
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Regression Testing in Software Product Lines

Beeknoo, Kirti

Award date:
2021

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 02. Jan. 2022

https://researchportal.unamur.be/en/studentthesis/regression-testing-in-software-product-lines(6872b428-45a6-4ecc-b95b-d9633b65a3cb).html

Université de Namur
Faculté d’informatique

Année académique 2021–2022

Regression Testing in Software Product Lines

Kirti Maushmi Beeknoo

CDO : � « Santé, Sciences et Techniques » � « Sciences humaines

Nom du doctorant : Edilton Lima Dos Santos…… Sous-domaine : Informatique
Promoteur(s) : Dr. Gilles Perrouin, Prof. Pierre-Yves Schobbens
Autorisation d’admission du : 1/09/2019……………………………………………………………

Conformément aux dispositions de l’article 26 du règlement doctoral de l’UNamur, le comité
d’accompagnement composé de :

- Prof. Vincent Englebert (UNamur)

- Dr. Gilles Perrouin (UNamur)

- Prof. Pierre-Yves Schobbens (UNamur)

- Prof. Kim Mens (UCLouvain)

- ………………………………………

- ………………………………………

s’est réuni à Namur (en vidéoconférence) le Vendredi 21 mai 2021
et, après avoir lu le rapport* et/ou entendu la présentation orale* du doctorant, constate que :
*biffer la mention inutile

The jury appreciated the work done and the quality of the answers to their questions and remarks.
Based on the presentation and the discussion, the jury recommends to pursue the research, and is
convinced that it will lead to a successful PhD.

Advices :
- The jury recommends motivating the problem with a concrete example before delving into

technical or mathematical definitions;
- Be clear on the terminology (features, components, mappings between the two)
- The jury recommends a more detailed plan for the future research (test techniques);
- The jury recommends to clarify the scientific hypotheses and objectives notably in the

presentation and in the written reports and articles;
- Provide an experimental protocol to validate the behavioral map on its application beyond the

existing case-study.

Signatures des membres du comité,

Signature du doctorant (à faire précéder de la mention manuscrite « Lu et approuvé »)

Ce jugement est transmis à la CDO

Etape de confirmation

Promoteurs : (Signature pour approbation du dépôt - REE art. 40)

Dr. Gilles Perrouin & Prof. Pierre-Yves Schobbens

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

2

Abstract

Software product lines is a strategic choice for structuring many large-scale
software today to support systematic reuse while reducing development costs.

One key challenge for software product lines is to efficiently manage variabil-
ity throughout their life-cycle while avoiding any regression on untouched code.
In this thesis, we address the problem of regression testing in software product
lines during their evolution (e.g., addition of functionality, modification or dele-
tion of code). Hence, we propose an approach to the problem and illustrate it
using the classical example of the vending machine. Indeed, we implemented
the example in a feature model on FeatureIDE and made it to evolve. Then,
using a regression testing tool, EvoSuiteR, running generated tests on both the
evolved software product line and the original software product line, we were
able to successfully generate valid regression tests for the original software prod-
uct line. (In each case, we have tested the evolved feature models for regression
and were able to find a sample test suite for the purpose).

This paper therefore demonstrates a valid practical approach for regression
test generation in software product lines. Finally, we give preliminary results in
the assessment of our regression test generation method.

i

ii ABSTRACT

Acknowledgements

I would like to thank all the people who contributed to the success of my master
thesis despite the sanitary conditions which are not optimal.

First of all, I would like to show my deep gratitude to my master’s thesis
supervisor Dr. Gilles Perrouin for his patience, his availability and his judicious
advice, which contributed to my reflection.

I wish to pay special regards to Prof. Pierre-Yves Schobbens for his tips and
for answering my questions. They have been of great support in the development
of this master thesis.

I am sure that this research work will contribute to a better understanding
of the field for further progress.

iii

iv ACKNOWLEDGEMENTS

List of Tables

2.1 Communication in the SPL framework 6

4.1 Number of configurations generated by ICPL algorithm. 23
4.2 Number of faults inserted and uncovered, in each evolved feature

model, by its regression test suite. 26

v

vi LIST OF TABLES

List of Figures

2.1 Engineering process of software product line 6
2.2 Annotations of a Feature Diagram 7
2.3 Example of a Feature Diagram 7
2.4 Example of propositional logic to represent a feature diagram . . 8

3.1 Comparison between the core variants and core-evolutions vari-
ants. The combinations that do not match are the ones for which
some new unit tests need to be generated. 15

3.2 Flow chart to summarise the strategy 16

4.1 Vending machine feature diagram 18
4.2 Vending machine class diagram 19
4.3 Product Generator from FeatureIDE 20
4.4 Product configurations generated from ICPL 21
4.5 Product configuration . 21
4.6 Adding the Feature Water - Evolved feature model 24

vii

viii LIST OF FIGURES

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Context . 1

1.2 Research Problem . 1

1.3 Overview of the approach . 1

1.4 Thesis structure . 2

2 Background information 3

2.1 Software testing . 3

2.1.1 Types of software testing 3

2.1.2 Evosuite . 4

2.2 Software Product Lines . 5

2.2.1 FeatureIDE . 8

2.3 Testing in Software Product Lines 9

2.4 Regression Testing in Software Product Lines 10

3 Software Product Lines Regression Testing 13

3.1 Problem Statement . 13

3.2 Approach . 13

3.2.1 Advantages . 15

3.2.2 Disadvantages . 15

4 Experiment and Discussion 17

4.1 Experimentation . 17

4.1.1 Research questions . 17

4.1.2 Experimentation process 18

4.1.3 Designing the feature model 18

4.1.4 Generating the core test cases 19

4.1.5 Evolving the feature model 23

4.1.6 Generating the regression test suite 24

4.1.7 Assessing the regression test suite 25

4.2 Discussions . 29

4.2.1 RQ1: Can we find a way of automatically generating re-
gression test cases on software product lines? 29

ix

x CONTENTS

4.2.2 RQ2: How efficient is the found method in generating SPL
regression test suites? . 30

4.2.3 Threats to validity . 30

5 Conclusion and Perspectives 31
5.1 Conclusion . 31
5.2 Future work . 31

Chapter 1

Introduction

In this chapter, we explain the context of the research work. We give a brief
overview of the research problem and the approach proposed.

1.1 Context

Software product lines is a growing concept that many industries have adopted
to ensure a low cost of production while maintaining multiple variants of their
software to address distinct consumers needs[Ape+13].

Therefore, software product lines is a complex software with many features
composing it. A valid combination of those features is a product configuration.
In a real-life example of a software product line, there can be a large number
of possible product configurations. Owing to this large number, we might need
a lot of resources and computing power to address the issue of testing and
regression testing in case of evolution on the software product line. This makes
the testing phase tedious and costly.

Hence, in our research work, we have proposed an approach to regression
testing so as to reduce the cost of regression testing in software product lines.

1.2 Research Problem

The objective of this research work is to generate regression test suites for
software product lines. Though this work can be manually done, however, as
previously mentioned, it can be tedious and error-prone to create the regression
test suite manually for each impacted product configuration.

Hence, the objective of this research work would be to find a way of gener-
ating those regression test cases with less effort.

1.3 Overview of the approach

In order to achieve the objective set in 1.2, we look at the available offers from
the literature to find tools that will model the software product line and generate
the regression test cases automatically. After analysis, we choose the best tool
and use it for the experiment in the case of a software product line.

1

2 CHAPTER 1. INTRODUCTION

1.4 Thesis structure

This thesis is divided into 5 chapters. Chapter 1 gives an overview of the context
of this research. It introduces some main concepts. Chapter 2 gives an extensive
overview of software product lines and some known testing strategies. Chapter
3 details the approach proposed to regression testing on software product lines
along with the advantages and disadvantages. Building on this, chapter 4 de-
scribes the experiments designed to concretely prove how regression testing can
be done for software product lines. Chapter 5 focuses on the conclusion of the
experiments and the future work that can continued on this topic. The whole
work is accompanied by a glossary defining the terms used throughout the work.

