
        

Citation for published version:
West, S, Williams, S, Cazzola, D, Cross, M, Kemp, S & Stokes, K 2020, 'Training load and injury risk in elite
Rugby Union: The largest investigation to date', International Journal of Sports Medicine.
https://doi.org/10.1055/a-1300-2703

DOI:
10.1055/a-1300-2703

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

Copyright 2020, Georg Thieme Verlag KG
West, S., Williams, S., Cazzola, D., Cross, M., Kemp, S., & Stokes, K. (2020). Training load and injury risk in
elite Rugby Union: The largest investigation to date. International Journal of Sports Medicine.
https://doi.org/10.1055/a-1300-2703

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jan. 2022

https://doi.org/10.1055/a-1300-2703
https://doi.org/10.1055/a-1300-2703
https://researchportal.bath.ac.uk/en/publications/training-load-and-injury-risk-in-elite-rugby-union(7d54d184-fdb1-4349-8607-c1020c5c13b0).html


 

Abstract:  1 

 2 

Training load monitoring has grown in recent years with the acute:chronic workload ratio (ACWR) 3 

widely used to aggregate data to inform decision-making on injury risk. Several methods have been 4 

described to calculate the ACWR and numerous methodological issues have been raised. Therefore, 5 

this study examined the relationship between the ACWR and injury in a sample of 696 players from 13 6 

professional rugby clubs over two seasons for 1718 injuries of all types and a further analysis of 383 7 

soft tissue injuries specifically. Of the 192 comparisons undertaken for both injury groups, only 40% 8 

(all injury) and 31% (soft tissue injury) were significant. Furthermore, there appeared to be no 9 

calculation method that consistently demonstrated a relationship with injury. Some calculation methods 10 

supported previous work for a “sweet spot” in injury risk, while a substantial number of methods 11 

displayed no such relationship. This study is the largest to date to have investigated the relationship 12 

between the ACWR and injury risk and demonstrates that there appears to be no consistent association 13 

between the two. This suggests that alternative methods of training load aggregation may provide more 14 

useful information, but these should be considered in the wider context of other established risk factors. 15 

 16 

Introduction:  17 

Training load monitoring has become an integral component of injury risk management in recent years, 18 

largely due to the ease with which it can be modified and optimised for each athlete. The acute: chronic 19 

workload ratio (ACWR) is a measure of athlete training load that accounts for both the fatigue (acute) 20 

and fitness (chronic) status of the athlete [1]. Given the apparent ecological validity of the measure, 21 

ACWR has been widely adopted across team sports to aggregate athlete training load data with the aim 22 

of managing injury risk [1-3]. Typically, the ACWR has been calculated by dividing a chronic (28 day 23 

rolling average) value by an acute (7 day rolling average) load to produce a ratio, with values greater 24 

than one representing higher acute load relative to the four week average, and values less than one 25 

representing lower acute load relative to the four-week load [1,4]. However, a number of 26 

methodological considerations [5-8] and concerns regarding the applicability and validity of the 27 

measure [9-13] have questioned whether the measure offers any value in managing athlete injury risk. 28 

 29 

The ACWR can be calculated using different averaging methods (rolling averages- RA, and 30 

exponentially weighted moving averages- EWMA [5,14]), different time periods [6], and using coupled 31 

or un-coupled loads [7]. Since the original use of 7 and 28-day acute and chronic time periods, other 32 

time-frames have been suggested ranging from 2-14 days (acute) and 12-56 days (chronic)[6,15], which 33 

may be more representative of the time periods over which fatigue and fitness decay. More recently, 34 

Dalen-Lorentsen and colleagues [13] have demonstrated that the link between the ACWR and injury is 35 

highly variable based on the methods used to calculate the ACWR (including RA and EWMA, and 36 

differing time periods). This indicates that the relationship is not consistent and a product of the 37 



 

calculation method itself, as opposed to a consistent link between ACWR derived training load and 38 

injury.  39 

 40 

In rugby union, the risk of injury is high compared with that of other team sport (81 per 1000 match 41 

hours [16]) and therefore modifiable risk factors such as training load offer a potentially useful method 42 

for injury risk mitigation. While, little evidence exists in rugby union as to the utility of the ACWR 43 

[17,18], establishing the extent to which methodological parameters could be influencing the link 44 

between the ACWR and injury risk in this setting is prudent. Importantly, it is well established that 45 

injury aetiology is multifactorial in nature [19] and therefore when examining the link between training 46 

load and injury, other well known risk factors must be considered. In rugby union, these include (but 47 

are not limited to) previous injury [20], previous concussion [21], match minutes [20], playing position 48 

[22] and age [22,23]. Therefore the aim of this study is to investigate the association between the ACWR 49 

and injury risk in a league wide sample of 13 teams, while accounting for other known injury risk 50 

factors.   51 

 52 

  53 



 

