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Quantum fluctuations in the intensity of an optical probe is noise which limits measurement precision in
absorption spectroscopy. Increased probe power can offer greater precision, however, this strategy is often
constrained by sample saturation. Here, we analyse measurement precision for a generalised absorption model
in which we account for saturation and explore its effect on both classical and quantum probe performance.
We present a classical probe-sample optimisation strategy to maximise precision and find that optimal probe
powers always fall within the saturation regime. We apply our optimisation strategy to two examples, high-
precision Doppler broadened thermometry and an absorption spectroscopy measurement of Chlorophyll A. We
derive a limit on the maximum precision gained from using a non-classical probe and find a strategy capable
of saturating this bound. We evaluate amplitude-squeezed light as a viable experimental probe state and find
it capable of providing precision that reaches to within > 85% of the ultimate quantum limit with currently
available technology.

Absorption spectroscopy exploits light-matter interactions
to give precise measurements of sample composition. This
technique is widely applied with key use-cases including drug
analysis [1], environmental monitoring [2], atomic charac-
terisation [3], and industrial process monitoring [4]. In ab-
sorption spectroscopy, exceeding sample-specific probe in-
tensities often leads to irreversible damage through a host of
saturation-dependent mechanisms [5, 6]. Investigating probe
performance in the saturation regime is therefore crucial for
simultaneously optimising performance and minimising irre-
versible damage [7–9] of delicate samples such as archaeolog-
ical finds, living cells, or food products [4, 10, 11]. Intensity
dependent quantum noise within the probe scales favourably
with probe power but fundamentally limits the precision of
absorption measurements. Consequently, the saturation inten-
sity of the sample places a bound on the achievable measure-
ment precision.

By conducting an analysis of how saturation affects mea-
surement precision, we are able to present a probe-sample op-
timisation scheme to help classical measurements obtain the
highest precision possible with a classical probe. The pre-
cision is quantified utilising the Fisher information [12] – a
measure of how much information about an unknown param-
eter we can extract from the system. We find that the optimal
probe power is always in the saturation regime (≥ 50% of the
saturation power) which highlights an inherent trade-off be-
tween precision and damage that saturation-limited classical
schemes must navigate. This motivates the need to find alter-
native probe states that provide greater precision per photon.

Effective states for parameter estimation are identified as
being non-classical states of light: single-photon states [13,
14], multi-photon states [15–17], or squeezed states [18–21]
capable of enhancing performance under linear loss or phase
for a fixed resource level [11, 22–24]. Results thus far have
focused on the linear absorption regime, with the exception

of work by Mitchell [25] which models the effect of con-
strained photon number on the performance of Gaussian states
for single-parameter estimation. Mitchell numerically ex-
plores the performance of Gaussian states for measuring opti-
cal depth under a semi-classical model of saturation. Here,
we derive an analytical bound on the performance of both
Gaussian and non-Gaussian states under saturation. We as-
sess the ability of coherent states, Fock states, and squeezed
states to saturating this bound. Our results show that on a
per photon basis the Fock state remains optimal for prob-
ing in the saturation regime, giving a deeper understanding
of when to consider quantum light sources a worthwhile and
viable upgrade to saturation-limited measurements. Addition-
ally, our new theoretical framework opens the door to further
analysis of nonlinear absorption spectroscopy schemes that di-
rectly employ saturation to enhance image resolution [26, 27].
These schemes often incorporate transmission measurements
of weak signals into more complex estimators and can there-
fore build upon the model presented here for further optimisa-
tion.

In this manuscript, we construct a physical model and
utilise the Fisher information (FI) and quantum Fisher Infor-
mation (QFI) formalisms to investigate classical and quantum
probe performance. We derive the FI obtained from classi-
cal probing and present a sample-probe optimisation strategy
which we later apply to two examples: Doppler broadened
thermometry (DBT) and direct Chlorophyll absorption spec-
troscopy. Further, we perform a QFI analysis and derive a
bound on the achievable precision of any single-mode quan-
tum state. Our work shows the FI obtained by the Fock state
saturates this bound and is thus optimal. For a given target
precision, we show the quantum probe brightness to be of
an order of magnitude less than the required classical probe
brightness, making it desirable for ultra-sensitive samples.
We identify amplitude-squeezed states as a viable route to-
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FIG. 1: The model schematic: a probe state of mean input photon
number 〈n̂in〉 is propagated along a sample of length L. The sample
consists of homogeneously distributed two-level absorbers with den-
sity nt, characteristic transition cross-section σ, and lifetime τ . The
output transmission η is measured and used to infer an estimate of
the linear absorption coefficient a.

wards quantum precision enhancement for saturation-limited
sensors. The analytical results presented are based on a semi-
classical approximation of sample saturation. Complementary
to these results, we complete a fully-quantum numerical anal-
ysis of the effect of saturation on the higher order moments of
the probe’s photon statistics and find the analytical quantum
advantage to be a lower bound on the achievable advantage of
employing quantum light.

