
        

Citation for published version:
Gokalp, E 2020, 'Robust capacity planning for accident and emergency services', RAIRO - Operations
Research, vol. 54, no. 6, pp. 1757-1773. https://doi.org/10.1051/ro/2019112

DOI:
10.1051/ro/2019112

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication

(C) EDP Sciences, 2020.  The original
publication is available at https://www.rairo-ro.org/articles/ro/abs/2020/06/ro190295/ro190295.html

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jan. 2022

https://doi.org/10.1051/ro/2019112
https://doi.org/10.1051/ro/2019112
https://researchportal.bath.ac.uk/en/publications/robust-capacity-planning-for-accident-and-emergency-services(565eee2c-96a9-4da1-a73f-a7e20e4c2e78).html


RAIRO-Oper. Res. 54 (2020) 1757–1773 RAIRO Operations Research
https://doi.org/10.1051/ro/2019112 www.rairo-ro.org

ROBUST CAPACITY PLANNING FOR ACCIDENT AND EMERGENCY
SERVICES

Elvan Gökalp∗

Abstract. Accident and emergency departments (A&E) are the first place of contact for urgent
and complex patients. These departments are subject to uncertainties due to the unplanned patient
arrivals. After arrival to an A&E, patients are categorized by a triage nurse based on the urgency.
The performance of an A&E is measured based on the number of patients waiting for more than a
certain time to be treated. Due to the uncertainties affecting the patient flow, finding the optimum
staff capacities while ensuring the performance targets is a complex problem. This paper proposes a
robust-optimization based approximation for the patient waiting times in an A&E. We also develop
a simulation optimization heuristic to solve this capacity planning problem. The performance of the
approximation approach is then compared with that of the simulation optimization heuristic. Finally,
the impact of model parameters on the performances of two approaches is investigated. The experiments
show that the proposed approximation results in good enough solutions.
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1. Introduction

Healthcare is one of the largest sectors affecting millions of lives worldwide. The aging phenomenon, increased
rates of long-term conditions and public access to the healthcare generated a dramatic growth in the demand
[37]. On the other hand, the capacity has not risen sufficiently to match this growth due to the inflexibility
and scarcity of resources. Inevitably, the healthcare managers are under a significant pressure to improve the
existing capacity and resource allocation policies. The pressure for an efficient service is accompanied by the
challenges inherited from the nature of the healthcare services. The most important one of these challenges is
the variation in the demand and the time required to treat patients. These uncertainties result in long waiting
times to receive the service in the peak demand sessions. The delays in the treatment risk the patient lives, and
thus, should be avoided.

The service delays is especially critical on the patient outcomes in accident and emergency departments
(A&E). This unit is the first point of contact for most of the complex and life-threating cases such as heart
attack, stroke or loss of consciousness. Along with the overall increase in healthcare service demand, emergency
unit arrivals have risen by 28% between 2002 and 2017 in England [44]. To improve the efficiency in A&E’s,
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the UK government has introduced the 4 h policy in 2004, requiring all patients in A&E to be treated within
4 h of their arrival. The target has been then reduced to 98% of patients in 2005 [42] and further to 95% in
2010 because the national levels fell below the previous targets [44]. In February 2018, the 4 h target has been
suspended [45] after the national levels gradually fell to 83%. Although the financial sanctions are suspended,
the hospitals are still obliged to report their A&E waiting times.

The UK government is planning to put alternative measures for emergency waiting times such as tighter
waiting hour targets for serious cases [57]. In an A&E, the severity of cases are initially assessed by a triage
nurse who also categorizes them. While urgent patients are prioritized to receive the main treatment, rest of
the patients are served based on the first-come first-served (FCFS) policy. Although prioritization improves
the patient outcomes, the levels of the human and physical resources have a significant effect on the waiting
times. The physical resources such as the number of cubicles where the triage and treatment takes place in A&E
cannot be changed much. On the other hand, the level of human resources i.e. triage nurses and doctors is a
tactical decision and easier to adjust based on the long-term demand projections.

A significant challenge for A&E resource planning is the daily and seasonal variation in the demand. Besides,
the time required to treat patients vary significantly; the urgent cases take significantly more time than the
non-urgent ones. These variations result in very long waiting times in the high-demand sessions. Finding the
optimum staffing capacity to reduce these worst-case waiting times is a difficult problem due to the uncertainties.
Additionally, the uncertainty in arrival and waiting times may not follow a known distribution and therefore the
underlying assumptions for classical (queuing) approaches are violated. This paper proposes a novel approach
based on robust optimization and queuing theory to find the optimum staffing capacities in an A&E to keep the
worst-case waiting times below a certain threshold. The proposed approach does not require any assumption
regarding the distribution of uncertainties. The contributions of the paper are:

(1) The healthcare service in A&E is modelled using an approximation for the maximum waiting times combining
the robust optimization and queuing theory, assuming that the arrival and service times can follow any
distribution, and separating queues for urgent and non-urgent cases with prioritization. The results show
that the resulting model can be solved to optimality.

(2) As a benchmark to the proposed optimization approach, we also implement a simulation optimization (SO)
based heuristic to find the optimum staff capacities. The performances of the solutions obtained by the
optimization model and the SO based heuristic are then compared. The impact of different model parameters
on the solutions are also investigated.

