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Summary 

There are even increasing efforts in searching and developing algorithms that 
can find solutions to combinatorial optimization problems. In this way, the 
Ant Colony Optimization Metaheuristic takes inspiration from biology and 
proposes different versions of still more efficient algorithms. Like other meth­
ods, Ant Colony Optimization has been applied to the traditional Traveling 
Salesman Problem. 

The original contribution of this master thesis is to study the possibility of 
a modification of the basic algorithm of the Ant Colony Optirnization family, 
Ant System, in its application to solve the Traveling Salesman Problem. In 
this version that we study, the probabilistic decision rule applied by each 
ant to determine his next destination city, is based on a modified pheromone 
matrix taking into account not only the last visited city, but also sequences 
of cities, part of previous already constructed solutions. 

This master thesis presents some contribution of biology to the develop­
ment of new algorithms. It explains the problem of the Traveling Salesman 
Problem and gives the main existing algorithms used to solve it. Finally, it 
presents the Ant Colony Optimization Metaheuristic, applies it to the Travel­
ing Salesman Problem and proposes a new adaptation of its basic algorithm, 
Ant System. 

Résumé 

De nombreux efforts sont effectués en recherche et développement 
d 'algorithmes pouvant trouver des solutions à des problèmes d 'optimisation 
combinatoire. Dans cette optique, la Métaheuristique des Colonies de Four­
mis s'inspire de la biologie et propose différentes versions d 'algorithmes tou­
jours plus efficaces. Comme d'autres méthodes, l'Optimisation par Colonies 
de Fourmis a été appliquée au traditionel Problème du Voyageur de Com­
merce. 

La contribution originale de ce mémoire est d'étudier une modification 
de l'algorithme de base de la famille des algorithmes issus de POptimisation 
par Colonies de Fourmis, Ant System, dans son application au Problème du 
Voyageur de Commerce. Dans la version que nous tudions, la règle de décision 
probabiliste appliquée par chaque fourmis pour déterminer sa prochaine ville 
de destination, est basée sur une matrice de phéromones modifiée, qui tient 
compte non seulement de la dernière cité visitée, mais aussi de séquences de 
cités qui font partie de solutions construites antérieurement. 



Ce mémoire présentera d 'abord l'apport de certains concepts de la biologie 
au développement de nouveaux algorithmes . Il parlera ensuite du problème 
du voyageur de commerce ainsi que des principaux algorithmes existants 
utilisés pour le résoudre. Finalement il développe la Métaheuristique des 
Colonies de Fourmis, l'applique au Problème du Voyageur de Commerce et 
propose une nouvelle adaptation de l'algorithme de base, Ant System. 
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Preface 

The working environment 

IRIDIA is the artificial Intelligence research laboratory of the Université Libre 
de Bruxelles, deeply involved in theoretical and applied research in soft­
computing. The major domains of competence are: (i) belief representation 
and AI techniques for process control and classification, (ii) nature inspired 
heuristics for the solution of combinatorial and continuous space optimization 
problems. 

For the representation of quantified beliefs, IRIDIA has developed the 
transferable belief model, based on belief function, and is studying its rela­
tions with probability theory, possibility theory and fuzzy sets theory. This 
model has been applied to problems of diagnosis, decision under uncertainty, 
aggregation of partially reliable information and approximate reasoning. 

For process control and classification, IRIDIA is developing and applying 
fuzzy sets theory and neural networks to problems of automated control, 
autonomous robotics, learrting and classification encountered in the industrial 
applications. 

For nature inspired heuristics Iridia has proposed the ant colony meta­
heuristic for combinatorial optimization problems, such as the traveling sales­
man problem, the quadratic assignment problem, the vehicle routing prob­
lem. 

In all work of IRIDIA, there is still a close connection between funda­
mental research on imprecision and uncertainty and the development of soft 
computing techniques applied to industrial problems. 

Overview of the master thesis 

This master thesis is divided into six chapters: 

Chapter 1 presents a quick introduction to the context problem and the 
objectives of this work. 

Chapter 2 explains first Ant Colony Optimization, which is one contribu­
tion of biology in computing science. It presents after a general description 
of the Ant Colony Metaheuristic. 

Chapter 3 first presents the Traveling Salesman Problem as a NP­
complete problem. It gives then an overview of the main existing algorithms -
not based on the Ant Colony Metaheurisitic - that were used to bring optimal 
or near-optimal solutions to this problem. 

lll 



In chapter 4 we apply the Ant Colony Metaheuristic to the Traveling 
Salesman Problem and give an overview of the main existing algorithms of 
the Ant Colony Optimization family. 

In chapter 5 we first explain the new idea, concerning mainly the 
pheromone matrix, we want to introduce in the existing basic ACO algo­
rithm, Ant System. Then we present the different procedures that are part 
of this basic algorithm and the adaptations that have been made to program 
the new idea. 

In chapter 6 we present some experimental results obtained with the new 
algorithms and discuss a way to improve them. 
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Glossary 

( artificial) ant: is a simple computational agent which constructs a solution 
to the problem at hand, and may deposit an amount of pheromone /j,_7 

on the arcs it has traversed. 

ant colony optimization (ACO): is a particular metaheuristic(*) in­
spired by the foraging behavior of ants. 

approximate ( or approximation) algorithm: is an algorithm that typ­
ically makes use of heuristics in reducing its computation but produces 
solutions that are not necessarily optimal. 

asymmetric TSP (ATSP): is the case of the Traveling Salesman problem 
where the distances between the cities are dependent of the direction 
of traversing the arcs. 

exact algorithm: is an algorithm that always produces an optimal solution. 

heuristic value: the heuristic value, also called heuristic information, rep­
resents a priori information about the problem instance or run-time 
information provided by a source different from the ants. 

intractable: problems that are known not to be solvable in polynomial time 
are said to be intractable. 

memory depth: indicates the length of the sequence of the last cities vis­
ited by an ant. 

metaheuristic: is a set of algorithmic concepts that can be used to define 
heuristic methods applicable to a wide set of different problems. 

self-organization: is a set of dynamical mechanisms whereby structures 
appear at the global level of a system from interactions among its lower­
level components. 

stigmergy: is an indirect interaction between individuals, where one of them 
modifies the environment and the other responds to the new environ­
ment at a later time. 

swarm intelligence: is the emergent collective intelligence of groups of sim­
ple agents. 

Vll 



symmetric TSP: is the case of the Traveling Salesman problem where the 
distances between the cities are independent of the direction of travers­
ing the arcs. 

tractable: problems that are known to be solvable in polynomial time are 
said to be tractable. 

trail pheromone: is a specific type of pheromone that some ant species 
use for marking paths on the ground. In algorithmic it encodes a long­
term memory about the entire search process and is updated by the 
ants themselves. 

worst-case time complexity: The time complexity function of an algo­
rithm for a given problem Il indicates, for each possible input size n, 
the maximum time the algorithm needs to find a solution to an instance 
of that size. 

Vlll 



Chapter 1 

Introduction 

1.1 The existing context 

Ant Colony Optimization (ACO) is a population-based approach for solving 
combinatorial optimization problems that is inspired by the foraging behavior 
of ants and their inherent àbility to find the shortest path from a food source 
to their nest. 

ACO is the result of research on computational intelligence approaches 
to combinatorial optimization originally conducted by Dr. Marco Dorigo, in 
collaboration with Alberto Colorni and Vittorio Maniezzo. 

The fundamental approach underlying ACO is an iterative process in 
which a population of simple agents repeatedly construct candidate solutions; 
this construction process is probabilistically guided by heuristic information 
on the given problem instance as well as by a shared memory containing 
experience gathered by the ants in previous iteration. 

ACO Algorithm has been applied to a broad range of hard combinatorial 
problems. Among them, we have the classic Traveling Salesman Problem 
(TSP) , where an individual must find the shortest route by which to visit a 
given number of destinations. 

This problem is one of the most widely studied problems in combina­
torial optimization. The problem is easy to state, but hard to solve. The 
difficulty becomes apparent when one considers the number of possible tours 
- an astronomical figure even for a relatively small number of cities. For 
a symmetric problem with n cities there are (n-1)!/2 possible tours, which 
grows exponentially with n. If n is 20, there are more than 1018 tours. 

1 



2 1.2. THE: ORIGINAL CONTRIDUTION 

Many algorithmic approaches were developed to find a solution - optimal or 
near optimal - to this problem. Of course, it plays also an important role in 
ACO research: the first ACO algorithm, called Ant System, as well as many 
of the ACO algorithrns proposed subsequently, was first tested on the TSP. 

1.2 The original contribution 

In Ant Colony Optimization, problems are defined in terms of components 
and states, which are sequences of components. Ant Colony Optimization 
incrementally generates solutions in the form of paths in the space of such 
components, adding new components to a state. Memory is kept of all the 
observed transitions between pairs of solution components and a degree of 
desirability is associated to each transition depending on the quality of the 
solutions in which it occurred so far. While a new solution is generated, a 
component y is included in a state, with a probability that is proportional 
to the desirability of the transition between the last component included 
in the state, and y itself. From that point of view, all the states finishing 
by the same component are identical. Further research (Birattari M., Di 
Caro G. and Dorigo M. (2002)) maintains that a memory associated with 
pairs of solution components is only one of the possible representations of 
the solution generation process that can be adopted for framing information 
about solutions previously observed. 

In this master thesis, we try in a very simple way to distinguish states that 
are identical in Ant Colony Optimization, using a definition of the desirability 
of transition based on the new added component and a subsequence of the 
last components of the states, in place of their last component. By such 
modification, we hope to obtain better information about solutions previously 
observed and to improve the quality of the final solution. 

The original contribution of the author includes the adaptation of the 
existing basic Ant System algorithm, mainly through the implementation of 
the modified memory. The adapted programs were applied on tested files . A 
discussion of some e:xperimental results is given in Chapter 6. 



Chapter 2 

Ant Colony Optimization 
Metaheuristic 

In this chapter, we will briefly present some basic biological notions that 
inspired computer scientists in their search of new algorithms for the resolu­
tion of optimization problems. We will then expose the basic elements of the 
Ant Colony Optimization (ACO) metaheuristic resulting of the application 
of these ideas in computing science. 

2.1 Sorne contribution of biology in comput-
. . 
1ng science 

2.1.1 Social insects cooperation 

The social insect metaphor for solving problems has become a hot topic in 
the last years. This approach emphasizes distributedness, direct or indirect 
interactions among relatively simple agents, flexibility, and robustness. This 
is a new sphere of research for developing a new way of achieving a form of 
artificial intelligence, swarm intelligence(Bonabeau, E., Dorigo M., & Ther­
aulaz G (1999)) - the emergent collective intelligence of groups of simple 
agents. Swarm intelligence offers an alternative way of designing intelligent 
systems, in which autonomy, emergence and distributed functioning, replace 
control, preprogramming, and centralization. 

3 



4 2 .1. SOME CONTRIDlJTION OF DIOLOCV IN COMPlJTIN O SCIENCE 

Insects ( ants, wasps and termites) that live in colonies, are able to perform 
different sophisticated activities like foraging, corpse clustering, larval sort­
ing, nest building, transport cooperation and dividing labor among individ­
uals. They solve these problems in a very flexible and robust way: flexibility 
allows adaptation to changing environments, while robustness endows the 
colony with the ability to function even though some individuals may fail to 
perform their tasks. 