Methods: 54 

Subjects:  55 

Data were captured from 13 Premiership clubs in the 2015-16 and 2016-17 seasons (ten clubs for two 56 

seasons, three clubs for one season (due to relegation/promotion and one club not providing data in one 57 

season)). In 2015-16, 433 players were recruited and in 2016-17, 569 players were recruited, for a total 58 

of 1002 player-seasons (696 unique players). Injury data were collected as part of the Professional 59 

Rugby Injury Surveillance Project; each player was provided with a participant information sheet, with 60 

individual consent obtained voluntarily. The study was approved by the xxxxxx and meets the ethical 61 

standards of the journal [24].  62 

 63 

Procedures: 64 

Time-loss injuries were defined as “an injury that results in a player being unable to take a full part in 65 

future rugby training or match play for more than 24 hours from midnight at the end of the day the 66 

injury was sustained”[25] with all match and training injuries collected by club medical staff. Training 67 

load data were collected by club conditioning staff using the session Rating of Perceived Exertion 68 

(sRPE) method [26]. This measure was chosen for its ease of use, applicability to multiple session types, 69 

and widespread use in professional rugby [27,28]. Within 30 minutes of each session, participants were 70 

asked to rate their session (1-10) using a modified CR-10 Borg scale [26,29]. This number was then 71 

multiplied by the session length (in minutes) to produce a single global score for the whole session. 72 

Staff were instructed to blind the players to one another’s scores to ensure no bias was introduced in 73 

the collection. Data were collected daily and sent monthly to the lead researcher for collation in a 74 

standard format using Microsoft Excel.  75 

 76 

Five well-documented injury risk factors were also included as covariates: position, age, previous 77 

injury, previous concussion and cumulative match minutes (all in the past 12 months). Player position 78 

and age were obtained using baseline data reported at the start of each season. Six position categories 79 

were used: front row, second row and back row (forwards) and half backs, centres and the back three 80 

(backs). Previous injury and previous concussion were captured by the primary researcher by 81 

retrospectively analysing the previous seasons injury data (count per player). Match minutes were 82 

summed over a rolling 12-month period. The selection of reference categories has previously been 83 

reported as a challenge to analysing the training load-injury risk relationship [1]. Therefore, the 84 

selection of reference categories was decided a priori. Both position and age reference categories were 85 

arbitrarily assigned as the “back three” and the 18-23 year old grouping, respectively. A “moderate-86 

low” grouping of 1 previous injury was selected for previous injury as the data demonstrated that the 87 

majority of players were likely to experience one injury per 12 months (69% in 2015-16 and 77% in 88 

2016-17). In contrast, the “Low” (no previous concussion in the past 12 months) previous concussion 89 

category was chosen as the majority of players did not experience one concussion over a rolling 12 90 



 

month period (23% in 15-16 and 28% in 16-17). A “moderate-low” category for match minutes (455-91 

888 minutes or 5.7-11.1 full match equivalents) was chosen as it has previously been shown as a high 92 

risk range in rugby union [20]. A binary injury indicator (0-No/ Yes-1) was included for each athlete 93 

on each day of the study period. All days (training days, match days and rest days) were included in the 94 

calculation the ACWR. However, because there was no risk of rugby-related injury on days with no 95 

rugby exposure, those days were not analysed to determine whether ACWR was associated with injury 96 

[31]. No latent period was included, as the derived measures were updated and analysed daily [32].  97 

 98 

Statistical Analysis:  99 

All covariate risk factors (position, age, previous injury, previous concussion and cumulative match 100 

minutes) and the fixed load measurement of interest (i.e. the ACWR) were included in multivariable 101 

analyses to identify key risk factors, as determined by the GLMERSelect stepwise selection procedure 102 

via the “StatisticalModels” package [33]. Polynomial and interaction terms were evaluated in this 103 

process. The covariates retained by the backwards selection of fixed effects (previous injury, previous 104 

concussion and cumulative match minutes) were included in the final models alongside three previously 105 

identified training load measures shown to represent distinct components of training load [34]. These 106 

measures were: an acute load (3,5,7 or 9 days), a chronic load (14, 21, 28 or 28 days) and the 107 

corresponding ACWR variable. Multicollinearity between covariates was assessed using Variance 108 

Inflation Factors (VIF), with a VIF of ≥10 deemed to show substantial collinearity [17,35].  109 

 110 

The training load dataset file was imported into Matlab (Matlab 2018b, MathWorks) to 111 

programmatically produce the data combinations required for analysis. For each daily load value per 112 

player, each possible ACWR calculation method was produced, including RA and EWMA [14], 113 

coupled and uncoupled [7,36] and each time frame (3,5,7,9,14,21,28,35). This procedure resulted in the 114 

following ACWR measure for each player each day (Fig 1). These data were exported from Matlab into 115 

