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Abstract

Traditionally building of predictive models is perceived as a combination of both science and
art. Although the designer of a predictive system effectively follows a prescribed procedure,
his domain knowledge as well as expertise and intuition in the field of machine learning are
often irreplaceable. However, in many practical situations it is possible to build well–performing
predictive systems by following a rigorous methodology and offsetting not only the lack of
domain knowledge but also partial lack of expertise and intuition, by computational power. The
generalised predictive model development cycle discussed in this thesis is an example of such
methodology, which despite being computationally expensive, has been successfully applied to
real–world problems.

The proposed predictive system design cycle is a purely data–driven approach. The quality of
data used to build the system is thus of crucial importance. In practice however, the data is rarely
perfect. Common problems include missing values, high dimensionality or very limited amount
of labelled exemplars. In order to address these issues, this work investigated and exploited
inspirations coming from physics. The novel use of well–established physical models in the form
of potential fields, has resulted in derivation of a comprehensive Electrostatic Field Classification
Framework for supervised and semi–supervised learning from incomplete data.

Although the computational power constantly becomes cheaper and more accessible, it is not
infinite. Therefore efficient techniques able to exploit finite amount of predictive information
content of the data and limit the computational requirements of the resource–hungry predictive
system design procedure are very desirable. In designing such techniques this work once again
investigated and exploited inspirations coming from physics. By using an analogy with a set of
interacting particles and the resulting Information Theoretic Learning framework, the Density
Preserving Sampling technique has been derived. This technique acts as a computationally
efficient alternative for cross–validation, which fits well within the proposed methodology.

All methods derived in this thesis have been thoroughly tested on a number of benchmark
datasets. The proposed generalised predictive model design cycle has been successfully applied
to two real–world environmental problems, in which a comparative study of Density Preserving
Sampling and cross–validation has also been performed confirming great potential of the proposed
methods.
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MIP Marginal Information Potential
MISE Mean Integrated Squared Error
ML Maximum Likelihood
MLP Multi–Layer Perceptron
MNAR Missing Not At Random
MMI Maximum Mutual Information
MRS Multiple Regressor System
MSE Mean Squared Error
MV Majority Voting
NCV Nested Cross–Validation
NDPS Nested Density Preserved Sampling
OLS Ordinary Least Squares (regression)
PC Pre–Classification
PCA Principal Component Analysis
PCs Principal Components
PDF Probability Density Function
PLS Partial Least Squares (regression)
PMIP Partial Marginal Information Potential
PV Plurality Voting
RoT Rule of Thumb method
QSAR Quantitative Structure–Activity Relationship
RBF Radial Basis Function
RMSE Root Mean Squared Error
SVM Support Vector Machine
UCIP Unnormalised Cross–Information Potential

Notation

symbol description example
x scalar value x = 1
xi scalar value asith element of a set f(xi) = 2xi

x column vector x =

[
1
2

]

, x =

[
x1

x2

]

xi column vector asith element of a set f(xi) = 2xi

X matrix X =

[
x1,1 x1,2

x2,1 x2,2

]

Xi vector asith column of a matrix X =
[
X1 X2 . . . XN

]

X [R×C] matrix withR rows andC columns X =




x1,1 x1,2 . . . x1,C

. . . . . . . . . . . .
xR,1 . . . . . . xR,C





X set X = {x1, x2, . . . , xN}
X random variable or scalar, depending on the contextD = {(X,T )}, N = 100

Since a part of this thesis has been devoted to sampling techniques, for consistency a convention
used by statisticians has been followed and the word ‘sample’ denotes a collection of data
instances rather than a single instance, which is often the case in the machine learning literature.

XIII



”Nature has her own best mode of doing each thing,
and she has somewhere told it plainly,

if we will keep our eyes and ears open.”

Ralph Waldo Emerson (1860), ”Conduct of Life”

XIV



Chapter 1

Introduction

The amount of digital data generated worldwide every year is growing at an unprecedented
rate. Automatic data acquisition and storage through website tracking, loyalty programmes,
industrial process monitoring or medical records to name a few, has never been so cheap and
easy. According to the IBM UK predictions, the amount of digital data in the world will double
every 11 hours by the end of this year [27].

It might seem that one of the major challenges we are now facing is how to utilise this massive
amounts of data to its full potential. There are however other problems, the machine learning
community has been trying to address for many years, which concern the quality of acquired data.
Unfortunately none of the data acquisition procedures, be it automatic or manual, is perfect in
practice. There are many reasons for this. The sensors we are using to monitor various processes
have limited precision and sometimes fail, leading to either noisy or outlying measurements, or
even no measurements at all. The chemical or biological tests we perform are often mutually
exclusive and destructive, leaving us with incomplete information to support further decisions.
Finally, human errors made during data collection or while later entering the data into the database
also are a source of inconsistences. Moreover, we should always remember that although often
used as such, in general the term ‘data’ is not a synonym of ‘information’. Thus there is always
a risk that a data collection process, if not planned consciously and carefully enough, can produce
a huge amount of useless numbers, resulting in waste of both time and money.

The pursuit of addressing the issues emerging from growing amounts of varying quality data,
often stored in different, incompatible formats, left the smart information systems evolving into
large number of very specific techniques only capable to work in highly constrained environment,
on limited evidence and with poor complexity control mechanisms. This induces the need
for some kind of unifying framework, an information–based ‘theory of everything’ [45] many
researchers are constantly looking for.

1.1 Background

With a magnitude of various, constantly evolving predictive modelling techniques in use,
the number of completely novel approaches designed from scratch is relatively low. By looking
at the last 30 years or so, there was only a handful of truly seminal, ground–breaking inventions
in the machine learning field, some dating back even to the mid 20th century.

In the very early days of machine learning, when the computational power was very expensive
and in general not easily accessible, the rule based expert systems, sometimes referred to as the1st

generation methods, were a dominating approach [33]. They didn’t have high computational
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demands, yet in many applications they have performed sufficiently well. A common feature
of all rule based systems is, that the decision making process is completely transparent, so it is
always possible to explain exactly why the final decision is what it is. This fact in conjunction
with reasonable performance in some applications results in expert systems still being used today
in a number of cases, like banking or finance planning [79]. Perhaps the biggest drawback of rule
based systems is that the rules had to be created manually by a knowledge engineer on the basis of
knowledge extracted from domain experts. The knowledge extraction was a daunting process not
only because the experts often did not agree with each other, but also because their predictions
in many cases tended to be inaccurate. Moreover as the system evolved, the number of rules
had to grow, as was the case with the number of exceptions to the rules and then exceptions to
exceptions etc. The systems thus started losing their simplicity and transparency. Clearly, some
new workhorse of machine learning was needed.

The increase in computational power and its accessibility enabled researchers to look in
another direction – learning directly from data and not from the experts anymore. Due to
the increasing number of success stories of the Artificial Neural Networks (ANNs) in various
applications [11, 69] a huge paradigm shift towards learning from exemplars has been observed,
with a central belief that all information needed to develop a predictive model is contained in
the data. Domain knowledge has started to be seen as unnecessary, partly because it wasn’t easily
integrable into the ANN models. The shift to the learning from exemplars paradigm has brought
a group of new, previously not known problems, like estimation of the generalisation ability of
the developed model [181], the multitude of local minima encountered during model training,
which is usually a gradient–driven optimisation process and many more. Nevertheless, the late
80s and the 90s were definitely dominated by the neural networks.

At the beginning of the21st century the interest has gradually switched towards a new
technique – the Vapnik’s Support Vector Machines (SVMs) [28, 176, 177], which do not have
many of the drawbacks of neural networks and have very sound theoretical foundations. The large
number of past and current success stories (the three publications on SVMs referenced above
currently have in excess of 45k citations), makes SVMs the state–of–the art technique for
classification and regression as of today. SVMs, as well as neural networks are sometimes
regarded as the2nd generation machine learning methods.

Throughout the years there was also a great deal of research effort focused on the application
of probability theory to machine learning. The Bayesian artificial intelligence and especially
Bayes networks designed and used with the help of graphical models are more and more often
seen as the technique for bridging the gap between the domain knowledge driven and data–driven
approaches [12, 93]. Although the Bayesian framework effortlessly combines them both, and is
especially well suited for online learning, as always, there are some problems. One of the most
important is the computational complexity of calculations involving manipulation of possibly
high–dimensional probability density functions (PDFs). Since in all but the simplest cases
this cannot be done exactly, a number of approximate methods like variational Bayes [12] or
expectation propagation [109] has been designed to address this issue. This raises an important
question of how much and in what circumstances one can trust the estimates. The reality is that
often for the estimates of the probability density functions to be at least remotely accurate, one
needs immense amounts of data, which are very computationally costly to process. Nevertheless,
the probabilistic Bayesian models certainly have the potential of becoming the3rd generation
machine learning techniques.

All the methods briefly discussed above differ at various levels. One of these differences is
the inspiration underlying their development by pushing researchers in previously unexplored
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directions. The natural environment is without a doubt the most fruitful source of inspiration in
the field of machine learning. At a very high level, observation of a decision making processes
performed by the human experts resulted in the development of expert systems. At a lower level,
an attempt to copy the principles of operation of human brain led to invention of the ANNs.
The multiagent systems [39] or Genetic Algorithms (GA) [51] are just a few more examples.

The mathematical and statistical theories are another rich sources of inspiration, leading to
development of the already mentioned Support Vector Machines and the whole field referred to
as the Bayesian Artificial Intelligence.

There is however another, often overlooked source of potential inspiration – physics. There
exist tremendous similarities between physical world and artificial intelligence in the context of
machine learning. At the elementary level of information, uncertainty and complexity matter
and information naturally intertwine with each other and the physics of matter and energy often
provides the best description of information and its uncertainty [186]. In this setting energy
defined as an ability to do work corresponds to uncertainty as an ability to obtain information.

The inherent self–organisation property of various physical systems, which leads to complex
emergent behaviour of interacting parts, resulting from following a small set of elementary
rules [7] is yet another interesting phenomenon. This property at an individual particle level
not only strongly resembles machine learning tasks like clustering or data transformation, but
also perfectly fits within the ‘learning from exemplars’ paradigm mentioned earlier.

Finally, with numerous machine learning problems which still remain open, the guidance of
well established and understood physical models may prove extremely beneficial.

1.2 Project description and goals

The main objective of this research project is to explore and investigate some of the similarities
between physical world and computational intelligence in order to find inspirations and design
a new breed of nature inspired machine learning techniques. The rationale behind this line
of research lies in an attempt to adopt the well defined and formalised knowledge describing
the physical world to the immature artificial learning field.

This research intends to bridge the gaps between physics and machine learning and provide
more efficient and intelligent means for fuller exploitation of evidence which is available with
varying quality and in varying quantities. Inspirations for the artificial learning modelling were
exploited by a direct application of physical principles describing potential fields to multivariate
data vectors treated as charged particles, as well as by using the recently developed Information
Theoretic Learning (ITL) framework for online estimation and manipulation of entropy, which
also demonstrates deep analogies with physical fields, but without being so strictly constrained.

The study presented in this thesis explores and targets various challenging aspects of
the classical predictive system development cycle. This is achieved by exploring usability of
strong physical analogies as well as weaker physical inspirations for providing alternative to
existing solutions and proposing completely novel ones.

The goals of this research project can be summarised as:

1. To develop and validate on real problems, a predictive system design methodology which
would facilitate building of well–performing predictive models, even in the absence of
domain knowledge. Application of this purely data–driven methodology to real–world
problems should result in predictive systems with performance comparable to the ones
designed by the experts in a given problem domain. This will be achieved by offsetting
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the lack of domain knowledge by additional computations and automation of all possible
activities, which are usually performed manually.

2. To develop a unified classification framework by exploiting the concept of dynamic
data–particle based optimisation processes and physical fields interaction, with inherent
support for handling deficient inputs and ability to learn not only from labelled data, but
also from a mixture of both labelled and unlabelled datasets.

3. To facilitate efficient learning from large datasets, where the computational requirements
are currently the biggest obstacle, by addressing this issue at the high level, independent of
the actual machine learning model used, taking advantage of the ITL criteria.

The above goals address the predictive system design process at different levels, from individual
base models to validation of obtained systems to proposing a novel generalised methodology for
building multistage predictive models. As such, they can also be seen as a proof of concept,
confirming the potential of physically inspired methods in the field of machine learning.

1.3 Original contributions and publications resulting from this work

The original contributions of this work are:

• Derivation of a rigorous predictive system development methodology/cycle, verified on
two real–world problems including the Environmental Toxicity Prediction Challenge
CADASTER 2009 [17]. The developed purely data–driven predictive system was awarded
as the First–Pass winner, non–significantly different from the top performing submission.

• Comprehensive, extendible Electrostatic Field Classification Framework (EFCF) for
supervised and semi–supervised learning from incomplete data [15, 20], which takes
advantage of a direct analogy with physical fields by treating multivariate data vectors as
charged, interacting particles.

• Novel Density Preserving Sampling (DPS) technique [16, 18] as an alternative to standard,
commonly used cross–validation (CV), reducing the computational requirements of
generalisation error estimation procedure by an order of magnitude, without compromising
the quality of estimate and protecting against typical pitfalls connected with random
sampling. DPS is a result of indirect physical inspiration in a form of Information Theoretic
Learning framework for online entropy estimation and manipulation.

• Experimental comparative study of probability density function divergence estimators
and their usability in sampling for generalisation error estimation [19]. The study
calls into question the accuracy of the estimators for datasets smaller than thousands
of instances. Nevertheless an attempt is made to exploit the divergence estimators for
representative sampling to further reduce the computational requirements of generalisation
error estimation by another order of magnitude when compared to 10 times repeated
10–fold cross–validation.

• Multi–stage Multiple Classifier System (MCS) for robust predictive modelling of water
pollution using biomarker data [21, 119], developed by taking advantage of the proposed
predictive system development methodology and a Missing Not at Random (MNAR) data
modelling approach.
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The following peer–reviewed conference and journal publications are a result of this work:

• M. Budka and B. Gabrys, “Electrostatic Field Classifier for Deficient Data”, inComputer
Recognition Systems 3, ser. Advances in Soft Computing, M. Kurzynski and M. Wozniak,
Eds. Springer, 2009, vol. 57, pp. 311–318.

• M. Budka and B. Gabrys, “Electrostatic field framework for supervised
and semi–supervised learning from incomplete data”,Natural Computing,
DOI:10.1007/s11047-010-9182-4.

• M. Budka, B. Gabrys, and E. Ravagnan, “Robust predictive modelling of water pollution
using biomarker data”,Water Research, vol. 44, no. 10, pp. 3294–3308, 2010.

• M. Budka and B. Gabrys, “Ridge regression ensemble for toxicity prediction”,Procedia
Computer Science, vol. 1, no. 1, pp. 193–201, 2010.

• M. Budka and B. Gabrys, “Correntropy–based density–preserving data sampling as an
alternative to standard cross–validation”, inProceedings of the IEEE World Congress on
Computational Intelligence. IEEE, 2010, pp. 1437–1444.

• M. Budka and B. Gabrys, “Density Preserving Sampling (DPS) for error estimation and
model selection”,IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010
(Submitted).

• M. Budka and B. Gabrys, “On accuracy of PDF divergence estimators and their
applicability to representative data sampling”,IEEE Transactions on Knowledge and Data
Engineering, 2010 (Submitted).

• D. Pampanin, E. Ravagnan, S. Apeland, N. Aarab, B. Godal, S. Westerlund, D. Hjermann,
T. Eftestøl, M. Budka, B. Gabrys, A. Viarengo, and J. Barsiene, “The Marine Environment
I.Q. concept. Developing an Index of the Quality of the Marine Environment based on
biomarkers: integration of pollutant effects on marine organisms.” inProceedings of
the 27th ESCPB (New European Society for Comparative Physiology and Biochemistry)
Congress, 2010 (Accepted).

1.4 Organisation of the thesis

The structure of this thesis and the dependencies between the chapters have been outlined in
Figure 1.1. Chapter 2 provides a high level introduction to machine learning and physically
inspired techniques. The first part of the chapter focuses on the predictive system development
cycle, describing its classical form and then proposing a generalised version of the cycle for
data–driven design of predictive systems. In the course of the proposed cycle description,
necessary machine learning concepts are progressively introduced whenever a need arises.
This way the whole description follows a logical sequence rather than frequently referencing
the reader to a dictionary of used terms. The second part of the chapter includes a description
of a number of selected physically inspired artificial learning techniques developed to date, and
forms the theoretical basis for the rest of this thesis.

In Chapter 3 the first development resulting from this work, in a form of a comprehensive
Electrostatic Field Classification Framework is described. An original approach to exploiting
incomplete training data with missing features, involving extensive use of electrostatic charge
analogy, has been used. The framework supports a hybrid supervised and unsupervised training
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Figure 1.1:Structure of the thesis and chapter dependencies

scenario, enabling learning simultaneously from both labelled and unlabelled data using the same
set of rules and adaptation mechanisms. Classification of incomplete patterns has been facilitated
by introducing a Local Dimensionality Reduction (LDR) technique, which aims at exploiting
all available information using the data ‘as is’, rather than trying to estimate the missing
values. The performance of all proposed methods has been extensively tested in a wide range
of missing data scenarios, using a number of standard benchmark datasets in order to make
the results comparable with those available in current and future literature. Several modifications
to the original Electrostatic Field Classifier (EFC) aiming at improving speed and robustness in
higher dimensional spaces have also been introduced and discussed.

Chapter 4 has been devoted to the ITL–based Density Preserving Sampling technique as
an alternative to the standard cross–validation, which unlike the latter is not stochastic and thus
does not require multiple repetitions in order to produce reliable results, leading to considerable
computational savings. DPS divides the available data into subsets by maximising a measure of
representativeness of the input dataset. This allows to produce low variance error estimates with
accuracy comparable to 10 times repeated cross–validation at a fraction of computations required
by CV. The method can also be successfully used for model ranking and selection. The usability
and performance of DPS is investigated using a set of publicly available benchmark datasets and
standard classifiers.

In Chapter 5 the possibility of selecting a representative subset of data from a larger dataset in
a context of accurate estimation of the generalisation performance of a predictive model is further
investigated. An experimental comparative study of various estimates of a range of probability
density function divergence measures, using a number of synthetic and benchmark datasets
is performed. While correlation of the generalisation error with divergence was the primary
motivation of this study, it has led to more fundamental analysis of usefulness of the divergence
measures, and more accurately their estimators.

Chapter 6 has been devoted to the application of the proposed generalised predictive system
development cycle and physically inspired methods to two real–world environmental problems:
toxicity prediction and marine pollution monitoring. It is demonstrated that purely data–driven
approaches can successfully compete with predictive models developed by the experts in their
respective areas. The impact of the physically inspired models derived in this thesis on the two
problems is also investigated.

The concluding Chapter 7 summarises the main findings of the project and indicates directions
for further research.
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Chapter 2

Machine learning and physically
inspired techniques

2.1 Introduction

There are many different definitions of machine learning in the literature [4, 12, 40, 110, 162].
At the lowest level of abstraction learning can be described as estimation of the parameter values
of a learning machine using a set of available exemplars in order to optimise some criterion
function [40]. This definition not only covers all learning scenarios presented in Figure 2.1, but at
the same time, in the spirit of the ‘learning from exemplars’ paradigm, also emphasises the role
of training data used during parameter estimation. There are however other ways of looking at
the process of machine learning. One of the most general definitions assumes that the learning
machine is exposed to a single or multiple sources of information and the goal of learning is to
explore and exploit the redundancies from these sources [128].

Whichever definition one chooses to adopt, any method that incorporates information from
training data necessarily implies some form of learning. Based on the availability and type of
data, the following forms of learning, also presented in Figure 2.1, can be distinguished [40]:

• Supervised learningalso known as learning with a teacher, in which the learning machine
is provided not only with the input data, but also with the corresponding values of the target
variable. An example can be a classification task, in which the predictive system is
expected to learn how to recognise handwritten characters, and is given both the input
data (e.g. a bitmap representing the character) as well as the class label (e.g. information
which character the bitmap actually represents). Another example of supervised learning
is regression, in which the model learns how to predict values of a continuous (rather than
discrete) variable on the basis of available input data.

• Unsupervised learningalso known as learning without a teacher, in which the learning
machine is provided with the input data only. This kind of learning is usually associated
with data density estimation or clustering, in which a natural grouping of the input instances
is sought. The word ‘natural’ implies grouping the instances in such a way, that the ones
belonging to the same group are similar to each other but dissimilar to the rest. The result
of clustering thus strongly depends on the adopted definition of the similarity measure.

• Semi–supervised learning, which is a mixture of both supervised and unsupervised
learning. It is often the case, that although the supply of labelled data which can be used
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for supervised learning is limited for various reasons, unlabelled data is abundant and easy
to obtain. Semi–supervised learning algorithms try to take advantage of this fact in order to
improve their predictive power and accuracy.

• Reinforcement learning also known as learning with a critic, which is an intermediate
learning strategy between supervised and unsupervised learning. In reinforcement learning
the only information available, apart from the input variables, is if the prediction of
the system is right or wrong. The feedback is thus evaluative, not instructive and in extreme
situations, it is given only after a long sequence of inputs.

Figure 2.1:Learning strategies and how they relate to each other

2.2 Designing a predictive system

A predictive systemS can be defined as a mathematical model, which tries to approximate
an existing yet unknown true mappingM : Rd → Rc from d−dimensional input spaceX into
c−dimensional output spaceZ:

M : X → Z (2.1)

For the systemS to capture the characteristics of mappingM which are relevant from the point
of view of future predictions generated byS, a learning algorithm must be employed in order to
adjust the parameters ofS in an appropriate way. To achieve this goal, the learning algorithm must
also be equipped with sufficient information, which in the spirit of the ‘learning from exemplars’
paradigm comes in a form of training datasetD consisting ofN instances drawn independently
and identically distributed (i.i.d.) according to some probability lawp(x):

D = {(X,T )} = {(x1, t1), (x2, t2), . . . , (xN , tN )} (2.2)

wherexi ∈ Rd is an input vector andti ∈ Rc is the corresponding target vector. Denoting
by zi the true value of the mappingM , in general due to limited precision of the measurement
instruments and other flaws of the data collection process,ti 6= zi but rather:

ti = zi + εi (2.3)

whereεi is assumed to be a zero–mean random noise element [11, 40], that is the expectation
E [εi] = 0. The predictive systemS : Rd → Rc thus becomes an approximate mapping:

S : X → Y (2.4)
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whereY is the space of predictions generated byS. It is interesting to note that the above
definition applies to both regression and classification problems, as they differ only by the possible
values the target variable can take (continuous or discrete).

In order to measure how well a predictive system models the unknown mapping, an error
function is used, which in a general form can be written as:

err (Y, T ) =
1
N

N∑

i

f (yi, ti) (2.5)

where for regression problems typicallyf(a, b) = (a − b)2 leading to the Mean Squared Error
(MSE) function [11, 40] discussed in more detail in the following sections. In the case of
classification problems with the target variable being a discrete scalar value representing the class
label, oftenf(a, b) = (1− δa,b), whereδa,b is the Kronecker delta function given by:

δa,b =

{
1, if a = b

0, if a 6= b
(2.6)

The relationship between input, output, and target predictions spaces, true and approximated
mappings, noise process and error function has been depicted in Figure 2.2.

Figure 2.2: Relationship between input, output, and target predictions spaces, true and approximated
mappings, noise process and error function

2.2.1 Classical predictive system design cycle

In order to build a well–performing predictive model a systematic approach should be taken,
usually leading to an iterative design procedure. A classical predictive system design cycle has
been depicted in Figure 2.3 [40]. The cycle entails a number of clearly defined steps, which must
be followed and repeated if needed, until a satisfactory result is obtained.

Data collection

The procedure which can account for a large part of time and cost required to develop a system.
The main problem at this stage is how to tell that the amount of collected data is sufficient and
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Figure 2.3:Classical design cycle of a predictive model

that the data is representative. In the considerations contained in this thesis it is usually assumed
that the data has already been collected and the data acquisition process itself is not investigated,
with one exception of the biomarker data used in the study described in Chapter 6.

Feature selection

A critical step strongly depending on the problem, often making use of available prior/domain
knowledge, but also possible to be performed in a purely data–driven way. This step involves
selection and/or transformation of features/attributes which have been measured during data
collection. The selected features should be relevant, simple to extract, insensitive to noise and
to irrelevant transformations but it may turn out, that due to a flawed data acquisition procedure
none of the features is of any use. The problems which arise here, apart from the obvious ‘how
to select good feature subset’ are often much more subtle, like how not to select wrong features,
how to combine domain knowledge with empirical evidence or how many features to choose.

Model selection

With a magnitude of different predictive models to choose from, ranging from simple linear
classifiers and regressors, to Artificial Neural Networks and Support Vector Machines, how to
choose a correct one for the problem at hand? Or better yet, how to tell if the current model
is good or not? One possible solution used throughout this thesis is to select multiple diverse
models rather than a single one and combine them to obtain a Multiple Classifier/Regressor
System (MCS/MRS) also known as the ensemble model. The problem of scoring the models
and discarding the ones which are useless however still remains. Also, if prior knowledge e.g. on
suitability of some class of models for similar problems is available it can be used here, but one
should not depend on the domain knowledge entirely.

Model training

Training is the process of adjusting model parameters to fit the data. There are many different
procedures for training even the same class of models, e.g. the Artificial Neural Networks. For
practical considerations, two ANNs trained using different methods are usually treated as two
separate models, which shifts the problem of choosing a learning procedure towards model
selection. The choice of data for training is also not a trivial issue – should all available data
be used to train a model or only some part of it? If only a part of data is to be used, how large
should it be, and more importantly, how should it be selected?

10
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Model evaluation

A critical step involving assessment of performance of the designed system and identification of
components which need improvements. The central difficulty is what measure of performance to
use and how to estimate it. For example, should the error on the training data be used for model
evaluation? Or maybe an error on novel, previously unseed data would be a better choice? And if
one decides to use the latter, where to get more data? Or perhaps it is possible to do without it?

At this step it is possible to repeat any number of previous steps if model evaluation reveals
unsatisfactory performance. In theory thus, the design cycle could be repeated many times, for
example using random subsets of features or randomly selected models. In practice however
the available computational resources are usually the limiting factor. Does it mean that one should
give up randomness completely, although it is known to be useful in many practical cases [11, 40]?
Or maybe there is a controlled way to take advantage of the benefits of randomness without
stretching the computational resources too much? In order to answer all these questions, a more
advanced predictive system methodology is needed.

2.2.2 Generalised predictive system design cycle

A generalised predictive system design cycle, which has been followed in order to develop
successful systems described in Chapter 6, is proposed below. Similarly to the classical cycle,
it is a number of clearly defined steps one needs to follow to develop a reasonably performing
predictive system. The generalised cycle has been depicted in Figure 2.4. The main assumption
is that the data has already been acquired, so the data collection step can be omitted. Before
describing the proposed design cycle, some of the terms used in Figure 2.4 and the description
itself are explained below:

• Base model poolis a set of classification or regression models, depending on the problem.
For the list of base models used in this thesis please refer to Tables B.1 and B.2.

• Preprocessor poolis a set of data preprocessing methods, including but not limited to:

– feature selection algorithms (e.g. greedy methods – forward, backward,
plus–L–takeaway–R [40, 175], semi–random methods – Genetic Algorithms [8, 51]
or Simulated Annealing [24, 90] and random methods),

– linear and non–linear feature transformation (e.g. Principal Component Analysis
(PCA) [87], Linear Discriminant Analysis (LDA) [48], Maximum Mutual
Information (MMI) projection [9, 166, 167, 168, 169, 170, 165]); some of these
methods are discussed in more detail in Chapter 6,

– outlier detection, denoising and other data cleansing algorithms [178],

– missing data handling algorithms [63, 117, 136] if required (see Chapter 3 for a more
detailed treatment of the missing data problem and a description of some standard
protocols for dealing with it).

Note that preprocessing can have multiple stages, e.g. outlier detection and removal,
followed by missing data imputation, followed by Principal Component Analysis. For
clarity, in Figure 2.4 and the following description of the generalised design cycle, all these
steps would be denoted as a single preprocessing routine.

11
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• Candidate model is a base model paired with one or more preprocessing technique,
e.g. an Artificial Neural Network using a subset of features (receptive field). In consecutive
iterations of the main cycle, whole ensembles from previous iterations can act as candidate
models, leading to multistage structures [142].

• Error estimator pool is a set of error estimation algorithms, including the hold–out and
random subsampling methods [181], the bootstrap method [44], cross–validation [29] and
the Density Preserving Sampling technique proposed in Chapter 4.

• Model selection criterion pool is a set of criteria for model selection, e.g. select topN
models, select models with performance better than average, discard worst 20% of models
(also known as trimming) etc.

• Postprocessor poolis a set of model combination methods used for ensemble building,
including voting combiners (e.g. Majority Voting (MV), Plurality Voting (PV)), averaging
combiners (mean, median), weighted versions of the above or even any subset of base
models trained on the outputs of ensemble members [139, 173].

The rationale behind using multiple base models, error estimators, pre– and postprocessing
techniques is to encourage diversity in the members of the final combined model, as it is believed
to have positive stabilising influence on its performance [138]. As a result, a general rule which
applies to all the pools listed above is that the larger and more diverse they are, the better.
However, in constructing the pools any available domain knowledge should be taken into account,
e.g. which base models or preprocessing techniques are better or worse suited for a given problem.

Figure 2.4:Generalised design cycle of a predictive system
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Inspection of the data

Inspection of the data is an important activity, which should be treated as a preparatory stage
before commencing with building a predictive system. Even superficial manual examination of
the data using basic statistical and plotting techniques will quickly reveal any missing or outlying
observations, at the same time suggesting what the potential difficulties resulting from the amount,
dimensionality and quality of data can be. Inspection of data will often also suggest for example
which techniques not to include in thebase modelor preprocessor pools(if no data is missing
there is no reason to have missing data handling routines in the pool). Although the idea behind
the generalised predictive model design procedure is that it can be run autonomously, the findings
of this type can save a lot of computations, thus the time spent on data inspection will most likely
pay back. Nevertheless due to its manual nature, the step can be treated as optional and has not
been explicitly shown on the diagram in Figure 2.4. An example of biomarker data examination
using standard statistical techniques is given in Section 6.3.2.

Candidate model generation

In the first step of the generalised predictive system design cycle a given number of candidate
models is generated, using various preprocessing techniques and base models. Denoting
the chosen base model byMB and theith chosen preprocessing technique byP

(i)
pre, a candidate

modelMC becomes:

MC =
(
MB ,

(
P (1)

pre, . . . P
(n)
pre

))
(2.7)

where a single base model can be paired with multiple preprocessing methods to allow for
multistage preprocessing as discussed earlier. Generation of candidate models can be achieved by
combining preprocessors and base models randomly, using some form of domain knowledge or
information gathered during model and ensemble evaluation in consecutive iterations of the main
cycle. Even if this kind of information is used, it is important to still allow for some randomness to
alleviate the danger of being caught in a locally optimal state, e.g. by using Genetic Optimisation.

The goal of preprocessing is to prepare the data for further use. Apart from addressing
the missing data or the outlier problems this way, the usual reason for preprocessing is
the dimensionality reduction [11, 12, 40]. The potential problems resulting from working
in high–dimensional spaces are collectively known as the ‘curse of dimensionality’ [11, 40].
Although this phenomenon can have many facets, they all have a common cause – the amount of
data, which never seems to be enough and often covers only a fraction of the input space. This is
caused by the fact, that the amount of data required to fill the input space grows exponentially
with its dimensionality. The solution is to reduce this dimensionality somehow, either by
selecting a subset of interesting attributes or performing a transformation into lower dimensions.
The dimensionality reduction techniques are also useful from another point of view – they enable
detection and removal of collinear and other irrelevant attributes, which might cause numerical
problems for some base models. A more detailed treatment of some practical problems resulting
from the ‘curse of dimensionality’ can be found in Chapter 6.

Model training

After the candidate models have been generated they can be trained using available training data.
The problem here is that large amount of data with specified values of the target variable is usually
difficult and expensive to obtain. Moreover, although it might be tempting to use all available data
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for training, this would imply assessing the performance of the obtained predictor on the basis of
training error only, in most cases leading to overfitting [11, 40].

(a) Sinusoid with 10 points sampled with noise

 

 

(b) Quadratic function (underfit)

 

 

(c) Degree 9 polynomial (overfit)

 

 

(d) Cubic function (proper fit)

Figure 2.5:Curve fitting example

In order to explain the overfitting issue, following [11] Figure 2.5 presents a simple curve
fitting example. The task is to model the unknown underlying function (which is a sine) by using
ten points, sampled i.i.d. with noise. This has been depicted in Figure 2.5(a), where it can be seen
that most of the points do not lie exactly on the sinusoid, although they follow it closely1.

In Figure 2.5(b) a quadratic function has been fit to the data and as it can be seen, it does not
capture the underlying function nor the training data – high training error would however reveal
this fact. The quadratic polynomial is not complex or powerful enough to model the sinusoid and
it underfits the data.

In Figure 2.5(c) a degree 9 polynomial fit to the same set of points is presented, capturing
the training data perfectly. The underlaying sine function is however not captured very well,
especially at the right part of the plot, where the two curves diverge. Unfortunately, since
the polynomial passes exactly through all ten training points, the training error is 0, giving a false
sense of a success. It is said that the model overfits the data because it is too complex for this
particular problem.

1There might be various reasons for the measurements to be noisy, usually connected with limited precision of
the measurement instrument or process, thus in practice it is reasonable to assume that the data is always noisy.
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The best solution appears to be a cubic polynomial, which is neither too complex nor too
simple. By examining Figure 2.5(d) it can be seen that the training error is at a reasonably low
level (although not 0) and the underlying function is also modelled well (although not perfectly,
due to noisy input data). The problem is, that if one was to judge the model basing on the training
error only, the complex degree 9 polynomial would be selected, which obviously is a suboptimal
choice.

Model evaluation

The performance of all trained models is assessed at this step using one or more error estimation
methods drawn from theerror estimator pool. The need for using special error estimation
techniques (which should not be confused with the error function given in Eq. 2.5) stems
from the behaviour of the predictive models presented in Figure 2.5 and their susceptibility to
overfitting. As mentioned before, the training error is usually not a good measure of future
performance and the solution is to measure the error using independent test data instead [40].

In Figure 2.6(a) the plot of training and test errors as functions of the amount of training
(number of epochs – presentations of the data) for an Artificial Neural Network has been given.
For presentation purposes the vertical axis has a logarithmic scale but the actual values on the
axes are irrelevant for now. As the number of epochs grows, the training error (solid red curve)
becomes smaller and smaller. If the network is powerful enough (that is, if it has enough
adjustable parameters), due to its universal approximation property [11] the training error would
eventually approach 0. The test error (dashed blue curve in Figure 2.6(a)) however behaves in
a completely different way. After initial decrease, it starts climbing and the two curves move apart
as the training progresses. This is a clear sign of overfitting – the network begins to ‘memorise’
the dataset, losing its generalisation ability. It is interesting to note, that for models which are
not universal approximators, a plot of errors v. model complexity (degree of the polynomial in
the curve fitting example of Figure 2.5) would have a similar shape.

The prediction errors of a network trained until the training error approaches 0 have been
shown in Figure 2.6(b). Figure 2.6(c) presents the prediction errors of a network with minimum
test error. Both plots have been created using a third, independent dataset. It’s easy to see that
in case of the second network the points are much more concentred about thex = y line, which
denotes better performance (for 0 error all points would lie exactly on thex = y line).

Since additional data for testing is often difficult to get hold of, a common practice is to reserve
some part of available data to serve exactly this goal. The question now is, how to divide the data
into a training and test part and how big should these parts be, not to risk ending up with training
or test data which does not cover large parts of the input space. There exists a number of standard
techniques to address this problem, which have already been mentioned in the description of
theerror estimator pool. A more detailed treatment of the error estimation issue can be found in
Chapter 4 of this thesis.

Another important issue which needs to be discussed here is the choice of error function.
Traditionally the Mean Squared Error is the most popular choice as it has been a workhorse of
machine learning for many years [11]. This is due to its nice analytical properties like continuity,
differentiability, existence of a number of effective optimisation algorithms or the so called
bias–variance decomposition [57]. MSE however also received some criticism, mainly for not
taking advantage of higher order moments of the PDF estimated from data and some ITL based
alternatives have been proposed [46, 47, 103, 127, 148]. Using the notation introduced in Eq. 2.5,
the Mean Squared Error function can be written as:
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(a) Errors v. amount of training for an Artificial Neural Network
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(c) Model with the lowest test error

Figure 2.6: Errors as a function of the amount of training (a) and performance of models chosen on
the basis of (b) training error and (c) test error

MSE (Y, T ) =
1
N

N∑

i

(yi − ti)
2 (2.8)

Since a single value of MSE is dependant on a given realisation of the datasetD, it is interesting
to analyse the expectation of MSE considering an average over an infinite number of datasets of
sizeN [11]:

ED [MSE (Y, T )] =
1
N

N∑

i

ED

[
(yi − ti)

2
]

(2.9)

After some manipulation and rearranging the expectation inside the sum becomes:

ED

[
(yi − ti)

2
]

= (zi − ED [yi])
2

︸ ︷︷ ︸
(bias)2

+ ED

[
(yi − ED [yi])

2
]

︸ ︷︷ ︸
variance

+ ED
[
ε2
i

]

︸ ︷︷ ︸
noise

(2.10)

As it can be seen, the generalisation error of a predictive system can be split into the following
three components:

• Bias term, which reflects how much on average the mappingS is different from the true
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mappingM over all datasets of a given size. IfS was a constant function independent of
the dataset, although the variance term would vanish, the bias term would most likely be
very high, as the data was effectively ignored. This would result in too large values for
some datasets and too small for others. In the curve fitting example presented in Figure 2.5,
the model based on the quadratic polynomial is highly biased (does not fit the data very
well) but has a low variance at the same time.

• Variance term, reflecting the sensitivity of the mappingS to a particular realisation of
the dataset. IfS was a function which fits the training data perfectly (e.g. degree 9
polynomial of Figure 2.5(c)), the bias term would vanish (provided there is no noise) but
the variance would likely be high.

• Noise term, denoting the inherent noise in the data and at the same time setting a lower
bound on the error that can be achieved.

In practice a compromise is sought to provide a good trade–off between fitting the training data
and obtaining a smooth mapping able to generalise well, resulting in the so called bias–variance
dilemma.

Much of what has been discussed above also applies to the classification problems. Although
the error function is usually different (ANNs for classification also often use MSE). The goal
is to find a smooth discriminative function, which is not too sensitive to a given realisation of
the datasetD and can thus generalise well.

As mentioned before, in general the difference between the regression and classification
problems lies in the type of the target variable. The implications of this fact are however quite
important. While in regression the goal is to predict a value of a continuous target variable, in
classification the class labels are of interest [40]. As a result, in ac−class classification problem
the target variable is either a discrete scalar value between1 andc, denoting membership in one
of thec classes{ω1, ω2, . . . , ωc} or ac−dimensional binary vector:

ti = ωj ⇔ ti =
[
0 . . . 0 1 0 . . . 0

]T
(2.11)

where the ‘1’ has been placed in thejth row of ti. This is for example the case for ANNs with
MSE used as an objective function or any other classifier, which produces soft outputs denoting
the degree of membership in each class.

The basic error function used in classification is:

errclasf (Y, T ) =
1
N

N∑

i

(
1− δy i,ti

)
(2.12)

which simply calculates the percentage of misclassified instances. A more elaborate approach
also employs a cost function (or cost matrix) stating how expensive each type of an incorrect
decision is [40]. For example, in medical diagnostics it would be much more risky and potentially
dangerous to classify a person having some serious disease as healthy, than telling a healthy
patient that he or she should take some additional tests because something does not seem entirely
right. A very simple and often used variant of the cost function is an error weighting scheme
based on class prior probabilities [42], which effectively tries to approximate the probability of
error. Denoting byP (ωj) the prior probability of observing an instance belonging to thejth class,
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the probability of error becomes:

perr (Y, T ) =
1
N

N∑

i

P (ωti)
(
1− δy i,ti

)
(2.13)

If a classifier produces a soft, probabilistic output, that is:

yi = [p(ω1|S, xi), p(ω2|S, xi), . . . , p(ωc|S, xi)]
T (2.14)

and denoting byωT the true class ofxi and byωS the class with the highest support given by
the classifier, the classification error can be decomposed as [138, 156]:

errclasf (xi) = p(ωS |S, xi) [p(ωT |xi)− p(ωS |xi)]︸ ︷︷ ︸
bias

+
∑

ω 6=ωS

p(ω|S, xi) [p(ωT |xi)− p(ω|xi)]

︸ ︷︷ ︸
spread

(2.15)

+ (1− p(ωT |xi))︸ ︷︷ ︸
Bayes error

Similarly to Eq. 2.10, thebias term represents the match of the predictive model to
the classification problem, while thespread term (which is a counterpart of variance) denotes
the variability of model outputs from one dataset to another. Figure 2.7(a) presents the decision
boundaries of a simple, low variance linear classifier (fisherc, for details on the classifier please
refer to Table B.1) superimposed on a scatter plot of a synthetic, 3–class Cone–torus dataset
(Table A.1).

(a) High bias/low variance linear classifier (b) Low bias/high variance Nearest Neighbour classifier

Figure 2.7:Bias–variance dilemma for a two–class classification problem
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As it can be seen, the model does not match the shape of the classes too well (high bias) but
the decision boundary is smooth and would not change much if a different dataset sampled from
the same distributions was used (low variance).

Figure 2.7(b) depicts an opposite example – a complex, non–parametric Nearest Neighbour
classifier (knnc in Table B.1), which in fact overfits the data in a pursuit to classify every single
instance correctly. This results in high variance component, but due to the fact that the general
shapes of the classes have been captured much better than in the case of the linear classifier,
the bias component is lower.