The paper is organized as follows. The next section introduces the literature related to capacity planning
problems in healthcare and accident and emergency department modelling. Section 3 provides the problem
description and underlying assumptions along with the optimization model formulation. Section 4 presents the
worst-case waiting time approximation and the structural analysis of the optimization model. Section 5 details
the proposed SO heuristic. In Section 6, we introduce the design of experiments and results. Finally, Section 7
summarizes the study and provide several future directions.

2. Related literature

This section presents the related literature to capacity planning problem for A&E. First, we provide an
overview of the capacity planning studies in healthcare. Then, we only focus on the A&E modelling and cate-
gorize the literature based on the modelling and solution techniques.

2.1. Capacity planning in healthcare

Queuing theory, a modelling approach to obtain performance measures in queuing systems, has been widely
applied for the capacity planning of healthcare services; a related review can be found in [21]. Creemers et al. [16]
use built-in queuing formulas to find the number of servers, i.e. capacity level, required to achieve a certain degree
of performance. Hulshof et al. [32] use the queuing theory to model the elective patient admission process and
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study the resource allocation problem for hospitals with uncertain treatment pathways. They consider different
queues for different types of services with time-dependent capacity levels of resources. Similarly, Cochran et al.
[13] apply the queuing theory to test various capacity design alternatives to be used in real time Hospital
Emergency Departments when the capacity cannot meet the demand. Bretthauer et al. [10] consider the capacity
planning problem for healthcare operations with blocking between different units. Castillo et al. [11] determine
capacity and location of healthcare facilities using queuing models with exponential service times and Poisson
arrivals. By considering time-varying demands in hospitals, Green et al. [26] analyze the staffing requirement
in hospitals based on queuing analysis. Mingzhu [40] develops a queuing network analysis considering multiple
patient types to find optimum number of servers in an outpatient clinic. The main drawback of queuing models
comes from their intractability due to nonlinear formulations of performance metrics under certain distribution
assumptions for arrival and service processes.

Simulation is an alternative approach to model the service systems when the queuing formulations are not
useful due to their complexities. Harper et al. [30] introduce a discrete-event simulation model to analyze the
operations management of an intensive care unit and use the data generated by the simulation approach to
solve the stochastic optimization model which computes the optimum number of nurses required to achieve
the service targets. De Angelis et al. [17] consider SO to determine the capacity of a transfusion centre under
multiple objectives: cost minimization to achieve a fixed waiting time and minimization of waiting time under a
limited budget. The queuing system is modelled with a discrete-event simulation and the objective functions are
approximated by function fitting with data generated by the simulation model. Similarly, Alfonso et al. [2] model
processes in a blood collection unit with a simulation-based approach. They evaluate possible blood-collection
server configurations from a cost-effectiveness perspective. Although simulation is very useful to model complex
systems, it can only provide approximate solutions that are affected by the bias of data generation.

Optimization models in healthcare capacity planning focus not only on single hospital or department but
also the interconnection between departments and hospitals, which usually has significant effects on the overall
performance. Several studies focus on this interconnection in different capacity planning problems modelled for
networks of hospitals or departments [4, 5, 19, 24, 25, 28, 38, 50, 54–56]. Flessa [19] develops a model to allocate
resources in the preventive and curative services in hospitals. Govind et al., Gunes et al., Santibanez et al. and
Stummer et al. [25,28,54,55] focus on the location and number of beds in hospitals within a network to minimize
operation cost and maximize patient utility.

Pehlivan et al. [50] develop a mixed-integer optimization model to determine the capacity of maternity
facilities in a network in view of uncertain patient arrivals and service times. The objective is to minimize
the number of refused admissions which is formulated by using available queuing formulations. They assume
the interarrival and service times are exponentially distributed. On the other hand, Asaduzzaman et al. [5]
develop a queuing model to find the optimum capacities of neonatal centres to minimize refusal and overflow
probabilities. They also assume exponential interarrival and service times. To the best of our knowledge, the
proposed approximation in this paper has not been utilized before for a capacity planning problem.

2.2. Accident and emergency modelling

Simulation modelling and optimization

Mohiuddin et al. [41] identify and review 19 studies related to simulation modelling for emergency departments
in the UK. Another comprehensive review of simulation modelling studies in emergency departments for normal
and disaster conditions can be found in Gul et al. [27]. Among 106 reviewed papers, only few studies consider an
optimization approach [1,18,22,51,59]. Fruggiero et al. [22] uses ant-colony optimization along with a simulation
model to optimize the resources in an emergency department. Weng et al. [59], Ibrahim et al. [33] and Rico
et al. [51] use OptQuest, a SO engine [49], to optimize nurse and physician numbers and nurse allocation in
an influenza outbreak, respectively. Ghanes et al. [23] also uses SO to find the staffing levels in A&E with the
objective of minimizing the patient length of stay. Chen and Wang [12] aim to find optimum number of staffing
in A&E minimizing patient length of stay and the medical resources wasted by SO.
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The most similar study to ours is Ahmed et al. [1] which presents a SO approach for capacity planning of an
emergency department in Kuwait. They consider triage and a prioritized service queue. They consider stochastic
constraints in a discrete SO problem maximizing the throughput. They also model and solve the optimization
problem where the objective function is total cost of the staff and the constraints are the waiting times. This
second problem description is very similar to ours. Their heuristic first identifies the feasible set of solutions
and then finds the best solution among those based on random sampling. In each iteration, they compare the
objective value of the new solution to the previous one and accept the new one if it supersedes in certain number
of iterations. However, they have not provided any performance results for their heuristic results.

