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Abstract 

The circumferential profile of cylinder, as a classic shape, has been widely adopted in single-layer 

latticed shells. Previous research into these structures primarily concentrated on their buckling 

behavior. In this work, a novel two-way aluminum alloy cable-stiffened single-layer latticed shell is 

proposed to explore a shape optimization procedure of such structure. In addition, the buckling 

behavior of the optimized structures and classic cylindrical latticed shells are examined and compared. 

The optimization procedure adopts a linear algorithm, in which the structural strain energy is selected 

to be the optimization objective. Buckling analyses are also performed to compare the buckling 

behavior of this novel latticed shell with classic cylindrical and optimized shapes. The comparisons 

show that the load-carrying capacities are clearly enhanced by optimizing the shell shapes. The results 

presented in this article are anticipated to aid engineers in the design of two-way aluminum alloy 

latticed shells with an optimal shape. 
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1. Introduction 

In construction of lightweight structures, prestressing technology has been widely adopted [1-4] owing 

to its ability to significantly enhance the stiffness and load-carrying capacity of structures. A cable-

stiffened single-layer latticed shell is a novel prestressed structural system, which is formed by the 

combination of ordinary latticed shells and pre-tensioned cables [5]. The prestressing technology 

makes it possible to adopt quadrangular grids in single-layer latticed shells; and the pre-tensioned 

cables can also improve stability behavior. A large number of studies, ssuch as those focus on buckling 

load estimation [6-8], stability behavior evaluation [9-13], geometric imperfection investigation [14], 

Wang, H., Li, P. & Wang, J. (2021) Shape optimization and buckling analysis of novel two-way aluminum 

alloy latticed shells. Journal of Building Engineering. 36, 102100. 
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and seismic responses [15-18] have been conducted ever since the single-layer latticed shell was 

proposed. Practical applications of cable-stiffened single-layer latticed shells can be also found 

worldwide [19, 20] (Fig. 1).  

 

      

(a) Neckarsulm dome [19]                      (b) Kumagaya dome [20] 

Fig. 1 Practical applications of cable-stiffened latticed shells 

 

It must be noted that previously the primary material for cable-stiffened single-layer latticed shells was 

steel. Compared to steels, aluminum alloys possess lighter weight, and are especially suitable for large-

span latticed shells because of their potential in reducing the self-weight, which is very likely to be the 

dominant load in large-span structures. Aluminum alloys are also well known to be non-corrosive and 

recyclable, and have been adopted in the construction of several large-span latticed shells (e.g. Figs 

2(a) and (b)) [21]. The behavior of aluminum alloy cable-stiffened latticed shells was unclear although 

there have been a few studies on unstiffened aluminum alloy latticed shells [22-23]. 

 

  

(a) Chenshan Botanical Garden                (b) Botanical garden in Haihua Island 

Fig. 2 Practical applications of aluminum alloy latticed shells [21] 
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Cylindrical shells, which are three-dimensional extension of arches, are typically adopted in practice. 

However, it remains unclear whether this shape is the optimum solution for structures under specific 

loads and constraint conditions. In fact, recent research on shape optimization shows that structural 

behavior can be improved by modifying the shell shapes [24-30], suggesting the importance of shape 

optimization in structural design. It should be mentioned that although the actual structural behavior 

is always nonlinear, majority of shape optimization methods of latticed shells are based on linear 

analysis. The implementation of nonlinear buckling analysis along with shape optimization is therefore 

essential. 

Therefore, the current study performs both shape optimization and buckling analyses to investigate the 

behavior of novel cable-stiffened and unstiffened two-way aluminum alloy cylindrical latticed shells. 

It is demonstrated that the critical buckling load and load-carrying capacities of these shells can be 

enhanced by shape optimization based on linear algorithm. Imperfection sensitivity analyses are also 

carried out, showing that the novel latticed shell is imperfection-sensitive, and its influence on different 

aspects of structural performance is discussed.  

 

2. Structural systems 

Two structural systems, namely the unstiffened and cable-stiffened aluminum alloy latticed shells, are 

considered for comparison purpose in the current study. For simplification, the unstiffened and cable-

stiffened latticed shells are denoted by the acronyms ‘USLS’ and ‘CSLS’, respectively. 