The term deserving most attention in Eq. 2.16 is however the Bayes error, which took the place
of the noise term in Eq. 2.10 and by analogy denotes the lower bound on the classification
error, which is intrinsic to the given classification problem. The name of the error comes from
the Bayesian decision theory, in which the Bayes theorem plays a central role [12, 40, 93]:

P (ωj |xi) =
p(xi|ωj)P (ωj)∑c

k=1 p(xi|ωk)P (ωk)
(2.16)

wherep(xi|ωj) is the likelihood function, the term in the denominator is a normalising constant
called ‘evidence’ andP (ωj |xi) is the posterior probability ofxi belonging toωj . In order to
minimise the classification error, for everyxi the class with the highest posterior probability
should be chosen.

To illustrate where the Bayes error comes from, Figure 2.8 presents a plot of two likelihood
functions specific to two classesω1 andω2. As it can be seen the problem is that the likelihoods
overlap in the shaded region. The dashed vertical line represents an optimal decision boundary
minimising the classification error for equal prior probabilities of both classes. In this case,
the instances falling into the light–shaded region, whose true class isω1 would be erroneously
classified as belonging to classω2, while in the dark–shaded region the instances whose true class
is ω2 would be erroneously classified as belonging to classω1. Thus the total error would be equal
to the total shaded area in Figure 2.8, which thus corresponds to the irreducible Bayes error. Note,
that if the prior probabilities were not equal, the optimal decision boundary would be shifted right
or left in favour of the more probable class, however not affecting the size or shape of the shaded
area, resulting in the same value of the Bayes error.
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Figure 2.8:Bayes error in a two–class classification problem

All the above considerations must be taken into account during model evaluation, making it
in fact an involved and complicated task, which however can be automated to a large extent.

19



Chapter 2. Machine learning and physically inspired techniques

If the evaluation procedure reveals that the performance of the models does not meet some
predefined criterion (which can be automatically adjusted as the cycle is repeated), additional
candidate models can be generated and trained before progressing to the next step.

Ensemble generation

At this step one or more ensembles are built, using combiners selected from thepostprocessor
pool and evaluated models chosen according to a criterion from themodel selection criterion
pool. The idea behind building ensemble models is to reduce the variance at the expense of
computational complexity [98]. Following [36], there are at least three types of reasons supporting
the ensemble models:

• Statistical. Selection of a single model, which appears to be the best, always carries a risk
of making the wrong choice. The situation is even more difficult if there is a number of
classifiers or regressors which appear to perform at approximately the same level. Selecting
multiple models and combining them is a reasonable solution in this case, as even if
the ensemble is not better than its members in terms of the error, the risk of selecting
a single bad classifier/regressor is reduced by averaging out any incorrect decisions of
a single member. Moreover, the ensemble is more likely to be closer to the optimal yet
unknown model, than any randomly picked individual.

• Computational. All machine learning algorithms which perform gradient–driven,
greedy or random optimisation (e.g. training of ANNs, feature selection using Genetic
Optimisation) are susceptible to being caught in a local minimum [40]. This local minimum
is however necessarily closer to the global one than at the beginning of the algorithm, which
is usually initialised either randomly or heuristically. Aggregation of many models of this
kind should thus lead to a better approximation of the optimal model than any single one of
them.

• Representational. It might be the case that the chosen family of base models is unable
to represent the true function which one tries to approximate. For example, a linear
classifier is unable to model a non–linear decision boundary. However, a piecewise–linear
approximation of this non–linear function in a form of an ensemble of linear classifiers is
able to represent it with an arbitrary precision, depending on the size of the ensemble.

The above touches upon a very important problem in the design of combined models –
the diversity [99]. The models to be combined should not only be accurate (that is better than
random guessing), but they should also be different in order to complement each other, for
the combination to be beneficial. After all, having e.g. three opinions on the same problem
coming from different sources is better than having one, unless all three are always the same.
Unfortunately there is no known universal notion or measure of diversity [138]. As mentioned
before, in the generalised predictive model design cycle the diversity is encouraged by using pools
of different methods and allowing for some randomness at every possible step of the procedure.

Ensemble evaluation

The performance of the generated ensembles is assessed in this step. Note, that the loop to
the previous step not only allows to generate more ensembles if current performance is not
satisfactory, but also facilitates building of multistage organisations [142], in which current

20



Chapter 2. Machine learning and physically inspired techniques

ensembles take place of the trained models. A similar structure is developed and described in
Chapter 6 to address a real environmental problem.

Note, that in order to reliably assess performance of the ensemble, the data not previously
used for training or evaluation of the candidate models should be used. This implies that a third
dataset is needed if multiple candidate models are to be combined. One way to address this issue
is a nested cross–validation scheme (NCV) proposed in Chapter 6.

If enough computational resources are available, the whole main cycle can now be repeated in
order to generate more candidate models and ensembles. In case of postprocessors, which belong
to the boosting algorithms group (e.g. AdaBoost [52]), the whole main cycle usually needs to be
repeated multiple times, as only one model is included into the ensemble at each iteration.

In practice, development of a well–performing predictive system is in fact a search in
a high–dimensional space of base models, pre– and postprocessors, error estimators etc. Although
the search is guided, as mentioned before it should allow for some randomness at the same
time. Hence as before, the main limiting factor are the available computational resources, which
fortunately constantly become cheaper and more accessible.

2.3 Physically inspired learning

It is astonishing how difficult, complex problems are being solved all the time in the physical
world, by various biological systems. The ability of animal and human brain to make
correct decisions given uncertain, incomplete and noisy evidence, the ease with which social
insects like ants, bees, wasps or termites solve complex, optimisation problems are just a few
examples. Those phenomena became inspirations for a number of nature inspired learning
systems like neural networks, swarm intelligence or genetic and evolutionary algorithms,
which have gained popularity in real life applications due to good performance coming at
an acceptable computational cost [38, 39, 40, 67]. The ultimate success of those techniques
pushed the researchers into a related but somewhat different direction – the physical phenomena.

There exists a number of analogies between the physical world and computing. The oldest
one and at the same time the best known is the classical Shannon’s definition of entropy [155],
which is the basis of the theory of communication and is a counterpart of thermodynamic entropy
describing the degree of order among physical gas particles [144, 186].

The Generalised Theory of Uncertainty (GTU) supports an analogy between energy and
uncertainty. As opposed to the definition given by the probability theory, GTU distinguishes many
forms of uncertainty, perceived as a constraint on the values that a variable can take. In this setting,
various forms of energy measured in Joules and seen as capacity to do work, correspond to various
forms of uncertainty measured in bits and seen as capacity to obtain information [141, 183, 186].

The Coulomb classifiers described in [76, 77] are another group of physically inspired learning
machines. The classifiers form a family of models based on analogy to a system of charged
conductors, trained by minimising the Coulomb energy. Three different types of classifiers are
proposed, based on uncoupled point charges, coupled point charges and coupled point charges
with battery. The Coulomb classifiers are in fact Support Vector Machines but the physical
analogy allows to obtain novel types of them comparable or even superior to standard SVMs.
The classifiers also provide some insight into the problems that SVM algorithms face in high
dimensions caused by using kernels with exponential fall–off, which has stimulated studies on
alternative solutions like Coulomb or Plummer kernels.

Yet another example of physically inspired learning was given in [64]. The authors used
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an electromagnetic field analogy to derive an efficient, graph based clustering algorithm,
outperforming standard clustering techniques especially in high–dimensional spaces.

Some research efforts in the area of physically inspired data mining have also been focused on
exploratory data analysis using acoustic data presentation rather than visualisation [70, 71, 80].
The technique termed ‘sonification’ allows to reveal information about data clustering [71] or
principal curves [70] by examining particle dynamics in a data potential. The analysis is based on
a model of environmental sound production, assuming on–demand excitation of the system and
auditory perception optimised to use the interaction between action and feedback [71].

Finally, the analogy to physical fields resulting in the powerful information field concept [75,
127, 170], which treats data instances as charged particles, allowing each of them to actively
contribute to finding the solution of a problem, was exploited in [143].

2.3.1 Data field models

The physical field analogy has been used as a basis of a number of models, resulting
in a comprehensive machine learning framework for classification, clustering and data
condensation [147]. The basic assumption is that each data instance can be treated as a particle
being a source of a central field, which allows for interactions with other particles according
to a set of well established rules. The gravity, electrostatic and Lennard–Jones potential field
models derived in [147] have been sketched in the following sections. First two of them form
a basis of the Electrostatic Field Classification Framework for supervised and semi–supervised
learning from incomplete data derived in Chapter 3, thus for their detailed description please
refer to Sections 3.2.1 and 3.2.2.

Gravity field model

One of the simplest ways to take advantage of the field analogy in machine learning problems
is a model suggested by the gravitation. The gravity field is central and attracting, and is
characterised by a negative potential growing with the distance from the field source [65, 143].

The model assumes the field to be static, which means that all data instances being the sources
of the field are immobile and fixed to their initial positions. The instances are treated as
information particles carrying elementary units of charge and thus each of them is a source of
a central field. The superposition of individual contributions of all training instances defines
the field potential in any point of the input space. Thus any test instance injected into this field
will be subjected to a force, which by analogy to the gravity field, will try to drag this instance
into the lowest energy level.

The training dataset uniquely identifies the field, thus the field is given instantly. In
a supervised learning scenario this implies that no training process is required.

The gravity field model described above can be used to perform the following tasks:

• Classification. The classification procedure with the gravity field model, leading to
the Gravity Field Classifier (GFC) is very simple. As mentioned earlier, the potential
results in a force able to move a mobile, unlabelled test instance to finally meet one of
the fixed field sources and share its label. The magnitudes of the forces are ignored and
only their directions are followed, taking a small, fixed stepr at a time. This allows to
avoid problems in the vicinity of field sources, where the magnitudes of the forces are
so big, that the test instances would not only overshoot the sources but would be literally
‘ejected’ by the field. The whole field is then recalculated and the procedure is repeated
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until all test instances approach one of the sources at a distance equal to or lower thanr and
are labelled accordingly. Since all possible trajectories end up in one of the field sources,
the space is thus divided into distinct regions representing classes.

• Clustering. Since the labels of training instances in GFC are not used until the very end
of the classification process, the mechanism is in fact unsupervised and as such can be
almost readily applied to clustering problems. Two modifications are however required: all
data instances must be set free to move in the direction of the force, and this movement
must be limited by the mass of the instance [143, 144]. Every time two instances come
close enough to each other, they are joined to form a new cluster with a mass and charge
equal to the sum of joined instances (or clusters). As a result, the interaction of a new
cluster with other objects (instances and clusters) becomes stronger, while at the same
time the cluster becomes less ‘willing’ to move. All other calculations are the same as in
the case of the gravity field classifier. The granularity level obtained depends on the moment
the procedure is stopped [144].

The gravity field model has been described in more detail in Section 3.2.1.

Electrostatic field model

As mentioned before, during the classification process the gravity field model does not take
advantage of class labels given with the training data. This information is hence wasted and by
exploiting it, one can expect a performance boost. The solution is to employ not only the attracting
force but also a repelling force in a way, that instances coming from the same class would attract
each other, while instances coming from different classes – repel. This time the physical analogy
is the electrostatic field [65].

There is a problem however – the class label of a test instance to be classified is obviously not
known in advance (the goal of the classifier is to assign it) and hence it cannot directly interact
with the field sources (training instances). To facilitate this interaction, each test instance must
be first decomposed into a number of subinstances, belonging to one of the target classes. This
can be achieved by using some density estimator (e.g. Parzen window). However, as detailed in
Chapter 3, in order not to introduce additional parameters, those partial memberships are assigned
in proportion to the gravity field potential of all classes in the test point.

The electrostatic field model described above can be used to perform the following tasks:

• Classification. The classification process follows the same rules as in the case of gravity
field model. As expected, classification performance and generalisation properties have
improved due to better class separation and smoother decision boundaries, which however
comes at the price of reduced diversity [143].

• Data condensation. The electrostatic field model can also be successfully applied to
the problem of data condensation [144]. In this scenario the field sources carrying different
class charges keep interacting with each other and moving in the direction of the field
forces until no more shifts can be encountered. Similarly to the clustering mechanism,
the process becomes a simulation in which the instances are joint together whenever they
come into proximity, forming new, heavier data points with combined charges. This merger
naturally decreases the total number of instances and can hence be seen as the process of
data condensation. Unlike for clustering, the labels of all data points are known in advance
and are actively used to influence the field around the instances.
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The condensation process follows the procedure described before – at each step the forces
are recalculated, the instances are shifted by a small, predefined amountr in the directions
of the force vectors, all data points are then tested for mergers and merged accordingly.
The simulation can be stopped at any time when the desired condensation level is obtained,
or can terminate on its own when only negligible shifts are observed [146, 147].

An important issue is to define how the original class charges evolve during the process and
how to resolve conflicts, when two instances from different classes come into proximity.
This can be addressed in a number of ways, which resulted in two families of models:

– Crisp Dynamic Data Condensation, where each data point is considered to carry
indivisible charge. There are two scenarios possible: unlabelled and labelled.
The unlabelled model uses attracting interactions only. Since all instances tend to
gradually merge into a single data point, the simulation needs to be applied to each
class separately [147]. The result is a set of data points, each of them representing one
of the classes. The labelled approach takes advantage of both attracting and repelling
forces. Since labels of all instances are known, there is no need for a soft membership
assigning function. However, one needs to deal with the issue of collisions, when
instances from two different classes meet. The collisions can be resolved using partial
class memberships calculated in the same way as in the case of the classification
problem to choose the winning class [147].

– Soft Dynamic Data Condensation, where charges are described using some soft
membership function. Once again, the partial memberships of the Electrostatic Field
Classifier can be used. Density estimates must be however first normalised and
scaled to sum up to a unit. There are now three options of how those soft labels
can behave during the simulation. The most conservative model (Soft Fixed–Field
Condensation) assumes that the field built using the original data is kept unchanged
throughout the simulation. Label partitions on the other hand can change freely
while an instance travels down the force vector. As a result there are no collisions
and the original dataset density structure is preserved as faithfully as possible. This
method of condensation significantly outperforms all methods described here in terms
of classification accuracy obtained from the condensed set at the same levels of
condensation [147]. Two other possibilities are the Soft Fixed–Labels Condensation
and Soft Dynamic Data Condensation. The first method keeps label partitions
constant while the field is allowed to change freely and the latter does not impose
any constraints – both the label partitions and the field can change at each step
of the simulation. In both models the class label partitions are summed during
mergers [146, 147].

The electrostatic field model has been described in more detail in Section 3.2.2.

Lennard–Jones potential field model

The dynamics of molecules of noble gasses ruled by the Lennard–Jones potential [65] is
yet another physical phenomenon, which can be applied to model the interactions between
data instances treated as information particles [144, 146]. The field resulting from definition
of the Lennard–Jones potential has both attracting and repelling properties. The type of
the interaction in this case is however not dependant on the signs of instance charges but on

24



Chapter 2. Machine learning and physically inspired techniques

the distance between them – distant instances are repelled from each other while close ones are
attracted to each other.

The Lennard–Jones potential field model can be used to perform clustering in a similar way to
the gravity field model.

2.3.2 Information Theoretic Learning

The general definition of machine learning given in Section 2.1 shifts the problem towards
quantification and manipulation of the redundancy, which in turn is related to Shannon’s
information theory [125, 128]. As a result, information theory emerges as the ultimate framework
of machine learning. Unfortunately, the application of the information theory to learning problems
is not straightforward. The main issue is the omnipresent ‘learning from exemplars’ paradigm of
the learning theory, while the information theory in its traditional form is only able to deal with
probability density functions given in the analytic form [128]. Unfortunately in most machine
learning problems this form is rarely known and good approximation of the true PDF with a
parametric density model is often impossible [40]. Having these issues in mind, an Information
Theoretic Learning framework for both non–parametric entropy estimation and manipulation has
been derived, enabling training of both linear and nonlinear mappers [128].

Information Theoretic Learning is a procedure of adapting the parameter values of a learning
machine using information theoretic criterion [125, 128]. As the goal of learning is to transfer as
much information as possible from the training data into parameters of the system, ITL appears to
be an appropriate and natural choice. There are basically two main criteria for ITL, both operating
in the output space of the predictive system:

• Entropy , which is a function of one random variable. As a result, entropy manipulation in
a natural way fits the unsupervised learning scenario, although it can also be extended to
supervised learning by manipulating the entropy of error [46]. By maximising entropy,
ITL can be applied to problems like Principal Component Analysis, whereas entropy
minimisation can be used for redundancy reduction or classification [59, 83, 128]. One
of the developments resulting from application of the entropy criterion to time series
forecasting is a localized, probabilistic measure of similarity between two PDFs [102, 103,
104, 148], which has been used in Chapter 4 of this thesis in order to develop the Density
Preserving Sampling scheme.

• Mutual information (MI) , which is a function of two random variables and relies on
a divergence measure between their joint PDF and product of their marginal PDFs.
The choice of those variables determines if the learning is supervised or not. Similarly to
entropy, mutual information can also be maximised or minimised and can be used for a wide
range of applications like Independent Component Analysis (ICA), BSS, clustering [128]
or feature extraction [9, 166, 167, 168, 169, 170, 165].

Entropy criterion

To emphasise the fact that the manipulation of the ITL criterion takes place in the output space
of the learning machine, the definitions given below assumeY as the default variable rather
than typically usedX. Denoting byP (Yk) the probability of a discrete eventYk, the Hartley
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Information Measure is given by the following formula [30]:

H(Yk) = log
1

P (Yk)
(2.17)

Shannon’s entropy [155] is simply the expectation ofH, which denoting the number of all
possible discrete events byN , is given by:

HS(Y ) =
N∑

k=1

P (Yk)H(Yk) =
N∑

k=1

P (Yk) log
1

P (Yk)
= −

N∑

k=1

P (Yk) log P (Yk) (2.18)

Entropy is a measure of the uncertainty associated with a random variable. Put another way,
entropy quantifies the average information content that is missing due to the unknown value of
the random variable. As a result, the higher the entropy, the more information can be gained by
discovering the value of the random variable.

The extension of Shannon’s Entropy to continuous random variables (differential entropy) is:

HS(Y ) =
∫

p(y) log
1

p(y)
dy = −

∫
p(y) log p(y) dy (2.19)

Switching to the entropy criterion allows to exploit higher order statistics of the distribution,
like skewness (degree of symmetry – third moment) or kurtosis (relative peakedness/flatness –
fourth moment), which are not taken into account at all by the commonly used Mean Squared
Error criterion. This in turn lifts the usual ‘Gaussianity’ assumption (Gaussian distribution is
completely described by the first two moments – mean and (co)variance), which does not hold in
many real–world problems and although greatly simplifies the calculations needed to solve them,
often distorts the results at the same time [40].

A more detailed treatment of entropy and its estimation has been given in Section 4.3.1 as it
forms a basis for the Density Preserving Sampling procedure described in Chapter 4.

Mutual information criterion

Mutual information is defined as a quantity that measures the dependence of two random variables
or the amount of information that one variable carries about the other. The classical definition is
given as [30]:

IS(X,Y ) = HS(X)−HS(X|Y ) = HS(Y )−HS(Y |X) (2.20)

whereHS(X|Y ) is the Shannon conditional entropy, which denotes the remaining uncertainty of
X, when the value ofY is known.IS hence quantifies the amount by which the uncertainty about
X diminishes after observingY [170]. The relationships between entropy, conditional entropy
and mutual information have been presented in Figure 2.9.

Mutual information for two discrete random variables can be calculated using the following
formula, which is in fact equivalent to Eq. 2.20 after substituting the definitions of entropy and
conditional entropy:

IS(X,Y ) =
NX∑

k=1

NY∑

l=1

P (Xk, Yl) log
P (Xk, Yl)

P (Xk) P (Yl)
(2.21)
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Figure 2.9:Relation between entropy and mutual information

Extension of the above formula to the continuous variable case is straightforward:

IS(X,Y ) =
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dx dy (2.22)

Eq. 2.22 is actually a special case of the Kullback–Leibler divergence (discussed in more detail
in Chapter 5), which is the most commonly used measure of similarity between two distributions,
even though it is not a true distance as it is not symmetric [40]. The Kullback–Leibler divergence
between two PDFsf(z) andg(z) is defined as:

DKL(f(z), g(z)) =
∫

f(z) log
f(z)
g(z)

dz (2.23)

Whenf(z) = p(x, y) is a joint probability density function of two random variables andg(z) =
p(x)p(y) is a product of the marginal PDFs,DKL is exactly equal to the mutual information [169].
As a result, MI can be thought of as a distance measure between joint density and a product of
marginals, since it is always non–negative and symmetric. Note, that MI is equal to zero only
if the variables are independent, that isp(x, y) = p(x)p(y) as in this situation the logarithm in
Eq. 2.22 is driven to zero. The above properties can be used for deriving some easily computable
estimates of MI. For a detailed description of various mutual information estimation methods
please refer to Appendix C.

Mutual information can be used in both supervised and unsupervised learning scenario – all
possible learning schemes have been depicted in Figure 2.10. There are 3 signal sources to choose
from, represented by the switch ‘SW’ in one of three possible positions [128]:

• Position 1 implies unsupervised learning since no external desired (target) signal enters
the system. The MI criterion is evaluated using only system outputs. This setup can
for example be applied to the Independent Component Analysis problem by minimising
the mutual information to make the outputs as independent as possible.

• Position 2 also implies unsupervised learning, this time though, the criterion is evaluated
using system input and output. By maximising MI in this scenario the system is trained to
transmit as much information between input and output as possible.

• Position 3 represents supervised learning as the desired signal is external to the system.
If the desired response is a class label (discrete variable), maximisation of MI facilitates
feature extraction for the purpose of classification. If the response is a continuous function,
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Figure 2.10:ITL criterion for a learning machine

the input is projected to best approximate the desired signal (in the information sense).

As it can be seen, the information theoretic criteria appear as a very attractive alternative to
the ones commonly used, including the ‘workhorse’ of machine learning – MSE. Yet, although
the foundations of information theory have been laid down by Shannon in the middle of
the 20th century, the number of their to date applications is rather small. The reason for this
is the difficulty of estimating entropy and mutual information directly from data [128], since as
already mentioned, the formulas given by Shannon require analytical forms of the PDFs.

It is worth noting, that Shannon’s entropy and mutual information are not the only measurers
relying on the PDFs. Chapter 5 of this thesis presents a study of sampling using various PDF
divergence measures, most of which also require the probability density functions to be given
analytically. Since this is rarely possible, various PDF approximators are routinely used. As
shown later, this can lead to a rather poor estimation of the divergence from data, which can cause
numerous difficulties.

2.4 Concluding remarks

In order to design a well–performing predictive system a conscious, methodological approach is
needed. The generalised predictive system design cycle presented in Section 2.2.2 is an example
of such methodology, which has been successfully applied to real–world environmental problems
described in Chapter 6. The proposed procedure has been designed to be run autonomously,
in a purely data–driven way, offsetting the lack of expert domain knowledge by computational
resources and automation of many steps, which are usually performed manually. However,
integration of this kind of knowledge, even if it results from nothing more than basic statistical
analysis of the data before building the predictive system, can save massive amounts of
computations. Taking into account that the available computational resources usually are
the limiting factor, this can lead in effect to better performing systems, as a good solution can
obviously be found more easily in a smaller constrained space.

In the studies presented in further parts of this work the following physically inspired
techniques discussed in Section 2.3 have been used:

1. The gravity and electrostatic field models for development of a comprehensive,
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extendible Electrostatic Field Classification Framework for supervised and
semi–supervised learning from incomplete data (Chapter 3). The framework fits
within the base classifier and preprocessor levelof the proposed generalised predictive
system design cycle.

2. The Information Theoretic Learning framework for:

• Development of the Density Preserving Sampling technique as an alternative to
standard cross–validation, reducing the computational requirements of generalisation
error estimation procedure (Chapter 4). DPS fits within theerror estimator level of
the proposed generalised predictive system design cycle.

• A study of PDF divergence estimators and their application to sampling, in order to
further reduce the computational requirements of repeated CV, where the ITL–based
Cauchy–Schwarz divergence measure was expected to play a central role.

The correspondence between selected steps of the generalised predictive system design cycle
and physically inspired methods investigated in this thesis, has been presented in Figure 2.11.

Figure 2.11: Correspondence between the generalised predictive system design cycle and physically
inspired methods described in the thesis
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Chapter 3

Electrostatic Field Classification
Framework for incomplete data

3.1 Introduction

Supervised learning is the approach which enables design of robust and well–performing
classifiers. Unfortunately, as already mentioned, in many real–world applications labelling
of the data is costly and thus possible only to some extent. Unlabelled data on the other
hand is often available in large quantities but a classifier built using unsupervised learning is
likely to demonstrate performance inferior to its supervised counterpart. The interest in a so
called semi–supervised learning is thus a natural consequence of this state of things and various
approaches have been discussed in the literature [13, 32, 55, 62, 111, 114, 123].

While the missing labels can be thought of as one type of deficiency in the data on the basis of
which one would like to build a well–performing classification system, another very commonly
encountered problem is that of missing values of the input variables. There are many reasons
why input data might be missing and there are many ways of dealing with it though the most
commonly used approaches can be found in the statistics literature. The ideas and various types
of missingness introduced in [136] are still in use today and the multiple imputation method [137]
is considered as state of the art alongside the Expectation Maximisation (EM) algorithm [34, 58,
150, 171].

The semi–supervised learning and handling of missing input data are often treated as separate
problems. A different approach to classification based on hyperbox fuzzy sets, not requiring
imputation of missing values has been presented in [54]. The General Fuzzy Min–Max (GFMM)
algorithms for clustering and classification naturally support incomplete datasets, exploiting
all available information in order to reduce the number of viable alternatives before making
the classification decision. The GFMM algorithm is also able to learn from both labelled and
unlabelled data, processing both types of patterns for adaptation and labelling of the fuzzy
hyperboxes simultaneously. Such philosophy of dealing with both unlabelled and missing input
data within a consistent, unified framework is also pursued in this work.

The semi–supervised learning approaches and the methods of handling missing data discussed
in Section 3.4 have various motivations, resulting from a number of probabilistic, fuzzy set and
other machine learning theories. However, it is the nature inspired approach which appears as
an attractive way to address the missing data problem, as the omnipresent uncertainty caused
by missing data seems intrinsic to various natural systems. From different possible approaches,
a physical inspiration has been chosen to design a missing data handling framework described in
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this work, taking advantage of pioneering work on application of physical fields to classification
problems presented in [147] and described in Section 2.3.1. Due to its properties, the Electrostatic
Field Classifier has been chosen as a basis for building an unified missing data handling
framework able to learn from both labelled and unlabelled, as well as complete and incomplete
data using the same rules and adaptation mechanisms.

The framework described in this chapter is an attempt to directly exploit well known physical
laws in the machine learning context. The analogy used, that is the data vectors acting as charged
particles able to directly interact with each other through forces they induce, is one of the simplest
and most basic ways to combine the two disciplines.

3.2 Data field classifiers

The classification framework for incomplete data derived in this chapter takes advantage of two
classification algorithms based on physical field models. The algorithms have already been
introduced in Section 2.3.1. As mentioned before, both of them treat each data instance as
a charged particle able to directly interact with other particles. Following [147], a more detailed
description is given below.

3.2.1 Gravity Field Classifier

Denoting byX a set ofNX training instances and byY a set ofNY test instances, the potential
of the field generated by each instance in thejth testing point is given by:

Vij = −csi
1
rij

(3.1)

wherec is the field constant,si is the charge of instancexi andrij is some distance measure
betweenxi and yj . For simplicity and for the sake of conformity with the physical model
Euclidean distance has been chosen. Note however, that the definition of the distance function
can have tremendous influence on the field landscape and can also be used to incorporate support
for categorical data. As shown in Sections 3.3.4 and 3.5.1, appropriate distance definition
facilitates classification of incomplete instances and is able to overcome some problems in higher
dimensional spaces (‘curse of dimensionality’).

As already stated, the superposition of individual contributions of all training instances defines
the field in any point of the input space as:

Vj = −c

NX∑

i=1

si

rij
(3.2)

and the overall potential energy in pointyj is given by:

Uj = sjVj = −csj

NX∑

i=1

si

rij
(3.3)

wheresj stands for the charge ofyj . Assuming that all instances are equally important (have
the same, unit charge),si andsj can be dropped from the equations and the force exerted onyj

by the field, being in fact the negative gradient ofUj takes the following form:
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F j = −c

NX∑

i=1

yj − xi

r3
ij

(3.4)

By analogy to the gravity field, the forceF j will try to drag the test instance into the lowest
energy level. The field constantc is in fact only a scaling factor, which can also be dropped due
to the fact that only the force direction is of interest in the model.

The classification procedure with the gravity field model follows a simulatory procedure and
has already been described in Section 2.3.1. Due to the fact that the simulation stepr is fixed in
all dimensions, the data should be first rescaled to fit within the[0, +1] range. The lower bound
of the distance should also be set to some value comparable tor to avoid division by zero and
overshooting the field sources.

3.2.2 Electrostatic Field Classifier

The Gravity Field Classifier does not fully exploit class label information given with the training
data, effectively wasting information which could be used for improving accuracy. To address this
issue the electrostatic field analogy has been employed resulting in a model with both attracting
and repelling interactions, which as already stated in Section 2.3.1 required decomposition of
each test instance into a number of subinstances, belonging to one of the target classes (partial
memberships).

Denoting byl the vector of labels of the field sources and byV k
j the potential generated by

kth of c classes in pointyj , the partial membershippjk of instanceyj in thekth class is given by:

pjk =

∣
∣
∣V k

j

∣
∣
∣

∑c
i=1

∣
∣
∣V i

j

∣
∣
∣

(3.5)

The collection of partial memberships for all test instances form a partition matrixP [NX×c].
The overall potential in pointyj can be calculated as:

Vj =
NX∑

i=1

(∑
k 6=li

pjk − pjli

rij

)

=
NX∑

i=1

1− 2pjli

rij
(3.6)

The resultant force calculation formula then becomes:

F j =
NX∑

i=1

[

(1− 2pjli)
yj − xi

r3
ij

]

(3.7)

Note however, that if there are more than two classes, repelling force may dominate the field,
as it would come from multiple classes, while the attracting force would come from only one.
According to [147], to restore the balance between repelling and attracting forces it is sufficient
to satisfy the following condition:

NY∑

j=1

Vj =
NY∑

j=1

NX∑

i=1

1− qpjli

rij
= 0 (3.8)

by estimating a value of the regularisation coefficientq. This coefficient controls the balance
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between the total amount of attracting and repelling force in the field but as discussed in
Section 3.3.1, the condition given above may in fact not be sufficient. This can result in some
test instances being repelled by the field, which would prevent the algorithm from converging.

The classification process follows the same rules as in the case of GFC.

3.3 Improvements of the original Electrostatic Field Classifier

The Electrostatic Field Classifier described in Section 3.2.2 has a number of previously
not addressed issues, causing problems when processing some datasets, especially in
high–dimensional spaces. Before deriving the missing data handling framework, these issues
are first discussed and appropriate solutions are proposed, which although heuristic, have proven
to work well in the experimental setting.

3.3.1 Excess of repelling force

The excess of repelling force present in the field is one of the major problems of the original EFC.
As stated in Section 3.2.2, a value of the regularisation coefficientq satisfying Eq. 3.8 may still
be too small to restore the balance between attracting and repelling forces. As a result, during
the simulation some of the test instances escape from the field. However, it has been observed
during the experiments that as the simulation proceeds and the number of test instances remaining
to be classified decreases, the regularisation coefficient (which is recalculated during each step of
the simulation) tends to increase on average. This in turn makes the attracting interaction stronger
and stronger and causes the repelled test instances to eventually return and be classified. There is
a number of issues however:

• The classification accuracy is reduced – in the case of test datasets used in experiments
described in Section 3.6, it is in fact worse than the accuracy of much simpler and faster
Gravity Field Classifier.

• The form of Eq. 3.8 makes the field landscape dependant on the test set. In the case of two
different but partly overlapping test sets this may lead to different classification decisions
regarding the overlapping part, depending only on the choice of the test set.

• The convergence is needlessly slow as the repelled instances usually travel very far from
the field sources and it takes a large number of simulation steps until the field drags them
back.

• Recalculation of the regularisation coefficient is computationally expensive and repeating
it during each step of the simulation negatively affects classification speed.

To address the above issues a new procedure for estimating the regularisation coefficient has
been devised. This estimation procedure is performed before the classification process and can
thus be seen as a training phase of the classifier.

The procedure starts with calculation of the field boundaries, taking the minimal and maximal
values of all features of the training dataset (0 and 1 after scaling) and adjusting them by a small
value equal to the minimal step size (see Section 3.3.2). Then an artificial test set is generated
by placing instances in the corners of the field defined by the boundaries. However, as the data
dimensionality grows, this approach can quickly become prohibitive – the numberN of corner
points ofd−dimensional cube is an exponential function of data dimensionality –N = 2d. This
issue has been addressed by using only a small random subset of such artificial test set, which in
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most experiments did not degrade the classification performance. If data dimensionality allows
doing so, a number of test instances can also be placed along the field boundaries, which has been
found to improve the classification performance especially in two–dimensional spaces. After
the artificial test set has been generated, the regularisation coefficient is estimated by forcing all
field vectors located on the test instances to point into the field, as shown in Figure 3.1.
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Figure 3.1:Regularisation coefficient estimation

3.3.2 Simulation step size

The simulation step size is another crucial parameter of EFC, as it largely determines
the convergence speed and the stability of the algorithm. If the step size is too small,
the convergence will be needlessly slow and the model will be sensitive to noisy field sources;
if it’s too big, the test instances will overshoot the sources and start oscillating preventing
convergence. In the previous work however [147], the issue of optimal step size has not been
addressed.

The step size should somehow depend on the training data and it does not need to be held
constant during classification. As a result the following improvements have been introduced in
the current implementation:

• each test instance has been assigned its own step sizerj ,

• the step sizes are constantly recalculated during the simulation according to:

rj = max (rmin/d, min(rij)/d) (3.9)

wherermin = min(rii) is the minimal distance between field sources, andd is the number
of dimensions.

The above modifications enable the step size to adapt to the current situation taking advantage of
the fact that the field far away from the sources does not change rapidly. As a result the bigger
the distance between a test instance and the nearest field source, the bigger the step.
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3.3.3 Early label assignment and label conflict resolution

The classification process described in Section 3.2.2 runs until a test instance approaches one of
the field sources at the distance smaller or equal tormin. The test instance then shares the label
of this source and hence the classification is accomplished. There are however some situations in
which this behaviour is not desired – an example is shown in Figure 3.2. As it can be seen, forces
acting on all test instances (marked with arrows) will drag them towards the cluster in the top left
corner of the field. On their way some instances will however approach a single source, which
is an outlier belonging to another class. Part of them may even end up trapped in its field, while
other may simply pass it by. For the original EFC this would not make any difference – all those
instances would end up being classified as belonging to the class of the outlier (represented with
circles). Although it is justified for the test instances trapped by this single field source, other
instances would be labelled too early. For this reason the label assignment criterion has been
changed – the test instance must not only approach a source but also stabilise or start oscillating
around it. This oscillation is detected by checking if the total displacement of a test instance in
two consecutive simulation steps exceedsrmin. If it does, the test instance is considered not
stable and the classification decision is postponed. Although this new convergence criterion
does not influence the classification performance greatly when dealing with complete datasets,
the situation changes dramatically when incomplete data comes into play. The reason for this is
mainly the representation of deficient test instances in the model, as described in Section 3.5.1.
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Figure 3.2:Early label assignment issue

There are also situations when a test instance stabilises around a number of field sources,
all coming from different classes. This is often the case when dealing with incomplete data,
as will be discussed later. Some conflict resolution mechanism must then be applied to arrive at
the classification decision. In such case EFC falls back to GFC and uses the GFC potential (which
is almost readily available in the form of the partition matrix) to select the winning class. Note,
that the partition matrix concept can also be used for producing soft outputs by returning a whole
row from this matrix instead of a crisp class label.
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3.3.4 Curse of dimensionality and distance concentration

For many tested datasets both GFC and EFC tend to fail when the dimensionality of the data grows
roughly above 5 or 6, depending on the dataset, which leads to either (1) very high classification
error when compared to the performance of other standard classifiers or (2) no convergence at all.

The latter issue has been investigated using 13–dimensional Wine dataset (for details on
the datasets see Appendix A). The experiments revealed that both algorithms fail to converge
due to a part of the test instances concentrating in a small number of regions (typically 2–3 for
the Wine dataset) somewhere within the field boundaries but not close enough to any of the field
sources to be classified. Moreover, although it is possible to classify the trapped test instances
using the conflict resolution mechanism described in Section 3.3.3 (pick the label of the class
with highest potential), this approach produces very high classification error when compared to
other classifiers.

This phenomenon can be explained by the choice of distance measure, namely the Euclidean
distance, which is based on theL2−norm. TheL2−norm is a member of the family of
theLp−norms, which are defined for anyd−dimensional vectorx as:

Lp(x) =

(
d∑

i=1

|xi|
p

) 1
p

(3.10)

assuming thatp ≥ 1. A p−norm distance between two vectorsx andy is thus given by:

Dp(x, y) = Lp(x− y) =

(
d∑

i=1

|xi − yi|
p

) 1
p

(3.11)

The Euclidean distance is an intuitive and naturally interpretative choice for 2 or 3 dimensional
spaces. In the case of the physical field models, it is additionally justified by the fact that
‘real’ physical fields also exist in 3 dimensions only. However, as the number of dimensions
grows, the Euclidean distance looses its discriminative power, regardless of the characteristics
of the dataset, which makes its natural interpretability irrelevant [2, 50]. The same applies to
other distances based onLp−norms, but fortunately to a different degree. The reason for this
is that under a broad set of conditions the mean value of theL2−norm distribution grows with
data dimensionality while the variance remains approximately constant (Figure 3.3(a)) [50]. As
a result, the nearest and furthest neighbours of any test point appear to be at approximately
the same distance, which makes the ratio of distances to the nearest and farthest neighbour tend
to 1. The phenomenon has been called ‘distance concentration’ [2, 50]. As argued in [10], it can
occur even for sets with as few as 10 dimensions and the decrease in the ratio between the farthest
and nearest neighbour distance is steepest in the first 20 dimensions. The effect is additionally
magnified by the limited precision of calculations a computer can handle.

According to [2] with high probability growing with the number of dimensions,
the concentration is slower for norms of lower order. It has been proven that theL1−norm
based distance (the Manhattan/block distance) is more suitable for high–dimensional data than
theL2−norm based distance [2].

If p < 1 the resulting measure wouldn’t be a true distance anymore due to violation of
the triangle inequality. It might still however be a useful similarity measure and a family of
this kind of measures has been developed in [2] and called ‘fractional distances’. Although for
some specific conditions a fractional distance can concentrate even faster than distances of higher
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Figure 3.3:Distance concentration for various measures, for a random vector drawn from a unit hypercube
(solid line denotes the mean value, shaded region denotes the mean+/− 2 standard deviations). Notice
the units on the left. All three distances have been compared on the rightmost plot (Euclidean – bottom
line, Manhattan – middle line, fractional of order0.5 – topmost line).

orders, in most situations it is much less concentration prone [50]. The concentration issue for
various norms has been depicted in Figure 3.3. Note, that by using a fractional distance the feature
space gets deformed and thus the distance measure looses its intuitive interpretability. This can
be seen in Figure 3.4, where the unit ‘circles’ for three distances of different orders have been
presented.

There have been other attempts to address the concentration issue, one of which involved
calculation of the similarity measure using only some subset of features meaningful for the pair
of data instances in question [1]. The features to be used can be selected according to various
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Figure 3.4:Unit circles forL2−norm (dotted),L1−norm (dashed) andL 1
2−norm (solid) based distance

criteria (e.g. exceeding some threshold value). This however implies that the subset of features
can be different for any pair of patterns, which makes such similarity measure non differentiable,
thus requiring computationally expensive numerical estimation of the gradients.

As a result all experiments were run using distance measure of order derived experimentally,
separately for each of the datasets, by exhaustive search in the range between 0.01 and 2. Beside
achieving good classification performance as shown in Section 3.6, this approach also allowed
to eliminate the concentration issue described in this section almost completely – it now occurs
occasionally and in most cases applies only to a single, usually incomplete test pattern and is
efficiently addressed using the conflict resolution mechanism described in Section 3.3.3.

3.4 The missing data problem

The missing data problem is typical for many research areas and can be divided into two
subproblems: (1) learning from incomplete data and (2) making decisions given incomplete input.
Note, that the ‘incompleteness’ can denote missing attributes (inputs) as well as missing labels or
targets (outputs). There are two main types of procedures for dealing with missing data [149]:

• Imputation, that is recovering or otherwise estimating the missing data, which allows
the subsequent analysis to be run as if the data was complete.

• Estimation of the parameters of underlying models (learning) and making decisions
directly from the incomplete data, without imputation. This is the approach adapted in
the framework derived in Section 3.5.

3.4.1 Types of missingness

There are many reasons why the data may be missing, depending on the nature of the data, the data
collection process and other factors. The missingness can be caused by equipment malfunction,
if the data is collected in an automated manner; the data can be entered incorrectly, someone may
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refuse to answer a particular question in a survey and so on. The reason why the data is missing
can have important implications on the choice of method to deal with the missingness. For this
purpose, according to [136], missing data can be divided into three categories:

• Missing Completely At Random (MCAR), when the probability that a particular feature
is missing is not related to the missing value or to the values of other features. For example,
if a temperature sensor fails just because they do it sometimes the data is MCAR. If the same
sensor fails because the temperature was so high that it got damaged – the probability of
missingness is related to the value of missing measurement and thus the data cannot be
considered MCAR [117, 150].

• Missing At Random (MAR) , if the probability that the particular feature is missing is
not related to its own value but is related to the values of other features. It is possible
to deal with MAR data to obtain meaningful and relatively unbiased estimates [117]
but unfortunately there is no way to test if MAR holds in a given dataset. In many
practical cases however a false assumption of MAR may have only minor influence on
the result [150].

• Missing Not At Random (MNAR) , if the probability that some feature is missing is
a function of this feature value. The mechanism for missingness is not ignorable and should
be somehow modelled. Unfortunately, the model for missingness is rarely known, which
makes the whole procedure a difficult and application specific task [117].