Mathematical modelling and queuing theory

Queuing theory has been mostly been applied into staff and bed optimization, ambulance deployment prob-
lems; for a detailed review, readers are referred to [36]. Emergency departments are also modelled by queuing
theory [60]. Reviews of modelling and queuing theory studies for A&E can be found in Saghafian et al. [53],
Costa et al. [15] and Hu et al. [31]. These papers have considered the average instead of maximum waiting times.
Few papers model separate queues based on patients’ severity [13]. For example, Cochran and Roche [13] develop
a queuing network model for an A&E that uses separate queues for low and high acuity patients. Optimum
capacity (either in terms of staff or waiting area limit) for each step of patient flow in A&E is computed. They
use an approximate waiting time formulation [3] and target waiting times and utilization rates of each step to
set up the capacities assuming that the arrival times are exponentially distributed.

Mayhew et al. [39] develop a queuing model for A&E department assuming that the arrivals and service
times are exponentially distributed. They have divided the arrivals into two and added a triage step before the
treatment. They have compared the predicted overall departure time from A&E with the real departure times
in A&E’s obtained from the NHS UK. They have used the model to test whether the 4 h target is achievable if
part of the A&E service is carried in other units. They have not carried optimization or capacity planning.

3. Capacity planning model for A&E

This section first describes the underlying problem and our assumptions and then introduces the mathematical
formulation.

3.1. Problem description and assumptions

We model the activities in a typical (major) A&E department in the UK [48] for a finite planning horizon.
With small modifications, the model can be applied to any other emergency department. As a patient arrives
to the A&E, s/he is put into an FCFS queue for triage. A triage nurse categorizes the patient as discharge, a
type 1 (urgent) or type 2 (non-urgent) based on the medical assessment. Note that we do not model specific
triage categories which may be more than 2. Instead, we only divide them based on whether the patient is
urgent or not, as in Ahmed et al. [1]. Type 1 and 2 patients are placed into two separate FCFS queues for the
treatment. Type 1 patients are given priority for treatment. After the patients are treated by an A&E doctor,
they are either discharged, referred or admitted to the hospital. The time spent in the A&E from arrival until
the disposal (discharge, referral or admission) should be less than 4 h for all patients. We assume that other
medical activities required for the treatment such as laboratory tests are included in the treatment duration.
Also note that we do not consider the single specialty cases such as opthalmology or dental. These patients go
through a separate route than the other two categories in A&E [45] and constitute a small percentage (0.5%)
of the 4 h breaches.

The uncertainties affecting the waiting times are the arrival times, the triage and treatment durations.
Although arrival times can follow an exponential distribution, there is no consensus in the literature about the
service time distributions in A&E; triangular [20], general [34], exponential [53] and uniform [1] distributions
are used to model the A&E treatment duration.
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The hospital management aims to find the staff capacities with minimum cost while satisfying the waiting time
targets. One intuitive approach for this capacity planning problem would be to allocate resources proportionate
to the demand rates for each service. However, that method would not match the actual workloads. The actual
congestion peak times lag the arrival times as the number of service stations as in the A&E increases [34].
The approximation and heuristic approaches provided in this paper use queuing model to estimate the actual
workloads, and thus provide a better performance than simple allocation of resources based on the demand
rates [34].

Note that the arrival rates to an A&E can vary based on the time of the day. Here, we only consider a stable
arrival rate. In other words, we approximate the varying arrival rate with its average value. The reason for this
assumption is that the model can be easily extended to time-dependent arrival rates, by simply adding time
indices to the arrival rates. In such a case, one would find the staff capacities for each time period. This can easily
be done by following our approach seperately for each time period. In other words, extension to time-dependent
arrival rates would not affect the model complexity or structure and thus the main objectives of this paper.

Another modelling choice is related to the “boarding”. This term refers to the cases where after medical
treatment is completed, the patient may need to wait for a bed in the hospital (if admitted). This may create
additional delay on the patient’s length of stay. However, since A&E beds are highly utilized and expensive
resources, some hospitals put these admitted patients into “buffer” wards such as Critical Decision Units [43].
Besides, the “boarding” process would require us to model all the bed utilization in all wards of the hospital
which is beyond the scope of this paper.

3.2. Problem formulation

This section provides a mathematical formulation for the capacity planning problem described above. The
number of nurses in the triage is denoted by x1. The fixed (unit) cost of triage nurses and doctors are shown
with c1 and c2, respectively. We assume that the patients arrive to the A&E with the mean interarrival time
1/λ and standard deviation σ. After registration, they wait in the triage queue and assessed by a triage nurse
under the FCFS rule. The mean triage time is 1/µ with standard deviation σ1. Maximum total time spent in
the triage by any patient arrived during the planning horizon is W1(x1). A certain percentage, θ, of the patients
are discharged after triage. The others are categorized as type 1 or type 2 each of which has a separate queue
for treatment. The rate of type 1 patients among whole arrivals is α. Patients wait in the treatment queues
until they are seen by one of x2 number of A&E doctors. Type 1 cases have the priority over type 2 and the
queue is preemptive: the treatment of a type 2 case is stopped when a type 1 arrival occurs at the same time.
The average treatment time for type 1 and type 2 are 1/µ12 and 1/µ22 with standard deviations σ12 and σ22,
respectively.