RStudio for analysis. 116 

  117 

************************ INSERT FIGURE 1 HERE ****************************************** 118 

 119 

Final analysis of the training load and injury risk relationship was undertaken for two separate outcome 120 

variables: all injury types and non-contact soft tissue injuries only. For the purpose of this analysis, soft 121 

tissue injuries were defined as any muscle, tendon or ligament issue occurring from a non-contact 122 

mechanism. Generalised linear mixed models were used to assess the relationship between each of the 123 

ACWR metrics and injury risk, using the “lme4” package [37]. Repeated observations within players 124 

were accounted for using a random effect for each player ID, which was nested within the player’s club. 125 

Model fit was assessed using the Akaike Information Criterion (AIC) with a smaller AIC value 126 

representing a better model fit. Area Under the Curve (AUC) was also assessed, with a higher AUC 127 



 

value representing a better performing model [38]. The ACWR was modelled as a continuous variable 128 

[30] with a polynomial term to account for non-linear relationships. For each method of calculation, 129 

three comparisons on injury risk were made;  moderate versus low ACWR (i.e. the mean ACWR to -1 130 

standard deviation(SD)), moderate versus high (i.e. mean to +1SD) and low versus high (-1SD to +1SD) 131 

[13,39]. Estimated injury probability at each of these values (-1SD, Mean and +1SD) was expressed as 132 

the injury hazard (risk per player per exposure day), with comparisons between groups expressed as 133 

hazard ratios with 90% confidence intervals [32]. In this study, an ACWR “Sweet Spot” was deemed 134 

to be when the moderate category represented the lowest risk and was significantly lower than either 135 

the low or high category. Confidence intervals were set at 90% to allow for the possibility that the true 136 

value lies 5% either below the lower limit or above the upper limit [40]. All analysis was undertaken 137 

using RStudio (RStudio, Inc. Version 1.1.463). 138 

 139 

Results:  140 

 141 

Acute: chronic workload ratio and all injury type 142 

Over the study period 129,448 training load values were collected (excluding days off), while 1718 143 

injuries were recorded (383 soft tissue). Individual comparisons between ACWR groups for each of the 144 

calculation methods are outlined in supplementary figures (All Injury Types: S1- Coupled and rolling, 145 

S2- Coupled and EWMA, S3- Uncoupled and rolling, S4- Uncoupled and EWMA, Soft Tissue Injuries 146 

only: S5- Coupled and rolling, S6- Coupled and EWMA, S7- Uncoupled and rolling, S8- Uncoupled 147 

and EWMA). For all injuries, of the 192 comparisons made (i.e. Moderate to Low ACWR, Moderate 148 

to High ACWR, Low to High ACWR for all ACWR calculation methods), 77 (40%) significant results 149 

were produced (Figure 2A). The coupled EWMA 3-to-14 day calculation method produced the best 150 

model fit (AIC = 20108, AUC = 0.69). The uncoupled EWMA ACWR showed the greatest support for 151 

a “sweet spot” (63%: Figure 3). 152 

 153 

Adjusted covariate effect: 154 

The three selected covariates (previous injury, previous concussion, and match minutes) were also 155 

included in the generalised linear mixed model. Table 1 and 2 demonstrate the adjusted relative risks 156 

for the three covariates, for all injury and soft tissue injuries, respectively. For each new ACWR 157 

interaction (Figure 1), the acute and chronic time frames were changed to match the ACWR. For all 158 

injury types, previous injury, match minutes and acute and chronic loads demonstrated significant 159 

effects on injury risk. For soft tissue injury, only previous injury demonstrated a significant effect.  160 

 161 

************************ INSERT FIGURE 2 HERE ****************************************** 162 

 163 

************************ INSERT TABLE 1 HERE ****************************************** 164 



 

 165 

************************ INSERT FIGURE 3 HERE ****************************************** 166 

 167 

Acute: chronic workload ratio and soft tissue non-contact injury 168 

Of the 192 comparisons made for soft tissue injuries, 60 (31%) were found to have significant findings 169 

(Figure 2B). The calculation with the best model fit according to AIC was the uncoupled rolling average 170 

3-to-14 day method (AIC: 5692), with a coupled EWMA 5-to-14 days ACWR representing the highest 171 

AUC (0.64). An uncoupled EWMA ACWR demonstrated the largest number of significant findings 172 

(65%). This method also showed the greatest support for a “sweet spot” (75%) (Figure 4).  173 