2.1 Two-way latticed shell geometry 

The compositions and configurations of the USLS and CSLS in their initial cylindrical shapes are 

shown in Figs 3(a) and (b) respectively. The basic units of the USLS and CSLS are quadrangular grids, 

and the pre-tensioned cables are set diagonally in the grids of the stiffened shell (Fig. 3(b)).  

 

 

(a) USLS                                         (b) CSLS 

Fig. 3 Two-way latticed shell 
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Detailed dimensions of the latticed shells are given in Fig. 4, where the plan and elevation views of 

the shells are presented. Note that the pre-tensioned cables are not depicted in Fig. 4, as both USLS 

and CSLS have the same initial geometry. The span and length of the latticed shells are 24 and 36 m, 

respectively. The height of the highest point of the arch profile is 4 m with a rise to span ratio of 1/6. 

The shell is equally divided into 12 parts along the arc direction and 16 parts longitudinally (Y 

direction), forming 2.25 m × 2.14 m quadrangular grids. 

 

  

 

(a) Plan view                                  (b) Elevation view 

Fig. 4 Geometric parameters of cylindrical latticed shell 

 

2.2 Materials and boundary conditions 

The 6061-T6 aluminum alloy was adopted for the shell members of both the USLS and CSLS, and the 

spiral strand rope was adopted as the pre-tensioned cables in CSLS. The material properties of 6061-

T6 aluminum was assumed to be the same as the work of Shi et al. [31]. In the optimization and 

buckling analyses, the cables were assumed to be fully elastic with a Young’s modulus of 160 GPa 

[30]. The individual shell members are modelled with rectangular hollow cross-sections, where 

different cross-sections are denoted as ‘section width  section height  web thickness  flange 



5 

 

thickness’. The members in the span and length directions are with cross-sections 2503001012 and 

2502501010, respectively. The cross-sectional area of the cables in the CSLS varies from 50 to 

300 mm2 with an interval of 50 mm2. The single-layer cylindrical latticed shells in practice can be 

supported along the four edges or the two longitudinal edges. In this work, only the case where the 

four edges are supported was considered, and two types of boundary conditions (i.e. pinned and fixed) 

were applied for comparison purpose. For simplification, the connection between two adjacent shell 

members was assumed to be rigid, and the connection between the pre-tensioned cable and shell 

member was assumed to be hinged. Since the structural optimization should be carried out under 

specific load conditions, a 10 kN external load was applied uniformly distributed on the grids in the 

optimization analyses. 

 

3. Shape optimization method 

3.1 Optimization condition and initial shape 

The purpose of shape optimization of latticed shells is to identify a shape with the best structural 

performance (e.g. resistance, stiffness and material utilization). As an important property of a structure, 

the strain energy is associated with its structural performance under static loads and can provide a 

reference for the stiffness. The smaller the strain energy, the more efficient the structure. The 

minimization of strain energy was therefore chosen as the optimization objective.  

Fig. 5(a) and (b) presents the initial shapes of the USLS and CSLS, respectively, where the grid points 

were set to be the same. The optimization variables were the z-coordinates of the grid points with a 

feasible region defined. In order to maintain the rise to span ratio less than 1/4, the maximum and 

minimum z-coordinates of grid points are limited to 6 and −6 m, respectively; the feasible region is 

therefore defined as: 

min

max

6 m

6m

z

z

= −


=

                                       (1) 

 



6 

 

 

(a) USLS                                      (b) CSLS 

Fig. 5 Initial shapes of latticed shells 

3.2 Sensitivity analysis of strain energy 

In linear finite element analysis of a structure, it is well known the classic expression Eq. (2). 

=KU F                                         (2) 

where K is the stiffness matrix, U is the nodal displacement vector, and F is a nodal load vector given 

by the design load. The strain energy of the structure C can be calculated by Eq. (3). 

