉NKG = (JQK′G ⊳ JQ′′K′G) ⋄ T ⋄ c̃1 ⋄ · · · ⋄ c̃h

JQ;Q′′KP

σ
−−−−−−−−−−�⋄ (JQ′K′G ⊳ JQ′′K′G) ⋄ T ⋄ c̃

′
1 ⋄ · · · ⋄ c̃

′
h′ = J〈Q′ ; Q

′′
, M

′〉NKG,

by induction hypothesis.
Rule sT; suppose 〈Q ; Q′, M〉N → ∆〈Q′, M ′〉N. Supposing M = {c|h1}+ and M ′ =

{c′|h
′

1 }+, we have:

J〈Q ; Q
′
, M〉NKG = (JQK′G ⊳ JQ′K′G) ⋄ T ⋄ c̃1 ⋄ · · · ⋄ c̃h

JQ;Q′KP

σ
−−−−−−−−−−�⋄ (◦ ⊳ JQ′K′G) ⋄ T ⋄ c̃

′
1 ⋄ · · · ⋄ c̃

′
h′

�
G

JQ′K′G ⋄ T ⋄ c̃
′
1 ⋄ · · · ⋄ c̃

′
h′ = J〈Q′

, M
′〉NKG,

by induction hypothesis.

Proof of theorem 6.5 The theorem is proved if, in the hypothesis, we can
exhibit a G-computation

C = J〈Q0, M0〉NKG JQKP

σ0−−−−−−−−−−�⋄ J〈Q1, M1〉NKG JQKP

σ1−−−−−−−−−−�⋄ · · ·
JQKP

σk−1−−−−−−−−−−�⋄ J〈Qk, Mk〉θKG

such that

〈Q, M〉N = 〈Q0, M0〉N → ∆〈Q1, M1〉N → ∆· · · → ∆〈Qk, Mk〉θ = 〈Q′
, M

′〉θ.

This is true (by propp. 6.1 and 6.2) if, in C, every step

J〈Qi, Mi〉NKG JQKP

σi−−−−−−−−−−�⋄ J〈Qi+1, Mi+1〉θKG

takes one of these two forms, corresponding to basic configurations’ SOS rules:

J〈Qi, Mi〉NKG 7 {JBKPN}

σi−−−−−−−−−−⋄ G
′
i PδN

σ′

i−−−−−−−−−−�⋄ G
′′
i PγN

σ′′

i−−−−−−−−−−�⋄ J〈Qi+1, Mi+1〉NKG, where Qi+1 = Qi, or

J〈Qi, Mi〉NKG 7 {JBKPT}

σi−−−−−−−−−−⋄ G
′
i PδT

σ′

i−−−−−−−−−−�⋄ G
′′
i PγT

σ′′

i−−−−−−−−−−�⋄ J〈Qi+1, Mi+1〉θKG,

where B = (δN, γN, δT, γT) is a basic program appearing in Qi, which disappears
in Qi+1 if the second computation is performed.
The above fact can be proved by this argument:

1) Clauses in JQKP are of two kinds: main clauses are all JBKPN and JBKPT, for every
basic program B appearing in Q; auxiliary clauses are clauses in auxiliary pro-

grams PδN
, PγN

, PδT
and PγT

, for every basic program B = (δN, γN, δT, γT) appear-
ing in Q. Let us call auxiliary both predicates and atoms appearing in auxiliary
programs, too.
Of course, in every J〈Q, M〉θKG no auxiliary predicate appears.

2) If |C|R > 0 then there is at least one sub-computation of C of the kind

pδθ
(· · ·)

Pδθ

σ
−−−−−−−−−−�⋄ ◦ and one of the kind pγθ

(· · ·)
Pγθ

σ
−−−−−−−−−−�⋄ ◦. It is so because if |C|R > 0

there is at least one resolution with a main clause, and because every auxiliary
atom thus introduced in the goal must eventually disappear, by point 1 above.

3) Given two computation steps C1 = G
P1

σ1−−−−−−−−−−⋄
G

G′ and C2 = G′

P2

σ2−−−−−−−−−−⋄
G

G′′, we say

that C2 switches with C1 if there exists G′′′ such that G
P2

σ2−−−−−−−−−−⋄
G

G′′′

P1

σ1−−−−−−−−−−⋄
G

G′′ and
σ1σ2 = σ2σ1.
In our case, it is not difficult (using programs’ disjointness over auxiliary predi-
cates) to prove that:
Every step of the kind G

P

σ
−−−−−−−−−−⋄

G
G′, where P is some auxiliary program, switches

with every other step in a computation, except with:

- those steps which are resolutions with clauses in the same auxiliary pro-

gram P ;

- a resolution step with a main clause which introduces a predicate in P .

4) Using 2 and 3, and proceeding by induction over its length, we obtain from every
G-computation a G-computation like C above, which proves the theorem.

References

[1] Jean-Pierre Banâtre and Daniel Le Métayer. The Gamma model and its discipline of
programming. Science of Computer Programming, 15(1):55–77, November 1990.

[2] C. Hankin, D. Le Métayer, and D. Sands. A calculus of Gamma programs. In Languages

and Compilers for Parallel Computing, 5th International Workshop. Springer-Verlag,
1992.

[3] David Sands. Composed reduction systems. In Proceedings of the 6th Nordic Work-

shop on Programming Theory, number NS-94-6 in BRICS Notes Series, pages 360–377,
Aarhus, Denmark, 1994.

[4] Paolo Ciancarini, Roberto Gorrieri, and Gianluigi Zavattaro. An alternative semantics
for the calculus of Gamma programs. manuscript, 1995.

[5] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[6] Jean-Marc Andreoli and Remo Pareschi. Linear Objects: Logical processes with built-in
inheritance. New Generation Computing, 9:445–473, 1991.

[7] Dale Miller. The π-calculus as a theory in linear logic: Preliminary results. In E. Lamma
and P. Mello, editors, 1992 Workshop on Extensions to Logic Programming, volume
660 of Lecture Notes in Computer Science, pages 242–265. Springer-Verlag, 1993.

[8] Alessio Guglielmi. Sequentiality by linear implication and universal quantification. In
Jörg Desel, editor, Structures in Concurrency Theory, Workshops in Computing, pages
160–174. Springer-Verlag, 1995.

[9] Lúıs Monteiro. Distributed logic: A logical system for specifying concurrency. Technical
Report CIUNL-5/81, Departamento de Informática, Universidade Nova de Lisboa, 1981.

[10] Lúıs Monteiro. Distributed logic: A theory of distributed programming in logic. Tech-
nical report, Departamento de Informática, Universidade Nova de Lisboa, 1986.

[11] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, Ninth Annual

IEEE Symposium on Logic in Computer Science, pages 272–281, Paris, July 1994.

[12] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125–157,
1991.

[13] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal

of Logic and Computation, 2(3):297–347, 1992.

[14] Alessio Guglielmi. Concurrency and plan generation in a logic programming language
with a sequential operator. In P. Van Hentenryck, editor, Logic Programming, 11th

International Conference, S. Margherita Ligure, Italy, pages 240–254. The MIT Press,
1994.

[15] Christian Retoré. Pomset logic: A non-commutative extension of classical linear logic.
In Computer Science Logic, Paderborn, September 1995.

