
 64

Uniformly Integrated Database Approach for Heterogenous Databases

Hlaing Phyu Phyu Mon, Thin Thin San, Zinmar Naing, Thandar Swe

University of Computer Studies (Meiktila), Meiktila, Myanmar

hlaingphyuphyumon16@gmail.com

Abstract
The demands of more storage, scalability, commodity of

heterogenous data for storing, analyzing and retrieving

data are rapidly increasing in today data-centric area

such as cloud computing, big data analytics, etc. These

demands cannot be solely handled by relational

database system (RDBMS) due to its strict relational

model for scalability and adaptability. Therefore,

NoSQL (Not only SQL) database called non-relational

database is recently introduced to extend RDBMS, and

now it is widely used in some software developments. As

a result, it becomes challenges regarding how to

transform relational to non-relational database or how

to integrate them to achieve business purposes

regarding storage and adaptability. This paper

therefore proposes an approach for uniformly

integrated database to integrate data separately

extracted from individual database schema from

relational and NoSQL database systems. We firstly try

to map the data elements in terms of their semantic

meaning and structures with the help of ontological

semantic mapping and metamodeling from the extracted

data. We then cover structural, semantical and

syntactical diversity of each database schema and

produce integrated database results. To prove efficiency

and usefulness of our proposed system, we test our

developed system with popular datasets in BSON and

traditional sql format using MongoDB and MySQL

database. According to the results compared with other

proficient contemporary approaches, we have achieved

significant results in mapping similarity results although

running time and retrieval time are competitive with the

others.

Keywords- Relational database, NoSQL database,

ontological semantic mapping, database schema

1. Introduction

In today’s IT software development, every

developing process needs to use database for storage,

analyzing and retrieval of various kinds of data

depending on their goals. As IT technologies advances

with evolution of cloud computing, big data, etc, it

needs to store tremendous amount of data and

information in different kinds of development platforms.

Consequently, the role of relational database for

management and storage purpose becomes insufficient

due to lack of large capacity, scalability and

heterogenous capability to work with advanced database

products and needs. Therefore, new innovation called

NoSQL database system evolves so that the needs of

current technology demands can be supplied.

Meanwhile, the usage of relational DBMS cannot be

discarded because many software products are still using

RDMBS due to its rich features and usefulness.

Therefore, there is a need to build a bridge for those two

types of databases so that they can be integrated for

simultaneously logical needs of data from physically

distributed databases over heterogenous data sources

[1].

In integrating the data from separated relational

systems into a new one, there exit a lot of solutions [1].

However, to the best of our knowledge, there is only

few researches [1,2,3] to integrate distributed relational

and nonrelational database. There are many challenges

to combine different complex database structures and

schemas so as to migrate all required information of

each into a new database one.

While relational database management system

depends on relational data model such as MySQL,

Oracle, PostgreSQL, etc, non-relational NoSQL

management systems are using various kinds of semi-

structured data model such as key-value stores, column

stores, graph stores, etc [4,5,6]. Therefore, many

scholarly works are being demanded to address the

issues of structural mapping upon different syntactic and

semantic structure, understanding the semantic meaning

of database elements and relationships. Our paper

therefore takes these challenges as research

opportunities to figure out how data elements, relations

and structures are semantically mapped with the use of

ontological semantic definitions and how to transform

them to well organized new database.

The contribution of this paper is introducing how to

semantically map database definitions among different

database elements, relations and structures without

consideration of schema mapping, database aggregation

and joins among different data sources. For our purpose,

we particularly use MySQL (sql 1 file extension) for

relational database and MongoDB (bson2 file types) for

1 sql-structured query language
2 bson-binary json

user
Text Box
1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1 - 2, 2017, Yangon, Myanmar

user
Text Box
ISBN 978-99971-0-381-9 © 2017 ICAIT

user
Text Box
icait2017@uit.edu.mm

 65

non-relational database. MongoDB which acts like

database as service over cloud network using rich

storage structures and query languages [7].

The remainder of the paper is organized as follows.

A brief note for background theory of NoSQL and

relational database, and data integration problems and

solutions are described in Section 2. In Section 3, we

explain the structure and solution of proposed system

and the analysis are described in section 4. We finally

conclude the paper in Section 5 by exploring our

intended future works.

2. Preliminary study

2.1. Background theory

2.1.1. NoSQL Database vs Relational DBMS. The

term NoSQL was first introduced in 1998 for relational

database to skip the use of SQL [10]. The term was used

again in 2009 at the conferences of advocates of non-

relational databases NoSQL meetup in San Francisco

[11]. It is designed for rapidly iterated changing

environment especially in agile software development

process so that a significantly higher data throughput is

produced, horizontal scalability is supported for huge

volume of data storage and commodity hardware for

more cost-effective alternatives.