 174 

************************ INSERT TABLE 2 HERE ****************************************** 175 

 176 

************************ INSERT FIGURE 4 HERE ****************************************** 177 

 178 

Discussion: 179 

 180 

Training load monitoring has grown exponentially in recent years, with the ACWR being a widely 181 

adopted method of aggregating the data to inform decision making on injury risk [1]. However, recent 182 

evidence suggests that this metric may not be valid for undertaking such analysis, with a number of 183 

papers questioning its utility [8,9,12,13]. The current study, which includes ~130,000 training load 184 

values and ~1700 injuries, has demonstrated the substantial variation that exists between the method 185 

used to calculate ACWR and injury risk outcomes. For all injury types, the calculation method 186 

producing the highest AUC in this setting was a coupled EWMA 3-to-14 ACWR (AUC: 0.69), whilst 187 

for soft tissue injuries it was a coupled EWMA 5-to-14 ACWR (AUC: 0.64). Of the 192 comparisons 188 

undertaken for all injury types, 77 (40%) were statistically significant, while 60/192 (31%) of the 189 

comparisons for soft tissue injuries were statistically significant. Despite the large number of significant 190 

findings, there was no consistent manner through which the ACWR was associated with injury risk. 191 

One of the most commonly cited findings in this field of work (an ACWR “Sweet Spot) was supported 192 

using some ACWR calculation methods, however, a substantial number of the methods displayed no 193 

such relationships. 194 

 195 

Associations between the ACWR and Injury risk 196 

The most widely used method for calculating ACWR in previous studies has been a coupled rolling 7-197 

to-28 day ACWR [2]. For both all injury types and soft tissue injuries, this study supported this finding 198 

with at least one significant result (e.g. Table S5). While these findings support previous work, several 199 

other methods of calculation demonstrate significant findings, while others show no association at all. 200 

Of the 192 possible comparisons for each injury type, only 40% (all injury) and 31% (soft tissue injury) 201 



 

demonstrated significant findings, which is higher than those reported in youth soccer in a similar 202 

analysis (19%:[13]) and is likely a result of a bigger sample size. Although 40% and 31% of calculation 203 

methods produced significant findings, the apparent random nature by which these were distributed 204 

across calculation methods do not allow us to identify any methods (time frames, averaging methods 205 

or coupling methods) which consistently produce a clear outcome. This apparently random distribution 206 

of significant associations between ACWR and injury make implementing one method to manage injury 207 

risk very difficult to support.  208 

 209 

In accordance with previous work [2,41], the EWMA method of averaging data was more likely to find 210 

a significant finding than the rolling average equivalent in all cases (Figure 3&4). In the case of all 211 

injury types, coupled loads demonstrated a higher proportion of significant findings (Figure 3), however 212 

with soft tissue injuries, given the high proportion of EWMA uncoupled values producing significant 213 

effects (65%: Figure 4), uncoupled load showed a higher number of significant findings. Given the 214 

work of Lolli et al. [7] questioning whether the correlation between the ACWR and injury when using 215 

coupled loads is spurious, the findings of this study appear to support this spurious relationship, with 216 

inconsistent links between different calculation methods and injury risk. Based on the inconsistencies 217 

in finding significant results demonstrated by the current study, this study of league wide data 218 

accentuates the apparent randomness of associations between the ACWR and injury [12]. This further 219 

questions whether this metric adds any value above examining acute and chronic loads in isolation, 220 

which provide similar information without the use of ratios, which have previously been shown as 221 

problematic [9,12].  222 

 223 

ACWR Sweet Spot and Injury  224 

The concept of an ACWR “sweet spot”, whereby injury risk is highest when you have a low (<0.8) or 225 

high (>1.3) ACWR value, was first introduced in 2016 [1]. Since then, several others have reported 226 

sweet spots, however with differing sweet spot values in each case [38,42,43], with subsequent 227 

questions as to whether demonstration of a sweet spot is a robust concept or a methodological artefact. 228 

In this study, of the 64 different calculation methods assessed, only 15 (23%) showed a significant 229 

ACWR “sweet spot” for all injury risk and 18 (28%) for soft tissue injuries. As such, in 77% (all injury) 230 

and 72% (soft tissue injury) of cases no such finding was apparent. When specifically considering 231 

analysis using a 7-to-28 day acute and chronic period, a greater number (6/8) of methods resulted in a 232 

significant finding, but even here none of the  calculations reached an AUC of 0.70 which is described 233 

as “acceptable” level of discrimination [44].  234 

 235 

Why do we see such variation? 236 

This is not the first study to demonstrate differences in the association between the ACWR calculation 237 

method and injury risk [6,12,13,41]. There are several reasons as to why this variation may exist. In the 238 



 

current literature, no clear causal link between training load and injury risk has been established, given 239 

the inability of observational cohort studies to infer causation. One theory reports the accumulation of 240 

fatigue and consequential reduced stress bearing capacity of the tissue to be the link between the two 241 

