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Abstract

The ability of small-cell wireless networks to self-organise is crucial for improving capacity
and performance in modern communication networks. This paper considers one of the most basic
questions: what is the expected distance to a cell’s nearest neighbour in a spatially distributed
network? We analyse a model problem in the asymptotic limit of large total received signal and
compare the accuracy of different heuristics. We also analytically consider the effects of fading.
Our analysis shows that the most naive heuristic systematically underestimates the distance to
the nearest node; this is substantially corrected in cases of interest by inclusion of the next-order
asymptotic term. We illustrate our theoretical results explicitly for several combinations of signal
and path loss parameters, and show that our theory is well supported by numerical simulations.

Keywords: Wireless networks, femtocells, self-organising network, distance estimation, asymptotic
approximation, Rayleigh fading

1 Introduction

The UK government Telecommunications Sector Report Parliament (2017) remarks that there is
hardly a sector in the UK which does not rely in some shape or form on the connectivity provided by
telecommunications, both in the services it enables, and the activities it supports. The report notes
further that the failure of telecommunication systems, or the failure to invest in upgrading them
to meet increasing demand, can have a direct negative impact on people’s ability to do business
and to interact socially. Not surprisingly, telecommunications are considered to be part of the UK’s
critical national infrastructure.

Rapid technological change and growing demands on the telecommunications sector have led to
a focus on networks that are self-organising (SON) rather than centrally planned and controlled.
SON is seen to offer many benefits: in energy and cost savings, improved network performance
and better customer experience. In the UK, the need for self-organising networks has been brought
sharply into focus with the first commercial market deployments of 5G in 2018. Associated with the
deployment of 5G is the emergence of ‘small-cell densification’ (Deloitte, 2018). That is, small-cells
will no longer just fill gaps; they will be essential to enabling 5G, particularly in densely populated
areas . Dense small-cell networks with large numbers of devices will require better self-organising
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properties in order to provide the robustness and resilience that society expects from critical national
infrastructure; SON will have significant impact and benefit. Looking globally, annual growth in
investments in SON technology is expected to be around 11% between 2019 and 2022 (SNS Telecom
& IT, 2018); it has been estimated that SON will account for a market worth $5.5 bn by 2022.

This paper supports the above technological ambitions for SON by asking a seemingly simple
question (‘How close is the nearest node?’) that applies to any set of transmitting devices distributed
randomly in the plane. The main applications that we have in mind are cellular systems such as
current 4G or future 5G networks. Each cell includes a fixed-location transceiver (generically referred
to as a base station) capable of wireless connection to individual user devices. Together the cells
provide coverage over larger geographical areas than could be covered by a traditional single large
transmitter (a macrocell base station, or MBS). The current trend for higher and higher densities of
cells necessitates better self-organisation of these networks, but results in benefits such as increased
capacity and reduced power consumption for individual user devices.

Low power cellular base stations are often referred to as ‘femtocells’; these are similar to home wi-
fi hubs, are relatively inexpensive and can overlay an existing cellular network. Femtocells provide
4G, and will eventually provide 5G, coverage to user devices hence allowing for better network
capacity and coverage in areas where it is currently poor or absent (Cheung et al., 2012; Vaz et al.,
2013). Networks employing femtocells take advantage of the fact that more than 50% of all voice
calls and more than 70% of data traffic originates indoors. Femtocells backhaul data through a
broadband gateway over the internet and their deployment could efficiently relieve indoor traffic
from expensive MBSs, freeing up MBSs to handle communications traffic from truly mobile users
and giving those other parts of the network higher capacity (Lan et al., 2010; Cheung et al., 2012).

In addition to capacity and coverage questions, new networks change the planning behind the
spatial distribution of transmitters. Traditionally, MBSs were sited by the communications firm
after a geographically based planning exercise. The location and configuration settings of the MBS
were chosen to optimise the network’s performance. In contrast, femtocells are placed by end
users (Carle et al., 2013), their locations are largely unplanned, and optimal configuration settings
cannot be computed in advance. Hence the need for self-optimising, self-organising networks. To
be precise, the term ‘self-organising’ is used to mean that the network is (i) self-optimising and (ii)
self-diagnosing (Tall et al., 2014). A self-optimising network is one where the cells in the network
choose configuration settings which optimise the global network performance. To be self-diagnosing
the network needs to have the ability to detect and adapt to change, such as the removal or addition
of a cell, so that network performance is still maintained and, indeed, optimised. A third element
commonly referred to in SON is the ability of a cell to be initially self-configuring; this is sometimes
referred to as a ‘plug-and-play’ capability.

Network performance is evaluated quantitatively by measuring the quality of the connections
between transmitters and their paired user devices; by ‘paired’ we mean the devices which transmit
to, and receive from, the relevant transmitter. Since transmitters broadcast indiscriminately, a
user device receives signal S from its paired transmitter as well as signals from all non-paired
transmitters, now considered as interference, I.

Neglecting noise, the connection quality can be characterised by the Signal to Interference Ratio
(SIR), the higher the better. This then potentially drives an instability: in order to increase SIR
for its paired user devices, a transmitter could simply increase its signal strength. However, since a
transmitter will only be aware of the SIR corresponding to its own paired user devices, this behaviour
would be highly likely to result in increased interference between other transmitters and their paired
devices, and hence this behaviour would lower the SIR elsewhere in the network, resulting in lower
overall network performance.

Figure 1 illustrates a case in which a transmitter (A) is using a signal strength that is higher
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Figure 1: An example of a non-optimal configuration for a self-organising network consisting of
three transmitters A, B and C and a collection of user devices. Pairings between transmitters and
devices are indicated by the (single-headed) arrows. The coloured circles illustrate the effective
coverage of each transmitter. User devices in the overlaps between circles A∩B and A∩C are paried
with B and C respectively, and so will have non-optimal SIRs due to interference from A. Reducing
the signal strength of transmitter A would improve the SIR for those devices and the need for such
a reduction could be informed by good estimation of the distance r1 between A and its nearest
neighbour transmitter (B).
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than optimal for the network. In Figure 1, the requirement for A to reduce its signal strength can
be better judged if the distance from A to its nearest neighbour (in this case B) can be estimated
accurately. The difficulty though is that the total interference reported to A by its paired devices
is a sum of signal strengths: those of transmitters B and C combined.

Since the priority in network performance is to provide a good minimum standard of service,
monitoring the minimum SIR in the network usually takes priority over achieving a high SIR for a
minority of devices. However, achieving this in practice is of course complicated by a lack of available
information about the local network, and hence the requirement for distributed self-organisation,
without direct or indirect communication via a central node. Learning about the spatial distribution
of other transmitters, via the interference reported by paired user devices, is therefore a cruicial
feature allowing transmitters in self-organising networks to adjust their power levels in order to
optimise SIR across the network as a whole. Within this framework, the correct estimation of
the distance from a transmitter to its nearest neighbour, becomes a key question, and the one we
address here.

1.1 Mathematical formulation of the problem and the main result

Mathematical models of the real world are always simplifications. In the case at hand our major
simplifications are that we make assumptions about the distribution of cells, the relationship between
distance and signal, and the effects of fading in the network. This section outlines these assumptions
and their justifications, and presents the main results of the paper.

Each femtocell (transmitter) in the network transmits a signal to be received by user devices. The
strength of the signal received is determined by the separation distance and transmission strength.
Path-loss is the term used to describe the reduction in signal strength (or power density) in an
electromagnetic wave which results from propagation along a particular path through space. Losses
increase with distance travelled but the exact relationship between path-loss and distance depends
on the medium. Approximations for path-loss fall broadly into two categories: over short distances
the path-loss is termed ‘near-field’, while at longer distances the path-loss is termed ‘far-field’. In
the simplest cases, near-field path-loss is attenuation by just a constant factor, while in the far-field
case the received signal strength is modelled as a power law. For reasons of analytical convenience,
we here assume that all path-loss is far-field. This is in fact a common approach, used by many
authors, for example Sousa & Silvester (1990), Win et al. (2009) and Lichte et al. (2010). More
precisely, let r be the distance between the femtocell and the user device, and γ be the path-loss
exponent, then in the far-field case the received signal power S ∝ r−γ . For mathematical reasons
we always assume that γ > 2: the value γ = 4 is commonly used in the literature.

Signal strength falls for reasons other than distance, for example reflection or diffraction due to
obstacles. The term propagation effects is generally used to describe these. In this paper we conside
one particular propagation effect, known as fading.