Chapter 2

Background information

In this chapter, we introduce the concepts of software testing, software product
lines and widely known testing strategies for software product lines. We also
explain the core concept of this thesis which is regression testing in software
product lines.

2.1 Software testing

Software testing has been an integral part of the software development lifecycle
ever since the dawn of software engineering. It has been crucial to the sustain-
ability of software in the long term. Indeed, its main goal is to reduce to the
maximum the number of faults in the software, leading to the maximal reduction
of failures in production. Some other advantages of software testing are:

• Reduced costs of maintenance,

• Quality and good performance of the software,

• Security from malicious attacks.

2.1.1 Types of software testing

Software testing has multiple aspects. It has been established that there are
mainly 3 types of testing [HC15] as listed below:

• Functional testing: Unit testing the code to ensure maximum code cov-
erage and following that with integration testing to ensure that the func-
tionality is working well as a whole. Regression testing is also a form
of functional testing whereby the goal is to ensure that the previous un-
touched code is not affected despite some evolution in the new version.

• Non-functional testing: E.g. Performance testing or any other non-functional
requirements testing. That is, for instance, measuring the software re-
sponse times compared to its specifications.

• Security testing: One form of security testing is penetration testing where
the tester tries to avoid the security features and gain access to the assets.

3

4 CHAPTER 2. BACKGROUND INFORMATION

Frequently, generating these tests is time consuming, especially in the case of
software product lines where the number of product configurations is potentially
very large. In this case, there is a strong need for a testing strategy as listed
in 2.3 to avoid a budget and resource problem when large software product lines
are involved. Moreover, tools generating regression tests such as Evosuite have
been proposed but have never addressed the problem of regression testing for
software product lines.

2.1.2 Evosuite

In this section, we introduce the tool EvoSuite used in the experiments of this
thesis.
EvoSuite is a tool that automatically generates unit test cases written in Java
code only [Fra21]. Faults can be automatically detected if they lead to program
crashes, deadlocks, or violate a formal specification. However, in practice, it is
rarely the case. Also, test generation comes with a known oracle problem. That
is, knowing at generation time if the outputs of the test cases are the expected
ones. Evosuite helps the programmer/tester to produce a high code coverage
test suite, while tackling the oracle problem by generating a minimum of test
assertions the programmer will need to check by himself later on. Indeed, the
tests are minimized such that only the ones contributing to achieving the highest
coverage are retained. In order to achieve this later advantage, EvoSuite adopts
a search-based approach integrating state-of-the-art techniques such as hybrid
search[HM10], dynamic symbolic execution[GKS05] and testability transforma-
tion[Har+04] [FA14].

It is a tool that can be configured to our needs based on several parameters
such as choice of lines, branches, outputs and/or mutation coverage criteria.

EvoSuite is freely available, and can be used on the command line, as a
plugin to the Eclipse, IntelliJ development platform or through a web interface.
In EvoSuite, whole test generation is used and thus there is no issue of having a
collateral coverage criterion. Some of the default test coverage goals identified
in EvoSuite are as listed below:

• Line: checks how many statements have been covered where a statement
is a line of code.

• Branch: checks if all branches of each conditional statement were covered.

• Exception: checks if the exclusions (described by exceptions in the pro-
gram) are well covered.

• Weak mutation: checks if slight changes in the code, commonly known
as mutations, can be detected by a test case at the moment the test case
runs the mutated statement.

In the tool, if there is a need to isolate one of the test coverage goals as listed
above, then a simple change such as

$EVOSUITE −c l a s s t u t o r i a l . Person −c r i t e r i o n branch

in the command line is required. Since, by default, EvoSuite takes into account
all the above listed goals and creates an overall coverage out of them, in order for

2.2. SOFTWARE PRODUCT LINES 5

the user to understand the efficiency of the parameters chosen in the command-
line. Also when the tool is run on a project, the statistics of the test coverage
goals can be seen in the folder evosuite-report/statistics.csv. Both the
test coverage goals and statistics can be modified according to the requirements.
This feature makes EvoSuite a flexible tool.

In the context of the thesis, we will describe in 4 how FeatureIDE and
EvoSuite have been used.

2.2 Software Product Lines

Some 30 years ago, software used to be handcrafted and tailor-made to the needs
of the end-user. This used to be a labour-intensive and costly task despite being
customised solely for the end-user.

Over the years and with advancements in the software industry, software
experts have realised that they could bring together most of the requirements
in a domain since they are mostly the same and standardise the software pro-
duced. Indeed, this reduced the costs of production and increased the profit
margins. However, they did not fully meet the needs of the end-user. Hence,
came software product lines into play [MP14]. It was an in-between solution
so that companies could benefit from the cost-effectiveness of standardisation
and at the same time provide some flexibility to the end-product by allowing
some customisation of the software. The overall goal of software product lines
is to capitalize on the development effort put into common features, in several
products. Trade-offs are then to be made between the cost of development for
making the solutions more generic, and the gains of less development effort to
derive new variant.

This new approach to software engineering meant that the whole testing
approach had to be adapted. We shall talk more about the testing approaches
in software product lines in the section 2.3 later in this chapter. Some companies
that have benefited from this type of software approach are [Con21]:

• Bosch,

• Hewlett Packar,

• General Motors.

With the advent of software product lines, methods of requirements analysis
to implementation also had to be adapted.

Indeed, software product lines require a specific way of handling their com-
plexities such as variability and the systematic reuse of implementation arte-
facts. Hence, the need for a well-designed framework. In the software product
lines life-cycle, there are two distinct areas:

• Domain engineering: is the study of the expert area that will be imple-
mented in software product lines. It results in finding the commonalities
amongst all the products to maximise reuse. In this phase, the software
product lines is mapped on a diagram to allow readers to distinguish the
commonalities and variabilities [MBC09].

6 CHAPTER 2. BACKGROUND INFORMATION

• Application engineering: comprises of developing products for the end-
user with the sole purpose of meeting his/her requirements. Taking into
consideration the commonalities identified from domain engineering, the
products are implemented as in traditional software engineering ways.

Each area, in turn, is divided in 2 spaces namely, the problem space and the
solution space:

• Domain implementation: As the name implies, this space is mostly about
developing the features identified.

• Product derivation: This space is about combining the different features to
verify and validate the product against the requirements of the end-user.

There exists a bilateral communication between the 4 quadrants as explained
below: 2.1

FROM TO INFORMATION FLOW
Domain analysis Domain realisation Feature diagram

Requirements analysis Product derivation Feature selection
Domain analysis Requirements analysis New requirements and Features

Domain realisation Product Derivation Commonalities

Table 2.1: Communication in the SPL framework

Figure 2.1: Engineering process of software product line
[Al-14]

To implement a software product line, there is a need to write the require-
ments in a modelling language, as discussed previously in 2.1. In our case,
a software product line can be represented via feature models[Kan+90] using
feature diagrams. This is an easy and a graphical way to represent a large

2.2. SOFTWARE PRODUCT LINES 7

Figure 2.2: Annotations of a Feature Diagram

and complex software product line. Feature diagrams have specific rules and
annotations to be used. Those are listed in figure 2.2.

A typical feature diagram of the vending machine would look like figure 2.3.

Figure 2.3: Example of a Feature Diagram

Based on the feature diagrams, we see the points of commonality and dif-
ferences between product configurations. Software product lines can also be
represented in propositional logic with formulas such as in figure 2.4.

Feature diagrams are structural: they model the features and their interac-

8 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.4: Example of propositional logic to represent a feature diagram

tions but not their internal behaviours. To model such behaviours, one can use
state diagrams.

Regarding the validation part of the life-cycle, researchers had to find a
new way to test software product lines without having to cover every possible
configuration of the software since this would require too much processing power
and might take a very long time to compute, owing to the fact that there are
millions of possibilities (see Section2.3).