Although each individual insect is a complex creature, it is not suffi.cient to 
explain the complexity of what social insect colonies can do. The question is 
to know how to connect individual behavior with the collective performances, 
or, in other words, to know how cooperation arises. 

2.1.2 Self-organization in social insects 

Sorne of the mechanisms underlying cooperation are genetically determined, 
like for instance, anatomical differences between individuals. But many as­
pects of the collective activities of social insects are self-organized. Theories 
of self-organization (SO), originally developed in the context of physics and 
chemistry to describe the emergence of macroscopic patterns out of process 
and interactions defined at the microscopie level, can be extended to social in­
sects to show that complex collective behavior may emerge from interactions 
among individuals that exhibit simple behavior: in these cases, there is no 
need to invoke individual complexity to explain complex collective behavior. 

The researches in entomology have shown that self-organization is a major 
component of a wide range of collective phenomena in social insects and that 
the models based on it only consider insects like relatively simple interacting 
entities, having limited cognitive abilities. 

If we now consider a social insect colony like a decentralized problem­
solving system, comprised of many relatively simple interacting entities, we 
discover that self-organization provides us with powerful tools to transfer 
knowledge about social insects to the field of intelligent system design. The 
list of daily problems solved by a colony (finding food, building a nest, effi.­
ciently dividing labor among individuals, etc.) have indeed counterparts in 
engineering and computer science. The modeling of social insects by means 
of self-organization can help design decentralized, flexible and robust artifi­
cial problem-solving devices that self-organize to solve those problems-swarm 
intelligent systems. 



C HAPTER 2 . ANT COLONY OPTIMIZATION METAHEURISTIC 

MAIN IDEA 

The main idea is to use the self-organizing principles of insect soci­
eties to coordinate populations of artificial agents that collaborate 
to solve computational problems. 

5 

Self-organization is a set of dynamical mechanisms whereby structures ap­
pear at the global level of a system from interactions among its lower-level 
components. The rules specifying the interactions among the system's con­
stituent units are executed on the basis of purely local information, without 
reference to the global pattern, which is an emergent property of the system 
rather than a property imposed upon the system by an external ordering 
influence. For example, the emerging structures in the case of foraging in 
ants include spatiotemporally organized networks of pheromone trails. 

Self-organization relies on four basic ingredients: 

1. Positive feedback (amplification) is constituted by simple behavioral 
rules that promote the creation of structures. Examples of positive 
feedback include recruitment and reinforcement. For instance, recruit­
ment to a food source is a positive feedback that relies on trail laying 
and trail following in some ant species, or <lances in bees. In that 
last case, it has been shown experimentally that the higher the quality 
of source food is, the higher the probability for a bee is to dance, so 
allowing the colony to select the best choice. 

2. Negative feedback counterbalances positive feedback and helps to sta­
bilize the collective pattern: it may take the form of saturation, exhaus­
tion, or competition. In the case of foraging, negative feedback stems 
for the limited number of available foragers, satiation, food source ex­
haustion, crowding at the food source, or competition between food 
sources. 

3. Self-organization relies on the amplification of fluctuations (random 
walks, errors, random task-switching). Not only do structures emerge 
despite randomness, but randomness is often crucial, since it enables 
the discovery of new solutions, and fluctuations can act as seeds from 
which structures nucleate and grow. For example, although foragers 
may get lost in an ant colony, because they follow trails with some 
level of error, they can find new, unexploited food sources, and recruit 
nestmates to these food sources. 



6 2 . 1. SOME CONTRIDUTION OF IlIOLOGY IN COMPUTINC SCIENCE 

4. All cases of self-organization rely on multiple interactions. Although 
a single individual can generate a self-organized structure, the self­
organization generally requires a minimal density of mutually toler­
ant individuals. They should be able to make use of the results of 
their own activities as well as others' activities: for instance, trail net­
works can self-organize and be used collectively if individuals use others' 
pheromone. This does not exclude the existence of individual chemical 
signatures or individual memory which can efficiently complement or 
sometimes replace responses to collective marks. 

When a given phenomenon is self-organized, it can usually be characterized 
by a few key properties: 

1. The creation of spatiotemporal structures in an initially homogeneous 
medium. Such structures include nest architectures, foraging trails, 
or social organization. For example, a characteristic well-organized 
pattern develops on the combs of honeybee colonies, consisting of three 
concentric regions: a central brood area, a surrounding rim of pollen, 
and a large peripheral region of honey. 

2. The possible coexistence of several stable states (multistability). Be­
cause structures emerge by amplification of random deviations, any 
such deviation can be amplified, and the system converges to one among 
several possible stable states, depending on the initial conditions. For 
example, when two identical food sources are presented at the same 
distance from the nest to an ant colony that resorts to mass recruit­
ment (based solely on trail-laying and trail-following), both of them 
represent possible attractors and only one will be massively exploited. 
Which attractor the colony will converge to depends on random initial 
events. 



CHAPTER 2 . ANT COLONY OPTIMIZATION METAHEURISTIC 7 

3. The existence of bifurcations when some parameters are varied. The 
behavior of a self-organized system changes dramatically at bifurca­
tions. For example, some species of termite use soil pellets impregnated 
with pheromone to build pillars. In a first phase, the noncoordination 
is characterized by a random deposition of pellets. This phase lasts 
until one of the deposits reaches a critical size. Then the coordina­
tion phase starts if the group of builders is suffi.ciently large: pillars or 
strips emerge. The accumulation of material reinforces the attractiv­
ity of deposits through the diffusing pheromone emitted by the pellets. 
But if the number of builders is to small, the pheromone disappears 
between two successive passages by the workers, and the amplification 
mechanism cannot work; only the noncoordinated phase is observed. 
Therefore, the transition from the noncoordinated to the coordinated 
phase doesn't result from a change of behavior by the workers, but is 
merely the result of an increase in group size. 

2.1.3 Stigmergy 

Self-organization in social insects often requires interactions among insects: 
such interactions can be direct or indirect. Direct interactions consist ob­
viously and mainly of visual or chemical contacts, trophallaxis, antennation 
between individuals. In the second possibility, we speak about indirect inter­
action between two individuals when one of them modifies the environment 
and the other responds to the new environment at a later time. Such an 
interaction is an example of stigmergy. 

This concept is easily overlooked, as it does not explain the detailed mech­
anisms by which individuals coordinate their activities. However, it does 
provide a general mechanism that relates individual and colony-level behav­
iors: individual behavior modifies the environment, which in turn modifies 
the behavior of other individuals. 



8 2 . 2 . THE ACO METAHEURISTIC DESCRIPTION 

All these examples share some features. First they show how stigmergy can 
easily be made operational. That is a promising first step to design groups of 
artificial agents which solve problems. The second feature is the incremen­
tal construction, which is widely used in the context of optimization: a new 
solution is constructed from previous solutions. Finally, stigmergy is often 
associated with flexibility: when the environment changes because of an ex­
ternal perturbation, the insects respond appropriately to that perturbation, 
as if it were a modification of the environment caused by the colony's activi­
ties. When it cornes to artificial agent, it means that the agents can respond 
to a perturbation without being reprogrammed to deal with that particular 
perturbation. 

Ant colony optimization (ACO) is one of the most successfull examples of 
new algorithms based on those biological concepts. It is inspired by the for­
aging behavior of ant colonies, through their collective trail-laying and trail­
following comportment, and targets discrete optimization problems. The 
next section will discribe it. 

2.2 The ACQ metaheuristic description 

The combinatorial problems are easy to state but very difficult to salve. 
Many of them are NP-hard, i.e. they cannot be solved to optimality within 
polynomially bounded computation time. The question of NP completeness 
is discussed in section 3.1 

2.2.1 The metaheuristic concept 

To salve large instances of combinatorial problems, it is possible to use exact 
algorithms, but without the certainty to obtain the optimal solution within 
a reasonable short time. Another strategy would then to give up the exact 
result, and to use approximate methods, providing near-optimal solutions in 
a relatively short time. Such algorithms are loosely called heuristics and often 
use some problem-specific knowledge to either build or improve solutions. 

Among them, some constitute a particular class called METAHEURISTIC: 

METAHEURISTIC 

A metaheuristic is a set of algorithmic concepts that can be used 
to define heuristic methods applicable to a wide set of different 
problems. 
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The use of metaheuristics has significantly increased the ability of find­
ing very high-quality solutions to hard, practically relevant combinatorial 
optimization problems in a reasonable time. 

As explained in previous section, a particular successful metaheuristic is 
inspired by the behavior of real ants. She is called Ant Colony Optimization 
(ACO) and will be the subject of our interest in the next paragraphs. 

ACQ METAHEURISTIC 

The ACO metaheuristic is a particular metaheuristic inspired by 
the behavior of real ants. 

In order to apply the ACO metaheuristic to any interesting combinatorial 
optimization problems, we have to map the considered problem to a repre­
sentation that can be used by the artificial ants to build a solution. 

2.2.2 Problems mapping 

What follows is the definition of mapping presented in (Dorigo, M., Stützle 
T. (2004) Chapter 2) 

Let us consider the minimization (respectively maximization) problem (S, f , 
n), where Sis the set of candidate solutions, fis the objective function which 
assigns an objective fonction ( cost) value f ( s) 1 to each candidate solution 
s E S, and n 2 is a set of constraints. The parameter t indicates that the 
objective function and the constraints can be time-dependent, as is the case 
in applications to dynamic problems. 

The goal is to find a globally optimal feasible solution s*, that is, a 
minimum (respectively maximum) cost feasible solution to the minimization 
(respectively maximization) problem. 

1 f can be dependent in time, when we consider dynamic problems. 
2 f! can be dependent intime, when we consider dynamic problems. 



10 2. 2 . THE ACO M ETAHEURIS TIC D ESCRIPTION 

The combinatorial optimization problem (S, f, 0) is mapped on a problem 
that can be characterized by the following list of items: 

• A finite set C = { c1 , c2 , ... , CNc } of components is given, where Ne is 
the number of components. 

• The states of the problem are defined in terms of sequences x = 
(e;, , Cj, ... , ch, ... ) of finite length over the elements of C. The set of 
all possible states is denoted by X. The length of a sequence x, that 
is, the number of components in the sequence, is expressed by jxj. 
The maximum length of a sequence is bounded by a positive constant 
n < +oo. 

• The set of (candidate) solutions Sis a subset of X (i.e., S Ç X). 

• A set of feasible states X, with X Ç X , defined via a problem­
dependent test that verifies that it is not impossible to complete a 
sequence x E X into a solution satisfying the constraints n. Note that 
by this definition, the feasibility of a state x E X should be interpreted 
in a weak sense. In fact it does not guarantee that a completion s of x 
e:xists such that s E X. 

• A non-empty set S* of optimal solutions, with S* Ç X and S* Ç S. 

• A cost g(s, t) is associated with each candidate solution s E X. In 
most cases g(s, t) _ f(s, t), \;/ s E X, where X Ç X is the set of feasible 
candidate solutions, obtained from S via the constraints O(t). 