[45]. However, in the context of this study, the accumulation of fatigue does not support the findings in 242 

which low ACWR values represent an increased risk [8]. The lack of  literature further limits our level 243 

of support for the method, with no study yet to employ a randomised control trial (RCT) study design. 244 

Even in the presence of an RCT, given the number of covariates that likely moderate training load and 245 

given the emerging evidence of the complexity of the interaction between those covariates in injury 246 

[46], isolating the effect of training load alone on injury risk is challenging.   247 

 248 

In the context of this study, the reasons for differences in injury risk depending on the calculation 249 

method may be a product of what is included in each of those time periods. Previously, it has been 250 

shown that training scheduling confounds the ACWR-injury relationship [47] and therefore in this study 251 

when comparing different time periods, the difference in match and training load between the lowest 252 

and highest periods is substantial. However, there do not appear to be any time periods which 253 

demonstrate consistent associations with injury, again supporting the random nature of interactions 254 

between ACWR and injury as opposed to a link between the content of that time period and injury risk.  255 

 256 

Finally, there is growing evidence that the use of a ratio adds little more than noise to the use of either 257 

variable alone [12], which in isolation are sufficient in understanding an athlete’s training status. The 258 

evidence suggesting the limited utility of the ACWR have demonstrated that this may be a product of 259 

spurious correlation due to mathematical coupling [7]. Furthermore, it has been proposed that the use 260 

of a ratio serves as a tool to simply rescale the acute load, which has been shown to increase the effect 261 

estimates and decrease the variance [12]. When considering the substantial variation caused by 262 

calculation methods in this, and other studies [13], the support for the use of the ACWR to monitor 263 

injury risk in rugby union is low. This, however, does not mean that training load is not important in 264 

managing injury risk and future studies should focus on other measures of load, which do not include a 265 

ratio.   266 

 267 

Limitations 268 

This study was conducted in a large group of 13 clubs over a 2-season period and therefore one of the 269 

limitations of this study is that only one measure of load was used; sRPE. This metric was chosen for 270 

its applicability across a number of training modalities and has also been reported as a valid and reliable 271 

internal load measure [48]. It therefore must be acknowledged that other measures of load (either 272 

internal or external) may display more consistent patterns, however in the context of the league-wide 273 

data capture in this study, sRPE was the most practical load measurement to be included. Similarly, 274 

although this study assessed and accounted for several contextual factors, when making decisions on 275 



 

injury risk in athletes, a broad range of factors must be considered as opposed to looking at any one 276 

training load metric [49,50]. A second limitation is the lack of a lag-period in the analysis, which has 277 

previously been reported as important as spikes in load can increase risk in injury for up to four weeks 278 

[15,51,52]. While it may be important to consider this, there is currently no consensus on the best 279 

methodological approach for doing so [32]. Furthermore, analysis of the relationship between training 280 

load and injury risk outcomes, was only undertaken on days on which the athlete was exposed to rugby 281 

(either match or training) [31]. 282 

 283 

Conclusion 284 

The inconsistency with which the ACWR is associated with injury indicates that results are largely 285 

driven by the methods chosen to calculate the ACWR, and not the ‘athlete preparedness’ construct it is 286 

purported to represent. As such, evidence for a causal relationship between the ACWR and injury risk 287 

is currently lacking. More advanced statistical approaches, such as machine learning, may help to 288 

elucidate the causal role of training load for injury risk in the future. For rugby union practitioners and 289 

in the absence of an alternative, the ACWR may currently be viewed as a simple heuristic to inform 290 

training progression, but one that should be considered alongside other established risk factors (i.e., 291 

match exposure, previous injury, and previous concussions) when managing injury risk.  292 

 293 

Figure Captions:  294 

 295 

Figure 1: Schematic representing the number of different ACWR calculation methods produced from 296 

each daily load variable. 297 

 298 
Figure 2: Heatmap outlining significance of each comparison (Low to Moderate, Moderate to High, 299 

Low to High) for each ACWR calculation method (as outlined in table 1). A represents outcomes for 300 

all injury types, B represents non-contact soft tissue injuries only.  Low= -1SD, Moderate= Mean 301 

ACWR, High= +1SD. EWMA=Exponentially Weighted Moving Average. 0.00 represents a value of 302 

<0.01. 303 

 304 
Figure 3: Summary of ACWR associations with all injury types.  305 

 306 
Figure 4: Summary of ACWR associations with soft tissue injury types.  307 

 308 
Table Captions: 309 

 310 

Table 1: Adjusted relative risk for all injury types after inclusion in multivariate model 311 

 312 
Table 2: Adjusted relative risk for soft tissue injuries after inclusion in multivariate model 313 



 

