
223

IMPLEMENTING DISTRIBUTED DATA MANAGEMENT SYSTEM IN

DYNAMIC OBJECTS BY USING IMPROVED SORT-BASED ALGORITHM

Nwe Nwe Myint Thein, Swe Zin Hlaing

University of Computer Studies, Yangon

nnmyint.thein@gmail.com,swezinhlaingucsy@gmail.com

ABSTRACT

In the High-Level Architecture (HLA) paradigm, the

Runtime Infrastructure (RTI) provides a set of services,

such as data distribution and management (DDM) among

federates. Each federate may inform the RTI about its

intention to publish some data or it may subscribe to

receive a subset of the published data. DDM services are

used to reduce the transmission and receiving of

irrelevant data and aimed at reducing the communication

over the network. These services rely on the computation

of the intersection between “update” and “subscription”

regions. Currently, there are several main DDM filtering

algorithms. Our proposed system describes data

management and filtering mechanism on tank simulation

in battlefield area. This system intends to detect the

movement of the tank objects, search overlap between the

tank object and every regional regiment (extent). When

overlapping information is getting from one of the

simulation object (OverlapDetector), another simulation

object (Coordinator) connects the relevant extent that

containing the tank object. That extent continued to send

the tank information to other regional regiments

according to the predefined list. In this paper, we present

the design and implementation of a simulation platform

used to implement one of the filtering algorithms, the

improved sort-based algorithm, and report the overhead

of reducing network traffic and ensuring that the

forwarding data receive federates only who need the data

.

Key words High Level Architecture, Data Distribution

Management, Improved Sort-Based matching algorithm

1. INTRODUCTION

There are several groups of services, which are provided

by the HLA Runtime Infrastructure (RTI) to coordinate

the operations and the exchanges of data between

federates (simulations) during a runtime execution. The

interaction of object instances across user applications is

supported by the function of RTI,which is similar to a

distributed operating system.

 Data Distribution Management (DDM) mechanisms

are necessary to provide efficient scalable support for

large scale distributed simulations. Data distribution

management (DDM) intends to limit and control the

volume of data exchanged during a simulation and reduce

the processing requirements of federates. The key to

efficient DDM is to limit the messages sending to include

only those messages with state updates intended for

federates that require them. The High-Level Architecture

(HLA) specifications define six services including DDM

services supported by the Runtime Infrastructure (RTI).

In a distributed simulation environment, every simulated

movement or action that takes place on a simulator,

which may affect or interest to another participant in the

simulation, require a message. Such actions can include,

but are not limited to, the movement, creation or

destruction of simulated entities. In a large-scale

distributed simulation, simulating many entities across

many different federates; the entities that are of interest to

other entities can result in increased communication

across a network. DDM are aimed at reducing the

message traffic over the network and the important

information can be distributed to the federates only who

need the data. The purpose of this paper is to implement

the intersection algorithm for the DDM especially for

improved sort-based algorithm. In this paper, we

implement this algorithm with two dynamic tank objects,

incorporating varied numbers of federates in a battlefield

area, this paper offers more insight into the effects of

intersection between two tank objects and federates on

the efficiency of improved sort-based algorithm. This

algorithm within a simulation that detects the position of

tank and find out the intersection between the tanks

objects and every regional regiment (federates) and also

firstly detected regional regiment and the predefined list

of regional regiments receive the tank information to

make the requirement actions in a timely manner.

The remainder of the paper is organized as follows.

Section 2 describes HLA issues relevant to data

distribution. The Improved Sort-based Algorithms for

DDM matching methods is explained in section 3.

Section 4 represents the simulated scenario implemented

with an improved sort-based matching algorithm on tank

objects in the battlefield area. Section 5 presents the

performance analysis of the system. Finally, section 6

offers conclusion and further work.