2.2.1 FeatureIDE

FeatureIDE is a feature-oriented extensible programming tool to eclipse that
allows the implementation of software product lines in a structured manner. It
has been written in java language and thus supports:

• Feature-oriented programming with AHEAD, FeatureC++ (C++) and
FeatureHouse (C),

• Aspect-oriented programming with AspectJ (Java) and FeatureC++ (C++),

• Delta-oriented modeling and programming with DeltaEcore and DeltaJ
(Java),

• annotation-based implementation with preprocessor Antenna, C prepro-
cessor CPP by Colligens, and preprocessor Munge.

In the context of this thesis, we have mostly considered using AspectJ for the
experimentation instead of the other possibilities due to the reasons below:

2.3. TESTING IN SOFTWARE PRODUCT LINES 9

• Feature-oriented programming languages had a lack of support for recent
java versions. The latest version supported is java 1.4.

• Delta-oriented programming could not be used due to an integration issue
with EvoSuite.

• Annotation-based programming languages had a lack of support for the
latest java virtual machines. From Antenna’s documentation, it seemed
like the project had not been continued since 2010.

AspectJ provided the below advantages:

• Supported the latest JDK and hence we could exploit the latest improve-
ments made.

• Could be easily integrated with EvoSuite which is not the case of other
approaches.

• Supports all the phases of software product lines development.

• Can easily accommodate changes of software product lines, which happens
quite often in this type of structure.

2.3 Testing in Software Product Lines

It is universally known that when implementing software, it is highly recom-
mended to test it in order to ensure the quality of the end product. In the
case of software product lines, not only do we have to ensure that the fea-
tures are written properly but that the different possible combinations (product
variations) also integrate correctly. In this section, we will explain the different
strategies invented to test software product lines while avoiding the high costs of
testing all the possible combinations. There are two strategies to test Software
Product Lines:

• Configurations sampling: Configuration sampling approaches samples a
representative subset of all the valid configurations of the system and test
them individually.

• Variability-aware testing: Variability-aware testing approaches instrument
the testing environment to take variability information into account and
reduce the test execution effort.

The list below summarises the different testing strategies that exist to test
software product lines:

1. Random sampling: This strategy is straightforward. It selects a random
subset of the valid configurations.

2. T-wise sampling: T-wise sampling has been derived from Combinato-
rial Interaction Testing (CIT). The latter relies on the hypothesis that
most faults are caused by undesired interactions of a small number of
features[KWG04b]. T-wise sampling therefore makes sure that these in-
teractions are covered at least once. The most common t-wise sampling
is pairwise. Variations of pairwise are 3-wise, 4-wise and so on.

10 CHAPTER 2. BACKGROUND INFORMATION

3. Dissimilarity sampling: This technique approximates t-wise coverage by
generating dissimilar configurations (in terms of shared options amongst
these configurations). From a set of random configurations of a specified
cardinality, a (1+1) evolutionary algorithm evolves this set such that the
distances amongst configurations are maximal, by replacing a configura-
tion at each iteration, within a certain amount of time.

4. Incremental sampling: Incremental sampling[Al-+16a] consists of focusing
on one configuration and progressively adding new ones that are related
to focus on specific parts of the configuration space.

5. One-disabled sampling: The core idea of one-disabled sampling is to ex-
tract configurations in which all options are activated but one. The good
point is that it makes the algorithm deterministic. However, it implicitly
links the bug-finding ability of the algorithm with the solver’s internal
order.

6. One-enabled sampling: This sampling mirrors one-disabled and consists
of enabling each option one at a time. For instance, a configuration where
the DisplayNeighbourhood option in figure 2.3 is selected and all the other
options are deselected. As for one-disabled, for each selected option, we
apply a random selection of the configuration to consider in our evalua-
tion; and the criteria are extended to all-one-enabled, with all the valid
configurations for each selected option.

7. Most enabled-disabled sampling: This method only samples two configu-
rations: one where as many options as possible are selected and one where
as many options as possible are deselected. If more than one valid config-
uration is possible for most-enabled (respectively most-disabled) options,
we randomly select one most-enabled (respectively most-disabled) config-
uration. The criteria are extended to all- most-enabled-disabled, with all
the valid configurations with most-enabled (respectively most-disabled)
options.

There is no sampling criterion dominating others in all cases: it depends
on the system and testing goals. However, t-wise coverage demonstrated an
excellent bug finding ability while producing small test suites (e.g., [Hal+19]).
Therefore, we retain this technique in our work.

2.4 Regression Testing in Software Product Lines

Software product lines typically last for a long time and evolve continuously to
address changing requirements. Very often, the end-user’s needs change and
this has a direct impact on the product. Already derived products often have
to be re-derived after such changes to benefit from new and updated features.
Programmers thus frequently need to analyze the impact of changes to the
software product lines and it’s possible configurations to prevent unexpected
changes of re-derived products.

Research, so far, has been focusing on either software product lines, testing
strategies of software product lines or regression testing[LW89]. While working
on this thesis, we did not encounter many research papers that have worked

2.4. REGRESSION TESTING IN SOFTWARE PRODUCT LINES 11

on the subject of regression testing in software product lines, except for the
following ones:

• [RE12]: In this research paper, the author proposes to use a 3d model
as an approach to regression testing. The graph has the level(y-axis),
version(x-axis) and variant(z-axis) on different axes and this graph can be
applied to the 4 approaches proposed in the paper; namely,

1. Brute Force Strategy – test everything at the domain (commonality)
level.

2. Pure Application Strategy – test everything at application (product)
level.

3. Sample Application Strategy – test a sample at domain level, and
the full application testing.

4. Commonality and Reuse Strategy – test common parts at domain
level, and variability at application level.

• [Net+10]: In this research paper, the author has shown a manual way of
generating regression test suites in software product lines, integrated in a
v-model like approach.

12 CHAPTER 2. BACKGROUND INFORMATION

Chapter 3

Software Product Lines
Regression Testing

In this chapter, we discuss about the need for regression testing on software
product lines and the approach put in place to generate a suite of regression
test cases.

3.1 Problem Statement

In this section, we discuss about the issue of regression testing in the context of
software product lines. As stated previously, there have been very few research
on regression testing in software product lines. We found only 2 studies about
it [RE12] [Net+10]. Nevertheless, there is a strong need for exploring this idea.
Since, software product lines are bound to evolve over time to accommodate
new requirements of the end-user. Every time a change is done on the software
product lines, the evolved feature is obviously tested and there is a crucial
need to test for any regression that might have been caused due to the change
introduced. In the case of a JAVA project, the work of regression testing has
been widely documented [Mag+16] [Won+97] [USV14]. However, there are few
literature work on regression testing in the context of software product lines.

Our aim is to find a way to generate some regression test cases when the
software product lines have evolved in order to detect any faults that might
have been caused and propagated in the features.

3.2 Approach

In this section, we address an approach that can be used to generate regres-
sion test cases for software product lines that have evolved. We discuss the
approach’s advantages and drawbacks.

13

14CHAPTER 3. SOFTWARE PRODUCT LINES REGRESSION TESTING

This approach uses a mix of a pairwise algorithm for the generation of con-
figuration samples and some automatic generation of tests in JAVA for features
that have changed in the Feature Model. Sampling algorithms have been long
used to avoid the explosion of a combinatorial number of product variants.
Amongst them, pairwise sampling has been demonstrated [Hal+19] to be the
best at providing a reasonable coverage while detecting a maximum number of
faults.

Pairwise algorithms can be implemented using the below algorithms:

• ICPL [JHF12],

• Chvatal [Chv79],

• IncLing [Al-+16b],

• Yasa [Kri+20].

In our case, we have used ICPL, which is a fast implementation directly
integrated with FeatureIDE.

The approach that is proposed in our research is detailed below.
The steps are:

1. On the core Feature Model,

• Run a Pairwise Algorithm to derive an initial set of sample product
variants.

• Generate the test cases from the sample product variants.