Fisher Information Formalism.—The model we consider,
depicted in Fig. 1, consists of a saturable absorber of
length L ∈ (0,∞) cm, with linear absorption coefficient
a ∈ (0,∞) cm−1 and saturation intensity ns. The sample
is resonantly probed via a single mode with known mean
input photon number 〈n̂in〉. Each target absorber is mod-
elled via a static, independent, two-level system. This sim-
plified two-level model can be readily extended to more com-
plex multi-level systems which display a dominant radiative or
non-radiative decay path back to ground [28, 29]. The mean
photon number is measured at the output to infer a precise
estimate of the linear absorption from repeated transmission
measurements. To aid our discussion of the results, we define
the dimensionless variable κ := 2〈n̂in〉/ns to be the input in-
tensity scaled by half the saturation intensity. Although the
effect of saturation on the evolution of the probe intensity is
non-zero for all κ > 0, the instantaneous change in probe in-
tensity is dominated by a term linear in intensity for κ < 1
(see Appendix A, Eq. A7). Conversely, when κ > 1, the
nonlinear terms dominate the evolution of the intensity and
the dynamics are no longer well approximated by the linear
Beer-Lambert model [30]. We thus define the linear pump-
ing regime to be κ < 1 and the saturated pumping regime
to be κ ≥ 1. Under a steady-state approximation, the sam-
ple transmission is given by [29] (see Appendix A for a full
derivation):

η(κ, a) =
1

κ
W[ln(κ) + κ− aL]. (1)

Here, W[x] is the Wright Omega function defined over the
real line [31]. We use the standard FI formalism to calcu-
late a bound on the estimate precision of an unknown param-
eter x encoded in the output state |ψx〉. The FI on a tar-
get variable x obtained by the set of positive-operator val-

ued measurements (POVMs), M̂ = {mi} with
∑
imi = 1,

is defined as F (x) =
∑
i p(mi|x)[∂[log p(mi|x)]/∂x]2 [12,

32]. The probability measurement outcome i is given by
p(mi|x) = tr{|ψx〉 〈ψx|mi}. The FI is related to the variance
of a given estimator of x via the classical Cramér-Rao bound
(CRB), inequality 1 of Eq. 2 [33], which is saturated by an op-
timal estimator. The quantum Fisher information (QFI) Q(x)
is then defined as the maximum possible FI obtained by opti-
mising over all POVMs and is related to the FI via the quan-
tum Cramér-Rao bound (QCRB), inequality 2 of Eq. 2 [34]:

1

Var(x)

1
≤ F (x)

2
≤ Q(x). (2)

We assume that the saturated loss channel acts like a beam
splitter on the optical mode with reflectivity determined by
1− η(κ, a). This semi-classical approximation only accounts
for the effect of saturation on the first moment of the input
state’s photon number and thus does not account for the effect
on its quantum noise.

Classical probe performance.—A classical laser probe
is well approximated by a coherent state [35] |α〉 with
〈n̂in〉 = |α|2 and Var(n̂in) = 〈n̂in〉. In direct absorption
schemes, the QCRB is saturated by direct transmission mea-
surements [24]. We calculate F (η) and relate it to the FI on
the linear absorption coefficient, F (a), using the following
formula: F (a) = (∂η/∂a)2F (η). The transmission variance
Var(η) is related to the output state photon number variance
Var(n̂) via error propagation [36] (see Appendix B for a full
derivation). Combining these two relations gives:

F (a) =
(∂η
∂a

)2 〈n̂in〉2
Var(n̂)

. (3)

The semi-classical loss approximation allows us to define the
output photon number variance analytically via [24]:

Var(n̂) = η2 Var(n̂in) + η(1− η)〈n̂in〉. (4)

For a coherent input state, the FI, Fc(a), is given by:

Fc(a) =
( Lη

1 + ηκ

)2 〈n̂in〉
η

, (5)

which is shown in Fig. 2(a).
The optimal classical strategy.—The negative effect of sat-

uration on classical probe efficiency, as seen by the downward
trend of the red lines in Fig. 2(a), is visible for κ� 1 suggest-
ing sample saturation has a measurable impact on schemes
probed far below saturation. For a given sample of known
length and estimated absorption, we can maximise the FI over
probe power. We find the optimal probe intensity nopt to be:

nopt =
ns
2
W[1 + aL] ≥ ns

2
, (6)

with a corresponding sample transmission of
ηopt =W[1 + aL]−1. Interestingly, the probe power re-
sulting in the greatest precision is lower bounded by κ = 1
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FIG. 2: Precision (blue) and efficiency (red) obtained using (a) a classical probe or (b) the optimal quantum probe, calculated across the linear
(κ < 1) and saturated (κ ≥ 1) pump regimes (dot-dashed purple). (c) shows the quantum advantage Λ. (a), (b) and (c) have been plotted on a
logarithmic x-axis. The sample has a fixed length L = 1 cm and is plotted for absorption coefficients a ∈ {0.5 cm−1, 1 cm−1, 2 cm−1}

.

implying classical strategies must be probed in the saturation
regime to fully optimise performance. This result highlights
an inherent trade-off between damage which can occur
with saturation and desired precision that under-performing
classical schemes will need to navigate. Such a compromise
further motivates a move to the quantum regime which is
capable of providing an absolute advantage [21].

To highlight the benefits of classical power optimisation,
we apply our method to the quantum-limited high-precision
absorption spectroscopy of a dilute Cesium vapour cell, used
to define the Boltzmann constant kz via Doppler broaden-
ing thermometry (DBT) [37]. In DBT the characterisation
of the line-width profile of a specific transition enables pre-
cise estimation of the Boltzmann constant kz . DBT is also
frequently used to accurately detect and monitor gasses [38]
with high measurement precision being imperative to both ap-
plications of the technique. In Ref. [37], a shot-noise limited
895 nm laser is used to probe a transition with characteris-
tic saturation intensity ns = 2.5 mW/cm2 through a cell of
length 75 mm. A laser intensity of 7 µW/cm2 (κ = 0.005)
is used resulting in a total transmission of η = 17%. We
can therefore estimate the linear absorption coefficient to be
a = 2.53 cm−1. Using Eq. 6, we find the optimal probe inten-
sity to be 2.67 mW/cm2 (κ = 2.14) with a resulting sample
transmission of η = 47%. Employing such a power would
result in a 24 dB improvement in the linear absorption esti-
mate precision (total Fisher information) over the power used
in [37]. In the absence of saturation, a further 6 dB increase
in power would result in a 6 dB increase in precision. Our
model shows that once saturation is properly accounted for
such an increase in probe power actually results in a −3 dB
reduction in precision highlighting the importance of includ-
ing saturation. Note, the only source of noise we consider
here is laser shot-noise. Other sources of noise may scale un-
favourably with power (e.g. temperature stability) and there-
fore may limit the practicality of witnessing such an increase
in precision. This example demonstrates the potential gains in

accounting for saturation when optimising measurements and
highlights the potential for miscalculation when only consid-
ering linear absorption.

For a given intensity damage threshold, we can similarly
maximise the FI over sample length. As a further example, we
investigate the resonant absorption of Chlorophyll A Acetone
solution, probed at 661 nm [39]. Chlorophyll A density is rou-
tinely measured via absorption spectroscopy in a wide variety
of settings [40, 41]. The transition absorption cross-section is
σ = 4× 10−17 cm2 with lifetime τ = 4 ns [42, 43]. Chloro-
phyll absorption measurements use a typical cuvette width of
1 cm and aim to prepare sample densities that give an out-
put transmission somewhere in the range of 15%− 50% [39].
Suppose we probe a sample with a commercially available
high power laser at 1 W (κ = 0.02) and measure a trans-
mission of 50%. We can infer from this measurement that
a ≈ 0.7 cm−1. The optimal sample length of such a measure-
ment is found to be L = 2.9 cm which results in a 3 dB im-
provement in precision over the standard 1 cm cuvette width.
This precision improvement maps directly onto the concen-
tration estimate. As demonstrated above, these results pro-
vide simple but powerful optimisation strategies to help im-
prove precision. We now derive a limit on the precision gained
via any single-mode state and explore the ability of quantum
states to saturate this bound.

A bound on single-mode precision.—Birchall et. al. de-
rived an upper bound on the QFI for single parameter esti-
mation that results in a correlated linear phase and loss being
applied to a single mode optical probe by Eq. 8 [32], which
reduces to the following when there is no phase shift applied
by the sample:

Q(x) ≤ 〈n̂in〉(∂xη)2

η(1− η)
(7)

The saturation model presented above is insensitive to
phase information and depends only on the mean intensity
of the input state and sample parameters. Therefore, we can
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FIG. 3: (a) The probe power reduction achievable by switching from a coherent probe of input intensity κc to a Fock state probe without loss
of precision. The sample has a fixed length L = 1 cm and is plotted for several absorption coefficient. (b) The squeezed state precision Fs(a)
normalised by the quantum limit Q(a) displaying the relative performance of several amplitude-squeezed states with squeezing factor R. (a)
and (b) have been plotted on a logarithmic x-axis.