2. OVERVIEW OF DDM IN THE HLA

Within the Department of Defense (DoD), the HLA

provides a common architecture for modeling and

simulation. HLA’s Run Time Infrastructure (RTI)

provides commonly required services to simulation

systems that service a distributed operating system

220

223

providing to applications. HLA services are grouped into

six categories:

• Federation Management (FM)

• Declaration Management (DM)

• Object Management (OM)

• Ownership Management (OWM)

• Time Management (TM)

• Data Distribution Management (DDM)

 DM and DDM are used to specify which federates

should receive messages for each attribute update and

interaction. DM services (Publish and Subscribe) to allow

a federate to update and receive updates to object

attributes based on object class. The RTI uses information

provided in publish/subscribe calls to set up filters that

direct data among federates that need them. OM (Update

Attribute Values) service call notifies the RTI that one or

more attributes have been modified. For example, an

object might subscribe to the attribute ‘location’ of all

tanks in the battlefield. However, such filtering will only

be appropriate for relatively small federations. DDM

services provide more powerful data distribution services

enabling value-based filtering. For example, a tank might

want to receive data from other tanks only if they are in

its visible range. RTI does not know the meaning of

object attributes it cannot provide range-based filtering in

this example. Federates must agree on a filtering strategy

to do this.

 The fundamental Data Distribution Management

constructs a routing space. A routing space is a named

sequence of dimensions, which form a multi-dimensional

coordinate system. Regions are defined as sets of extents

which are rectangles representing the sensor ranges of

different units. Federates either express an interest in

receiving data (subscribe) or declare their intention to

send data (publish). These intentions are expressed

through:

Subscription Region: Bounding routing space

coordinates which narrow the scope of interest of the

subscription federate.

Update Region: Bounding routing space coordinates

which are guaranteed to enclose an object's location in

the routing space. Both subscription and update regions

can change in size and location over time as a federate's

interests change or an object's location in the routing

space changes.

 An object is discovered by a federate when at least

one of the object’s attributes come into scope for

federate, i.e. if an only if: the federate has subscribed to

the attribute of the object's update region overlaps the

federate's subscription region. Specifying a subscription

region, the federate tells the Run Time Infrastructure

(RTI) that it is interested in data which fall within the

extents of the region specified by that federate.

Specifying an update region which is associating with a

particular object instance is a contract from the federate

to the RTI. At a time step, that federate will ensure the

characteristics of the object instance which map to the

dimensions of the routing space falling within the extents

of the associated region there by the attribute update is

being issued. The federate is monitoring these added

characteristics, for each of the attributes owned by the

federate. As the state of the objects change, the federate

may need to either adjust the extents on the associated

regions or change the association to another region. Each

federate can create multiple update and subscription

regions. Update regions are associated with individual

objects that have been registered with the RTI. A federate

might have a subscription region for each sensor system

being simulated.

3. IMPROVED SORT-BASED MATCHING

ALGORITHM

Improved sort-based algorithm is interested in the

nonoverlap information. This algorithm needs to know

which extents do not overlap with each other. Then on the

reverse, their overlap information can be easily known.

This algorithm is not complicated. If two extents do not

overlap with each other, one extent should fall out of the

range of the other extent. There are only two types of

subscription extents if a subscription extent does not

overlap with the update extent U in one-dimensional

space in Figure 1.

Figure 1. Basic idea of the Improved Sort-Based

Algorithm

 One type of extent is one whose end points are both

located before U, such as S1 (i.e. both points are less than

u1). These extents are marked as nonoverlapping with U,

when processing u1. The other type of extent is one

whose end points are both located after U, such as S2 (i.e.

both points are greater than u2). When processing u2,

these extents are marked as nonoverlapping with U. All

the nonoverlap information of the update extent U can be

acquired and the information is stored only at the update

extent side. In the improved sort-based algorithm, shown

in figure 2, two sets are employed to store the nonoverlap

information, The SubscriptionSetBefore set stores the

subscription extents located before the current update

extent, and the SubscriptionSetAfter set stores those

subscription extents located after the current update

extent.

 In the beginning, it is assumed that all subscription

extents are located after the current position since no

extent has been processed. As a result, the

SubscriptionSetBefore set is nil (line 7), while the

SubscriptionSetAfter set is universal set (line 8). When a

lower bound point of a subscription extent is processed,

the extent is no longer located after the current update

extent, and it is removed from the SubscriptionSetAfter

set (line 14). When an upper bound point of a

U: update region

u1: lower bound point u2: upper bound point

 of U of U

 S1, S2: subscription region

 S1 U S2

 u1 u2

221

223

subscription extent is processed, the extent is located

before the current update extent. Therefore, it is appended

to the SubscriptionSetBefore set (line 16). When a point

of an update extent is processed, the nonoverlap

information is stored in the SubscriptionSetBefore set, or

the SubscriptionSetAfter set accordingly (line 19 and 21).