The hospital management aims to keep the total time spent in the A&E below W . Due to the uncertainty in
the arrival and service times, the waiting times experienced by the patients vary. Therefore, the model should be
robust against the uncertainties in the arrival and service times. We denote the maximum time spent between
triage and treatment as W12(x2) and W22(x2) for types 1 and 2 patients, respectively. An approximation for
the maximum time spent in the A&E can be written as:

W1(x1) +W12(x2) + 1/µ+ 1/µ12,

and
W1(x1) +W22(x2) + 1/µ+ 1/µ22,

for types 1 and 2 patients, respectively. Figure 1 shows a summary of the A&E operations along with the
notation used in the model.

For a stable queue, the utilization rate (traffic intensity) should be smaller than 1 [35];
λ

x1µ
< 1 for the triage

queue. In other words, the total service rate (x1µ) should be larger than the total arrival rate (λ) such that the
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Figure 1. A description of the A&E service along with the notation used.

queue does not grow exponentially. This condition should be satisfied for the treatment queues as well,

x2 > λ12/µ12, x2 > λ22/µ22,

where λ12 and λ22 represent the arrival rates to the treatment queues of type 1 and type 2 patients, respectively.
The stochastic capacity planning model for the A&E can be formulated as follows:

AE : min c1x1 + c2x2, (3.1)
s.t. W ≥W1(x1) +W12(x2) + 1/µ+ 1/µ12, (3.2)

W ≥W1(x1) +W22(x2) + 1/µ+ 1/µ22 (3.3)
x1 > λ/µ, (3.4)
x2 > λ12/µ12, (3.5)
x2 > (λ12 + λ22)/µ22, (3.6)
x1, x2 ∈ Z+. (3.7)

As mentioned before, the government is planning to put waiting time targets for serious (type 1) patients only.
Assuming that this policy is activated, the problem would be then modelled as:

AEred : min c1x1 + c2x2,

s.t. (3.2), (3.4), (3.5), (3.7).

In the case of extension to a time-dependent arrival rate with λ12(t) and λ22(t), the model variables would be
differentiated for each time period, e.g. x1(t) and x2(t), while the rest of the model would stay same. Since that
extension does not affect the model, we continue with time-independent version in the rest of the paper.

In order to solve these models, we need to compute the waiting times for each patient arriving to the A&E.
The exact computation of the waiting times in each scenario is difficult even with a fixed number of staff. The
computational intractability due to combinatorial number of calculations has already been proven for a queuing



ROBUST CAPACITY PLANNING 1763

system of multiple servers with exponential arrivals and general service time distribution as in Tijms et al.
[58]. The next section approximates the maximum waiting times by using robust optimization principles and
provides a tractable approximate model.

4. Approximation with robust optimization

This section presents an approximation for the maximum waiting times in the A&E. Different approaches exist
to approximate the maximum waiting time in a queuing system; for instance, see Gupta et al. [29]. However,
these approximations usually do not lead to realistic results when the arrival process follows a distribution
different from Poisson [7]. As an alternative approach, Bandi and Bertsimas [7] proposed to approximate the
maximum waiting time in an FCFS queue when the arrival and service times follow an unknown distribution.
Their approach is based on developing uncertainty sets for the uncertain arrival and service durations based
on historical data. They used the central limit theorem which asserts the asymptotic results for a large set of
independent and identically distributed random variables. Readers are referred to [7] for more details regarding
the approximation. According to Bandi and Bertsimas [7], the maximum waiting time in an FCFS queue with
x1 servers W (x1), arrival and service rates λ and µ, arrival and service time variabilities Γa and Γs can be
approximated as,

W (x1) =
λ(Γa + Γs/

√
x1)2

4
[
1− λ/(µx1)

] · (4.1)

The arrival and service time variabilities are set based on the desired conservativeness level. For example, they
can be set as double or three times of the standard deviation of the corresponding uncertain parameter to cover
most of the possible realizations.

We use (4.1) to approximate the maximum waiting times in the A&E. The variability in the arrival times to
the A&E is denoted by Γa and the variabilities in triage duration and treatment duration for type 1 and type
2 patients are denoted by Γs,Γs12,Γ

s
22, respectively. Based on [7], we set Γa = k · σa and Γs = k · σs with k > 0,

where σa and σs are the standard deviations of the corresponding interarrival and service times, respectively.
The parameter k is set based on the desired conservativeness level of the model: a larger k corresponds to a more
conservative model against the uncertainties in the arrival and service times. We present the effect of different
conservativeness levels on the results in Section 6.2. We approximate the maximum waiting times in the triage
and type 1 treatment queues as follows:

W 1(x1) =
λ(Γa + Γs/

√
x1)2

4
[
1− λ/(µx1)

] , (4.2)

W 12(x2) =
λ12(Γa12 + Γs12/

√
x2)2

4
[
1− λ12/(µ12x2)

] · (4.3)

Note that the computation of the waiting times of type 2 patients is more complicated. A type 2 patient in
the treatment queue is always served after all existing type 1 patients are served. This would imply that type 2
patients always wait more than a type 1 patient. In the worst case, a type 2 patient would wait for the maximum
waiting time for a type 1 patient in addition to the maximum waiting time in type 2 treatment queue. Then,
an approximation for the maximum type 2 patient waiting time can be formulated as:

W 22(x2) =
λ22(Γa22 + Γs22/

√
x2)2

4
[
1− λ22)/(µ22x2)

] +W 21(x2). (4.4)

The model AE and AEred, respectively, can be reformulated as:
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AErob : min c1x1 + c2x2,

s.t. W ≥ 1
µ

+
1
µ12

+W 1(x1) +W 12(x2), (4.5)

W ≥ 1
µ

+
1
µ22

+W 1(x1) +W 22(x2), (4.6)

(3.4), (3.5), (3.6), (3.7).
AEred

rob : min c1x1 + c2x2,

s.t. (4.5), (3.4), (3.5), (3.7)

which have linear objective functions and non-linear constraints. The next proposition states that the relaxed
version of AErob has a convex feasible set. The same proposition and proof apply to AEred

rob. Therefore, both
models have global optimums [9].