apply this result to our model and note that an optimal quan-
tum probe is one that necessarily saturates this bound. Using
Eq. 7 in conjunction with Eq. 1, we derive a bound on the QFI
gained on the linear absorption coefficient a, estimated via the
transmission η 1:

Q(a) =
( Lη

1 + ηκ

)2 〈n̂in〉
η(1− η)

. (8)

Equation 8 defines the quantum limit on precision (shown in
Fig. 2(b)). We now seek to find quantum strategies that sat-
urate this bound and the separation of such strategies from
those reliant on classical resources only.

Finding an optimal probe.—It is well-known that the Fock
state-probe provides an optimal strategy in the linear absorp-
tion model [44, 45]. We expect this probe to remain optimal
under saturation. To prove this hypothesis, we combine Eq. 3
and Eq. 4 for a Fock state (Var(n̂in) = 0) which gives an ex-
pression for the FI achieved via Fock state probing Ff (a):

Ff (a) =
( Lη

1 + ηκ

)2 〈n̂in〉
η(1− η)

. (9)

The FI for a Fock state is indeed equivalent to Eq. 8, hence
Fock state probing remains an optimal quantum strategy for
maximising the precision of the absorption coefficient esti-
mate in the presence of saturation. By setting κ = 0, we
recover well-known linear absorption estimation results with
new insight gained for all κ > 0.

To benchmark the optimal quantum strategy against an
equally bright classical strategy we define the quantum advan-
tage Λ(a) := Q(a)/Fc(a) explicitly given by Λ(a) = 1

1−η ,
which compares the maximum precision gained from quan-
tum and classical states of equal brightness (Fig. 2(c)). By
performing a Taylor expansion around a = 0 cm−1 we find an
expression for the quantum advantage gained under the satu-
rated probing of weakly absorbing samples:

Λ(a) =
1 + κ

aL
, (10)

valid for κ ≥ 1 and a ≤ 1+κ
L .

The effect of saturation on precision.—Saturation imposes
a limit on the maximum precision a coherent, (Fig. 2(a)), or
Fock, (Fig. 2(b)), state provides with increasing optical power.
This is diametrical to linear loss which suggests probe bright-
ness can always be increased to enhance precision [24]. The
knock-on effect is impaired efficiency due to diminishing re-
turns in precision. Whilst the probe power is above satura-
tion, the effective linear absorption is low which limits the
information on the loss coefficient carried by each photon.
Both the quantum and classical strategies suffer due to this
effect, however, the coherent state performance is affected
further due to greater optical noise in the input state. The
combined effect is a quantum advantage that scales linearly
with κ in the saturation regime. The quantum advantage is
strongest for weakly absorbing samples as observed in trace
detection schemes [46, 47] or single-molecule direct absorp-
tion schemes [26].

Probe brightness.—The superior performance in combina-
tion with resilience to saturation allows for probing with a
Fock state at much weaker probe powers without a compro-
mise in performance. This enables a significant reduction in
the energy flux incident upon the sample. In Fig. 3(a) we
quantify this reduction in required power for a given linear ab-
sorption coefficient and classical probe power κc. For a target
absorption of a = 1 µm−1 probed at κ = 1, employing the op-
timal quantum probe offers a reduction in probe brightness of
−36 dB which has the potential to drastically reduce sample
damage. We can account for the effect of imperfect detection
by adding in a static loss pre-detector (see Appendix B). Re-
turning to our example of DBT and accounting for a detector
efficiency of 85%, if we allow the classical strategy to opti-
mise its power such that κ = 2.14 as previously calculated,
we find a possible power reduction factor of −3 dB available
by switching to the optimal quantum probe without a compro-
mise in precision. State-of-the-art multiplexed single-photon
sources are not bright enough to provide the required power
to match performance and typically have repetition rates of
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FIG. 4: Coherent (a) and Fock (b) state evolution along a saturable sample. We plot the evolution of the probe state’s Fano factor F (blue) and
transmission η (red) comparing the fully-quantum model (solid blue) to the semi-classical approximation (dashed blue). Shaded red represents
additional noise and shaded blue represents suppressed noise. The dot-dashed purple line is the point along the channel at which the number
of photons present in the probe state drops below Na (see Appendix C)

.

the order ∼ 106 Hz [48]. Such a source would only begin
to saturate samples with relaxation rates ∼ µs while typical
biophysical relaxation rates ∼ ns [49, 50]. Although cur-
rent single-photon sources lack the brightness to outperform
classical probes, bright amplitude-squeezed states are readily
available and capable of approaching the limit on quantum
performance [51].