Fading arises due to the multiple paths taken by signals between transmitter and receiver; ‘multi-
path reception’ describes the situation where the signal offered to the receiver contains the direct
‘line of sight’ wave as well as a large number of reflected waves. Fading refers to the reduction in
signal strength that is caused when reflected waves interfere with the direct wave. Without detailed
knowledge of the environment, one must reply on models for the typical effect of fading on signal
strength. We consider a widely-used model for fading, appropriate to wireless radio networks of the
kind that motivated this work, known as Rayleigh fading. Rayleigh fading rests on a number of
assumptions, for example that a multi-path received signal consists of a large number of reflected
waves which are independent and identically distributed. Mathematically, the effect of Rayleigh
fading on a signal received from a single source is to multiply the anticipated strength S = r−γ
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(ignoring a constant of proportionality) by a (suitably normalised) exponentially-distributed random
variable H, i.e. we assume that H is Exp(1) distributed. Hence the received signal after fading is
now a random variable T = Hr−γ .

Rayleigh fading is a special case of Nakagami-m fading, in which the multiplicative random
variable is Γ(m, 1/m) distributed. Nakagami-m fading attempts to take into account that multiple
propagation paths may also contain contributions from signals of different strengths. The case of
Rayleigh fading is recovered when m = 1. When m > 1 the fluctuations in signal strength are
reduced due to the more peaked nature of the Nakagami-m distribution; in some sense the Rayleigh
fading case has the most extreme effect on the strength of the received signal.

The spatial configuration of transmitters and receivers is of course critical in determining the
performance of the wireless network. A stochastic model for node locations (i.e., a spatial point
process) is needed. In situations where nodes are located randomly over a large area, the analytical
tractability of the homogeneous Poisson point process (PPP) has made it the most widely used model
Haenggi (2012). The paper by Andrews et al. (2010), favourably compares typical realisations of
a PPP to base station deployment in urban areas. Analytical tractability is a key consideration in
mathematical modelling problems, hence as a first case we choose the PPP, leaving consideration
of other point processes such as the Matérn or Ginibre processes (Deng et al., 2015; Kong et al,
2018), to be studied in future work.

A realisation of a Poisson point process is most easily described as a random collection of points
in R2 in which the number of points in a given area A is Poisson distributed, i.e. according to
the Poisson(λA) distribution, such that the numbers of points in any pair of disjoint subsets of the
plane are independent. We represent the distribution of transmitters as points in R2 distributed
according to a Poisson point process with intensity λ, and we imagine being stationed at the origin
and measuring the total broadcast signal strength that is received there. This total signal is now a
random variable S, taking values for specific realisations that we denote by s.

First, ignoring fading, the question now becomes: given that signal strengths reduce (hopefully
rapidly) with distance, what is the expected error in attributing S entirely to the nearest transmit-
ter? That is, if R1 is the distance from the origin to the nearest transmitter, what is the expected
error in estimating R1 by s−1/γ? Our main result is that the error in this naive approximation is,
in the limit of large s, asymptotic to

2λπ

γ
a(γ) s−3/γ , as s→∞, (1)

where the constant a(γ) is given explicitly in terms of hypergeometric functions. Our computations
agree with numerical simulations which show that even for moderate values of s the accuracy of (1)
is considerably greater than that of the naive approximation. Since (1) is positive, the answer to
the question posed in the title of the paper is that the nearest node is slightly further away than you
would expect from the naive approximation s−1/γ , i.e. that s−1/γ is systematically an underestimate
of the distance to the nearest node.

Second, in the case with fading, if the observed total signal T takes the value t then a simple
heuristic would be to use (ct)−1/γ where c is a scaling factor which makes cT have the same
distribution as S (the signal without fading). We propose an improvement on this which is in
fact an approximate probability distribution of R1 depending on the measured value T = t. The
approximate conditional probability density for R1 is given by

fR1 |T (r1 | t) ≈
1

Z(t, γ, λ)
rγ+1
1 e−t r

γ
1 , 0 < r1 < (λπ)−1/2,

where the normalization Z can be expressed in terms of the lower incomplete Gamma function. We
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show that this is a considerable quantitative improvement and, being a distribution, provides more
information than the simple rescaling heuristic.

1.2 Structure of the paper

First, in section 2, we consider the case without fading. We compute an asymptotic approximation
to estimate the distance to the nearest transmitter. Subsection 2.2 gives an illustrative example,
focussing on the case in which there are exactly three transmitters in the disk of radius 1 around
the origin, and the path loss exponent is γ = 4. We focus on the case of three transmitters since
this is the simplest case where all the necessary ideas can be demonstrated. Then, in subsection 2.3
we provide an overview of the computations for the general case in which there are k transmitters
in a disk of radius ρ around the origin and the path loss exponent γ is arbitrary. One part of
the calculation is particularly tedious and so these computations are relegated to Appendix A. In
subsection 2.4 we complete the derivation of the main result for the case with no fading by summing
over the number of transmitters k.

In section 3, we compare our asymptotic formula against numerical simulations. We then in-
troduce fading in section 4, where we devise and compare new heuristics for this case. As before,
we compare our theoretical results with numerical simulations in subsection 4.3. A summary and
conclusions are given in section 5.

2 Asymptotic Heuristic

In the limit of large total signal strength s the naive heuristic R1 ≈ s
− 1
γ is appropriate since in

this limit the total signal is likely to be dominated by the contribution from the closest transmitter.
We therefore frame the asymptotic analysis as estimating the error in the naive heuristic. After a
few preliminaries, we outline the derivation in the case of general γ > 2 in subsections 2.3 and 2.4.
Details are given in Appendix A.

2.1 Preliminaries

Let 0 < R1 < R2 < . . . denote the distances of the Poisson points from the origin taken in increasing
order. Then S =

∑
i≥1R

−γ
i (this sum converges with probability 1 as long as γ > 2). We condition

on a measured signal value S = s. Then R1 ≥ s−1/γ always, and heuristically, s−1/γ should be a
good approximation of R1, at least if s is not small, as argued by Webster (2015). We are interested
in the expectation of the error, i.e. E

[
R1 − s−1/γ

∣∣S = s
]
, as s→∞.

It will make computations easier to split S into a sum of two terms as follows. Fix a constant
radius 0 < ρ < ∞, and let N be the number of transmitters (Poisson points) inside the disk of
radius ρ centred at the origin. Note that N is Poisson(λπρ2) distributed. Write S = S′ + S̄, where
S′ =

∑N
i=1R

−γ
i is the contribution of transmitters within radius ρ, and S̄ is the contribution of

all other transmitters. Note that S̄ can be neglected in the limit s� 1. This is because S̄ = O(1),
with an exponentially fast decaying probability tail as can be seen from the fact that its Laplace
transform is finite in a neighbourhood of 0. Therefore, for large s, it is equivalent to consider S and
S′. This argument is further supported by the fact that we find

E
[
R1 − s−1/γ

∣∣∣S′ = s
]
∼ 2λπ

γ
a(γ) s−3/γ , as s→∞, (2)

holds independent of the chosen value of ρ (that is, only the error of the asymptotics depends on
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ρ). The coefficient a(γ) is computed explicitly to be

a(γ) = γ 2(2−γ)/γ
[

2F1

(
γ + 2

γ
, −2

γ
;
γ − 2

γ
;

1

2

)
− 2F1

(
γ + 3

γ
, −2

γ
;
γ − 2

γ
;

1

2

)]
, γ > 2, (3)

where the hypergeometric series is given by 2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n! with (q)n = q(q +

1)...(q + n− 1).
The following asymptotic result is derived in section 2.3, with some details deferred to Appendix

A:

E
[
R1 − s−1/γ

∣∣∣S′ = s, N = k
]
∼ 2 (k − 1) ρ−2

γ
a(γ) s−3/γ , as s→∞, for k ≥ 1, 0 < ρ <∞. (4)

Following this, we argue that the conditional distribution of N given S′ = s satisfies

P[N = k |S′ = s] ∼ e−λπρ2 (λπρ2)k−1

(k − 1)!
, as s→∞, for k ≥ 1, 0 < ρ <∞. (5)

Finally, multiplying (4) by (5) and summing over k = 1, 2, . . . to remove the conditioning on N
yields the expression in the right hand side of (2). This last step is set out in section 2.4.