Since both GFC and EFC are purely data–driven approaches, which means that no domain or
any other external knowledge is incorporated into the models, the type of missingness does not
directly influence their operation. Although it seems reasonable to assume that the performance
of the models is dependant on the type of missingness, this dependency has not been investigated
here and all the experiments have been designed in a way enforcing the MCAR assumption.

3.4.2 Traditional approaches to missingness

There is a number of basic, traditional approaches to the missing data problem. In the case of
missing features most of those methods are based on editing or imputation of missing values,
which makes them easily integrable with a wide range of machine learning and statistical models.
Many imputation techniques have however received a bad press and although usefulness of most
of them is limited to a number of specific cases, they still are in common use due to the ease of
integration with standard models [117, 150].

Missing features

As mentioned before, the methods for dealing with missing features can be divided into two
groups: (1) editing and imputation methods, and (2) direct methods. Some of the best known
methods belonging the the first group are:

• Casewise deletion (CWD), which assumes that incomplete data instances can be ignored
and excluded from further analysis. If their number is relatively small, this technique turns
out to perform surprisingly well – if the data is at least MAR, casewise deletion produces
unbiased estimates of the parameters [63].

• Mean imputation (MIMP) , which replaces all missing features with appropriate mean
values. Although it may seem reasonable, the method does not add any new information,
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as the overall mean will remain the same. In statistical analysis this can lead to
underestimation of the standard deviation – the substituted values do not contribute
to the value of deviation but they do contribute to the number of instances used for
the calculation (denominator of the standard deviation formula). In machine learning
mean imputation can distort the distribution of the data, which is especially dangerous
if the distribution departs from Gaussian.

• Class–conditional mean imputation, which replaces the missing attributes with the mean
values calculated for the respective classes [151]. The method can thus be used for labelled
data only and is a preferred choice over the standard mean imputation. For this reason, in
the subsequent parts of this work only class–conditional mean imputation is used.

• Imputation from a distribution , which is a family of techniques guided by local dataset
properties, replacing a missing feature with the most likely value taking into account
the non–missing features. These approaches usually require estimation of a joint probability
density function and integration over all missing dimensions, which is a problem
exponential in the number of missing features [107]. A simple variant of this method called
‘hot–deck’ imputation involves replacing missing features with the corresponding values
from a randomly picked, complete pattern from the same dataset.

• Multiple imputation , which is an extension of imputation from a distribution. The method
generates multiple versions of the dataset, analyses each of them using a complete data
method and combines the results by averaging them. In statistical inference, this not
only allows to obtain the overall estimates but also their standard deviations, which reflect
uncertainty caused by the missing data [137].

Examples of the direct missing data handling approaches are:

• Pairwise deletion, which ignores missing data but as opposed to casewise deletion, rather
than dropping incomplete instances, takes advantage only of the features which are present.
For example, in the case of a dataset ofN two–dimensional instances, where half of
the instances have the second feature missing, the mean of the first feature will be calculated
usingN data points, while the mean of the second feature will be calculated using onlyN/2
data points. Although all available data is exploited, various parameters are computed using
datasets with different sizes and different standard errors, which can lead to unpredictable
results (e.g correlation coefficient falling outside of the[−1, +1] interval) [150]. For those
reasons this method is not recommended for estimation of statistics. However, a similar
approach forms a basis of the proposed data field specific approach to classification of
incomplete patterns, with a great success as described in Sections 3.5.1 and 3.6.

• Maximum likelihood (ML) methods , which are approaches for estimation of parametric
models. Although those methods require integration over the missing dimensions to obtain
the likelihood function, there is a feasible, iterative way for calculation of maximum
likelihood estimates – the Expectation Maximisation algorithm [34], which has greatly
contributed to the success of maximum likelihood estimation methods.

Missing labels

Learning from a dataset with missing labels is known as the semi–supervised learning problem.
The supervised approach usually achieves better classification performance, but in many
applications labelling the data can be expensive and time consuming. On the other hand, large
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amounts of unlabelled data are often readily available, but unsupervised learning will seldom
produce a classifier with comparable performance [55]. The semi–supervised approach thus aims
and exploiting both these types of data at the same time.

There are some standard methods of dealing with datasets with incomplete label information.
A following classification has been introduced in [55]:

• Pre–labelling. This approach first builds an initial classifier using the labelled part of
the dataset only. The unlabeled data is then classified using this initial model and a final
classifier is designed using the whole, now completely labelled dataset [13, 32, 62, 111,
114]. This method is also referred to asPre–classification (PC)in the remainder of this
work and is used in the experiments as a baseline for performance comparison.

• Post–labelling. In this method the whole dataset is first clustered and then the labelled data
is used for labelling the clusters using the majority rule [94]. Alternatively a data density
estimator can be used and the labels can be then assigned in accordance to the highest class
conditional density in the location of the unlabelled instance.

• Semi–supervised. An approach which assumes processing of both labelled and unlabelled
data at the same time. This method of learning can take a form of semi–supervised
clustering guided by the class labels, in which the data is iteratively split until the majority
of instances in each of the clusters belongs to the same class [123]. The GFC–fallback
method derived as a part of the proposed missing data handling framework and described
in Section 3.5.2 is an example of a semi–supervised approach.

In the experiments described in Section 3.6 the labels have been removed randomly. Although
the results are strongly dependant on the representativeness of the labelled subset of data, this
problem is a part of the active learning domain [135] and is not investigated here.

3.5 Electrostatic field framework for incomplete data

The overview of the architecture of the proposed framework has been given in Figure 3.5.
The central part of the framework (the ‘engine’) is the EFC/GFC model pair, with EFC acting
as the main classifier and GFC playing the role of a helper solution (estimation of the partition
matrix, handling of unlabelled data). As described in Section 2.3.1, both models work in
a simulatory manner, minimising the overall energy of the field. Note the modular design of
the framework, which allows to easily plug–in various definitions of distance and force as well as
different label assignment rules and preprocessing routines. In order to introduce the incomplete
data support it is sufficient to modify these external components without touching the framework
engine at all, which includes:

1. Distance definition to facilitate calculating distances not only between pairs of complete
patterns but also between a complete and incomplete pattern.

2. Force definition to facilitate calculating forces exerted by field sources not only on
complete test patterns but also on incomplete test patterns.

3. Label assignment procedureto facilitate assigning labels not only to complete test
patterns but also to incomplete test patterns.

4. Preprocessing routineto extract information from incomplete training data.
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Descriptions of these modifications in all possible incomplete data scenarios are given in the next
sections. The only requirement imposed by the framework is that each pattern has at least one
feature value specified.

Figure 3.5:Overview of the framework architecture

3.5.1 Incomplete test data

The proposed approach to classification of incomplete data instances is to use all available
information to arrive at a classification decision rather than trying to estimate the values of missing
features and then carrying on with the classification procedure. In this framework, the EFC acts
on incomplete test data working only in available dimensions – the feature space is automatically,
locally reduced to accommodate the number of available attributes. This is somewhat similar to
the pairwise deletion described in Section 3.4.2. The modifications to the original EFC include:

1. Distance definition. The distances are now calculated using available dimensions only.
As a result in the example given in Figure 3.6(a) the distance between test instances and
any of the field sources is equal to the distance between the source and the line (plane or
hyperplane) representing the test instance. Some examples of distances have been marked
with dashed lines. From now on this distance will be referred to asr∗.

2. Force calculation procedure.The forces can only be exerted in the available dimensions,
hence instance 1 in Figure 3.6 can only be dragged to left or right and instance 2 – up or
down.

3. Label assignment procedure. When the incomplete test instance stabilises or starts
oscillating in the neighbourhood of any source the classification decision can be made.
Unfortunately an incomplete pattern cannot always simply share the label of the nearest
field source. As it can be seen in Figure 3.6(b), in the case of instance 2 this criterion
is not sufficient to make a classification decision because of the apparent ambiguity.
The approach used is to produce a soft, probability–like output being in fact proportional
to the class conditional density for the current position of the test instance, calculated using
only existing feature values. This information is almost readily available in the form of
the partition matrix (see Eq. 3.5).
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Figure 3.6:Representation and classification of incomplete test patterns

3.5.2 Incomplete training data

The situation with incomplete training dataset is different from what has been said in
Section 3.5.1. First of all, in the case of training data the missingness can apply not only to
the features but to the labels as well. Moreover, for the reasons described below, the approach
taken to the problem of incomplete test dataset is not suitable in this situation.

Missing features

Attempt to exploit patterns with missing features as field sources during the classification process
using only the features which are available did not succeed. Even a single incomplete field source
with even a single feature missing changes the field landscape so much that the recognition rate
falls far below random guessing. The reason is the representation of the incomplete source by
an infinite number of points covering the whole missing feature space, which can be pictured
as the whole line, plane or hyperplane acting as a source. For this reason incomplete training
patterns do not take part in the classification process but are exploited during the preprocessing
phase instead.

In the original GFC and EFC models it has been assumed for simplicity that all data instances
carry the same unit charges. However, by differentiating the charges of the field sources and
employing an intelligent Charge Redistribution (CR) mechanism, the information contained in
incomplete training patterns can be at least partially exploited.

The Charge Redistribution algorithm starts with assigning a unit charge to all training
instances (both complete and incomplete). It then examines each incomplete instance in turn
and redistributes its charge among all complete patterns from the same class in proportion to
the distance from the incomplete instance in question, according to:

ΔCcomp
ci =

si

Rcomp∗
ci

/
∑

j

si

rcomp∗
cij

(3.12)
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whereΔCcomp
ci denotes the vector of charge gains for all complete field sources coming fromcth

class due to redistribution of charge of theith incomplete field source from the same class,si

denotes the charge of theith incomplete field source (equal to unity for simplicity) andRcomp∗
ci

with elementsrcomp∗
cij denotes a vector of distances calculated using available features, between

all complete field sources coming fromcth class and theith incomplete source fromcth class.
The proportion of charge assigned to any complete instance is in effect calculated using

the GFC potential formula (Eq. 3.1), thus the closer the complete training instance to
the incomplete instance in question, the more charge it receives. After all incomplete patterns
are processed they are dropped and the remaining instances become field sources. This approach
thus requires each class to have at least one complete instance, which will take over the charge of
the incomplete objects.

There is also another possibility of redistribution of the incomplete field sources charge, called
Multidimensional Charge Redistribution. The idea involves introduction of multidimensional
charge concept, which means that the amount of charge in each of the dimensions can differ and
that each incomplete training instance redistributes its charge only in the dimensions for which its
features values are known. Preliminary experiments have however revealed that Multidimensional
Charge Redistribution never performs better than the ordinary Charge Redistribution (in most
cases it has in fact performed worse) and at the same time it introduces additional computational
overhead. As a result, this method has been abandoned and all further experiments have been
conducted using the Charge Redistribution formula of Eq. 3.12.

Figures 3.7 and 3.8 depict evolution of the decision boundaries for a 2–dimensional PCA
projection of the Iris dataset (Appendix A) for EFC with Charge Redistribution and casewise
deletion, as the deficiency level increases. Note, that for CR, the shapes of the decision boundaries
resemble the original boundaries up to 80% deficiency level, which is not the case for casewise
deletion, although at 60% deficiency it still allows to reconstruct the decision boundaries quite
well. This should however be credited to the random nature of this experiment, which also applies
to the maximum deficiency scenario and the apparent advantage of CR.

Missing labels

Three different approaches have been proposed for the EFC model to address the missing label
issue. An important thing to notice is that none of them requires implementation of any additional
mechanisms as all of them are already in place. The approaches are:

• GFC–fallback, which involves treating unlabelled instance as a gravity field source able to
attract other instances but not able to repel and not able to share its label.

• Charge Redistribution similar to the mechanism described in Section 3.5.2 with the only
difference being redistribution of charge among all complete field sources regardless of
class.

• Pre–classificationof unlabelled instances in order to assign them to existing classes.

3.5.3 Incomplete both test and training data

No additional modifications or adjustments are required when both test and training datasets are
deficient. Modifications described in Sections 3.5.1 and 3.5.2 are fully compatible with each other.
This means that the classifier can handle both types of missing data problems either separately or
simultaneously, including the missing label case.
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(a) Charge Redistribution – deficiency 0% (b) Casewise deletion – deficiency 0%

(c) Charge Redistribution – deficiency 20% (d) Casewise deletion – deficiency 20%

(e) Charge Redistribution – deficiency 40% (f) Casewise deletion – deficiency 40%

Figure 3.7: EFC decision boundaries for a 2–D PCA projection of the Iris dataset for Charge
Redistribution (left column) and casewise deletion (right column) as the deficiency level increases.
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(a) Charge Redistribution – deficiency 60% (b) Casewise deletion – deficiency 60%

(c) Charge Redistribution – deficiency 80% (d) Casewise deletion – deficiency 80%

(e) Charge Redistribution – deficiency 100% (f) Casewise deletion – deficiency 100%

Figure 3.8: EFC decision boundaries for a 2–D PCA projection of the Iris dataset for Charge
Redistribution (left column) and casewise deletion (right column) as the deficiency level increases (contd.)
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3.6 Experiments

The experiments include evaluation of classification error for the scenarios of incomplete test data,
incomplete training data, missing labels and various combinations of the above. All recognition
rates given have been averaged over 10 runs with randomly removed features and labels. Also,
each 10–fold cross–validation run has been repeated 10 times, which totals to 100 simulations for
each deficiency level for every dataset. The deficiency step has been set to 0.15.

Due to the requirements of the framework, as well as other methods used for comparison, at
the maximum deficiency levels1 all classes have been left with exactly one training instance with
all feature values given and exactly two labelled training instances. Also each of the remaining
instances has been left with exactly one non–missing feature value.

A total of 12 benchmark datasets described in more detail in Appendix A has been used in
the experiments. A short summary of the datasets used has been given in Table 3.1, in which
the reduction of the number of simulation steps due to the adaptive adjustment of the step sizerj

(Section 3.3.2) for a subset of the datasets has been given in the last column.

Table 3.1:Dataset details

no. abbr. name # objects # attributes # classes steps

1 azi Azizah dataset 291 8 20 –
2 bio Biomedical diagnosis 194 5 2 –
3 can Breast cancer Wisconsin 569 30 2 –
4 cnt Cone–torus 400 2 3 43→23
5 gla Glass identification data 214 10 6 –
6 ion Ionosphere radar data 351 34 2 –
7 iri IRIS flower database 150 4 3 21→16
8 liv Liver disorder 345 6 2 –
9 syn Synth–mat 250 2 2 20→20
10 thy Thyroid gland data 215 5 3 –
11 veh Vehicle silhouettes 846 18 4 –
12 win Wine recognition data 178 13 3 32→15

The first value in the last column denotes the number of simulation steps needed for
the algorithm to converge using optimal step size, found by exhaustive search. The second
value is the number of steps using the adaptive step size. The classification performance for
the adaptive approach was always very close to the standard method – the difference never
exceeded 1 percentage point. As it can be seen, the reduction in the number of steps can vary
greatly between 0 and 50%. Note however, that the total simulation time does not depend linearly
on the number of simulation steps. Since the number of instances remaining to be classified drops
as the simulation progresses, the amount of calculations each consecutive simulation step requires
is constantly reduced as well.

The classifiers used for the comparison with the methods derived in this work have been
listed in Appendix B.1. The classifiers which are available as a part of PRTools Toolbox [42],
have been used with their default parameter values and each of them has been evaluated

1Deficiency level is the level of missingness of a dataset, with 0 (or 0%) for complete data and 1 (or 100%) for
maximally incomplete data, taking into account the constraints given.
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using class–conditional mean imputation (Section 3.4.2) to handle missing attributes and
Pre–classification (Section 3.5.2) to deal with missing labels.

(a) Complete dataset (b) Maximally deficient dataset with imputed class means

Figure 3.9:Decision boundaries for complete and maximally deficient PCA projection of the Iris dataset

The performance of all models for incomplete test data, calculated as a sum of error rates for
each class weighted by class prior probabilities estimated from the dataset, is given in Table 3.2.
The results were averaged over all datasets and are given as error/standard deviation pairs, where
the standard deviation has been calculated for 10 runs with randomly removed features and/or
labels, simulating the MCAR scenario. Figure 3.10 presents the average recognition rates (1 −
error) for both EFC algorithms used (efc–ldr and efc–mimp) and the median of errors of all
classifiers.
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Figure 3.10:Performance for incomplete test data and various deficiency levels (recognition rates)

As it can be seen, for the incomplete test data scenario, the performance ofefc–ldr model
is superior to all other classifiers for all deficiency levels. Moreover, although at maximum
deficiency the probability of error of the EFC model is twice as high as for complete data, this ratio
reaches 3 for the classifiers which performed best at 0% deficiency. Also note, that in the complete
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Table 3.2:Performance for incomplete test data and various deficiency levels

classifier
deficiency level

0% 15% 30% 45% 60% 75% 90% max

efc–ldr 0.16 0.17/0.03 0.18/0.04 0.21/0.04 0.23/0.05 0.27/0.05 0.30/0.06 0.31/0.06
efc–mimp 0.16 0.19/0.04 0.24/0.04 0.28/0.05 0.32/0.05 0.37/0.05 0.41/0.04 0.42/0.04

fisherc 0.18 0.25/0.04 0.30/0.05 0.33/0.05 0.37/0.05 0.40/0.05 0.42/0.05 0.43/0.05
ldc 0.15 0.22/0.04 0.27/0.05 0.32/0.05 0.35/0.05 0.38/0.05 0.41/0.05 0.41/0.04

loglc 0.15 0.23/0.04 0.29/0.05 0.33/0.06 0.37/0.06 0.41/0.06 0.45/0.05 0.46/0.05
nmc 0.23 0.24/0.03 0.27/0.04 0.29/0.05 0.33/0.05 0.37/0.05 0.41/0.04 0.43/0.04

nmsc 0.19 0.22/0.03 0.25/0.04 0.28/0.04 0.32/0.05 0.36/0.04 0.40/0.04 0.41/0.04
quadrc 0.21 0.32/0.04 0.38/0.04 0.41/0.04 0.44/0.05 0.47/0.05 0.49/0.05 0.49/0.05

qdc 0.17 0.29/0.04 0.35/0.04 0.39/0.05 0.42/0.05 0.44/0.05 0.46/0.05 0.46/0.05
udc 0.25 0.27/0.03 0.30/0.04 0.33/0.04 0.36/0.04 0.40/0.04 0.44/0.04 0.45/0.04

klldc 0.15 0.22/0.04 0.27/0.05 0.32/0.05 0.35/0.05 0.38/0.05 0.41/0.05 0.41/0.04
pcldc 0.15 0.22/0.04 0.27/0.05 0.32/0.05 0.35/0.05 0.38/0.05 0.41/0.05 0.41/0.04
knnc 0.14 0.18/0.03 0.22/0.04 0.26/0.05 0.31/0.05 0.36/0.05 0.40/0.04 0.41/0.04

parzenc 0.15 0.18/0.03 0.22/0.04 0.26/0.04 0.30/0.04 0.35/0.04 0.40/0.04 0.41/0.04
treec 0.22 0.27/0.03 0.31/0.04 0.35/0.04 0.39/0.04 0.43/0.04 0.46/0.03 0.46/0.03

naivebc 0.16 0.19/0.03 0.22/0.04 0.26/0.04 0.30/0.05 0.35/0.04 0.39/0.04 0.41/0.04
perlc 0.19 0.23/0.05 0.27/0.06 0.31/0.06 0.34/0.06 0.39/0.07 0.43/0.07 0.44/0.07
rbnc 0.33 0.37/0.03 0.40/0.03 0.42/0.03 0.43/0.03 0.45/0.03 0.46/0.03 0.46/0.03
svc 0.17 0.21/0.03 0.25/0.04 0.29/0.05 0.33/0.05 0.38/0.05 0.42/0.05 0.43/0.05

median 0.17 0.22/0.03 0.27/0.04 0.32/0.05 0.35/0.05 0.38/0.05 0.41/0.05 0.43/0.04

data scenario, EFC performance is close to average, which means that low probability of error for
higher deficiency levels is due only to the missing data handling procedure proposed.

The results for incomplete training data have been given in Table 3.3, where ‘–’ denotes that
the classifier has not converged, and Figure 3.11. Although in this scenario the performance of
the best EFC method (efc–mimp) is always better than the average, other classifiers can perform
even better, with the difference ranging from 0.01 in most cases up to 0.03 at 90% deficiency.
The performance of the remaining two EFC classifiers is always below average. Note however
that Charge Redistribution outperforms casewise deletion for all deficiency levels, thus it is always
beneficial to somehow take advantage of the deficient training instances rather than to discard
them. Nevertheless, it appears, that for many datasets the class–conditional mean imputation
performs surprisingly well. To better understand this phenomenon, the EFC decision boundaries
obtained from a 2–dimensional PCA projection of the Iris dataset have been shown in Figure 3.9
alongside with a diagram generated from the same projection with maximum deficiency level and
imputed mean. As it can be seen, the shape of the original decision boundaries is preserved well,
and in fact even better than in the case of Charge Redistribution (see Figure 3.8(e)).

The performance estimates of all evaluated methods for the scenario with missing both test and
training data have been given in Table 3.4 and Figure 3.12. Theefc–ldr/mimpclassifier steadily
outperforms all other methods by a margin growing with the deficiency level.

In the semi–supervised learning scenario presented in Table 3.5 and Figure 3.13, EFC with
Charge Redistribution once again performs better than average for all deficiency levels, being one
of the top 3 models for the maximal level of missingness, when only two labelled instances per
each class in the training data are given. Note, that EFC can work even with a single labelled
instance per class, but some of the other classifiers used cannot.

The most interesting results involving semi–supervised learning from incomplete data and
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Table 3.3:Performance for incomplete training data and various deficiency levels

classifier
deficiency level

0% 15% 30% 45% 60% 75% 90% max

efc–cr 0.16 0.22/0.05 0.27/0.07 0.29/0.07 0.30/0.08 0.32/0.08 0.33/0.09 0.35/0.10
efc–mimp 0.16 0.16/0.03 0.17/0.03 0.18/0.04 0.19/0.04 0.21/0.04 0.23/0.04 0.25/0.05

efc–cwd 0.16 0.22/0.05 0.30/0.08 0.33/0.08 0.34/0.09 0.36/0.10 0.38/0.11 0.41/0.13
fisherc 0.18 0.19/0.02 0.20/0.02 0.20/0.03 0.21/0.03 0.22/0.04 0.24/0.04 0.27/0.05

ldc 0.15 0.15/0.02 0.16/0.02 0.17/0.03 0.18/0.03 0.19/0.03 0.20/0.04 0.24/0.05
loglc 0.15 0.15/0.02 0.16/0.03 0.17/0.03 0.19/0.04 0.21/0.04 0.24/0.05 0.27/0.06
nmc 0.23 0.23/0.02 0.23/0.02 0.23/0.03 0.24/0.03 0.24/0.03 0.25/0.04 0.26/0.04

nmsc 0.19 0.19/0.01 0.20/0.02 0.20/0.02 0.21/0.03 0.21/0.03 0.22/0.04 0.24/0.05
quadrc 0.21 0.23/0.02 0.23/0.02 0.24/0.03 0.26/0.03 0.28/0.04 0.30/0.05 0.32/0.08

qdc 0.17 0.19/0.02 0.19/0.02 0.20/0.03 0.21/0.04 0.22/0.05 0.26/0.06 0.34/0.08
udc 0.25 0.24/0.01 0.23/0.02 0.23/0.03 0.23/0.03 0.25/0.04 0.28/0.06 0.34/0.08

klldc 0.15 0.15/0.02 0.16/0.02 0.17/0.03 0.18/0.03 0.19/0.03 0.20/0.04 0.24/0.05
pcldc 0.15 0.15/0.02 0.16/0.02 0.17/0.03 0.18/0.03 0.19/0.03 0.20/0.04 0.24/0.05
knnc 0.14 0.15/0.03 0.16/0.03 0.17/0.04 0.19/0.04 0.21/0.04 0.23/0.05 0.26/0.05

parzenc 0.15 0.16/0.02 0.16/0.03 0.17/0.03 0.19/0.03 0.20/0.04 0.23/0.04 0.26/0.05
treec 0.22 0.23/0.04 0.26/0.05 0.27/0.06 0.29/0.06 – – –

naivebc 0.16 0.17/0.02 0.18/0.03 0.19/0.03 0.21/0.04 0.24/0.05 0.27/0.05 0.30/0.06
perlc 0.19 0.20/0.04 0.20/0.05 0.21/0.05 0.22/0.05 0.24/0.05 0.26/0.06 0.29/0.06
rbnc 0.33 0.35/0.03 0.37/0.03 0.38/0.03 0.40/0.03 0.42/0.03 0.44/0.03 0.47/0.03
svc 0.17 0.17/0.02 0.18/0.03 0.18/0.03 0.19/0.03 0.21/0.04 0.23/0.04 0.25/0.05

median 0.17 0.19/0.02 0.19/0.03 0.20/0.03 0.21/0.03 0.22/0.04 0.24/0.04 0.27/0.05
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Figure 3.11:Performance for incomplete training data and various deficiency levels (recognition rates)

classification of incomplete test data have been given in Table 3.6 and Figure 3.14. As shown,
the electrostatic field approach has consistently outperformed all other methods for all tested
deficiency levels, by the margin reaching up to 0.06.

3.7 Concluding remarks

The Electrostatic Field Classification Framework derived in this chapter allows to address
the missing data problem in an efficient and elegant manner. Apart from handling incomplete
test and training data, the Framework also supports semi–supervised learning from a mixture of
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Table 3.4:Performance for incomplete both test and training data and various deficiency levels

classifier
deficiency level

0% 15% 30% 45% 60% 75% 90% max

efc–ldr/cr 0.16 0.23/0.05 0.30/0.07 0.33/0.08 0.36/0.08 0.40/0.08 0.44/0.09 0.45/0.09
efc–ldr/mimp 0.16 0.17/0.04 0.20/0.04 0.23/0.05 0.27/0.06 0.32/0.06 0.36/0.07 0.39/0.07

efc–ldr/cwd 0.16 0.19/0.04 0.24/0.05 0.28/0.05 0.33/0.05 0.38/0.05 0.43/0.05 0.44/0.05
fisherc 0.18 0.23/0.04 0.26/0.05 0.30/0.05 0.33/0.05 0.38/0.06 0.42/0.06 0.43/0.05

ldc 0.15 0.20/0.04 0.24/0.05 0.28/0.05 0.32/0.05 0.37/0.05 0.41/0.05 0.43/0.05
loglc 0.15 0.20/0.04 0.25/0.05 0.29/0.06 0.33/0.06 0.38/0.06 0.42/0.07 0.43/0.06
nmc 0.23 0.25/0.03 0.27/0.05 0.30/0.05 0.34/0.05 0.38/0.05 0.43/0.05 0.44/0.05

nmsc 0.19 0.22/0.03 0.25/0.04 0.28/0.05 0.32/0.05 0.37/0.05 0.41/0.05 0.43/0.05
quadrc 0.21 0.28/0.04 0.33/0.05 0.37/0.06 0.43/0.07 0.48/0.08 0.52/0.08 0.51/0.10

qdc 0.17 0.24/0.04 0.29/0.05 0.33/0.06 0.38/0.07 0.44/0.08 0.50/0.08 0.53/0.09
udc 0.25 0.27/0.03 0.29/0.05 0.32/0.05 0.37/0.06 0.42/0.07 0.49/0.08 0.53/0.09

klldc 0.15 0.20/0.04 0.24/0.05 0.28/0.05 0.32/0.05 0.37/0.05 0.41/0.05 0.43/0.05
pcldc 0.15 0.20/0.04 0.24/0.05 0.28/0.05 0.32/0.05 0.37/0.05 0.41/0.05 0.43/0.05
knnc 0.14 0.18/0.04 0.22/0.05 0.27/0.05 0.32/0.05 0.38/0.05 0.43/0.05 0.45/0.04

parzenc 0.15 0.18/0.04 0.22/0.04 0.27/0.05 0.32/0.05 0.38/0.05 0.43/0.05 0.44/0.05
treec 0.22 – – – – – – –

naivebc 0.16 0.19/0.04 0.24/0.05 0.29/0.05 0.35/0.06 0.41/0.06 0.45/0.06 0.48/0.07
perlc 0.19 0.23/0.05 0.27/0.06 0.30/0.06 0.33/0.06 0.37/0.07 0.41/0.07 0.43/0.07
rbnc 0.33 0.38/0.03 0.41/0.04 0.44/0.04 0.46/0.03 0.49/0.03 0.51/0.03 0.52/0.04
svc 0.17 0.21/0.04 0.24/0.05 0.28/0.05 0.32/0.05 0.37/0.06 0.41/0.05 0.42/0.05

median 0.17 0.21/0.04 0.25/0.05 0.29/0.05 0.33/0.05 0.38/0.06 0.43/0.05 0.44/0.05
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Figure 3.12: Performance for incomplete both test and training data and various deficiency levels
(recognition rates)

labelled and unlabelled instances, effectively dealing with all forms of data incompleteness.
The modular, extendible architecture of the framework has allowed to develop a set of plug–in

methods for dealing with different types of data deficiency as well as to integrate many of
the traditional missing data handling procedures. The architecture has also allowed to easily apply
the resolutions of some issues of the Electrostatic Field Classifier, which have not been addressed
in previous work, including the distance concentration phenomenon in high–dimensional spaces
and excess of repelling force in the generated field.

The results of the experiments performed using a number of publicly available benchmark
datasets and a set of standard classification and missing data handling techniques, has lead to
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Table 3.5:Performance for missing labels and various deficiency levels

classifier
deficiency level

0% 15% 30% 45% 60% 75% 90% max

efc–gfc 0.16 0.18/0.03 0.20/0.04 0.22/0.05 0.25/0.05 0.28/0.06 0.33/0.08 0.30/0.08
efc–cr 0.16 0.16/0.02 0.17/0.03 0.17/0.04 0.19/0.04 0.21/0.05 0.24/0.06 0.30/0.08
efc–pc 0.16 0.17/0.02 0.17/0.02 0.18/0.03 0.20/0.04 0.22/0.05 0.26/0.06 0.32/0.09
fisherc 0.18 0.19/0.02 0.20/0.02 0.21/0.03 0.22/0.03 0.24/0.04 0.28/0.07 0.38/0.11

ldc 0.15 0.15/0.01 0.16/0.02 0.16/0.02 0.17/0.03 0.18/0.03 0.22/0.06 0.33/0.10
loglc 0.15 0.15/0.02 0.16/0.03 0.17/0.03 0.18/0.04 0.21/0.05 0.30/0.08 0.39/0.11
nmc 0.23 0.24/0.02 0.25/0.02 0.26/0.03 0.26/0.03 0.27/0.03 0.28/0.04 0.31/0.07

nmsc 0.19 0.20/0.02 0.21/0.02 0.21/0.02 0.22/0.03 0.23/0.03 0.24/0.04 0.29/0.08
quadrc 0.21 0.23/0.02 0.24/0.02 0.25/0.03 0.27/0.04 0.27/0.08 0.33/0.11 0.40/0.13

qdc 0.17 0.16/0.02 0.18/0.03 0.22/0.05 0.27/0.05 0.32/0.05 0.47/0.10 0.60/0.12
udc 0.25 0.24/0.02 0.24/0.02 0.25/0.03 0.25/0.03 0.26/0.03 0.28/0.06 0.40/0.13

klldc 0.15 0.15/0.01 0.16/0.02 0.16/0.02 0.17/0.03 0.18/0.03 0.22/0.06 0.33/0.10
pcldc 0.15 0.15/0.01 0.16/0.02 0.16/0.02 0.17/0.03 0.18/0.03 0.22/0.06 0.33/0.10
knnc 0.14 0.15/0.02 0.16/0.03 0.17/0.03 0.18/0.04 0.20/0.04 0.25/0.06 0.33/0.10

parzenc 0.15 0.16/0.02 0.16/0.02 0.17/0.03 0.18/0.03 0.20/0.04 0.24/0.06 0.31/0.08
treec 0.22 0.23/0.04 0.24/0.04 0.26/0.05 0.28/0.06 0.31/0.07 0.39/0.09 0.62/0.02

naivebc 0.16 0.17/0.02 0.18/0.02 0.19/0.03 0.20/0.03 0.21/0.04 0.24/0.05 0.29/0.07
perlc 0.19 0.19/0.04 0.20/0.05 0.20/0.05 0.21/0.05 0.22/0.06 0.26/0.07 0.36/0.11
rbnc 0.33 0.36/0.02 0.37/0.03 0.38/0.03 0.40/0.03 0.42/0.04 0.47/0.05 0.59/0.09
svc 0.17 0.17/0.02 0.18/0.02 0.18/0.03 0.19/0.03 0.20/0.04 0.24/0.06 0.32/0.09

median 0.17 0.17/0.02 0.18/0.02 0.19/0.03 0.20/0.03 0.22/0.04 0.26/0.06 0.33/0.10
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Figure 3.13:Performance for missing labels and various deficiency levels (recognition rates)

a number of interesting conclusions:

1. Even a simple direct analogy to a physical phenomenon allows to build a well–performing
model able to compete with other classifiers. This confirms the potential lying in application
of physical models to machine learning.

2. Inherent support for incomplete data in most cases allows to achieve better performance
than imputation methods, which first try to recover the missing values and than feed
the imputed dataset to a standard classification algorithm. This has an important
implication, as not all standard classification algorithms can be easily extended to handle
missing data. Thus in some cases imputation is the only option, leading to suboptimal
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Table 3.6:Performance for missing labels, incomplete test and training data and various deficiency levels

classifier
deficiency level

0% 15% 30% 45% 60% 75% 90% max

efc–ldr/cr/cr 0.16 0.24/0.06 0.31/0.07 0.34/0.08 0.37/0.08 0.41/0.09 0.45/0.09 0.46/0.09
efc–ldr/mimp/cr 0.16 0.18/0.04 0.21/0.05 0.25/0.05 0.29/0.06 0.35/0.07 0.41/0.08 0.46/0.09

fisherc 0.18 0.24/0.04 0.28/0.05 0.32/0.05 0.37/0.06 0.42/0.06 0.47/0.06 0.50/0.07
ldc 0.15 0.20/0.04 0.25/0.05 0.29/0.05 0.35/0.06 0.40/0.06 0.46/0.06 0.49/0.08

loglc 0.15 0.21/0.04 0.26/0.05 0.31/0.06 0.36/0.07 0.42/0.07 0.47/0.08 0.48/0.08
nmc 0.23 0.26/0.04 0.29/0.05 0.32/0.05 0.36/0.06 0.42/0.06 0.46/0.06 0.48/0.06

nmsc 0.19 0.23/0.03 0.26/0.05 0.31/0.05 0.35/0.05 0.40/0.06 0.46/0.06 0.50/0.08
quadrc 0.21 0.30/0.04 0.36/0.06 0.42/0.06 0.47/0.08 0.51/0.09 0.53/0.09 0.51/0.07

qdc 0.17 0.25/0.05 0.32/0.06 0.39/0.07 0.46/0.08 0.51/0.07 0.60/0.09 0.63/0.10
udc 0.25 0.27/0.04 0.30/0.05 0.35/0.06 0.41/0.07 0.48/0.08 0.58/0.10 0.63/0.10

klldc 0.15 0.20/0.04 0.25/0.05 0.29/0.05 0.35/0.06 0.40/0.06 0.46/0.06 0.49/0.08
pcldc 0.15 0.20/0.04 0.25/0.05 0.29/0.05 0.35/0.06 0.40/0.06 0.46/0.06 0.49/0.08
knnc 0.14 0.19/0.04 0.24/0.05 0.30/0.05 0.36/0.06 0.43/0.05 0.47/0.05 0.49/0.06

parzenc 0.15 0.19/0.04 0.24/0.05 0.30/0.05 0.36/0.06 0.42/0.05 0.46/0.05 0.49/0.06
treec 0.22 0.28/0.05 – – – – – 0.58/0.06

naivebc 0.16 0.20/0.04 0.25/0.05 0.32/0.06 0.38/0.06 0.44/0.07 0.49/0.08 0.53/0.09
perlc 0.19 0.24/0.05 0.27/0.06 0.31/0.06 0.35/0.07 0.40/0.07 0.48/0.09 0.54/0.09
rbnc 0.33 0.40/0.03 0.44/0.03 0.47/0.03 0.49/0.03 0.51/0.03 0.55/0.06 0.63/0.10
svc 0.17 0.21/0.04 0.25/0.05 0.30/0.05 0.35/0.06 0.40/0.06 0.45/0.06 0.47/0.07

median 0.17 0.23/0.04 0.26/0.05 0.31/0.05 0.36/0.06 0.42/0.06 0.47/0.06 0.49/0.08

 

 

0% 15
%

30
%

45
%

60
%

75
%

90
%

m
ax

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

EFC-LDR/CR/CR
EFC-LDR/MIMP/CR
Median
Confidence interval

Figure 3.14:Performance for missing labels, incomplete both test and training data and various deficiency
levels (recognition rates)

classification performance. More specifically, the experiments have revealed that:

• The EFC–specific Local Dimensionality Reduction technique for processing
incomplete test data is superior to all other tested classifiers combined with
the class–conditional mean imputation technique.

• The EFC–specific Charge Redistribution method has allowed EFC to become one of
the top performing solutions in the semi–supervised learning scenario.

• The Charge Redistribution method however did not perform so well in the case
of missing training data, yet the Electrostatic Field Classifier used together with
the class–conditional mean imputation is still performing better than average.
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• In the semi–supervised learning scenario with deficient both test and training data,
EFC has once again outperformed all other classifiers.

From the results presented, there also emerges a clear pattern of which EFC approach to
missing data is most likely to produce the best performance within a particular missing data
scenario. The following practical guideline to using EFC in various incomplete data situations
has been closely followed in the practical part of this thesis described in Chapter 6.

• Incomplete test data – Local Dimensionality Reduction,

• Incomplete training data (missing features) – Class–conditional Mean Imputation,

• Incomplete label data – Charge Redistribution.

As shown in the experiments, the combination of the above methods is able to provide good
recognition rates for the most difficult scenarios with missing features and labels, even for high
deficiency levels, in which case the proposed method not only performs better than average, but
in fact often is one of the top performing models.
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Chapter 4

Density Preserving Sampling for error
estimation and model selection

4.1 Introduction

Estimation of the generalisation ability of a classification or regression model is an important
issue in the machine learning field, especially that it is independent of the actual model used.
Generalisation accuracy estimates are not only used as indicators of the expected performance of
the developed classifier or regressor on previously unseen data, but are also commonly used for
model ranking and selection [40].

In contrast to the large number of various regression and classification methods currently in
use, there is only a handful of model independent generalisation error estimation techniques.
The most popular of them are cross–validation [29] dating back to 1968, and bootstrap [44]
developed in the 1979. These techniques, and especially cross–validation are being used even
more willingly and blindly after the publication of a seminal paper by Kohavi in 1995, presenting
a comparative study of bootstrap and cross–validation [92], and currently estimated to have more
than 1700 direct citations according to Harzing’s Publish or Perish citation retrieval system1.

The basic idea, shared by all generalisation error estimation methods, is to reserve a subset
of available data to test the model after it has been trained using the remainder of the dataset.
The main difference between various techniques is the way the generalisation error is calculated,
the size of the subset reserved for testing or whether the procedure is repeated multiple times or
not. They have however something in common, and that is the way in which the testing subset is
generated – random sampling. Although the stochastic nature of bootstrap and cross–validation
ensures that in the limit they would both converge to a true value, this may also lead to large
variations in the estimate between consecutive runs, making the results unreliable. This effect
can be alleviated to a large extent by repeating both procedures multiple times, which however
considerably increases the computational demands.

A good test set should be independent of the training data and representative of the population
from which it has been drawn. While random sampling meets the first requirement, it does not
guarantee the representativeness of the test set. In order to address this issue, stratified sampling
approaches have been developed [92], which try to increase the representativeness at the expense
of independence, and are able to achieve better results than their non–stratified counterparts.

Inspired by the success of stratified sampling approaches, a Density Preserving Sampling

1http://www.harzing.com/pop.htm
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procedure is proposed here, which further sacrifices the independence of the test set to enforce
its representativeness. The method achieves this goal by optimising the correntropy, a recently
developed, non–parametric similarity measure of the probability density functions [102], and as
shown in the experimental section produces accurate generalisation estimates requiring a fraction
of computations when compared to cross–validation.

4.2 Generalisation error estimation

Generalisation error is the error a predictive model will make on novel, previously unseen
data, generated from the same distribution as the data used to develop the model [40]. Low
generalisation error is thus a sign of a good match between the model and the problem, and lack
of overfitting [11].

It is impossible to obtain a closed form solution for calculation of the generalisation error
or even for calculation of tight bounds for the error, in all but the simplest cases [5]. The only
practical solution is to estimate the generalisation error from all available i.i.d. (independently
and identically distributed) data instances by splitting them into training and validation sets [81].
For the error estimate to be meaningful both these datasets should be representative of the true
distribution, so the way in which the data is split plays a crucial role.

4.2.1 Hold–out and random subsampling

The simplest and the least computationally expensive way to estimate the generalisation error is
the hold–out method [181], in which the data is split randomly into two parts: the training set
and the hold–out set, in a priori chosen proportions. This has been depicted in Figure 4.1. It is
a common practice for most sampling techniques to keep the training set bigger than the test set.
The rationale behind this approach is that the test set is only used to determine a single property
(e.g. when to stop training or which model to choose), while the training set is used to adjust
possibly hundreds or more parameters of the model [40].

Figure 4.1:Hold–out method; ‘f1’,‘f2’,‘f3’ denote features, ‘id’ denotes instance indexes
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The model is then trained using the training dataset and its error on the hold–out data becomes
an estimate of the generalisation error. The obvious drawback of the hold–out method is that
unless both datasets are large enough (which is a vague term by itself), different estimates will
be obtained from one run to another. A workaround known as random subsampling [81], repeats
the hold–out procedure multiple times and averages the results. This procedure however still
has some disadvantages as it does not guarantee that all instances will at some point be used for
training nor that none of the classes will be over/under–represented in the hold–out set [92]. In
order to circumvent these issues, more advanced resampling techniques have been developed.
Yet, the hold–out method is still being used when dealing with large datasets, as in this case
other techniques quickly become untractable. It is also sometimes assumed that more advanced
resampling techniques are simply not needed for large amounts of data.