1

2

TC = F U                                  (3) 

The optimization analysis requires sensitivity analyses of the strain energy based on Eq. (3). By 

differentiating Eqs (2) and (3) with respect to the z-coordinate of grid point i, the following equations 

can be obtained. 

i i iz z z

  
+ =

  

K U F
U K                              (4) 

1

2

T
T

i i i

C

z z z

   
= + 

   

U F
F U                            (5) 

Assuming that the nodal load vector does not change, Eq. (4) can be substituted into Eq. (5), and a 

rearrangement will give the derivative of the strain energy C with respect to zi as: 

1

2

T

i i

C

z z

 
=

 

K
U U                               (6) 

 

3.3 Optimization equation 
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The optimization equation for minimum strain energy can be formulated as follows: 

( ) ( )min subject to 0
n i

z R
C h


Z Z                             (7) 

where C(Z) denotes the strain energy, and Z denotes the z-coordinates of grid points; hi(Z) expresses 

the constraint function: 

( )
( )

( )

max max

min min
: ,

i i i i

i

i i i i

h z z z
h i z

h z z z


 = −
 

= −

Ζ Ζ                       (8) 

where zi
max and zi

min are the maximum and minimum z-coordinates of point i, respectively. By using 

the interior-point method, the constraint optimization problem can be rewritten as follows: 

min maxmin ( , ) ( ) (ln ( ) ln ( ))
n k k i i i i

z R
i

f r C r h z h z





= − +Z Z                (9) 

where a positive value, rk, is the penalty factor; it is scaled down by a positive value (c < 1) in steps: 

1k kr c r −=  .                               (10) 

The conjugate gradient method is employed to solve the optimization problem; the gradient of Eq. (9) 

can be written as follows: 

( ) ( ) ( ) ( )( )min max, ln lnk k i i i i

i

f r C r h z h z


 = −  +Z Z .               (11) 

where C(Z) denotes the gradient of strain energy with respect to the z-coordinates of grid points. The 

ith element in C(Z) is C/zi, as can be derived according to the sensitivity analysis in Section 3.2. 

The derivative of the barrier function with respect to zi can be expressed as 

min max

min max

(ln ( ) ln ( ))
1 1

- -

i i i i

i

ii i i i i

h z h z

z z z z z









 +
 

=  
  


 - .                (12) 

 

3.4 Optimization process 

According to the shape optimization equation and sensitivity analysis for strain energy, the process of 

shape optimization can be illustrated by a double-iteration algorithm, as follows. 

Step 1: Set the structural parameters and optimization conditions; assign the initial shape and proceed 
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to Loop I. 

Loop I: 

Step 2: Establish the optimization equation as Eq. (9) according to the constraint function and 

penalty factor and proceed to Loop II. 

Loop II: 

Step 3: Perform the sensitivity analysis based on Eq. (6); obtain the gradient of the strain 

energy. 

Step 4: Calculate the gradient of Eq. (9). 

Step 5: Determine the step length according to unidimensional search algorithm, i.e., golden 

section method; update the shape. 

Step 6: If the convergence conditions are satisfied, end Loop II, otherwise return to Step 3. 

End Loop II. 

Step 7: If the optimization conditions are satisfied, end Loop I, otherwise scale down the penalty 

factor using Eq. (10) and return to step 2. 

End Loop I. 

Step 8: Obtain the optimal solution. 

 

4. Optimization 

The shape optimization method introduced in Section 3 was applied to a range of USLSs and CSLSs 

with varying cable cross-section sizes and boundary conditions (varying parameters are detailed in 

Section 2). The pretension in cable is considered to be high enough so that the cable does not go slack 

under the design load. The outcomes of the shape optimization analysis include the optimal shapes, 

the strain energy and critical buckling load of the structure, average and maximum z-directional 

displacements of the grid points, and average and maximum normal stresses of the individual shell 

members which were modelled with beam elements. These results are presented in this section to 



9 

 

illustrate the changes in the structural performances during optimization, and compare the structural 

performances between initial and optimal shapes for the different cable cross-sectional areas and the 

two bourdary conditions. 

4.1 Optimal shapes 

Figs 6 and 7 present the optimized shapes of the USLS and CSLS with different cable cross-section 

sizes with pinned and fixed boundary conditions, respectively. Compared to the height of the initial 

shape, the height of grid points after optimization are generally larger. Recalling the relationship 

between the structural rigidity and the strain energy, it is reasonable for the optimal shapes of USLS 

and CSLS to possess higher rise to span ratios in correspondence to lower strain energy. It should be 

noted that the optimal shapes of CSLS with different cross-sectional areas are similar regardless of the 

boundary conditions. This is bacause the pre-tensioned cables improve mainly the in-plane shear 

rigidity of the grid, but have little effect on the out-of-plane rigidity. 