Amplitude-squeezed state performance.—The precision
gained from such a bright amplitude-squeezed state, Fs(a),
is given by:

Fs(a) =
( Lη

1 + ηκ

)2 〈n̂in〉
η210−R/10 + η(1− η)

(11)

where R is the input state’s squeezing factor in dB, valid for
bright amplitude-squeezing such that |α|2 � R2 [51].
Squeezed state performance is thus found to ap-
proach the quantum limit for infinite squeezing val-
ues, Fs(a)

R→∞−−−−→ Q(a). Fig. 3(b) shows squeezed state
performance normalised byQ(a). A state-of-the-art squeezed
vacuum source with 15 dB squeezing could be displaced
to provide precision within 85% of the quantum limit and
is almost unaffected by saturation effects for κ ≤ 4 [52].
We note that losses other than those caused by the target
sample absorption, such as coupling losses or additional
propagation losses, will dilute the squeezed statistics with
vacuum noise, negatively affecting the state’s performance.
However, these results strongly indicate that advances can be
made by employing squeezed states in the absence of bright
Fock states.

Quantum loss channels.—The semi-classical approxima-
tion of saturation is useful for providing analytical results. We
now present a fully-quantum Hamiltonian model to asses the
true effect of saturation on the higher order moments of the
state’s photon number. The model is presented in full in Ap-
pendix C and has been solved using the open source software
QuTip [53, 54]. The code used in this section has been made
available in Ref. [55].

To enable full simulation, the sample is discritized along
its length z. The probe state is propagated through each
slice dz containing Na absorbers and interacts with the probe
state for a time τint := dz/c where c is the speed of light
inside the sample. Using open systems quantum modelling
we account for each coherent absorber-field interaction, spon-
taneous emission and dephasing. The single-photon single-
atom interaction rate is determined by the interaction time and
field geometry relative to the absorption cross-section [56].
Quantum effects dominate the evolution if the absorber-field
interaction rate exceeds all decohering effects [57–59]. This
type of coherent coupling is atypical for standard sensors and
requires careful design. Here, we consider decoherence dom-
inated propagation with a general dephasing time T2 deter-
mined by the specific system under consideration. Using
this model we can reproduce the classical dynamics of the
ground and excited state populations. To compare the two
models, we plot the evolution of the probe state’s Fano factor
– the variance-to-mean ratio of the photon number probabil-
ity distribution – defined as F := 〈n̂〉/Var(n̂), for classical
(Fig. 4(a)) and Fock (Fig. 4(b)) input states.

As the state propagates along the sample, the photon num-
ber distribution evolves according to the effective loss applied
to each component number state. In the fully quantum model,
this effective loss is dependent on the number of photons in
each basis state and is therefore different for each component
of the distribution. By comparison, the semi-classical model
assumes the effective loss is the same for all component num-
ber states and is dependent only on the mean photon number.
The overall effect of accounting for the differential effective
loss across the distribution is to add or suppress additional
noise in comparison to the semi-classical approximation.

We find that the addition of noise to the Fock state is sup-
pressed in comparison to the semi-classical model whilst the
probe intensity remains above saturation. During a saturated
interaction only Na photons may be absorbed per interaction
time which suppresses the rate at which noise, through loss,
is added to the state. Ff (a) is therefore underestimated for
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output powers κ ≥ 1. For coherent state propagation, satu-
ration increases the optical noise due to a differential effec-
tive absorption rate across the state’s photon number distribu-
tion. This acts to stretch the Poissonian photon number statis-
tics such that the probe becomes super-Poissonian. We there-
fore conclude that Fc(a) presented under the semi-classical
approximation is an upper bound on the true classical state
performance. Consequently, the quantum advantage given by
Eq. 10 is a lower bound on the true quantum advantage under
saturated probing.

In alignment with the results presented by Kumar et al. in
[60], the semi-classical approximation for classical sensing
experiments is sufficient when the mean photon number of
the state remains one standard deviation above or below the
saturation intensity during the analyte-probe interaction. This
ensures that the effective absorption strength across the states
poissonian photon number statistics is well approximated by
its mean value.