Before delving into the details of the computations, we comment on the probabilistic insight
behind them. Since S′ can be represented as the sum of N independent heavy-tailed random
variables, the most likely way a large value S′ = s results, is that the largest of them, R−γ1 ,
dominates the sum, while the remaining terms take on ‘typical’ values (as if unconditioned). This
has the consequence that N − 1, the number of extra transmitters (different from the nearest) will
be approximately Poisson(λπρ2) distributed. Let us write

R1 − s−1/γ =
(
s−R−γ2 − · · · −R

−γ
N

)−1/γ
− s−1/γ = s−1/γ

(1− R−γ2

s
− · · · −

R−γN
s

)−1/γ
− 1

 .
(6)

Due to the observation above about R−γ1 dominating, the right hand side should be approximately

s−1/γ E[N − 1 |S′ = s] E

[(
1− R−γ2

s

)−1/γ
− 1

∣∣∣∣S′ = s,N = 2

]
. (7)

Here the first expectation is ≈ λπρ2, and the conditional expectation can be determined from the
integral∫ ρ

( 1
2
s)−1/γ

[(
1− r−γ

s

)−1/γ
− 1

]
r dr =

s−2/γρ−2

γ

∫ 1/2

ρ−γ/s

(1− y)−1/γ − 1

y1+2/γ
dy ∼ s−2/γ ρ−2 a(γ)

γ
.

Putting the above heuristics together yields the right hand side of (2). However, we have not found
a simple probabilisitic proof to make the connection between (6) and (7), and therefore we instead
compute the relevant integrals. This has the added benefit that it yields an error estimate for the
asymptotics in (4).
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2.2 Example: computations in the case N = k = 3, γ = 4

To illustrate the calculations in the general case, we first examine the case k = 3 as an example.
This case demonstrates all the methods used for larger k (which k = 2 does not), and hence is the
shortest non-trivial example. Observe that when N = k = 1 and S′ = s, then R1 = s−1/γ , so (4)
holds trivially. (Clearly N = k = 0 is impossible when S′ = s > 0).

For Poisson distributed points, the probability density of having three points in a disk of radius
ρ = 1 at radii r1, r2, r3 is

fR1,R2,R3,N=3(r1, r2, r3) = (2λπ)3e−λπr1r2r3, where 0 < r1 < r2 < r3 < 1.

Since by assumption γ = 4 and there is no fading, the radii ri and signal strengths at the origin

si are related by ri = s
−1/4
i which implies |dri/dsi| = (1/4)s

−5/4
i . Substituting these expressions

allows us to determine a probability density in terms of signal strengths rather than distances:

fS1,S2,S3,N=3(s1, s2, s3) = e−λπ(2λπ)3(1/4)3s
−3/2
1 s

−3/2
2 s

−3/2
3 , where 1 < s3 < s2 < s1 <∞.

Conditioning on the total signal S′ = s = S1 + S2 + S3 (as well as on N = 3 which we assumed
from the beginning), and expressing S1 = s− S2 − S3 gives

fS2,S3 |N=3,S′=s(s2, s3 | s) =
1

Z3,s
(s− s2 − s3)−3/2s−3/22 s

−3/2
3 , where 1 < s3 < s2,

where the normalizing constant is

Zk=3,s =

∫ s/3

1
ds3

∫ (s−s3)/2

s3

ds2 (s− s2 − s3)−3/2s−3/22 s
−3/2
3 .

The limits on the integrands come from the inequality s1 > s2 > s3 > 1 and the assumption
s1 + s2 + s3 = s.

The expectation of the error in the naive heuristic, in the case where k = 3, can therefore be
written as

E
[
R1 − s−1/4

∣∣∣N = 3, S1 + S2 + S3 = s
]

=
1

Z3,s

∫ s/3

1

∫ (s−s3)/2

s3

(s− s2 − s3)−1/4 − s−1/4

(s− s2 − s3)3/2s3/22 s
3/2
3

ds2ds3.

Two changes of variable help to understand the structure of this rather complicated integral. First,
we rescale to remove the dependence of the independent variables on s by setting si = sxi. This
pushes the s-dependence into only a single limit in one of the integrals and a power of s appears as
a prefactor. The expression above becomes

1

Z3,s
s−11/4

∫ 1/3

1/s

∫ (1−x3)/2

x3

(1− x2 − x3)−1/4 − 1

(1− x2 − x3)3/2x3/22 x
3/2
3

dx2dx3. (8)

Second, we notice that

(1− x3 − x2)−1/4 − 1 =
[
(1− x3 − x2)−1/4 − (1− x2)−1/4

]
+
[
(1− x2)−1/4 − 1

]
,

which leads us to make a further substitution which changes the upper limit of the inner integral to a
constant, and ‘factorizes’ the integrand into parts that depend on the variables separately. Namely,
we introduce new variables y2 and y3 defined in terms of x2, x3 by x2 = (1−x3)y2 and x3 = y3. Hence
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also dx2 = (1−x3)dy2, and dx3 = dy3. We also deduce the relation (1−x2−x3) = (1− y3)(1− y2).
Therefore we can write the double integral in (8) (ignoring for the moment the factor s−11/4/Z3,s)
as a sum of two terms∫ 1

3

1
s

1

(1− y3)
9
4 y

3
2
3

∫ 1
2

y3
(1−y3)

(1− y2)−
1
4 − 1

(1− y2)
3
2 y

3
2
2

dy2dy3︸ ︷︷ ︸
I1

+

∫ 1
3

1
s

(1− y3)
−1
4 − 1

(1− y3)2y
3
2
3

∫ 1
2

y3
(1−y3)

1

(1− y2)
3
2 y

3
2
2

dy2dy3︸ ︷︷ ︸
I2

(9)
I1 turns out to be leading order contribution at large s: the main contribution comes from the

region where y3 and y2 are small. The inner integral∫ 1
2

y3
(1−y3)

(1− y2)
−1
4 − 1

(1− y2)
3
2 ỹ2

3
2

dy2

approaches a finite value as y3 → 0, and, since we are computing just the leading order term, we
therefore investigate replacing the lower limit y3/(1 − y3) by zero. The exact value of the integral
in the limit y3 → 0 can be expressed in terms of hypergeometric functions

a(γ = 4) :=

∫ 1
2

0

(1− y2)
−1
4 − 1

(1− y2)
3
2 y

3
2
2

dy2 = 2
√

2

[
2F1

(
3

2
, −1

2
;

1

2
;

1

2

)
− 2F1

(
7

4
, −1

2
;

1

2
;

1

2

)]
≈ 0.59202228363...

Further, we note that the error incurred in replacing y3
1−y3 by 0 is

−
∫ y3

1−y3

0

(1− y2)−1/4 − 1

(1− y2)
3
2 y

3
2
2

dy2 = −
∫ y3

0

1

4

1

y
1
2
2

dy2 +O(y
3/2
3 ) = −1

2
y
1/2
3 +O(y

3/2
3 )

for small y3. Now we evaluate the outer integral in I1, which yields∫ 1
3

1
s

a− 1
2y

1/2
3 +O(y

3/2
3 )

(1− y3)
9
4 y

3
2
3

dy3 = a 2
√
s− 1

2
log s+O(1).

Therefore, I1 = 2a
√
s− 1

2 log(s) +O(1), as s→∞.
Now we evaluate I2 from equation (9). We begin, as in the case of I1, by determining the

leading-order behaviour of the inner integral. We find find that∫ 1
2

y3
(1−y3)

1

(1− y2)
3
2 y

3
2
2

dy2 ∼ 2y
−1/2
3 +O(1) as y3 → 0.

Substituting this into the outer integral we find that

I2 =

∫ 1
3

1
s

(1− y3)
−1
4 − 1

(1− y3)2y
3
2
3

[
2

y
1/2
3

+O(1)

]
dy3 = 2

∫ 1
3

1
s

(1− y3)
−1
4 − 1

(1− y3)2y
4
2
3

dy3 +O(1)

=

∫ 1
3

1
s

1
4y3 +O(y23)

(1− y3)2y23
dy3 +O(1)

=
1

2
log s+O(1).

9



Combining I1 and I2 we deduce that the asymptotic behaviour of equation (9) is∫ 1/3

1/s

∫ (1−x3)/2

x3

(1− x2 − x3)−1/4 − 1

(1− x2 − x3)3/2x3/22 x
3/2
3

dx2dx3 = 2a
√
s− 1

2
log s+

1

2
log s+O(1)

= 2a
√
s+O(1).

(10)

It is interesting to note that the log s contributions from I1 and I2 exactly cancel. Referring back
to equation (8), we now need to reincorporate the factor s−11/4/Z3,s. The asymptotic behaviour of
the normalising constant Z3,s can be determined using the same changes of variables as used above.
We obtain

Z3,s =

∫ s
3

1

∫ (s−s3)
2

s3

1

(s− s2 − s3)
3
2 s

3
2
2 s

3
2
3

ds2ds3 = 2s−
3
2 +O(s−2).