Note: For the purpose of this thesis, evolution of feature model has been
categorised in 3 main types:

• Addition of a feature: a new feature is added to the feature model.

• Deletion of a feature: an existing feature is deleted from the feature
model.

• Modification of a feature: an existing feature of the feature model is
modified in its behaviour.

Any software evolution is a combination of the above 3 categories, our
experience was based solely on the each category of evolution. Hence-
forth, all mentions of evolved feature model in this thesis is referring to
an evolution from either of the 3 categories described above.

2. On the evolved Feature Model,

• Run a Pairwise Algorithm to derive an initial set of sample product
variants.

3. Compare the two sample sets, and identify combinations that do not
match, which are the ones for which some new unit tests need to be gen-
erated. This comparison is illustrated in figure 3.1.

4. Finally, generate the test cases for that subset of sample product variants.
This reduces our scope of product variants for which unit test cases need
to be generated.

The diagram below summarises the steps:

3.2. APPROACH 15

Figure 3.1: Comparison between the core variants and core-evolutions variants.
The combinations that do not match are the ones for which some new unit tests
need to be generated.

3.2.1 Advantages

The technique consists in a combination of simple steps from pre-defined algo-
rithms. Pairwise sampling is a readily available algorithm that can be applied
to any language.

3.2.2 Disadvantages

• Given that the unit tests for the core sample are not available, their pro-
duction will require processing power and time before even considering
the proposed technique. This approach, thus relies heavily on core sample
unit tests.

• If this strategy is to be used, the software product line should be in java,
since EvoSuite works only with this programming language.

• By definition, the sampling algorithm will not cover everything in the
code.

16CHAPTER 3. SOFTWARE PRODUCT LINES REGRESSION TESTING

Figure 3.2: Flow chart to summarise the strategy

Chapter 4

Experiment and Discussion

In this chapter, the research questions and the experiment designed to test the
automatic generation of regression test cases in the context of software product
lines are discussed. We present the results and outline their implications.

4.1 Experimentation

This section explains the research questions and how they were derived. We
then describe the experimental setup.

4.1.1 Research questions

Based on the literature review and the research done, two research questions
are deducted that this thesis shall cater for.

RQ1: Can we find a way of automatically generating regression test cases
on software product lines?

Based on our research for the thesis, we have so far, come across two research
papers that discuss a way of creating regression test cases in the context of
software product lines whereby [RE12] proposes 4 approaches while [Net+10]
proposes to have a v-model like approach with manual creation of regression
test suite. However, we did not encounter any paper that was able to design an
experiment to generate regression test suites in software product lines. Hence,
the main contribution of this thesis is to concretely assess the feasibility of
generating regression test cases automatically for software product lines. In
particular, we consider a core feature model and evolved/combination of evolved
feature model according to the strategy presented in Chapter 3.

RQ2: How efficient is the found method in generating software product line
regression test suites?

A first approach to measure the approach’s efficiency is proposed. That
is, by manually injecting some faults in the evolved code and assessing if the
generated suite is able to uncover them. This will validate the approach and the
experiment since discovering bugs in the unchanged part of the code is what a
regression test suite is intended for.

17

18 CHAPTER 4. EXPERIMENT AND DISCUSSION

4.1.2 Experimentation process

This first experiment’s intent is to generate regression test suites on a sam-
ple software product lines. For this intent, we chose to use a hand-crafted well
known example of the Vending Machine. This approach corresponds to the Sam-
ple Application Strategy stated in 2.4. The reason to use this simple example
is purely to ensure that the approach works at small scale.

In this experiment, we have used two tools to support our experiment,
namely:

• FeatureIDE,

• EvoSuite.

4.1.3 Designing the feature model

As previously described in 2.2.1, FeatureIDE is an extensible plugin on the
Eclipse Marketplace that supports the development of software product lines on
the Eclipse integrated development environment.

Within the IDE, a FeatureIDE project can be created. From there, the
feature model can be designed.

In our case, we have based ourselves, as previously mentioned, on the classic
example of the vending machine [Cla+10]. This model is a simple vending
machine offering hot and cold drinks and managing payments.

The core feature model designed for the experiment is as shown in figure 4.1.

Figure 4.1: Vending machine feature diagram

Based on the feature model in 4.1, the class diagram of the core feature model
has been designed as shown in figure 4.2. As one may see, the Vending Machine
is the main class used in the experiment, and its features have been implemented

4.1. EXPERIMENTATION 19

as Aspects [LB02], thanks to the AspectJ integration with FeatureIDE. Aspect-
oriented programming is a programming paradigm which focuses on re-usability
of cross-cutting concerns. An aspect is an encapsulation of a crosscut in the
program (possibly in multiple modules), allowing to alter behaviour at given
patterns in the code known as point-cuts.

The main method of the class is action, which returns a text describing
the configuration. A sample returned text might be ”The Vending machine
is making coffee with sugar and milk for a price of 2 euros”. The second most
important method is getTotalPrice which, based on the accessors isMilk, isSugar
and isFee, calculates the total price the customer should pay. The method
unnecessaryComment returns a joke the vending machine could possibly state
to its customer. In our experiment, this last method’s purpose is to extend
the Vending Machine in order to have a little more features to test later on.
As one may see, all the features of the Vending Machine are implemented as
aspects, usually around the method action. Indeed, the Vending Machine’s
action method will return an empty text and the aspects will concatenate the
verb of choosing a feature (e.g. making coffee).

Figure 4.2: Vending machine class diagram

4.1.4 Generating the core test cases

After implementation of the core feature model in AspectJ on FeatureIDE, we
derive the sample configurations using the ICPL algorithm. ICPL was chosen
since it is one of the main algorithms of generating pairwise samples in [JHF12]
for a large-scale system on a similar problem; incremental testing. This algo-
rithm was also used in [Pet+21] for calculating the stability of evolving feature
model. Moreover the ICPL algorithm is well integrated in the tool.

To obtain the sample product configurations from the feature model, we
used FeatureIDE. After the feature model was designed in the tool as shown
in 4.1, we used the Product Generator option of FeatureIDE that runs on ICPL
algorithm with 2-wise pairings to generate the product configurations as shown
in 4.3. We chose to do a 2-wise because it is known to be a quick and efficient

20 CHAPTER 4. EXPERIMENT AND DISCUSSION

pairing as shown by [KWG04a]. The product configurations are then generated
as shown in 4.4.

Figure 4.3: Product Generator from FeatureIDE

On each product configuration generated, we used EvoSuite [FA11] to derive
the core test cases, which form the basis of our regression test suite. An example
of a test suite generated from the product configuration shown in figure 4.5 is
given below.

import org . j u n i t . Test ;
import s t a t i c org . j u n i t . Assert . ∗ ;
import org . e v o s u i t e . runtime . EvoRunner ;
import org . e v o s u i t e . runtime . EvoRunnerParameters ;
import org . j u n i t . runner . RunWith ;

@RunWith(EvoRunner . c l a s s)
@EvoRunnerParameters (mockJVMNonDeterminism = true ,
useVFS = true , useVNET = true , r e s e t S t a t i c S t a t e = true ,
separateClas sLoader = true ,
useJEE = true)
pub l i c c l a s s VendingMachine ESTest extends
VendingMachine ESTest sca f fo ld ing {

@Test (timeout = 4000)
pub l i c void t e s t 0 () throws Throwable {

VendingMachine vendingMachine0 = new VendingMachine () ;
vendingMachine0 . p r i n t () ;

}

@Test (timeout = 4000)

4.1. EXPERIMENTATION 21

Figure 4.4: Product configurations generated from ICPL

Figure 4.5: Product configuration

pub l i c void t e s t 1 () throws Throwable {
VendingMachine vendingMachine0 = new VendingMachine () ;
S t r ing s t r i n g 0 = vendingMachine0 . a c t i on () ;