Proposition 4.1. For relaxed variables x1, x2 ∈ R+, the model AErob has a convex feasible set.

Proof. Let’s first show the convexity of constraint (4.5). Let’s define f(x1, x2) = W 1(x1) + W 12(x2). For a

multi-variate function to be convex, its Hessian matrix should be a positive semi-definite matrix. Let H =
[
a b
b c

]
denote the Hessian matrix of function f(x1, x2), where its second order derivatives are denoted by a, b and c.
For the function to be convex, all principal minors, a, c, (ac−b2), should be non-negative. Note that b = ∂2f(x,α)

∂x∂α
is always zero, because function f(x1, x2) can be divided into two separate functions of variables x1 and x2.
Therefore, it is enough to show that a = ∂2f(x1,x2)

∂x2
1

and c = ∂2f(x1,x2)
∂x2

2
are non-negative. These derivatives can

be written as:

a =
∂2W 1(x1)

∂x2
1

, c =
∂2W 12(x2)

∂x2
2

,

due to the separability of the maximum waiting time functions. We arrive the formulation of the second order
derivative a after some intermediate calculations as:

a =
ΓaΓs

(
−m2 + 6my2 + 3y4

)
+ 4y3

(
m(Γa)2 + (Γs)2

)
2y3(y2 −m)3

,

where y =
√
x1, and, m = λ/µ. The denominator of a is always positive due to the traffic intensity condition

µx1 > λ. The absolute of the only negative term in the nominator, −m2ΓaΓs, is always smaller than the second
term of the nominator 6mΓaΓsy2 because m < 1 and x1 ≥ 1. Therefore, the second order derivative a is always
positive. We omit the computations for c that follows the same structure as a. Since all principal minors of
H are non-negative, f(x1, x2) is convex. The second constraint (4.6) possesses the same structure, and is also
convex. Note that all other constraints, (3.4)–(3.6) are also convex. Because all constraints are convex, the
relaxed version of model AErob has a convex feasible set. �

Since the relaxed version of AErob is a convex optimization problem with a global optimum, convex non-
linear optimization solvers such as Bonmin [14] can find the global optimum solution efficiently following Bonami
et al. [8].

5. Simulation optimization heuristic

The models AE and AEred are non-linear integer programming models that are very difficult to solve with
traditional optimization techniques. A possible solution approach for these models is SO that is based on
simulating alternative solutions and comparing the simulated objective function values. An intuitive method
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for SO is to first enumerate all feasible solutions and simulate their performances. However, this method would
require a long computation time, and therefore, more clever search strategies are needed. Our literature review
shows that most of the SO studies employ built-in optimization packages within a commercial simulation
modelling software such as OptQuest in Simul8.

To investigate the performance of the worst-case approximation and optimization approach presented in
Section 4, we also design and implement an SO heuristic as a benchmark solution method. The performances
of this heuristic and the optimization via a commercial non-linear integer solver are then compared.

Other than the stochastic waiting time constraints, our model has a set of deterministic constraints related to
traffic intensity (3.7) and a monotonic objective function. Therefore, we do not need to search for the optimum
solution randomly as in Ahmed et al. [1]; we can start the search from the smallest capacities satisfying the traffic
intensity constraints and increase these capacities incrementally until the stochastic constraints are satisfied with
a certain confidence rate.

For this purpose, we first develop a simulation model of the A&E operations described in Section 3.1 and
implement it on Matlab. The planning period of the simulation is set to T minutes, while the time unit is one
minute. One iteration of the simulation model comprises of j runs of n scenarios. In each iteration, the SO
heuristic searches for a better solution based on the simulation outputs. Starting from the minimum possible
levels of the capacity variables (satisfying the traffic intensity constraints), in each iteration, we increment the
capacity variable that has the largest potential to decrease the maximum waiting times. To identify the variable
with the largest potential improvement, we use the approximate maximum waiting time formulation (4.1). Note
that the objective function (total cost) increases by c1 and c2 with one unit increase in x1 and x2, respectively.
In other words, increasing x2 by one would result in the same change in the objective value as increasing x1 by
c2/c1. Therefore, the potential improvements in the maximum waiting times should be computed for x1 + c and
x2 + 1, respectively, where c = dc2/c1e due to the integrality condition. The capacity variable with the largest
potential improvement is incremented by one and the simulation model is run for another iteration. In each
iteration, if (1− ε)% of the patients’ total waiting time is lower than W , where ε is the the desired confidence
level, e.g. 1%, then the heuristic stops. Otherwise, the process is repeated again. Algorithm 1 presents the
pseudo-code of the SO heuristic. The heuristic can be applied to AEred by just removing the parameters related
to type 2 treatment as presented in Algorithm 2.

Algorithm 1. SO Heuristic for AE.