4.2.2 Cross–validation

Cross–validation is a widely used standard statistical technique for estimation of model
generalisation ability, applied with a great success to both classification and regression
problems [11, 40]. Ink–fold cross–validation the whole available dataset is first randomly divided
into k approximately equal subsets. This has been depicted in Figure 4.2. Each of these subsets or
folds is then in turn put aside as validation data, a model is built using the remainingk−1 subsets
and tested using the validation subset. The estimate of the generalisation error is then calculated
as a mean value of all validation errors, while the standard deviation of the validation error can
be used to approximate the confidence intervals of obtained error estimate. The whole procedure
thus requires development of exactlyk models. Since the results obtained in the setting described
above are also likely to vary from one run to another, the procedure is usually repeated multiple
times for various random splits, and the results are averaged.

Figure 4.2:Cross–validation; ‘f1’,‘f2’,‘f3’ denote features, ‘id’ denotes instance indexes

The most often used variants of cross–validation are:

• Leave–one–out (LOO) cross–validation in which a single instance is used as a validation
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set each time. This produces unbiased error estimates but with high variance and can be
computationally prohibitive for large datasets.

• Repeated 10–fold cross–validation, which often is a good compromise between speed and
accuracy.

• Repeated 2–fold cross–validation, which is an approximation of the bootstrap
method [181].

In order to improve the accuracy of the estimates obtained, a stratified cross–validation
approach is used in practice, which samples the data in a way that approximates the percentage of
each class in every fold [92]. For regression problems, stratified cross–validation produces folds
with equal mean values of the target variable [81].

4.2.3 Bootstrap

Bootstrap is a second commonly used generalisation error estimation procedure [11, 40],
especially useful when dealing with small datasets [181]. Given an input dataset of sizeN ,
the method performs uniform sampling with replacement to produce a training set of the same
size. The instances not picked during the sampling procedure form the test set. This has been
depicted in Figure 4.3. The probability of each instance ending up in the test set is thus given by:

(

1−
1
N

)N

≈ e−1 ≈ 0.368 (4.1)

Figure 4.3:Bootstrap method; ‘f1’,‘f2’,‘f3’ denote features, ‘id’ denotes instance indexes

Due to the fact that the probability of each instance being picked for training is1 − 0.368 =
0.632, the method is also often called the ‘0.632 bootstrap’ [181]. Since the error estimate
obtained using test data only would be overly pessimistic (only about 63.2% of instances are
used for training every time), the generalisation error estimate is calculated using weighted test
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and training errors:

error =
1
b

b∑

i=1

(0.632× etest + 0.368× eall) (4.2)

whereb is the number of bootstrap samples andeall is the error on all instances from the original
dataset. In general, the more times the whole process is repeated, the more accurate the estimate.
A comprehensive comparative study of cross–validation and bootstrap has been described in [92].

4.2.4 Bias and variance of error estimation methods

The bias of an error estimation method is the difference between the expected value of the error
and the estimated value [92]. For an unbiased estimator, this difference is equal to zero. Bias can
also be either positive or negative. In the former case, the estimate is said to be overly optimistic,
as the estimated error is lower than the expected error. Negative bias on the other hand leads to
overly pessimistic error estimates.

Low bias on its own does not guarantee good performance of the model. There is another
important parameter – the variance, which measures the variability of the error estimate from one
run to another. In the case of subsampling methods discussed in this chapter, the variability is
usually approximated by the expected standard deviation of a single accuracy estimation run [92].
A good generalisation error estimator should thus have low bias and low variance. Unfortunately
in practice it is usually difficult to achieve both at the same time, hence this situation can be
perceived as another facet of the bias–variance dilemma discussed in Section 2.2.2.

4.3 Information Theoretic Learning for entropy manipulation

As discussed in Section 2.3.2, Information Theoretic Learning is a procedure of adapting
the parameters of a learning machine using information theoretic criterion [127]. However due
to the omnipresent ‘learning from exemplars’ paradigm, application of the information theory
to learning problems is not straightforward, mainly because the required parametric forms of
the PDFs rarely exist. The ITL framework developed in [127] effectively addresses this issue by
using alternative definitions of the information theoretic measures, which are easier to estimate.
For more details on the ITL framework please refer to Appendix C.

4.3.1 Renyi’s quadratic entropy

Entropy is a measure of the uncertainty associated with a random variable. It quantifies
the average information content that is missing due to the unknown value of the variable and
is the main criterion used in ITL approaches. The higher the entropy, the more information can
be gained by discovering the value of the variable.

Calculation of Shannon’s entropy requires the density function to be given in an analytic form.
There are however other definitions of entropy that can be used in the ITL framework and Renyi’s
entropy is one of them. The definition of Renyi’s entropy of orderα for a continuous random
variable is given by:

HRα(Y ) =
1

1− α
log
∫

p(y)α dy (4.3)

Renyi’s entropy involves calculation of the integral of the power of PDF rather than integral of
the logarithm as in the case of Shannon’s counterpart, which is much easier to estimate [128].
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Moreover, Shannon’s entropy is the limiting case of Renyi’s entropy whenα → 1. For practical
applications the choice ofα = 2 is a good compromise between robustness and computational
complexity (O(n2)) [128], which leads to the definition of Renyi’s quadratic entropy:

HR2(Y ) = − log
∫

p(y)2 dy (4.4)

The most important property of Renyi’s entropy from the point of view of ITL is that the extrema
of HS and HR overlap [127], so both definitions are equivalent for the purpose of entropy
optimisation.

The above criterion is however still useless without a good estimate of the probability density
function, which fortunately can be obtained and efficiently integrated into Eq. 4.4 by using
the Parzen window density estimator [40]. Denoting byG(y, σ2I) a spherical Gaussian kernel
centered aty with a diagonal covariance matrixσ2I, the PDF can be estimated as follows:

p̂(y) =
1
N

N∑

i=1

G(y − yi, σ2I) (4.5)

Substituting Eq. 4.5 into Eq. 4.4 and using the convolution property of the Gaussian kernel,
i.e.
∫

G(z − yi, σ
2
1I)G(z − yj , σ

2
2I) dz = G(yi − yj , σ

2
1I + σ2

2I), yields:

HR2(Y ) = − log
∫

p̂(y)2 dy = − log V (y) (4.6)

V (y) =
1

N2

N∑

i=1

N∑

j=1

∫
G(z − yi, σ2I) G(z − yj , σ2I) dz

=
1

N2

N∑

i=1

N∑

j=1

G(yi − yj , 2σ2I) (4.7)

Renyi’s entropy of orderα calculates the interactions betweenα–tuplets of instances, so
the higher the value ofα, the more information about the structure of the dataset can be
extracted [128] but the computational complexity –O(nα) – quickly becomes prohibitive.

If some imaginary particles were placed on top of each data instance a potential field would
be created, sinceG(yi − yj , 2σ2I) is always positive and decays exponentially with the square
of the distance betweenyi andyj [127]. The instances can thus be referred to as Information
Particles whileV (y), which is an averaged sum of all pairs of interactions and represents the total
potential energy of the dataset – Information Potential (IP). By analogy to classical physics
the gradient of potential energy is a force, which would drag the particles to a state with minimum
potential if they were free to move. This behaviour can be used for training of adaptive systems
with forces taking place of the injected error and used for adjusting parameters of the model [128].

4.3.2 Auto and cross correntropy

A Generalised Correlation Function (GCF) for a stochastic processT is defined as [148]:

VT (T1, T2) = E[φ(t1), φ(t2)] = E[K(t1, t2)] (4.8)
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whereE stands for the expected value,φ denotes some kernel induced transformation andK
is a kernel function, assumed to be Gaussian from now on. It has been proven, that the GCF
estimator not only conveys information about autocorrelation but also about the structure of
the dataset, as its mean value for non–zero lags converges asymptotically to the estimate of
the Information Potential calculated using Renyi’s quadratic entropy [148]. For this reason
the function has been named auto–correntropy and is a preferred choice over traditional methods
also due to taking advantage of all even moments of the PDF.

The idea of auto–correntropy has been further developed in [102] for a general case of two
arbitrary random variables. The new measure, named cross–correntropy (or correntropy) is
defined for variablesX andY as:

VXY (X,Y ) = E[φ(x), φ(y)] = E[K(x, y)] (4.9)

The correntropy can be used as a measure of similarity betweenX and Y but only in
the neighbourhood of the joint space. This results from the restriction of Gaussian kernels, which
have high values only along thex ≈ y line with exponential fall off otherwise. The size of this
neighbourhood is therefore controlled by the kernel width parameterσ. As a result, correntropy
can also be defined as the integral of the joint probability density along the linex = y:

VXY (X,Y ) ≈
∫

p(x, y) |x=y=u du (4.10)

The joint PDF can be estimated from the data using the Parzen window method:

p(x, y) ≈
1
N

N∑

i=1

G(x− xi, σ
2I)G(y − yi, σ

2I) (4.11)

By integrating the above along thex = y line and using the convolution property of Gaussian
functions again, the estimate of correntropy is finally obtained as:

VXY (X,Y ) ≈
1
N

N∑

i=1

G(xi − yi, 2σ2I) (4.12)

The correntropy can thus be regarded as the PDF of equality of two variables in the neighbourhood
of the joint space, of the size determined by the kernel width parameterσ [102, 104].
The measure has many interesting properties and one of them is that for independentX and
Y it can be approximated by the Information Potential formula similar to Eq. 4.7 and named
Cross Information Potential [104]. Correntropy has been successfully used as a localized,
outlier–resistant similarity measure for various supervised learning applications [86, 103, 104,
154].

4.4 Density Preserving Sampling procedure

Both cross–validation and bootstrap, described in Sections 4.2.2 and 4.2.3 are stochastic methods.
The immediate consequence is that the results can vary a lot from one run to another and
there is no guarantee that the datasets obtained by splitting the original data are representative,
which is a necessary condition for obtaining accurate error estimates. For this reason, in order
to obtain reliable results, averaging over multiple iterations is required. In general, the more
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times the procedure is repeated the better, as in the limit both methods will converge to the true
error values. Fork−fold cross–validation usingN−element dataset this could mean averaging
over all

(
N

N/k

)
possibilities of choosingN/k instances out ofN (the so called ‘complete

cross–validation’ [92]), which quickly becomes untractable. There is however another, often
overlooked possibility – intelligent sampling aiming at producing only representative splits.

From statistics, a random sample is considered representative if its characteristics reflect
those of the population from which it is drawn [37]. Since these characteristics are reflected by
the probability density function, the more similar the distribution of the sample to the distribution
of the population, the more representative this sample is. The correntropy described in
Section 4.3.2 can be used to measure the similarity between two distributions and thus to measure
the ‘representativeness’ of the sample. Moreover, it is also possible to use correntropy as
an optimisation criterion, guiding the sampling process in order to split a given dataset into two
or more maximally representative subsets.

4.4.1 Estimation of correntropy for unsorted datasets with different cardinalities

Eq. 4.12 defines correntropy between two random variables or datasetsX andY as the value
of a Gaussian kernel centered at(xi − yi) averaged over allN instance pairs. There are thus
three requirements for calculation of correntropy to be possible: the datasets (1) must be ordered,
(2) must have the same dimensionality and (3) must have the same number of objects. While
the second requirement is irrelevant for sampling, as each subset of objects necessarily needs
to have the same dimensionality as the set from which it has been selected, the remaining two
requirements may pose a problem.

For some applications like e.g. supervised learning, all the above requirements are met
automatically – ifX denotes the output of a mapper andY denotes the target value,|X| = |Y |
andxi is the prediction ofyi. In sampling however in general one cannot expect the instances
to be ordered, which means that it is not obvious on the difference of which instances to center
the Gaussians. Moreover, the datasets may have different cardinalities e.g. when one wants to
calculate the correntropy between the original dataset and its subset.

To address the ordering issue the following approach is adapted. For every instancexi, i ∈
(1..N), the Gaussian is centred at(xi − yj), such that:

j = argmin
j
‖ xi − yj ‖, j ∈ (1..N) (4.13)

where‖ ∙ ‖ denotes the Euclidean distance. In other wordsyj is selected to be as close toxi

as possible. Bothxi andyj are then removed from their respective sets and the procedure is
repeated until all instances are exhausted. The generalised, instance ordering insensitive formula
for calculation of correntropy thus becomes:

VXY (X,Y ) ≈
1
N

N∑

i=1

G(xi − yj , 2σ2I)

j = argmin
j
‖ xi − yj ‖, j ∈ Javail (4.14)

where the setJavail contains indices ofy which haven’t yet been used, to ensure that eachyk is
used only once.

When the datasets have different cardinalities, that is without loss of generality ifNX > NY ,
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the approach outlined above will terminate afterNY instances are processed. To avoid this, a new
datasetYN is created by duplicating the originalY datasetdNX/NY e times. Correntropy is then
calculated betweenX andYN and the calculation will terminate after exactlyNX steps.

For the correntropy values to be more comparable for different experiments,VXY (X,Y ) has
been scaled to fit into the[0, +1] range, by dividing eachG(xi−yj , 2σ2I) in the sum in Eq. 4.14
by G(0, 2σ2I). Every correntropy value given in the rest of this chapter has been scaled. Note
however, that the correntropies should be compared with caution as their absolute difference can
be made almost arbitrarily large by manipulating the Parzen window width parameterσ. For
this reason the correntropy values given should be seen as ranks of various models/solutions on
an ordinal scale.

4.4.2 Correntropy based sampling procedure

In this section a correntropy–based, hierarchical, binary density preserving splitting procedure
is proposed. The correntropy given by Eq. 4.12 is a function differentiable with respect to both
xi andyi, which unfortunately is not the case for the generalised function given by Eq. 4.14.
Moreover, none of them is differentiable with respect to the indicesi andj, which are the only
variables that can be manipulated within the splitting process. Gradient driven optimisation
procedure is thus not straightforward hence a greedy, locally optimal approach was chosen.

Since correntropy is being estimated by a scaled sum of Gaussians, it reaches a maximum
when all components of the sum reach their maximal values. In case of a single Gaussian function,
the maximum is reached at 0 and since the function is piecewise monotonic and symmetric,
the closerxi andyj are in Eq. 4.14, the higherVXY (X,Y ) will be. This immediately suggests
an iterative, binary splitting procedure of a datasetZ into datasetsX andY , which at each step
selects two instanceszi andzj so that:

i, j = argmin
i,j

‖ zi − zj ‖ (4.15)

and then adds them to the setsX andY , so thatX = X ∪ zi andY = Y ∪ zj or the other way
round, removing them from datasetZ at the same time. This has been depicted in Figure 4.4.

The above procedure aims at directly maximisingVXY (X,Y ), that is the correntropy between
the two new datasets. Due to the way correntropy is calculated for sets with various cardinalities
however, it also indirectly maximisesVXZ(X,Z) andVY Z(Y,Z). As a result, newly obtained
datasets are splits with distributions maximally similar to each other and to the distributions of
the original dataset in the correntropy sense. To obtain more than 2 splits, the procedure can be
repeated by splitting datasetsX andY again, which will produce 4 splits and so on. The total
number of splits is thus always a power of 2.

The instanceszi andzj can be added to the setsX andY arbitrarily or not. In the approach
presented here a procedure in which the two objects are distributed in a way that maximises
the average coverage of the input space by both splits has been devised. Denoting bydkW

the average Euclidean distance between instancezk and all instances in setW , the rules are:

diX + djY ≥ djX + diY ⇒ X = X ∪ zi, Y = Y ∪ zj (4.16)

diX + djY < djX + diY ⇒ X = X ∪ zj , Y = Y ∪ zi (4.17)

For classification problems, the splitting procedure can be executed in either supervised or
unsupervised mode. In the former case, the algorithm takes advantage of the class labels supplied
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Figure 4.4:Density Preserving Sampling procedure; ‘f1’,‘f2’,‘f3’ denote features, ‘id’ denotes instance
indexes

with the data by considering each class in turn and in separation from the rest. In other words
the dataset is being split class by class. This approach is referred to as DPS–S. In the unsupervised
mode, the class labels are ignored, so the procedure is purely density–driven and has been called
DPS–U. Similar remark applies to estimation of correntropy, which can also be calculated in
a class–wise (supervised) or class–less (unsupervised) mode.

In current implementation, if the classes are too small to be divided into a given number of
subsets, DPS–S automatically falls–back to DPS–U. Since the splitting procedure is hierarchical,
most datasets can be divided using the supervised approach up to some point, after which
the unsupervised procedure will take over.

The computational complexity of the DPS approach is of the orderO(N2/2) in
the unsupervised case, as the most time consuming operation is calculation of pairwise distances
between allN instances in a form of a symmetric distance matrix. For supervised DPS,
the complexity is of orderO(

∑
i N2

i /2), whereNi is the cardinality of theith class. This is
however negligible when compared to the complexity of most training algorithms.

4.5 Experiments

The experiments have been conducted on 27 publicly available datasets using a total of 16
different classifiers. The datasets used have been described in Appendix A. For the list of
classifiers used please refer to Appendix B.1.

The experiments were designed to (1) compare the error estimation accuracy of
cross–validation and Density Preserving Sampling approaches, (2) test the stability of both error
estimators, (3) test applicability of DPS to the classifier selection process, (4) check, if it is
possible to reliably estimate the generalisation error using a single DPS fold only, thus reducing
the computational requirements by another order of magnitude, and (5) examine the behaviour of
DPS in the context of ensemble models, in comparison to cross–training.

An approach similar to the one outlined in [92] has been followed. For each dataset a stratified
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random subsampling procedure has been repeated 100 times, resulting in 100 random divisions
of the dataset into a training part(2/3) and independent test data(1/3). The training part
was then used to estimate the generalisation error using CV and DPS for each classifier, while
the independent test part has been used to calculate the ‘true’ generalisation error, once again
for each classifier in turn. The true generalisation error then served to calculate the bias of each
estimate, while the generalisation error estimates of a single estimation run have been used to
calculate the variance. Finally, the results have been averaged over all 100 runs of the random
subsampling procedure.

The CV estimate has been calculated within a 10 times repeated 8–fold cross–validation
scheme. The average results for all 10 iterations as well as the result of the best and worst single
run in terms of bias/variance have been provided, in order to emphasise how wrong the things can
go with CV.

Three 8–fold DPS estimates are also given – DPS–S (using class label information), DPS–U
(ignoring class label information) and DPS–SU (averaged over the two).

4.5.1 Toy problems

The analysis starts with two synthetic datasets first used in [97] and [134]. The datasets have been
chosen as they are both two–dimensional, which allows for visualisation of the results and have
been extensively used in many previous studies due to their well known properties.

(a) Cone–torus (b) Synth–mat

Figure 4.5:Synthetic datasets

Cone–torus dataset

Cone–torus is a synthetic, 2 dimensional dataset consisting of 3 classes. A scatter plot of
the dataset is given in Figure 4.5(a). Figure 4.6 depicts scatter plots of 8 DPS–S folds, while
in Figure 4.7, 8 CV folds generated during a single random run are given. Note, that in case of
DPS, the classes tend to preserve their shapes – the half torus for example is clearly visible in
7 out of 8 folds, while for CV only in 4 or 5. This is also well reflected by the mean value of
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correntropy between all 8 folds and the original dataset, which is 0.81 for DPS and 0.71 for CV
averaged over 10 runs (σ = 0.12).

The decision boundaries for theqdcclassifier trained on each of 8 folds in turn, superimposed
on the original dataset have been given in Figure 4.8. The black solid line represents
the boundaries of a classifier trained using the DPS–S folds, while the blue dotted line shows
the boundaries for a single CV run. Notice, that for DPS the decision boundaries generally do not
change their shape from one fold to another, as opposed to CV, where the boundaries seem very
unstable and can change radically.

Figure 4.6:Cone–torus – scatter plots of 8 DPS–S folds

Figure 4.7:Cone–torus – scatter plots of 8 CV folds
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Figure 4.8:Cone–torus – decision boundaries forqdc trained on DPS–S (solid line) and CV (dotted line)
folds

Synth–mat dataset

The Synth–mat dataset is a 2 dimensional mixture of 4 normal distributions and has been
presented in Figure 4.5(b). Both classes have bimodal distribution – there are two Gaussians
in each of them. The mean value of correntropy between all 8 folds and the original dataset is
0.75 for DPS and 0.66 for CV averaged over 10 runs (σ = 0.12). Since the scatter plots of all
DPS and CV folds were already presented for the Cone–torus dataset and not much changes here,
only the decision boundaries of a classifier trained as previously have been given in Figure 4.9.
Once again the boundaries appear stable for DPS and differ a lot from one CV fold to another.

Figure 4.9:Synth–mat – decision boundaries forqdc trained on DPS–S (solid line) and CV (dotted line)
folds
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4.5.2 Benchmark datasets

Correntropy

Figure 4.10 presents the values of averaged correntropy between the original dataset and 8 folds
generated using DPS and CV, for all 27 datasets used in the experiment. Note, that although
the correntropy has been normalised to the[0, +1] range, according to the earlier argument
the values represent an ordinal scale. Also, the Gaussian kernel width used for each dataset
has been chosen to maximise the correlation between bias and correntropy.
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Figure 4.10:Mean correntropy between each fold and the original dataset

The correntropy between the DPS folds and the original dataset is always higher than in
the case of the CV folds, regardless of the number of folds (8 or 16). This is not surprising since
the DPS splits have been obtained by maximisation of correntropy. The picture is very similar
for the between–fold correntropy depicted in Figure 4.11, where DPS is again an unquestionable
leader.
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Figure 4.11:Mean between–fold correntropy

Bias

The mean absolute bias for both DPS and CV can be seen in Figures 4.12 and 4.13. The DPS
approach has a bias comparable to the mean CV result, with slight advantage of the latter for
roughly half of the datasets. Note however, that the DPS estimates are never as biased as
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the worst–case CV scenario, yet the result has been achieved with approximately 10 times less
computations.

A summary of the results can be found in Table 4.1, where a mean value and standard deviation
of bias (and variance) across all datasets and classifiers for each error estimation method have
been given. Both DPS–U and DPS–S have on average the same bias with a tiny difference in its
standard deviation. DPS–SU on the other hand comes very close to the repeated cross–validation,
which is a result of combining both supervised and unsupervised methods. Note, that this
combination does not require additional computations in order to obtain the splits, as all pairwise
within–class distances form a subset of all pairwise distances for the whole dataset, which are
calculated anyway by the unsupervised DPS. All DPS approaches also have mean bias and
standard deviation lower than the worst–case CV scenario.
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Figure 4.12:Mean absolute bias (averaged over all classifiers)
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Figure 4.13:Mean absolute bias (averaged over all datasets)

Variance

The variance of error estimates can be seen in Figure 4.14 (averaged over all classifiers) and
Figure 4.15 (averaged over all datasets). Out of all three DPS approaches, once again DPS–SU
demonstrates the best performance with average variance lower by 0.013 than the best–case
CV scenario (Table 4.1), while DPS–S performs at the level of best–case CV and DPS–U
still outperforms 10 times repeated cross–validation. Note, that in terms of variance, DPS–S
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Table 4.1:Bias and variance summary

DPS–U DPS–S DPS–SU CV besta CV mean CV worst

BIAS–mean 0.0281 0.0281 0.0275 0.0239 0.0273 0.0326
BIAS–stdev 0.0201 0.0202 0.0198 0.0164 0.0194 0.0242

VARIANCE–mean 0.0597 0.0504 0.0394 0.0524 0.0627 0.0743
VARIANCE–stdev 0.0332 0.0327 0.0229 0.0304 0.0345 0.0397

a‘CV best’ denotes the best cross–validation run out of 10 for each dataset/classifier pair in terms of lowest
bias/variance. For CV the division of data which produced the lowest bias did not in general produce the lowest
variance. Similar remarks apply to ‘CV worst’.

outperforms DPS–U and is additionally computationally cheaper (see Section 4.4.2). As a result
good error estimation can be achieved with roughly 10% of computations required by 10 times
repeated CV. For best results however one should resort to DPS–SU, which seems to stabilise
the error estimates, requiring about 20% of the computations of 10 times repeated CV.

0

0.02

0.04

0.06

0.08

0.1

0.12

 
az

i
bio ca

n
cb

a
ch

r
clo cn

c
cn

t
dia ga

2
ga

4
ga

8 gla ion iri let liv ph
o sa

t
se

g
sh

u
so

n
sy

n te
x

th
y

ve
h

win   

 DPS-U
DPS-S
DPS-SU
CV-best
CV-mean
CV-worst

Figure 4.14:Standard deviation of error estimate (averaged over all classifiers)
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Figure 4.15:Standard deviation of error estimate (averaged over all datasets)
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Classifier selection

Selection of a single best model from a group of available models is an important problem
in machine learning. A typical selection criterion is the generalisation error estimated using
cross–validation. The ranking of top 3 classifiers according to both CV and DPS for all datasets
is given in Table 4.2. Note, that the overall ranking for all datasets is exactly the same for both
error estimators, and reflects the ranks based on the true generalisation error. The differences are
however apparent when the results for each dataset are examined separately.

Table 4.2:Ranking of top 3 classifiers

dataset true DPS–U DPS–S DPS–SU CV

azi 11 14 12 11 12 2 11 12 14 11 12 2 11 12 14
bio 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8
can 12 2 9 12 2 9 15 12 2 15 12 2 12 15 2
cba 12 2 9 12 2 9 12 2 9 12 2 9 12 2 9
chr 14 8 11 14 8 11 14 8 2 14 8 11 14 8 11
clo 15 1 2 1 2 3 15 1 2 15 1 2 15 1 2
cnc 1 15 3 1 15 2 1 15 5 1 15 5 1 15 5
cnt 16 12 13 16 12 7 12 16 13 16 12 13 16 12 13
dia 1 3 2 2 9 10 1 11 2 1 2 9 1 3 2
ga2 1 2 3 15 4 2 2 3 9 2 3 9 3 1 2
ga4 1 2 3 1 4 2 15 5 2 15 1 2 15 4 3
ga8 16 3 1 16 1 5 16 5 4 16 5 1 16 15 5
gla 3 15 2 2 9 10 2 9 10 2 9 10 2 9 10
ion 14 11 7 14 7 11 14 13 7 14 13 7 14 7 11
iri 2 9 10 2 9 10 2 7 9 2 9 10 2 9 10
let 11 12 7 12 11 2 12 11 2 12 11 2 12 11 2
liv 1 3 2 1 3 2 11 1 3 1 3 11 1 3 11

pho 11 16 12 16 12 11 11 12 16 11 16 12 11 12 16
sat 11 12 2 11 12 14 11 12 2 11 12 2 11 12 7
seg 11 3 2 3 11 2 11 2 9 11 3 2 3 11 2
shu 13 1 16 13 16 1 13 1 16 13 16 1 13 1 16
son 12 11 15 12 11 14 12 11 14 12 11 14 12 11 2
syn 14 12 16 14 12 16 12 14 16 14 12 16 12 14 16
tex 2 9 10 2 9 10 2 9 10 2 9 10 2 9 10
thy 8 15 7 15 6 7 7 8 11 15 7 8 15 8 11
veh 7 6 3 6 7 2 7 6 2 7 6 2 7 6 2
win 7 6 2 6 1 4 4 6 7 6 4 7 6 7 4

overall 2 9 10 2 9 10 2 9 10 2 9 10 2 9 10
in top 1 27/27 17/27 17/27 20/27 19/27
in top 2 27/27 20/27 23/27 23/27 25/27
in top 3 27/27 21/27 24/27 25/27 25/27

The last three rows in the table denote the number of datasets out of 27, for which the true
top classifier was included in top 1, top 2 and top 3 classifiers according to each error estimation
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method. For CV, the best classifier has been correctly identified 19 times and has been included
in the top 2 and top 3 classifiers 25 times. For the best DPS approach (DPS–SU) the numbers are
very similar – 20, 23 and 25.

The correlation coefficients for different error estimates and true generalisation error are given
in Table 4.3. As shown, all tested error estimators are strongly correlated with the true error, and
the correlation coefficient is never lower than 0.959.

Table 4.3:Correlation between true generalisation error and error estimates

correlation DPS–U DPS–S DPS–SU CV

per dataset (8 folds) 0.9594 0.9657 0.9676 0.9710
per classifier (8 folds) 0.9967 0.9975 0.9976 0.9973
per dataset (16 folds) 0.9640 0.9646 0.9671 0.9695

per classifier (16 folds) 0.9964 0.9969 0.9969 0.9969

Correlation between correntropy and bias

The ability to estimate the generalisation error using a single DPS fold only would allow to
reduce the computational cost of the estimation procedure by another order of magnitude, when
compared to 10 times repeated CV. Figure 4.16 depicts the bias of the estimate calculated using
a single DPS fold, which has been chosen on the basis of the lowest bias itself (‘DPS–best’).
Although in practice this kind of selection procedure is infeasible, it shows that the method has
some potential as for most datasets the bias is comparable with the one obtained using 10 times
repeated cross–validation or even the best–case CV scenario. The problem however is how to
choose the appropriate DPS fold. The value of correntropy seems to be an obvious choice.
Note however, that there is no principled way of selecting the widthσ of the Gaussian kernel
for estimation of correntropy and the estimated value can vary greatly depending on the choice
of σ. It has therefore been decided to check the correlation between bias and the values of
correntropy. The experiment was performed for 8 and 16 DPS–S folds and the results can
be seen in Figure 4.17. Note, that for the sake of calculating the correntropy,σ was chosen
using an exhaustive search in order to optimise the correlation. In other words, the results given
in Figure 4.17 represent the best–case scenario, for the most optimal kernel width, which in
practice is not known a priori. As it can be seen, the correlation varies from about−0.1 to
−0.6 depending on the dataset. The bias of an estimate obtained using a single DPS fold chosen
on the basis of highest correntropy is always higher even in comparison to the worst–case CV
scenario bias (‘DPS–optim’ in Figure 4.16). The estimate of correntropy is only slightly to
moderately correlated with the bias of the error estimate, even for an optimal choice of Gaussian
kernel width. As a result it cannot be used to select a single best fold which would minimise
the bias, although some other divergence measures might be appropriate for this task. This issue
is further investigated in Chapter 5.

Combining classifiers

In this experiment a simple ensemble model based on the majority voting rule was built.
It is believed, that the classifiers used in a combination should be diverse, which enforces

72



Chapter 4. Density Preserving Sampling for error estimation and model selection

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 
az

i
bio ca

n
cb

a
ch

r
clo cn

c
cn

t
dia ga

2
ga

4
ga

8 gla ion iri let liv ph
o sa

t
se

g
sh

u
so

n
sy

n te
x

th
y

ve
h

win
 

 

DPS-U-best
DPS-S-best
DPS-U-optim
DPS-S-optim
CV-best
CV-mean
CV-worst

Figure 4.16:Bias of DPS error estimate calculated using a single fold (averaged over all classifiers)
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Figure 4.17:Correlation between bias and correntropy

complementarity of the ensemble members [140]. One way to enforce this diversity is
cross–training, a technique based on cross–validation, which combines all models obtained during
a single or repeated CV run. For this experiment two synthetic datasets described in Section 4.5.1
have been used. Both datasets were split into 8 folds using DPS–S and CV and then for each
classifier from the previous experiment an ensemble model was built by combining 8 models
trained on all but one fold in turn and using the majority voting rule. For CV this procedure was
repeated 10 times. Each combination was then tested on independent test set. In order to monitor
performance of the combinations, a single control model trained using all 8 folds was also used.

The results have been depicted in Figures 4.18 and 4.19. In most cases, combinations based
on DPS folds do not improve on the performance of a single control model. This was expected,
as for each classifier all 8 ensemble members should be very similar, since they were all trained
using representative subsets of data. For the combinations based on CV, some improvement can
be observed even in the worst case scenario.

In order to illustrate this issue, discrete error distribution plots showing the probability of
various numbers of ensemble members being in error at the same time have been given in
Figures 4.20 and 4.21. The classifiers used to produce these plots (qdc and treec) have been
chosen primarily for illustrative purposes. The area of the gray–shaded region in each figure
represents the error of the combined model. Usually the number of models in majority voting
is chosen to be odd, so that there are no ties. In the presented case there are however 8 models,
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so the ties were resolved randomly. Note, that for DPS most of the mass is concentrated on
the sides of the plots, meaning that the classification decisions are taken unanimously in most
cases, proving that the classifiers are indeed very similar.

In case of CV the situation is different. In Figure 4.20 for example some mass is scattered all
over the plot, meaning that there are situations when the classifiers tend to disagree and hence
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Figure 4.18:Single model v. combination errors for Cone–torus dataset
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Figure 4.19:Single model v. combination errors for Synth–mat dataset
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Figure 4.20:Discrete Error Distributions for Cone–torus dataset andqdc(error rates given in brackets)
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Figure 4.21:Discrete Error Distributions for Synth–mat dataset andtreec(error rates given in brackets)

demonstrate complementarity. The stochastic nature of CV in this case has a very positive effect
on the performance by introducing diversity to the ensemble. This result also confirms, that if
the goal is to select a single best model, it is much safer to use DPS as this minimises the risk
of choosing a bad model due to the stability of decision boundaries as discussed before. From
the point of view of diversity required for ensemble models however, this feature of DPS becomes
a disadvantage and it’s usually much better to use a stochastic method instead.

4.6 Discussion

The presented Density Preserving Sampling procedure is a very attractive alternative for
the commonly used cross–validation technique for a number of reasons.

For the purpose of the generalisation error estimation,k–fold cross–validation is without
a doubt the most widely and commonly used technique, due to its universal character, simplicity
and effectiveness. Its stochastic nature however requires the estimation to be repeated multiple
times for different random divisions of the data, in order to circumvent the risk of obtaining
the best/worst–case scenario estimate, which as demonstrated in this work can be highly biased
and can have a large variance. The need for running the procedure multiple times makes it
computationally expensive, forcing the researchers to seek compromise elsewhere, for example by
not calculating the full gradient during optimisation or taking other shortcuts, which negatively
influence the solution of the problem. The DPS procedure proposed in this thesis is however
deterministic. It thus does not need to be repeated in order to improve the quality of the error
estimate, at the same time producing results comparable to repeated cross–validation when it
comes to bias, and superior to CV in terms of the variance of obtained estimates. Yet it all
happens at 5–10 times lower computational cost.

Another related application area of CV is parameter estimation. Since for some models
the objective function is not differentiable with respect to all its parameters, the optimisation
procedure must resort to a search in the parameter space. One example of such situation is
the kNN classifier, for which the number of nearest neighboursk is usually being set by testing
a number of possible values using cross–validation. In such case, as the search itself might be
very costly depending on the dimensionality of the search space, the cross–validation is usually
not being repeated in order to save computations. As before, due to the non–deterministic nature
of CV, this can lead to suboptimal decisions based on highly biased performance estimates
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(worst–case scenario). Note, that it also applies to other algorithms requiring calculation of
performance estimates repeated many times like e.g. feature selection. The benefit of using DPS
rather than CV in these scenarios can be tremendous.

In case of some machine learning methods it is a common practice to cross–train multiple
models and select the best performing one. The cross–training procedure is analogous to
cross–validation, with the difference that the obtained models instead of being discarded, are
considered as candidates for a final solution. This applies especially to models like decision
trees, which cannot be retrained using the full dataset due to their instability. The danger here
is the combination of a relatively unstable error estimation procedure (see plots of the decision
boundaries in Figures 4.8 and 4.9) with an unstable learning method, which in an unfavorable
case may lead to selection of one of the worst models rather than the best. On the other hand,
models trained using various DPS splits will likely be much more similar to each other, as shown
in Section 4.5.2, minimising the risk and cost of incorrect choice.

Yet another possible application of random sampling procedures is early stopping, a technique
widely used in training of universal approximators (e.g. neural networks) to prevent overfitting. In
this approach a randomly selected subset of the data is used for continuous monitoring of model
performance during training, in order to stop it when the validation error starts to increase, which
is a sign of overfitting. The risk of using unrepresentative validation set is obvious in this case.
Although the behaviour of DPS in conjunction with early stopping has not been addressed here,
it forms an interesting and promising research direction.

4.7 Concluding remarks

The proposed correntropy–based DPS procedure is an interesting alternative for widely used
cross–validation technique in many applications. Unlike CV, DPS is a deterministic method,
which eliminates the need for multiple repetitions of the sampling procedure to obtain reliable
results, considerably reducing the computational burden.

The main property of the proposed method is that it aims to produce representative splits,
which has many implications outlined in the previous section. The experiments conducted using
a diverse set of publicly available benchmark datasets have revealed that:

• For generalisation error estimation, DPS is slightly more biased than 10 times repeated
cross–validation but it has low variance, often lower than the best–case CV scenario.
The DPS bias in all cases also appears much lower than in the worst–case CV scenario.

• The decision boundaries of a classifier trained using DPS folds seem much more stable than
in the case of a single cross–validation folds, which is the result of representativeness of
the subsets generated by DPS. The stability of models trained on various DPS divisions of
the dataset has been confirmed in experiments involving ensemble models.

• For model ranking and selection, DPS is at least as good as 10 times repeated
cross–validation, at much lower computational cost.

The DPS procedures described in this thesis have been formally externally approved for
the inclusion in the PRTools toolbox [42].
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Chapter 5

PDF divergence estimators and their
applicability to representative data
sampling

5.1 Introduction

The Density Preserving Sampling procedure derived in Chapter 4 proved to be comparable to
repeated cross–validation for the purpose of estimation of model generalisation ability, while
eliminating the need for repetitions in the estimation process. It has also been demonstrated that
it is possible to select only a single DPS fold and use it as validation data to obtain an error
estimate with accuracy comparable with 10 times repeated cross–validation, effectively reducing
the computational requirements by another order of magnitude. The problem of selecting the right
DPS fold however, still remains unsolved. The correntropy [102], which is the objective function
used in DPS optimisation, is only moderately correlated with bias of the error estimate. Moreover,
the correlation is only apparent for a single, carefully chosen value of the kernel smoothing
parameter, but there is no principled way to discover this value. The idea of further reduction
of computational cost of generalisation error estimation nevertheless still remains very attractive.

In this chapter the possibilities of selecting a representative subset of data from a larger
dataset are further investigated. Unfortunately, there is no universal and measurable notion of
representativeness. A standard definition of a representative sample that can be found in any
statistical textbook (e.g. [37]) states that it should have the same properties as the population from
which it has been drawn. The question ‘which properties’ however remains open and it is fair
to assume, that the answer differs from one application to another. In the case pursued in this
chapter the application can be stated as accurate estimation of the generalisation performance
of a predictive model. For this purpose easily calculable measure of representativeness, based
on the probability density functions as the most universal characteristic of data, is required.
A number of most popular divergence measures that can be found in the literature is thus
examined, in order to investigate their usability for a given goal.

There are however some challenges here. First of all, in most real–world applications the PDFs
have unknown, non–parametric forms and as a result need to be approximated somehow. The two
best known and most commonly used methods of doing this are the Parzen window [121] and
k–Nearest Neighbour (kNN) [40] density estimation. The problem is, that if the estimates of
the PDFs are poor, it’s hard to expect the value of a divergence measure calculated using these
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estimates to be reliable. The PDF estimates can be inaccurate for many reasons like incorrect
choice of the parameters of density estimation methods, not enough data used for the estimation,
or non–representativeness of the data. Moreover, as the divergence measures in use are defined as
integrals over various functions of the PDFs, in all but the simplest cases there are no closed–form
formulas for their calculation. The only way is to resort to some estimation procedure, which can
make the discussed problem even worse. After all, if one discovers that there is no correlation
between the estimate of the divergence measure and bias of the error estimate, is it because
the divergence measure is not suitable for this task, or because its estimate is poor? Or maybe
the poor estimate of the underlying PDF is to blame here?

5.2 Estimation of the probability density functions

Before presenting various divergence measures and their estimators, estimation of the PDFs
directly from data is first discussed. This issue is fundamental in the context of divergence
estimation, for at least two reasons: (1) the divergence is measured between two or more PDFs,
so some expressions for the PDFs are obviously needed and (2) the PDFs very rarely have known
parametric forms. Two most popular non–parametric density estimation methods are presented
below.

5.2.1 Parzen window method

The Parzen window method [121] is the most commonly used non–parametric PDF estimation
procedure. The estimatêf(x) of the unknown densityf(x) can be obtained by using:

f̂(x) =
1
N

N∑

i=1

1
VN

ϕ

(
x− xi

σN

)

(5.1)

whereN is the dataset size,VN stands for window volume,ϕ is a window function andσN is
the smoothing parameter also known as window width or bandwidth [40]. The window function
is often chosen to be a Gaussian due to its analytical properties. Using a Gaussian function,
the two unknown PDFsp(x) andq(x), which will be extensively used in further sections, can be
approximated in the same way as in Eq. 4.5:

p̂(x) =
1

Np

Np∑

i=1

G(x− xpi, σ
2
pI) (5.2)

q̂(x) =
1

Nq

Nq∑

i=1

G(x− xqi, σ
2
qI) (5.3)

where Np is the number ofd−dimensional points drawn i.i.d. according top(x): Xp =
{xp1, xp2, . . . , xpNp}, Nq is the number of points drawn i.i.d. according toq(x): Xq =
{xq1, xq2, . . . , xqNq} andG(x− xi, σ

2I) is a spherical Gaussian PDF given by:

G(x− xi, σ
2I) =

1
(2πσ2)d/2

exp

(

−
(x− xi)T (x− xi)

2σ2

)

(5.4)
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The Gaussian PDF of Eq. 5.4 corresponds to the window function with absorbed normalising
constantVN . Note, that the Gaussian is spherical and is thus characterised by a single parameterσ,
rather than by the whole covariance matrix. Although intuitively it limits flexibility, the estimators
of Eqs. 5.2 and 5.3 converge to the true densities whenN → ∞, if at the same time the window
bandwidth tends to0 at a certain rate. When dealing with two subsamples of the same dataset, it
can be assumed thatσp = σq = σ, effectively eliminating one of the parameters.