 314 
Supplementary Table Captions: 315 

 316 
Table S1: Model Fit, Injury Hazard and between group comparisons for all injuries, using a coupled 317 

rolling average method. Groups:  Low= -1 standard deviation of ACWR, Moderate= Mean ACWR 318 

score, High= +1 standard deviation of ACWR. Significant comparisons are highlighted in bold. 319 

 320 

Table S2: Model Fit, Injury Hazard and between group comparisons for all injuries, using a coupled 321 

exponentially weighted moving average method. Groups:  Low= -1 standard deviation of ACWR, 322 

Moderate= Mean ACWR score, High= +1 standard deviation of ACWR. Significant comparisons are 323 

highlighted in bold. 324 

 325 

Table S3: Model Fit, Injury Hazard and between group comparisons for all injuries, using a 326 

uncoupled rolling average method. Groups:  Low= -1 standard deviation of ACWR, Moderate= 327 

Mean ACWR score, High= +1 standard deviation of ACWR. Significant comparisons are highlighted 328 

in bold. 329 

 330 

Table S4: Model Fit, Injury Hazard and between group comparisons for all injuries, using a uncoupled 331 

exponentially weighted moving average method. Groups:  Low= -1 standard deviation of ACWR, 332 

Moderate= Mean ACWR score, High= +1 standard deviation of ACWR. Significant comparisons are 333 

highlighted in bold.  334 

 335 

Table S5: Model Fit, Injury Hazard and between group comparisons for soft tissue non-contact 336 

injuries, using a coupled rolling average method. Groups:  Low= -1 standard deviation of ACWR, 337 

Moderate= Mean ACWR score, High= +1 standard deviation of ACWR. Significant comparisons are 338 

highlighted in bold. 339 

 340 

Table S6: Model Fit, Injury Hazard and between group comparisons for soft tissue non-contact 341 

injuries, using a coupled exponentially weighted moving average method. Groups:  Low= -1 standard 342 

deviation of ACWR, Moderate= Mean ACWR score, High= +1 standard deviation of ACWR. 343 

Significant comparisons are highlighted in bold. 344 

 345 

Table S7: Model Fit, Injury Hazard and between group comparisons for soft tissue non-contact 346 

injuries, using a uncoupled rolling average method. Groups:  Low= -1 standard deviation of ACWR, 347 

Moderate= Mean ACWR score, High= +1 standard deviation of ACWR. Significant comparisons are 348 

highlighted in bold. 349 

 350 



 

Table S8: Model Fit, Injury Hazard and between group comparisons for soft tissue non-contact 351 

injuries, using a uncoupled exponentially weighted moving average method. Groups:  Low= -1 352 

standard deviation of ACWR, Moderate= Mean ACWR score, High= +1 standard deviation of ACWR. 353 

Significant comparisons are highlighted in bold.  354 

 355 

  356 



 

References 357 

 358 

1. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and 359 

harder? Br J Sports Med 2016; 50: 273-280 360 

2. Griffin A, Kenny IC, Comyns TM et al. The Association Between the Acute:Chronic Workload 361 

Ratio and Injury and its Application in Team Sport: A Systematic Review. Sports Med 2020 362 

50: 561-580 363 

3. Andrade R, Halvorsen Wik E, Rebelo-Marques A et al. Is the Acute:Chronic Workload Ratio 364 

(ACWR) Associated with Risk of Time-Loss Injury in Professional Sports Teams? A 365 

Systematic Review of Methodology, Variables and Injury Risk in Practical Situations. Sports 366 

Med 2020; 50: 1613-1635 367 

4. Hulin BT, Gabbett TJ, Blanch P et al. Spikes in acute workload are associated with increased 368 

injury risk in elite cricket fast bowlers. Br J Sports Med 2014; 48: 708-712.  369 

5. Menaspa P. Are rolling averages a good way to assess training load for injury prevention? Br J 370 

Sports Med. 2017; 51: 618-619 371 

6. Carey DL, Blanch P, Ong KL et al. Training loads and injury risk in Australian football-372 

differing acute: chronic workload ratios influence match injury risk. Br J Sports Med 2017; 51: 373 

1215-1220.  374 

7. Lolli L, Batterham AM, Hawkins R et al. Mathematical coupling causes spurious correlation 375 

within the conventional acute-to-chronic workload ratio calculations. Br J Sports Med 2019; 376 

53: 921-922 377 

8. Wang C, Vargas JT, Stokes T et al. Analyzing Activity and Injury: Lessons Learned from the 378 

Acute:Chronic Workload Ratio. Sports Med 2020; 50: 1243-1254 379 

9. Lolli L, Batterham AM, Hawkins R et al. The acute-to-chronic workload ratio: an inaccurate 380 

scaling index for an unnecessary normalisation process? Br J Sports Med 2018. 53. 1510-1512 381 