Set ε, W i to a very large number, i = 0 and compute x0
1 = λ/µ, x0

2 = min
{
λ12
µ12

, λ22
µ22

}
, and W 0 = max

{(
W 1(x0

1) +

W 21(x0
2)
)
,
(
W 1(x0

1) +W 22(x0
2)
)
} using (4.2), (4.3), (4.4).

while W i ≥W , do
Compute ∆W1 = W 1(xi1)−W 1(xi1 + c) and

∆W2 = max
{(
W 12(xi2)−W 12(xi2 + 1)

)
,
(
W 22(xi2)−W 22(xi2 + 1)

)}
.

if ∆W1 > ∆W2 then
xi+1

1 = xi1 + 1, xi+1
2 = xi2.

else
xi+1

2 = xi2 + 1, xi+1
1 = xi1.

end if
i := i+ 1.
Run simulation model for j runs and n scenarios with xi1 and xi2. Set W i to (1− ε)% of the waiting times obtained
by the simulation model.

end while
return xi1 and xi2.
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Algorithm 2. SO Heuristic for AEred.

Set ε, W i to a very large number, i = 0 and compute x0
1 = λ/µ, x0

2 =
{
λ12
µ12

}
, and W 0 =

(
W 1(x0

1) + W 21(x0
2)
)

using

(4.2), (4.3), (4.4).
while W i ≥W , do

Compute ∆W1 = W 1(xi1)−W 1(xi1 + c) and
∆W2 = W 12(xi2)−W 12(xi2 + 1).
if ∆W1 > ∆W2 then
xi+1

1 = xi1 + 1, xi+1
2 = xi2.

else
xi+1

2 = xi2 + 1, xi+1
1 = xi1.

end if
i := i+ 1.
Run simulation model for j runs and n scenarios with xi1 and xi2. Set W i to (1− ε)% of the waiting times obtained
by the simulation model.

end while
return xi1 and xi2.

The computation time of the heuristic depends on the running time of the simulation model and therefore
the levels of n, j and T . As the number of runs and scenarios increases, the robustness of the solution obtained
by the heuristic increases as well.

6. Computational experiments

The computational experiments aim to illustrate the performances of the approximation approach and the
SO heuristic as well as the impact of several model parameters on the results. For this purpose, we design two
sets of computational experiments. The first set of experiments compares the performances of the solutions
computed by the approximate optimization models and the SO heuristic. The second set of the experiments
investigates the impact of model parameters on the solutions obtained by the approximation approach. All
computational experiments are carried out on a PC with Windows 10 Enterprise operating system, CPU 4 GHz
Intel Core i7 and 32 GB of RAM.

6.1. Input data

As all major A&E’s in the UK follow the same service process, we use the arrival data of University Hospitals
Coventry & Warwickshire (UHCW) provided in the online resources of the NHS UK [44]. The average treatment
and triage times are obtained from Ahmed et al. [1]. The service times are assumed to follow an exponential
distribution [53]. The effect of this assumption is investigated in the first set of computational experiments.

For the variability parameters, we first generate a dataset of arrival and service times by using the simulation
model and the distribution information provided in Table 1. According to [7], the variability parameters (Γa

and Γs) are then set such that most of the uncertain parameters are covered. The time spent in the A&E (W )
should be less than 4 h for all patients.

6.2. Comparison of SO heuristic and approximate optimization model

This section presents the results and the performances of two solution approaches for different (i) problem
settings, (ii) conservativeness levels and (iii) service time distribution. The approach that solves the models,
AErob and AEred

rob, with a commercial solver (Gams/Bonmin) is referred as Approximate Optimization (AO) in
the rest of this section.
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Table 1. Input data for model parameters used in the numerical experiments.

Description of parameters Value/Range Source of data Distribution

A&E arrival rates 0.57 patient/minute [1, 44] Exponential
Probability of discharge or diagnosis as

0.1 and 0.61 [44] Binomial
Type 1 patient after triage, respectively
Mean triage service duration 15 min [1,53] Exponential
Mean treatment duration for type 1 patients 90 min [1, 53] Exponential
Mean treatment duration for type 2 patients 25 min [1, 53] Exponential
Cost of doctors with respect to nurses (c) 5 [47,52] –

Table 2. Base results of AO and the SO Heuristic when only type 1 patients are subject to
waiting time limit.

Approach AO SO Heuristic

Number of runs (j) – 30 10 1
Number of scenarios (n) – 1000 150 1000 150 1000 150
Capacities (x1, x2) 9, 31 9, 30 9, 29 9, 30 9,28 9, 28 9, 28
Computation time (s) 2 3292 135 1161 198 52 4

Breaches 10−5% 10−5% 10−5% 10−5% 0.02% 0.02% 0.02%

Impact of problem setting. This section presents the results for the optimization models AErob and AEred
rob

solved by a commercial solver Gams, by using the solver Bonmin. Similarly, we solve the reduced and full
models, AE and AEred, with the SO heuristic that is implemented in Matlab with ε = 0.0001. We set the
planning horizon of the problem to 1500 min that is found to be large enough to observe the queue dynamics.
The SO heuristic is run for 40, 30, 10, and 1 runs to understand the impact of the number of runs on the
heuristic’s performance.

First, we solve the problem where only type 1 patients are subject to 4 h waiting time limit, i.e. AEred

and AEred
rob. Table 2 shows the capacities found by AO and the SO heuristic for different number of runs and

scenarios. The results of the SO heuristic with 40 runs is the same as those with 30 runs. The table also shows
the computation times of these solution approaches in terms of seconds.