22 CHAPTER 4. EXPERIMENT AND DISCUSSION

a s s e r tEqua l s (” Vending machine i s making c o f f e e (and) with
a card (and) with milk (and) with sugar (and) making tea
(p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card
(adding 1 euro f e e) (and) accept ing payment ” , s t r i n g 0) ;

}

@Test (timeout = 4000)
pub l i c void t e s t 2 () throws Throwable {

VendingMachine vendingMachine0 = new VendingMachine () ;
S t r ing s t r i n g 0 = vendingMachine0 . unnecessaryComment () ;
a s s e r tEqua l s (”Had a bad night ?” , s t r i n g 0) ;

}

@Test (timeout = 4000)
pub l i c void t e s t 3 () throws Throwable {

VendingMachine vendingMachine0 = new VendingMachine () ;
I n t e g e r i n t e g e r 0 = vendingMachine0 . ge tTota lPr i c e () ;
a s s e r tEqua l s (4 , (i n t) i n t e g e r 0) ;

}

@Test (timeout = 4000)
pub l i c void t e s t 4 () throws Throwable {

VendingMachine vendingMachine0 = new VendingMachine () ;
S t r ing s t r i n g 0 = vendingMachine0 . t o t a l P r i c e () ;
a s s e r tEqua l s (” For a t o t a l o f 4 euros ” , s t r i n g 0) ;

}

@Test (timeout = 4000)
pub l i c void t e s t 5 () throws Throwable {

VendingMachine vendingMachine0 = new VendingMachine () ;
boolean boolean0 = vendingMachine0 . i sMi lk () ;
a s se r tTrue (boolean0) ;

}

@Test (timeout = 4000)
pub l i c void t e s t 6 () throws Throwable {

VendingMachine vendingMachine0 = new VendingMachine () ;
boolean boolean0 = vendingMachine0 . i sTea () ;
a s se r tTrue (boolean0) ;

}

@Test (timeout = 4000)
pub l i c void t e s t 7 () throws Throwable {

VendingMachine vendingMachine0 = new VendingMachine () ;
boolean boolean0 = vendingMachine0 . i sSugar () ;
a s se r tTrue (boolean0) ;

}

@Test (timeout = 4000)
pub l i c void t e s t 8 () throws Throwable {

4.1. EXPERIMENTATION 23

VendingMachine vendingMachine0 = new VendingMachine () ;
boolean boolean0 = vendingMachine0 . i sFee () ;
a s se r tTrue (boolean0) ;

}

@Test (timeout = 4000)
pub l i c void t e s t 9 () throws Throwable {

St r ing [] s t r ingArray0 = new St r ing [1] ;
VendingMachine . main (s t r ingArray0) ;
a s s e r tEqua l s (1 , s t r ingArray0 . l ength) ;

}
}

4.1.5 Evolving the feature model

Since our objective is to generate a regression test suite, the next step is to
implement the main possible evolution of the core model which we will consider
in the regression test suite assessment later.

Those main possible evolution were chosen arbitrarily as:

• The addition of a feature,

• The deletion of a feature,

• The modification of a feature.

In our sample, we chose to implement the addition of a feature Water, the
deletion of the feature Coffee along with ExtraCoffee, and the modification of
the feature Tea, changing the price of the drink. We detail the addition of the
feature Water below.

Adding a new feature, the evolved feature model is altered and now looks
like Figure 4.6.

Again, we generate the sample configurations of the evolved feature model
which we may pair with the configurations we generated on the core feature
model previously. Indeed, for the addition of a feature, a configuration from
the new feature model will be paired to an equivalent configuration in the core
feature model without the new feature. For the deletion of a feature, we pair
them using the same technique. Finally, for the modification of a feature, we
simply pair the exact same configurations. We detail the number of generated
configurations from ICPL in table 4.1.

CORE ADDITION DELETION MODIFICATION
10 10 11 10

Table 4.1: Number of configurations generated by ICPL algorithm.

Note: The deletion of a feature generated more configurations since a con-
straint along with the feature was removed

24 CHAPTER 4. EXPERIMENT AND DISCUSSION

Figure 4.6: Adding the Feature Water - Evolved feature model

4.1.6 Generating the regression test suite

Using the paired configurations discussed in the previous subsection, EvoSuite
can be run to automatically generate the regression test suite based on the
evolution. That is, using the extension of EvoSuite, commonly known as Evo-
SuiteR[Sha+13].

An example of the regression test suite generated on a configuration pair in
the addition of a feature to the core model is as shown below:

import org . j u n i t . Test ;
import s t a t i c org . j u n i t . Assert . ∗ ;
import org . e v o s u i t e . runtime . EvoRunner ;
import org . e v o s u i t e . runtime . EvoRunnerParameters ;
import org . j u n i t . runner . RunWith ;

@RunWith(EvoRunner . c l a s s)
@EvoRunnerParameters (mockJVMNonDeterminism = true ,
useVFS = true ,
useVNET = true ,
r e s e t S t a t i c S t a t e = true ,
separateClas sLoader = true ,
useJEE = true)
pub l i c c l a s s VendingMachine ESTest extends
VendingMachine ESTest sca f fo ld ing {

@Test (timeout = 4000)
pub l i c void t e s t 0 () throws Throwable {

4.1. EXPERIMENTATION 25

VendingMachine vendingMachine0 = new VendingMachine () ;
I n t e g e r i n t e g e r 0 = vendingMachine0 . ge tTota lPr i c e () ;

a s s e r tEqua l s (2 , (i n t) i n t e g e r 0) ; //
(Pr imi t ive) Or i g i na l Value : 2 |
Regres s ion Value : 6

}
}

Such a test was generated by the following command, after selecting the pair
configurations as ”current configuration” in Feature IDE.

$EVOSUITE −c l a s s VendingMachine −r e g r e s s i o n S u i t e
−projectCP ”<Core model c l a s s path>”
−Dregres s ioncp ”<Evolved model c l a s s path>”

In total, for each configuration pair, EvoSuiteR generated one test suite
consisting in one test case, as illustrated previously.

As a summary, the steps taken to design the experiment are:

1. Design the feature model,

2. Implement the feature model,

3. Evolve the core feature model by:

• Adding a feature,

• Deleting a feature,

• Modifying a feature.

4. On each evolution of the feature model against the core feature model run
EvoSuiteR to generate the regression test cases.

5. The sum of the regression test cases form the regression test suite.

This last sum may be added to the number of tests EvoSuite generated on
the core model as in section 4.1.4. However, those tests have to be manually
checked and possibly adapted for the extended feature model in the case of a
feature modification and feature deletion.

4.1.7 Assessing the regression test suite

In order to evaluate the efficiency of our regression test suite generation, we
make a preliminary experiment by introducing faults ourselves in one of the
evolved feature model. That is preliminary following the known approach of
systematically introducing faults in the program then assessing how many faults
may be discovered using the test suite [MKP18]. That is mutation testing, the
mutation score giving the number of faults uncovered divided by the number of
faults inserted. In that matter, we introduced logical faults, purposely trying
to find leaks in our regression test suite. The number of faults inserted by the
type of evolution is given in table 4.2.

Following this approach, we found out that EvoSuiteR did not generate test
cases covering the faults in the text returned in the action method.

Hence, EvoSuiteR works by

26 CHAPTER 4. EXPERIMENT AND DISCUSSION

ADDITION DELETION MODIFICATION
Introduced Faults 2 2 2
Uncovered Faults 1 1 1

Table 4.2: Number of faults inserted and uncovered, in each evolved feature
model, by its regression test suite.

• Generating a first sample of random inputs,

• Choosing the tests that maximise a fitness function,

• Running those tests against both the initial code (the core feature model in
our case) and the evolved code (the evolved feature model) and eliminate
the tests that do not produce different outputs,

• Finally, minimising the test suite by removing unnecessary assertions, gen-
erated through the traces such as duplicates.