 

  

(a) As = 0 mm2                               (b) As = 100 mm2 

  

(c) As = 200 mm2                             (d) As = 300 mm2 

Fig. 6 Optimal shapes of USLS and CSLS with pinned supports 
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(a) As = 0 mm2                              (b) As = 100 mm2 

  

(c) As = 200 mm2                            (d) As = 300 mm2 

Fig. 7 Optimal shapes of USLS and CSLS with fixed supports 

 

4.2 Structural performance during optimization 

4.2.1 Latticed shells with pinned supports 

The changes in strain energy and other aspects of structural performance during optimization are 

presented in Fig. 8. The numbers in the legends denote the cross-sectional areas of the cables; the 

USLSs are represented by ‘0’. In Fig. 8(a), it can be observed that for all the shells the strain energy 

significantly decreases in the first few steps and thereafter gradually converges to the minimum value. 

Figs 8(c)-(f) indicate that the displacement and normal stresses decrease after the optimization. The 

critical buckling resistance, however, as shown in Fig. 8(b) is increased as a result of optimization for 

all the cases. It is further observed that apart from strain energy, the other aspects of structural 

performance do not vary monotonously as the number of iterations increases. Overall, the optimization 

results of pin-supported latticed shells indicate that the strain energy in each shell has been successfully 

minimized, and the other aspects of structural performance have been effectively improved.  
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(a) Strain energy during optimization          (b) Critical buckling load during optimization 

    

(c) Maximum displacement during optimization   (d) Average displacement during optimization 

   

(e) Maximum normal stress during optimization   (f) Average normal stress during optimization 

Fig. 8 Structural performance of USLS and CSLS with pinned supports during optimization 

 

4.2.2 Latticed shells with fixed supports 

Fig. 9 presents the changes in the structural performance of USLS and CSLS with fixed supports during 

optimization. Very similar outcomes as for pinned supported shells have been achieved in fixed 
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supported shells, where the strain energy significantly decreased and reached a minimum value during 

the optimization (Fig. 9(a)), and the other aspects of structural performance were improved after 

optimization (Figs 9(b)-(f)). It should be noted that in the first few steps the strain energy decreased 

rapidly, whereas the maximum and average normal stresses evidently increased. This indicates that the 

shape optimization method, aiming at obtaining the minimum strain energy, does not necessarily 

optimize the other aspects of structural performance.  

 

 

(a) Strain energy during optimization          (b) Critical buckling load during optimization 

 

(c) Maximum displacement during optimization   (d) Average displacement during optimization 



13 

 

 

(e) Maximum normal stress during optimization   (f) Average normal stress during optimization 

Fig. 9 Structural performance of USLS and CSLS with fixed supports during optimization 

As mentioned above, the strain energy can be used as a benchmark for estimating the structural rigidity 

of USLS and CSLS. The smaller the strain energy, the higher rigidity the structure possesses. Therefore, 

the normal stress of members and the displacement of grid points decrease as the rigidity increases in 

the optimization process. 

 

4.3 Comparison of results before and after optimization 

4.3.1 Pinned supported latticed shells 

The structural performances of the initial and optimal shapes for pinned supported shells are 

summarized in Fig. 10, where the percentage changes in the strain energy, buckling load, maximum 

and average displacements, and maximum and average normal stresses before and after optimization 

are given as bar charts. In general, the improvements in displacements and normal stresses for shells 

are very similar for the various cable cross-sections considered (~63% in maximum displacement, ~57% 

in average displacement, ~27% in maximum normal stress and ~38% in average normal stress). 