The number of doctors found by two methods is slightly different; AO is more conservative to the uncertainties
in the arrival and service times. The computation time of the SO heuristic is significantly larger than that of AO
especially as the number of iterations increases. The conservativeness of the solutions found by the SO heuristic
also increases with a higher number of iterations.

The NHS sources [46] indicate that there are around 58 full-time-equivalent doctors in UHCW in March 2018.
Assuming the doctors make 2.5 shifts per day, this would be equivalent to 23 doctors. The NHS statistics show
the percentage of patients treated within 4 h in the A&E was 79.2% in that month [44]. Therefore, our results
indicate that the performance can be improved by increasing the staff level from 23 to 31.

Next, we evaluate the performances of the solutions obtained by two approaches by giving these capacities to
the simulation model as inputs. Figure 2 shows three frequency histograms for total waiting time in the A&E
of (type 1) patients computed by the simulation model for 30 runs and 500 scenarios with the capacity levels
found by AO and the SO heuristic for different number of runs.

The maximum waiting time in the A&E should not be larger than 135 min that is the difference between
the limit on total time spent (240 min) and total average service time for triage and treatment (15 and 90 min,
respectively). The graphs show that the frequency of patients waiting more than 135 min is significantly larger
with the heuristic solutions, and the maximum waiting time computed by the Simulation model with AO
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Figure 2. Frequency histograms for total waiting time (of type 1 patients) in the A&E com-
puted by the simulation model with the staff capacities obtained by different solution methods.
(A) Simulation outputs when staff capacities are obtained by AO. (B) Simulation outputs when
staff capacities are obtained by the SO heuristic with 30 runs. (C) Simulation outputs when
staff capacities are obtained by the SO heuristic with 10 runs.

Table 3. Base results of AO and the SO heuristic when both types of patients are subject to 4 h.

Approach AO SO Heuristic

Number of scenarios (n) – 1000 100
Capacities (x1, x2) 12, 32 11, 32 11, 32
Computation time (s) 2 1003 210
Breaches 0.08% 0.08% 0.08 %

solutions is 130 min while that for the SO heuristic (with 30 iterations) is 150 min. This can be interpreted as
the heuristic solutions perform worse than the AO solutions.

The results indicate that the proposed robust optimization based approximation is appropriate for the A&E
capacity planning problem. They also suggest that AO performs better than the SO heuristic in terms of the
computation time and the solution performance (Tab. 3).

Second, we assume that the health authorities replace the waiting time target of 4 h for both types of patients
served in the A&E, i.e. AE and AErob are solved. Since the effect of number of runs is already shown, we set
j = 10 and n = 1000 for the SO heuristic that produced the same solution with j = 30 and n = 1000.
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Table 4. Capacities (x1, x2) found by the AO in different variability levels (Γs and Γa).

Variabilities Service time Arrival time

Doubled 18, 37 9, 31
Base 9, 30 9, 31
Halved 8, 28 9, 30

Table 5. Computation time and capacities (x1, x2) found by the SO heuristic in different
conservativeness levels (ε).

ε 0.0001 0.001 0.05 0.1 0.2

Capacities (x1, x2) 9, 30 9, 26 9, 24 9, 23 9, 22
Computation time (s) 1161 64.18 38.03 25.3 12.5
Breaches 0 0.0016 % 0.021 % 0.061 % 0.1294 %

The computation times of both methods do not change significantly compared to the reduced problem setting.
Note that type 2 patients have a lower priority and wait longer than type 1 patients. Therefore, the capacities
are higher than those obtained for the reduced problem; they both increase by 2 units. We observe that the
breaches have increased slightly for both methods compared to the previous problem setting. This may be
due to increased complexity with the additional type 2 waiting time limit. These results indicate that the
approximation of the waiting time for type 2 patients may not be as good as that for type 1 patients. In the
rest of the experiments, we consider the reduced problem setting; only type 1 patients are subject to the 4 h
waiting time limit. Also, the SO heuristic is always run for j = 10, n = 1000 unless stated otherwise.
Impact of conservativeness levels. In this section, we investigate the impact of conservativeness levels on
the solutions obtained by two approaches. As explained before, the variability parameters, Γa and Γs, define
the conservativeness levels of the AO; a larger variability corresponds to a more robust model against the
uncertainties in the arrival and service times. To investigate the effect of the conservativeness, we solve the
optimization model for two more variability levels: the double and half of the base variability levels used in the
previous set of experiments. Table 4 shows the optimum number of triage nurses and doctors in the doubled,
base and halved variabilities.

As different from the service time variability, the arrival time variability does not affect the solutions signifi-
cantly. This is probably due to a lower variance in the arrival times leading to a lower arrival time variability.

For the SO heuristic, the conservativeness level is defined via parameter ε. Table 5 shows computation times
and the solutions obtained by the SO heuristic in different (ε) levels. Note that the conservativeness level of the
heuristic affects its computation time and the solutions significantly. Although a higher ε results in a shorter
computation time, the quality of the solution drops significantly.

Note that the number of doctors found for the conservativeness level of 0.2 is almost equal to the that in
UHCW in March 2018, i.e. 23 doctors [46], in which the hospital had breaching rate of 0.2 [44].
Impact of service time distribution. In this experiment, we investigate the impact of the distribution of
treatment and triage durations on the results. For this purpose, the treatment and triage durations are assumed
to be uniformly distributed, respectively, over [60, 120] and [10, 20] based on Ahmed et al. [1]. The solutions
obtained by two approaches and the computation times are shown in Table 6. The rate of breaches is negligible
for all solutions.