10. Impellizzeri FM, Woodcock S, McCall A et al. The acute-chronic workload ratio-injury 382 

figure and its 'sweet spot' are flawed. PreprintRxiv https://osf.io/preprints/sportrxiv/gs8yu/ 383 

11. Wang C, Vargas JT, Stokes T et al. The acute:chronic workload ratio: challenges and 384 

prospects for improvement. PreprintRxiv  385 

https://arxiv.org/ftp/arxiv/papers/1907/1907.05326.pdf;   386 

12. Impellizzeri FM, Woodcock S, Coutts AJ et al. Acute to random workload ratio is 'as' associated 387 

with injury as acute to actual chronic workload ratio: time to dismiss ACWR and its 388 

components. PreprintRxiv 2020. doi:10.31236/osf.io/e8kt4 389 

13. Dalen-Lorentsen T, Anderson TE, Bjorneboe J et al. A cherry tree ripe for picking: The 390 

relationship between the acute:chronic workload ratio and health problems. PreprintRxiv 2020. 391 

doi:10.31236/osf.io/nhqbx 392 

https://osf.io/preprints/sportrxiv/gs8yu/
https://arxiv.org/ftp/arxiv/papers/1907/1907.05326.pdf


 

14. Williams S, West S, Cross MJ et al. Better way to determine the acute:chronic workload ratio? 393 

Br J Sports Med 2017; 51; 209-210. 394 

15. Stares J, Dawson B, Peeling P et al. Identifying high risk loading conditions for in-season injury 395 

in elite Australian football players. J Sci Med Sport 2018; 21: 46-51 396 

16. Williams S, Trewartha G, Kemp S et al. A meta-analysis of injuries in senior men’s professional 397 

Rugby Union. Sports Med 2013; 43: 1043-1055 398 

17. Cross MJ, Williams S, Trewartha G et al. The Influence of In-Season Training Loads on Injury 399 

Risk in Professional Rugby Union. Int J Sports Phys Perf 2016; 11: 350-355 400 

18. Cousins BEW, Morris JG, Sunderland C et al. Match and Training Load Exposure and Time-401 

Loss Incidence in Elite Rugby Union Players. Front Physiol 2019; 10: 1-11 402 

19. Meeuwisse WH, Tyreman H, Hagel B et al. A dynamic model of etiology in sport injury: the 403 

recursive nature of risk and causation. Clin J Sports Med 2007; 17 (3): 215-219 404 

20. Williams S, Trewartha G, Kemp SPT et al. How Much Rugby is Too Much? A Seven-Season 405 

Prospective Cohort Study of Match Exposure and Injury Risk in Professional Rugby Union 406 

Players. Sports Med 2017; 47: 2395-2402 407 

21. Cross MJ, Kemp SPT, Smith A et al. Professional Rugby Union players have a 60% greater 408 

risk of time loss injury after concussion: a 2-season prospective study of clinical outcomes. Br 409 

J Sports Med 2015; 50: 926-931.  410 

22. Brooks JHM, Fuller CW, Kemp SPT et al. Epidemiology of injuries in English professional 411 

rugby union: part 1 match injuries. Br J Sports Med 2005; 39: 757-766 412 

23. Chalmers DJ, Samaranayaka A, Gulliver P et al. Risk factors for injury in rugby union football 413 

in New Zealand: a cohort study. Br J Sports Med 2012; 46: 95-102 414 

24. Harriss DJ, Macsween A, Atkinson G. Ethical Standards in Sport and Exercise Science 415 

Research: 2020 Update. Int J Sports Med 2019; 40: 813-817 416 

25. Fuller CW, Molloy MG, Bagate C et al. Consensus statement on injury definitions and data 417 

collection procedures for studies of injuries in rugby union. Clin J Sports Med 2007; 17: 177-418 

181 419 

26. Foster C, Florhaug JA, Franklin J et al. A new approach to monitoring exercise training. J 420 

Strength Cond Res 2001; 15: 109-115 421 

27. Sweet TW, Foster C, McGuigan MR et al. Quantification of resistance training using the 422 

session rating of perceived exertion method. J Strength Cond Res 2004; 18: 796-802 423 

28. Comyns T, Hannon A. Strength and Conditioning Coaches' Application of the Session Rating 424 

of Perceived Exertion Method of Monitoring within Professional Rugby Union. J Hum Kinet 425 

2018; 23: 155-166 426 

29. Borg G, Hassmen P, Lagerstrom M. Perceived exertion related to heart rate and blood lactate 427 

during arm and leg exercise. Eur J Appl Physiol 1987; 56: 679-685 428 



 