Given a set of data, the PDF estimation now comes down to a single parameterσ, hence its
value should be selected very carefully. If this value is chosen too big, the density estimate will
be oversmoothed and the fine details of the PDF will be lost. Ifσ is chosen too small, the estimate
will be very spiky with large regions of values near 0. Thus there has been a substantial amount of
research focused on automatic selection of the bandwidth parameter from the data (a review can
be found in [174]). Three different bandwidth selection methods have been used in this study:

• Pseudo likelihood cross–validation[41], which selects the bandwidthσ to maximise
a pseudo–likelihood function of the density estimate using leave–one–out approximation to
avoid a trivial maximum atσ = 0. Interestingly, the pseudo–likelihood method minimises
the Kullback–Leibler divergence between the true density and the estimated density, but it
tends to produce inconsistent estimates for heavy–tailed PDFs [174].

• ‘Rule of Thumb’ (RoT) method [158], which minimises the Asymptotic Mean Integrated
Squared Error (AMISE) between the true distribution and its estimate. Calculation of
bandwidth minimising the AMISE criterion requires estimation of integral of squared
second derivative of the unknown true PDF [174], which is difficult. To overcome this issue,
the RoT method replaces the unknown value with an estimate calculated with reference to
a normal distribution. This makes the method computationally inexpensive at the risk of
producing poor estimates for distributions which depart from Gaussian.

• ‘Solve–the–equation plug–in’ method[157], which also minimises AMISE between
the true distribution and its estimate, but without assuming any parametric form of
the former. This method is currently considered as state–of–the–art [88], although it has
a computational complexity which is quadratic in the dataset size. In the experiments a fast
approximate bandwidth selection algorithm of [130], which scales linearly in the size of
data, has been used.

5.2.2 k–Nearest Neighbour method

The second well known probability density estimator is the k–Nearest Neighbour method,
according to which densitiesp(x) andq(x) can be approximated as [40, 124]:

p̃(x) =
kΓ(d/2 + 1)

Npπd/2rk(x)d
(5.5)

q̃(x) =
kΓ(d/2 + 1)

Nqπd/2sk(x)d
(5.6)

wherek is the nearest neighbour count,πd/2/Γ(d/2 + 1) is the volume of a unit–ball andrk(x),
sk(x) are the Euclidean distances fromx to its kth nearest neighbour inXp andXq respectively.
Note, that ifx ∈ Xp then the influence ofx on the density estimate should be eliminated, thusNp

in Eq. 5.5 becomesNp − 1 andrk(x) denotes the distance to thekth nearest neighbour inXp\ x
rather than inXp. A similar remark applies to the situation whenx ∈ Xq.
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5.3 Probability density function divergence measures

There are many different divergence measures that one can find in the literature [26]. Perhaps
the most prominent of them is the family of Chernoff’sα–divergences [95], which includes such
measures as the Kullback–Leibler divergence [96] or squared Hellinger’s distance [100] as its
special cases. Although most of these measures have strong theoretical foundations, there are
no closed–form solutions to calculate them, apart from the cases when the probability density
functions are some simple parametric models like e.g. Gaussians. For this reason, one is forced
to resort to some kind of estimators of the divergences. The estimators can be obtained in various
ways and one of them is to estimate the unknown probability density functions first and then
substitute them into the formulas for divergences. This is the approach taken in this study. Note,
that the literature on PDF divergence estimation is somewhat inconsistent, hence in the following
sections an attempt has been made to gather all the relevant concepts and present them in a unified
way, filling some of the existing gaps. As a result, most of the formulas that can be found in
the Sections 5.3 and 5.4 have been derived or transformed for the purpose of this study.

Throughout the following sections the sample mean is extensively used as the estimator of
expected value. By the Law of Large Numbers sample mean converges to the expected value with
probability 1, as the sample size tends to infinity. The expected value of an arbitrary function
q(x), w.r.t. the PDFp(x) is:

Ep(x) [q(x)] =
∫

q(x) p(x) dx (5.7)

and can be approximated by:

Êp(x) [q(x)] =
1
N

N∑

i=1

q(xi) ≈ Ep(x) [q(x)] (5.8)

5.3.1 Kullback–Leibler divergence

The Kullback–Leibler divergence(DKL), also known as information divergence or relative
entropy, is probably the most widely used measure of similarity between two probability
density functions [96]. The measure has been used in a wide variety of applications, like
data condensation [53], Blind Source Separation via Independent Component Analysis [22, 23],
classification [68, 115], or image processing [14, 112] to name a few. The Kullback–Leibler
divergence between the joint PDF and a product of marginal PDFs is equal to the mutual
information between the two random variables, which is one of the most important concepts
of information theory [106].

The Kullback–Leibler divergence is non–symmetric and can be interpreted as the number of
additional bits (if base 2 logarithm is used) needed to encode instances from the true distribution
p(x) using the code based on some other distributionq(x) [96]. The measure is thus directly
related to Shannon’s information theory. Kullback–Leibler divergence for two continuous random
variables, which are of interest here, is given by:

DKL(p, q) =
∫

p(x) log
p(x)
q(x)

dx (5.9)

The natural logarithms are used throughout this chapter unless otherwise stated. From the above
definition it’s easy to see, thatDKL is only defined ifq(x) > 0 for everyx. Using Eqs. 5.7
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and 5.8 one can also write:

DKL(p, q) = Ep(x)

[

log
p(x)
q(x)

]

≈
1

Np

Np∑

i=1

log
p(xpi)
q(xpi)

(5.10)

Finally, by substituting Eqs. 5.2 and 5.3 into Eq. 5.10 and rearranging, the formula for
the estimator̂DKL(p, q) becomes:

D̂KL(p, q) =
1

Np

Np∑

i=1

log
p̂(xpi)
q̂(xpi)

=
1

Np

Np∑

i=1

[log p̂(xpi)− log q̂(xpi)] (5.11)

=
1

Np

Np∑

i=1



log
1

Np

Np∑

j=1

G(xpi − xpj , σ
2I)− log

1
Nq

Nq∑

j=1

G(xpi − xqj , σ
2I)





In the experiments in Section 5.4 another estimator ofDKL derived in [124, 179], based on
the kNN density estimate rather than Parzen window, is also used:

D̃KL(p, q) =
d

Np

Np∑

i=1

log
sk(xpi)
rk(xpi)

+ log
Nq

Np − 1
(5.12)

whererk(xpi) and sk(xpi) are the Euclidean distances to thekth nearest neighbor ofxpi in
Xp�xpi andXq respectively.

For a special case, when bothp(x) and q(x) are Mixtures of Gaussians there exist other
techniques for approximation ofDKL, which have been reviewed in [72].

5.3.2 Jeffrey’s divergence

One of the inconveniences of the Kullback–Leibler divergence is the fact, that it is
non–symmetric. Jeffrey’s divergence(DJ) is a simple way of makingDKL symmetric and is
given by the following formula [82]:

DJ(p, q) =
∫

(p(x)− q(x))(log p(x)− log q(x)) dx (5.13)

Note, that after rearranging:

DJ(p, q) =
∫

p(x) log
p(x)
q(x)

dx−
∫

q(x) log
p(x)
q(x)

dx = DKL(p, q) + DKL(q, p) (5.14)

which solves the non–symmetricity issue in a very simple and intuitive way. Note however, that
there is another problem:DJ is not defined if eitherp(x) = 0 or q(x) = 0, which is in fact even
more restrictive than in the case ofDKL.

Jeffrey’s divergence has been used for example in [112] for classification of multimedia data
with Support Vector Machines.
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5.3.3 Jensen–Shannon divergence

The Jensen–Shannon divergence(DJS) is a measure designed to address the weaknesses of
Kullback–Leibler divergence. Namely, unlike the latter,DJS is symmetric, always finite and
semibounded [101]. Jensen–Shannon divergence is defined in terms ofDKL as:

DJS(p, q) =
1
2
DKL(p,m) +

1
2
DKL(q,m) (5.15)

wherem(x) = 1
2(p(x) + q(x)). Unfortunately no estimator ofDJS was given in [101], but it

can be approximated using the estimators ofDKL as:

D̂JS(p, q) =
1
2
D̂KL(p,m) +

1
2
D̂KL(q,m) (5.16)

=
1

2Np

Np∑

i=1

[log p̂(xpi)− log m̂(xpi)] +
1

2Nq

Nq∑

i=1

[log q̂(xqi)− log m̂(xqi)]

where

m̂(x) =
1
2
(p̂(x) + q̂(x)) =

1
2Np

Np∑

i=1

G(x− xpi, σ
2
pI) +

1
2Nq

Nq∑

i=1

G(x− xqi, σ
2
qI) (5.17)

Using the kNN density estimator, the divergence can also be estimated as:

D̃JS(p, q) =
1

2Np

Np∑

i=1

log
2 Nqsk(xpi)d

Nqsk(xpi)d + (Np − 1)rk(xpi)d
(5.18)

+
1

2Nq

Nq∑

i=1

log
2 Nprk(xqi)d

(Nq − 1)sk(xqi)d + Nprk(xqi)d

Some of the applications of the Jensen–Shannon divergence include feature clustering for text
classification [35] and outlier detection in sensor data [159].

5.3.4 Cauchy–Schwarz divergence

The Cauchy–Schwarz divergenceDCS is a symmetric measure obeying0 ≤ DCS ≤ ∞,
with the minimum obtained forp(x) = q(x) [129]. The measure has been inspired by
the Cauchy–Schwarz inequality. It was derived as a part of the Information Theoretic Learning
framework [125, 127] and its theoretical properties have been further investigated in [85].
The Cauchy–Schwarz divergence is given by the following formula:

DCS(p, q) = − log

∫
p(x) q(x) dx

√∫
p2(x) dx

∫
q2(x) dx

(5.19)
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If the Parzen window method with Gaussian kernels is used for PDF estimation, substituting
Eqs. 5.2 and 5.3 into each integral of Eq. 5.19 in turn and rearranging yields:

∫
p(x) q(x) dx =

1
NpNq

Np∑

i=1

Nq∑

j=1

∫
G(x− xpi, σ

2
pI) G(x− xqj , σ

2
qI) dx (5.20)

∫
p2(x) dx =

1
N2

p

Np∑

i=1

Np∑

j=1

∫
G(x− xpi, σ

2
pI) G(x− xpj , σ

2
pI) dx (5.21)

∫
q2(x) dx =

1
N2

q

Nq∑

i=1

Nq∑

j=1

∫
G(x− xqi, σ

2
qI) G(x− xqj , σ

2
qI) dx (5.22)

Using the Gaussian convolution property and inserting the above equations into Eq. 5.19 yields:

D̂CS(p, q) = − log

∑Np

i=1

∑Nq

j=1 G(xpi − xqj , σ
2
pI + σ2

qI)
√∑Np

i=1

∑Np

j=1 G(xpi − xpj , 2σ2
pI)

∑Nq

i=1

∑Nq

j=1 G(xqi − xqj , 2σ2
qI)
(5.23)

Note that unlike in the case of other divergence measures presented above, in Eq. 5.23 the only
approximation is the Parzen windowing itself, as due to the Gaussian convolution property there
was no need to use Eq. 5.8. This suggests that potentially the estimator ofDCS should be more
reliable than that ofDKL, DJ or DJS . It is interesting to note, thatDCS can also be written as:

DCS(p, q) = −
1
2

[H(Xp) + H(Xq)− 2 H(Xp, Xq)] (5.24)

where H(X) = − log IP (X) denotes Renyi’s quadratic entropy andIP (X) stands for
the Information Potential [127], which emphasises the direct relation ofDCS to information
theory.

The Cauchy–Schwarz divergence has been used e.g. for classification [84] and clustering [83].

5.3.5 Mean Integrated Squared Error

The Integrated Squared Error (ISE) is a measure of distance between two probability distributions.
It is also a special case of a family of divergence measures presented in [89]. However, perhaps
the best known application of ISE is estimation of kernel bandwidth in the Parzen density
method [174]. ISE is given by:

ISE(p, q) =
∫

(p(x)− q(x))2 dx (5.25)

After rearranging and applying Eq. 5.8 the following estimation formula can be obtained:

ISE(p, q) =
∫

p(x) [p(x)− q(x)] dx +
∫

q(x) [q(x)− p(x)] dx

= Ep(x) [p(x)− q(x)] + Eq(x) [q(x)− p(x)]

≈
1

Np

Np∑

i=1

[p(xpi)− q(xpi)] +
1

Nq

Nq∑

i=1

[q(xqi)− p(xqi]) (5.26)
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Using the Parzen window density estimators of Eqs. 5.2 and 5.3 and rearranging one gets:

ˆISE(p, q) =
1

N2
p

Np∑

i=1

Np∑

j=1

G(xpi − xpj , σ
2
pI) +

1
N2

q

Nq∑

i=1

Nq∑

j=1

G(xqi − xqj , σ
2
qI) (5.27)

−
1

NpNq

Np∑

i=1

Nq∑

j=1

G(xpi − xqj , σ
2
pI)−

1
NpNq

Np∑

i=1

Nq∑

j=1

G(xpi − xqj , σ
2
qI)

= IP (Xp) + IP (Xq)− IP (Xp, Xq)− IP (Xq, Xp)

≈ IP (Xp) + IP (Xq)− 2 IP (Xp, Xq)

≈ IP (Xp) + IP (Xq)− 2 IP (Xq, Xp)

which is a result surprisingly similar to Eq. 5.24, but this time the information potentials are used
instead of entropies and the Gaussian kernel width is equal toσ rather than

√
2σ.

ISE can also be estimated using the kNN density estimators of Eqs. 5.5 and 5.6 yielding:

˜ISE(p, q) =
kΓ(d/2 + 1)

πd/2



 1
Np

Np∑

i=1

Nqsk(xpi)d − (Np − 1)rk(xpi)d

(Np − 1)Nqrk(xpi)dsk(xpi)d
(5.28)

+
1

Nq

Nq∑

i=1

Nprk(xqi)d − (Nq − 1)sk(xqi)d

(Nq − 1)Nprk(xqi)dsk(xqi)d





Since ISE depends on the particular realisation of theN points [130, 174], in practice the Mean
Integrated Squared Error (MISE) is used instead. MISE is simply the expectation of ISE and in
the experiments described in Section 5.4 it is estimated using Eq. 5.8.

5.4 Empirical convergence of the divergence estimators

In this section, an empirical convergence study of the divergence measures described in
Section 5.3, is presented.

5.4.1 Experiment setup

Following [124] an empirical convergence study using four toy problems has been designed.
For each of them, two Gaussian distributions were used. The contour plots for the first three
toy problems can be seen in Figure 5.1. The distributions were chosen to be Gaussian, that
is p(x) = G(x − μp, Σp) and q(x) = G(x − μq, Σq), as in this case there exist
closed–form formulas enabling exact calculations of most of the divergence measures introduced
in the previous sections. The parameters of the distributions were:

1. Toy problem 1, which is the same as the problem used in [124]:

μp =

[
0
0

]

, Σp =

[
1 0
0 1

]

μq =

[
0.5
−0.5

]

, Σq =

[
0.5 0.1
0.1 0.3

] (5.29)
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2. Toy problem 2, where the means are equal, but the covariance matrices are not:

μp =

[
0
0

]

, Σp =

[
1 0
0 0.1

]

μq =

[
0
0

]

, Σq =

[
0.1 0
0 1

] (5.30)

3. Toy problem 3, where the covariance matrices are equal, but the means are not:

μp =

[
0.35
−0.35

]

, Σp =

[
1 0.9

0.9 1

]

μq =

[
−0.35
0.35

]

, Σq =

[
1 0.9

0.9 1

] (5.31)

4. Toy problem 4, where the Gaussians are 20–dimensional,μp =
[
0 0 . . . 0

]T
, Σp = I

and μq, Σq have been generated randomly from the[−1, +1] and [0, +2] intervals
respectively.

(a) Toy problem 1 (b) Toy problem 2 (c) Toy problem 3

Figure 5.1:Contour plots for the toy problems: solid line –p(x), dotted line –q(x)

For each experiment 100 random samples of an exponentially increasing size were drawn from
bothp(x) andq(x). The divergence estimate was then calculated as the mean value of estimates
for each of these 100 samples.

Denoting by d the dimensionality of the distributions, the Kullback–Leibler divergence
between two Gaussian distributionspG(x) and qG(x) can be calculated using the following
formula [184]:

DKL(pG, qG) =
1
2

(

log

(
detΣq

detΣp

)

+ Tr
(
Σ−1

q Σp

)
+
(
μq − μp

)T Σ−1
q

(
μq − μp

)
− d

)

(5.32)
Calculation of the Jeffrey’s divergence between two Gaussian PDFs is straightforward, as

DJ(pG, qG) = DKL(pG, qG) + DKL(qG, pG).
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In order to calculateDCS andISE exactly for the special case of two Gaussian distributions,
the following Gaussian multiplication formula is used:

G(x− μp, Σp)G(x− μq, Σq) = G(μp − μq, Σp + Σq)G(x− μpq, Σpq) (5.33)

where the exact expression forμpq andΣpq in this case are irrelevant, as shown below. Using
Eq. 5.33, the following holds:

∫
p2

G(x) dx =
∫

G(μp − μp, Σp + Σp) G(x− μpp, Σpp) dx = G(0, 2Σp) (5.34)

∫
q2
G(x) dx =

∫
G(μq − μq, Σq + Σq) G(x− μqq, Σqq) dx = G(0, 2Σq) (5.35)

∫
pG(x)qG(x) dx =

∫
G(μp−μq, Σp +Σq)G(x−μpq, Σpq) dx = G(μp−μq, Σp +Σq)

(5.36)
From the above and Eqs. 5.19 and 5.25 the closed–form solutions forDCS andISE are:

DCS(pG, qG) = − log
G(μp − μq, Σp + Σq)
√

G(0, 2Σp)G(0, 2Σq)
(5.37)

ISE(pG, qG) =
∫

p2
G(x) dx +

∫
q2
G(x) dx− 2

∫
pG(x)qG(x) dx

= G(0, 2Σp) + G(0, 2Σq)− 2 G(μp − μq, Σp + Σq) (5.38)

Unfortunately, there is no closed–form formula to calculate the Jensen–Shannon divergence, and
an estimate based on Eq. 5.7 has been used, calculated forNp = Nq = 100000, yielding:

DJS(pG, qG) =
1
2
DKL(pG,

1
2
(pG + qG)) +

1
2
DKL(qG,

1
2
(pG + qG)) (5.39)

where:

DKL(pG,
1
2
(pG + qG)) ≈

1
Np

Np∑

i=1

log
pG(xpi)

1
2(pG(xpi) + qG(xpi))

(5.40)

DKL(qG,
1
2
(pG + qG)) ≈

1
Nq

Nq∑

i=1

log
qG(xpi)

1
2(pG(xqi) + qG(xqi))

(5.41)

Note, that in both equations above the terms under the logarithms are not dependent on any PDF
estimator–specific parameters, as the PDFs are given in analytical forms, so the sample mean is
the only estimation required.

Figures 5.2 to 5.10 present the results of the experiments using the 4 toy problems. The ‘best’
estimate in each plot has been marked with bold red line. Additionally the confidence intervals
(mean+/− one standard deviation) for the best method were also plotted. The best estimator has
been chosen according to the criterion of fast convergence to the true value of the estimated
measure and lack of divergence after reaching that target value. To facilitate the choice of
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the ‘best’ estimator the below scoring function was used:

S =




|M|∑

i=1

mi (ȳi − t)2





−1

(5.42)

whereM = {10, 20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10000}, ȳi is the mean value of
the estimator for the sample sizemi and t is the true value of the divergence measure. Note
that this scoring function heavily penalizes any deviation from the true value for large sample
sizes, which in effect assigns low scores to estimators which have not converged or started to
diverge.

In the Figures below the following code has been used for denoting the divergence estimators:

XX − Y Y ZZ for Parzen window density estimates

XX − k for kNN density estimates

wherek stands for the number of nearest neighbours and the remaining symbols have been given
in Tables 5.1 to 5.3.

Table 5.1:Divergence measure estimators

XX description

kl1 Kullback–Leibler divergence estimator based on Parzen window density
kl2 Kullback–Leibler divergence estimator based on kNN density
j1 Jeffrey’s divergence estimator based on Parzen window density
j2 Jeffrey’s divergence estimator based on kNN density
js1 Jensen–Shannon divergence estimator based on Parzen window density
js2 Jensen–Shannon divergence estimator based on kNN density
cs Cauchy–Schwarz divergence estimator
ise1 Integrated Squared Error estimator based on Parzen window density
ise2 Integrated Squared Error estimator based on kNN density

Table 5.2:Automatic bandwidth selection methods

YY description

ml Pseudo–likelihood cross–validation
rot Rule of Thumb
amise AMISE minimisation
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Table 5.3:Gaussian kernel covariance matrix

ZZ description

1c Identity covariance matrix multiplied by a scalar, common for both distributions
2c Diagonal covariance matrix, common for both distributions
1s Identity covariance matrix multiplied by a scalar, separate for each distribution
2s Diagonal covariance matrix, separate for each distribution

5.4.2 Estimation of the Kullback–Leibler divergence

The plots presenting the evolution of Kullback–Leibler divergence estimators based on the Parzen
window method as the sample size increases, for all 4 toy problems, have been given in Figure 5.2.
The values on the horizontal axis denote the number of instances drawn from each distribution.
As it can be seen, there is a considerable discrepancy between various estimators (i.e. estimators
using various bandwidth selection methods). More specifically, while some of them seem to
be converging1 to the true value, others diverge, which is especially well visible in the case of
high–dimensional toy problem 4. Moreover, even the ‘best’ estimators reach the true divergence
values for sample sizes, for which, if encountered in practice, the representativeness of even
a random subsample should not be a problem. In such cases the purposefulness of divergence
guided sampling seems doubtful.

Figure 5.3 presents the experimental results for Kullback–Leibler divergence estimators based
on the kNN density estimator. In this case, the convergence for the 2–dimensional problems,
albeit slow, can still be observed regardless of the value ofk and has also been proven in [124].
However, for the 20–dimensional problem 4, the estimators fail completely.

5.4.3 Estimation of the Jeffrey’s divergence

The behaviour of the Parzen window based estimators of the Jeffrey’s divergence have been
depicted in Figure 5.4. For the 2–dimensional problems, the picture is very similar to the case of
DKL. However, in the high–dimensional space most of the estimators cannot be evaluated due to
numerical problems, resulting from near–zero values of many Gaussian functions in calculation
of D̂KL(q, p).

The Jeffrey’s divergence estimator based on kNN density depicted in Figure 5.5 also behaves
similarly to D̃KL. Although no numerical problems have been observed in the high–dimensional
scenario, the estimators are off the true divergence value by a large margin.

5.4.4 Estimation of the Jensen–Shannon’s divergence

The experimental results for the Jensen–Shannon’s divergence estimators given in Figures 5.6
and 5.7, look much more promising. The convergence of the Parzen window based estimators is
rapid when compared tôDKL andD̂J , as it takes place for sample sizes of 400–500. What is even
more important, the estimators, regardless of the bandwidth selection method used are usually in
agreement when the shapes of the convergence curves are taken into account (the exception is

1since the apparent convergence takes place for sample sizes of 5000–6000 (depending on the problem), one
cannot be sure what would happen for samples larger than 10000, which have not been examined here due to high
computational requirements
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(d) Toy problem 4

Figure 5.2:Parzen density based Kullback–Leibler divergence estimatorD̂KL (horizontal axis – sample
size, vertical axis – estimated value)
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(a) Toy problem 1
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Figure 5.3:kNN density based Kullback–Leibler divergence estimatorD̃KL (horizontal axis – sample
size, vertical axis – estimated value)
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Figure 5.4:Parzen density based Jeffrey’s divergence estimatorD̂J (horizontal axis – sample size, vertical
axis – estimated value)
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10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
-2

0

2

4

6

8

10
j2-k1
j2-k2
j2-k3
j2-k5
j2-k9
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Figure 5.5:kNN density based Jeffrey’s divergence estimatorD̃J (horizontal axis – sample size, vertical
axis – estimated value)

92



Chapter 5. PDF divergence estimators and their applicability to representative data sampling

 

 

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
js1-ml1c
js1-ml2c
js1-ml1s
js1-ml2s
js1-rot1c
js1-rot2c
js1-rot1s
js1-rot2s
js1-amise2c
js1-amise2s

(a) Toy problem 1

 

 

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
0.2

0.25

0.3

0.35

0.4

0.45
js1-ml1c
js1-ml2c
js1-ml1s
js1-ml2s
js1-rot1c
js1-rot2c
js1-rot1s
js1-rot2s
js1-amise2c
js1-amise2s

(b) Toy problem 2

 

 

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

0.35

0.4

0.45

0.5

0.55

0.6

0.65
js1-ml1c
js1-ml2c
js1-ml1s
js1-ml2s
js1-rot1c
js1-rot2c
js1-rot1s
js1-rot2s
js1-amise2c
js1-amise2s

(c) Toy problem 3

 

 

10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
0.64

0.65

0.66

0.67

0.68

0.69

0.7
js1-ml1c
js1-ml2c
js1-ml1s
js1-ml2s
js1-rot1c
js1-rot2c
js1-rot1s
js1-rot2s
js1-amise2c
js1-amise2s

(d) Toy problem 4

Figure 5.6:Parzen density based Jensen–Shannon’s divergence estimatorD̂JS (horizontal axis – sample
size, vertical axis – estimated value)
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Figure 5.7:kNN density based Jensen–Shannon’s divergence estimatorD̃JS (horizontal axis – sample
size, vertical axis – estimated value)
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the 20–dimensional problem). It should however be kept in mind, that no closed–form formula
for calculation of the true value exists, so effectively in this setting an estimate of the true value
is approximated.

Although most of the kNN density based estimators also seem to be converging to the true
value, the convergence is considerably slower than in the case of their Parzen window based
counterparts. This can be clearly seen by examining the units on the vertical axis in Figures 5.6
and 5.7.

5.4.5 Estimation of the Integrated Squared Error

The convergence curves for the Integrated Squared Error estimates have been depicted in
Figures 5.8 and 5.9. For the first two toy problems, the Parzen window based estimators behave
in a desired way, relatively quickly approaching the true value of ISE. The situation looks a bit
different in case of the toy problem 3, where for the examined sample sizes none of the estimators
approaches the true value within 0.05. An interesting situation has however developed in the case
of toy problem 4 – throughout the whole range of sample sizes most estimators are very close to
the true value, which at 1.0184e–011 is itself very close to 0 and can pose numerical problems.

The situation for kNN density based estimators looks even more interesting. For small values
of k (1 and 2) the estimator is unstable and its values vary greatly with the sample size. For this
reason thek = 1 case has not been included in the plots. The estimators also in general diverge
and behave suspiciously in the 20–dimensional case.

5.4.6 Estimation of the Cauchy–Schwarz divergence

The experimental results for the estimation of the Cauchy–Schwarz divergence can be seen in
Figure 5.10. Although as mentioned in Section 5.3.4, as opposed to other divergence measures,
in this case the only approximation is the Parzen windowing itself (no need to use Eq. 5.8),
the behaviour ofD̂CS is not as good as one would expect. More specifically, the estimator did
not reach the true value even for a sample of 10000 instances in the case of toy problem 3 and has
diverged in the 20–dimensional scenario.

5.4.7 Summary

The picture emerging from the experimental results does not look very optimistic. Many estimates
of various divergence measures either diverge or converge too slowly, questioning their usefulness
for the purpose pursued in this study. From all the estimators examined, the Parzen window based
Jensen–Shannon’s divergence estimator looks most promising, as it converges relatively quickly
although it also demonstrates a considerable2 variance before converging.

A common problem is also the behaviour of most estimators in a high–dimensional space.
In this case onlyD̂JS and D̃JS seem to be acting reasonably (once again, note the units on
the vertical axis in Figures 5.6(d) and 5.7(d)) but in general Parzen windowing with kernels with
exponential fall–off (e.g. Gaussian) is known to be problematic, as the density in large areas of
the high–dimensional space is necessarily close to 0.

It is also important to have in mind that all the toy problems examined are relatively simple,
as they consist of symmetric, unimodal distributions, which unfortunately are rarely encountered
in practice.

2even for a sample of 10 instances the true value is within one standard deviation from the mean value of
the estimate
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Figure 5.8: Parzen density based ISE estimator̂ISE (horizontal axis – sample size, vertical axis –
estimated value)
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Figure 5.9:kNN density based ISE estimator̃ISE (horizontal axis – sample size, vertical axis – estimated
value)
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Figure 5.10:Parzen density based Cauchy–Schwarz divergence estimatorD̂CS (horizontal axis – sample
size, vertical axis – estimated value)
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5.5 PDF divergence guided sampling for error estimation

In this section an empirical study of correlation between various PDF divergence estimators and
bias of a generalisation error estimate is investigated using a number of benchmark datasets.
As already discussed, the goal of this experiments is to assess the possibility of estimating
the generalisation error in a single run, i.e. without retraining the used model. This would allow
to further reduce the computational cost of error estimation when compared to both CV and DPS.

5.5.1 Experiment setup

The experiments have been performed using 26 publicly available datasets and 18 different
classifiers, including GFC and EFC discussed in Section 3.2. The datasets used have been
described in Appendix A (one of them has been excluded from experiments due to numerical
problems it was causing during automatic Parzen window bandwidth selection). The list of
classifiers can be found in Appendix B.1. For each dataset the following procedure was followed:

1. 400 stratified splits of the dataset have been generated, leaving87.5% of instances for
training and12.5% instances for testing,

2. for each split and each class of the dataset, 70 different estimators of divergence between
the training and test parts have been calculated, accounting for all possible combinations of
techniques listed in Tables 5.1 to 5.3, where in the case of kNN density based divergence
estimatorsk = {1, 2, 3, 5, 9} were used,

3. for each divergence estimator the classes have been sorted by the estimated value, forming
400 new splits per estimator (since for some splits some estimators produced negative
values, these splits have been discarded),

4. 11 splits have been selected for each divergence estimator based on the estimated value
averaged over all classes, including the splits for the lowest and highest averaged estimate,
as well as 9 splits for intermediate values,

5. the classifiers have been trained using the training part and tested using the test part for
each split and each divergence estimator, producing error estimates sorted according to
the divergence estimate.

5.5.2 Correlation between divergence estimators and bias

In the course of the experiments over 30000 correlation coefficients have been calculated,
accounting for all dataset/classifiers/divergence estimator triplets, with the exception of the cases
in which calculation of correlation was not possible due to numerical problems of the divergence
estimators (especially the ones based on AMISE Parzen window bandwidth selection).

The maps of linear correlation coefficients between bias and divergence estimates, averaged
over all divergence estimators used in the experiments have been depicted in Figure 5.11.
The blank spots denote the situation in which for all 11 splits both the values of divergence
estimator and bias were constant, so it was impossible to assess correlation. As it can be seen, for
the signed bias moderate correlation can be observed only for a handful of datasets. However,
in some cases this applies to all (chr, let) or almost all (cba) classifiers. For other datasets
the correlation is weak to none and sometimes even negative. Only occasional and rather weak
correlation can be observed in the absolute bias scenario. This can seen in Figure 5.12, which
presents histograms of correlation coefficients for all 30k dataset/classifier/divergence estimator
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triplets in both signed and absolute bias scenarios. As it can be seen, only the former scenario
appears viable, as in the case of absolute bias the histogram is skewed towards−1 rather than+1.
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Figure 5.11:Correlation between bias and divergence estimates averaged over the latter
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(b) Absolute bias

Figure 5.12:Correlation coefficient histograms for all dataset/classifier/divergence estimator triplets

One thing that requires explanation with respect to Figure 5.12 is the height of the bars centered
at 0, for both signed and absolute bias. The bars represent cases where the correlation is between
−0.03 and0.03, which include situations where the divergence estimate for one of the 11 splits
is order of magnitude higher than for the remaining 10 (662 cases in total). This is also a result
of cases, in which the divergence estimator returned constant values for all 11 splits, although
the bias varied. Figure 5.13 presents a more detailed breakdown of the 198 dataset/divergence
estimator pairs for which this situation has occurred. As it can be seen, the kNN density based
Jensen–Shannon’s divergence estimatorD̃JS is to blame here, as it was unable to quantify
the divergence in the case of 7 out of 26 datasets.

Figure 5.14 depicts the signed bias correlation map averaged over all datasets, while in
Figure 5.15 the map averaged over all classifiers is given. These two figures confirm moderate
correlation for some combinations of divergence measures and datasets. The blank spots visible
in Figure 5.15 reflect the numerical problems of the AMISE Parzen window bandwidth selection
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(b) Divergence estimators

Figure 5.13: Histograms of datasets and divergence estimators for the 198 constant divergence
no–correlation cases (numbers of cases denoted on the vertical axis)

method and kNN density based Jensen–Shannon’s divergence estimator mentioned before.
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Figure 5.14:Correlation between signed bias and divergence estimates, averaged over datasets

Unfortunately, the averaged results presented so far tend to smooth out the fine details,
which might provide more insight into the behaviour of individual methods. For that reason
in Figure 5.16 the correlation maps have been given in a breakdown for each dataset. As it can
be seen the highest correlation can be observed for theazi, cba, chr andlet datasets, in all cases
for roughly the same divergence estimators (all Parzen window based except forise1as well as
the kNN basedkl2). Unfortunately, for the remaining 22 datasets the situation does not look that

101



Chapter 5. PDF divergence estimators and their applicability to representative data sampling

azi
bio
can
cba
chr
clo
cnc
cnt
dia

ga2
ga4
ga8
gla
ion
iri
let
liv

pho
seg
shu
son
syn
tex
thy

veh
win

 

 

cs
-m

l1
c

cs
-m

l2
c

cs
-m

l1
s

cs
-m

l2
s

cs
-r

ot
1c

cs
-r

ot
2c

cs
-r

ot
1s

cs
-r

ot
2s

cs
-a

m
is

e2
c

cs
-a

m
is

e2
s

j1
-m

l1
c

j1
-m

l2
c

j1
-m

l1
s

j1
-m

l2
s

j1
-r

ot
1c

j1
-r

ot
2c

j1
-r

ot
1s

j1
-r

ot
2s

j1
-a

m
is

e2
c

j1
-a

m
is

e2
s

kl
1-

m
l1

c
kl

1-
m

l2
c

kl
1-

m
l1

s
kl

1-
m

l2
s

kl
1-

ro
t1

c
kl

1-
ro

t2
c

kl
1-

ro
t1

s
kl

1-
ro

t2
s

kl
1-

am
is

e2
c

kl
1-

am
is

e2
s

js
1-

m
l1

c
js

1-
m

l2
c

js
1-

m
l1

s
js

1-
m

l2
s

js
1-

ro
t1

c
js

1-
ro

t2
c

js
1-

ro
t1

s
js

1-
ro

t2
s

js
1-

am
is

e2
c

js
1-

am
is

e2
s

is
e1

-m
l1

c
is

e1
-m

l2
c

is
e1

-m
l1

s
is

e1
-m

l2
s

is
e1

-r
ot

1c
is

e1
-r

ot
2c

is
e1

-r
ot

1s
is

e1
-r

ot
2s

is
e1

-a
m

is
e2

c
is

e1
-a

m
is

e2
s

j2
-k

1
j2

-k
2

j2
-k

3
j2

-k
5

j2
-k

9
kl

2-
k1

kl
2-

k2
kl

2-
k3

kl
2-

k5
kl

2-
k9

js
2-

k1
js

2-
k2

js
2-

k3
js

2-
k5

js
2-

k9
is

e2
-k

1
is

e2
-k

2
is

e2
-k

3
is

e2
-k

5
is

e2
-k

9

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.15:Correlation map for signed bias and divergence estimates, averaged over classifiers

well, although for each of them there are areas in the plot denoting medium to strong correlation.
Figure 5.17 presents the histograms of correlation coefficients for individual divergence

estimators. As it can be seen, there is only a handful of estimates which demonstrate a certain
degree of correlation with the bias, including some of the Cauchy–Schwarz and Kullback–Leibler
divergence estimators and especiallykl2-k3, kl2-k5 and kl2-k9. This seems to contradict
the experimental results presented in Figure 5.3, where it can be seen, that the higher the number
of neighbours, the slower the convergence of thekl2 estimators. In the case ofkl2-k1 in
Figure 5.17 however, the histogram is symmetric if not skewed to the left, while it changes its
shape to more right–skewed as the number of nearest neighbours is increased.

In Figure 5.18 the histograms of datasets, classifiers and divergence estimators for the 806
high (≥ 0.9) signed bias correlation cases have been presented. The first observation is that
the correlation is indeed strong only for 3 to 4 datasets and the divergence estimators already
identified. The disappointing performance of theise1, j2, js2 and ise2estimators has also been
confirmed. Also note, that although the histogram of classifiers does not present a uniform
distribution, there are numerous high correlation cases for almost all classifiers, withknncand
gfc/efctaking the lead, andtreecbeing the worst one.

The most surprising conclusion can be drawn from examination of the four datasets, for which
the high correlation has been observed. A closer look at Table A.1 reveals, that the one thing they
have in common is a large number of classes, ranging from 20 to 24, while most of the remaining
datasets have only 2 to 3 classes. Since in the experimental setting used, the divergences have been
approximated for each class in separation, the estimates have been effectively calculated for very
small sample sizes (the average class size for thelet dataset is just 39 instances). From the results
of Section 5.4 it is however clear, that for sample sizes of this order the estimates are necessarily
far from converging, especially in the case of high–dimensional problems. However, in order
to put things into perspective, one needs to realise that the 806 high correlation cases constitute
just above 2.6% of the total number of over 30k cases. Thus effectively they form the tail of
the distribution depicted in Figure 5.12 and most likely do not have any practical meaning.
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Figure 5.16:Correlation maps for each dataset and signed bias (axes like in Figure 5.14)
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Figure 5.17:Correlation coefficient histograms for each divergence estimator and signed bias (X axis:
[−1, +1], Y axis: [0, +40])
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(c) Divergence estimators

Figure 5.18:Histograms of datasets, classifiers and divergence estimators for the 806 high (≥ 0.9) signed
bias correlation cases (numbers of cases denoted on the vertical axis)

For comparison with the results of Chapter 4 and especially Figures 4.6 and 4.8, scatter plots
of the 49 unique subsamples of the Cone–torus dataset (see Section 4.5.1 for more details about
the dataset) for the lowest values of all divergence estimators used in the experiments have been
depicted in Figure 5.19. The number in round brackets in the title of each plot denotes an identifier
of the unique subset. The decision boundaries of a quadratic classifier (qdc) have also been
superimposed on each plot. The classifier has been chosen due to its stability, so that any drastic
changes in the shape of the decision boundaries can be attributed to considerable changes in
the structure of the dataset used for training. As it can be seen in the majority of cases, the decision
boundaries resemble the ones given in Figure 4.8. The same applies to the banana–shaped class
(red circles), which is clearly visible in most cases, similarly to Chapter 4. This can be contrasted
to Figure 5.20 containing the scatter plots of 49 unique subsets for the highest values of divergence
estimators, where the decision boundaries take on a variety of shapes. As it can be seen though,
the properties of the subsamples do depend on the values of the divergence estimators. For
the Cone–torus dataset (cnt) there was however only a handful of high correlation cases. This
behaviour is in fact very similar to that of DPS, where typically 7 out of 8 folds resembled
the original dataset when examined visually.

5.6 Discussion

According to the experimental results presented in Section 5.4 it can be said, that in general
the divergence between two PDFs is a quantity rather difficult to estimate. This holds regardless
of the actual divergence measure chosen, although to a different extent. For example, in the case
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Figure 5.19:Scatter plots of the Cone–torus subsamples for lowest divergence values with superimposed
decision boundaries of theqdcclassifier
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kl1-ml2c (14) kl1-ml1s (15) kl1-ml2s (12) kl1-rot1c (16) kl1-rot2c (11) kl1-rot1s (16) kl1-rot2s (11)

kl1-amise2c (11) kl1-amise2s (17) js1-ml1c (18) js1-ml2c (19) js1-ml1s (20) js1-ml2s (21) js1-rot1c (22)

js1-rot2c (22) js1-rot1s (23) js1-rot2s (24) js1-amise2c (22) js1-amise2s (9) ise1-ml1c (25) ise1-ml2c (26)

ise1-ml1s (27) ise1-ml2s (4) ise1-rot1c (25) ise1-rot2c (25) ise1-rot1s (28) ise1-rot2s (29) ise1-amise2c (25)

ise1-amise2s (26) j2-k1 (30) j2-k2 (31) j2-k3 (32) j2-k5 (33) j2-k9 (34) kl2-k1 (35)

kl2-k2 (36) kl2-k3 (37) kl2-k5 (38) kl2-k9 (39) js2-k1 (40) js2-k2 (41) js2-k3 (42)

js2-k5 (43) js2-k9 (44) ise2-k1 (45) ise2-k2 (46) ise2-k3 (47) ise2-k5 (48) ise2-k9 (49)

Figure 5.20:Scatter plots of the Cone–torus subsamples for highest divergence values with superimposed
decision boundaries of theqdcclassifier
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of the Kullback–Leibler divergence, the results are at least disappointing as the estimators often do
not reach the true value even for 10000 instances drawn from each distribution. Kullback–Leibler
divergence is however one of the most widely used measures of this type.

In [53] the authors use the estimator of Eq. 5.11 to sample a reduced, yet representative subset
of the input dataset for the purpose of data condensation. The experimental setting is as follows:

• Experiments based on Gaussian distributions, with (1) three 8–dimensional datasets
consisting of two normally distributed classes with various configurations of means and
covariances, (2) 100 instances drawn randomly per each class, used for selection of
representative subsample and parameter tuning (for each class separately), and (3) 100
instances drawn randomly per each class for testing.

• Experiments based on non–Gaussian distributions, with (1) one dataset of unknown
dimensionality having two classes, each distributed according to a mixture of two Gaussians
(two–modal distributions), (2) 75 instances drawn randomly per each mode (i.e. 150
instances per class) for selection of representative subsample and parameter tuning (for
each class separately), and (3) instances drawn randomly per each class for testing.

• Greedy optimisation of the Kullback–Leibler divergence estimator in both cases.