• In some cases a cost, or the estimate of a cost, J(x,t) can be associated 
with states other than candidates solutions. If Xj can be obtained by 
adding solution components to astate Xi., then J(Xi., t) ::; J{xj, t). Note 
that J(s, t) = g(s, t). 

Given this formulation, artificial ants build solutions by performing random­
ized walks on a completely connected graph Ge = ( C, L) whose nodes are 
the components C, and the set of arcs L fully connects the components C. 
The graph Ge is called construction graph and elements of L are called con­
nections. 

The problem constraints O(t) are implemented in the policy followed by 
the artificial ants and is the subject of the next section; this choice depends 
on the combinatorial optimization problem considered. 
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2.2.3 Example of problem mapping: the graph colour-
ing problem 

The graph colouring problem is an example of problem mapped to the ACO 
logic. This problem can be formulated in the following way. A q-colouring 
of a graph (Costa, D. and Hertz, A.(1997)) G = ( V, E) with vertex set 
V = { v1 , .. . , vn} and edge set Eisa mapping c: V-+ {1, 2, .. . , q} such that 
c( vi) =/= c( v3) whenever E con tains an edge [ i, j] linking the vertices vi and Vj. 

The minimal number of colours q for which a q-colouring exists is called the 
chromatic number of G and is denoted x( G). An optimal colouring is one 
which uses exactly x( G) colours. 

Keeping in mind the mapping of a problem as defined in the previous 
section, and the description of the graph colouring problem G = ( V, E), we 
first consider V as the finite set of components. The states of the problem, 
elements of X, are defined in terms of sequences of finite length, in which ver­
tices have already been assigned to colours. Defining a stable set as a subset 
of vertices whose elements are pairwise nonadjacent, then a candidate solu­
tions, element of S of the colouring problem is any partitions= ( Vi, ... , V9 ) 

of the vertex set V into q stable sets ( q not fixed). The objective is then 
to find an optimal solution s* E S*, which corresponds to a q-coloring of G 
with q as small as possible. 

Considering n the number of vertices of V and m the number of 
colours,the mathematical formulation of the problem is the following: 

Since it is always possible to colour any graph G= ( V,E) in n =I V 1 
colours, we set m= n. 

We define the boolean variables X;,j for vertex i and colour j: 

if vertex i receives colour j 
otherwise 

If the admissible set of colours for vertex j is given by: 

then we have that: 

Ji = {1, ... , n} 1 ::; i::; n 

I: X;,j = 1 1 ::; n 
jEJ; 
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The objective function to minimize is given by: 

where ô(z) = { ~ if z > 0 
otherwise 

This function f(x) adds up the numbers associated with the colours used 
in the colouring x. In this way an optimal colouring uses necessarily all 
consecutive colours between 1 and x( G). 

A last set of constraints expressed by: 

Gj(x) = L X;j.Xkj :S O 1 :S j :S n 

(vi,vk]EE 

avoid edges with both endpoints having the same colour. 

2.2.4 The pheromone trail and heuristic value con-
cepts 

In ACO algorithms, artificial ants are stochastic constructive procedures that 
build solutions by moving on a construction graph Ge = (C, L), where the 
set L fully connects the components C. The problem constraints n are built 
into the ants' constructive heuristic. In most applications, ants construct 
feasible solutions. 

Components e;, E L and connections 4j E L can have associated a 
PHEROMONE TRAIL T ( Ti if associated with components, Tij if associated 
with connections), and a HEURISTIC VALUE rJ (rJi and T/ij, respectively): 

PHEROMONE TRAIL 

The pheromone trail encodes a long-term memory about the entire 
ant search process, and is updated by the ants themselves. 

HEURISTIC VALUE 

The heuristic value, also called heuristic information, represents a 
priori information about the problem instance or run-time informa­
tion provided by a source different from the ants. 

In many case, this is the cost, or an estimation of the cost, of adding 
the component or connection to the solution under construction. 



C HAPTER Z . ANT COLONY OPTIMIZATION METAHEURISTI C 13 

The variables storing pheromone trail values contain informations read or 
written by the ants. These values are used by the ant's heuristic rule to make 
probabilistic decisions on how to move on the graph. They permit the indi­
rect communication between those artificial agents, and so their cooperation, 
which is a key design component of ACO algorithm. The ants act concur­
rently and independently; the good-quality solution they found is then an 
emergent property of their cooperative interaction. 

Considering the ACO Metaheuristic from the more general point of view 
of the Learning Process, we can say : 

DISTRIBUTED LEARNING PROCESS 

In a way, the ACO Metaheuristic is a distributed learning process 
in which the single agents, the ants, are not adaptive themselves 
but, on the contrary, adaptively modify the way the problem is 
represented and perceived by other ants. 

We will now look in details the properties that characterize each artificial 
agent. 

2.2.5 The ants' representation 

What follows is the definition of ant's representation presented in (Dorigo, 
M., Stützle T. (2004) Chapter 2) 
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Each ant k of the colony has the following properties: 

• It exploits the construction graph Ge= ( C, L) to search for optimal 
solutions s* E S*. 

• It has a memory M k that it can use to store information about the path 
it followed so far. Memory can be used to (1) build feasible solutions 
(i.e., implement constraints D); (2) compute the heuristic values 'T/; (3) 
evaluate the solution found; and (4) retrace the path backward. 

• It has a start state X: and one or more termination conditions é. 
Usually, the start state is expressed either as an empty sequence or 
as a unit length sequence, that is, a single component sequence. 

• When in state Xr = (Xr- i, i), if no termination condition is satisfied, 
it moves to a node j in its neighborhood Nk ( Xr), that is, to a state 
(:i:r-,j) EX. If at least one of the termination conditions é is satisfied, 
then the ant stops. When an ant builds a candidate solution, moves to 
infeasible states are forbidden in most applications, either through the 
use of the ant's memory, or via appropriately defined heuristic values rJ. 

• It selects a move by applying a probabilistic decision rule. The 
probabilistic decision rule is a function of (1) the locally available 
pheromone trails and heuristic values (i.e., pheromone trails and 
heuristic values associated with components and connections in the 
neighborhood of the ant's current location on graph Ge); (2) the 
ant 's private memory storing its current state; and (3) the problem 
constraints. 

• When adding a component ci to the current state, it can update 
the pheromone trail T associated with it or with the corresponding 
connection. 

• Once it has built a solution, it can retrace the same path backward and 
update the pheromone trails of the used components. 
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2.2.6 The implementation of the metaheuristic 

An ACO algorithm is the interplay of three procedures: ConstructAntsSolu­
tions, UpdatePheromones, and DaemonActions. 

ConstructAntsSolutions manages a colony of ants that concurrently and 
asynchronously visit adjacent states of the considered problem by moving 
through neighbor nodes of the problem's construction graph Ge. 

In their moves, ants apply a stochastic local decision policy, using both 
pheromone trail and heuristic information. In this way, ants incrementally 
build solutions to the optimization problem. 

Once an ant has built a solution, or while the solution is being built, 
the ant evaluates the (partial) solution that will be used by the Up­
datePheromones procedure to decide how much pheromone to deposit. 

UpdatePheromone is the process by which the pheromone trails are mod­
ified. If the ants deposit pheromone on the components or connection they 
use, they increase the trails value. On the other hand, the pheromone evap­
oration contributes to decrease the trails value. 

The deposit of new pheromone increases the probability that those com­
ponents / connections that were either used by many ants or that were used 
by at least one ant and which produced a very good solution will be used 
again by future ants. 

The pheromone evaporation implements a useful form of forgetting by 
avoiding a too rapid convergence of the algorithm toward a suboptimal re­
gion, therefore favoring the exploration of new areas of the search space. 

The DeamonActions procedure is used to implement centralized actions 
which cannot be performed by single ants, being not in possession of the 
global knowledge. As examples of deamon actions, we have: the activation 
of a local optimization procedure, or the collection of global information 
that can be used to decide whether it is useful or not to deposit additional 
pheromone to bias the search process from a nonlocal perspective. 



16 2 .2. THE ACO METAHEURISTIC DESCRIPTION 

The ACQ metaheuristic is described in pseudo-code in figure 2.1. As said 
before, the DeamonActions is optional. 

procedure ACOMetaheuristic 
ScheduleActivities 

ConstructAntsSolutions 
U pdatePheromones 
DaemonActions 

end-ScheduleActivities 
end-procedure 

% optional 

Figure 2.1: The pseudo-code of the ACQMetaheuristic procedure 

The main procedure of the ACQ metaheurisitc manages the schedul­
ing of the three above-discussed components of ACO algorithms via the 
ScheduleActivities construct: (1) management of the ants' activity, (2) 
pheromone updating, and (3) daemon actions. 

The ScheduleActi vi ties construct does not specify how these three 
activities are scheduled and synchronized. The designer is therefore free to 
specify the way these three procedures should interact, taking into account 
the characteristics of the considered problem. 



Chapter 3 

The NP-Complete problems 
and the 'Iraveling Salesman 
Problem 

In this section, we will first quickly introduce the concepts of combinatorial 
problem and computational complexity. We will then define a specific combi­
natorial problem called the " Traveling Salesman Problem " (TSP), his main 
interests and variants. We will briefly describe the different algorithms used 
to find optimal or near-optimal solutions to this problem. 

3.1 Combinatorial optimization and compu­
tational complexity 

Combinatorial optimization problems involve finding values for discrete vari­
ables such that the optimal solution with respect to a given objective function 
is found. They can be either maximization or minimization problems which 
have associated a set of problem instances. 

The term problem refers to the general problem to be solved, usually 
having several parameters or variables with unspecified values. The term 
instance refers to a problem with specified values for all the parameters. 

17 
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An instance of a combinatorial optimization problem II is a triple (S, f, D) , 
where S is the set of candidate solutions, f is the obje.ctive function which 
assigns an objective function (cost) value f(s) 1 to each candidate solution 
s E S, and n 2 is a set of constraints. The solutions belonging to the set 
S Ç S of candidate solutions that satisfy the constraints n are called feasible 
solutions. The goal is to find a globally optimal feasible solution s*. 

When attacking a combinatorial problem it is useful to know how difficult 
it is to find an optimal solution. A way of measuring this difficulty is given by 
the notion of worst-case complexity: a combinatorial optimization problem 
II is said to have worst-case time complexity O(g(n)) if the best algorithm 
known for solving II finds an optimal solution to any instance of II having 
size n in a computation time bounded from above by const. g ( n). 

In particular, we say that II is solvable in polynomial time if the maximum 
amount of computing time necessary to solve any instance of size n of II is 
bounded from above by a polynomial in n. If k is the largest exponent of 
such a polynomial, then the combinatorial optimization problem is said to 
be solvable in 0( nk) time. 

A POLYNOMIAL TIME ALGORITHM 

A polynomial time algorithm is defined to be one whose compu­
tation time is O(p( n)) for some polynomial function p, where n is 
used to denote the size. 

EXPONENTIAL TIME ALGORITHM 

Any algorithm whose computation time cannot be so bounded is 
called an exponential time algorithm. 