The computation times are not different to those with the exponential distribution assumption. However,
the capacities obtained by the SO heuristic (with 1000 scenarios) and the AO are the same as different from
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Table 6. Computation times and the solutions of AO and the SO heuristic when triage and
treatment time distributions are uniform.

Approach Aproximate optimization SO Heuristic

Number of scenarios (n) – 1000 100
Capacities (x1, x2) 9 , 28 9, 28 9, 27
Computation time (sec.) 2 331 25

Table 7. The solutions obtained by the AO for different waiting time limits.

W1

W2

4 h 5 h 6 h
x1, x2 x1, x2 x1, x2

3 h 12, 32 15, 31 15, 31
4 h 12, 32 10, 30 10, 30
5 h 12, 32 10, 30 9, 29

Table 8. Computation time and results of optimization model and SO heuristic when both
categories of patients are subject to waiting time limits.

Ratio of type 1 patients
Discharge rate after triage
0.1* 0.2

after triage x1, x2 x1, x2

0.45 16, 27 14, 27
0.61* 12, 32 12, 31
0.75 13, 34 –

the base case. This may indicate that the SO heuristic performs better when the service times follow a uniform
distribution.

6.3. Sensitivity analysis

In this section, we test the impact of several model parameters on the solutions obtained by the AO.
Impact of waiting time limit. As the NHS looks for alternative performance monitoring policies, we inves-
tigate the impact of different waiting time limits on the solutions obtained by the AO. Table 7 shows these
capacities for different waiting time limits for type 1 (W1) and type 2 (W2) patients.

The results indicate that for a fixed type 2 waiting time limit, the solutions are not affected significantly
when the waiting time limit for type 1 patients is above 4 h. Similarly, when the waiting time limit is above 5 h
for type 2 patients, the solutions do not change.
Impact of patient arrival rates. The NHS report [6] shows that the percentage of type 1 patients can vary
in different hospitals. Therefore, this experiment investigates the effect of rates of type 1 patients and discharges
after triage among all arrivals. Based on [6], we obtain the solutions by the AO for three rates for type 1 patients
and two rates for discharge. Table 8 shows the solutions for different rates of discharge and type 1 patients. The
base levels of these parameters are shown with * in the table. We have not conducted the experiments for the
unrealistic case where 0.75 of all arrivals are type 1 and 0.2 of all arrivals are discharged after triage.
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The results indicate that when the rate of type 1 patients decreases, it is beneficial to increase the number of
triage nurses instead of doctors. On the other hand, when type 1 patients increase, the numbers of both triage
nurses and doctors should be increased.

7. Conclusions

A&E’s are the first point of contact for urgent and complex cases. The performance targets of A&E’s have
long been to reduce the patient waiting times below 4 h. As the hospitals have failed to satisfy this target, the
government is planning to adopt alternative policies such as considering the waiting time targets for only serious
cases. The staff planning in A&E’s affect the performance levels critically. Due to the uncertainties involved
in the A&E services, finding optimum capacities satisfying the performance targets is difficult with classical
methods. This paper proposes to use a robust optimization based approximation for the computation of the
worst-case waiting times in an A&E where patient are first triaged and then prioritized based on the urgency.
We first model the problem with the approximation and then show that the model can be solved to optimality
with the commercial solvers. We also develop an SO based heuristic where we use the approximation for the
maximum waiting time in the search for a better feasible solution.

The computational experiments show that the AO outperforms the SO heuristic in terms of the computation
time and the solution performance. The advantage of both the AO and the SO heuristic is their speed to provide
an approximately good solution very quickly. As the problem complexity is increased with the waiting time limits
for both patient types, the performance of the solutions obtained by the approximation drops when both patients
are subject to waiting time limit. The experiments also indicate that the approximation approach still works
well for different distribution assumptions for the treatment and triage durations. Another observation drawn
from the experiment results is the non-linear effect of the waiting time limits on the solutions. The future studies
may investigate the suitability of the approximation method for more complex A&E operations including more
than two prioritization categories, the diagnostic test queues, etc.

References

[1] M.A. Ahmed and T.M. Alkhamis, Simulation optimization for an emergency department healthcare unit in Kuwait. Eur. J.
Oper. Res. 198 (2009) 936–942.

[2] E. Alfonso, X. Xie, V. Augusto and O. Garraud, Modelling and simulation of blood collection systems: improvement of human
resources allocation for better cost-effectiveness and reduction of candidate donor abandonment. Vox Sang. 104 (2013) 225–233.

[3] A.O. Allen, Probability, Statistics, and Queueing Theory. Academic Press (2014).

[4] M.H. Alrefaei and A. Diabat, Modelling and optimization of outpatient appointment scheduling. RAIRO: RO 49 (2015)
435–450.

[5] M. Asaduzzaman, T.J. Chaussalet and N.J. Robertson, A loss network model with overflow for capacity planning of a neonatal
unit. Ann. Oper. Res. 178 (2010) 67–76.

[6] Audit General for Scotland: Emergency Departments. Tech. Rep., Audit General for Scotland (2010). Available from: http:
//www.audit-scotland.gov.uk/uploads/docs/report/2010/nr_100812_emergency_departments.pdf.

[7] C. Bandi and D. Bertsimas, Tractable stochastic analysis in high dimensions via robust optimization. Math. Program. 134
(2012) 23–70.
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