However, the optimized shapes present various buckling resistance improvements depending on their 

cable cross-sectional areas, where the shell with As = 200 mm2 presents the highest buckling resistance 

improvement (61.9%) whereas the optimized USLS shell (As = 0 mm2) has only 40% increase in its 

buckling resistance.  
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    (a) Strain energy         (b) Critical buckling load  

 

(c) Maximum displacement       (d) Average displacement  

 

(e) Maximum normal stress       (f) Average normal stress  

Fig. 10 Comparison of structural performances of pinned supported USLS and CSLS in initial and optimized shapes 

 

4.3.2 Fixed supported latticed shells 

Fig. 11 compares the structural performances of the initial and optimal shapes of USLS and CSLS with 

fixed supports. It shows that the improvements in strain energy, displacement and normal stress level 

brought by optimization (Fig. 11(a) and (c)-(f)) are similar to those in the pinned supported cases (Fig. 

10(a) and (c)-(f)), and do not vary significantly with varying cable cross-sectional areas. However, the 
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buckling load enhancement brought by optimization is constantly increasing as the cable cross-

sectional area increases (Fig. 11(b)), which is different from that in the pinned supported case (Fig. 

10(b)). The shape optimization can increase the critical buckling load by 60.2% at As = 300 mm2.  

 

 

    (a) Strain energy         (b) Critical buckling load  

 

(c) Maximum displacement       (d) Average displacement  

 

(e) Maximum normal stress       (f) Average normal stress  

Fig. 11 Comparison of structural performances of fixed supported USLS and CSLS in initial and optimized shapes 
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4.3.3 Degree of variation of structural performance 

Fig. 12 summarizes again the variation of structural performance with the cross-sectional area of the 

cable and boundary condition, with the vertical axis  being the percentage increment after the shape 

optimization. It shows that the percentage increments of strain energy, displacements and normal stress 

levels are almost invariant with the changing cable cross-sectional area, whereas the improvement in 

critical buckling load due to optimization display a clear dependence on the size of the cable, and the 

variations are different in the pinned and fixed supported shells - the buckling load is optimized at As 

= 200 mm2 for pinned supported shells (Fig.12(a)) whereas the buckling constantly increases with the 

cable size in fixed supported shells (Fig. 12(b)). 

 

 

(a) Latticed shells with pinned supports                 (b) Latticed shells with fixed supports 

Fig. 12 Variation rates of structural performance 

 

The above results indicate that the proposed shape optimization can effectively minimize the strain 

energy of the shell and can significantly improve the loading capacity and stiffness of the structure. It 

should be noted that the shape optimization method is based on linear finite element analysis, and the 

structural performances investigated in the example are also calculated from their linear responses. 

However, studies have shown that geometric and material nonlinearities can significantly influence 

the structural performance of latticed shells [11, 14]. It is therefore necessary to investigate the 

nonlinear performance of latticed shells in their optimized shapes. In the following section, a series of 

nonlinear analyses performed on latticed shells are presented, and the nonlinear performances of the 

initial and optimal shapes are discussed. 
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5. Buckling analyses 

To investigate the stability performance of CSLS and USLS in their initial and optimal shapes, a series 

of nonlinear buckling analyses were carried out employing the commercial software ANSYS. In the 

numerical models, the aluminum alloy members and cables of the latticed shells were represented by 

beam elements and tension-only link elements, respectively. Each aluminum alloy member was 

meshed with six beam elements and each cable was meshed as a single link element. Prior to the 

nonlinear analyses, corresponding linear eigenvalue analyses were conducted to obtain the critical 

buckling modes to be used as initial geometric imperfection form in the nonlinear analyses.  

5.1 Linear eigenvalue analysis 

Fig. 13 presents the critical buckling modes of USLS and CSLS with initial and optimal shapes 

(denoted as ‘Ini’ and ‘Opt’ respectively) under fixed and pinned support conditions (denoted as ‘fix’ 

and ‘pin’ respectively). Note that the cross-sectional areas of the cables in the CSLS as shown in 

Fig.(13e)-13(h) are 300 mm2. It can be observed that the critical buckling mode of USLS remains the 

same before and after shape optimization for both pinned and fixed support conditions, whereas the 

eigenmode of pinned supported CSLS changed from two half sine waves to three half sine waves by 

shape optimization for pinned support cases.  