An important theory that characterizes the difficulty of combinatorial 
problems is that of NP-completeness. This theory classifies combinatorial 
problem in two main classes: those that are known to be solvable in poly­
nomial time, and those that are not. The first are said to be tractable, the 
latter intractable. For the great majority of the combinatorial problems, no 
polynomial bound on the worst-case solution time could be found so far. 
The Traveling Salesman Problem (TSP) is an example of such intractable 
problem. The graph coloring problem is another one. 

1 f can be dependent in tune, when we consider dynamic problems. 
20 can be dependent intime, when we consider dynamic problems. 
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TRACTABLE and INTRACTABLE PROBLEM 

Problems that are solvable in polynomial time are said to be 
tractable. Problems that are not solvable in polynomial time are 
said to be intractable. 
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The theory of NP-completeness distinguishes between two classes of 
problems: the class P for which an algorithm outputs in polynomial time 
the correct answer ( "yes" or "no"), and the class NP for which an algorithm 
exists that verifies for every instance in polynomial time whether the answer 
"yes" is correct. 

A particularly important role is played by procedures called polynomial 
time reductions. Those procedures transform a problem into another one by 
a polynomial time algorithm. If this last one is solvable in polynomial time, 
so is the first one too. A problem is NP-hard, if every other problem in 
NP can be transformed to it by a polynomial time reduction. Therefore, an 
NP-hard problem is at least as hard as any of the other problem in NP. 
However, NP-hard probletns do not necessarily belong to NP. An NP­
hard problem that is in NP is said to be NP-complete. The NP-complete 
problems are the hardest problems in NP: if a polynomial time algorithm 
could be found for an NP-complete problem, then all problems in the NP­
complete class could be solved in polynomial time; but no such algorithm 
has been found until now. A large number of algorithms have been proved 
to be NP-complete, including the Traveling Salesman Problem. 

For more details on computational complexity, we recommend to consult the 
reference Garey, M.R., & Johnson, D.S. (1979). 

Two classes of algorithms are available for the solution of combinatorial 
optimization problems: exact and approximate algorithms. Exact algorithms 
are guaranteed to find the optimal solution and to prove its optimality for 
every finite size instance of a combinatorial optimization problem within an 
instance-dependent run time. 
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If optimal solutions cannot be efficiently obtained in practice, the only pos­
sibility is to trade optimality for efficiency. In other words, the guarantee of 
finding optimal solutions can be sacrificed for the sake of getting very good 
solutions in polynomial time. Approximate algorithms, often also loosely 
called heuristic methods or simply heuristics, seek to obtain good, that is 
near-optimal solutions at relatively low computational cost without being 
able to guarantee the optimality of solutions. Based on the underlying tech­
niques that approximate algorithm use, they can be classified as being either 
constructive or local search methods. 

A disadvantage of those single-run algorithms is that they either generate 
only a very limited number of different solutions, or they stop at poor-quality 
local optima. The fact of restarting the algorithm several times from new 
starting solutions, often does not produce significant improvements in prac­
tice. 

Several general approaches, which are nowadays often called metaheuris­
tics, have been proposed which try to bypass these problems. A metaheuristic 
is a set of algorithmic concepts that can be used to define heuristic methods 
applicable to a wide set of different problems. In particular, the ant colony 
optimization is a metaheuristic in which a colony of artificial ants cooperate 
in finding good solutions to difficult discrete optimization problems. 

3.2 Interest of the traveling salesman prob­
lem 

The TSP is an important NP-complete optimization problem; its popularity 
is due to the fact that TSP is easy to formulate, difficult to solve and has a 
large number of applications, even if many of them seemingly have nothing 
to do with traveling routes. 

An example of an instance of the TSP is the process planning problem 
(Helsgaun, K. (2000)), where a number of jobs have to be processed on a 
single machine. The machine can only process one job at a time. Before a 
job can be processed the machine must be prepared. Given the processing 
time of each job and the switch-over time between each pair of jobs, the task 
is to find an execution sequence of the jobs making the total processing time 
as short as possible. 

Many real-world problems can be formulated as instances of the TSP. Its 
versatility is illustrated in the following examples of applications areas: 
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•Computer wiring 
• Vehicle routing 
•Determination of protein structures by X-ray crystallography 
•Route optimization in robotic 
•Drilling of printed circuit boards 
•Chronological sequencing 
• Maximum effi.ciency or minimum cost in process allocation 
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3.3 Description of the traveling salesman 
problem 

Intuitively, the traveling salesman problem is the problem faced by a salesman 
who, starting from his home town, wants to find the shortest possible trip 
through a given set of customer cities, visiting each city once before finally 
returning home. 

The TSP can be represented by a complete weighted graph G = (N,A) 
with N being the set of n = 1 N] nodes ( cities) , A being the set of arcs full y 
connecting the nodes. Each arc ( i, j) E A is assigned a weight ~j which 
represents the distance between cities i and j, with i, j E N. 

The traveling salesman problem (TSP) is then the general problem of 
finding a minimum cost Hamiltonian circuit in this weighted graph, where a 
Hamiltonian circuit is a closed walk ( a tour) visiting each node of G exactly 
once. 

An optimal solution to an instance of the TSP can be represented as a 
permutation 7r of the node (city) indices {1, 2, ... , n} such that the length 
J(1r) is minimal, where f (1r) is given by: 

n - 1 

Î\ 1f) = L d,,.{i)1r{i+l) + d,,.{n)1r{l) · 
i=l 

where dij is the distance between cities i and j, and 1r is a permutation of 
(1, 2, ... ,n). 

An instance J N(D) of the TSP problem over N is defined by a distance 
matrix D=( d)ij. 

A solution of this problem is a vector 7r where j = 1r(k) means that city j 
is visited at step k. 



22 3 .4 . DIFFERENT VARIANTS OF THE TRAVELING SALESMAN PRO DLEM 

3.4 Different variants of the traveling sales­
man problem 

We may distinguish between symmetric TSPs, where the distances between 
the cities are independent of the direction of traversing the arcs, that is, 
d;,i = dji for every pair of nodes, and the asymmetric TSP (ATSP), where at 
least for one pair of nodes ( i,j) we have d;,i -=I= d;i- The factor dij are used to 
classify problems. 

SYMMETRIC TSP (STSP) 

If d;,i = dji , Vi, j EN, the TSP problem is said to be symmetric. 

ASYMMETRIC TSP (ATSP) 

If :3i, j E N: d;,j -=I= dji, the TSP problem is said to be asymmetric. 

Based on the triangle inequality, we can also say that: 

METRIC TSP (MTSP) 

If the triangle inequality holds (dik ~ dii + dik, Vi,j, k E N), the 
problem is said to be metric. 

And finally, based on the euclidean distances between points in the plane, 
we have: 

EUCLIDEAN TSP (ETSP) 

If dij are Euclidean distances between points in the plane, the prob­
lem is said to be Euclidean. A Euclidean problem is, of course, both 
symmetric and metric. 

3.5 Exact solutions of the traveling salesman 
problem 

The NP-Hardness results indicate that it is rather difficult to solve large 
instances of TSP to optimality. Nevertheless, there are computer codes that 
can solve many instances with thousands of vertices within days. 
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EXACT ALGORITHM 

An exact algorithm is an algorithm that always produces an optimal 
solution. 
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There are essentially two methods useful to salve TSP to optimality: the 
integer programming approach and the dynamic programming. 

3.5.1 Integer programming approaches 

The classical integer programming formulation of the TSP (Laburthe, F. 
(1998)) is the following: define zero-one variables xij by 

x. _ = { 1 if the tour traverses arc ( i,j) 
iJ O otherwise 

Let ~j be the weight on arc (i,j). Then the TSP can be expressed as: 

min L ~jXij 
i,j 

VS c V, S -1 0, L L Xij 2: 2 
iESH.S 

The first set of constraints ensures that a tour must corne into vertex j 
exactly once, and the second set of constraints indicates that a tour must 
leave every vertex i exactly once. There are so two arcs adjacent to each 
vertex, one in and one out. But this does not prevent non-hamiltonian cy­
cles. Instead of having one tour, the solution could consist of two or more 
vertex-disjoint cycles (called sub-tours). The role of the third set of con­
straints, called sub-tour elimination constraints is to avoid the formation of 
such solutions. 
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The formulation without the third set of constraints is an integer pro­
gramming formulation of the Assignment Problem that can be solved in 
time O(n3

), each city being connected with its nearest city such that the to­
tal cost of all connection is minimized. A solution of the Assignment Problem 
is a minimum-weight collection of vertex-disjoint cycle C1, ... , Ct spanning 
the complete directed graph. If t = l, then an optimal solution of ATSP has 
been obtained. Otherwise, one can consider two or more subproblems. For 
example, for an arc a E Ci, one subproblem could require that arc a be in 
the solution, and a second subproblem could require that arc a not be in the 
solution. This simple idea gives a basis for branch-and-bound algorithms for 
ATSP. Other algorithms were also developed, adding more sub-tour elimina­
tion constraints. They are called branch and eut and are more efficient for 
solving the TSP. 

3.5.2 Dynamic programming 

The dynamic programming (Laburthe, F. (1998)) is a general technique for 
exact resolution of combinatorial optimization problems, and consisting to 
explicitly enumerate the all set of solutions of the problem. This technique 
needs a recurrent formulation of the TSP problem. Calling an hamiltonian 
chain every path containing only once every vertex, if V = {O, ... , n}, for 
E {1, ... , n} and S Ç {1, ... , n}, x (/. S, we write f(S,x) the length of the 
smallest hamiltonian chain starting from 0, visiting all vertices of S and 
finishing in x. f can be calculated with the recurrent function: 

f(S, x) = minyEs(J(S- {y}, y)+ d(y, x)) 

and the value of the optimal tour length is f( { 1, . .. , n}). The calculation of 
the optimal tour needs to store n2n values off: 2n parts of {1, . .. ,n} for 
the first argument and all the values of {1, ... , n} for the second argument. 

The interest of the dynamic programming lies in the rapidity of the cal­
culations for one part, and in the possibility of integration of new constraints 
( for instance time windows). The disadvantage cornes from the memory size 
which is necessary for the calculations. For this last reason, this method is 
limited to small problems of at most 15 nodes. 
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3.6 Heuristic solutions of the traveling sales­
man problem 

Exact Algorithms cannot be relied upon for applications requiring very fast 
solutions or ones that involve huge problem instances. Although approximate 
algorithms forfeit the guarantee of optimality, with good heuristics they can 
normally produce solutions close to optimal. In the case of the TSP, the 
heuristics can be roughly partitioned into two classes (Nilsson, CH.): con­
struction heuri,stics and improvement heuri,stics. 

APPROXIMATE ALGORITHM 

An approximate ( or approximation) algorithm is an algorithm that 
typically makes use of heuristics in reducing its computation but 
produces solutions that are not necessarily optimal. 

CONSTRUCTION HEURISTICS 

Approximate algorithms based on construction heuristics build a 
tour from scratch and stop when one is produced. 

IMPROVEMENT HEURISTICS 

Approximate algorithms based on improvement heuristics start 
from a tour and iteratively improve it by changing some parts of it 
at each iteration. 