Therefore s−11/4/Z3,s = 2s−
5
4 +O(s−

7
4 ) and

E
[
R1 − s−1/4

∣∣∣N = 3, S1 + S2 + S3 = s
]

= a s−
3
4 +O(s−

5
4 ), as s→∞,

which gives the asymptotic form of the expected error in the naive heuristic in the case k = 3,
γ = 4.

2.3 Computations for k ≥ 2 and γ > 2

In this subsection we essentially repeat the steps set out in the previous subsection but for general
values of k ≥ 2 and γ > 2. The details become quite intricate and some are deferred to the
Appendix, but the structure of the argument remains as before.

Consider, as before, a disk of radius ρ, where 0 < ρ < ∞ and with the number of points
distributed as Poisson(λπρ2). The probability density in the case in which there are k points at
radii r1, . . . , rk in the disk is given by

fR1,...,Rk,N=k(r1, . . . , rk) = (2λπ)kr1 · · · rke−λπρ
2

= (2λπ)ke−λπρ
2

k∏
i=1

ri. (11)

We now write (11) in terms of signal strengths s1, . . . , sk received at the origin, using ri = s
− 1
γ

i .
Hence

fS1,...,Sk,N=k(s1, . . . , sk) = (2λπ)ke−λπρ
2

k∏
i=1

1

γ
s
− γ+2

γ

i . (12)

The variable s1 can be expressed as s1 = s− s2 − s3 − · · · − sk, so that (12) can be written as

fS2,...,Sk |N=k,S′=s(s2, . . . , sk | s) =
1

Zk,s
(s− s2 − · · · − sk)−

γ+2
γ

k∏
i=2

s
− γ+2

γ

i , (13)

where the variables are ordered, and constrained through the requirement that the points all lie
in the disk of radius ρ, so that s − s2 − · · · − sk > s2 > · · · > sk > ρ−γ . The normalisation term
in (13) now formally depends on four parameters: k, s, γ and ρ but we will tend to suppress the
dependence on the final two arguments for clarity:

Zk,s ≡ Zk,s,γ,ρ =

∫ s
k

ρ−γ
dsk

∫ s−sk
k−1

sk

dsk−1 · · ·
∫ s−s3−···−sk

2

s3

ds2 (s− s2 − · · · − sk)−
γ+2
γ s
− γ+2

γ

2 · · · s
− γ+2

γ

k .

(14)

10



Therefore the expected error R1 − s−1/γ can be written as a set of k − 1 nested integrals

E

[
R1−s−

1
γ

∣∣∣∣N = k,

k∑
i=1

Si = s

]
=

1

Zk,s

∫ s
k

ρ−γ
dsk · · ·

∫ s−s3−···−sk
2

s3

ds2
(s− s2 − · · · − sk)−

1
γ − s−

1
γ

(s− s2 − · · · − sk)
γ+2
γ s

γ+2
γ

2 · · · s
γ+2
γ

k

.

(15)
We now proceed to compute the leading-order asymptotic terms in (15) and (14). We do this

in two separate subsections below, starting with (14).

2.3.1 Equation (14): evaluating Zk,s.

To evaluate (14) we use the same procedure as was illustrated in section 2.2. First we scale out the
dependence on s by changing variables from s2, . . . sk to x2, . . . , xk defined by setting si = sxi. This
gives

Zk,s = s
− 2k
γ
−1
∫ 1

k

ρ−γ/s
dxk

∫ 1−xk
k−1

xk

dxk−1 · · ·
∫ 1−x3−···−xk

2

x3

dx2 (1− x2 − · · · − xk)−
γ+2
γ x
− γ+2

γ

2 · · ·x
− γ+2

γ

k .

(16)
Second, we then make a further change of variables from x2, . . . , xk to y2, . . . , yk which generalises
the one used to achieve equation (9), and that we will now define.

Definition 1. We define the variable yi for 2 ≤ i ≤ k, by

yi = xi (1− xi+1 − · · · − xk)−1 . (17)

From the above definition the following lemma follows easily.

Lemma 1. For xi and yi, where 2 ≤ i ≤ k, we have(
1−

k∑
m=i

xm

)
=

k∏
m=i

(1− ym) . (18)

Using these substitutions we find that (16) can be written as

Zk,s = s
− 2k
γ
−1
∫ 1

k

1
sργ

dyk y
− (γ+2)

γ

k (1− yk)
(2−2k−γ)

γ

∫ 1
k−1

yk
1−yk

dyk−1 y
− (γ+2)

γ

k−1 (1− yk−1)
(2−2(k−1)−γ)

γ · · ·

· · ·
∫ 1

2

y3
1−y3

dy2 y
− (γ+2)

γ

2 (1− y2)
(2−2(2)−γ)

γ .

(19)

By defining an iterative sequence Jk we can express (19) more concisely. We define Jk as follows.

Definition 2 (The sequence of nested integrals Jk). We set:

J2 := 1 (20)

and for 3 ≤ l ≤ k we define

Jl :=

∫ 1
l−1

yl
1−yl

y
− (γ+2)

γ

l−1 (1− yl−1)
(2−2(l−1)−γ)

γ Jl−1 dyl−1. (21)

11



Note that Jl is a function of yl only. In terms of these nested integrals, we can express the
normalisation function as

Zk,s = s
− (2k+γ)

γ

∫ 1
k

1
sργ

y
− (γ+2)

γ

k (1− yk)
(2−2k−γ)

γ Jk dyk (22)

By using (21) to successively investigate the asymptotic behaviour of each Jk we find that the
leading order term in the normalisation function is

Zk,s =
(γ

2

)(k−1) 1

(k − 1)!
ρ2(k−1)s

− (γ+2)
γ +O

(
s
− (γ+4)

γ

)
. (23)

Therefore asymptotically we find, for k ≥ 3, γ > 2 and 0 < ρ <∞, that

Zk,s ≡ Zk,s,γ,ρ ∼
(γ

2

)k−1 1

(k − 1)!
ρ2(k−1) s

− (γ+2)
γ as s→∞. (24)

2.3.2 Equation (15): evaluating the integral.

We now turn to the multiple integral Wk,s in (15)

Wk,s :=

∫ s
k

ρ−γ
...

∫ s−s3
s

s3

(s− s2 − ...− sk)−
1
γ − s−

1
γ

(s− s2 − ...− sk)
γ+2
γ s

γ+2
γ

2 ...s
γ+2
γ

k

ds2...dsk. (25)

Again, we make the changes of variables si = sxi for i = 2, . . . , k and then from x2, . . . , xk to
y2, . . . yk as defined in (17), leading to the relation (18). From this we find that the numerator of
(25) can be expressed as

(s− s2 − ...− sk)−
1
γ − s−

1
γ = s

− 1
γ

k∑
j=2

[(1− yj)− 1
γ − 1

] k∏
i=j+1

(1− yi)−
1
γ

 . (26)

By noting that the denominator of (25) is the same as in the normalising constant expressed in (14)
we know that, following the above substitutions, it will contain the same factors as in (19).

We now define another iterative sequence of nested integrals Q
(j)
k , where j is the variable summed

over in (26).

Definition 3 (The sequence of nested integrals Q
(j)
k ). Fix k ≥ 3, then define the quantities Q

(j)
l ,

for 1 ≤ l ≤ k and 2 ≤ j ≤ k, as follows:

1. For all 2 ≤ j ≤ k, set

Q
(j)
1 := 1.

2. For 2 ≤ l ≤ j − 1, we define

Q
(j)
l :=

∫ 1
l

yl+1
1−yl+1

y
− (γ+2)

γ

l (1− yl)
2−2l−γ

γ Q
(j)
l−1 dyl.

3. For 2 ≤ l = j ≤ k, we define

Q
(j)
l :=

∫ 1
l

yl+1
1−yl+1

y
− (γ+2)

γ

l (1− yl)
2−2l−γ

γ

[
(1− yl)−

1
γ − 1

]
Q

(j)
l−1 dyl.

12



4. For j + 1 ≤ l ≤ k, we define

Q
(j)
l :=

∫ 1
l

yl+1
1−yl+1

y
− (γ+2)

γ

l (1− yl)
1−2l−γ

γ Q
(j)
l−1 dyl.

Note that we define the lower limit of the outermost integral in Q
(j)
k separately, setting

yk+1

1−yk+1
:= 1

sργ .