In conclusion, we have analysed and compared the effect of
saturation on probe performance in absorption spectroscopy.
These results are of most importance to saturation-limited
classical measurements demanding greater precision or effi-
ciency such as those often performed in high-precision ab-
sorption spectroscopy experiments [37, 38]. We have proven
Fock states are optimal for mitigating the limiting effects of
saturation and, through performance comparison, have shown
classical schemes probing weak absorptions stand to gain the
most from using a quantum probe [7–9]. For schemes that
do not have access to quantum resources we present a clas-
sical sample-probe optimisation strategy to help improve per-
formance with minimal experimental adaptation. Further, we
have shown that in the absence of bright Fock states, state-of-
the-art squeezed states provide an effective alternative to over-
coming saturation with today’s technology. Whilst the analy-
sis here finds saturation to be a detrimental effect on standard
absorption spectroscopy, there are a number of more advanced
techniques, such as stimulated depletion microscopy [26] or
saturated structured-illumination microscopy [61], where sat-
uration is used as a tool to enhance the information gained
on a sample. Adapting the analysis here to optimise the per-
formance of these strategies and to investigate any potential
quantum advantages may lead to further enhancement of these
optical sensors. Further work also includes experimental con-
firmation of these results.
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APPENDIX A: Derivation of Transmission

We present the derivation of Eq. 1 which expands on the
Beer-Lambert law to account for nonlinear absorption that oc-
curs across a medium in the high power, low saturation inten-
sity, regime. We aim to solve for the intensity of a single mode
optical field,N(z), as a function of position z along a medium
comprised of homogeneous two-level absorbers. The incident
photons are resonant with the transition to remove frequency
dependence and we consider the medium to be isolated from
the environment, exhibiting no internal interactions or tem-
perature dependent effects on population. Each particle has
a given interaction cross section σ, the probability a particle
will absorb a photon, and a transition relaxation time τ . The
total number of particles, nt, is conserved with n0 and n1 ac-
counting for the number of particles in the ground and excited
state respectively. It follows that:

nt = n0 + n1. (A1)

The rate equations for the populations of the ground and
excited states at a given position z, accounting for absorption,
stimulated emission, and spontaneous emission are:

dn0
dt

= −σN(z)n0 + σN(z)n1 + τ−1n1,

dn1
dt

= σN(z)n0 − σN(z)n1 − τ−1n1.
(A2)

As the flux of photons passes through a slab of thickness dz,
we make the assumptions that the relaxation time of the tran-
sition is long enough such that the populations of n1 and n0
can be considered constant. Under this steady-state assump-
tion, dn1

dt = 0 and dn0

dt = 0. This allows us to solve for n1 and
n0 using Eq. A1 and either one of A2:

n0 =
nt(σN(z) + τ−1)

2σN(z) + τ−1
,

n1 =
ntσN(z)

2σN(z) + τ−1
.

(A3)

As the state propagates along dz the change in intensity is
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given by the net change in population:

dN(z)

dz
= σN(z)(n1 − n0). (A4)

Here we assume spontaneous emission coupling back into the
mode is negligible, as is the case for free space propagation.
Using the solutions for n1 and n0 gives a differential inN(z):

dN(z)

dz
= − τ−1ntσN(z)

τ−1 + 2σN(z)
. (A5)

Let a := ntσ, the standard definition of the linear absorp-
tion coefficient, and ns := 1

στ be the saturation intensity. Re-
cast with these substitutions:

dN(z)

dz
= − aN(z)

1 + 2N(z)/ns
. (A6)

Note that we may expand the quotient into a geometrical se-
ries to give:

dN(z)

dz
= −aN(z)

(
1− 2N(z)/ns +O((2N(z)/ns)

2)
)

(A7)
The differential equation is dominated by the linear Beer-
Lambert law when 2N(z)/ns < 1. When 2N(z)/ns = 1,
both the linear and nonlinear terms contribute equally to the
instantaneous change in intensity; at which point, the effec-
tive linear absorption is exactly half it’s nominal value. We
can now solve for N(z) via separation of variables followed
by integration from 0 to z. Let N(0) := N0,

e
2N(z)

ns

(
2N(z)

ns

)
= e

ln

(
2N0
ns

)
+ 2

ns
(N0−az)

(A8)

Eq. A8 has been rearrange into a form with which we can use
the Lambert-W function, defined by:

W
(
zez) = z. (A9)

Furthermore, using a special case of the Lambert-W func-
tion, the Wright Omega function, defined by W (ez) =W(z),
gives the final solution:

N(z) =
ns
2
W
(

ln
(2N0

ns

)
+

2N0

ns
− az

))
. (A10)

The intensity through a sample of length L with linear ab-
sorption coefficient a, saturation intensity ns and input probe
intensity N0 ≡ 〈n̂in〉 is therefore given by:

η =
ns

2〈n̂in〉
W
(

ln
(2〈n̂in〉

ns

)
+

2〈n̂in〉
ns

− aL
)
. (A11)

We introduce κ = 2〈n̂in〉/ns as a dimensionless quantity:

η(κ) =
1

κ
W(ln(κ) + κ− aL). (A12)

Fig. A5 plots how transmission is effected by probing above
and below saturation. As we increase κ, the transmission
function shifts from an exponential, as determined by the
Beer-Lambert law, to a linear fall-off conducive of saturated
absorption.
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FIG. A5: Sample transmission as a function of length for several
probe intensities, κ. κ = 0 recovers the Beer-Lambert linear absorp-
tion model, κ = 1 defines the edge of the saturation regime and all
κ > 1 is in the saturation regime.