When evaluating the empirical performance of heuristics, we are often not 
allowed the luxury of comparing to the precise optimal tour length, since 
for large instances we typically do not know the optimal tour length. As 
a consequence, when studying large instances it has become the practice to 
compare heuristic results to something we can compute; the lower bound 
on the optimal tour length due to Held and Karp, noted ('HX,b)- In case 
of the TSP, this bound is the solution to the linear programming relaxation 
of the integer programming formulation of this problem. The excess over 
Held-Karp Lower bound is given by: 
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1i(IN(D)) - H/Cb(IN(D)) lOOo/c 
HJCb(lN(D)) . 

0 

where lN(D) is an instance of the TSP problem on a set N of n cities, with 
D being the matrix of distances between those cities. 

We will first consider the heuristic methods coming under the tour construc­
tion. 

3.6.1 Tour construction 

The algorithms based on tour construction stop when a solution is found and 
never try to improve it. For each algorithm, the time complexity is given. 

N earest neighbor 

This is the simplest and most straightforward TSP heuristic. The key of this 
algorithm is to always visit the nearest city. 

Nearest Neighbor, 0( n2
) 

1. Select a random city. 

2. Find the nearest unvisited city and go there. 

3. If there are unvisited cities left, repeat step 2. 

4. Return to the first city. 

The Nearest Neighbor algorithm will often keep its tours within 25 % of the 
Held-Karp lower bound. 

Greedy heuristic 

The Greedy heuristic gradually constructs a tour by repeatedly selecting the 
shortest edge and adding it to the tour as long as it doesn 't create a cycle 
with less than N edges, or increases the degree of any node to more than 2. 

Greedy, 0 ( n2 log2 ( n)) 
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1. Sort all edges_ 

2. Select the shortest edge and add it to our tour if it doesn't violate any 
of the above constraints. 

3. If we don't have N edges in the tour, repeat step 2. 

The Greedy algorithm normally keeps within 15-20% of the Held-Karp lower 
bound. 

Insertion heuristics 

The basics of insertion heuristics is to start with a tour of a subset of all 
cities, and then inserting the rest by some heuristic. The initial subtour is 
often a triangle or the convex hull. One can also start with a single edge as 
subtour. 

Nearest Insertion, O(n2
) 

1. Select the shortest edge, and make a subtour of it. 

2. Select a city not in the subtour, having the shortest distance to any of 
the cities in the subtour_ 

3. Find an edge in the subtour such that the cost of inserting the selected 
city between the edge's cities will be minimal. 

4. Repeat steps 2 and 3 until no more cities remain. 

Convex Hull, O(n2 log2 (n)) 

1. Find the convex hull of our set of cities, and make it our initial subtour. 

2. For each city not in the subtour, find its cheapest insertion (as in 
step 3 of the Nearest Insertion). Then choose the city with the least 
cost/increase ratio, and insert it. 

3. Repeat step 2 until no more cities remain. 

For big instances, the insertion heuristic normally keeps within 29% of the 
Held-Karp lower bound. 

Clarke-Wright or savings algorithm 

Clarke-Wright, O(n2 log2 (n)) 
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The Clarke-Wright savings heuristic (Johnson, D.S., McGeoch, L.A. (1997)) 
is derived from a more general vehicle routing algorithm due to Clarcke and 
Wright. In terms of the TSP, we start with a pseudo-tour in which an 
arbitrarily chosen city is the hub and the salesman return to the hub after 
each visit to another city. For each pair of non-hub cities, let the savings 
be the amount by which the tour would be shortened if the salesman went 
directly from one city to the other, bypassing the hub. The next step proceeds 
analogously to the the Greedy algorithm, going through the non-hub city 
pairs in non-increasing order of savings, performing the bypass so long as 
it does not create a cycle of non-hub vertices or cause a non-hub vertex to 
become adjacent to more than two other non-hub vertices. The construction 
process terminates when only two non-hub cities remain connected to the 
hub, in which case we have a true tour. 

For big instances, the savings algorithm normally keeps within 12% of the 
Held-Karp lower bound. 

Christofides 

The Christofides heuristic extends the Double Minimum Spanning Tree al­
gorithm (complexity in O(n2 log2 (n))) with a worst-case ratio of 2 (i.e. a tour 
with twice the length of the optimal tour). This new extended algorithm has 
a worst-case ratio of 3/2. 

Christofides Algorithm, worst-case ratio 3/2, O(n3 ). 

1. Build a minimal spanning tree from the set of all cities. 

2. Create a minimum-weight matching on the set of nodes having an odd 
degree. Add the minimal spanning tree together with the minimum­
weight matching. 

3. Create an Euler cycle from the combined graph, and traverse it taking 
shortcuts to avoid visited nodes. 

The Christofides' algorithm tends to place itself around 10% above the Held­
Karp lower bound. 

3.6.2 Tour improvement 

Once a tour has been generated by some tour construction heuristic, it is 
possible to improve it by some local searches methods. Among them we 
mainly find 2-opt and 3-opt. Their performances are somewhat linked to the 
construction heuristic used. 
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2-opt and 3-opt 

The 2-opt algorithm (see figure 3.1) removes two edges from the tour (edges 
(t4 , t3 ) and (t2 , t1 )), and reconnects the two paths created (edges (t4 , t1) and 
(t3, t2)). There is only one way to reconnect the two paths so that we still 
have a valid tour. This is done only if the new tour will be shorter and stop 
if no 2-opt improvement can be found. The tour is now 2-optimal. 

-

Figure 3.1 A 2-opt move 

The 3-opt algorithm (see figure 3.2) works in a similar fashion, but three 
edges (x1, x 2 and x 3 ) are removed instead of two. This means that there are 
two ways of reconnecting the three paths into a valid tour ( for instance y1 , y2 

and y3). A 3-opt move can be seen as two or three 2-opt moves. The search 
is finished when no more 3-opt moves can improve the tour. 

Figure 3.2 A 3-opt move 
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The 2-opt and 3-opt algorithms are a special case of the k-opt algorithm, 
where in each step k links of the current tour are replaced by k links in such 
a way that a shorter tour is achieved. The k-opt algorithm is based on the 
concept k-optimality: 

K-OPTIMAL 

A tour is said to be k-optimal ( or simply k-opt) if it is impossible 
to obtain a shorter tour by replacing any k of its links by any other 
set of k links. 

Running the 2-opt heuristic will often result in a tour with a length less than 
5% above the Held-Karp bound. The improvements of a 3-opt heuristic will 
usually give a tour about 3% above the Held-Karp bound. 

About the complexity of these k-opt algorithms, one has to notice that a move 
can take up to O(n) to perform. A naive implementation of 2-opt runs in 
O(n2

), this involves selecting an edge (c1 , c2 ) and searching for another edge 
(c3, c4), completing a move only if dist(c1 , c2) + dist(c3 , c4) > dist(c2, c3) + 
dist(c1 , c4). 

The search can be pruned if dist(c1 , c2 ) > dist(c2, c3 ) does not hold. This 
means that a large piece of the search can be eut by keeping a list of each 
city's closest neighbors. This extra information will of course take extra time 
to calculate (O(n2log2n)). Reducing the number of neighbors in the lists will 
allow to put this idea in practice. 

By keeping the m nearest neighbors of each city, it is possible to improve the 
complexity to 0( mn). The calculation of the nearest neighbors for each city 
is a static information for each problem instance and needs to be done only 
once. It can be reused for any subsequent runs on that particular problem. 

Finally, a 4-opt algorithms or higher will take more and more time and will 
only yield a small improvement on the 2-opt and 3-opt heuristics. 

Lin-Kernighan 

The Lin-Kernighan algorithm (LK) is a variable k-opt algorithm. The main 
idea is to decide at each step which k is the most suitable to reduce at 
maximum the length of the current tour. 

Those k-opt moves are seen as a sequence of 2-opt moves. Every 2-opt move 
always deletes one of the edge added by the previous move. The algorithm 
is described below: 
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Let T be the current tour_ At each iteration step, the algorithm attempts to 
find two sets of links, X = {xi, ... , Xr} and Y = {Y1, ... , Yr }, such that, if 
the links of X are deleted from T and replaced by the links of Y, the result 
is a better tour. This interchange of links is a r-opt move. The two sets X 
and Y are constructed element by element. Initially, X and Y are empty. In 
step i a pair of links, xi and Yi, are added to X and Y respectively. 

In order to achieve a sufficient efficient algorithm, only links that fulfill the 
following criteria may enter X and Y. 

1. The sequential exchange criterion (see figure 3.3): xi and Yi must share 
an endpoint, and so must Yi and Xi+l· If t1 denotes one of the two 
endpoints of x1, we have in general that: xi = (h- 1, t2i), Yi = (t2i, t2i+1) 
and Xi+1 = (t2i+1, t2i+2) for i ~ 1. 

Figure 3.3 Restricting the choice of Xi, Yi, Xi+1 and Yi+l . 

2. The feasibility criterion: It is required that xi = (t2i-l, h) is chosen 
so that, if t 2i is joined to t 1 , the resulting configuration is a tour. This 
criterion is used for i ~ 3 and guarantees that it is possible to close up 
a tour. 

3. The positive gain criterion: It is required that Yi is always chosen so 
that the gain, Gi, from the proposed set of exchanges is positive. If we 
suppose 9i = c(xi) - c(yi) is the gain from exchanging xi with Yi, then 
Gi is the sum 91 + 92 + .. . + 9i· 

4. The disjunctivity criterion: It is required that the sets X and Y are 
disjoint. 

So the basic algorithm limits its search by using the following four rules: 
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1. Only sequential exchanges are allowed. 

2. The provisional gain must be positive. 

3. The tour can be 'closed'. 

4. A previously broken link must not be added, and a previously added 
link must not be broken. 

In order to limit or to direct the search even more, additional rules were 
introduced: 

1. The search for a link to enter the tour, Yi = (t2i, t 2H 1), is limited to the 
five nearest neighbors to t2i. 

2. Th search for improvements is stopped if the current tour is the same 
as previous solution tour. 

3. When link Yi(i ~ 2) is to be chosen, each possible choice is given the 
priority c(xi+i) - c(yi)-

The two first rules save running time (30 to 50 percent), but sometimes at 
the expense of not achieving the best possible solutions. If the algorithm 
has a choice of alternatives, the last rule permits to give priorities to these 
alternatives, by ranking the links to be added to Y. The priority for Yi is the 
length of the next link to be broken, xi+1 , if Yi is included in the tour, minus 
the length of Yi· By maximizing the quantity c(xi+i) - c(yi), the algorithm 
aims at breaking a long link and including a short link. 

The time complexity of LK is O(n2·2 ), making it slower than a simple 2-opt 
implementation. This algorithm is considered to be one of the most effective 
methods for generating optimal or near-optimal solutions for the TSP. 

Tabu-search 

A neighborhood-search algorithm searches among the neighbors of a can­
didate solution to find a better one. Such process can easily get stuck in a 
local optimum. The use of tabu-search can avoid this by allowing moves with 
negative gain if no positive one can be found. By allowing negative gain we 
may end up running in circles, as one move may counteract the previous. To 
avoid this, the tabu-search keeps a tabu-list containing illegal moves. After 
moving to a neighboring solution the move will be put on the tabu-list and 
will thus never be applied again unless it improves the best tour or the tabu 
has been pruned from the list. 
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There are several ways to implement the tabu list. One involves ad.ding the 
two edges being removed by a 2-opt move to the list. Another way is to 
add the shortest edge removed by a 2-opt move, and then making any move 
involving this edge tabu. 