Using the iterative sequence Q
(j)
k , we can write expression (25) concisely as

Wk,s = s
− (2k+γ+1)

γ

k∑
j=2

Q
(j)
k (27)

and therefore equation (15) can be expressed as

E

[
R1 − s−1/γ

∣∣∣∣∣
k∑
i=1

Si = s

]
=

1

Zk,s

s− (2k+γ+1)
γ

k∑
j=2

Q
(j)
k

 . (28)

It remains to find the leading-order behaviour of
∑k

j=2Q
(j)
k . The details of this become quite

algebraically intensive and are given in Appendix A. It turns out that there are a number of
different cases to consider depending on the value of γ. To summarise, the work in the Appendix
demonstrates that for all γ > 2

k∑
j=2

Q
(j)
k = a(γ)

γ(k−2)

2(k−2)(k − 2)!
y
−2(k−2)

γ

k+1 +O

(
y
−2(k−2)

γ
+ε

k+1

)
(29)

where a(γ) is as given in (3), and ε = min
{
γ−2
γ , 2γ

}
.

By combining this with (28) and substituting yk+1 = 1
sργ we find that

E

[
R1 − s−

1
γ

∣∣∣∣∣N = k,

k∑
i=1

Si = s

]
=

1

Zk,s

(
a(γ)s

− (γ+5)
γ

(γ
2

)(k−2) 1

(k − 2)!
ρ2(k−2) +O

(
s
− γ+5

γ
−ε
))
(30)

Therefore, asymptotically for large s,

E

[
R1 − s−1/γ

∣∣∣∣∣N = k, S′ = s

]
∼ 1

Zk,s
a(γ)

(γ
2

)k−2 1

(k − 2)!
ρ2(k−2) s−1−5/γ

∼ a(γ) 2 (k − 1)

γ
ρ−2 s−3/γ , as s→∞.

More detailed error estimates for this expression could be computed by taking into account addi-
tional lower order terms.
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2.4 Summing over the number of transmitters k ≥ 1

Having computed the expectation conditioned on a fixed number of transmitters k, we now sum
the estimates of section 2.3 over k ≥ 1 to derive the expectation for the total signal strength. To
do this rigorously, we would need to take into account k-dependence in the constants in our error
terms. We have not fully investigated this and leave a completely rigorous consideration to be the
subject of future work. Comparing our theoretical results against numerical simulations indicates
that the asymptotic structure of our results holds, and is quantitatively useful over a wide range of
signal strengths, so that this point does not, in practice, appear to be a limitation.

We first compute the probability density of the total signal strength

fS′(s) =
∞∑
k=1

e−λπ ρ
2

(
2λπ

γ

)k
Zk,s,γ,ρ

∼ e−λπ ρ2
∞∑
k=1

[(
2λπ

γ

)k (γ
2

)k−1 1

(k − 1)!
ρ2(k−1) s−1−2/γ

]

=
2λπ

γ
s−1−2/γ e−λπ ρ

2
∞∑
k=1

(λπ ρ2)k−1

(k − 1)!

=
2λπ

γ
s−1−2/γ , as s→∞.

With this estimate at hand, we can compute the probability of having k transmitters, conditional
on the signal strength being large:

P[N = k |S′ = s] =
1

fS′(s)
e−λπ ρ

2

(
2λπ

γ

)k
Zk,s,γ,ρ

∼ γ

2λπ s−1−2/γ

(
2λπ

γ
e−λπ ρ

2 (λπ ρ2)k−1

(k − 1)!
s−1−2/γ

)
= e−λπ ρ

2 (λπ ρ2)k−1

(k − 1)!
, as s→∞, for k = 1, 2, . . . .

We observe that this discrete distribution on k is Poisson distributed. That is, conditionally on a
large signal, the number k−1 of extra transmitters (in addition to the nearest one), is asymptotically
Poisson(λπ ρ2). This yields

E
[
R1 − s−1/γ

∣∣∣S′ = s
]
∼
∞∑
k=1

e−λπ ρ
2 (λπ ρ2)k−1

(k − 1)!

2(k − 1) a(γ) ρ−2

γ
s−3/γ

∼ 2λπ

γ
a(γ) s−3/γ , as s→∞, independent of the value of ρ.

(31)

Therefore we conclude that

E
[
R1

∣∣∣S′ = s
]

= s−1/γ +
2λπ

γ
a(γ)s−3/γ + o(s−3/γ). (32)

3 Comparison with numerical simulations

In this section we use numerical simulations to assess and compare the performance of the asymptotic
approximation (32) with the heuristic R1 = s−1/γ . To do this we begin by simulating the distribution
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of R1 for a given value of s, using rejection sampling. For simulation with a target value S = s, a
set of distances R1 < R2 < · · · < R100 were simulated, and the sample was rejected if

∑100
k=1R

−γ
k 6∈

[0.98s, 1.02s]. Simulation results were not sensitive to any further increase in the number of distances
considered beyond 100. That such a choice is justified is also borne out by our theoretical calculations
which show that an O(1) number of transmitters determine the asymptotics. For the simulations
where γ = 4 and 6, 2×106 samples were used and for the simulation when γ = 3, 5×106 samples were
used. The two choices regarding accuracy and sample size provide an acceptable trade-off between
simplicity of simulation and accuracy, the simulations produce values close to our theoretical values.

Figures 2 and 3 show the distribution of R1 for γ = 4, in the two cases s = 50 and s = 1000,
respectively. It is clear that the overall shape of the distribution also changes significantly with s;
further analysis of the distribution is described in Jarai (2019).

While transmitter locations are distributed according to a Poisson point process in the plane,
we are only interested in the distances of these transmitters to the origin, not their planar location.
The Mapping Theorem can be used to efficiently generate sets of correctly distributed distances.
Efficiency is required since the rejection sampling method often requires a very large number of
samples to be generated in order to achieve acceptable statistical accuracy.

The Mapping Theorem (Last & Penrose, 2017, theorem 5.1 in chapter 5) allows us to generate
realisation of the random variables R1 < R2 < · · · < R100 in a more efficient way that simulating
the Poisson point process directly. We do this as follows: let λ be the intensity of the Poisson
point process and then generate 100 i.i.d. random variables distributed Exp(λπ). These exponential
variables are then mapped to the required distances by taking the square root of their cumulative
sum. To ensure independence, a new set of transmitter distances was generated for each sample.

0.40 0.45 0.50 0.55 0.60
R1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
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R1 = S 1/  mean
Asymptotic approximation mean
Simulation distribution

Figure 2: Distribution of the distance R1 from the origin to the nearest transmitter for the case
s = 50 (‘small total signal strength’) and path loss γ = 4. A total of 2 × 106 sample values of S
were used. The simulation mean (solid blue line) is close to the asymptotic approximation (green
dash-dotted line) while the naive heuristic s−1/γ significantly underestimates the distribution mean.

Figure 4 compares the accuracy of the naive heuristic and the asymptotic approximation for
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Figure 3: Distribution of the distance R1 from the origin to the nearest transmitter for the case
s = 1000 (‘large total signal strength’) and path loss γ = 4. The simulation mean (solid blue line)
is extremely close to the asymptotic approximation, while again the naive heuristic significantly
underestimates the mean.

three different values of path loss, γ = 3, 4, 6, over a range of values of s. The values for path
loss were chosen to be close to observed real world values and indicate how the accuracy of these
approximations varies for values of γ higher and lower than γ = 4. The accuracy of the asymp-
totic approximation increases as γ decreases. This is due to the error being O(s−3/γ−ε) as shown
previously in section 2. The naive heuristic R1 = s−1/γ has error of order O(s−3/γ) and therefore
for large s, the accuracy increases as γ decreases. This behaviour can also be seen in Figure 4. We
note that for smaller s this is reversed.

Heuristic Theory Observed

Asymptotic Approximation, γ = 3 -5/3 (-1.67) -1.581

Asymptotic Approximation, γ = 4 -5/4 (-1.25) -1.214

Asymptotic Approximation, γ = 6 -5/6 (-0.83) -0.786

Naive heuristic r1 = s−1/3 -3/3 (-1.00) -1.015

Naive heuristic r1 = s−1/4 -3/4 (-0.75) -0.730

Naive heuristic r1 = s−1/6 -3/6 (-0.50) -0.468

Table 1: Comparison of the gradients of the best-fit lines plotted in figure 4 (‘Observed’) with the
theoretical values. In all cases there is excellent agreement between the two.
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Figure 4: This graph shows on log-log axes the error of the approximations (compared to high-
precision numerical simulations) decreasing as total signal strength increases, for different values of
γ. The approximation error is the absolute value (in %) of the difference between the estimate and

the actual value from numerics, i.e., error = 100(theory-numerical)
numerical . The asymptotic approximation is

significantly more accurate than the naive heuristic r1 = s−1/γ over all relevant values of s. The
gradients of the lines match those expected theoretically from the heuristics and are compared
directly in table 1.
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4 Rayleigh fading

In the Introduction we briefly described the issue of ‘fading’ as a propagation effect that further
reduced signal strengths. In sections 2 and 3 we considered situations without fading; in this section
we examine how it might be possible accurately to estimate the distance to the nearest transmitter
when the effect of fading is included.