Although no numerical results are presented, the authors report ‘excellent’ performance if three
or more representatives from each class are selected in the case of the Gaussian datasets and six or
more representatives in the non–Gaussian setting. According to the experimental results reported
in Section 5.4 for sample size of 100 in most cases it is difficult to expect theD̂KL estimate
to approximate the true divergence value well. However, by manipulating the kernel covariance
matrix one is able to almost freely influence the value of the estimate. In [53], the authors have
set the kernel covariance matrix to be equal to the sample covariance matrix, which led to good
performance but only on the Gaussian datasets. This is not surprising as in this case a single kernel
function was able to approximate the class PDF well, if located correctly. If one also takes into
account that a relatively stable quadratic classifier was used in the experiments the results should
be attributed to this specific experimental setting rather than to optimisation of the divergence.
The authors admit that ‘the selection of the kernel function and the kernel covariance matrix is
not clearly understood’, which suggests that it is the manual tuning of the covariance matrix which
might be responsible for the ‘excellent’ results in the non–Gaussian scenario.

Surprisingly in most of the literature the Kullback–Leibler or Jeffrey’s divergence is not
estimated at all. Instead, it is either argued that optimisation of a given objective function
is equivalent to optimisation of the divergence between an empirical measure and true yet
unknown distribution [109, 120] or closed–form solutions are used restricting the distributions
to be Gaussian [61, 112]. Hence it appears that in practiceDKL is mostly of theoretical interest,
stemming from its connections to Shannon’s information theory.

On the contrary, in [159] the authors use an estimator of the Jensen–Shannon divergence in
a form similar to Eq. 5.16 but with a different kernel function. In their experimental setting
the estimator is calculated for two samples with sizes equal to 1024 and 10240, which according
to the results presented in Figure 5.6 is more than enough to obtain accurate estimates, even in
a high–dimensional space. Good results reported by the authors are therefore not surprising.

Estimation of the divergence (and other measures for that matter) is hence always connected
with a risk resulting from poor accuracy of the estimators, if the datasets do not contain thousands
or tens of thousands of instances. This issue is however often neglected by other researchers.
An example can be found in [83], where a Cauchy–Schwarz divergence–based clustering
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algorithm is derived. The authors report good performance for two synthetic, 2–dimensional
datasets (419 instances / 2 clusters and 819 instances / 3 clusters) using the RoT method to
determine the ‘optimal’ Parzen window bandwidth and then heuristically annealing it around
that value. These results more or less stay in agreement with the ones presented in Figure 5.10,
although they might also be an outcome of manual tweaking of the annealing process.

As for the second experimental part of this study, due to a wide range of datasets used, it can be
stated that sampling by optimisation of any divergence measure estimator presented in Section 5.3
does not produce subsets, which lead to consistent observable estimation of the generalisation
error. At this stage, it is however difficult to state if the reason for this result is nonsuitability
of the divergence measures used or poor accuracy of their estimators, especially in the light of
the properties of the datasets for which high correlation has been identified. However due to
the strong theoretical foundations of the divergences used, the latter option seems more feasible.

5.7 Concluding remarks

This chapter has been devoted to evaluation of accuracy and empirical convergence of various
PDF divergence estimation methods and their application to sampling for the purpose of
generalisation error estimation. Five different divergence measures, all having sound theoretical
foundations have been examined, paired with two PDF estimators with various parameter settings,
leading to 70 divergence estimators in total.

The most important outcome of this study is that the evaluated divergence measures can
be estimated accurately only if large amounts of data are available. For some estimators and
problems it is possible to obtain accurate estimates for sample sizes in the range of 400–600
instances, while in other cases even 10000 instances is not sufficient. It is important to emphasise
here, that empirical convergence has been assessed using simple, synthetic problems with data
sampled from Gaussian distributions. Despite this fact, the results are not very encouraging and
in fact call into question the practical usability of the examined PDF divergence measures, at least
in the situations where their values need to be approximated.

The experimental results of Section 5.4 have however revealed, that although the estimators
might be off the true divergence by a large margin, their values nevertheless can differ quite
considerably from one fixed size sample to another. Hence there is a possibility, that such
estimators can still quantify the similarity between two PDFs, being sufficient for applications in
which the relative rather than absolute values of the estimator are of interest. One such application
has also been investigated in this chapter.

Building upon the encouraging experimental results of the Density Preserving Sampling
technique derived in Chapter 4, the idea was to exploit some of the PDF divergence measures
as objective functions of a sampling procedure, in order to obtain a representative subsample
of a given dataset, which could be used for accurate estimation of generalisation error. This
would in effect further reduce the computational cost of generalisation performance assessment,
not only when compared to cross–validation but also with respect to DPS. Unfortunately, in
the experiments described in Section 5.5 no strong correlation between the bias and divergence
estimators has been identified. Although in some particular cases discussed in previous sections
the correlation coefficient exceeded 0.90, these cases account for just above 2.6% of the total
number of examined cases and should most likely be credited to a specific set of circumstances
rather than to any properties of the divergence estimators used. Hence the PDF divergence
measures examined here still remain of theoretical significance, at least from the point of view of
generalisation error estimation.
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Applications

6.1 Introduction

In this chapter applications of the techniques developed in this thesis to two real–world
environmental problems are discussed.

The first application area is the Quantitative Structure–Activity Relationship (QSAR)
modelling and more specifically toxicity level prediction of various chemical compounds, which
is a regression problem in high–dimensional sparse space. On this occasion the efforts have
been focussed on validating the generalised predictive system development cycle derived in
Section 2.2.2 on a real problem, by building a purely data–driven solution able to compete
with models developed by the experts in the field. The resultant predictive system has been
then submitted to the Environmental Toxicity Prediction Challenge CADASTER 20091 and has
received an award of the First–Pass Winner. The data provided within the Challenge has also
been used in a follow–up study to assess the impact of using the Density Preserving Sampling
technique proposed in Chapter 4.

The second application discussed in this chapter is the prediction of water pollution using
biomarker data. Due to low quality of the data (i.e. missing values, specific data acquisition
process), the obtained predictive system not only takes advantage of the proposed generalised
predictive system development cycle, but also tries to exploit the developments of Chapter 3 and
serves as another real–world validation study of the DPS technique developed in Chapter 4.

6.2 Ridge regression ensemble for toxicity prediction

6.2.1 Background

Chemical toxicity is a degree of inorganic substances being poisonous and is thus related to
various negative biological effects, like gene damage or carcinogenicity. With thousands of new
industrial chemicals being synthesized every year and many of them being produced in high
volume, the importance of toxicity assessment is evident [160].

Traditional ‘in vivo’ methods of assessing chemical toxicity of various compounds require
tests on animals, which not only raises ethical concerns but is also expensive. According to
recent estimates, current legislation may lead to a demand for as many as 45 millions laboratory
animals in the next 10 years [78]. Computational (‘in silico’) predictions, obtained from a set

1http://www.cadaster.eu/node/65
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of automatically generated descriptors using only structures of molecules as an input, thus
appear as a viable and cost effective alternative. For this reason, Quantitative Structure–Activity
Relationship modelling has become an active research area in the recent years [91, 132, 133].

The main issue the researchers are struggling with is that the chemical space has a very high
dimensionality. The necessity to deal with even thousands of attributes, the number of which
often exceeds the number of instances in the dataset by an order of magnitude or more, is nothing
uncommon in QSAR modelling. As a result, any feasible to obtain amount of training data covers
only a fraction of the whole input space [160], leading to low, varying and difficult to estimate
external predictive power of the models [185].

6.2.2 Environmental Toxicity Prediction Challenge

The predictive system described in the following sections has been developed using the data
available within the Environmental Toxicity Prediction Challenge CADASTER 2009, organised
by International Conference on Artificial Neural Networks (ICANN’09)2, European Neural
Network Society (ENNS)3 and the CADASTER project4. Since toxicity prediction against
animals is a very complex issue, the Challenge has focused on prediction of chemical toxicity
against T. pyriformis – a commonly accepted toxicity–screening tool [113, 153] – using
previously unpublished dataset. Evaluation of all submitted models have been conducted using
the following criteria5:

1. Methods with Root Mean Squared Error (RMSE) non–significantly different from
the method with lowest RMSE were identified as the First–Pass Winners.

2. Methods providing the best likelihood criteria between estimated and observed confidences
for the blind test set were identified amid the First–Pass Winners.

6.2.3 Data description

The data provided in the challenge came in the form of five datasets, each consisting of different
attributes (descriptors) and generated directly from the structures of molecules using various
approaches and software. Additionally, each dataset was divided into three, non–overlapping
parts: training data, known–test data and blind–test data. The measured toxicity values have
been given for the two former parts only, and the task was to produce prediction for blind–test
data. The details of the data can be found in Table 6.1, and the datasets can be downloaded from
the CADASTER website6. For the development of the predictive system described here all five
datasets have been concatenated, which has resulted in a single set with 2251 attributes. After
removing the attributes with constant values, their number dropped to 2048.

6.2.4 Main assumptions

As mentioned before, this study has been perceived as an opportunity to validate the generalised
predictive system development cycle described in Section 2.2.2. Hence at this stage the predictive
system has been built in a semi–automatic manner, with manual examination of the results of

2http://www.kios.org.cy/ICANN09
3http://www.e-nns.org/
4http://www.cadaster.eu/node/4
5http://www.cadaster.eu/node/65
6http://www.cadaster.eu/node/67
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Table 6.1:Details of toxicity prediction descriptors and training/test datasets

descriptors # attributes # train # known–test # blind–test

E–state indicesa 60 644 449 120
DRAGONb 1664 644 449 120

SimulationsPlusc 221 644 449 120
QuantumChemistryd 23 644 449 120

MOEe 283 644 449 120
CONCATENATED 2251 644 449 120

aE–state indices have been calculated at Virtual Computational Chemistry Laboratory site,
http://www.vcclab.org/lab/indexhlp/etstate.html

bDRAGON descriptors have been calculated at Virtual Computational Chemistry Laboratory site using optimised
structures, http://www.vcclab.org/lab/edragon

cSimulationsPlus descriptors have been calculated using ADMET Predictor, http://www.simulations-plus.com/,
http://www.cadaster.eu/sites/default/files/challenge/Descriptors400.pdf

dQuantum Chemistry descriptors have been calculated using AM1 MOPAC 7.1 and optimised structures,
http://www.vcclab.org/lab/alogps

eMOE (Molecular Operating Environment) descriptors have been calculated using optimised structures,
http://www.cadaster.eu/sites/default/files/challenge/descr.htm

each step, guiding the choice of methods and models in the following steps. There was also
an important constraint on the amount of the available computational resources at that time
(a single desktop PC). In this setting the following factors of success have been identified:
(1) wide choice of base models, preprocessing and postprocessing methods, (2) computational
power sufficient to test many combinations of the above, and (3) experience allowing to take
correct decisions or at least informed guesses at each step, in the absence of full information.
The importance of the third factor should be stressed here, as it allowed to limit the computational
requirements to a large extent.

6.2.5 Generalisation error estimation

Error estimation plays a central role in the generalised predictive system development cycle, as it
is used for evaluation of both candidate models (base model/preprocessor pairs) and ensembles.
Since at the time of the Environmental Toxicity Prediction Challenge the DPS method derived in
Chapter 4 had not been developed yet, the original study used the random subsampling technique
(repeated hold–out) and cross–validation for the purpose of generalisation error estimation (please
refer to Section 4.2 for details of these methods). However, in Section 6.2.9 the results obtained
using 8– and 16–fold DPS–U are also reported for comparison.

6.2.6 Base model pool

The problem of low external predictive power of QSAR models can have different causes. One
of them is the possible divergence between distributions underlying the training and testing
data, resulting from the immense dimensionality of the chemical space. Unfortunately, there
is not much that can be done about it, maybe except from making some assumptions about
the unknown–test data distribution, which may or may not be correct. The second possible cause
is closely related to model generalisation ability and the problem of overfitting, which can be
addressed by controlling the complexity of the final model [11].
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In general, complexity of a solution can be controlled by (1) the number of explicit parameters
(degrees of freedom) of a model, (2) the number of meaningful attributes the model works
with (input dimensionality), or (3) both. The meaningful attributes are understood here as
the attributes which carry some information (e.g. ones which are not constant). An interesting
example of models susceptible to both these approaches are Artificial Neural Networks [11].
In ANNs the complexity can be controlled either by the number of hidden units/layers or by
the dimensionality of the input space, as each additional input increases the number of input
weights. There are however methods for which the complexity can be controlled in only one way.
For example, in linear regression the number of degrees of freedom depends only on the input
dimensionality.

Due to the large number of attributes present in the dataset described in the previous section,
the second complexity control mechanism mentioned above seemed more appropriate. The choice
of a relatively simple and fast to train base model built using a possibly large number of attributes
has been inspired mainly by the theory behind the Support Vector Machines [31, 176]. SVMs
are learning systems that use a hypothesis space of linear functions in high–dimensional feature
spaces [31]. In such spaces any feasible to obtain amount of data is usually not enough to
train a model with many parameters but at the same time even a simple model has enough
degrees of freedom to adapt well to the data. However, to allow for greater flexibility, the base
model pool consisted of 8 methods listed in Appendix B.2, including a regression boost (boostr)
technique developed for the purpose of the discussed Challenge. Unfortunately, despite good
performance, theboostrmethod had to be abandoned at an early stage of the experiments due to
high computational complexity (it required hundreds of base models to be combined). According
to initial experiments, ridge regression has proven to be the most promising technique.

Ridge regression

Linear regression is perhaps the best known, most studied and one of the simplest techniques in
regression analysis. Its extension into the multiple variable case, the so called ‘Multiple Linear
Regression’, is still being extensively and successfully used in various forms, e.g. in the Partial
Least Squares (PLS) or Support Vector Regression methods [56, 176].

A frequent issue in multiple linear regression analysis is the collinearity or near–collinearity
of the input variables, leading to ill–posed problems, for which no unique least squares solution
exist. In order to circumvent this issue, various techniques have been developed, one of which
is the Ridge Regression also known as Tikhonov regularisation [164]. The idea is to introduce
an extra regularisation term into the error function. Instead of minimising the usual‖ Ax− b ‖2

(linear least squares), where‖ ∙ ‖ denotes the Euclidean norm andAx = b is the overdetermined
system of linear equations, the objective function becomes‖ Ax − b ‖2 + ‖ Γx ‖2, whereΓ
is the regularisation or Tikhonov matrix, usually chosen to be a multiple of the identity matrix.
Ridge regression thus introduces a new parameter, which decides how much the solution departs
from the Ordinary Least Squares (OLS) regression and improves the conditioning of the problem.
An important feature of ridge regression is that a closed–form solution exists, which makes
the regressor fast to train unlike more advanced methods, which require gradient based and often
suboptimal optimisation procedure.

For the sake of simplicity, in further experiments the Tikhonov matrix has been set to be equal
to the identity matrix.
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6.2.7 Data preprocessing

Due to the limited computational resources only two dimensionality reduction techniques have
been used: Principal Component Analysis and ‘plus–L–takeaway–R’ attribute selection method.

Principal Component Analysis

Principal Component Analysis is a standard and commonly used statistical dimensionality
reduction technique, often constituting one of the major data preprocessing steps. It is a procedure
for linear transformation of a number of possibly correlated variables into a smaller number of
uncorrelated variables called principal components (PCs). The first principal component accounts
for as much of the variability in the data as possible, and each consecutive component accounts
for as much of the remaining variability as possible [40].

The plot of 10–fold cross–validation MSE v. the number of principal components using ridge
regression is given in Figure 6.1. As it can be seen, the estimate is overoptimistic between
approximately 30 and 100 principal components, that is where the actual minimum of the CV
error is located, and for more then about 500 components. Moreover, the CV and test errors
diverge in the most interesting range between 150 and 450, where the actual minimum of test
set error almost coincides with a maximum of the cross–validation error, with the difference of
the MSE reaching up to 100%.

The results obtained are in fact comparable to the ones reported in the literature, both for
individual models and their combination (Table 6.2). The minimal known–test error is at the same
level as the performance of the best individual model reported in [161, 185], while the known–test
error at the minimum of the CV error (for 74 principal components) is about 16% lower then
the mean performance of all individual methods described in the papers referred to above.
Selecting the final model on the basis of the CV error would thus result in known–test data
MSE of 0.2359, ranking the solution in a3rd place when compared to 11 individual models
from [161, 185].

An attempt to improve the results discussed above by using more advanced regression models
did not succeed. For example, a cross–trained ensemble of over 100 ANNs with two hidden layers
each, developed using 74 principal components has produced MSE equal to 0.2055. While it is
better then the performance of ridge regression, the ensemble took incomparably more time to
train and yet failed to outperform the best models reported in the literature [161, 185].

Table 6.2:Regression error on PCA transformed dataset / errors reported in the literature

error MSE RMSE

minimal CV (cross–validation) 0.2150 0.4637
known–test at minimum of CV 0.2359 0.4857

minimal known–test 0.1985 0.4455
combined model (literature) 0.1845 0.4300

best individual model (literature) 0.1932 0.4400
mean of all individual models (literature)0.2745 0.5210

worst individual model (literature) 0.3603 0.6000
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Figure 6.1:Regression error (MSE) on PCA transformed dataset v. the number of principal components

Greedy attribute selection

The only attribute selection method which guarantees finding the global optimum of
the evaluation criterion is exhaustive search. Unfortunately, this approach is only feasible
for small datasets, as the size of the search space grows exponentially with the number of
attributes. For this reason, many approximate search methods have been developed (some
examples have been given in Section 2.2.2). Due to the computational limitations only a greedy
‘plus–L–takeaway–R’ method [175] has been included in the preprocessor pool.

The idea behind greedy methods is to make a locally optimal decision at each step of
the optimisation process. For feature selection this can for example mean starting with an empty
subset and iteratively adding a single best attribute at each step (forward selection) or starting
with the full attribute set and iteratively removing a single worst attribute (backward selection).
The ‘plus–L–takeaway–R’ method is a combination of both forward and backward selection,
taking L forward steps followed by R backward steps and repeating the whole procedure until
some termination criterion is met.

For the purpose of the Challenge, the following attribute selection procedure has been thus
devised. The data has been randomly divided into training (2/3) and hold–out set (1/3). The L
and R parameters have been set to 4 and 3 respectively, which was a compromise between search
space coverage and algorithm running time. Then, at each step of the feature selection procedure
a ridge regressor has been trained using the training set and tested using concatenated training and
hold–out sets. If the test error decreased, the new attribute was accepted. The above procedure
was repeated 10 times for various random divisions of the data.

In the follow–up study the hold–out method has been replaced with 8–fold DPS–U, producing
8 largely overlapping feature subsets. This has been a manifestation of the phenomena discussed
in Section 4.5.2 on the occasion of building combined models based on the DPS folds –
the resultant models are very similar and combining them makes little sense.
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6.2.8 Ensemble generation and evaluation

As discussed in Section 2.2.2 the ensemble should be built of members which are diverse [99].
One way to encourage diversity is to use different subsets of attributes to train the individual base
models. In the discussed case it also appears as the most natural approach, since the feature
selection procedure has already produced 10 different, although partly overlapping feature
subsets.

Before constructing the final ensemble, yet another step was taken in order to increase
the weights of good attributes in the combination. For all subsets of features from each step
of each iteration of feature selection, 100 times repeated 10–fold cross–validation was run and
all models with error within one standard deviation of the best model’s error have been chosen.
This has resulted in a total of 29 ridge regressors trained on various subsets of attributes, which
were finally combined by averaging, as the postprocessor pool consisted of mean and median
combiners.

In the follow–up study, 8– and 16–fold DPS–U has been used instead of cross–validation,
considerably reducing the computational requirements and resulting in ensembles of 30 and 27
ridge regressors respectively.

6.2.9 Experiments

The results presented in this section form the submission of the model predictions to
the Environmental Toxicity Prediction Challenge CADASTER 2009. The challenge has attracted
over 100 participants from 25 countries. Since the contestants were supposed to submit
predictions for both known–test and blind–test data, and according to the model development
workflow proposed by the organisers7, two different models have been developed:

1. Intermediate model, utilising 644 instances from the original training set and used to make
predictions for the 449 instances from the known–test dataset. Although the known–test
instances have not been used to train the intermediate models, the best one in terms of
known–test data error out of multiple runs of the algorithm has been chosen for submission.

2. Final model, developed utilising 644+449 instances from the concatenated training and
known–test sets and used to make predictions for the 120 instances from the blind–test
dataset. The numbers of ensemble members given in previous section apply to the final
model.

The challenge results have been given in Table 6.3 and can also be found at the CADASTER
project website8. The last two rows of the Table present the results for 8– and 16–fold DPS–U
used instead of CV during ensemble generation.

10 First–Pass Winners have been chosen with RMSE for the blind–test data non–significantly
different from the best model according to the bootstrap test withp < 0.05. The predictive system
described here was ranked as 6th. Note, that the difference for the blind RMSE between the best
and worst method is only 0.054, while the same difference for known RMSE reaches 0.177.

The diagrams with predicted v. target values for the blind–test dataset for the 6 highest ranked
methods, including the method described here have been given in Figure 6.2. Notice, that all
methods tend to make highest errors on the same, apparently difficult to predict instances, which
in fact determines their accuracy.

7http://www.cadaster.eu/node/71
8http://www.cadaster.eu/finalresults.html
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Table 6.3:First–Pass Winners ranking / DPS–U performance

rank RMSE (blind) RMSE (known) RMSE (both)

1 0.741 0.353 0.463
2 0.742 0.367 0.472
3 0.756 0.410 0.503
4 0.760 0.292 0.435
5 0.765 0.395 0.497
6 0.778 0.288 0.439
7 0.789 0.424 0.523
8 0.794 0.416 0.519
9 0.794 0.400 0.509

10 0.795 0.247 0.426

8–fold DPS–U 0.780 0.290 0.441
16–fold DPS–U 0.772 0.279 0.433

6.2.10 Summary of case study findings

The toxicity prediction system described here has been designed by following a rigorous step by
step design cycle proposed in this thesis, facilitated and supported by numerical optimisation and
comparative evaluations, which was made possible by availability of computational power and
advanced data processing algorithms. This in turn has allowed to successfully offset the lack of
expert knowledge in the area of toxicity and QSAR modelling by additional computations.

Good performance of the proposed system, evaluated within the Environmental Toxicity
Prediction Challenge CADASTER 2009, validates the proposed design cycle and confirms
the potential of data–driven approaches for various applications, including but not limited
to QSAR modelling. This is an important outcome, as obtaining and integration of expert
knowledge into the model is usually expensive, time–consuming and not always possible, while
computational resources regularly become cheaper and more accessible. The success of described
method also demonstrates that the computational power of modern, easily accessible computers
coupled with a rigorous data–driven predictive model development methodology, can be sufficient
to develop good solutions without the need for domain expertise, resulting in a more cost effective
and faster model development process.

The physically inspired Density Preserving Sampling method has been used in a follow–up
study for the purpose of comparison with techniques used during the development of the original
predictive system. Although as expected, DPS was not very useful for generation of diverse
ensemble members, it has proven well suited for selection of models to be included in the final
combination. This has allowed to considerably decrease the computational requirements,
resulting in a final system with virtually the same performance as the original one. Hence
although the system developed using DPS would still be ranked in the 6th place in the Challenge,
the computational savings would allow for e.g. more exhaustive feature subset search or
employment of additional regression techniques.
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(a) Rank 1 model (final winner) (b) Rank 2 model

(c) Rank 3 model (final winner) (d) Rank 4 model

(e) Rank 5 model (f) Rank 6 model

Figure 6.2:Predicted v. target values for the blind–test data
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6.3 Predictive modelling of water pollution using biomarker data

6.3.1 Background

Water pollution monitoring becomes a crucial problem as more contaminants enter the marine
environment every year [105]. The current trend is prediction of the toxicity level using various
measurable attributes of the aquatic environment [118]. This can be observed by a worldwide
increase in the number of water quality research funding opportunities by the European
Commission9, the National Research Council in Canada and USA10,11, as well as various local
Councils. The data used in this research has been collected as a part of the ‘Marine Environment
IQ’ project12 funded by the Research Council of Norway13, which run between 2006 and 2008.

The condition of a marine environment not always can be diagnosed by chemical analysis of
the water, as it does not provide any information on the health of the organisms. Moreover it may
also fail to detect any pollution at all due to its low, yet biologically significant degree or very
slow increase of contamination level. The solution to this problem is the use of biomarkers.

For many years biomarkers have been successfully used as a tool of exposure analysis. Their
importance results from the fact, that they enable detection of pollutants not possible to achieve
by other, commonly used methods like chemical or physical analysis [122, 116]. A large number
of biomarkers related to their potential effect on organisms has been developed in the literature
(for a full list of references please see [21]). Although biomarkers play a significant role in
ecotoxicology and environmental risk assessment, they are sometimes difficult to interpret. It
is problematic to determine whether a biomarker response is an indicator of impairment or is
a part of the homeostatic response, indicating that an organism is successfully dealing with
the exposure [49]. When dealing with mixtures of pollutants, a group of biomarkers (‘battery’) is
usually used [25, 43], combining the effect and exposure tests. One of the objectives of this study
was to validate the choice of biomarkers made during the ‘Marine Environment IQ’ project.

The acquisition of biomarker data is an involved process, which requires performing a set of
usually destructive tests on biological material. The indicator species of choice are often mussels,
which have been used as sentinel organisms from the 1970s [60]. There are multiple advantages of
using bivalves in environmental monitoring as they are widely distributed, sedentary and easy to
sample, they tolerate a wide range of environmental conditions and bioconcentrate environmental
toxicants due to their high filtration activity. Unfortunately, in the majority of studies it is
impossible to use the same animal for the whole battery of tests, because of the quantity of
biological material required to perform chemical analyses. This dramatically reduces the quality
of data by introducing missing attribute values and can have even more serious consequences.
It is a common practice to pair the organisms in order to have enough material to perform
the chemical tests. This can however change the statistical properties of the data, leading to
unexpected behaviour of developed models, including false, highly positively biased accuracy
estimates, which in consequence renders the models useless.

After the data has been collected it can be processed, which is the main focus of this study.
Although there have been several approaches to water quality prediction in the literature using
ANNs [108], self organising maps [3], Bayes networks [131] and other methods [66], none

9European Commission Research, http://ec.europa.eu/research/index.cfm
10National Research Council Canada, http://www.nrc-cnrc.gc.ca/eng/index.html
11National Research Council, http://sites.nationalacademies.org/NRC/index.htm
12Developing an Index of the Quality of the Marine Environment (Marine Environment IQ) based on biomarkers:

Integration of pollutant effects on marine organisms, http://www.iris.no/Internet/NFR-feb2009.nsf/
13Research Council of Norway, http://www.forskningsradet.no/
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of them was using biomarker data. From the point of view of data modelling, the biomarker
data usually has low quality due to the missing values, high dimensionality and small size of
the dataset, which can cause various issues [11, 40]. Perhaps the most important of them is to
define what does one expect the data to reveal and is the data adequate for this purpose.

6.3.2 Dataset properties

The dataset contains a collection of biomarker data measured on mussels at 4 different marine
stations located in South–West Norway (Rogaland County), in the course of a 4–week experiment.
The locations of the sites can be seen in Figure 6.3. The stations have been chosen according
to known water pollution levels (see references within [21]) and the goal of the study was to
provide field data to investigate possible biomarker combinations to discriminate between various
pollution levels. There are 50 instances in the dataset, each having 12 attributes. There are also
5 different classes, denoting the 5 stations, and 4% of attributes are missing. The details of
the classes have been given in Table 6.4. For the list of biomarkers used see [21].

Table 6.4:Mussel biomarker data class details

class # instances description missing values

T0-C 10 Control (clean) site at experiment start10.0% (12 of 120)
T4-C 10 Control (clean) site after 4 weeks 0.0% (0 of 120)
T4-S1 10 Lightly polluted site after 4 weeks 2.5% (3 of 120)
T4-S2 10 Moderately polluted site after 4 weeks2.5% (3 of 120)
T4-S3 10 Heavily polluted site after 4 weeks 5.0% (6 of 120)

Figure 6.3: Locations of the marine stationsa

aMaps courtesy of WebAtlas: http://www.webatlas.no/

From the point of view of building a usable classification model, a number of difficulties can
already be expected even before examining the data in detail. The difficulties are:

1. Small dataset size. This results in the lack of ability to use more advanced models with
many degrees of freedom/parameters (e.g. all but the smallest neural networks) [126] and
negatively influences the reliability of the model generalisation ability estimate.

2. Relatively high dimensionality of data, which is higher than the number of objects per class
and can pose a whole number of difficulties (‘curse of dimensionality’ [11]).
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3. Missing attributes. Although the missingness level is low, most machine learning
techniques do not natively support incomplete data. Moreover, from the statistical
standpoint, the mechanism behind missingness is not known. The only information is that
the data is missing due to some biological tests going wrong in one way or another, but it
is not known if there exists any relation between the values of measured parameters and
the test going wrong. A common simplifying Missing At Random [136] assumption may
thus not hold and some form of a missingness model [117] may be required.

In order to gain some insight into the structure of the dataset basic statistical analysis has
been performed, which corresponds to the ‘data inspection’ step of the generalised predictive
system development cycle derived in Section 2.2.2. For the estimation of statistical properties of
the data, the missing values have been temporarily ignored and the dataset has been scaled to fit
into the[0, +1] range.

1. Mean and standard deviation. The mean and standard deviation values for all attributes
have been depicted in Figure 6.4(a), with the leftmost bar representing the whole dataset
and remaining bars representing classes T0-C to T4-S3, left to right. As it can be seen,
for example feature 9 alone may facilitate distinction between the most heavily polluted
site and all the others. Note also, that features 1, 3 and especially 514 might as well be
used to discriminate between classes T0-C and T4-C – the control site at the beginning
and end of the experiment. This suggests some additional dependency in the system, as
the feature values at the control site change over time although the pollution level does not.
This phenomenon, known as concept drift [172], may render the predictions of the model
less accurate as the time passes by.

2. Probability density functions. Class conditional probability density functions for each of
the features are given in Figure 6.4(b). In almost every case the distributions overlap, thus
none of the features alone is sufficient to discriminate between the classes. The exception
is feature 9 – the class representing the heavily polluted site appears well separated. Also
the peaks of the distributions of feature 11 form two, at least partially separated groups.

6.3.3 Classification with a single model

In order to quickly obtain a number of working prototype models, a simple experiment using a set
of standard classifiers has been designed. It not only allowed to get more detailed insight into
the dataset and confirm the difficulties listed in Section 6.3.2, but also provided first performance
estimates. Most importantly however, this initial analysis has helped to define the classification
problem, as the provider of the data wasn’t entirely sure what can be done with it.

As in the previous chapters the classifiers used in the experiments are a part of the PRTools [42]
toolbox (see Table B.1 for details). The original experiments have been primarily performed
within a repeated 10–fold cross–validation scheme. Due to small size of the dataset and in
order to obtain a better picture of possible performance, some experiments have been rerun
using leave–one–out cross–validation. In the follow–up study the supervised Density Preserving

14An unexpected behaviour of some of the models has been observed during the feature selection experiments.
A simple Nearest Neighbour classifier trained on feature 5 alone produced a 0% 10–fold and 0% leave–one–out
cross–validation error and the leave–one–out error ofqdc in scenario 1 was also suspiciously low – 6%. It has turned
out to be a result of pairing the organisms to have enough material to perform the chemical tests. For this reason,
feature 5 has not been used in further analysis.
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(a) Mean values and standard deviations of all features for each class

Feature 1 Feature 2 Feature 3 Feature 4

Feature 5 Feature 6 Feature 7 Feature 8

Feature 9 Feature 10 Feature 11 Feature 12

T0-C
T4-C
T4-S1
T4-S2
T4-S3

(b) Class conditional probability density functions (colours denote classes)

Figure 6.4:Statistical properties of the data
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Sampling (DPS–S) technique of Chapter 4 has also been used for comparison purposes. Since
the DPS method has not been designed with missing data in mind, the Local Dimensionality
Reduction technique proposed in Section 3.5.1 has been used here, enabling calculation of
distances between deficient data instances.

As the percentage of missing features was rather small, at this stage a simple class–conditional
mean imputation approach discussed in Section 3.4.2 has been used to fill in the blanks. As in
the case of class T0-C all values of feature 11 were missing, they have been replaced with a global
mean value for the whole dataset. The dataset has been scaled to fit within the[0, +1] interval, as
the ranges of the original features vary greatly and feature 5 has been removed.

Eight experiment scenarios summarised in Table 6.5 have been devised. The goal was to see if
any of the scenarios can be ruled–out at the early stage of experiments due to lack of discriminative
power of the feature set. Some of the scenarios were chosen only to verify the anticipated
difficulties. The results of preliminary experiments can be found in Tables 6.6 to 6.8.

Table 6.5:Experiment scenarios

scenario class count class details

1 5 T0-C — T4-C — T4-S1 — T4-S2 — T4-S3
2 4 T0-C+T4-C — T4-S1 — T4-S2 — T4-S3
3 2 T0-C+T4-C — T4-S1+T4-S2+T4-S3
4 2 T0-C — T4-S1+T4-S2+T4-S3
5 2 T4-C — T4-S1+T4-S2+T4-S3
6 4 T0-C — T4-S1 — T4-S2 — T4-S3
7 4 T4-C — T4-S1 — T4-S2 — T4-S3
8 2 T0-C — T4-C

Table 6.6:10–fold cross–validation errors

classifier
scenario

1 2 3 4 5 6 7 8

fisherc 0.356 0.379 0.225 0.215 0.197 0.292 0.260 0.415
ldc 0.310 0.329 0.208 0.217 0.227 0.273 0.258 0.415

loglc 0.432 0.358 0.202 0.287 0.235 0.400 0.325 0.340
nmc 0.360 0.361 0.147 0.178 0.168 0.228 0.283 0.300

nmsc 0.356 0.291 0.157 0.162 0.200 0.225 0.240 0.405
quadrc 0.560 0.540 0.338 0.222 0.367 0.488 0.480 0.405

qdc 0.600 0.537 0.338 0.387 0.375 0.505 0.517 0.315
udc 0.564 0.390 0.172 0.318 0.252 0.478 0.320 0.445

klldc 0.310 0.329 0.208 0.217 0.227 0.273 0.258 0.415
pcldc 0.310 0.329 0.208 0.217 0.227 0.273 0.258 0.415
knnc 0.448 0.450 0.212 0.198 0.440 0.360 0.420 0.375

parzenc 0.422 0.394 0.214 0.148 0.282 0.320 0.398 0.335
treec 0.666 0.671 0.327 0.257 0.495 0.558 0.577 0.405

naivebc 0.444 0.440 0.298 0.167 0.335 0.387 0.453 0.115
svc 0.388 0.343 0.147 0.362 0.505 0.273 0.290 0.315

nusvc 0.374 0.309 0.234 0.265 0.262 0.270 0.248 0.310
mean 0.431 0.403 0.227 0.238 0.299 0.350 0.349 0.358

efc-mimp/ldr 0.360 0.584 0.251 0.197 0.248 0.653 0.810 0.230
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Table 6.7:8–fold Density Preserving Sampling errors (DPS–S)

classifier
scenario

1 2 3 4 5 6 7 8

fisherc 0.360 0.388 0.150 0.233 0.200 0.325 0.325 0.350
ldc 0.360 0.350 0.167 0.183 0.183 0.250 0.275 0.350

loglc 0.440 0.438 0.217 0.250 0.183 0.375 0.325 0.350
nmc 0.260 0.363 0.142 0.167 0.167 0.200 0.225 0.200

nmsc 0.300 0.338 0.158 0.117 0.150 0.225 0.325 0.300
quadrc 0.600 0.525 0.342 0.233 0.333 0.450 0.525 0.300

qdc 0.500 0.475 0.342 0.400 0.383 0.425 0.500 0.250
udc 0.540 0.375 0.217 0.300 0.250 0.475 0.325 0.450

klldc 0.360 0.350 0.167 0.183 0.183 0.250 0.275 0.350
pcldc 0.360 0.350 0.167 0.183 0.183 0.250 0.275 0.350
knnc 0.460 0.388 0.225 0.117 0.350 0.300 0.450 0.300

parzenc 0.400 0.388 0.192 0.133 0.283 0.325 0.400 0.350
treec 0.800 0.600 0.392 0.267 0.517 0.475 0.525 0.550

naivebc 0.440 0.475 0.358 0.200 0.267 0.475 0.450 0.100
svc 0.400 0.338 0.108 0.400 0.467 0.400 0.300 0.500

nusvc 0.220 0.300 0.133 0.250 0.267 0.225 0.275 0.350
mean 0.425 0.402 0.217 0.226 0.273 0.339 0.361 0.337

efc-mimp/ldr 0.480 0.738 0.208 0.233 0.283 0.725 0.800 0.350

Table 6.8:Leave–one–out cross–validation errors

classifier
scenario

1 2 3 4 5 6 7 8

fisherc 0.400 0.400 0.267 0.233 0.183 0.300 0.300 0.350
ldc 0.300 0.338 0.183 0.200 0.233 0.225 0.250 0.350

loglc 0.460 0.350 0.192 0.250 0.233 0.400 0.300 0.250
nmc 0.300 0.338 0.142 0.167 0.167 0.225 0.250 0.250

nmsc 0.360 0.313 0.158 0.167 0.167 0.225 0.250 0.400
quadrc 0.380 0.363 0.383 0.233 0.233 0.300 0.375 0.350

qdc 0.120 0.350 0.383 0.217 0.183 0.100 0.100 0.100
udc 0.580 0.400 0.158 0.317 0.250 0.500 0.350 0.450

klldc 0.300 0.338 0.183 0.200 0.233 0.225 0.250 0.350
pcldc 0.300 0.338 0.183 0.200 0.233 0.225 0.250 0.350
knnc 0.460 0.475 0.208 0.150 0.417 0.400 0.425 0.400

parzenc 0.400 0.400 0.225 0.150 0.317 0.325 0.400 0.350
treec 0.660 0.625 0.442 0.233 0.517 0.550 0.500 0.250

naivebc 0.420 0.438 0.292 0.150 0.333 0.350 0.500 0.100
svc 0.480 0.363 0.133 0.400 0.517 0.300 0.325 0.400

nusvc 0.380 0.350 0.217 0.267 0.283 0.275 0.250 0.350
mean 0.394 0.386 0.234 0.221 0.281 0.308 0.317 0.316

efc-mimp/ldr 0.440 0.580 0.233 0.233 0.250 0.675 0.775 0.300

Scenario 1 – all 5 classes

The first experiment involved classification of instances into one of 5 classes from Table 6.4.
The mean 10–fold CV error of all classifiers (0.431) is higher than the mean leave–one–out
error (0.394) mostly due to suspiciously good performance ofqdc in the latter case (0.120).
Note, that before removing feature 5 from the dataset, leave–one–outqdc error was equal to
0.060, while the remaining classifiers performed at a similar level. Note good performance of
the Electrostatic Field Classifier in the 10–fold case (classification error well beyond average)
and a disappointing result for the leave–one–out method (classification error higher than average).
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Examination of the DPS errors from Table 6.7 confirms high classification error of the EFC
approach. An important observation is, that although the classifier rankings according to 10–fold
CV and 8–fold DPS differ, all top models according to the CV error are in top 3 models according
to the DPS error, and that in both casestreecis the worst performing classifier.

Scenario 2 – control site and various pollution degrees

For this experiment classes T0-C and T4-C have been combined together to form a single,
control class. The results of both cross–validation approaches are once again consistent but
not remarkable, although the 10–fold CV mean error of all classifiers has been slightly reduced
from roughly 0.430 to about 0.400. The same applies to the mean DPS error over all classifiers.
Combination of the two control classes thus seems to have positive influence on the classification
error. Moreover, this approach is the only way to address the concept drift issue with this limited
amount of data. As a result scenario 2 has been chosen for further experiments.

Note, that this time the top model according to DPS (nusvc) is second best according to 10–fold
CV and vice versa, and thattreecis once again the worst classifier in both cases.

As for the EFC approach, the performance is comparable to that oftreec, thus despite its
built–in missing data handling algorithms, EFC is unable to handle this experiment scenario.

Scenario 3 – clean and polluted environment

In scenario 3 classes T0-C and T4-C have been combined together to form a single, control class.
Classes T4-S1, T4-S2 and T4-S3 have also been combined to form a single class representing
polluted sites. This resulted in a dramatic improvement of the classification accuracy (roughly
0.220 – 0.230 mean error of all three error estimators, 0.147 10–fold CV error of best classifiers
(nmc, svc) and 0.108 DPS error ofsvc). In this experiment scenario the EFC performs at
the average level, which compared to the errors of the best classifiers is not a good result.

Scenario 4 and 5 – clean (T0-C / T4-C) and polluted environment

In these two scenarios, classes T4-S1, T4-S2 and T4-S3 have been combined to form a single class
representing polluted environment. One of the clean environment classes has then been dropped
(T0-C for scenario 4 and T4-C for scenario 5 respectively), effectively reducing the number of
classes to 2.

Note the performance gap between those two scenarios (mean 10–fold CV errors), reaching
0.06 in favor of scenario 4. This confirms the presence of concept drift in the data as
the discrimination between control site at the beginning of the 4–week experiment and polluted
sites is easier. Similar conclusions can be drawn from examination of the DPS error estimates.

Scenario 6 and 7 – control site (T0-C / T4-C) and various pollution degrees

Similarly to scenarios 4 and 5, classes T0-C (scenario 6) and T4-C (scenario 7) have been
dropped respectively, while the classes representing various degrees of pollution have remained
unchanged. The mean leave–one–out errors for both scenarios are lower than the 10–fold CV
errors due to surprisingly good performance of theqdc– this issue has been already discussed, so
only the latter errors are meaningful in this case.
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Scenario 8 – control site at time T0-C and T4-C

This experiment scenario was designed to check if classes T0-C and T4-C are indeed different, so
a dataset consisting of objects from these two classes only has been used. Although all three mean
errors are quite high (over 0.030), the best performing classifiernaivebchas produced only 0.115
10–fold CV and 0.100 DPS error. Notice, that no anomalies similar toqdchave ever occurred in
the case of this particular classifier, so there is no reason to treat its error estimate as unreliable.
This confirms that the objects collected at the same site in two different moments have distinct
properties, influenced by factors other than the pollution level.