We found out that the minimisation step was probably too restrictive, since it
removed assertions that would have found the faults we injected. Indeed, using
EvoSuiteR without its minimisation function (-Dminimize=false option), the
generated test suite was able to find any of the faults we manually injected. Even
though the minimisation function is useful since it helps producing small test
suites, easily reusable by a programmer, the function seems to reduce too many
assertions. We illustrate this last statement with a sample test case generated
by EvoSuiteR without minimisation.

import org . j u n i t . Test ;
import s t a t i c org . j u n i t . Assert . ∗ ;
import org . e v o s u i t e . runtime . EvoRunner ;
import org . e v o s u i t e . runtime . EvoRunnerParameters ;
import org . j u n i t . runner . RunWith ;

@RunWith(EvoRunner . c l a s s)
@EvoRunnerParameters (mockJVMNonDeterminism = true ,
useVFS = true , useVNET = true ,
r e s e t S t a t i c S t a t e = true ,
separateClas sLoader = true ,
useJEE = true)
pub l i c c l a s s VendingMachine ESTest extends
VendingMachine ESTest sca f fo ld ing {

@Test (timeout = 4000)
pub l i c void t e s t 0 () throws Throwable {

VendingMachine vendingMachine0 = new VendingMachine () ;
vendingMachine0 . i sSugar () ;
S t r ing [] s t r ingArray0 = new St r ing [0] ;
VendingMachine . main (s t r ingArray0) ;
S t r ing s t r i n g 0 = vendingMachine0 . a c t i on () ;
a s s e r tEqua l s (” Vending machine i s making c o f f e e (and) with a

4.1. EXPERIMENTATION 27

card (and) with milk (and) with sugar (and) making tea

(p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card
(adding 1 euro f e e) (and) accept ing payment ” , s t r i n g 0) ; //
(Pr imi t ive) Or i g i na l Value : Vending machine i s making
c o f f e e (and) with a card (and) with milk (and) with sugar
(and) making tea (p r i c e : 2) (and) with extra c o f f e e with a
c r e d i t card (adding 1 euro f e e) (and) accept ing payment |
Regres s ion Value : Vending machine i s making c o f f e e (and)
with a card (and) with milk (and) with sugar (and) making
tea (p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card
(adding 1 euro f e e) (and) accept ing payment (and) pouring
water tea (p r i c e : 4)

vendingMachine0 . i sTea () ;
S t r ing [] s t r ingArray1 = new St r ing [0] ;
vendingMachine0 . i sMi lk () ;
vendingMachine0 . i sMi lk () ;
VendingMachine . main (s t r ingArray1) ;
S t r ing s t r i n g 1 = vendingMachine0 . a c t i on () ;

a s s e r tEqua l s (” Vending machine i s making c o f f e e (and) with a
card (and) with milk (and) with sugar (and) making tea
(p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card
(adding 1 euro f e e) (and) accept ing payment ” , s t r i n g 1) ; //
(Pr imi t ive) Or i g i na l Value : Vending machine i s making
c o f f e e (and) with a card (and) with milk (and) with sugar
(and) making tea (p r i c e : 2) (and) with extra c o f f e e with a
c r e d i t card (adding 1 euro f e e) (and) accept ing payment |
Regres s ion Value : Vending machine i s making c o f f e e (and)
with a card (and) with milk (and) with sugar (and) making
tea (p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card
(adding 1 euro f e e) (and) accept ing payment (and) pouring
water tea (p r i c e : 4)

S t r ing s t r i n g 2 = vendingMachine0 . a c t i on () ;
a s s e r tEqua l s (” Vending machine i s making c o f f e e (and) with a
card (and) with milk (and) with sugar (and) making tea
(p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card

(adding 1 euro f e e) (and) accept ing payment ” , s t r i n g 2) ; //
(Pr imi t ive) Or i g i na l Value : Vending machine i s making
c o f f e e (and) with a card (and) with milk (and) with sugar
(and) making tea (p r i c e : 2) (and) with extra c o f f e e with a
c r e d i t card (adding 1 euro f e e) (and) accept ing payment |
Regres s ion Value : Vending machine i s making c o f f e e (and)
with a card (and) with milk (and) with sugar (and) making
tea (p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card
(adding 1 euro f e e) (and) accept ing payment (and) pouring
water tea (p r i c e : 4)

28 CHAPTER 4. EXPERIMENT AND DISCUSSION

I n t e g e r i n t e g e r 0 = vendingMachine0 . ge tTota lPr i c e () ;
a s s e r tEqua l s (4 , (i n t) i n t e g e r 0) ; //
(Pr imi t ive) Or i g i na l Value : 4 | Regres s ion Value : 8

vendingMachine0 . i sFee () ;
vendingMachine0 . i sTea () ;
S t r ing s t r i n g 3 = vendingMachine0 . t o t a l P r i c e () ;

a s s e r tEqua l s (” For a t o t a l o f 4 euros ” , s t r i n g 3) ; //
(Pr imi t ive) Or i g i na l Value : For a t o t a l o f 4 euros |
Regres s ion Value : For a t o t a l o f 8 euros

I n t e g e r i n t e g e r 1 = vendingMachine0 . ge tTota lPr i c e () ;

a s s e r tEqua l s (4 , (i n t) i n t e g e r 1) ; // (Pr imi t ive) Or i g i na l
Value : 4 | Regres s ion Value : 8

I n t e g e r i n t e g e r 2 = vendingMachine0 . ge tTota lPr i c e () ;

a s s e r tEqua l s (4 , (i n t) i n t e g e r 2) ; // (Pr imi t ive) Or i g i na l
Value : 4 | Regres s ion Value : 8

vendingMachine0 . unnecessaryComment () ;
vendingMachine0 . i sMi lk () ;
S t r ing s t r i n g 4 = vendingMachine0 . a c t i on () ;

a s s e r tEqua l s (” Vending machine i s making c o f f e e (and) with a
card (and) with milk (and) with sugar (and) making tea
(p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card
(adding 1 euro f e e) (and) accept ing payment ” , s t r i n g 4) ; //
(Pr imi t ive) Or i g i na l Value : Vending machine i s making
c o f f e e (and) with a card (and) with milk (and) with sugar
(and) making tea (p r i c e : 2) (and) with extra c o f f e e with a
c r e d i t card (adding 1 euro f e e) (and) accept ing payment |
Regres s ion Value : Vending machine i s making c o f f e e (and)
with a card (and) with milk (and) with sugar (and) making
tea (p r i c e : 2) (and) with extra c o f f e e with a c r e d i t card
(adding 1 euro f e e) (and) accept ing payment (and) pouring
water tea (p r i c e : 4)

vendingMachine0 . i sSugar () ;
S t r ing s t r i n g 5 = vendingMachine0 . t o t a l P r i c e () ;

a s s e r tEqua l s (” For a t o t a l o f 4 euros ” , s t r i n g 5) ; //
(Pr imi t ive) Or i g i na l Value : For a t o t a l o f 4 euros |
Regres s ion Value : For a t o t a l o f 8 euros

vendingMachine0 . p r i n t () ;
VendingMachine . main (s t r ingArray0) ;

4.2. DISCUSSIONS 29

I n t e g e r i n t e g e r 3 = vendingMachine0 . ge tTota lPr i c e () ;
a s s e r tEqua l s (4 , (i n t) i n t e g e r 3) ;
// (Pr imi t ive) Or i g i na l Value : 4 | Regres s ion Value : 8

vendingMachine0 . i sTea () ;
vendingMachine0 . i sTea () ;
vendingMachine0 . i sSugar () ;
I n t e g e r i n t e g e r 4 = vendingMachine0 . ge tTota lPr i c e () ;
a s s e r tEqua l s (4 , (i n t) i n t e g e r 4) ; //
(Pr imi t ive) Or i g i na l Value : 4 | Regres s ion Value : 8

vendingMachine0 . i sTea () ;
vendingMachine0 . i sSugar () ;
VendingMachine . main (s t r ingArray0) ;
vendingMachine0 . unnecessaryComment () ;
vendingMachine0 . i sFee () ;

}
}

4.2 Discussions

In this section, we present the results obtained from the experiments conducted
in 4 by answering the research questions derived in 3.