Our first approach, described in subsection 4.1, is to compute a scaling factor that can be used
to scale the faded signal to the values it would have taken been had fading not been in effect. The
recovered signal can then be used in conjunction with a distance heuristic to estimate the distance to
the nearest transmitter. The scaling factor approach can be used for Nakagami-m fading, although
we use the Rayleigh fading case, corresponding to m = 1, for illustrative purposes. In subsection
4.2 we develop an improved heuristic for finding the expected distance to the nearest transmitter
based on observed faded signal at the origin. Both methods are then compared against numerical
simulations in subsection 4.3.

4.1 The scaling factor approach

We begin by recalling scaling properties of the total signal (Haenggi, 2012, Section 5.1). Let R1 <
R2 < . . . be the distances from the origin to a countable collection of transmitters distributed
according to a Poisson point process with intensity λ. The total signal received at the origin
without fading is

S(λ) =
∞∑
i=1

Ri(λ)−γ ,

where our notation emphasizes that the distribution of S depends on λ. When fading is present,
we have instead a total signal

T (λ) =

∞∑
i=1

HiRi(λ)−γ ,

where H1, H2, . . . are independent random variables taking values in (0, 1] describing the Nakagami-
m fading. Note that in Haenggi (2012) the total signal is referred to as ‘interference’ and is denoted
by I(λ). By calculating Laplace transforms, it can be shown (Haenggi, 2012, Section 5.1.7) that
T (λ) has the same distribution as S(E[H2/γ ]λ). It can also be shown (Haenggi, 2012, Corollary
5.4) that for any positive constant a, S(aλ) has the same distribution as aγ/2S(λ). It follows from
these two facts that

T (λ)
d
= E[H2/γ ]γ/2S(λ),

where
d
= means equal in distribution. Hence E[H2/γ ]γ/2 is a scaling factor of the kind we are looking

for.
Nakagami-m fading employs random variables that are Gamma(m, 1/m) - distributed. The

probability density function of the Gamma(α, θ) distribution with shape α > 0 and scale θ > 0 is
given by

f(x;α, θ) =
1

Γ(α)θα
xα−1e−

x
θ for 0 < x <∞,

and therefore

E[H2/γ ] =
1

Γ(m)(1/m)m

∫ ∞
0

h
2
γ
+m−1

e−mh dh.

A simple change of variables shows that∫ ∞
0

h
2
γ
+m−1

e−mh dh = (1/m)
2
γ
+m

Γ(
2

γ
+m)
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which implies

E[H2/γ ] =
Γ( 2γ +m)(1/m)

2
γ

Γ(m)
.

Hence our scaling factor c(γ,m) can be defined as

c(γ,m) := E
[
H2/γ

]γ/2
=

(
Γ( 2γ +m)

Γ(m)

)γ/2
1

m
. (33)

Based on this scaling result, the naive heuristic can be adjusted to yield:

R1(λ) ≈ S(λ)−1/γ
d
= c(γ,m)1/γ T (λ)−1/γ . (34)

We refer to this heuristic as ‘R1 = T−1/γ with scaling’. The asymptotic approximation (32) com-
bined with the scaling factor gives

E
[
R1

∣∣∣T = t
]
≈ t−1/γc(γ,m)1/γ +

2λπ

γ
a(γ)t−3/γc(γ,m)3/γ . (35)

We refer to this heuristic as the ‘asymptotic heuristic with scaling’.

4.2 Distance estimation with Rayleigh fading

The scaling factor approach of the previous subsection can be improved, for the case of Rayleigh fad-
ing in which the fading effect is strongest, by computing the distribution of the nearest transmitter
R1, not just its mean.

The effect of Rayleigh fading is described by the random variable H1 distributed as Exp(1), with
probability density function

fH1(h1) = e−h1 where h1 > 0.

In order to simplify computations, we assume that there is a single transmitter in the disk of radius
ρ = 1/

√
λπ (for this choice of radius the expected number of transmitters in the disk is 1). Let S̃1

be the signal contributed by this single transmitter, so that by setting k = 1 in (12) we obtain

fS̃1
(s1) = 2λπe−λπρ

2 1

γ
s
− γ+2

γ

1 =
2

γ ρ2
e−1 s

− γ+2
γ

1 , ρ−γ < s1 <∞. (36)

Continuing with this simplifying assumption, we replace T by the random variable

T̃1 = H1 S̃1.

The joint probability density function of S̃1 and H1, assumed independent, is given by

fS̃1,H1
(s1, h1) =

2

γρ2
s
− γ+2

γ

1 e−h1e−1.

Then the joint probability density function of T̃1 and H1 is

fT̃1,H1
(t1, h1) =

2

γρ2
h

2
γ

1 t
− (γ+2)

γ

1 e−h1e−1, for 0 < t1 <∞, and 0 < h1 < ργt1.

Since ∫ ργt1

0
h
2/γ
1 e−h1dh1 = γlower

(
γ + 2

γ
, ργt1

)
,
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where γlower denotes the lower incomplete Gamma-function, the marginal probability density of T̃1
is given by

fT̃1(t1) =
2

γρ2
t
− (γ+2)

γ

1 e−1γlower

(
γ + 2

γ
, ργt1

)
, 0 < t1 <∞.

We use this to find the conditional distribution

fH1|T̃1=t1(h1) =
fT̃1,H1

(t1, h1)

fT̃1(t1)
=

1

γlower

(
γ+2
γ , ργt1

)h 2
γ

1 e
−h1 , 0 < h1 < ργt1.

Since we made the approximation that T is attributed entirely to the nearest transmitter, we
have t1 = S̃1H1 = R−γ1 H1 and therefore H1 = t1R

γ
1 . From this we find

fR1|T̃1=t1(r1|t1) = fH1|T̃1=t1(h1|t1)
dh1
dr1

= fH1|T̃1=t1(h1|t1)t1γrγ−11 ,

and therefore

fR1|T̃1=t1(r1) =

 γt
γ+2
γ

1

γlower

(
γ+2
γ , ργt1

)
× rγ+1

1 e−t1r
γ
1 , 0 < r1 < ρ. (37)

Note that this expression for the probability density of R1 still depends on the radius of the disk
has on the probability density function, but when t1 is large the value of γlower(·, ·) does not depend
as strongly on ρ as it does when t1 is small.

The expected distance to the nearest transmitter, conditional on observed faded signal at the
origin, is therefore given from (37) by

E[R1|T̃1 = t1] =
Γ
(
γ+3
γ

)
t
1
γ

1 γlower

(
γ+2
γ , ργt1

) (38)

4.3 Numerical simulations

To check the accuracy of the appromated distribution and mean for the nearest transmitter estimate,
derived in subsection 4.2 for the Rayleigh fading case, we use the same rejection sampling strategy as
previously described. We simulate Poisson distributed points for transmitters and the corresponding
fading variables. If the computed total faded signal T at the origin is within 2% of the target value
then the simulation result is kept, otherwise it is rejected. Five values of T were considered: 50,
100, 200, 500 and 1000 and we generated 106 samples for each of the five values of T .

The theoretically approximated distribution and expected mean of R1, given in equations (37)
and (38) respectively, are compared to the numerical results in Figures 5 and 6, for the lowest and
highest of the five values of T . They confirm that the theoretical results perform well across a range
of values for T . Not surprisingly, agreement is better for the large value of T , but even for the
lowest value considered, Figure 5 indicates that the approximation remains useful.