 

(a) USLS Ini-fix      (b) USLS Ini-pin        (c) USLS Opt-fix       (d) USLS Opt-pin  

  

(e) CSLS Ini-fix      (f) CSLS Ini-pin        (g) CSLS Opt-fix        (h) CSLS Opt-pin 

Fig. 13 Critical buckling modes 
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5.2 Governing geometric imperfection form 

For single-layer latticed shells, it has been proved that the governing geometric imperfection in 

nonlinear buckling analysis can be symmetric or anti-symmetric [11]. Similarly, it is essential to 

determine the governing imperfection form in USLS and CSLS. This issue was resolved by the 

procedure below: 

(1) Conduct linear buckling analysis (eigenvalue analysis) to obtain the eigenmodes that correspond 

to the first symmetric and the first anti-symmetric buckling shapes. 

(2) Perform nonlinear buckling analyses in which the symmetric and anti-symmetric buckling modes 

obtained from the linear buckling analysis are separately incorporated as the imperfection forms. 

(3) Compare the load carrying capacities obtained from the nonlinear buckling analyses and the 

imperfection mode that generates lower load carrying capacity is considered to be the governing 

imperfection form. 

Fig. 14 shows the load versus displacement curves of optimal CSLS with symmetric and anti-

symmetric imperfection distributions when the boundary conditions are pinned and fixed. It should be 

noted that the cross-sectional area of the cables in CSLS of Fig. 14 is 300 mm2, and the imperfection 

magnitude is L/300 (L is the span of CSLS). It can be seen clearly that the anti-symmetric imperfection 

distribution corresponds to a lower load bearing capacity, implying that this anti-symmetric shape 

should be taken as the governing imperfection form in nonlinear buckling analysis. For the nonlinear 

analyses in the following sections of this paper, the governing imperfection forms for all the cases are 

determined used the same procedure as set out herein. Note that the initial pretension in cables was set 

as 300 MPa in the nonlinear buckling analyses of this study to ensure that the shell members buckle 

prior to cable slackening. 
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(a) Pinned supported             (b) Fixed supported  

Fig. 14 Load versus displacement curves of CSLS with symmetric and anti-symmetric imperfection forms (As = 

300 mm2) 

5.3 Load-carrying capacities of latticed shells 

Fig. 15 presents the load versus displacement curves of the USLS and CSLS with initial and optimal 

shapes under fixed and pinned support conditions. In Fig. 15, the vertical axis represents the external 

nodal load and the horizontal axis denotes the maximum nodal displacement in the z-direction when 

buckling occurs. For simplification, ‘Opt-’ and ‘Ini-’ denote results that correspond to the optimal and 

initial shapes of latticed shells, respectively. As shown in Fig. 15(a), the load-carrying capacity of the 

USLSs with the initial shape under fixed and pinned support conditions is approximately 20 kN. The 

load-carrying capacities corresponding to the optimal shapes increase to approximately 30 and 42 kN 

under pinned and fixed support conditions, respectively. In other words, shape optimization can 

significantly enhance the load-carrying capacities of USLSs; similar results can be also observed for 

CSLSs, as shown in Figs 15(b)-(g). The load-carrying capacities of CSLSs are considerably improved 

when the shell shape is changed from initial to optimal.  
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(a) As = 0 
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 (b) As = 50 mm2                               (c) As = 100 mm2 
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 (d) As = 150 mm2                              (e) As = 200 mm2 
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   (f) As = 250 mm2                               (g) As = 300 mm2 

Fig. 15 Load versus displacement curves of latticed shells with different cable cross-sectional areas 

Fig. 16 presents the load-carrying capacities of two-way single-layer latticed shells with varying cross-

sectional areas and boundary conditions. It is evident that optimizing the shell shape enhances the load-

carrying capacities of both unstiffened and stiffened latticed shells, especially in cases where the 

supports are fixed. It should also be noted that the load-carrying capacities of the CSLSs are higher 

than those of USLSs; this means that the introduction of pre-tensioned cables into two-way aluminum 

alloy latticed shells is effective in terms of improving the load-carrying capacity. 
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(a) Pinned supported                      (b) Fixed supported 

Fig. 16 Variation of load-carrying capacity with cable cross-sectional area 
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5.4 Imperfection sensitivity study 

In the discussion above, the imperfect shells were with imperfection amplitude of L/300, with L being 

the span of the shell. In this section, results of shells with imperfection amplitudes ranging from 

L/10,000 to L/100 are discussed to demonstrate the imperfection sensitivity of latticed shells before 

and after optimization. It should be noted that the imperfection amplitude L/10,000 represents the 

nearly perfect state, L/100 represents a very imperfect case, and those varying from L/2,000 to L/300 

represent the cases in between.  