4.2.1 RQ1: Can we find a way of automatically generating
regression test cases on software product lines?

Yes, we may generate regression test cases on software product lines using the
EvoSuiteR tool. Hence, the tool generates a first population of random test
cases, then runs those on both the core feature model and the evolved feature
model test cases. When a different output is detected, then the tool deduces a
valid regression test case [Sha+13].

However, the main limitations of this strategy is that in the case of a large
program where the classes may contain several thousands of lines of code, which
is often the case in the industry, this approach may be costly in computation
time. Specially, in the case of software product lines the more complex the
model, the more time it will take to run through the whole feature to detect the
regression test cases. On our own made software product lines sample, the tool
was able to generate the test suite for a given configuration pair in 2 minutes
on average. Given that, as seen in table 4.1, the pairwise algorithm generated
10 configurations on average per considered software product lines evolution,
a total of 20 minutes is necessary to generate the test suite for one software
product lines evolution. Some computation may however be saved by sampling
the number of configurations we consider at regression test generation time.

Another point worth mentioning is that the product configuration from the
evolved model should be carefully chosen as it might not have selected the
evolution brought to the feature model. In the case of a large feature model,
this exercise would require some automation. [Pet+21] checked the stability
coefficient against evolving feature model but did not consider that the bigger

30 CHAPTER 4. EXPERIMENT AND DISCUSSION

the change, the less stable the coefficient will be. This part of the reasoning was
missing in the research work.

4.2.2 RQ2: How efficient is the found method in generat-
ing SPL regression test suites?

In order to validate preliminary the approach and the experiment designed,
some faults were manually injected in the evolved code. At first, EvoSuiteR
was unable to uncover all the injected faults. However, after removing its min-
imisation function, the test suites were more efficient, uncovering all the faults
we manually injected. Even though we lacked time to elaborate the experiment,
this first result is encouraging the usage of EvoSuiteR without its minimisation
function and pushes us to improve the minimisation function in a future work.

4.2.3 Threats to validity

In our experiment, a simple software product line was used to derive the test
results and it should therefore be validated by several real-life case studies.

Also, the evolution considered were basic ones such as addition, deletion and
modification of a feature. In a working software product line, the evolution that
the software undergoes maybe a combination of those.

Furthermore, we have used a single software product line in the whole re-
search work. The approach needs to be evaluated on other product lines in
different domains, to draw generalisable conclusions.

Chapter 5

Conclusion and
Perspectives

In this chapter, we give our conclusion to the work and present future work and
improvements.

5.1 Conclusion

The aim of our work is to explore the possibility of regression testing on software
product lines. In particular, we use EvoSuiteR and FeatureIDE to model the
software product line and generate test cases automatically.

In our work, we propose an approach to derive the regression suite. That
is, we use FeatureIDE to model the feature diagram and create the concrete
classes for each feature defined. Within this same tool, some basic evolution
such as addition of a feature, deletion of a feature and modification of a feature
are brought to the feature model. Since most evolution, in real-life, would
be a combination of those basic evolution, we consider only the latters in the
experimentation and generate the corresponding code. Then, we generate tests
using EvoSuiteR which runs test case candidates on the core feature model and
compares their output to their run on the evolved feature model, then filters out
only the tests that give different output. Finally, we validate our approach on a
well-known case model which is the Vending Machine and assess the method by
manually injecting faults and challenging the test suites into uncovering those.

5.2 Future work

While working on the research questions, there were several ideas for improve-
ment that could be done to this research topic in order to elaborate the subject.

Since the experiment has been based on a simple yet classic version of the
Vending Machine, it can be considered that the same experiment be done on a
large-scale real-life software product line. The results of which might be more
conclusive and representative of real-life scenarios.

The approach proposed can also be compared to other state-of-the-art strate-
gies or approaches proposed in other papers. This will help to determine the

31

32 CHAPTER 5. CONCLUSION AND PERSPECTIVES

efficiency and mode of use of our proposed approach.
Furthermore, the experiment designed in this research work could be auto-

mated to produce a quantitative amount of results in a shorter time period. This
will give more facts and figures onto which we could build a better approach or
experiment.

The last point is to evaluate that this method of generating regression test
cases is efficient. Hence, to prove that the approach proposed in 3.2 can be
deemed valid for a large population of feature model, we should find some met-
rics that can be used to assess our method efficiency.

A first approach to assess the method’s efficiency would be to use GIT mining
on actual software product lines projects. Indeed, we could mine the number of
bugs that were introduced from one version to another.

Then, we would apply our method on these case studies and check the per-
centage of bugs EvoSuiteR finds after generating a valid regression test suite.

The advantages of this approach is that it is straightforward and produces a
realistic result, that is, based on real world examples. The drawback is that the
approach is very time consuming. Also, a possible problem would be assessing
the number of actual bugs that are to find between two versions. Another
possible problem comes from the nature of our experiment. Hence, a known bug
in a given configuration might or might not be a bug in another configuration
of the software product lines.

While some preliminary Mutation testing has been done to validate our
proposition, this point should be elaborated on a larger scale. The efficiency
of our method could be compared with another one by comparing the addition
of the Mutation score they obtain for each possible configuration. Indeed, the
Mutation score is defined as the number identified faults divided by the number
of introduced faults.

Bibliography

[Al-+16a] Mustafa Al-Hajjaji et al. “IncLing: Efficient Product-Line Testing
Using Incremental Pairwise Sampling”. In: SIGPLAN Not. 52.3
(Oct. 2016), pp. 144–155. issn: 0362-1340. doi: 10.1145/3093335.
2993253. url: https://doi.org/10.1145/3093335.2993253.

[Al-+16b] Mustafa Al-Hajjaji et al. “IncLing: efficient product-line testing
using incremental pairwise sampling”. In: ACM SIGPLAN Notices
52.3 (2016), pp. 144–155.

[Al-14] Ra’Fat Al-Msie’Deen. “Reverse Engineering Feature Models From
Software Variants to Build Software Product Lines: REVPLINE
Approach”. PhD thesis. June 2014.

[Ape+13] Sven Apel et al. “Software product lines”. In: Feature-Oriented
Software Product Lines. Springer, 2013, pp. 3–15.

[Chv79] Vasek Chvatal. “A greedy heuristic for the set-covering problem”.
In: Mathematics of operations research 4.3 (1979), pp. 233–235.

[Cla+10] Andreas Classen et al. “Model Checking ¡u class=”uu”¿lots¡/u¿ of
Systems: Efficient Verification of Temporal Properties in Software
Product Lines”. In: Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1. ICSE ’10.
Cape Town, South Africa: Association for Computing Machinery,
2010, pp. 335–344. isbn: 9781605587196. doi: 10.1145/1806799.
1806850. url: https://doi.org/10.1145/1806799.1806850.

[Con21] Software Product Line Conference. SPLC Hall of fame. https:

//splc.net/fame.html. Accessed: 2021-08-16. 2021.

[FA11] Gordon Fraser and Andrea Arcuri. “EvoSuite: Automatic Test
Suite Generation for Object-Oriented Software”. In: Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering. ESEC/FSE
’11. Szeged, Hungary: Association for Computing Machinery, 2011,
pp. 416–419. isbn: 9781450304436. doi: 10.1145/2025113.2025179.
url: https://doi.org/10.1145/2025113.2025179.

[FA14] Gordon Fraser and Andrea Arcuri. “A Large-Scale Evaluation of
Automated Unit Test Generation Using EvoSuite”. In: ACM Trans.
Softw. Eng. Methodol. 24.2 (Dec. 2014). issn: 1049-331X. doi: 10.
1145/2685612. url: https://doi.org/10.1145/2685612.

[Fra21] Gordon Fraser. EvoSuite. https://www.evosuite.org. Accessed:
2021-03-20. 2021.