Remarks on the behaviour of EFC and DPS

In the majority of experiment scenarios discussed above, the Electrostatic Field Classifier either
performs at an average or better than average level. However, in the most interesting scenario 2,
which is the main focus of further experiments, EFC fails. For that reason it has not been included
in the base model pool for development of the final predictive system.

The averaged DPS error estimates are very similar to that produced by 10–fold CV.
Specifically, in the case of scenario 2, these values are 0.402 and 0.403 respectively. Moreover
both methods produce similar rankings of the classifiers, e.g. for the scenario of interest top 2 as
well as the worst performing model are exactly the same according to both 10–fold CV and DPS.
This suggests that replacement of cross–validation with DPS in further experiments should not
negatively influence the performance of the final ensemble model.

6.3.4 Feature selection

As mentioned in Section 6.3.2, the dimensionality of the dataset is relatively high. This can often
be very problematic for various machine learning techniques, since they are forced to operate in
a sparse space and cannot be trained properly. As a result, reduction of the number of attributes
usually has a positive influence on the classification performance.

There is another practical reason for using as few attributes as possible – data acquisition cost.
By identifying attributes which are correlated or otherwise irrelevant, the number of required
biological tests can be reduced. This not only saves money but also circumvents the issue
of limited amount of biological material, which is substantial for the mutually exclusive or
destructive tests.

Experiments described in this section aim to investigate which of the features have the lowest
discriminative power and how their removal might affect the classification performance. As
mentioned before, the experiments were run only for scenario 2 from Table 6.5.

Removal of one feature at a time

The classification results for removal of one feature at the time, thus using 10 remaining features,
have been given in Tables 6.9 and 6.10. A modest improvement of both CV and DPS mean
classification errors over previous experiments has been observed for removal of features 1, 10 and
11. Further removal of features could possibly improve the results even more, but enumeration of
all feature pairs, triplets etc. is a problem of exponential complexity, thus these experiments were
not run here. It is clear however that some form of feature selection would improve performance.
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Table 6.9:Classification errors after removal of a single feature (10–fold CV)

classifier
feature

1 2 3 4 6 7 8 9 10 11 12

fisherc 0.360 0.369 0.406 0.381 0.366 0.400 0.404 0.440 0.324 0.348 0.356
ldc 0.305 0.376 0.329 0.388 0.323 0.335 0.296 0.436 0.281 0.318 0.390

loglc 0.454 0.373 0.443 0.291 0.309 0.351 0.401 0.435 0.360 0.368 0.393
nmc 0.340 0.350 0.345 0.416 0.348 0.360 0.349 0.446 0.298 0.313 0.380

nmsc 0.284 0.300 0.299 0.386 0.266 0.350 0.324 0.395 0.287 0.261 0.428
quadrc 0.494 0.502 0.478 0.529 0.481 0.545 0.491 0.559 0.488 0.503 0.511

qdc 0.548 0.501 0.605 0.579 0.559 0.489 0.598 0.603 0.613 0.583 0.574
udc 0.378 0.385 0.400 0.436 0.328 0.436 0.366 0.463 0.345 0.392 0.461

klldc 0.305 0.376 0.329 0.388 0.323 0.335 0.296 0.436 0.281 0.318 0.390
pcldc 0.305 0.376 0.329 0.388 0.323 0.335 0.296 0.436 0.281 0.318 0.390
knnc 0.411 0.386 0.439 0.425 0.385 0.476 0.433 0.506 0.381 0.389 0.413

parzenc 0.349 0.361 0.408 0.380 0.388 0.444 0.419 0.497 0.395 0.386 0.401
treec 0.616 0.628 0.663 0.679 0.658 0.663 0.635 0.673 0.659 0.663 0.655

naivebc 0.480 0.457 0.448 0.521 0.459 0.443 0.456 0.546 0.453 0.443 0.447
svc 0.364 0.353 0.350 0.355 0.352 0.404 0.380 0.433 0.326 0.357 0.360

nusvc 0.281 0.316 0.368 0.364 0.304 0.351 0.351 0.443 0.280 0.326 0.361
mean 0.392 0.401 0.415 0.432 0.386 0.420 0.406 0.484 0.378 0.393 0.432

Table 6.10:Classification errors after removal of a single feature (8–fold DPS–S)

classifier
feature

1 2 3 4 6 7 8 9 10 11 12

fisherc 0.338 0.350 0.338 0.362 0.387 0.412 0.388 0.475 0.325 0.338 0.350
ldc 0.300 0.388 0.300 0.313 0.350 0.362 0.300 0.412 0.275 0.287 0.388

loglc 0.488 0.425 0.375 0.225 0.350 0.362 0.438 0.313 0.350 0.362 0.413
nmc 0.313 0.350 0.300 0.388 0.400 0.350 0.363 0.400 0.237 0.262 0.287

nmsc 0.287 0.350 0.275 0.363 0.300 0.362 0.325 0.438 0.237 0.237 0.388
quadrc 0.438 0.650 0.512 0.538 0.563 0.538 0.375 0.488 0.613 0.550 0.388

qdc 0.550 0.500 0.588 0.500 0.600 0.550 0.550 0.575 0.500 0.550 0.512
udc 0.375 0.375 0.350 0.463 0.337 0.388 0.375 0.412 0.325 0.362 0.512

klldc 0.300 0.388 0.300 0.313 0.350 0.362 0.300 0.412 0.275 0.287 0.388
pcldc 0.300 0.388 0.300 0.313 0.350 0.362 0.300 0.412 0.275 0.287 0.388
knnc 0.400 0.438 0.388 0.438 0.425 0.425 0.388 0.475 0.463 0.412 0.412

parzenc 0.363 0.362 0.412 0.400 0.412 0.450 0.438 0.425 0.388 0.412 0.412
treec 0.550 0.637 0.675 0.650 0.700 0.575 0.600 0.713 0.600 0.563 0.675

naivebc 0.425 0.375 0.500 0.512 0.525 0.475 0.425 0.613 0.487 0.412 0.438
svc 0.375 0.375 0.362 0.388 0.363 0.400 0.412 0.463 0.338 0.375 0.388

nusvc 0.313 0.263 0.350 0.350 0.350 0.337 0.400 0.362 0.287 0.250 0.363
mean 0.382 0.413 0.395 0.407 0.423 0.420 0.398 0.462 0.373 0.372 0.419

Classification using a single feature

In this experiment performance of a classifier built on a single feature has been tested. The results
are given in Tables 6.11 and 6.12. Non–surprisingly, none of the features alone facilitates
acceptable classification performance but there are two features which produce the lowest error (4
and 9). The latter is especially interesting since the PDF plot (Figure 6.4(b)) suggested possible
discriminative power to separate class T4-S3 from the remaining ones. An experiment using only
those 2 features revealed 0.378 mean CV and 0.345 mean DPS classification errors, which already
is an improvement over the results obtained using the whole feature set. This experiment has also
uncovered unexpected properties of feature 5 mentioned before.
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Table 6.11:Single feature classification errors (10–fold CV)

classifier
feature

1 2 3 4 5 6 7 8 9 10 11 12

fisherc 0.663 0.735 0.654 0.575 0.638 0.695 0.612 0.688 0.500 0.786 0.713 0.637
ldc 0.734 0.679 0.573 0.471 0.638 0.678 0.600 0.666 0.537 0.800 0.792 0.574

loglc 0.711 0.665 0.613 0.545 0.638 0.650 0.611 0.643 0.548 0.807 0.768 0.531
nmc 0.734 0.679 0.573 0.471 0.684 0.678 0.600 0.666 0.537 0.800 0.792 0.574

nmsc 0.734 0.679 0.573 0.471 0.638 0.678 0.600 0.666 0.537 0.800 0.792 0.574
quadrc 0.645 0.739 0.570 0.530 0.642 0.595 0.553 0.682 0.524 0.812 0.711 0.610

qdc 0.648 0.758 0.582 0.456 0.714 0.590 0.560 0.675 0.541 0.773 0.745 0.659
udc 0.648 0.758 0.582 0.456 0.714 0.590 0.560 0.675 0.541 0.773 0.745 0.659

klldc 0.730 0.679 0.573 0.471 0.638 0.678 0.600 0.666 0.537 0.800 0.792 0.574
pcldc 0.730 0.679 0.573 0.471 0.638 0.678 0.600 0.666 0.537 0.800 0.792 0.574
knnc 0.676 0.779 0.688 0.521 0.000 0.793 0.651 0.709 0.533 0.738 0.690 0.694

parzenc 0.676 0.713 0.614 0.504 0.548 0.622 0.571 0.778 0.549 0.805 0.700 0.679
treec 0.691 0.745 0.719 0.519 0.340 0.776 0.659 0.656 0.511 0.751 0.764 0.690

naivebc 0.693 0.754 0.710 0.482 0.492 0.596 0.581 0.734 0.440 0.832 0.764 0.666
svc 0.749 0.750 0.750 0.573 0.600 0.750 0.676 0.748 0.500 0.750 0.729 0.750

nusvc 0.659 0.838 0.560 0.553 0.660 0.760 0.641 0.759 0.506 0.771 0.636 0.639
mean 0.695 0.727 0.619 0.504 0.576 0.675 0.605 0.692 0.524 0.787 0.745 0.630

Table 6.12:Single feature classification errors (8–fold DPS–S)

classifier
feature

1 2 3 4 5 6 7 8 9 10 11 12

fisherc 0.663 0.725 0.637 0.575 0.725 0.738 0.588 0.688 0.500 0.787 0.762 0.775
ldc 0.750 0.725 0.563 0.450 0.625 0.575 0.512 0.650 0.600 0.750 0.762 0.550

loglc 0.700 0.675 0.625 0.550 0.650 0.650 0.613 0.625 0.550 0.738 0.737 0.588
nmc 0.738 0.725 0.563 0.450 0.625 0.575 0.512 0.650 0.600 0.750 0.762 0.550

nmsc 0.750 0.725 0.563 0.450 0.625 0.575 0.512 0.650 0.600 0.750 0.762 0.550
quadrc 0.637 0.775 0.613 0.512 0.600 0.613 0.588 0.688 0.550 0.712 0.712 0.613

qdc 0.637 0.813 0.588 0.462 0.575 0.588 0.563 0.675 0.525 0.725 0.738 0.625
udc 0.637 0.813 0.588 0.462 0.575 0.588 0.563 0.675 0.525 0.725 0.738 0.625

klldc 0.738 0.725 0.563 0.450 0.625 0.575 0.512 0.650 0.600 0.750 0.762 0.550
pcldc 0.738 0.725 0.563 0.450 0.625 0.575 0.512 0.650 0.600 0.750 0.762 0.550
knnc 0.762 0.838 0.775 0.525 0.000 0.825 0.637 0.763 0.637 0.750 0.700 0.788

parzenc 0.688 0.725 0.613 0.512 0.575 0.600 0.575 0.688 0.512 0.738 0.675 0.650
treec 0.713 0.738 0.725 0.512 0.300 0.813 0.688 0.600 0.512 0.750 0.787 0.787

naivebc 0.688 0.738 0.662 0.488 0.400 0.587 0.588 0.675 0.438 0.838 0.725 0.700
svc 0.738 0.750 0.750 0.575 0.750 0.750 0.663 0.750 0.500 0.750 0.738 0.750

nusvc 0.675 0.650 0.600 0.512 0.600 0.663 0.587 0.675 0.550 0.738 0.762 0.650
mean 0.703 0.741 0.624 0.496 0.555 0.643 0.576 0.672 0.550 0.750 0.743 0.644

Principal Component Analysis

The percentages of explained cumulated variance and the classification performance for all
numbers of principal components (scenario 2) have been given in Tables 6.13 and 6.14. The best
results have been obtained for just 2 principal components, in terms of both CV and DPS mean
errors (0.355 and 0.338 respectively). This is surprising as the first two components account for
only 47.1% of the variance. Examination of PCA rotation matrix reveals that all original features
are relevant as no weights are driven to zero.
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Table 6.13:Classification errors for PCA–transformed dataset (10–fold CV)

classifier
Principal Component count

1 2 3 4 5 6 7 8 9 10 11

cum. variance 0.297 0.471 0.602 0.703 0.777 0.842 0.890 0.930 0.962 0.987 1.00
fisherc 0.500 0.390 0.378 0.343 0.354 0.371 0.392 0.386 0.345 0.360 0.350

ldc 0.394 0.339 0.403 0.334 0.341 0.303 0.295 0.354 0.316 0.300 0.303
loglc 0.460 0.318 0.426 0.365 0.346 0.335 0.341 0.316 0.327 0.376 0.420
nmc 0.394 0.314 0.361 0.355 0.371 0.359 0.365 0.388 0.338 0.343 0.336

nmsc 0.394 0.278 0.336 0.313 0.336 0.300 0.315 0.346 0.346 0.289 0.309
quadrc 0.404 0.290 0.398 0.418 0.424 0.444 0.514 0.617 0.560 0.525 0.524

qdc 0.433 0.313 0.409 0.414 0.416 0.424 0.471 0.546 0.533 0.591 0.540
udc 0.433 0.273 0.314 0.386 0.412 0.398 0.414 0.406 0.423 0.411 0.354

klldc 0.394 0.339 0.403 0.334 0.341 0.303 0.295 0.354 0.316 0.300 0.303
pcldc 0.394 0.339 0.403 0.334 0.341 0.303 0.295 0.354 0.316 0.300 0.303
knnc 0.475 0.340 0.370 0.361 0.409 0.455 0.415 0.468 0.485 0.455 0.451

parzenc 0.512 0.306 0.353 0.393 0.401 0.385 0.375 0.359 0.368 0.386 0.390
treec 0.464 0.526 0.557 0.560 0.555 0.564 0.580 0.571 0.573 0.593 0.597

naivebc 0.638 0.406 0.444 0.521 0.533 0.605 0.621 0.689 0.669 0.636 0.638
svc 0.523 0.485 0.455 0.418 0.420 0.418 0.380 0.388 0.391 0.365 0.360

nusvc 0.441 0.433 0.428 0.400 0.403 0.394 0.410 0.366 0.364 0.362 0.359
mean 0.453 0.355 0.402 0.390 0.400 0.397 0.405 0.432 0.417 0.412 0.408

Table 6.14:Classification errors for PCA–transformed dataset (8–fold DPS–S)

classifier
Principal Component count

1 2 3 4 5 6 7 8 9 10 11

cum. variance 0.297 0.471 0.602 0.703 0.777 0.842 0.890 0.930 0.962 0.987 1.00
fisherc 0.500 0.375 0.362 0.338 0.350 0.337 0.375 0.362 0.375 0.362 0.375

ldc 0.388 0.325 0.412 0.250 0.250 0.263 0.237 0.250 0.300 0.275 0.338
loglc 0.463 0.313 0.338 0.300 0.325 0.313 0.350 0.263 0.375 0.313 0.313
nmc 0.388 0.250 0.363 0.287 0.325 0.312 0.250 0.275 0.350 0.250 0.225

nmsc 0.388 0.275 0.363 0.250 0.300 0.237 0.250 0.263 0.313 0.212 0.200
quadrc 0.425 0.250 0.350 0.425 0.450 0.487 0.600 0.463 0.450 0.388 0.563

qdc 0.413 0.313 0.338 0.438 0.463 0.487 0.575 0.450 0.463 0.488 0.450
udc 0.413 0.300 0.300 0.325 0.313 0.350 0.413 0.350 0.388 0.350 0.287

klldc 0.388 0.325 0.412 0.250 0.250 0.263 0.237 0.250 0.300 0.275 0.338
pcldc 0.388 0.325 0.412 0.250 0.250 0.263 0.237 0.250 0.300 0.275 0.338
knnc 0.525 0.375 0.400 0.425 0.450 0.425 0.400 0.400 0.375 0.450 0.413

parzenc 0.563 0.287 0.350 0.388 0.400 0.362 0.362 0.375 0.375 0.375 0.375
treec 0.412 0.500 0.537 0.525 0.613 0.550 0.550 0.613 0.463 0.613 0.625

naivebc 0.575 0.375 0.438 0.587 0.587 0.537 0.588 0.588 0.613 0.650 0.637
svc 0.500 0.400 0.450 0.375 0.400 0.375 0.338 0.400 0.350 0.313 0.350

nusvc 0.475 0.425 0.350 0.362 0.362 0.287 0.325 0.262 0.338 0.225 0.200
mean 0.450 0.338 0.386 0.361 0.380 0.366 0.380 0.363 0.383 0.363 0.377

Linear Discriminant Analysis

An experiment similar to the one described in the previous section but using the Linear
Discriminant Analysis has also been performed. Unlike PCA, LDA is a method which tries to find
a linear projection of the data which best separates the classes and is thus useful for discrimination
purposes. The shortcoming of LDA is that the maximum dimensionality of the projection is
limited to (c− 1), wherec is the number of classes [40].

Unfortunately, in the examined case there is no performance gain when compared to PCA and
examination of the transformation matrix also does not indicate irrelevance of any of the original
features, likely due to the high dimensionality reduction level.
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6.3.5 Ensemble model

The final ensemble model has been designed using the generalised predictive system development
cycle introduced in Section 2.2.2. As already discussed, the rationale behind using a combination
of classifiers rather than a single best model is that various classifiers tend to differ for reasons
ranging from different underlying mathematical models to different data or attributes used during
the training process. This usually leads to a tendency of making classification errors on different
instances. By taking advantage of this fact, it is possible to exploit this complementarity of various
models and construct an ensemble able to outperform any individual classifier [98].

The following methods have been included in each of the pools depicted in Figure 2.4:

• Base model pool– 16 of the classifiers listed in Table B.1, excluding the Electrostatic Field
Classifier for the reasons already discussed.

• Preprocessor pool– consisting of three groups of methods:

– Three greedy feature selection methods: forward, backward and plus–L–takeaway–R
feature selection, all executed within a 10–fold CV scheme without repeating,
allowing for randomness leading to greater diversity. For this very reason DPS was not
used at this stage due to its deterministic nature. Error rate of each base classifier has
been in turn used as a criterion for feature selection, the procedure has been repeated
10 times and candidate classifiers have been created using all obtained unique feature
subset/base classifier pairs.

Feature selection has been chosen over transformation (i.e. PCA, LDA) for a number
of reasons. First of all, the latter approach did not demonstrate a considerable
performance improvement at the same time bringing in the loss of interpretability of
the results. Moreover, feature selection may facilitate reduction of data acquisition
costs – if some attributes are never used, there is no need to measure them by
performing expensive biological tests.

– Maximum likelihood imputation from univariate class conditional distributions rather
than mean imputation. The procedure involved estimation of the probability density
function for each class/feature pair using the Parzen window method [40] and
imputation of the most likely value from this distribution. Figure 6.5 depicts
an example of how the value imputed using this approach may vary from the class
conditional mean. In further experiments this imputation method allowed to achieve
on average 0.025 10–fold CV error improvement using all 11 features, with the most
improved classifier (loglc) better by 0.074.

– Missingness model, which creates a binary missingness map for the training data,
denoting a missing value by 1. The columns with all 0’s are then dropped (they
correspond to the features of the original dataset which are never missing) and
the training dataset is augmented with the remaining part of the missingness map
by treating each column of the map as a new feature. An average 10–fold CV error
improvement of 0.050 due to using the described missingness model was observed,
with the most improved classifier (quadr) better by as much as 0.288.

For more details on the preprocessing techniques used please refer to Appendix B.3.

• Error estimator pool – consisting of the following four methods:

– 10–fold cross–validation.
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– Nested 10–fold cross–validation (NCV) presented in Figure 6.6. In the 10–fold nested
cross–validation scheme the whole dataset is first randomly divided into 10 test folds,
in this case consisting of 5 objects each (1 object per class). Then each of those 10 test
folds is in turn put aside as test data and a number of combined models is constructed
using the remaining 9 folds (now called validation folds) in a similar, iterative manner:
each of the 9 validation folds is in turn put aside, all candidate classifiers are trained
on the remaining 8 folds and tested on the validation fold. After iterating over all 9
validation folds, a binary validation error map is constructed for each of the candidate
classifiers and the validation set errors are calculated. The procedure is repeated for
all 10 test folds and the result are two error maps: (1) validation, which can be used
for selecting candidate classifiers for inclusion in an ensemble, and (2) test, which can
be used to calculate the out–of–sample error of the final ensemble.

– 8–fold supervised Density Preserving Sampling (DPS–S).

– Nested 8–fold Density Preserving Sampling (NDPS), which is analogous to NCV,
except it is not repeated and the number of folds has been set to 8.

In the original study published in [21] NCV had been used, as the DPS method had not yet
been developed. In Section 6.3.6 however, the experimental results based on NDPS have
also been included for comparison.

• Postprocessor pool– consisting of a single Majority Voting method, which is simple and
fast, as it operates on binary correct/incorrect values and has been thoroughly researched in
the past (see [138]).

• Model selection criterion pool – single criterion, selecting 21 top performing candidate
models in terms of the nested CV/DPS error for exhaustive search for the best combination,
and 20 top performing ensembles for level 2 combinations, if a multistage structure is
constructed. The computational and space requirements of the exhaustive search are
the factors limiting the number of considered candidate models.

6.3.6 Experimental results

The generalisation performance of built models estimated by the classification errors on the test
set have been given in Tables 6.15 (NCV) and 6.16 (NDPS). For NCV this is equivalent to 10 times
repeated 10–fold cross–validation error and 8–fold DPS error in the case of NDPS. Since the two
errors cannot be compared directly, another column has been added to Table 6.16, containing
10–fold CV error of the obtained ensembles.

For the original experiment using the nested cross–validation scheme there were 569 candidate
classifiers in total, with mean error of 0.311. The test error of the best component classifier
(parzencbuilt on features 1, 3, 4, 7, 9 and 12) was 0.180, which compared to the previous
results from Table 6.6 (0.29, all features used) and Table 6.13 (0.273, PCA) is a considerable
improvement. The same classifier has produced the lowest validation error of 0.203 and although
this does not necessarily imply the lowest test error, the two types of errors are well correlated, as
will be shown later. Note, that at this stage the MV error (0.218) did not improve over the error
of the best classifier.

As mentioned earlier, due to limited resources only 21 best candidate classifiers in terms of
the validation error have been selected for combining. Their MV test error is equal to 0.164, which
for the first time is less than the error of the best candidate classifier. Exhaustive search for the best
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Figure 6.5: Mean imputation (dashed vertical line) v. imputation from univariate distribution (solid
vertical line) for the 10th feature, superimposed on the PDF (blue solid line)

Figure 6.6:Nested cross–validation scheme. NFOLD denotes the total number of folds.

combination of 21 candidate classifiers (level 1 combinations) brings further improvements. Test
error of the best level 1 combination is 0.132. This time however the best test set model is only
6286th in the validation data performance ranking of combinations and thus there is no reason
to prefer this particular model over the rest. The test error of the highest ranked combination is
0.132 and the MV error of a subset of best level 1 combinations (with validation error within one
standard deviation from the minimal validation error) is 0.144.

For the level 2 combinations, 20 best level 1 models have been chosen and once again
combined exhaustively. This time the best combination produced 0.102 test error (0.136
validation error, 96th in the ranking) and the lowest MV error achieved was 0.106. An attempt
for another combination level did not produce further improvements.

In the case of the nested DPS scheme (Table 6.16), for the reasons already discussed, the same
569 classifiers have been used as a starting point. The best component and candidate classifier in
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Table 6.15:Test errors of combinations, component and candidate classifiers (NCV)

test error min mean max MV a count

candidate classifiers 0.180 0.311 0.573 0.218 569
component classifiers 0.180 0.223 0.264 0.164 21

level 1 combinations (all) 0.132 0.169 0.226 0.166 1 048 576
level 1 combinations (better than mean)0.132 0.165 0.192 0.164 558 072

level 1 combinations (better than min+stdev)0.136 0.154 0.172 0.144 1 381
level 2 combinations (all) 0.102 0.113 0.128 0.120 524 288

level 2 combinations (better than mean)0.102 0.112 0.126 0.110 215 222
level 2 combinations (better than min+stdev)0.104 0.109 0.116 0.106 95

a10 times repeated 10–fold CV Majority Voting error

Table 6.16:Test errors of combinations, component and candidate classifiers (NDPS)

test error min mean max MV a MV b count

candidate classifiers 0.160 0.307 0.600 0.200 0.218 569
component classifiers 0.160 0.198 0.240 0.160 0.164 21

level 1 combinations (all) 0.100 0.160 0.240 0.140 0.120 1 048 576
level 1 combinations (better than mean)0.100 0.154 0.240 0.140 0.120 645 505

level 1 combinations (better than min+stdev)0.100 0.143 0.220 0.120 0.115 32 557

a8–fold DPS Majority Voting error
b10 times repeated 10–fold CV Majority Voting error

terms of the 8–fold DPS error (ldc using features 2, 3, 4, 7, 9, 11 and 12) is however not the same
as in the case of NCV. Moreover, when it comes to the ensemble models, the situation looks even
more differently, as only level 1 combinations have been built since additional levels did not bring
any improvements. This was however sufficient to obtain a combination which performs closely
to the one built using NCV (0.115 v. 0.106) in terms of the 10–fold CV error. Note, that this has
been achieved with considerable computational savings when compared to the NCV approach, as
the nested DPS procedure did not need to be repeated 10 times and there was no need to build
level 2 ensembles.

Correlation between test and validation error

During selection of models to be combined, the validation error has been used as the criterion.
To confirm that it was indeed the right choice, correlation between the two types of errors for
the NCV approach was calculated. At the level of individual candidate classifiers the correlation
is very high (0.9662), but it drops considerably for level 1 combinations (0.6076) just to decrease
even further for level 2 combinations (0.4889). This can also be seen on the plots of test v.
validation errors given in Figure 6.7. First thing to notice is that by combining individual
models both errors have been dragged towards the origin and are much more concentrated –
the variability of error in the pool of models is smaller. Also, the test error is on average smaller
than the validation error which is due to the amount of data used for training (45 objects in the case
of test set and 40 in the case of the validation set). Note that high error correlation of individual
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classifiers is partly caused by much wider range of validation errors than for combinations on both
levels, while the ranges of test errors are similar.
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Figure 6.7:Test versus validation errors (mean values of repeated cross–validation)

Figure 6.8 depicts test v. validation errors again, this time represented by ellipses with
semiaxes equal to standard deviations of respective errors. It can be well seen especially on
the close–up plot, that apart from reducing the mean error value, the variance of test error has also
diminished. The plots for the NDPS approach are not presented here as they look very similar.
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Figure 6.8:Test versus validation errors (mean values + stdev of repeated cross–validation)

Difficult objects

To understand where do the errors come from a plot of misclassification rates of the 95 best level
2 NCV combinations has been given in Figure 6.9. Each bar represents the percentage of level 2
models which have misclassified a particular object (objects 1 to 20 represent the control site, 21
to 30 class T4-S1 etc.). Due to the combination method used, any object with misclassification
rate≥ 0.5 will be misclassified by the ensemble as well. As it can be seen, there are 5 such
objects in the dataset which corresponds to 0.100 error (the actual error is 0.106 as it has been
averaged over 10 runs and so were the misclassification rates).
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Figure 6.9:Misclassification rates of the best level 2 models for each test object (NCV)

Classification of objects belonging to the heavily polluted site (objects 41 through 50) does not
pose a problem, as only single models make errors there. The same applies to most of the instances
belonging to the moderately polluted class as only for 3 of them the models slightly disagree
regarding the class label. Also most of the instances belonging to the control site are classified
correctly without difficulty. There are two exceptions however – instance 20 is never classified
correctly and instance 19 is classified correctly only by a small margin. The class causing most
problems is the lightly polluted site with 4 (i.e. 40%) of instances being misclassified, 3 of which
by a considerable margin. This allows to presume, that although the biomarkers used in this
study facilitate good discrimination between the classes in most cases, they are not discriminative
enough to separate the objects coming from the lightly polluted site (T4-S1) and the control site
(T0-C + T4-C). The pollution level at site T4-S1 might be so low, that these particular biomarkers
fail to detect it. Thus a possible future research direction is to focus on the evaluation of usability
of various biomarkers for detection of very low pollution levels.

Feature usage

The usage of particular features by all component classifiers included in the top 95 level 2 NCV
combinations has been depicted in Figure 6.10. As it can be seen, apart from feature 5, which
has been dropped deliberately, there is another attribute which appears irrelevant – 10. Also
the attribute number 1 is used by less than 20% of component classifiers, so it might be considered
as the second candidate for removal. The rest of the features appears important, with attribute 9
absolutely crucial, as it has been used by all component classifiers.

The above confirms that the biomarkers selected to form the input of the predictive system
were suitable for the task, as there is no doubt that 9 out of 12 attributes are relevant. Although
the choice was good, it was not necessarily optimal – it is possible that some other set of
biomarkers would even facilitate error–free classification. Unfortunately, it is almost impossible
to tell which biomarkers should be used for a particular task before the actual model is built. Thus
in a perfect world scenario one would run as many biological tests as possible and then select
an optimal subset of attributes during the model building process. There are two limiting factors
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Figure 6.10:Feature usage by component classifiers

here however. Each biological test has an associated monetary cost and a total cost of performing
a batch of tests is limited. Moreover, due to ethical reasons the amount of biological material
used should be as small as possible, to leave the environment in its original state. This leads
to an interesting problem of balancing the classification performance with the total cost (both
monetary and ethical) of performing a set of biological tests. In other words, the ability to estimate
how much would it cost to achieve a given performance level or how accurate can the predictive
model be given a known cost limit, might be very desirable. Such analysis could even reveal
that the best performance might be achieved using only a small set of relatively inexpensive tests,
which would minimise both the total cost and classification error at the same time. Although
with the limited amount of data it was not possible to address this problem here, it is a promising
research direction, worth considering in future studies.

6.3.7 Summary of case study findings

Coastal water pollution monitoring using the biomarker data is very appealing as the biomarkers
are able to detect even a very low concentration of pollutants, unobservable using different
methods. Due to the specific data collection process however, the biomarker data is rather
difficult to process in order to obtain meaningful results. Blindly applying one of the many
available machine learning techniques is seldom successful, thus a principled approach in a form
of the predictive system development cycle is crucial. The most important conclusions are:

• biomarkers can be successfully used for discrimination between various aquatic toxicity
levels even when small amount of data is available,

• a sophisticated multi–stage ensemble model had to be built, to deal with imperfections of
the data (limited amount and low quality),

• the choice of biomarkers for a specific predictive task can dramatically influence
performance of the built models and is also strongly connected with the monetary cost
and ethical issues of data acquisition,

• due to natural evolution of the environment regardless of the changes in pollution level,
the results could be further improved if some environmental features were also measured
(e.g. water temperature).
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Although the predictive model obtained by following the generalised predictive system
development cycle derived in Section 2.2.2 performs relatively well, some open problems remain.
First, it is still not known how to select the biological tests to be performed, before building
the prototype of the model (i.e. before actually performing the tests). Since the literature on using
biomarkers for predictive modelling is discordant, it seems that at least for some time this choice
will need to remain more or less random. This issue leads to another interesting problem of
balancing the model performance with data acquisition cost. It might be the case that for some
applications, models cheap to develop yet not very accurate would be sufficient, while for some
other purpose the precision of the model will be the most important factor, regardless of the cost.

6.4 Concluding remarks

In this chapter the techniques developed within the thesis have been confronted with two
real–world environmental problems.

The generalised predictive system development cycle described in Section 2.2.2 has proven
to be very successful. It’s application within the Environmental Toxicity Prediction Challenge
CADASTER 2009 resulted in a predictive model awarded a title of the First–Pass Winner,
outperforming over 100 other submissions from all over the world. The second application of
the proposed design cycle to predictive modelling of water pollution using low quality biomarker
data can also be considered a success, as some of the outcomes were publication of the results in
a respected international journal15 [21] and a joint conference paper [119].

The performance of Electrostatic Field Classifier on the biomarker data is disappointing,
although it performed very well in the experiments using a range of benchmark datasets
(Section 3.6). A possible explanation can be sought by looking at the behaviour of the decision
tree classifier (treec), which is the worst performing base model in the water pollution prediction
problem, despite being considered as state–of–the–art in some areas, where interpretability
of the results is essential. It stems from one of the interpretations of the ‘No free lunch
theorem’ [40], which states that if a base model is exceptionally good in some applications, it
must be exceptionally bad in some other applications. In other words, there are no universally
excellent models. It thus seems that the problem of water pollution modelling using biomarker
data lies somewhere in the space of all possible problems, where both EFC and decision trees are
not that strong.

The Density Preserving Sampling technique has demonstrated its potential in both
environmental applications discussed in this chapter, leading to development of models
performing at the level comparable to standard cross–validation but requiring a fraction of
computations of the latter. Should thus DPS completely replace CV?

One needs to have in mind that in its current form DPS is based on greedy and hence
suboptimal optimisation. Although in all the experiments included in this thesis the technique
performed well, there is no guarantee that this will always be the case. For this reason, until DPS
has been thoroughly verified in a number of practical applications (inclusion of the technique into
PRTools is an important step in this direction), it should be used with caution. Cross–validation
on the other hand is a method, which has been around for more than 40 years and has been
successfully applied to countless problems, not only in machine learning but also statistics.
Hence at this stage, DPS should be perceived as a solution complementary to CV rather than
its replacement, especially in safety–critical applications.

15Elsevier’s Water Research with 5–year impact factor of 4.828
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Conclusions

7.1 Project summary

The primary objective of this research was to investigate and explore some of the similarities
between physical world and computational intelligence in order to find inspirations and design
new nature inspired machine learning techniques.

The literature review undertaken at the beginning of this research project quickly revealed that
the number of physically inspired machine learning methods of practical importance is relatively
low. Moreover, many of these techniques have evolved into a suite of specific, constrained
machine learning models, each having its strengths and weaknesses, which in separation could
only be applied to a limited number of problems. The Information Theoretic Learning framework
introduced in Chapter 2 is the only identified attempt of an algorithm independent (and thus having
a wider range of possible applications) development based on physical analogy. However, at this
stage the lack of a high–level, algorithm independent learning technique, spanning the whole suite
of machine learning methods became apparent.

At the highest level this issue has been addressed in Chapter 2, in a form of the generalised
predictive system development cycle, being in fact a methodology for development of
well–performing data–driven predictive models. Although the proposed cycle is not inspired
by any physical phenomena, it forms an essential algorithm independent learning framework,
enabling comprehensive validation and evaluation of techniques developed in later chapters of this
thesis. Also, as demonstrated in Chapter 6, the proposed methodology is of considerable practical
importance, allowing to design predictive systems without having specific domain knowledge, yet
also without sacrificing their performance.

The Electrostatic Field Classification Framework for supervised and semi–supervised learning
from incomplete data described in Chapter 3 is the first physically inspired machine learning
method proposed in this thesis. The Framework stems from a direct analogy to potential fields,
where each data instance is treated as a charged particle. The classification is performed in
a simulatory manner by allowing the ‘data particles’ to interact according to a set of simple,
clearly defined rules, until convergence. However, instead of designing yet another classification
algorithm, the focus has been put on a much more general problem – learning from incomplete
data. The Electrostatic Field Classification Framework not only supports classification of data
instances with missing attributes, but also learning from deficient datasets, including the missing
class label scenario. The novelty in this approach lies in extension of the electrostatic field analogy
to naturally handle various deficient data situations within a unified classification framework,
which in addition is extendible, allowing for example to incorporate a categorical attribute
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handling routine.
A different research direction, this time exploiting indirect physical analogy in a form of

the ITL framework has been pursued in Chapter 4. The resultant novel Density Preserving
Sampling technique is another algorithm independent learning development, with a wide area
of applications traditionally dominated by the cross–validation. DPS samples the dataset in
order to maximise the correntropy, a recently introduced ITL measure of the probability density
function similarity. This results in splits of the data, which are maximally representative in
the correntropy sense as well as deterministic, thus there is no need to repeat the sampling
procedure multiple times. The DPS splits can be used for model generalisation error estimation,
producing results very similar to cross–validation at a fraction of computations required by
repeated CV and alleviating the risk connected with running the cross–validation procedure
only once. As demonstrated in the experiments, DPS is also well suited for model ranking and
selection, and there are other potential applications, which however require further investigation.

DPS has brought a reduction in required computational resources by an order of magnitude
when compared to 10–times repeated cross–validation but as discussed in Chapter 4, further
reductions are possible. Hence inspired by the success of the DPS technique, in Chapter 5
the usability of various PDF divergence measures, including the ITL–based Cauchy–Schwarz
divergence, for the purpose of representative sampling has been investigated. The goal has been
set to limit the computational requirements of the generalisation error estimation procedure by
another order of magnitude. The experiments have confirmed that it is indeed possible but none
of the examined divergence measures is suitable for this purpose. On this occasion a number of
divergence estimation methods have also been investigated, questioning their usability for datasets
consisting of less than thousands of instances.

The physically inspired techniques developed in this thesis perfectly fit within the proposed
generalised predictive system development cycle. For that reason they have all been evaluated
together in Chapter 6, using two environmental case studies. The cycle itself has proven to be
a success, as a purely data–driven toxicity prediction system developed with its help has been
awarded a title of the First–Pass Winner in the Environmental Toxicity Prediction Challenge
CADASTER 2009. The proposed methodology has also been successfully used in order to
develop a multistage ensemble model for water pollution prediction using low–quality biomarker
data. Although at the time of development of the the two systems mentioned above the DPS
technique had not been derived yet, for comparison purposes the experimental results of Chapter 6
have been supplemented to include DPS, revealing exceptional performance in both cases. More
specifically, the systems developed using DPS instead of CV have performed at a very similar
level, saving almost 90% of computations at the same time.

As it can be seen, physical models have proven to be a fruitful source of inspirations for
computational intelligence, thus the main objective of this research project has been achieved.
The techniques developed in this thesis have a wide range of possible applications, but one
should also be aware of their limitations. For the machine learning techniques being a direct
analogy to physical phenomena (i.e. EFCF), the dimensionality of the input space appears to be
the biggest obstacle. This shouldn’t be very surprising as the real physical fields act in the real
3–dimensional physical world. In high–dimensional sparse spaces, consisting mainly of void,
the interactions are necessarily very weak, which coupled with a limited precision of computations
makes the extension of the models to higher dimensions not that straightforward. Fortunately it is
not impossible either, but the required modification of the distance definition is in fact a departure
from the real physical model, weakening the physical analogy at the same time and naturally
leading to more indirect inspirations, like the ITL.
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Indeed the ITL techniques seem to behave much better as the dimensionality of the input space
increases, although it should still be kept within a reason. This however shouldn’t be perceived
as a limitation of ITL per se, as the ‘curse of dimensionality’ is a well known phenomenon
concerning machine learning and other disciplines in general. Nevertheless ITL does have its
own weaknesses, resulting from its strong dependance on the PDFs, rendering ITL useless without
good estimators of the latter. And PDF estimation is an important research area on its own.

The above shows, that although physically inspired learning definitely is a subject area worth
researching, it comes with its own set of issues and difficulties, and is hence not able to solve
all problems of the machine learning world on its own. But is any other technique or suite of
techniques able to do so? The importance of physically inspired models thus stems from the fact
that they are different and do not aim at replacing the existing methods but rather to complement
them. After all, as discussed multiple times, diversity is one of the key factors of success in
predictive modelling.

7.2 Main findings and contributions

The original contributions of this work are:

• Rigorous generalised predictive system development cycle.

The cycle has been developed in order to address the weaknesses of the classical
predictive system development cycle which can be found in many machine learning
textbooks. The main characteristic of the proposed cycle is that it allows to build
well–performing predictive models, even in the absence of domain knowledge, thus in
a purely data–driven setting. Moreover, the obtained models can successfully compete
with the ones developed by the experts in a given domain, which is achieved by offsetting
the lack of the problem domain knowledge by additional computations and automation
of activities which are usually performed manually. The proposed methodology has been
verified on two real–world environmental problems. One of them was the Environmental
Toxicity Prediction Challenge CADASTER 2009, in which the predictive system developed
in a purely data–driven way has been awarded as the First–Pass winner, non–significantly
different from the best performing submission developed by an expert in QSAR modelling.

• Comprehensive Electrostatic Field Classification Framework for supervised and
semi–supervised learning from incomplete data.

The framework has been derived by taking advantage of a strong, direct analogy to physical
potential fields, building upon two existing classification techniques: the Gravity Field
Classifier and the Electrostatic Field Classifier. The framework tackles the problem of
learning from incomplete data in a comprehensive way, as the incompleteness is understood
in a very broad sense including (1) missing attribute values in the test data, (2) missing
attribute values in the training data, (3) missing labels in the training data, or (4) any
combination of the above. One of the important features of the proposed framework is
its modular, extendible architecture, allowing to easily incorporate alternative definitions of
force and distance.

In this thesis some previously not addressed issues of the two classifiers have also been
investigated, with the distance concentration phenomenon being the most important one.
As it turned out, the models tend to perform very badly in higher dimensional spaces. This
most probably stems from their origin in a form of physical fields, which exists only in three
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dimensions. The issue has been addressed by departing from a strict physical definition of
the field towards a more loose analogy, with a great success.

The Electrostatic Field Classification Framework fits within the base classifier and
preprocessor level of the proposed generalised predictive system design cycle.

• The Density Preserving Sampling technique.

The algorithm independent learning technique, which has been derived as an alternative to
commonly used cross–validation by taking advantage of an indirect analogy to physical
phenomena in the form of the Information Theoretic Learning framework. DPS is
a data splitting method, which aims at producing splits or folds which are representative.
This is facilitated by a sampling procedure guided by optimisation of the correntropy,
a recently introduced ITL probability density function similarity measure. DPS allows
to reduce the computational requirements of generalisation error estimation procedure by
an order of magnitude when compared to cross–validation, without compromising quality
of the estimate and protecting against typical pitfalls connected with random sampling.
The technique has also proven very useful for model ranking and selection, which has been
confirmed by applying it to two real–world environmental problems mentioned before.

The Density Preserving Sampling technique fits within the error estimator level of
the proposed generalised predictive system design cycle.