APPENDIX B: Derivation of Fisher Information

To calculate the Fisher information (FI) gained from a
probe state |ψ〉 on the unknown parameter a, we invoke the
Cramér-Rao bound (CRB). Transmission is the optimal unbi-
ased estimator for the linear absorption coefficient such that
the FI on η is given by:

F (η) =
1

Var(η)
. (B1)

Given that η := 〈n̂〉/〈n̂in〉 is a continuous linear differentiable
function of output intensity 〈n̂〉, we can relate the variance in
the transmission to the variance of the output photon number
via error propagation:

Var(η) =

(
∂η

∂n̂

)2

Var(n̂)

=
Var(n̂)

〈n̂in〉2
.

(B2)

The FI is therefore given in terms of the output photon number
variance of the output state:

F (η) =
〈n̂in〉2

Var(n̂)
. (B3)

The FI on η can be related to the FI on a via the formula:

F (a) =
(∂η
∂a

)2
F (η)

=
(∂η
∂a

)2 〈n̂in〉2
Var(n̂)

.

(B4)

Using the following formula for the derivative of the Wright
Omega function:

dW(x)

dx
=

W(x)

1 +W(x)
. (B5)
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We can calculate the derivative of η via a substitution
u = ln(κ) + κ− aL:

∂η

∂a
= −L

κ

∂W
∂u

= − Lη

1 + ηκ
.

(B6)

Combining Eq. B4 with Eq. B6 gives the final expression for
the FI gained by a state |ψ〉 on a as a function of output state
photon number variance:

F (a) =
( Lη

1 + ηκ

)2 〈n̂in〉2
Var(n̂)

. (B7)

We can account for the effect of imperfect detection by
adding an additional loss to the transmission pre-detection.
We model this via a beam splitter with reflectivity 1− γ,
where γ is the quoted detector efficiency. Under this model,
the measured transmission is defined as ηm := ηγ. The FI on
the measured transmission is again given by the CRB:

F (ηm) =
1

Var(ηm)
. (B8)

Using the formula Var(aX) = a2 Var(X) gives:

F (ηm) =
1

γ2 Var(η)
. (B9)

Following the previous method, the FI on the measured
transmission can be related to the FI on the linear coefficient
via:

F (a) =
( Lηγ

γ + ηκ

)2 〈n̂in〉2
Var(n̂)

. (B10)

APPENDIX C: Quantum Loss Channel Modelling

We present a quantum model of a saturated loss channel.
To allow for a fully quantum simulation the loss channel is
discretize along it’s length z into slices each consisting of Na
absorbers. The optical probe state is then propagated through
each slice to show how quantum noise is propagated along the
sample. Each slice interacts for a time τint = dz/c where c is
the speed of propagation. The model used is closely related
to the Dicke model [62] of an open quantum system under a
Markovian evolution [63]. We apply this model to calculate
the evolution of the probe field accounting for both coherent
and decoherent processes. Sensors that have not been specif-
ically designed to operate coherently will be dominated by
decoherent processes that result from spontaneous emission,
variational atomic trajectories and inhomogenous broadening
across the ensemble. Since this is by far the most common
type of dynamic seen in direct absorption schemes we focus
our discussion on this. Specifically we account for decoher-
ence due to the spontaneous emission of each independent ab-
sorber at a rate Γsp := 1/T1 and due to the dephasing at a

rate Γdp := 1/T2. Here, T1 & T2 are the characteristic en-
ergy and phase relaxation time scales of the specific system
under consideration [64]. Our model follows the dipole, rotat-
ing wave and two-level system approximations. By assuming
a homogeneous sample density and probe intensity, we can
approximate each absorber to be equally coupled to the field
which is considered to be resonant with the absorber transi-
tion frequency ω. In the second-quantised form, the governing
system Hamiltonian is found to be [62]:

ĤS = ~ωâ†â+

Na∑
k=1

{
~ωσ̂†kσ̂k + g(âσ̂†k + â†σ̂k)