Most implementations for the TSP in tabu-search will take O(n3 ), making 
it far slower than a 2-opt local search. Given that we use 2-opt moves, the 
length of the tours will be slightly better than that of a standard 2-opt search. 

Simulated annealing 

Simulated Annealing (SA) has been successfully adapted to give approximate 
solutions for the TSP. SA is basically a randomized local search algorithm 
allowing moves with negative gain. An implementation of SA for the TSP 
uses 2-opt moves to find neighboring solutions. The resulting tours are com­
parable to those of a normal 2-opt algorithm. Better results can be obtained 
by incorporating neighborhood lists, so that the algorithm can compete with 
the LK algorithm. 

Genetie Algorithms 

Genetie Algorithms (GA) work in a way similar to nature. An evolution­
ary process takes place within a population of candidate solutions. A basic 
Genetie Algorithm starts out with a randomly generated population of candi­
date solutions. Sorne ( or all) candidates are then mated to produce offspring 
and some go through a mutating process. Each candidate has a fitness value 
telling us how good they are. By selecting the most fit candidates for mating 
and mutation the overall fitness of the population will increase. 

Applying GA to the TSP involves implementing a crossover routine, a 
mutation routine and a measure of fitness. Sorne implementations have shown 
good results, even better than the best of several LK runs, but running time 
lS an lSSUe. 
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3. 7 Synthesis of the different algorithms 

The following table present a synthesis of the différent algorithms previously 
presented. For 2-opt and 3-opt, m represents the nearest neighbors of each 
city. In the following table, 1i/C means Held-Karp lower bound. 

Algo. Complexity Sol. quality 
Near. Neighbor O(n2

) 25% 1i/C 
Greedy O(n2 log2(n)) 15%-20% 1iK 
Insertion O(n2 log2(n)) 29% 1i/C 
Christofides O(n3 ) 10% 1iK 
2-opt 3-opt O(mn) 3% 1i/C 
Saving Algo. 0( n2log2( n)) 12% 1iK 
Sim. Annealing O(n2) 3% 1i/C 
Lin-Kernighan O(n2.2) 318 cities in 1 

sec; optimal so-
lution for 7397 
cities 

Tabu Search O(n3 ) 3% 1i/C 



Chapter 4 

Ant Colony Optimization and 
the Traveling Salesman 
Problem 

4.1 Application of the ACQ algorithms to the 
TSP 

ACQ can be applied to the TSP in a straightforward way. 

• Construction graph: The construction graph is identical to the problem 
graph: the set of components C is identical to the set of nodes (i.e. , 
C=N), the connections correspond to the set of arcs (i.e., L= A), and 
each connection has a weight which corresponds to the distance d;,j 
between nodes i and j . The states of the problem are the set of all 
possible partial tours. 

• Constraints: The only constraint in the TSP is that all cities have to 
be visited and that each city is visited at most once. This constraint is 
enforced if an ant at each construction step chooses the next city only 
among those it has not visited yet (i.e., the feasible neighborhood Nik 

of an ant k in city i, where k is the ant 's identifier, comprises all cities 
that are still unvisited). 

35 
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• Pheromone trails and heuristic information: The pheromone trails Tij 

in the TSP refer to the desirability of visiting city j directly after i. 
The heuristic information 'f/ij is typically inversely proportional to the 
distance between cities i and j, a straightforward choice being T/i j = 
1/~j-

• Solution construction: Each ant is initially placed in a randomly chosen 
start city and at each step iteratively adds one unvisited city to its 
partial tour. The solution construction terminates once all cities have 
been visited. 

Tours are constructed by applying the following simple constructive pro­
cedure to each ant: after having chosen a start city at which the ant is 
positioned, (1) use pheromone and heuristic values to probabilistically con­
struct a tour by iteratively adding cities that the ant has not visited yet, 
until all cities have been visited; and (2) go back to the initial city. 

4.2 Ant system and its direct successors 

The first ACQ algorithm, Ant System (AS), was developed by Professor 
Dorigo in 1992 (Dorigo, 1992). This algorithm was introduced using the TSP 
as an example application. AS achieved encouraging initial results, but was 
found to be inferior to state-of-the-art algorithms for the TSP. The impor­
tance of AS therefore mainly lies in the inspiration it provided for a number of 
extensions that significantly improved performance and are currently among 
the most successful ACQ algorithms. In fact most of these extensions are 
direct extensions of AS in the sense that they keep the same solution construc­
tion procedure as well as the same pheromone evaporation procedure. These 
extensions include elitist AS, rank-based AS, and MAX - MIN AS. The 
main differences between AS and these extensions are the way the pheromone 
update is performed, as well as some additional details in the management 
of the pheromone trails. A few other ACO algorithms that more substan­
tially modify the features of AS were also developed; those algorithms are the 
Ant Colony System (ACS), the Approximate Nondeterministic Tree Search 
and the Hyper-Cube Framework for ACQ. Only the ACS will be briefly pre­
sented; for the others, we invite the reader to consult the reference (Dorigo, 
M., Stützle T. (2004) Chapter 3). 

Those algorithms are presented in the order of increasing complexity in 
the modifications they introduce with respect to AS. 
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4.2.1 The ant system 

In the early 1991, three different versions of AS (Dorigo, M., Maniezzo, 
V., Colorni, A. (1991a)) were developed: they were called ant-density, ant­
quantity and ant-cycle.Whereas in the ant-density and ant-quantity versions 
the ants updated the pheromone directly after a move from one city to an 
adjacent city, in the ant-cycle version the pheromone update was only done 
after all the ants had constructed the tours and the amount of pheromone 
deposited by each ant was set to be a function of the tour quality. Due 
to their inferior performance the ant-density and ant-quantity versions were 
abandoned and the actual AS algorithm only refers to the ant-cycle version. 

The two main phases of the AS algorithm are the ants ' solution construc­
tion and the pheromone update. The initialization of the pheromone trails 
is made by a value slightly higher than the expected amount of pheromone 
deposited by the ants in one iteration; a rough estimation of this value is ob­
tained by setting, \/(i,j),Tij = To = m/ Cnn, where mis the number of ants, 
and cnn is the length of a tour generated by the nearest-neighbor heuristic. 

The reason for this choice is that if the initial pheromone values To 's are 
too low, then the search is quickly biased by the first tours generated by the 
ants, which in general leads toward the exploration of inferior zones of the 
search space. On the other hand, if the initial pheromone values are too high, 
then many iterations are lost waiting until pheromone evaporation reduces 
enough pheromone evaporation, so that pheromone added by ants can start 
to bias the search. 

Tour construction 

In AS, m artificial ants concurrently build a tour of the TSP. At each 
construction step, ant k applies a probabilistic action choice rule, called ran­
dom proportional rule, to decide which city to visit next. In particular, the 
probability with which ant k currently at city i, chooses to go to city j is 

·f · ~ rk 
1 JE JVi , (4.1) 
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where T/ij = 1/ <4j is a heuristic that is available a priori, a and /3 are two 
parameters which determine the relative influence of the pheromone and the 
heuristic information, and N;k is the feasible neighborhood of ant k when 
being at city i, that is, the set of cities that ant k has not visited yet. By this 
probabilistic rule, the probability of choosing a particular arc ( i, j) increases 
with the value of the associated pheromone trail Tij and of the heuristic 
information value T/ij . 

The discussion about the values of the parameters a and /3 is the follow­
ing: if a= 0, the closest cities are more likely to be selected; if /3= 0, only 
the pheromone is at work, without any heuristic bias. This generally leads 
to rather poor results and, in particular, for a > 1 it leads to the rapid emer­
gence of a stagnation situation, that is, a situation in which all the ants follow 
the same path and construct the same tour, which, in general, is strongly 
suboptimal. 

Each ant k maintains a memory Mk which contains the cities already 
visited, in the order they were visited. This memory is used to define the 
feasible neighborhood N;k in the construction rule given by equation ( 4.1). 
This memory also allows ant k both to compute the length of the tour T k 

it generated and to retrace the path to deposit pheromone. 

U pdate of pheromone trails 

After all the ants have constructed their tours, the pheromone trails are 
updated. First the pheromone values on all arcs are lowered by a constant 
factor, after what pheromone values are added on the arcs the ants have 
crossed in their tours. Pheromone evaporation is implemented by 

(4.2) 

where 0 < p ::; 1 is the pheromone evaporation rate. Evaporation avoids 
unlimited accumulation of the pheromone trails and enables the algorithm 
to forget bad decisions previously taken. After evaporation, all ants deposit 
pheromone on the arcs they have crossed in their tour: 

m 

Ti j - Tij + L ~Ti}, 
k= I 

V(i,j) EL, (4.3) 

where ~Ti~ is the amount of pheromone ant k deposits on the arcs it has 
visited. It is defined as follows: 
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if arc ( i, j) belongs to Tk; 
otherwise; 
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(4.4) 

where k, the length of the tour Tk built by the k-th ant, is computed as the 
sum of the lengths of the arcs belonging to Tk. By means of equation (4.4), 
the better an ant's tour is, the more pheromone the arcs belonging to this 
tour receive. In general, arcs that are used by many ants and which are part 
of short tours, receive more pheromone and are therefore more likely to be 
chosen by ants in future iterations of the algorithm. 

4.2.2 The elitist ant system 

A first improvement on the initial AS, called the elitist strategy for Ant 
System (EAS), was introduced by Dorigo (Dorigo, 1992; Dorigo et al., 1991a, 
1996). The idea is now to provide strong additional reinforcement to the arcs 
belonging to the best tour found since the start of the algorithm; this tour 
is denoted Tbs (best-so-far tour) in the following. 

U pdate of pheromone trails 

The additional reinforcement of tour T bs is achieved by adding a quantity 
e/ C bs to its arcs, where e is a parameter that defines the weight given to the 
best-so-far tour T bs, and C bs is its length. The equation for the pheromone 
deposit is now: 

m 

Tij +- Tij + L ô.Ti~ + eô.TfJ, (4.5) 
k= l 

where ô.Ti~ is defined as in equation(4.4) and ô.Ti~s is defined as follows: 

if arc ( i, j) belongs to Tbs; 

otherwise; 
(4.6) 

In EAS, the pheromone evaporation stay implemented as it is in AS. 
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4.2.3 The ranked-based ant system 

In the next improved version, called the rank-based version of AS (ASrank) 
(Bullnheimer et al., 1999c), each ant deposits an amount of pheromone that 
decreases with its rank. Additionally, as in EAS, the best-so-far ant always 
deposits the largest amount of pheromone in each direction. 

U pdate of pheromone trails 

Before updating the pheromone trails, the ants are sorted by increasing tour 
length and the quantity of pheromone an ant deposits is weighted according 
to the ranlc r of the ant. In each iteration only the ( w-1) best-ranked ants and 
the ant that produced the best-so-far tour are allowed to deposit pheromone. 

The best-so--far tour gives the strongest feedback, with weight w; the r-th 
best ant of the current iteration contributes to pheromone updating with the 
value 1/ cr multiplied by a weight given by max{0, w-r }. Thus, the ASrank 
pheromone update rule is: 

w-1 

Tij -Tij + I:(w - r)~r; + w~rtS. (4.7) 
r=l 

where ~Tt = 1/C r and ~7?5 = 1/C bs iJ iJ . 