33

34 BIBLIOGRAPHY

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Di-
rected Automated Random Testing”. In: Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’05. Chicago, IL, USA: Association for
Computing Machinery, 2005, pp. 213–223. isbn: 1595930566. doi:
10.1145/1065010.1065036. url: https://doi.org/10.1145/
1065010.1065036.

[Hal+19] Axel Halin et al. “Test them all, is it worth it? Assessing configura-
tion sampling on the JHipster Web development stack”. In: Empir.
Softw. Eng. 24.2 (2019), pp. 674–717. doi: 10.1007/s10664-018-
9635-4. url: https://doi.org/10.1007/s10664-018-9635-4.

[Har+04] M. Harman et al. “Testability transformation”. In: IEEE Trans-
actions on Software Engineering 30.1 (2004), pp. 3–16. doi: 10.
1109/TSE.2004.1265732.

[HC15] Itti Hooda and Rajender Singh Chhillar. “Software test process,
testing types and techniques”. In: International Journal of Com-
puter Applications 111.13 (2015).

[HM10] Mark Harman and Phil McMinn. “A Theoretical and Empirical
Study of Search-Based Testing: Local, Global, and Hybrid Search”.
In: IEEE Transactions on Software Engineering 36.2 (2010), pp. 226–
247. doi: 10.1109/TSE.2009.71.

[JHF12] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey.
“An algorithm for generating t-wise covering arrays from large fea-
ture models”. In: Proceedings of the 16th International Software
Product Line Conference-Volume 1. 2012, pp. 46–55.

[Kan+90] Kyo C Kang et al. Feature-oriented domain analysis (FODA) fea-
sibility study. Tech. rep. Carnegie-Mellon Univ Pittsburgh Pa Soft-
ware Engineering Inst, 1990.

[Kri+20] Sebastian Krieter et al. “YASA: yet another sampling algorithm”.
In: Proceedings of the 14th International Working Conference on
Variability Modelling of Software-Intensive Systems. 2020, pp. 1–
10.

[KWG04a] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. “Soft-
ware fault interactions and implications for software testing”. In:
IEEE transactions on software engineering 30.6 (2004), pp. 418–
421.

[KWG04b] D.R. Kuhn, D.R. Wallace, and A.M. Gallo. “Software fault inter-
actions and implications for software testing”. In: IEEE Trans-
actions on Software Engineering 30.6 (2004), pp. 418–421. doi:
10.1109/TSE.2004.24.

[LB02] Roberto E Lopez-Herrejon and Don Batory. “Using AspectJ to
implement product-lines: A case study”. In: Technical report, Uni-
versity of Texas at Austin (2002).

[LW89] H.K.N. Leung and L. White. “Insights into regression testing (soft-
ware testing)”. In: Proceedings. Conference on Software Mainte-
nance - 1989. 1989, pp. 60–69. doi: 10.1109/ICSM.1989.65194.

BIBLIOGRAPHY 35

[Mag+16] Cláudio Magalhães et al. “Automatic Selection of Test Cases for
Regression Testing”. In: Proceedings of the 1st Brazilian Sympo-
sium on Systematic and Automated Software Testing. SAST. Maringa,
Parana, Brazil: Association for Computing Machinery, 2016. isbn:
9781450347662. doi: 10.1145/2993288.2993299. url: https:

//doi.org/10.1145/2993288.2993299.

[MBC09] Marcilio Mendonca, Moises Branco, and Donald Cowan. “S.P.L.O.T.:
Software Product Lines Online Tools”. In: Proceedings of the 24th
ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications. OOPSLA ’09. Or-
lando, Florida, USA: Association for Computing Machinery, 2009,
pp. 761–762. isbn: 9781605587684. doi: 10.1145/1639950.1640002.
url: https://doi.org/10.1145/1639950.1640002.

[MKP18] Urko Rueda Molina, Fitsum Kifetew, and Annibale Panichella.
“Java unit testing tool competition-sixth round”. In: 2018 IEEE/ACM
11th International Workshop on Search-Based Software Testing
(SBST). IEEE. 2018, pp. 22–29.

[MP14] Andreas Metzger and Klaus Pohl. “Software product line engineer-
ing and variability management: achievements and challenges”. In:
Future of Software Engineering Proceedings. 2014, pp. 70–84.

[Net+10] Paulo Anselmo da Mota Silveira Neto et al. “A Regression Test-
ing Approach for Software Product Lines Architectures”. In: 2010
Fourth Brazilian Symposium on Software Components, Architec-
tures and Reuse. 2010, pp. 41–50. doi: 10.1109/SBCARS.2010.14.

[Pet+21] Tobias Pett et al. “Stability of Product-Line Samplingin Contin-
uous Integration”. In: 15th International Working Conference on
Variability Modelling of Software-Intensive Systems. VaMoS’21. Krems,
Austria: Association for Computing Machinery, 2021. isbn: 9781450388245.
doi: 10.1145/3442391.3442410. url: https://doi.org/10.
1145/3442391.3442410.

[RE12] Per Runeson and Emelie Engstrom. “Software Product Line Test-
ing – A 3D Regression Testing Problem”. In: 2012 IEEE Fifth In-
ternational Conference on Software Testing, Verification and Val-
idation. 2012, pp. 742–746. doi: 10.1109/ICST.2012.167.

[Sha+13] Sina Shamshiri et al. “Search-Based Propagation of Regression
Faults in Automated Regression Testing”. In: 2013 IEEE Sixth In-
ternational Conference on Software Testing, Verification and Vali-
dation Workshops. 2013, pp. 396–399. doi: 10.1109/ICSTW.2013.
51.

[USV14] Sebastian Ulewicz, Daniel Schütz, and Birgit Vogel-Heuser. “Soft-
ware changes in factory automation: Towards automatic change
based regression testing”. In: IECON 2014 - 40th Annual Confer-
ence of the IEEE Industrial Electronics Society. 2014, pp. 2617–
2623. doi: 10.1109/IECON.2014.7048875.

36 BIBLIOGRAPHY

[Won+97] W.E. Wong et al. “A study of effective regression testing in prac-
tice”. In: Proceedings The Eighth International Symposium on Soft-
ware Reliability Engineering. 1997, pp. 264–274. doi: 10.1109/

ISSRE.1997.630875.

Glossary

annotation-based implementation An annotation-based implementation an-
notates a common code base, such that code that belongs to a certain
feature is marked accordingly. During product derivation, all code that
belongs to deselected features or invalid feature combinations is removed
or ignored to form the final product.. 8

commonality Features that are common across most product configurations.
. 7, 11

end-user The stakeholder or client that will benefit from the exploitation of
the system built. . 5, 6, 10

EvoSuite An automatic test generation tool that works on java programs. .
4, 5, 9, 15, 18, 20, 24, 25

EvoSuiteR An extension of EvoSuite that covers the part for regression test
suite generation. . 24–26, 29–32

feature model A graphical representation of a software product line. . ix, 14,
17–19, 23, 25, 26, 29, 32

Mutation score The mutation score is the percentage of killed mutants di-
vided by the total number of mutants multiplied by 100. . 32

Mutation testing It is a type of testing technique where the programmer
injects mutants, also known as faults, in order to see if the test cases can
detect them. . 32

regression testing A type of change-related testing to detect whether defects
have been introduced or uncovered in unchanged areas of the software. .
13

software development lifecycle A lifecycle covers all the stages of software
from its inception with requirements definition through fielding and main-
tenance.. 3

software product lines Software product lines is the concept of customising
standardised software to fit the needs of a client by selecting a set of
features from the whole package and adapting it to their needs.. ix, 1–5,
8–11, 13, 17, 18, 29, 31, 32

37

38 Glossary

software testing Software testing is the process of verifying that a software
product does what it is supposed to do according to the requirements.
The benefits of testing include preventing bugs, reducing maintenance
costs and improving performance.. 3

variability The features that change based on the specification of the client. .
5, 9, 11

variant A variant is a valid configuration of the product. . 5, 11