Figures 7 and 8 summarise the relative accuracy of the three approximations 34, 35 and (38),
derived for distance estimation in the presence of Rayleigh fading. The scaling factor used together
with the simple heuristic R = S−1/γ gives (34) and is referred to as ‘R1 = T−1/γ with scaling’. The
scaling factor used together with the asymptotic heuristic (32) gives (35) which is referred to as
‘Asymptotic heuristic with scaling’. Figure 7 illustrates the performance of (35) and (34), compared
to the fading approximation (38), when γ = 4.
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Figure 5: Comparison of theoretical and numerical results for the distribution of R1 for the lowest
value T = 50, setting γ = 4 and ρ = 1. The (blue) histogram shows the distribution of R1

obtained through numerical simulation, while the (orange) dots indicate the theoretical prediction
given by (37), referred to as the ‘Approximated distribution’. The overall shape of the theoretical
distribution is correct, but it is shifted slightly to the left. The expected mean R1 from equation
(38) (red dash-dotted line) is close to the mean obtained from the numerical simulations (blue solid
line).

In figure 7 we note that the ‘fading approximation’ is the most accurate of the three methods,
followed by the ‘Asymptotic heuristic with scaling’. At all signal strengths the ’fading approxi-
mation’ underestimates the expected distance r1, whereas the ’Asymptotic heuristic with scaling’
appears to provide an overestimate at small signal strengths but is then a slight underestimate at
larger signal strengths.

In figure 8 we compare the ‘Asymptotic heuristic with scaling’ against the ‘Fading approximation’
for three separate values of γ: γ = 3, 4, 6. We see that the ‘fading approximation’ consistently
underestimates r1 whereas the ‘Asymptotic heuristic with scaling’ again overestimates at sufficiently
small signal strengths (probably for all γ > 2) and then underestimates as s increases. From Figure
8 we conclude that the fading approximation is the most accurate of the three methods, at least in
the case with Rayleigh fading.

Figure 9 provides a comparison between the accuracy of the best of the three approximations
above, i.e., the ’fading approximation’ (38) that attempts to incorporate these propagation effects,
and the asymptotic approximation derived in th case of no fading, i.e., (32), in order to assess
the relative accuracy of our attempt to extend the distance estimation to the case of Rayleigh
fading. We see that the approximation without fading is significantly more accurate, especially for
lower values of γ, which suggests that fading makes estimation of an accurate asymptotic result
significantly more complicated.

21



0.05 0.10 0.15 0.20 0.25 0.30 0.35
Distance of R1 from the origin

0

2

4

6

8

10

De
ns

ity

Approximated distribution
Simulation mean
Approximated mean

Figure 6: Comparison of theoretical and numerical results for the distribution of R1 for the highest
value T = 1000, setting γ = 4 and ρ = 1. The (blue) histogram shows the distribution of R1

obtained through numerical simulation, while the (orange) dots indicate the theoretical prediction
given by (37), referred to as the ‘Approximated distribution’. Agreement between theory and
numerical simulation is extremely good across the entire range of R1. Consequently, the theoretical
mean (read dash-dotted line) and mean obtained through numerical simulations (blue solid line)
are extremely close.
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Figure 7: Comparison of the accuracy of the ‘fading approximation’ (38) with ‘that of the ‘Asymp-
totic heuristic with scaling’ (35) and ‘R1 = T−1/4 with scaling’ (34) approaches. The path-loss
exponent γ = 4 in all cases.
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Figure 8: Comparing the performance of the fading approximation (38) against the asymptotic
heuristic with scaling, for three values of γ: γ = 3, 4, 6. Both approximations improve as γ increases.
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Figure 9: Comparison between approximation errors for distance to nearest transmitter, with and
without Rayleigh fading, as a function of signal strength. Results are shown for three values of
the path-loss exponent: γ = 3, 4 and 6. In the case without fading, the asymptotic heuristic (32)
(lower three lines) provides more accurate estimates than the ‘fading approximation’ (38) does when
Rayleigh fading is present.
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5 Summary and conclusions

In order to operate efficiently, small-cell wireless communications networks increasingly demand
‘self-organisation’. This relies on the capability of individual transmitters to gain information about
their local network through measurements and data reported by user devices connected to that
transmitter. Over the next few years, the rollout and expansion of the 5G network will result in
significantly increased densities of small-cell networks. Within these regions of dense coverage in
particular, SON technology will help to reduce operating costs and improve user experience. It is
highly likely that devices from different manufacturers will need to work collaboratively to optimise
the network, but that detailed information on operating characteristics will remain commercially
confidential. As a result, individual devices will need to be able to infer properties from network
data, such as reported SIRs, alone. Estimating the distance to the nearest neighbour is immediately
useful, allowing a transmitter to adjust its power setting to help optimise SIR over the wider network.
Therefore the ability of transmitters to estimate, based solely on observations, the distance to the
nearest transmitter helps enable distributed self-optimisation. In this paper we have theoretically
derived better heuristics than are commonly used in the literature.

In this paper we developed methods for accurately estimating the distance to the nearest neigh-
bour transmitter in such a wireless network. First we ignored propagation effects and considered
signal strength to be directly related to separation between transmitter and receiver through a path-
loss exponent γ. We started from the the heuristic that this implies, namely that a measured signal
strength s and known path-loss exponent γ resulted in an estimate of the distance to the nearest
transmitter r1 in the form r1 = s−1/γ . This naive approximation can be significantly improved
through an asymptotic analysis in the limit of large signal strength, which resulted in (32) which we
referred to as the asymptotic approximation. In section 3 the improved accuracy of this heuristic is
demonstrated with numerical simulations; even for relatively small values of the observed signal s.

In terms of relevance to applications, we note that many studies do indeed analyse high signal
power regimes, usually expressed by showing results over a range of SINR (signal to interference-
plus-noise) values that spans typically from around −10dB to 20dB. More precisely, suppose that
we define SINR =10 log10[S/(I + σ2)]dB where S and I are the signal and interference power,
respectively, and σ2 is a noise term. Since here we neglect noise and interference, essentially setting
I + σ2 to unity, we essentially express S as a multiple of interference-plus-noise. Then a signal
strength S = 103 would correspond to SINR = 30dB and S = 102 would correspond to SINR =
20dB. We conclude that although our results are derived in the limit of large S they appear to be
useful at least down to these values; see for example Figure 4 which indicates errors well below 0.1%
even when S ≈ 10.

Second, we developed in section 4 an improved approximation for the distance to the nearest
transmitter in the presence of Rayleigh fading. The inclusion of fading makes the analysis more
difficult, and we started our analysis of fading started (in section 4.1) by considering the more
general case of Nakagami-m fading and presenting a scaling factor argument to relate the fading
case to the non-fading case studied first, in order to make full use of our detailed work on the
non-fading case. The most extreme case of Nakagami-m fading is m = 1 - the Rayleigh fading
case. The case m = 1 also turns out to be more tractable analytically and in subsection 4.2 we
derived an estimate for the distribution of the distance R1 to the nearest transmitter, conditional on
a measured Rayleigh-faded signal T . From this distribution we could compute the expected value
of R1 conditional on T , this expected value (38) is referred to as the ‘fading approximation’ (to
the distance r1). In subsection 4.3 we compared the theoretical results based on the scaling factor
and fading approximation arguments to numerical simulations. These indicate that the fading
approximation is the most accurate of the three methods discussed for estimating the distance to
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the nearest transmitter in cases that include Rayleigh fading.
Overall, our results provide significant improvements over existing naive estimates, yet remain

reasonably tractable and fast to compute. There are, naturally, modelling limitations, most ob-
viously that we assume the stochastic geometry of the transmitter network is given by a Poisson
point process, and that transmitters are identical - for example they broadcast on the same power
settings. However, our general approach of working in the asymptotic limit of large signal strength
s is likely to be an approach that applies when these other modelling constraints are relaxed, and
results derived in this limit are likely to hold over a wider range of relevant signal strengths.

Of the many directions for future work, two that appear promising are, firstly, to extend these
results to cases in which transmitters have different power settings, for example chosen at random
with equal probabilities from a discrete set. Although this appears to undermine the central intu-
ition, that large values of received signal correspond to a single nearby transmitter, it seems possible
to explore scenarios first in which the power settings have a small range, and therefore this intuition
may remain approximately valid.

A second direction for future research is to vary the point process used to define the locations
of the transmitters, for example by using an inhomogeneous Poisson point process (perhaps one
that is radially symmetric) or a spatially correlated process such as the Mátern or Ginibre processes
(Deng et al., 2015; Haenggi, 2017; Kong et al, 2018). Although these are well-known to be less
analytically tractable than the homogeneous Poisson point process, the use of the asymptotic limit
of large signal strength may allow mathematical progress to be made.
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A Computational details

In this section we give the details of the computations for the general case of the asymptotic heuristic
(32). We wish to compute the leading order asymptotic expression for the following multiple integral,
in the limit of large s.

Wk,s :=

∫ s
k

ρ−γ
...