4.2.4 The max-min ant system 

The next version, called MAX - MIN Ant System (MMAS) (Stützle & 
Hoos, 1997, 2000; Stützle, 1999), introduces four main modifications with 
respect to AS. 

First , it strongly exploits the best tours found: only either the iteration 
best-ant, that is, the ant that produced the best tour in the current iteration, 
or the best-so-far ant is allowed to deposit pheromone. Unfortunately, such 
a strategy may lead to a stagnation situation in which all the ants follow the 
same tour, because of the excessive growth of pheromone trails on arcs of a 
good, although suboptimal, tour. 

To counteract this effect, a second modification has been introduced by 
MMAS: the limitation of the possible range of pheromone trail values to 
the interval [Tmin, Tmax]-
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Third, the pheromone trails are initialized to the upper pheromone trail 
limit, which, together with a small pheromone evaporation rate, increases 
the exploration of tours at the start of the search. 

Finally, in MMAS, pheromone trails are initialized each time the system 
approaches stagnation or when no improved tour has been generated for a 
certain number of consecutive iterations. 

U pdate of pheromone trails 

After all ants have constructed a tour, pheromones are updated by ap­
plying evaporation as in AS, followed by the deposit of new pheromone as 
follows: 

(4.8) 

where fl Tirst = 1 / C be
st

. The ant which is allowed to add pheromone may 
be either the best-so-far, in which case flTi?t = 1/ cbs, or the iteration-best, 
in which case flTi1st = 1/ cib' where cib is the length of the iteration-best 
tour. In general, in MMAS implementations both the iteration-best and 
the best-so-far update rules are used, in an alternate way. 

Pheromone trail limits 

In MMAS, lower and upper limits Tmin and Tmax on the possible 
pheromone values on any arc are imposed in order to avoid search stag­
nation. In particular, the imposed pheromone trail limits have the effect of 
limiting the probability Pij of selecting a city j when an ant is in city i to 
the interval [Tmin, Tmaxl, with O < Pmin ::; Pij ::; Pmax ::; 1. 

U pdate of pheromone trails 

At the start of the algorithm, the initial pheromone trails are set of the 
upper pheromone trail limit. This way of initializing the pheromone trails, in 
combination with a small pheromone evaporation parameter, causes a slow 
increase in the relative difference in the pheromone trail levels, so that the 
initial search phase of MMAS is very explorative. 

As a further means of increasing the exploration of paths that have only a 
small probability of being chosen, in MMAS pheromone trails are occasion­
ally reinitialized. Pheromone trail reinitialization is typically triggered when 
the algorithm approaches the stagnation behavior or if for a given number 
of algorithm iterations no improved tour is found. 



42 4 .2 . ANT S Y S TEM AND ITS DIREC T SUCCESSORS 

4.2.5 The ant colony system 

In this new version, called ACS (Dorigo & Gambardella, 1997a,b) , a new 
mechanism based on idea not included in the original AS is introduced. It 
differs from this last one in three main points. 

First, it exploits the search experience accumulated by the ants more 
strongly than AS does through the use of a more aggressive action choice 
rule. Sec.ond, pheromone evaporation and pheromone deposit take place only 
on the arcs belonging to the best-so-far tour. Third, each time an ant use an 
arc ( i, j) to move from city i to city j, it removes some pheromone from the 
arc to increase the exploration of alternative paths. 

Tour Construction 

In ACS, when located at city i, ant k moves to a city j chosen according 
to the so called pseudorandom proportional rule, given by 

j = { 
argmax~k { Ti! [1Ji1] 13 } 

' J, 

if q ::; q0 ; 

otherwise; 
(4.9) 

where q is a random variable uniformly distributed in [O, 1], q0 (0 ::; q0 ::; 1), is 
a parameter, and J is a random variable selected according to the probability 
distribution given by equation (4.1) (with a = 1). 

The ant exploits the learned knowledge with probability q0 , ma.king the 
best possible move as indicated by the learned pheromone trails and the 
heuristic information, while with probability (1 - q0 ) it performs a biased 
exploration of the arcs. Tuning the parameter q0 allows to modulate the 
degree of exploration and to chose of whether to concentrate the search of 
the system around the best-so-far solution or to explore other tours. 

Global Pheromone Trail Update 

In ACS only one ant (the best-so-far ant) is allowed to add pheromone after 
each iteration. The update in ACS is implemented by the following equation: 
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where ~Ti~s = 1/ d 8
• The main difference between ACS and AS is that the 

pheromone trail update, both evaporation and new pheromone deposit, only 
applies to the arcs of rs, not to all the arcs. As usual, the parameter p 
represents the pheromone evaporation; unlike in AS's equations (4.3) and 
(4.4), in equation (4.9) the deposited pheromone is discounted by a factor 
p; this results in the new pheromone trail being a weighted average between 
the old pheromone value and the amount of pheromone deposited. 

Local Pheromone Trail Update 

In ACS the ants use a local pheromone update rule that they apply imme­
diately after having crossed an arc ( i,j) during the tour construction: 

(4.11) 

where ç, 0 < ç < 1, and To are two parameters. The value for To is set to 
be the same as the initial value for the pheromone trails. Experimentally, a 
good value for ç was found to be 1/ncnn, where n is the number of cities in 
the TSP instance and cnn is the length of a nearest-neighbor tour. 

The effect of the local updating rule is that each time an ant uses an arc 
( i,j) its pheromone trail Tij is reduced, so that the arcs becomes less desirable 
for the following ants . This strategy allows an increase in the exploration 
of arcs that have not been visited yet and has the effect that the algorithm 
does not show a stagnation behavior. 

Finally, in ACS, this local pheromone update rule asks for a tour con­
struction in parallel by the ants, while it did not matter in the algorithms 
previously explained. 
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4.2.6 Synthesis of the different algorithms 

The following table present a synthesis of the different algorithms previously 
explained. 

Algo. Tour Construct. Evaporation Updating 
AS random propor- all arcs lowered deposit on all 

tional rule with constant arcs visited by 
factor p allants 

EAS random propor- all arcs lowered AS with ad-
tional rule with constant ditional rem-

factor p forcement of 
best-so-far tour 

ASrank random propor- all arcs lowered ants sorted by 
tional rule with constant increasing tour 

factor p length; deposit 
weighted ac-
cording to the 
rank of each 
ant 

MMAS random propor- all arcs lowered deposit only ei-
tional rule with constant ther by the iter-

factor p ation best-ant, 
or the best-so-
far ant; interval 
[Tmin, Tmax] 

ACS pseudorandom only arcs of the deposit only on 
proportional rule best-so-far tour arcs of the best-

are lowered so-far tour 
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4.2. 7 Experimental parameters for the different algo-
rithms 

The e:xperimental study of the various ACO algorithms for the TSP has iden­
tified parameter settings that result in good performance. In the following 
table, parameter n represents the number of cities in a TSP instance and m 
is the number of ants. 

ACO Algorithm a {3 p m To 
AS 1 2 to 5 0.5 n m/C"n 
EAS 1 2 to 5 0.5 n ( e + m) / pC"n 
ASrank 1 2 to 5 0.1 n 0.5r(r-1)/pC"n 
MMAS 1 2 to 5 0.02 n 1/ pC"n 
ACS 2 to 5 0.1 10 1/nC"n 

In EAS, the parameter e (which defines the weight given to the best-so-far 
tour - see formula 4.5) is set to e = n. In ASrank, the number of ants that 
deposit pheromones is w= 6 and parameter ris the ran1c (see formula 4.7). 



46 4.2. ANT SYSTEM AND ITS DIRECT SUCCESSORS 



Chapter 5 

The Effect of Memory Depth 

As e:xplained in the introduction, there are theoretical reasons to hope an 
improvement of the solution obtained with the classical version of Ant Al­
gorithm. In this work we tried to observe this effect by modifying in a very 
simple way the pheromone matrix T. The first section exposes the reason of 
the modifications to the pheromone matrix; the next section concentrates on 
the adaptation of the pheromone matrix; finally the last section explores the 
idea of a serialization of the algorithms developed with the new pheromone 
matrix. 

5.1 The modified pheromone matrix TAU 

In the existing versions of the AS algorithm, the pheromone values are stored 
in a symmetric n2 matrix. For each connection ( i, j) between city i and 
city j, a number Tij corresponding to the pheromone trail associated with 
that connection is stored in this matrix. The symmetry of our test problem 
(TSP) implies that Vi, j, Tij = Tji and explains the symmetric property of the 
pheromone matrix. As expected, with the pheromone matrix so defined, AS 
works well and produces near-optimal solutions to TSP problem. 

This construction of the T matrix is clearly overgeneralizing. It doesn't 
take into account, in the solution under construction, of the sequences already 
used by the ants as they were constructing previous solutions. Considering 
pheromone values now associated to sequences of visited cities, we hope to 
observe a general improvement of the quality of solutions, better than those 
obtained with AS. 
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The choice of the city to move to will now take into account not only the 
current city i where the ant stands, but also the previous cities where the 
ant stood before arriving at city i. Working this way, the decision for the 
next movement will be seen as a continuation of previous sequences, which 
are part of solutions constructed before. Each pheromone value will now be 
attached to a certain sequence of n already visited cities, and stored in a new 
pheromone matrix called Tau. This remembrance of the most recent already 
visited cities is called the memory depth and is at the base of a possible 
improvement of the resulting solutions issued from the algorithm. Only the 
global memory of the learning process has been modify, in a sense of taking 
into account not only the last visited city, but also the cities already visited 
just before. 

MAIN IDEA 

In traditional ACO, each pheromone value in the global indirect 
memory is associated to a pair current city ( where an ant stands) -
next city (possibly to be visited by this ant). In the modified ver­
sion of the pheromone matrix, each pheromone value of the global 
indirect memory is still associated to a pair where the first element 
is now a sequence of visited cities ( the last one of this sequence be­
ing the current city where an ant stands), and the second element 
is the next city (possibly to be visited by this ant). 

In this way we hope that the entire process will converge to a more precise 
near optimal solution than this one found with the classical version of AS 
algorithm. 

5.1.1 The classical and the modified pheromone ma­
trix 

We will here describe both the actual and new forms of the pheromone matrix 
presented before. It is clear that this new matrix will have an influence on 
some procedures of the AS algorithm. The detailed description of the AS 
algorithm, and his adaptations are the subject of the next section. 
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The classical pheromone matrix. ACO is characterized as being a dis­
tributed, stochastic search method based on the indirect communication 
of a colony of artificial ants, mediated by artificial pheromone trails. The 
pheromone trails in ACO serve as distributed numerical information, used 
by the ants to probabilistically construct solutions to the problem under 
consideration, and so constitutes an indirect form of memory of previous 
performance. The ants modify the pheromone trails during the algorithm's 
execution to reflect their search experience. This memory is a key element 
in the global learning process of the ants, working to construct a solution. 