• Experimental comparative study of PDF divergence estimators and their usability in
sampling for generalisation error estimation, including an attempt to gather relevant
concepts in the area of divergence estimation and present them in a unified way.

Encouraged by the good performance of DPS, the goal of this study was to investigate if
it is possible to go one step further and estimate model generalisation ability by testing
it only once, using a single, carefully selected subset of data. The first part of the study,
devoted to evaluation of PDF divergence estimators revealed, that in many cases datasets
consisting of thousands of instances are needed for accurate divergence estimation. This
has put the usability of divergence estimators in question, especially after examining some
of their applications which can be found in the literature.

In the second part of the study 70 divergence estimators have been used in order to assess
correlation between their values and the bias of the obtained generalisation error estimate.
Although the correlation has been observed in a limited number of cases, in general
the dependency is not strong and frequent enough for this approach to have a practical
meaning.

• Multi–stage Multiple Classifier System for robust predictive modelling of water
pollution using biomarker data.

A real–world application, in which all techniques proposed in this thesis come together.
Despite confirming the usability of the generalised predictive system development cycle
and the DPS technique and incorporation of a Missing Not at Random data modelling
approach, this study tackled an important problem of learning from low–quality biomarker
data. The process of data acquisition in environmental sciences, due to many physical and
ethical constraints is very specific and often results in datasets, which are difficult to process
by data analysts in order to obtain meaningful results. Many such problems have been
identified in this study and publication of the results in a respected international journal
devoted to environmental sciences allows to hope, that the data acquisition procedures will
change in the future, wherever possible.
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7.3 Further research

Further research directions will revolve around two themes which have been investigated in this
thesis. The first theme is the ITL framework. This theme is more of a theoretical nature as
the research efforts will not be directed at any particular real–world application. Within this
theme the following topics will be addressed:

• The Density Preserving Sampling technique.

As mentioned before, greedy optimisation of correntropy within the DPS sampling
procedure is currently perceived as one of its weakest points. Hence employment of other
optimisation techniques might help to alleviate the risk of being caught in local minima of
the objective function. An important issue is however for the optimisation process to be
fast and efficient, so that it does not cancel out the computational savings DPS brings over
cross–validation in the first place. For that reason the Genetic Algorithms cannot be used
here and the only feasible procedure is the Lagrange optimisation facilitated by introducing
soft memberships of instances in the obtained subsamples, in a way similar to [83].

Another limitation of current DPS is that at each stage only two equal splits are produced.
If more than two splits are required, which is usually the case, the procedure needs to be
repeated. Although this does not increase the computational complexity considerably, as
the pairwise distances only need to be calculated once, the total number of splits obtained
must be a power of 2. Hence development of a multi–split version of DPS is worthwhile.

Finally, investigation of the behaviour of DPS in conjunction with early stopping for
training of e.g. Artificial Neural Networks supplements the list of possible applications
examined in this thesis.

• Application of ITL estimators of mutual information to sampling and other problems.

Two easy to calculate estimators of mutual information have been proposed in [127]:
Cauchy–Schwarz quadratic mutual information and Euclidean distance quadratic mutual
information. Their details can be found in Appendix C. Since MI alongside entropy is one
of the most important concepts of information theory, the number of possible applications
is almost unlimited. Surprisingly, although the two estimators have been around for 10
years now, only a few published applications exist, generally focusing on either Blind
Source Separation [73, 74] or feature extraction in classification problems [166, 167, 168,
169, 170, 165]). Since the attempt to use PDF divergence measures to guide sampling
described in Chapter 5 was not entirely successful, another natural choice to try is mutual
information as an objective function to optimise. Exploration of other possible applications,
like feature extraction for regression or unsupervised dimensionality reduction are also
promising research directions.

• Application of ITL to building ensemble models.

One of the areas of the generalised predictive system design cycle proposed in Chapter 2
which has not been targeted in this thesis is the postprocessor pool. With respect to
classification problems, this issue will be addressed by development of a combiner, which
maximises the classification margin. According to [152] margin maximisation allows
to reduce the generalisation error by adding additional ensemble members long after
the training error has vanished. However, in order to achieve this, apart from maximising
the margin it is important for the margin PDF to assume appropriate shape. The ITL
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framework with its entropy, correntropy and mutual information manipulation capabilities
is well suited for this goal. Unlike other approaches which focus on manipulating
the weights of ensemble members in the final decision, a combiner driven by an ITL
criterion would actively influence the whole process of ensemble members training in order
to obtain the desired margin PDF shape.

The second, more practical future research theme stems from successful collaboration with
the International Research Institute of Stavanger (IRIS) in Norway, which has resulted in the water
pollution monitoring study described in Chapter 6. As mentioned before, the study has left
numerous questions and issues, which need to be addressed:

• Modification of the biomarker data acquisition procedure to eliminate the most
obvious causes of inconsistent modelling outcomes (e.g. instance pairing) and to arrive
at a procedure acceptable for both biochemists and data analysts.

• Addressing the concept drift issue by incorporating appropriate algorithms into
the current predictive system and including various environmental parameters into the set
of input variables, as this would allow to detect changes in the data which are not due to
changes in the pollution level.

• Investigation of the cost–performance trade–off,connected with varying monetary cost
of different biochemical tests. As already discussed, performing all possible tests on each
organism is not feasible not only due to the monetary cost but also because many tests are
destructive or mutually exclusive. On the other hand the more complete the set of attributes
to choose from when building a predictive system, the better results can be expected.
A possible solution might be found by using meta–learning techniques in order to exploit
successes or failures of other researchers working in the area of environmental monitoring.

The final future research topic is connected with the Electrostatic Field Classification
Framework described in Chapter 3, and more specifically with the distance concentration
phenomenon so apparent in the operation of the two classifiers used. In the experiments performed
the order of the distance measure used has been derived by exhaustive search, which obviously
is not efficient. Hence some more principled mechanism for determination of this parameter is
needed. Once again meta–learning might be a possible solution, but this issue still remains to be
investigated.
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Benchmark datasets

Throughout this thesis a number of datasets has been used in order to illustrate various concepts
as well as to assess the performance of proposed methods and models in a comprehensive way. In
order to make the results comparable with those available in the current and future literature, many
experiments have been performed using publicly available benchmark datasets. The datasets
come from the UCI Machine Learning Repository [6], the UCL Machine Learning Group’s
ELENA database1, the PRTools Pattern Recognition Toolbox for MATLAB [42] as well as two
standard textbooks [97, 134]. The datasets were selected according to their size, dimensionality
and the number of classes to form a diverse blend, enabling a comprehensive evaluation of
discussed techniques. A summary of the benchmark datasets used have been given in Table A.1
and a detailed description follows.

1. AZI
Azizah dataset, which is concerned with segment features in utility symbols and is available
as a part of PRTools.

2. BIO
Biomed dataset, which is concerned with biomedical diagnostics and is available as a part
of PRTools.

3. CAN
The breast cancer database, which is available at the UCI repository and has been obtained
from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. This
dataset was used to distinguish between benign and malignant breast cancers, based on
features computed from a digitised image of a fine needle aspirate of a breast mass.

4. CBA
Chromosome banding patterns data, which is available as a part of PRTools. The original
dataset consists of 12000 instances, 1000 of which have been selected for experiments.

5. CHR
Chromosomes recognition dataset, which is available as a part of PRTools.

6. CLO
The clouds dataset, which is an artificial dataset available at the ELENA database, dedicated
to the study of classifier behaviour for heavy intersection of the class distributions and for

1http://www.dice.ucl.ac.be/mlg/?page=Elena
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Table A.1:Benchmark datasets summary

no. acronym name source # objects # attributes # classes

1 azi Azizah dataset PRTools 291 8 20
2 bio Biomedical diagnosis PRTools 194 5 2
3 can Breast cancer Wisconsin UCI 569 30 2
4 cba Chromosome bands PRTools 1000* 30 24
5 chr Chromosome PRTools 1143 8 24
6 clo Clouds ELENA 1000* 2 2
7 cnc Concentric ELENA 1000* 2 2
8 cnt Cone–torus [97] 800 3 2
9 dia Pima Indians diabetes UCI 768 8 2
10 ga2 Gaussians 2d ELENA 1000* 2 2
11 ga4 Gaussians 4d ELENA 1000* 4 2
12 ga8 Gaussians 8d ELENA 1000* 8 2
13 gla Glass identification data UCI 214 10 6
14 ion Ionosphere radar data UCI 351 34 2
15 iri Iris dataset UCI 150 4 3
16 let Letter images UCI 1000* 16 26
17 liv Liver disorder UCI 345 6 2
18 pho Phoneme speech ELENA 1000* 5 2
19 sat Satellite images UCI 1000* 36 6
20 seg Image segmentation UCI 1000* 19 7
21 shu Shuttle UCI 1000* 9 7
22 son Sonar signal database UCI 208 60 2
23 syn Synth–mat [134] 1250 2 2
24 tex Texture ELENA 1000* 40 11
25 thy Thyroid gland data UCI 215 5 3
26 veh Vehicle silhouettes UCI 846 18 4
27 win Wine recognition data UCI 178 13 3

* The number of instances actually used in the experiments, selected randomly with stratified sampling from
the whole, much larger dataset in order to keep the experiments computationally tractable.

high degree of nonlinearity of the class boundaries. The data represents 2–dimensional
distributions with two classes. Class 0 was obtained from the sum of three different
Gaussian distributions, while class 1 represents a single normal distribution. The original
dataset consists of 5000 instances, 1000 of which have been selected for experiments.

7. CNC
The concentric dataset, which is an artificial dataset available at the ELENA database
representing the study of linear separability of a classifier when some classes are nested
in other without overlapping. The 2–dimensional dataset represents uniform concentric
circular distributions with two classes. The dataset is entirely contained in the square (0,0),
(1,1). The points of class 0 are uniformly distributed into a circle of radius 0.3 centred on
(0.5,0.5). The points of class 1 are uniformly distributed into a ring centered on (0.5,0.5)
with internal and external radius respectively equal to 0.3 and 0.5. The original dataset
consists of 2500 instances, 1000 of which have been selected for experiments.
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8. CNT
Cone–torus, which is a synthetic 2–dimensional dataset first used in [97] and consisting of
3 classes, with data points generated from 3 differently shaped distributions: a cone, half
a torus, and a normal distribution with prior probabilities of 0.25, 0.25 and 0.5 respectively.
The dataset comes divided into two non–overlapping parts (training and test) with 400
instances each.

9. DIA
Pima Indians diabetes database, which is available at the UCI repository, providing diabetic
diagnosis based on a number of various physiological attributes of the examined patients.

10. GA2, GA4, GA8
The Gaussian database, which is a group of artificial datasets available at the ELENA
database, concerned with the study of classifier behaviour for different dimensionalities
of the input vector, under heavily overlapped distributions with no linear separability. All
datasets represent the same 2–class problems but with dimensionality ranging from 2 to
8. Class 0 represents multivariate normal distribution with zero mean and unit standard
deviation, while class 1 represents normal distribution with zero mean and standard
deviation equal to 2 in all dimensions. The original datasets consist of 5000 instances
each, 1000 of which have been selected for experiments.

11. GLA
Glass type dataset, which is available at the UCI repository and represents the results of
the forensic investigations aiming at determining the type of a glass based on a number of
its physical properties and chemical content. At the scene of the crime, the broken glass
left can be used as evidence if it is correctly identified.

12. ION
Ionosphere radar data, which is available at the UCI repository and was collected by
a system in Goose Bay, Labrador, consisting of a phased array of 16 high–frequency
antennas with a total transmitted power on the order of 6.4 kilowatts. The targets were free
electrons in the ionosphere. ”Good” radar returns are those showing evidence of some type
of structure in the ionosphere. ”Bad” returns are those that do not; their signals pass through
the ionosphere. Received signals were processed using an autocorrelation function whose
arguments are the time of a pulse and the pulse number. There were 17 pulse numbers
for the Goose Bay system. Instances in this database are described by 2 attributes per
pulse number, corresponding to the complex values returned by the function resulting from
the complex electromagnetic signal.

13. IRI
The Iris plants database, which is available at the UCI repository and was originally created
by R.A. Fisher. This is perhaps the best known dataset found in pattern recognition
literature. The dataset contains 3 classes of 50 instances each, with 4 numeric attributes.
Each class refers to a type of iris plant, while the attributes are simply the measures of length
and width of the sepals and petals of iris. One class is linearly separable from the other two.

14. LET
Letter image recognition dataset, which is available at the UCI repository. The objective
is to identify each of a large number of black–and–white rectangular pixel displays as one
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of the 26 capital letters in the English alphabet. The character images were based on 20
different fonts and each letter within these 20 fonts was randomly distorted to produce
a file of unique stimuli. Each stimulus was converted into 16 primitive numerical attributes
(statistical moments and edge counts) which were then scaled to fit into a range of integer
values from 0 through 15. The original dataset consists of 20000 instances, 1000 of which
have been selected for experiments.

15. LIV
Liver disorder dataset, which is available at the UCI repository, trying to provide indication
of liver disorder based on a number of attributes. The first 5 variables are all blood
tests which are thought to be sensitive to liver disorders that might arise from excessive
alcohol consumption. The sixth attribute gives the average alcoholic consumption given in
the number of half–pint beverages drunk per day.

16. PHO
Phoneme speech recognition dataset, which is available at the ELENA database and
concerns French and Spanish speech recognition. The aim of this dataset is to distinguish
between nasal (class 0) and oral (class 1) vowels. This dataset contains vowels coming
from 1809 isolated syllables (for example: pa, ta, pan,...). Five different attributes were
chosen to characterise each vowel: they are the amplitudes of the five first harmonics AHi,
normalised by the total energy Ene (integrated on all the frequencies): AHi/Ene. Each
harmonic is signed: positive when it corresponds to a local maximum of the spectrum and
negative otherwise. The original dataset consists of 5404 instances, 1000 of which have
been selected for experiments.

17. SAT
The satellite images database, which is available at the UCI repository. This dataset was
generated from Landsat Multi–Spectral Scanner image data. Each line of data corresponds
to a 3x3 square neighbourhood of pixels completely contained within the 82x100 subarea.
Each line contains the pixel values in the four spectral bands (converted to ASCII) of each
of the 9 pixels in the 3x3 neighbourhood and a number indicating the classification label of
the central pixel. The aim is to predict this classification, given the multi–spectral values.
Seven classes of the type of a land are considered: red soil, cotton crop, grey soil, damp
grey soil, soil with vegetation, stubble, mixture class (all types present), very damp grey
soil, however no examples of mixture class were present. The original dataset consists of
6435 instances, 1000 of which have been selected for experiments.

18. SEG
Image segmentation dataset, which is available at the UCI repository. The instances were
drawn randomly from a database of 7 outdoor images. The images were hand–segmented
to create a classification for every pixel. Each instance is a 3x3 region. The objective is
to recognise one of the classes: brickface, sky, foliage, cement, window, path, grass, based
on 19 typical image processing attributes. The original dataset consists of 2310 instances,
1000 of which have been selected for experiments.

19. SHU
The shuttle dataset, which is available at the UCI repository and concerns automatic
shuttle control. The dataset contains 9 attributes all of which are numerical. Among 7
classes corresponding to control actions the first class is dominant and accounts for 80%
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of instances. The original dataset consists of 58000 instances, 1000 of which have been
selected for experiments.

20. SON
The sonar dataset, which is available at the UCI repository. The task is to train a network
to discriminate between sonar signals bounced off a metal cylinder and those bounced off
a roughly cylindrical rock. The dataset contains signals obtained from a variety of different
aspect angles, spanning 90 degrees for the cylinder and 180 degrees for the rock. Each
pattern is a set of 60 numbers in the range[0, +1]. Each number represents the energy
within a particular frequency band, integrated over a certain period of time.

21. SYN
Synthetic dataset, which is an artificial 2–class and 2–features dataset first used in [134].
Each of the partially overlapping classes compose of 2 Gaussians with shifted centres.
The dataset comes divided into two non–overlapping parts (training and test) with 250 and
1000 instances respectively.

22. TEX
The texture dataset, which is available at the ELENA database and concerns a study of
textures discrimination with high order statistics. The aim is to distinguish between 11
different textures (Grass lawn, Pressed calf leather, Handmade paper, Raffia looped to
a high pile, Cotton canvas, . . . ), each pattern being characterised by 40 attributes built
by the estimation of fourth order modified moments in four orientations: 0, 45, 90 and 135
degrees. The original dataset consists of 5500 instances, 1000 of which have been selected
for experiments.

23. THY
Thyroid gland data, which is available at the UCI repository and is used for diagnostics,
trying to predict whether a patient’s thyroid could be classified as euthyroidism,
hypothyroidism or hyperthyroidism. The diagnosis (class label) was based on a complete
medical record, including anamnesis, scan etc.

24. VEH
Vehicle silhouettes dataset, which is available at the UCI repository. The purpose of this
dataset is to classify a given silhouette as one of four types of vehicle, using a set of features
extracted from the silhouette. The vehicle may be viewed from one of many different
angles. Four different vehicles (Opel, Saab, Bus, Van) were rotated and their angle of
orientation was measured using a radial graticule beneath the vehicle. 0 and 180 degrees
corresponded to ‘head on’ and ‘rear’ views respectively while 90 and 270 corresponded to
profiles in opposite directions. Two sets of 60 images, each set covering a full 360 degree
rotation, were captured for each vehicle rotated by a fixed angle between images.

25. WIN
Wine recognition dataset, which is available at the UCI repository and provides data being
the results of a chemical analysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the quantities of 13 constituents
(features) found in each of the three types of wines (classes).
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Classifiers, regressors and
preprocessing techniques

B.1 Classifiers

A summary of classifiers used in the experiments described in this thesis has been given in
Table B.1. Most of the classifiers are a part of the PRTools Pattern Recognition Toolbox for
MATLAB [42]. Additional models based on physical fields described and derived in this work
have been integrated with PRTools for compatibility and ease of use. A more detailed description
of all classifiers is given below.

1. FISHERC
Fisher’s Least Square Linear Classifier [40], which finds the linear discriminant function
between the classes in the dataset by minimising the errors in the least square sense. For
multi–class situations the one–against–all strategy is used. For high–dimensional datasets
or small sample sizes, the Pseudo–Fisher procedure based on a pseudo–inverse is used.

2. LDC
Linear Bayes Normal Classifier [98], which computes the linear classifier between
the classes of the dataset by assuming normal distributions with equal covariance matrices.
The joint covariance matrix is the weighted (by a priori probabilities) average of the class
covariance matrices.

3. LOGLC
Logistic Linear Classifier [180], which computes the linear classifier for the dataset by
maximising the likelihood criterion using the logistic (sigmoid) function.

4. NMC
Nearest Mean Classifier, which assigns labels on the basis of proximity to class centroid.
NMC is feature scaling sensitive and unsensitive to class priors.

5. NMSC
Nearest Mean Scaled Classifier, which is based on an assumption of normal distributions
and thereby automatically scales the features and is sensitive to class priors.

6. QUADRC
Quadratic Discriminant Classifier [40], which computes the quadratic classifier between
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the classes of the dataset assuming normal distributions and is a quadratic equivalent
of FISHERC. The multi–class problem is solved by multiple two–class quadratic
discriminants.

7. QDC
Quadratic Bayes Normal Classifier [98], which computes the quadratic classifier between
the classes of the dataset assuming normal distributions and is a quadratic equivalent of
LDC. Unlike QUADRC, this routine uses the densities rather than class covariances.

8. UDC
Uncorrelated Normal Based Quadratic Bayes Classifier [40], which computes a quadratic
classifier between the classes in the dataset assuming normal distributions with uncorrelated
features (diagonal covariance matrices). The classifier is in fact a quadratic version of
the Naive Bayes classifier described below.

9. KLLDC
Linear Classifier built on the Karhunen–Loeve expansion of the common covariance
matrix [40, 98], which finds the linear discriminant function for a dataset by computing
the LDC on the data projected on the eigenvectors of the averaged covariance matrix of
the classes.

10. PCLDC
Linear Classifier using Principal Component expansion on the joint data [40, 98], which
finds the linear discriminant function for a dataset by computing the LDC on a projection
of the data on the eigenvectors of the covariance matrix for the total dataset.

11. KNNC
k–Nearest Neighbour Classifier [40, 98] with automatic selection of the nearest neighbour
count by optimisation with respect to the leave–one–out error on the dataset.

12. PARZENC
Parzen Density Based Classifier [98] with automatic selection of the smoothing parameter
value by optimisation with respect to the leave–one–out error on the dataset.

13. TREEC
Decision Tree Classifier [40, 98].

14. NAIVEBC
Naive Bayes Classifier [40], which estimates the density for every class and every
feature separately. Total class densities are constructed by assuming independency and
consequently multiplying the separate feature densities.

15. PERLC
Linear Perceptron Classifier [11, 40, 98], which is in fact a feed–forward neural network
without hidden layers and with linear units.

16. RBNC
Radial Basis Function Neural Network Classifier [11], which is in fact a feed–forward
neural network with one hidden layer with radial basis units.
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17. SVC
Support Vector Classifier based on C–SVM [40, 176] with linear kernels (default) and
an error penalty parameter C, which controls solution complexity.

18. NUSVC
Support Vector Classifier based onν–SVM [176] with linear kernels (default) and
an upper bound parameterν for the expected classification error, which can be estimated
automatically by the leave–one–out error.

19. GFC
Gravity Field Classifier, see Section 3.2.1 for details.

20. EFC
Electrostatic Field Classifier, see Section 3.2.2 for details.

Table B.1:Classifiers used in the experiments

no. acronym source description

1 fisherc PRTools Fisher’s Linear Classifier
2 ldc PRTools Linear Bayes Normal Classifier
3 loglc PRTools Logistic Linear Classifier
4 nmc PRTools Nearest Mean Classifier
5 nmsc PRTools Nearest Mean Scaled Classifier
6 quadrc PRTools Quadratic Discriminant Classifier
7 qdc PRTools Quadratic Bayes Normal Classifier
8 udc PRTools Uncorrelated Quadratic Bayes Normal Classifier
9 klldc PRTools Linear Classifier using Karhunen–Loeve expansion
10 pcldc PRTools Linear Classifier using Principal Component expansion
11 knnc PRTools k–Nearest Neighbor Classifier
12 parzenc PRTools Parzen Density Classifier
13 treec PRTools Decision Tree Classifier
14 naivebc PRTools Naive Bayes Classifier
15 perlc PRTools Linear Perceptron Classifier
16 rbnc PRTools RBF Neural Network Classifier
17 svc PRTools Support Vector Machine classifier (C–SVM)
18 nusvc PRTools Support Vector Machine classifier (ν–SVM)
19 gfc thesis Gravity Field Classifier
20 efc thesis Electrostatic Field Classifier
21 efc–ldr thesis EFC with Local Dimensionality Reduction
22 efc–cr thesis EFC with Charge Redistribution
23 efc–mimp thesis EFC with Class–conditional Mean Imputation
24 efc–cwd thesis EFC with Casewise Deletion
25 efc–gfc thesis EFC with GFC–fallback
26 efc–pc thesis EFC with Pre–Classification

151



Appendix B. Classifiers, regressors and preprocessing techniques

B.2 Regressors

A summary of regression techniques (regressors) used in the experiments described in this thesis
has been given in Table B.2. Most of the regressors are a part of the PRTools Toolbox. Additional
models used in this work have been integrated with PRTools. A more detailed description of all
regressors is given below.

1. LASSOR
Least Absolute Shrinkage and Selection Operator Linear Regression [163], which
minimises the sum of squared errors with a bound on the sum of the absolute values of
the coefficients. Because of this constraint, the method tends to produce some coefficients
which are exactly 0, acting as a feature selection algorithm enabling interpretation of
the generated models. LASSO regression also exhibits stability similar to ridge regression
described below.

2. LINEARR
Ordinary Least Squares (OLS) Linear Regression [176].

3. KNNR
k–Nearest Neighbour Regression, which calculates predictions by averaging the target
variable values ofk nearest neighbours in the input instance.

4. GRNNR
Generalised Regression Network Regression, based on MATLAB’s implementation of
a Radial Basis Function (RBF) network [11].

5. PLSR
Partial Least Squares Regression [182], which finds a linear regression model by projecting
the target and input variables to a new space. This new space is constructed to explain as
much as possible of the covariance between inputs and targets.

6. RIDGER
Ridge Regression [164], described in more detail in Section 6.2.6.

7. BOOSTR
Regression Boost, which is a weighted combination of multiple instances of a base
regressor, trained on various versions of the input dataset. The method has been developed
for use in the Toxicity Prediction Challenge described in Section 6.2 and has been inspired
by the AdaBoost algorithm for classification problems [52]. At each iteration a single
base regressor is trained using data sampled from the original input datasetD according
to initially uniform distributionW . Thus denoting byW (i) the probability of selecting
the ith out of N instances for training, initially∀iW (i) = 1/N . In consecutive iterations
the distribution is updated according to:W (i) ← W (i)(1 + err(i))/z, whereerr(i) is
the absolute error for theith instance andz is a scaling factor used to ensure thatW remains
a true distribution. After a given number of base regressors has been trained, the predictions
of the final ensemble become averaged (median) predictions of the members weighted by
an exponential function of their normalised Mean Absolute Error onD.

8. MLPR
Cross–trained Multi–Layer Perceptron (MLP) Ensemble Regression [145], based on
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MATLAB’s implementation of a Multi–Layer Perceptron and median combination of
ensemble members’ predictions.

Table B.2:Regressors used in the experiments

no. acronym source description

1 lassor PRTools Least Absolute Shrinkage and Selection Operator linear regression
2 linearr PRTools Ordinary Least Squares (OLS) linear regression
3 knnr PRTools k–Nearest Neighbour regression
4 grnnr MATLAB Generalised Regression Network regression
5 plsr PRTools Partial Least Squares regression
6 ridger PRTools Ridge regression
7 boostr thesis Regression Boost
8 mlpr thesis Cross–trained Multi–Layer Perceptron ensemble regression

B.3 Preprocessors

A summary of preprocessing techniques used in the experiments described in this thesis has been
given in Table B.3. Most of the preprocessors are a part of the PRTools Toolbox. Additional
methods used in this work have been integrated with PRTools. A more detailed description of all
preprocessors is given below.

1. FEATSELM
Greedy feature selection based on a cross–validation criterion [175]. The following
selection algorithms are included:

• FEATSELF – forward feature selection, which starts with an empty feature set and
adds a single locally best feature at each iteration, until a prescribed number of
features is obtained.

• FEATSELB – backward feature selection, which starts with complete feature set and
removes a single locally worst feature at each iteration, until a prescribed number of
features remains.

• FEATSELLR – plus–L–takeaway–R feature selection, which is a combination of
the forward and backward method, making L forward steps followed by R backward
steps at each iteration.

2. PCA
Principal Component Analysis [87], which is a procedure for transformation of a number
of possibly correlated variables into a smaller number of uncorrelated variables called
Principal Components (PCs). The first principal component accounts for as much of
the variability in the data as possible, and each consecutive component accounts for as
much of the remaining variability as possible. PCA is thus a procedure for reduction of
dataset dimensionality preserving the maximum level of variance, without taking advantage
of class information given with the data (unsupervised procedure).
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3. ROBPCA
Robust PCA [178] is a resistant to outliers version of PCA, which uses projection–pursuit
techniques and the Minimum Covariance Determinant method.

4. FISHERM
Linear Discriminant Analysis [40], which is a method that finds a linear projection of
the data which best separates the classes and is thus useful for discrimination purposes.
The shortcoming of LDA is that the maximum dimensionality of the projection is limited
to (c − 1), wherec is the number of classes [40]. Unlike PCA though, LDA tries to take
advantage of the class information, so better classification performance can be expected.

5. CCIMPC
Class–conditional Imputation of mean or maximum likelihood estimate from a distribution
assuming independence of features. Both methods have been described in more detail in
Sections 3.4.2 and 6.3.5.

6. PBIL
Population Based Incremental Learning [8], which is a semi–random feature selection
method and combines the mechanisms of a generational genetic algorithm with competitive
learning. PBIL replaces the population with a single probability vector from which samples
can be drawn to produce the next generation’s population. The probability vector is then
updated on the basis of performance of the population and the whole procedure is repeated.

Table B.3:Preprocessing techniques used in the experiments

no. acronym source description

1 featselm PRTools Greedy feature selection (forward, backward and combined)
2 pca PRTools Principal Component Analysis
3 robpca LIBRA Robust Principal Component Analysis
4 fisherm PRTools Linear Discriminant Analysis
5 ccimpc thesis Class–conditional imputation of mean or ML estimate
6 pbil thesis Population Based Incremental Learning
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Information Theoretic Learning
framework

C.1 Renyi’s quadratic entropy

The definition of Renyi’s entropy of orderα for a discrete random variable is given by [127]:

HRα(Y ) =
1

1− α
log

n∑

k=1

P (Yk)
α , α > 0, α 6= 1 (C.1)

By analogy to Shannon’s differential entropyHS , Renyi’s entropy of orderα for a continuous
random variable is:

HRα(Y ) =
1

1− α
log
∫

p(y)α dy (C.2)

Renyi’s entropy involves calculation of the integral of the power of PDF rather than integral of
the logarithm as in the case of Shannon’s counterpart, which is much easier to estimate [128].
Moreover, Shannon’s entropy is the limiting case of Renyi’s entropy whenα → 1. For practical
applications the choice ofα = 2 is a good compromise between robustness and computational
complexityO(n2) [128], which leads to the definition of Renyi’s quadratic entropy:

HR2(Y ) = − log
∫

p(y)2 dy (C.3)

The important property of Renyi’s entropy from the point of view of ITL is that the extrema ofHS

andHR overlap [127], so both definitions are equivalent for the purpose of entropy optimisation.
For the above criterion to be useful, an estimate of the probability density function is needed.

Fortunately, the well known Parzen window density estimator [40] can be easily and efficiently
integrated into the formula for calculation of Renyi’s entropy. Denoting byG(y, σ2I) a spherical
Gaussian kernel centered aty with a diagonal covariance matrixσ2I, and byN the number of
available instances ofY , the PDF can be estimated as follows:

p(y) =
1
N

N∑

i=1

G(y − yi, σ2I) (C.4)
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Substituting Eq. C.4 into Eq. C.3 and using the Gaussian convolution property:

HR2(Y ) = − log
∫

p(y)2 dy = − log V (y) (C.5)

where

V (y) =
1

N2

N∑

i=1

N∑

j=1

∫
G(z − yi, σ2I) G(z − yj , σ2I) dz =

1
N2

N∑

i=1

N∑

j=1

G(yi − yj , 2σ2I)

Since the logarithm is a monotonic function, optimisation ofHR2 is equivalent to optimisation
of V (y). This however is not the main reason why Eq. C.5 has been written in this way. If
some imaginary physical particles were placed on top of each data pointyi andyj a potential
field would be created, sinceG(yi − yj , 2σ2I) is always positive and decays exponentially
with the square of the distance betweenyi and yj [127]. For this reason the data instances
can be called information particles andV (y), which is an averaged sum of all pairs of
interactions – the Information Potential. In general, Renyi’s entropy of orderα calculates
the interactions betweenα−tuplets of instances, so the higher the value ofα, the more information
about the structure of the dataset can be extracted [128], but the computational complexity of
O(Nα)quickly becomes prohibitive.

The notion of Information Potential leads to another concept – Information Force (IF) exerted
on each information particle by the field. By analogy to classical physics, the IF is given by:

∂G(yi − yj , 2σ2I)

∂yi

= −G(yi − yj , 2σ2I)
yi − yj

2σ2
(C.6)

which leads to the following equation for the total force exerted on instanceyi by all other
Information Particles:

F i =
∂V (y)
∂yi

=
−1

N2σ2

N∑

j=1

G(yi − yj , 2σ2I)(yi − yj) (C.7)

If the Information Particles were free to move in the potential field, the forces would drive them
all to a state with minimum potential. This behaviour can be immediately used for training of
various adaptive systems such as Multi–Layer Perceptrons by backpropagating the forces, which
as a result take place of the injected error [128].

Since the value of the Parzen window width parameterσ determines the range of particle
interactions and all particles should be able to interact with each other,σ must be set accordingly.
According to [169] a good practical solution is to setσ to about half of the largest distance
between data instances and slowly decrease its value over time (annealing). This facilitates finding
an acceptable global solution in the initial phase of training and then fine–tuning it, using more
and more localized interactions.

C.2 Mutual information between continuous random variables

Estimation of mutual information from a set of instances is more difficult than estimation of
the entropy. Mutual information between two random variables is equal to Kullback–Leibler
divergence between the joint PDF and a product of marginal PDFs. As discussed in Chapter 5,
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Kullback–Leibler divergence is not amenable to non–parametric estimation, especially in higher
dimensions. The Renyi’s divergence measure of orderα, which in the limit ofα → 1 becomes
in fact the Kullback–Leibler divergence is not quadratic in the PDF even forα = 2. Fortunately
there exist other criteria that can be used.

For the case in which all random variables are continuous (there can be more than two variables
involved), two different mutual information estimators have been proposed in [127]. Both of them
have the desired property of being quadratic functions of the PDFs. The definitions given below
apply to the two–variable scenario and the extension to multiple variables will be given later:

• Cauchy–Schwarz quadratic MI, based on the Cauchy–Schwarz inequality:

ICS(Y1, Y2) = log

(∫∫
p(y1, y2)

2 dy1 dy2

) (∫∫
p(y1)

2p(y2)
2 dy1 dy2

)

(∫∫
p(y1, y2)p(y1)p(y2) dy1 dy2

)2 (C.8)

• Euclidean distance quadratic MI, based on the Euclidean difference of vectors inequality:

IED(Y1, Y2) =
∫∫

p(y1, y2)
2 dy1 dy2 +

∫∫
p(y1)

2p(y2)
2 dy1 dy2 (C.9)

− 2
∫∫

p(y1, y2)p(y1)p(y2) dy1 dy2

According to experimental results given in [127] bothICS andIED behave in a similar way
when it comes to minimisation of MI, butIED is better suited for MI maximisation. For more
principled treatment of suitability ofIED for optimisation of MI see [169] and references therein.
Note, that from Eqs. C.8 and C.9 it can be seen that both formulas are always non–negative and
equal 0 only whenY1 andY2 are independent, which makes them valid divergence measures.

Using the Parzen window formula of Eq. C.4, the joint and marginal probability density
functions for the case ofk continuous random variables, can be estimated as follows:

p(y1, . . . , yk) =
1
N

N∑

i=1

k∏

l=1

G(yl − yli, σ2
l I) (C.10)

p(yl) =
1
N

N∑

i=1

G(yl − yli, σ2
l I) (C.11)

Notice, that unlike the original formulas given in [127], Eqs. C.10 and C.11 allow each marginal
distribution to have its own Gaussian kernel width, which allows for greater flexibility, especially
in the case of optimisation of MI between input and output (switch in position 2 in Figure 2.10).

If the equations above are combined with Eqs. C.8 and C.9, the following formulas to estimate
the mutual information from a dataset are produced:

ICS(Y1, . . . , Yk) = log
V (y1, . . . , yk)

∏k
l=1 V (yl)

Vnc(y1, . . . , yk)2
(C.12)

IED(Y1, . . . , Yk) = V (y1, . . . , yk) +
k∏

l=1

V (yl)− 2Vnc(y1, . . . , yk) (C.13)
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where:

V (y1, . . . , yk) =
1

N2

N∑

i=1

N∑

j=1

k∏

l=1

G(yli − ylj , 2σ2
l I)

Vj(yl) =
1
N

N∑

i=1

G(ylj − yli, 2σ2
l I)

V (yl) =
1
N

N∑

j=1

Vj(yl)

Vnc(y1, . . . , yk) =
1
N

N∑

j=1

k∏

l=1

Vj(yl)

The above equations can be interpreted in terms of the information potentials:

• V (y1, . . . , yk) is called the Joint Information Potential (JIP) as it is defined in the joint
space of all random variables involved,

• Vj(yl) is a Partial Marginal Information Potential (PMIP) as it is the potential of instance
ylj in its corresponding marginal potential field; note that it is equal to the Information
Potential given in Section C.1,

• V (yl) is the Marginal Information Potential (MIP), which averages all Partial Marginal
Information Potentials for a single random variable,

• Vnc(y1, . . . , yk) is the Unnormalised Cross Information Potential (UCIP), which measures
the interactions between Partial Marginal Information Potentials.

If the nominator of the logarithm in Eq. C.12 is treated as a normalisation term for
Vnc(y1, . . . , yk), normalised Cross Information Potential (CIP) can be defined as follows:

Vc(y1, . . . , yk) =
Vnc(y1, . . . , yk)

2

V (y1, . . . , yk)
∏k

l=1 V (yl)
(C.14)

Note, that by using the CIP formula, the estimator ofICS becomes analytically pleasing due to
consistency with the equation for calculation of Renyi’s quadratic entropy:

HR2(y) = − log V (y)

ICS(y1, . . . , yk) = − log Vc(y1, . . . , yk)

Unlike in the case of entropy optimisation, now the force exerted on every information particle
called the Marginal Information Force (MIF), comes from three different and independent
sources. The total marginal force exerted on instanceyli is given by:

∂ICS(Y1, . . . , Yk)
∂yli

=
1

V (y1, . . . , yk)
∂V (y1, . . . , yk)

∂yli

+
1

V (yl)
∂V (yl)
∂yli

(C.15)

− 2

(
1

Vnc(y1, . . . , yk)
∂Vnc(y1, . . . , yk)

∂yli

)
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∂IED(Y1, . . . , Yk)
∂yli

=
∂V (y1, . . . , yk)

∂yli

+




∏

m 6=l

V (ym)



 ∂V (yl)
∂yli

− 2

(
∂Vnc(y1, . . . , yk)

∂yli

)

(C.16)
where:

∂V (y1, . . . , yk)
∂yli

=
−1

N2σ2
l

N∑

j=1

(
k∏

m=1

G(ymi − ymj , 2σ2
mI)

)
(
yli − ylj

)

∂V (yl)
∂yli

=
−1

N2σ2
l

N∑

j=1

G(yli − ylj , 2σ2
l I)

(
yli − ylj

)

∂Vnc(y1, . . . , yk)
∂yli

=
−1

N2σ2
l

N∑

j=1




∏

m 6=l

Vj(ym)



G(yli − ylj , 2σ2
l I)

(
yli − ylj

)

Note, that in Eq. C.15 the forces are normalised by corresponding potentials, which is
a consequence of the logarithm in the definition ofICS [127].

C.3 Mutual information between continuous and discrete random
variables

The extension of mutual information estimators presented to a discrete variable case has been
first given in [170] and then used multiple times, e.g. in [166, 167, 168, 169, 165]. The idea
was to design a supervised feature extractor for classification and class visualisation, using MI
as the criterion to maximise. In this scenario, the desired signal is the class label and can be
thought of as a discrete random variable. Since, as said before,IED is better behaved in the case
of maximisation of mutual information, only this estimator has been extended to the discrete case.
Denoting byC the class label variable, the MI estimate is given by:

IED(C, Y ) =
∑

C

∫
p(c, y)2dy +

∑

C

∫
p(c)2p(y)2dy − 2

∑

C

∫
p(c, y)p(c)p(y)dy (C.17)

LetJp denote the number of instances of classcp andNc the number of classes. Since
∑Nc

p=1 Jp =
N , class prior probabilities are given byP (cp) = Jp/N . The Parzen density estimate for each
classcp can now be calculated as (ypj denotesjth instance withinpth class):

p(y|cp) =
1
Jp

Jp∑

j=1

G
(
y − ypj , σ

2I
)

(C.18)

Applying the definition of joint densityp(c, y) = p(y|c)P (c), the density estimate becomes:

p(cp, y) =
1
N

Jp∑

j=1

G
(
y − ypj , σ

2I
)

(C.19)
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Since for all data the densityp(y) =
∑

C p(c, y):

p(y) =
1
N

Nc∑

p=1

Jp∑

j=1

G
(
y − ypj , σ

2I
)

=
1
N

N∑

i=1

G
(
y − yi, σ

2I
)

(C.20)

Using the above, the components ofIED(C, Y ) become:

V(cy )2 =
∑

C

∫
p(c, y)2dy =

1
N2

Nc∑

p=1

Jp∑

k=1

Jp∑

l=1

G
(
ypk − ypl, 2σ2I

)
(C.21)

Vc2y 2 =
∑

C

∫
P (c)2p(y)2dy =

1
N2




Nc∑

p=1

(
Jp

N

)2



N∑

k=1

N∑

l=1

G
(
yk − yl, 2σ2I

)
(C.22)

Vcy =
∑

C

∫
p(c, y)P (c)p(y)dy =

1
N2

Nc∑

p=1

Jp

N

Jp∑

j=1

N∑

k=1

G
(
ypj − yk, 2σ2I

)
(C.23)

The above quantities can be considered as information potentials and interpreted as:

• V(cy )2 – interactions between pairs of particles inside each class, summed over all classes,

• Vc2y 2 – interactions between all pairs of particles regardless of class, weighted by the sum
of squared class priors,

• Vcy – interactions between instances of a particular class against all instances, weighted by
the class prior and summed over all classes.

The information forces representing the directions and magnitudes where the transform would
move the particles in order to maximise MI can be calculated as:

∂V(cy )2

∂yci

=
1

N2σ2

Jc∑

k=1

G
(
yck − yci, 2σ2I

)
(yck − yci) (C.24)

∂Vc2y 2

∂yci

=
1

N2σ2




Nc∑

p=1

(
Jp

N

)2



N∑

k=1

G
(
yk − yi, 2σ2I

)
(yk − yi) (C.25)

∂Vcy

∂yci

=
1

N2σ2

Nc∑

p=1

Jp + Jc

2N

Jc∑

j=1

G
(
ypj − yci, 2σ2I

) (
ypj − yci

)
(C.26)

Interpretation of the forces is as follows [170]:

•
∂V

(cy)2

∂y ci
– sum of forces that other particles in classc exert on particleyci (the direction is

towardsyci),

•
∂Vc2y2

∂y ci
– sum of forces that other particles regardless of class exert on particleyci (denoted

by yi when the class is irrelevant, the direction is towardsyi),

• ∂Vcy

∂y ci
– repulsion of classes away from each other.
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