30. Carey DL, Crossley KM, Whiteley R et al. Modelling Training Loads and Injuries: The Dangers 429 

of Discretization. Med Sci Sports Exerc 2018; 50: 2267-2276 430 

31. Thornton HR, Delaney JA, Duthie GM et al. Importance of Various Training-Load Measures 431 

in Injury Incidence of Professional Rugby League Athletes. Int J Sports Phys Perf 2017; 12: 432 

819-824 433 

32. Esmaeili A, Hopkins WG, Stewart AM et al. The individual and combined effects of multiple 434 

factors on the risk of soft tissue non-contact injuries in elite team sports athletes. Front Physiol 435 

2018; 9:1280 436 

33. Newbold T. Package "StatisticalModels". In. github.com; 2019 437 

34. Williams S, Trewartha G, Cross MJ et al. Monitoring What Matters: A Systematic Process for 438 

Selecting Training-Load Measures. Int J Sports Phys Perf 2017; 12: 101-106 439 

35. Kutner MH, Nachtsheim C, Neter J. Applied Linear Regression Models. New York, USA; 2004 440 

36. Windt J, Gabbett TJ. Is it all for naught? What does mathematical coupling mean for 441 

acute:chronic workload ratios? Br J Sports Med 2018; 53: 988-990 442 

37. Bates D, Bolker B, Walker S et al. Package "lme4". In: Bolker B ed. CRAN; 2018 443 

38. Colby MJ, Dawson B, Peeling P et al. Multivariate modelling of subjective and objective 444 

monitoring data improve the detection of non-contact injury risk in elite Australian footballers. 445 

J Sci Med Sport 2017; 20: 1068-1074 446 

39. Hopkins WG, Marshall SW, Batterham AM et al. Progressive statistics for studies in sports 447 

medicine and exercise science. Med Sci Sports Ex 2009; 41: 3-12 448 

40. Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports 449 

Phys Perf 2006; 1: 50-57 450 

41. Murray NB, Gabbett TJ, Townshend AD et al. Calculating acute:chronic workload ratios using 451 

exponentially weighted moving averages provides a more sensitive indicator of injury 452 

likelihood than rolling averages. Br J Sports Med 2017; 51: 749-754 453 

42. Malone S, Owen A, Newton M et al. The acute:chronic workload ratio in relation to injury risk 454 

in professional soccer. J Sci Med Sport 2017; 20: 561-565 455 

43. Weiss KJ, Allen SV, McGuigan MR et al. The Relationship Between Training Load and Injury 456 

in Men's Professional Basketball. Int J Sports Phys Perf 2017; 12: 1238-1242 457 

44. Hosmer DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression. 3rd. Aufl. New 458 

Jersey, United States of America: John Wiley & Sons, Inc.; 2013 459 

45. Kumar S. Theories of musculoskeletal injury causation. Ergonomics 2001; 44: 17-47 460 

46. Bittencourt NFN, Meeuwisse WH, Mendonca LD et al. Complex systems approach for sports 461 

injuries: moving from risk factor identification to injury pattern recognition-narrative review 462 

and new concept. Br J Sports Med 2016; 50: 1309-1314 463 



 

47. Bornn L, Ward P, Norman D. Training Schedule Confounds the Relationship between 464 

Acute:Chronic Workload Ratio and Injury: A Casual Analysis in Professional Soccer and 465 

American Football. 13th Annual MIT Sloan Sports Analytics Conference; 2019; Boston, MA 466 

48. Haddad M, Stylianides G, Djaoui L et al. Session-RPE Method for Training Load Monitoring: 467 

Validity, Ecological Usefulness, and Influencing Factors. Front Neurosci 2017; 11: 612 468 

49. Boullosa D, Casado A, Claudino JG et al. Do you Play or Do you Train? Insights from 469 

Individual Sports for Training Load and Injury Risk Management in Team Sports Based on 470 

Individualization. Front Physiol 2020; Online First. 471 

doi:https://doi.org/10.3389/fphys.2020.00995 472 

50. West SW, Clubb J, Torres-Ronda L et al. More than a metric: How Training Load is Used in 473 

Elite Sport for Athlete Management. Int J Sports Med 2020; Online First. doi:10.1055/a-1268-474 

8791 475 

51. Orchard JW, James T, Portus M et al. Fast bowlers in cricket demonstrate up to 3- to 4-week 476 

delay between high workloads and increased risk of injury. Am J Sports Med 2009; 37: 1186-477 

1192 478 

52. Drew MK, Finch CF. The Relationship Between Training Load and Injury, Illness and 479 

Soreness: A Systematic and Literature Review. Sports Med 2016; 46: 861-883 480 

481 

https://doi.org/10.3389/fphys.2020.00995


 

482 



 

 483 