Figure 2. Improved Sort-Based Algorithm

The scenario for the improved sort-based algorithm

is presented by Figure3.

Figure 3. Scenario for the Improved Sort-Based

Algorithm

SA1 ----- SA is no longer located after the current or

 Latter update extents

 SA is removed from SubscriptionSetAfter

SB1 -----same as SA1

 it is removed from SubscriptionSetAfter

SA2 -----SA is now located before the current or

 latter update extents

 it is inserted into the SubscriptionSetBefore

UA1 -----UA does not overlap with the extents in

 SubscriptionSetBefore, namely SA

SC1 -----it is removed from SubscriptionSetAfter

SB2 -----append it to the SubscriptionSetBefore set

UA2 -----UA does not overlap with the extents in

 SubscriptionSetAfter, namely SD

In step 8, UB does not overlap with the extents in

SubscriptionSetBefore {SA,SB}.

In steps 9 and 10, at first SD is removed from

SubscriptionSetAfter, and then SC is appended to

SubscriptionSetBefore.

In the last step, UB should not overlap with extents in

SubscriptionSetAfter.

However, since SubscriptionSetAfter is null, no more

Nonoverlap information is acquired during this step.

Lastly, UA does not overlap with SA or SD, UB does not

overlap with SA or SB. The final overlap information is

that UA overlaps with SB and SC, UB overlaps with SC and

SD.

4. THE SIMULATION PLATFORM

To implement improved sort-based algorithm, a

simulation platform was designed. In particular, the

simulation intends to investigate the effects of improved

sort-based algorithm on the performance of the

simulation. The platform simulates a 2-dimensional

routing space containing dynamic objects. E.g. moving

tanks in a battlefield, traveling at constant speeds in

various directions. The battlefield contains twelve extents

within four regions and the two tanks. These tanks are

initially placed at user’s input coordinates in the

battlefield. The next sub-sections describe the

architecture and algorithm employed in the platform.

4.1. The Proposed Architecture

The simulation platform is written in the Java

programming language and runs on an interconnected

network using 5 computers. The platform comprises three

sub-models:

• Tank Controller

• Overlap Detector

• Coordinator

 The structure of these three sub-models is shown in

figure 4.In this platform, the federate is interpreted as a

logical grouping of objects, and is shown in the Figure 6.

Figure 4. The System Architecture

a: TankController c: Coordinator

b: OverlapDetector

Tank a b c
Federate

Subscription extents

 2 SB 6 SD 12

 1 SA 3 5 SC 9

 10

 x-dimension

 UA UB

 4 7 8 11

Update extents

(1) for each extent Ri in the routing space

(2) {

(3) insert lower bound point of Ri into list L

(4) insert upper bound point of Ri into list L

(5) }

(6) sort list L

(7) SubscriptionSetBefore = ø

(8) insert all subscription extents into

SubscriptionSetAfter

(9) for all point Pi in the sorted list L

(10) {

(11) Ri = Extent Id of Pi

(12) if (Ri is a subscription extent) {

(13) if (Pi is the lower bound point of Ri)

(14) remove Ri from SubscriptionSetAfter

(15) else // Pi is the upper bound point of

Ri

(16) insert Ri into SubscriptionSetBefore

(17) } else { // Ri is an update extent

(18) if (Pi is the lower bound point of Ri)

(19) all extents in SubscriptionSetBefore

do not overlap with Ri

(20) else

(21) all extents in SubscriptionSetAfter

do not overlap with Ri

(22) }

(23) }

222

223

Tank Controller In this platform, the tank objects are

simulated using the Tank Controller sub-model. This sub-

model is responsible for the movement of the simulation

objects within the routing space and it calculate the

congestion point for two objects and control the tank

object’s movement. When the tank objects see the

boundary of the battlefield area or they reach the

congestion point, these tanks turn the new direction. The

possible new directions are represented in table according

to start direction and Figure 5 illustrates the trend for tank

object’s movement. The tank objects move according to

user’s assigned direction and at each time step it checks

for meeting the boundary of battlefield area or congestion

point. When the tanks meet the battlefield’s boundary or

congestion point, Tank Controller send new direction. So

the tanks can turn their appropriate new direction.