Relational RDBMS database systems were

developed in 70’s to store structured data in the form of

table with their own query language model called

structured query language (SQL) [12].

In contrast to RDBMS, NoSQL uses structural, semi-

structure and unstructured documents to store the data,

and enables to scale the storage volume well in the

horizontal direction for very large amount of data which

are desperately demanded in cloud computing and big

data storage. Moreover, the design of NoSQL does not

rely on highly available hardware, and it challenges the

shortcomings of RDMBS such as rigid schema design,

performance of single servers and limited storage data

(eg. 50 GB for inbox search at Facebook or 2PB in total

at eBay).

2.1.2. Data Integration Problems and Solutions. The

advent of NoSQL gains a great attention of research

scholars and have been evolving many achievements

and proposals to enhance NoSQL techniques. Among

them, data integration from different databases involves

with specific problems and solutions.

A logical integration of data separately stored in

different databases reduces time-consuming, cost and

human made errors for the processes which are using

manual integration. Furthermore, a semantic based

logical integration can handle complex structures and

meanings of data elements which are going to combine

as new one. Although there are many popular database

drivers such as JDBC, OLE DB, etc which use

generalized query languages. They are also able to

handle different database management systems but they

lack of capabilities to work on structural, semi-structural

and semantic differences of data sources [1]. Therefore,

we need to develop a systematic integrated approach

that can understand semantical and syntactical meanings

of data elements, relationships and structures of

different data sources so as to integrate different

structures and schema types of relational and non-

relational databases.

2.2. Literature review

The popularity of NoSQL becomes heated since very

recent years. As it is, many scholarly works studies and

proposes some advanced features and methods to

interoperate NoSQL. However, only a few studies

empathize on integration of data stored in NoSQL

systems [13,14,15]. The research works [1, 16] propose

uniform interface and platform to integrate databases.

Whereas the work [1] presents uniform access platform

to collect data from different separated database

management system, the work [16] proposes a uniform

interface that allows to access the data stored in different

NoSQL systems (HBaase, Redis, and MongoDB). The

paper work [17] presents a framework to seamlessly fill

the gap of SQL deficits with the help of document stores

structure of NoSQL.

As explained above, data integration among different

databases plays a key role in migration process.

Therefore, in our paper, we propose an approach to

integrate data from different sources without a need of

concept of both relational and non-relational databases

for the user and programming skill. They just need to

load the databases they want and our system will map

the required process and deliver the merged database in

non-relational format (JSON3) to the users.

3. Problem architecture and solutions

3.1. Problem architecture

The architecture of our proposed approach integrates

the idea of HybridDB [1] and our novel idea in

integration of heterogenous databases. The workflow of

our architecture initiates when a user request is received.

The user request will be importing the databases they

want to merge (Mysql and MonoDB files in our paper).

The user inputted databases files are accepted by

database controller and query the database views, table

views and dataset results with the aid of particular native

driver of each different database: MySQL and

3 json-javascript object notation

 66

MongoDB. The resulted query results are relayed to

database modular that extracts particular connection and

specification parameters for data records contained in

each database. In this case, each database file may

contain more than one table. The user is allowed to use

any number of table for each database. We regard that

those databases are already normalized. After database

modular separates each table of each database

definitions, the database manipulator organizes them

into similar semantic concepts and maps each element

(name, value types, relationships, structures, etc) of

different data sources with the help of DB ontology. The

sample scenario can be seen in Figure 1.

The core part of this architecture is database

controller that accepts inputs, executes database

operations on the source system with the aid of database

manager which can access and control native drivers of

all database types allowed by this system.

Figure 1. Architecture of proposed system

3.2. Problem Solution

3.2.1 Managing database operations: This process

deals with inputted database files depending on their

database types. The scenario we consider in this paper is

staff information list of a university.

db.createCollection(“staff_profile”);
db.staff_profile.insert([{staff_ID:1,
 name:"Thein Tun",
 position: "Lecturer",
 address:{
 street:"PyiTawThar",
 city:"Yangon"
 },
 contact:[
 {name:"U Myo Myint",relationship:"Father"},
 {name:"Daw Sein",relationship:"Mother"}
]
 }, {…}, {….}]);

Figure 2(a). CRUD database operation of MongoDB

The user may enter the staff information in two

different files: .sql and .json file for MySQL and

MongoDB integration. Our approach then uses different

CRUD (create, insert, update and delete) operations for

each particular database shown in Figure 2 (a) and (b)

without human participation.