Fig. 17 presents the load versus displacement of imperfect latticed shells in their initial and optimal 

shapes under different support conditions. It is clearly shown in Fig. 17 that imperfection deteriorates 

the resistance of structure for all the cases under consideration. When the latticed shells are not cable 

stiffened (As = 0; Figs 17(a)-(d)), the fixed supported shells (Figs 17(b) and (d)) are more imperfection 

sensitive compared to their pined counterparts (Figs 17(a) and (c)), whereas the cable stiffened latticed 

shells (CSLS) with As = 150 mm2 display stronger imperfection sensitivity in the pinned support 

condition prior to optimization (Fig. 17(f) in comparison with Fig. 17(e)). After shape optimization, 

both pinned supported and fixed supported CSLS (Figs 17(g) and (h)) display similarly stronger 

imperfection sensitivity compared to their un-optimized states (Figs 17(e) and (f)).  
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(a) Ini-pin supported when As = 0                 (b) Ini-fix supported when As = 0 
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(c) Opt-pin supported when As = 0                (d) Opt-fix supported when As = 0 
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(e) Ini-pin supported when As = 150 mm2           (f) Ini-fix supported when As = 150 mm2 
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(g) Opt-pin supported when As = 150 mm2          (h) Opt-fix supported when As = 150 mm2 

Fig. 17 Load versus displacement curves of USLS and CSLS with different imperfection magnitudes 

 



24 

 

It should also be noted that as the imperfection gets larger, the differences between the buckling 

resistances of initial and optimized shapes are gradually decreasing (the L/100 curve in Fig. 17(f) is 

reaching the same level of resistance as in Fig. 17(d)), indicating that the proposed shape optimization 

has limited contribution to the structural performance of latticed shells when they are subjected to very 

large imperfections.  

Overall, the buckling analyses concluded that the USLS and CSLS are more imperfection sensitive 

after the proposed shape optimization, and as the imperfection gets larger, the benefit brought by 

optimization decreases. Therefore in design practice, realistic imperfection amplitudes must be taken 

into account.  

 

6. Conclusions 

In this study, a novel shape optimization method for single-layer two-way cable-stiffened latticed shells 

has been proposed. The method adopts a linear algorithm to minimize the strain energy of latticed 

shells with initial cylindrical profiles. Using this method, optimized shapes were achieved for a range 

of stiffened and unstiffened shells with varying cable sizes and under pinned and fixed boundary 

conditions. The structural responses (strain energy, critical buckling load, displacement, normal stress 

in members) have been compared for shells before and after optimization to investigate the efficiency 

of the proposed optimization method. Nonlinear buckling analyses considering geometric 

imperfections and material nonlinearities were also performed on the original and optimized shells. 

The main results can be summarized as follows: 

• Compared to cylindrical shapes, the optimized shapes of two-way aluminum alloy single-layer 

latticed shells possess higher load-carrying capacities and improved structural performances. It is 

therefore possible for engineers to design aluminum alloy single-layer latticed shells with superior 

stability behaviors using this shape optimization method.  

• The introduction of pre-tensioned cables in two-way aluminum alloy cylindrical latticed shells 

can significantly enhance the stability performance; however, the significance of this effect is also 

related to the boundary conditions, where the improvement is especially pronounced for shells 

with all the four edges fixed supported. 
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• The imperfection sensitivity study shows that imperfection deteriorates the load-carrying 

capacities of two-way aluminum alloy single-layer latticed shells, especially in fixed supported 

shells and cable stiffened shells. It is therefore suggested to take into account of realistic 

imperfection amplitude in design practice.  

It should be noted that in this study the member connections of latticed shells were assumed to be fully 

rigid during the optimization and buckling analyses. However, the connections between the shell 

members in practice can be semi-rigid, and the optimization will become non-linear when the semi-

rigid behavior is considered. It is therefore worth exploring a nonlinear shape optimization procedure 

in the future. 
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