}
(C1)

where σ̂†k is the excitation operator for the kth absorber
which has the form σ̂k = |g〉 〈e| (these operators follow stan-
dard spin-1/2 algebra). â is the quantum oscillator probe field
annihilation operator. The first term propagates the radiation
field. The second term propagates the Na two-level systems.
The third and fourth terms account for absorption and its re-
verse process, stimulated emission, at a rate determined by the
single absorber-field interaction strength g. For monochro-
matic illumination of a two-level system under the dipole ap-
proximation, the interaction strength g is given by:

g =
µ12E

~
(C2)

where µ12 is the dipole transition moment and E is the en-
ergy per photon within the interaction volume. There is some
debate over the definition of E in free space, however, it is
common practice to use the cavity based interaction definition
where the volume V is now given by the interaction volume
defined by the probe optical mode cross-section and duration.
As such, E is given by [65]:

E =

√
~ω

2ε0V
. (C3)

The free space transition cross-section and spontaneous
emission rates can be recast in terms of the dipole transition
moment [66]:

σ =
πωµ2

12

3ε0~c
, (C4)

Γsp =
ω3µ2

12

3ε0π~c3
. (C5)

We note that deriving the dephasing rate for a given system
is much more complex and so is typically measured experi-
mentally for a given setup and is often found to be orders of
magnitude greater than g [67]. Following reference [56], we
express the optical mode area A = πr2focus in multiples of the
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wavelength rfocus := βλ. We normalize the interaction time
τint by the absorber lifetime Γsp such that τint := α/Γsp. Us-
ing the following anzats for the interaction volume:

V = πβ2λ2 · c · τint (C6)

we can express the interaction rate as:

g =

√
3

2α

3

π2β
. (C7)

Crucially, in the free space model, the coupling strength is
dependent on the interaction time through the parameter α.
Note that in this model we do not include the saturation in-
tensity ns as this only arises in the semi-classical model as
a direct result of the constraint that only one photon may be
absorbed per cross-section per transition lifetime. Here, this

is already built into the Hamiltonian. As mentioned above,
the strategy will be to use this model to propagate the probe
through each i-th sample slice of width δz. The input density
matrix of the 0th slice is given by:

ρ0(0) = |ψ0(0)〉 〈ψ0(0)| ⊗ (|0k〉 〈0k|) (C8)

where the optical input state |ψ0(0)〉 ∈ {|α〉 , |N〉} is ei-
ther a Fock state or a coherent state with mean photon num-
ber 〈nin〉. The absorbers are assumed to be in the ground
state. The evolution of the system density matrix ρi(t), where
the interaction with the environment has been traced out, is
governed by the following master equation. Note we have
switched to natural units in which ~ ≡ 1 and c ≡ 1, we also
set ω = 1 such that λ = 2π. This is for convenience and does
not effect the physics:

∂ρi(t)

∂t
= −i

[
â†â+

Na∑
k=1

{
σ̂†kσ̂k+g(âσ̂†k+â†σ̂k), ρi

}]
+Γsp

Na∑
k=1

(
σ̂kρiσ̂

†
k−

1

2
{σ̂†kσ̂k, ρi}

)
+Γdp

Na∑
k=1

(
σ̂zkρiσ̂z

†
k−

1

2
{σ̂z†kσ̂zk, ρi}

)
(C9)

Here, σ̂zk is the Pauli-z dephasing operator for the kth

atom. We propagate the system for a time τint and perform
a partial trace over the absorbers Hilbert space to extract the
output optical state from the i-th slice:

|ψi(τint)〉 〈ψi(τint)| = trNa(ρi(τint)). (C10)

This state is then coupled forward as the input state of the
i+ 1th slice and the algorithm is thus repeated for the full
length of the sample:

ρi+1(0) = |ψi(τint)〉 〈ψi(τint)| ⊗ (|0k〉 〈0k|). (C11)

At each step, we calculate the states photon number vari-
ance and compare it directly with that predicted by a linear
loss channel. For the purpose of this investigation we set
τint = 1 and assume α = 0.5 such that the interaction time
is half the transition relaxation time allowing saturation to
take effect during the interaction. The coupling constant can
no longer be considered the same for each absorber close to
diffraction limited focusing due to the states polarisation be-
coming non uniform [68]. We therefore consider a maximal
focusing of β = 10. This gives an interaction rate g = 0.1 in
natural units. We set the dephasing rate to be Γdp = 2 such
that decoherence dominates the evolution with Γdp � g,Γsp.
The model can be used to recreate the famous optical Bloch
equations under a classical probe approximation which de-
scribe the evolution of an ensemble of absorbers coupled to

a classical coherent field [69]. Here, we will use the model
to probe the intensity profile along a sample consisting of 20
slices. To enable full simulation of the Hilbert space Na = 4
for each slice and we probe with an optical state consisting
of 〈n̂in〉 = 12 input photons. Despite the simplicity of this
model, we can use it to lend insight into how probing a loss
channel above saturation effects quantum noise in the probe
state.
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