In the first place, after getting user inputs, the system

will try to query data, value, data types, relationship and

structure separately for each database type. The database

controller and manger work together to get connection

to native drivers and get all possible information on

those inputted database script files.

create database staffs;
create table staff_profile {
 ID int (PK), staff_name varchar(30), rank varchar

(30), salary varchar(10), phone_number
varchar(15), town varchar(10)

};
create table staff_contact{
 ID int (FK),
 name varchar(20),
 relationship varchar(20)
};
insert staff_profile (1,’Thein Tun’,’Lecturer’,’200,000
MMK’,’00959-******’,’Yangon’);

Figure 2(b). CRUD database operation of MySQL

3.2.2 Structural, semantical and syntactical

mapping: The database manipulator understands the

heterogeneity of data structure, relationships and

semantic meaning of data objects of both database files

with the help of database ontological structure. Here, we

assume that there will be some relationships between

two databases. The ontology extracts a real connection

between data objects of both files and translates them,

removes duplicate records, attributes and sometimes

transforms some data into another types and structures.

For those cases, we build ontology based on database

terminologies and possible relationships of the dataset.

In this paper, we train our ontology structure with 35

instances of datasets and test their usefulness with 800

datasets in evaluation stage. We use Protégé for

structuring ontology and use OWL-API java platform

for querying ontological meanings upon Tomcat web

server.

3.2.3 Organizing integrated database file: After

understanding and manipulating the inputted two

database files, the database controller merges them into

new database one in NoSQL format, .json file format in

this paper. The result file is then tested by opening the

connection its native driver and perform essential

CURD operations before delivering to the users so that

encountered errors can be solved in this stage. The final

result for example scenario is shown in Figure 3.

Database Controller

Database Modular

Database Manager

Native Driver
#1

Native Driver
#2

Database Manipular

Input

web client

 67

db.staff_profile.insert([{staff_ID:1,
 name:"Thein Tun",
 position: "Lecturer",
 salary:”200,000MMK”,
 address:{
 street:"PyiTawThar",
 city:"Yangon",
 phonenumber::0095-9-***-***”
 },
 contact:[
 {name:"U Myo Myint",relationship:"Father"},
 {name:"Daw Sein",relationship:"Mother"}
]
 }, {…}, {….}]);

Figure 3. Integrated database result

4. Experimental Results

4.1 Implementation Setting

The proposed system is developed with laravel 5.3

MVC framework and angualrjs for front and back-end

interfaces. Tomcat server is used for web server, and

OWL-API is used to build semantic information of

database elements and structures. For two different

databases types, as mentioned earlier, sql file for

MySQL and BSON (binary JSON) file for MongoDB

are used. The datasets are download from the database

[18,19] and tested with 35 instances of database with

different 800 datasets. The result file is produced as json

format to be compatible to run on any NoSQL database.

The system is implemented on a window 10 PC

equipped with 3.10 GHz, Intel® Core TM of CPU and

4.0 GB of RAM.

4.2 Experimental Results

The system performance is evaluated with three

main parameters: similarity rate, retrieval time and

throughput time. These criteria are measured by varying

database sizes and number of different datasets as

illustrated below. To prove competitive results, we

compare our evaluation results with other proficient

works called HybridDB[1] and SOS platform [13].

a) impact of dataset size

We measure the retrieval and throughput time by

varying the sizes of databases. As shown in Figure 4(a),

both of retrieval times in MySQL and MongoDB

become significantly low in all compared approaches

when the database size increases as general theory. The

retrieval and total throughput time for particular

database size: small dataset (below 80 rows and below

10 columns), medium dataset (between 80 and 5000

rows, and between 10 columns and 30 columns) and

large datasets (between 5000 and 10,000 rows and

between 30 and 50 columns).

Figure 4(a). Measurement of retrieval time

The retrieval time starts when user request is sent

from our system to native data source until getting the

query results from them. For smaller database size,

MySQL can work faster than MongoDB. For relatively

increasing database size, MongoDB gets significant

results in its speedy database operation.

Figure 4(b). Measurement of throughput time

The throughput time means the total time since user

inputs the files and until they receive the results. We got

relatively similar result in these two retrieval and

throughput time compared with HybridDB and SOS

platform due to their significantly competitive methods.

b) impact of different dataset numbers

The similarity rate is measured how database

ontology matches the elements, relationships and

structures of two inputted database files. The higher

value of similarity rate means exact similarity and the

lower value describes higher dissimilarity. To test the

similarity rate to show the efficiency and usefulness of

ontological usage, we investigate our proposed system

with compared works by testing different 800 datasets

which are significantly different of major 35 instances

of database files.