Table1. Possible New Directions From Start Direction

Start

direction

Possible direction

from start position

New direction to

turn tank object

East West Southwest to

Northeast

Northwest to

Southeast

East Southwest to

Northeast

South

East Northwest to

Southeast

North

West East Northeast to

Southwest

Southeast to

Northwest

West Southeast to

Northwest

South

West Northeast to

Southwest

North

South North Northwest to

Southeast

Northwest to

Southeast

South Northeast to

Southwest

East

South Northwest to

Southeast

West

North South Southwest to

Northeast

North Southwest to

Northeast

West

North Southeast to

Northwest

East

 First trend

 Second trend

 Third trend

Figure 5.. Tank Object’s Movement from East Side of

Battlefield Area

Overlap Detector The Overlap Detector is in charge of

the data filtering strategy in this system. It calculates the

overlap between the tank objects and all the federates

within the battlefield area.OverlapDetector store the

lower bound extents and upper bound extents of each

regional regiment and tank objects,

SubscriptionSetBefore and SubscriptionSetAfter. All

regional regiments are initially inserted in the

SubscriptionSetAfter. Null value is initialized into the

SubscriptionSetBefore. If OverlapDetector detects the

lower bound point of regional regiment, removes it from

SubscriptionSetAfter. If it detects the upper bound point

of regional regiment, insert into SubscriptionSetBefore. If

OverlapDetector detects the lower bound point of tank

objects, it decides all extents in SubscriptionSetBefore do

not overlap with tank object, it decides all extents in

SubscriptionSetAfter do not overlap with tank object. If it

knows the nonoverlap information, it can know the

overlap information and retrieve the name of overlapped

regiment. When it knows the overlapping information, it

connects regional regiment (federate) and other regional

regiments which need to know that information. Then it

sends the command directly to overlapping federate and

the tank information to other regional regiments in the

predefined list. In this sub-model, OverlapDetector

require to communicate with Coordinator.

Coordinator This sub-model is responsible for

communication between the federates and the DDM

manager. In this sub-model, the message cost must be

considered, which includes the message passing cost to

receivers and the replying message cost to the sender.

223

Figure 6. The Battlefield Area

4.2. The Proposed Algorithm

Figure7. shows the algorithm incorporated in the platform

for performing the time-stepped simulation of the

battlefield.

Figure 7. A tTime-Stepped Distributed Simulation

Algorithm Using Improved Sort-Based Matching

Algorithm

5. PERFORMANCE ANALYSIS OF THE

PROPOSED SYSTEM

5.1. Theoretical Performance Analysis

In the improved sort-based algorithm, it is assumed that,

there are N subscription extents and N update extents in a

routing space. According to the algorithm, there are four

main steps.

Sorting the list according to the coordinates. There

are 2*(N+N) coordinates for each dimension, initializing

and constructing the list for each dimension is O(n). The

complexity of sorting the list is O(n log n) using heap

sort. Initializing and constructing two bit vectors is O(n).

Porcessing the points of subscription extents. For each

dimension, there are N iterations to insert the extents in

the SubscriptionSetBefore set and another N iterations to

remove the extents from the SubscriptionSetAfter set.

The data structure of bit vector is employed, inserting or

removing an element only requires constant time. The

complexity of these operation is O(n).

Processing the points of update extents. For each

dimension, there are, in total, 2*N iterations to transfer

the information from two sets (SubscriptionSetBefore and

SubscriptionSetAfter) to the array of bit vectors used to

store the overlap information. There are N elements in

each bit vector, the complexity of this operation is O(n2).

Combining the result of each dimension. Finally, bitwise

'AND' operations are used to get the overall overlapping

information of all dimensions. The complexity of this

process is O(n2).

 The overall complexity of the improved sort-based

algorithm is quadratic. In this algorithm, many bit

operations have been utilized. The performance of the

DDM services is related to several parameters including

(1) the processing cost of the matching algorithm, (2) the

transmission cost of the network, (3) the total filtering

cost of the irrelevant messages.

5.2. Factors Affecting Performance

There are three factors affecting the performance. These

are:

Total number of extents: If there are more extents, it is to

cost more time to get the matching result. In the

experiment, the total number of extents (update extents

plus subscription extents) is varied from 12 to 60, and the

numbers of subscribers are six times of the number of

updaters. All of the extents are uniformly distributed in

the routing space.