∫ s−s3
s

s3

(s− s2 − ...− sk)−
1
γ − s−

1
γ

(s− s2 − ...− sk)
γ+2
γ s

γ+2
γ

2 ...s
γ+2
γ

k

ds2...dsk. (A39)

In section 2 we defined a sequence of integrals Q
(j)
k so that (A39) could be expressed concisely as

Wk,s = s
− (2k+γ+1)

γ

k∑
j=2

Q
(j)
k . (A40)

The purpose of this Appendix is to compute the leading order term in Wk,s and hence to justify (29).

We recall from section 2 the definition of the iterative sequence Q
(j)
k , (Definition 3), and compute∑k

j=2Q
(j)
k in three steps:

(1). We find Q
(2)
k in the cases where

(a) 2 < γ < 4,

(b) γ = 4,

(c) γ > 4.

(2). We find Q
(3)
k in the cases where

(a) 2 < γ < 4,

(b) γ = 4,

(c) γ > 4.

(3). Finally we find Q
(j)
k in the cases where

(a) 2 < γ < 2(j − 1),

(b) γ = 2(j − 1),

(c) γ > 2(j − 1).

A consequence will be that for all γ > 2, the dominant term in
∑k

j=2Q
(j)
k is Q

(2)
k .

27



Step (1):

We will begin by considering Q
(j)
k in the special case where j = 2.

Q
(2)
2 =

∫ 1
2

y3
1−y3

y
− (γ+2)

γ

2 (1− y2)
−2−γ
γ

[
(1− y2)−

1
γ − 1

]
Q

(2)
1 dy2

=

∫ 1
2

0

(1− y2)−
1
γ − 1

y
γ+2
γ

2 (1− y2)
2+γ
γ

dy2 −
∫ y3

1−y3

0

(1− y2)−
1
γ − 1

y
γ+2
γ

2 (1− y2)
2+γ
γ

dy2

= a(γ)−
∫ y3

1−y3

0

(1− y2)−
1
γ − 1

y
γ+2
γ

2 (1− y2)
2+γ
γ

dy2

= a(γ)− 1

γ − 2
y
γ−2
γ

3 +O

(
y

2γ−2
γ

3

)
(A41)

Therefore, using part (3) of Definition 3, we find that

Q
(2)
3 =

∫ 1
3

y4
1−y4

[
a(γ)y

−γ−2
γ

3 − 1

(γ − 2)
y
−4
γ

3 +O

(
y
γ−4
γ

3

)]
dy3. (A42)

From (A42) we can see that there are three cases, distinguished by the value of γ, for which the

form of Q
(2)
3 will be different. These are: 2 < γ < 4, γ = 4, and γ > 4. Recall that we assume

always that γ > 2 in order that the total signal strength at the origin remains finite almost surely.

Using the iterative sequence in Definition 3, it is straightforward to compute Q
(2)
k in each of these

three cases.

(1a):
For 2 < γ < 4.

Q
(2)
3 = a(γ)

γ

2
y
− 2
γ

4 +O

(
y
γ−4
γ

4

)
and from integrating this iteratively, using part (4) from Definition 3, we find that

Q
(2)
k = a(γ)

(γ
2

)(k−2) 1

(k − 2)!
y
− 2(k−2)

γ

k+1 +O

(
y
γ−2(k−1)

γ

k+1

)
, (A43)

(1b):
For γ = 4,

Q
(2)
3 = a(4)2y

− 1
2

4 +
1

2
log(y4) +O(1)

and from integrating this iteratively, using part (4) from Definition 3, we find that

Q
(2)
k = a(4)

2(k−2)

(k − 2)!
y

2−k
2

k+1 +
2(k−4)

(k − 3)!
log(yk+1)y

3−k
2

k+1 +O

(
y

3−k
2

k+1

)
, (A44)

(1c):
For γ > 4

Q
(2)
3 = a(γ)

γ

2
y
− 2
γ

4 +O(1)

and from integrating this iteratively, using part (4) from Definition 3, we find that

Q
(2)
k = a(γ)

(γ
2

)(k−2) 1

(k − 2)!
y
− 2(k−2)

γ

k+1 +O

(
y

6−2k
γ

k+1

)
. (A45)
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In (A44) we see that when γ = 4 a log term is introduced. However, in (10) we noticed that (when

k = 3) this term cancels with the leading order term from Q
(3)
k . We will now compute Q

(j)
k for

j ≥ 3 and show that log terms always either cancel or are of a lower order than existing terms and

so can be disregarded. It will be convenient to introduce the exponent ε = min
{
γ−2
γ , 2γ

}
, so that

our error terms, apart from the log-term introduced when γ = 4, carry an extra power yεk+1.

Step (2):
For 2 ≤ l < j we refer to equation (2) of Definition 3. When yl, yl+1 are small, we use the

approximation (1− yl) = 1 +O(yl) and
yl+1

(1−yl+1)
= yl+1 +O(y2l+1) to find that

Q
(j)
l =

(γ
2

)(l−1) 1

(l − 1)!
y
−2(l−1)/γ
l+1 +O

(
y
−2(l−2)/γ
l+1

)
. (A46)

In order to find Q
(j)
j , equation (3) from Definition 3, we use the Taylor approximation to find

that
[
(1− yj)−

1
γ − 1

]
= 1

γ yj +O
(
y2j

)
and so

Q
(j)
j =

∫ 1
j

yj+1
1−yj+1

(
1

γ
y
− 2
γ

j +O

(
y
γ−2
γ

j

))
Q

(j)
j−1dyj . (A47)

By setting l = (j − 1) in (A46) and using this result in (A47) we obtain

Q
(j)
j =

∫ 1
j

yj+1
1−yj+1

γj−3

2(j−2)(j − 2)!
y
−2(j−1)

γ

j +O

(
y
− 2(j−2)

γ

j

)
dyj (A48)

Let us now distinguish the cases j = 3 and j ≥ 4. We first consider j = 3, and within this case, we
consider separately whether γ < 4, γ = 4, or γ > 4.

2(a): j = 3 and 2 < γ < 4. In this case, we have

Q
(3)
3 = cy

− 4
γ
+1

4 +O(1),

and iterating (4) of Definition 3 we get:

Q
(3)
k = O

(
y
− 2(k−1)

γ
+1

k+1

)
= O

(
y
− 2(k−2)

γ
+ε

k+1

)
2(b): j = 3 and γ = 4. In this case, we have

Q
(3)
3 = −1

2
log y4 +O(1),

and iterating (4) of Definition 3 we get:

Q
(3)
k = − 2(k−4)

(k − 3)!
log(yk+1)y

3−k
2

k+1 +O

(
y

3−k
2

k+1

)
= − 2(k−4)

(k − 3)!
log(yk+1)y

3−k
2

k+1 +O

(
y

2−k
2

+ε

k+1

)

2(c): j = 3 and γ > 4. In this case, Q
(3)
3 = O(1), and iterating (4) of Definition 3 we get

Q
(3)
k = O

(
y
− 2(k−3)

γ

k+1

)
= O

(
y
− 2(k−2)

γ
+ε

k+1

)
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Step 3. We now consider j ≥ 4. We consider separately, whether γ < 2(j − 1), γ = 2(j − 1) or
γ > 2(j − 1).

3(a): j ≥ 4 and 2 < γ < 2(j − 1). In this case Q
(j)
j = O

(
y
− 2(j−1)

γ
+1

j+1

)
, and the exponent of

yj+1 is negative. Therefore, iterating (4) of Definition 3 we get

Q
(j)
k = O

(
y
− 2(k−1)

γ
+1

k+1

)
= O

(
y
− 2(k−2)

γ
+ε

k+1

)
.

3(b): j ≥ 4 and γ = 2(j − 1). In this case Q
(j)
j = O(log yj+1). Therefore, iterating (4) of

Definition 3 we get

Q
(j)
k = O

(
(log yk+1) y

− 2(k−j)
γ

k+1

)
= O

(
y
− 2(k−2)

γ
+ε

k+1

)
.

3(c): j ≥ 4 and γ > 2(j − 1). In this case Q
(j)
j = O(1), and we get

Q
(j)
k = O

(
y
− 2(k−j)

γ

k+1

)
= O

(
y
− 2(k−2)

γ
+ε

k+1

)
.

Therefore, we find that for all γ > 2 we have the required result:

k∑
j=2

Q
(j)
k = a(γ)

γ(k−2)

2(k−2)(k − 2)!
y
−2(k−2)

γ

k+1 +O

(
y
− 2(k−2)

γ
+ε

k+1

)
. (A49)
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