According to results described in Figure 4(c), our

similarity rate is significantly higher in density of

database sizes because the more classes we consider in

mapping, the higher the similarity rate we can find due

to semantic technology. For smaller data sets, the result

0

500

1000

1500

2000

HybridDB SOS Platform Our proposed

system

th
ro

u
g
h

p
u

t
(%

)
m

il
is

ec
o
n

d
s

Throughput Time

Small Medium Large

 68

is not much different with popular approach HybridDB

in this field while our result is better than SOS platform.

Figure 4(c). Measurement of similarity rate

5. Conclusion and future work

This paper has tried to fill the gaps of database

integration problem by innovating uniformly integrated

approach for different databases. We contributed an

ontological mapping to understand semantic structure of

data elements of relational and non-relational data

sources. As the limitation of this paper, our system will

be able to integrate two databases which are not zero

relationships between them. The experimental proved

that we have better results in similarity rate which is

mostly needed in database integration area in order to

minimize the complex and subtle meaning of data

schema. We will extend this proposed work for further

database operations such as join, aggregation, etc that

are current limitations of this paper.

6. References

[1] A. V. Fogarassy, T. Hugyak, “Uniform data access

platform for SQL and NoSQL database systems”,

Information Systems, 69 (2017),pp.93-105.

[2] W. Allen, “Unified data modeling for relational and

nosql databases”, 2016.

https://www.infoq.com/articles/unified-data-modeling-

for-relational-and-nosql-databases

[3] R. Sellami, S. Bhiri, B. Defude, “Odbapi: a unified

rest api for relational and nosql data stores”, in: 2014

IEEE International Congress on Big Data, IEEE, 2014,

pp. 653-660.

[4] V. Abramova, J. Bernardino, P. Furtado,

“Experimental Evaluation of NoSQL Databases”,

International Journal of Database Management Systems

(IJDMS), Vol. 6, No.3, June 2014.

[5] B.G. Tudorica, C. Bucur, “A comparison between

several nosql databases with comments and notes”, in:

2011 RoEduNet International Conference 10th Edition:

Networking in Education and Research, 2011, pp. 1–5

[6] L. Dobos, B. Pinczel, A. Kiss, G. Racz, T. Eiler, “A

comparative evaluation of nosql database systems”,

Anales Universitatis Scientiarum Budapestinensis de

Rolando Eotvos Nominatae Sectio Computatorica 42

(2014), pp.173-198.

[7] https://www.mongodb.com/

[8] D. Kumawat, A. Pavate, Correlation of NOSQL &

SQL Database, Journal of Computer Engineering

(IOSR-JCE), volume 18, issue 5, 2016, pp. 70-74.

[9] A. B. M., Moniruzzaman and S A Hossain. "Nosql

database: New era of databases for big data analytics-

classification, characteristics and comparison." arXiv

preprint arXiv:1307.0191 (2013).

[10] Strozzi, Carlo: No-SQL-A relational database

management system. 2007-2010.

http://www.strozzi.it/cgi-

bin/CSA/tw7/I/en_US/nosql/Home%20Page

[11] Evans, Eric: NoSQL 2009, May 2009. Blog post of

2009-05-12.

http://blog.sym-link.com/2009/05/12/nosql_2009.html

[12] Fayech, I. and Ounalli, H.: “Towards a Flexible

Database Interrogation”, International Journal of

Database Management Systems (IJDMS) Vol.4, No.3,

June 2012 .

[13] P. Atzeni, F. Bugiotti, L. Rossi, “Uniform access to

non-relational database systems: The sos platform” in:

Advanced Information Systems Engineering Springer,

2012, pp. 160-174.

[14] O. Cure, F. Kerdjoudj, D. Faye, C. Le Duc, M.

Lamolle, “On the potential integration of an ontology-

based data access approach in nosql stores”, Int. J.

Distrib. Syst. Technol. (IJDST) 4(3) (2013) 17-30.

[15] Y. Yuan, Y. Wu, X. Feng J. Li, G. Yang, W.

Zheng, “Vdb-mr: mapreduce-based distributed data

integration using virtual database”, Future Gener.

Comput. Syt. 26 (8) (2010) 1418-1425.

[16] P. Atzeni, F. Bugiotti, L. Rossi, “Uniform access to

nosql system”, Inf. Syst. 43 (201) 117-133.

[17] J.Roijackers, G. H. Fletcher, “On bridging

relational and document-centirc data stores”, in: Big

Data, Springer, 2013, pp. 135-148.

[18] http://jsonstudio.com/resources/

[19]http://www.mysqltutorial.org/mysql-sample-

database.aspx

https://www.infoq.com/articles/unified-data-modeling-for-relational-and-nosql-databases
https://www.infoq.com/articles/unified-data-modeling-for-relational-and-nosql-databases
https://www.mongodb.com/
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
http://blog.sym-link.com/2009/05/12/nosql_2009.html
http://jsonstudio.com/resources/