Number of extents in each region: If all the extents

belong to the same region, much less information needs

to be returned than if each extents was in a different

region. In the experiments, each region has the same

number of extents and it may have 3, 6, or15 extents.

Overlapping degree: The overlapping degree is also an

important factor. In improved sort-based approach needs

to check the coordinates of two dimensions. It is

interested in the nonoverlap information. This algorithm

needs to know which extents do not overlap with each

other. Then on the reverse, their overlap information can

be easily known.

 In this paper, number of extents in each region is not

important factor, because the system intends to detect the

overlap information between the total number of

subscription extents and the number of update extents

(tank objects). In this system, the processing cost of the

matching algorithm and the transmission cost of the

network are included. But the total filtering cost of the

Start simulation

Initialization

Initialize the location of the tank objects(x,y

coordinate), choose start direction and type

possible direction

End-initialization

For t=t0, t0+dt, t0+2dt, ….. , do

begin

-TankController captures the movement

of tanks and sends it to RTI

-OverlapDetector calculate the

overlapping between tank objects and

regional regiments

-RTI DDM determines subscription

region and inform the tank information

-Coordinator connect between the actual

overlapping subscriber and other extents

(regional regiments) according to the

predefined list

-each subscriber received data and

makes require action

 end

endfor

RR1

RR3

RR4

RR2

RR5

RR6

RR10
RR

11

RR7

RR12

RR8
RR9

224

223

irrelevant messages are not included because the actual

overlapping federate are produced by improved sort-

based algorithm and the other federates which need to

know the tank information are predefined. These

federates (Regional Regiments) are informed of the tank

information. The network connection cost depends on the

total number of subscription extents to send the tank

information between the subscription extents.

Figure 4 shows the overhead cost of the various

numbers of the subscription extents and update extents

(update regions) including network connection cost.

overhead = (c * subscription updates) + n

where c = cost of a subscription update, and

 n = network connection cost

0.00

0.05

0.10

0.15

0.20

0.25

12 24 48 96

overhead

matching

cost

Figure 8. Performance of the Improved Sort-Based

Algorithm Based on Total Number of Extents

6. CONCLUSION

Efficient data distribution is an important issue in large

scale distributed simulations with several thousands of

entities. The broadcasting mechanism employed in

Distributed Interactive Simulation (DIS) standards

generates unnecessary network traffic and is unsuitable

for large scale and dynamic simulations. In this paper, we

are interested in improved sort-based matching algorithm

in particular. A simulation platform implement data

distributed management in dynamic tank objects by using

improved sort-based matching algorithm. This platform

serves as a convenient tool for implementing the

improved sort-based algorithm in data distribution

management. Because this system does not need the

overlap relationship is symmetrical and the algorithm to

store overlap information both at the subscription extent

side, and at the update extent side. Improved sort-based

algorithm records the intersection information only at one

type of extent side. The system also does not include the

filtering cost of the irrelevant messages. The platform can

also be easily modified to support other matching

algorithm and the experimental results can then be used

to compare the efficiencies of the various matching

mechanisms.

REFERENCES

[1] A. Boukerche, C. Dzermajko. “Dynamic Grid-Based

vs. Region-based Data Distribution Management

Strategies in Multi-Resolution Large-Scale Distributed

System” , PDP’03: Proceedings of the 17th International

Symposium on Parallel and Distributed Processing, Nice

, France(2003 April)

[2] C. Raczy, G. Tan, J. Yu. “A Sort-Based DDM

Matching Algorithm for HLA” , ACM Transactions on

Modeling and Computer Simulation (TOMACS), Volume

15 Issue 1,2005, January

[3] F. Moradi, G. Tan, R. Ayani, Y. S. Zhang. “An

Experimental Platform for Data Management in

Distributed Simulation”,

http://www.siaa.asn.au/get/2395365387.pdf

[4] I. Tacic, R. T. Fujimoto, “Synchronized Data

Distribution Management in Distributed Simulations”,

Proceedings Twelfth Workshop on Parallel and Distributed

Simulation, 1998

225

http://www.siaa.asn.au/get/2395365387.pdf