The goal of this work is to modify the pheromone matrix in such a way 
that it will make more efficient the search process of the ants. We expect 
finally to obtain a better solution, than with the actual version of AS algo­
rithm. This one is based on a pheromone matrix described hereafter (fig­
ure5.1): 

1 2 3 

1 - 71,2 71,3 

2 72,1 72,3 

Il 7n,1 7n,2 

j 

- T . i ,J 

n 

7n,j 7n,n- 1 -

Figure 5.1: The classical pheromone matrix, for a set of n cities. There 
are no pheromone values on the diagonal. 

This is a square matrix of size n2 , where n is the maximum number of cities in 
the considered instance problem. There are of course no pheromone values on 
the diagonal of this matrix. This matrix is also symmetric, i.e. that 7ij = 7ji 

Vi,j with i i= j. 
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The new pheromone matrix. The previous description of the pheromone 
matrix is possibly overgeneralizing. Each pheromone value is only based on 
the city where the ant stands, and the city where this ant eventually wants 
to move to. It doesn't consider the ordered sequence of the previous already 
visited cities standing before the last visited city by the ant. If we consider 
for instance a sequence of three last visited cities, the new pheromone matrix, 
called TAU, to be considered is (figure 5.2): 

1 2 J k m Il 

X T ·. i,J 

ik X Tik,j X 

ikm X Tïkm,j X X 

Figure 5.2: The new pheromone matrix TAU for a set of n cities, considering 
sequences constituted by the three last visited cities. ''x" indicates forbidden 
pheromone values. 

This is no more a square matrix. On the top of this table we find the indeces 
of the cities to be visited; each index defines a column of the matrix; on 
the left side of the table we find sequences of cities index. We first consider 
the sequences constituted of one city, then all possible ordered sequences 
constituted from couple of cities, and finally all possible ordered sequences 
constituted from three cities. Each previous sequence (from 1,2 or 3 cities) 
defines a line of the matrix. It will be necessary in the implementation to 
calculate the number of a line, knowing the index of each city being part of 
a sequence. 

The first black of the matrix is constituted by the pheromones Ti,j asso­
ciated to a couple of cities, city i that the ant is just leaving and city j that 
the ant is moving to; at city i corresponds a line of the matrix and at city j 
a column of the matrix; this black is used by the algorithm during the first 
iteration, when the partial solution of each ant comprises only one city, the 
departure city. In this black, there are no pheromone values in case index i 
= index j. 
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The second black of the matrix is constituted by the pheromones Tik,j 

associated to three cities, city k that the ant is just leaving, city i that was 
visited just before city k and city j that the ant is moving to; at the sequence 
of two cities i and k corresponds a line of the matrix and at city j corresponds 
a column of the matrix; this black is used by the algorithm during the second 
iteratio-n, when the partial solution of each ant comprises only two cities, the 
initial departure city i of each ant and the first city k just visited after. In 
this black, there are no pheromone values in case index i = index j or index 
k = index j. 

Finally, the third black is constituted by the pheromones Ti!cm,j associated 
to three cities, city k that the ant is just leaving, city i that was visited just 
before city k and city j that the ant is moving to; at the sequence of three 
cities i, k and m corresponds a line of the matrix and at city j corresponds 
a column of the matrix; this black is used by the algorithm for all iterations 
since the third, when the partial solution of each ant comprises at least three 
cities, the last visited city m by an ant, the city k just visited before city m 
and the city i just visited before city k. In this black, there are no pheromone 
values in case index i = index j or index k = index j or index m = index j. 

It is clear that the size of the new matrix Tau will increase more rapidly 
than with the classical matrix r. In the new matrix, the number of lin es will 
be proportional to n"f, where n is the total number of cities to be visited and 

1 is the memory depth, i.e. the maximum size of the sequences of cities. 

PERSONNAL CONTRIBUTION 

To implement the new pheromone matrix, the procedures for mem­
ory allocation and initialization of the matrix have been modified, 
taking into account the new dimension of the matrix. 

5.1.2 Working in serialization 

Another possible improvement should be to realize a serialization of the pre­
vious algorithms, in order of their increasing memory depth. The pheromone 
values corresponding to the best result found for a given value of memory 
depth n-1 will initialize the pheromone matrix used for the next memory 
depth n. In this way, we hope to converge more quickly to a near optimal 
solution of the TSP. 
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PERSONNAL CONTRIBUTION 

The basic version of the AS algorithm was implemented in series 
with the modified AS algorithm of memory depth 2, followed by 
the same algorithm with memory depth 3. 

5.2 Construction of a solution in ACQ algo­
rithms 

In this section, we will consider the different steps of the ACO algorithms, to 
construct a solution (Dorigo, M., Stützle T. (2004) Chapter 3). In fact tours 
are constructed by applying the following simple constructive procedure to 
each ant: 

1. choose, according to some criterion, a start city at which the ant is 
positioned; 

2. use pheromone and heuristic values to probabilistically construct a tour 
by iteratively adding cities that the ant has not visited yet, until all 
cities have been visited; 

3. go back to the initial city; 

After all ants have completed their tour, they may deposit pheromone on the 
tour they have followed. In some cases, before adding pheromone, the tours 
constructed by the ants may be improved by the application of a local search 
procedure. Such procedure will not be applied in the present work. 

This high-level description applies to most of the published ACO algo­
rithms for the TSP, described in chapter 4, section 4.2, with an exception for 
the Ant Colony System in subsection 4.2.5, where the pheromone evaporation 
is interleaved with tour construction. 

When applied to the TSP and to any other static combinatorial optimiza­
tion problem, most ACO algorithms employ a more specific algorithm scheme 
than the general one of the ACO metaheuristic given in figure 2.1, subsection 
2.2.6. This new algorithm's scheme is shown in figure 5.3 hereafter. 
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procedure ACOMetaheuristicStatic 
Set parameters, initialize pheromone trails 
while( termination condition not met )do 

ConstructAntsSol utions 

end 
end 

ApplylocalSearch % optional 
U pdatePheromones 
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Figure 5.3: The pseudo-code of the ACO Metaheuristic Static procedure 

After initializing the parameters and the pheromone trails, these ACO algo­
rithms iterate through a main loop, consisting in three steps: first all of the 
ants' tours are constructed; then an optional phase takes place in which the 
ants' tours are improved by the application of some local search algorithm; 
finally the pheromone trail are updated, involving pheromone evaporation 
and the update of the pheromone trails by the ants to reflect their search 
experience. 

5.2.1 lmplementing AS algorithm for the TSP 

Data structures. 

The first step to implement the AS algorithm for the TSP is to define the 
basic data structures. These must allow storing the data about the TSP 
instance and the pheromone trails, and representing artificial ants. 

Figure 5.4 gives a general outline of the main data structures that are 
used for the implementation of the AS algorithm, which includes the data 
for the problem representation and the data for the representation of the 
ants. 

% Representation of problem data 
integer dist[n][n) % distance matrix 
integer nn_listdist[n][n) % matrix with nearest neighbor lists of depth nn 
real pheromone[n][n) % pheromone matrix 
choice_info dist(n][n) % combined pheromone and heuristic information 
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% Representation of ants 
structure single_ant 
begin 

integer 
integer 
integer 

end 

tour_length 
tour[n+l) 
pheromone[n][n) 
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% the ant's tour length 
% ant's memory storing (partial) tours 
% visited cities 

single_ant[m) % structure of type single...ant 

Figure 5.4: Main data structures for the implementation of the AS algorithm 
for the TSP. 

Problem representation. 

A symmetric TSP instance is given as the coordinates of a number of n 
points. All the intercity distances are precomputed and stored in a symmetric 
distance matrix with n 2 entries. Although for symmetric TSPs we only need 
to store n ( n-1) /2 distinct distances, it is more efficient to use an n2 matrix 
to avoid performing additional operations to check whether, when accessing 
a generic distance d(i,j), entry (i,j) or entry (j,i) of the matrix should be 
used. For a reason of code efficiency, the distances are stored as integers. 

Nearest-Neighbor Lists. In addition to the distance matrix, we also store 
for each city a list of its nearest neighbors. Let di be the list of the distances 
from a city i to all cities j, with j = 1, ... n and i-/- j (we assume here that 
the value <hi is assigned a value larger than dmax, where dmax is the maximum 
distance between any two cities). 

The nearest-neighbor list of a city i is obtained by sorting the list di 
according to nondecreasing distances, obtaining a sorted list d \ . The position 
r of a city j in city i 's nearest-neighbor list nn_list[i] is the index of the 
distance <hj in the sorted list d 'i, that is, nn_list [ il[ r] gives the identifier of 
the r-th nearest city to city i (i.e., nn_list[il[r] = j). 
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Nearest-neighbor lists for all cities can be constructed in 0( n2logn). An 
enormous speedup is obtained for the solution construction in ACQ algo­
rithms, if the nearest-neighbor list is eut off after a constant number nn of 
nearest neighbors, where typically nn is a small value ranging between 15 
and 40. An ant located in city i firstly chooses the next city among the 
nn nearest neighbors of i; in case the ant has already visited all the nearest 
neighbors, then it makes its selection among the remaining cities. This re­
duces the complexity of making the choice of the next city to 0(1), unless 
the ant has already visited all the cities in nn_list [ i]. A disadvantage to the 
use of truncated nearest-neighbor lists is that it can make impossible to find 
the optimal solution. 

Pheromone Trails. It is also necessary to store for each connection ( i,j) 
a number Tij corresponding to the pheromone trail associated with that con­
nection. As in the case for the distance matrix, it is more convenient to use 
some redundancy and to store the pheromones in a symmetric n2 matrix. 

PERSONNAL CONTRIBUTION 

In this work, the pheromone matrix has been redefined. Each 
pheromone value in the new matrix is associated on the one hand 
to a sequence of the immediate last visited cities, and on the other 
hand to the next city to be visited. 

Combining Pheromone and Heuristic Information. When construct­
ing a tour, an ant located on city i chooses the next city j with a probability 
which is proportional to the value of [Tij][r1!]. Because these very same values 
need to be computed by each of m ants, computation times may be signifi­
cantly reduced by using an additional matrix choice_info, where each entry 
choice_info[il[j] stores the value [Tij][r1!]. As in the case of the pheromone 
and the distance matrices, a matrix is more convenient to store those values. 

PERSONNAL CONTRIBUTION 

In this work, for implementation facilities, the choice_info matrix 
is not used. Each ant always consults the new pheromone matrix 
and calculate the value [Tij][r1!]. 
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Representing ants. 

An ant is a single computational agent which constructs a solution to the 
problem at hand, and may deposit an amount of pheromone ~T on the arcs 
it has traversed. To do so, an ant must be able to: 

1. store the partial solution it has constructed so far; this can be satisfied 
by storing, for each ant, the partial tour in an array of length n + 1, 
where at position n + 1 the first city is repeated. This choice makes 
easier some of the other procedures like the computation of the tour 
length. 

2. determine the feasible neighborhood at each city; the knowledge of the 
partial tour at each step is suffi.dent to allow the ant to determine, by 
scanning of the partial tour, whether a city j is in its feasible neigh­
borhood or not; this involves an operation of worst-case complexity 
0( n) for each city i, resulting in a high computational overhead. The 
simplest way around this problem is to associate with each ant an ad­
ditional array visited whose values are set to visited[j] = 1 if city i 
has already been visited by the ant, and visited [j] = 0 otherwise. This 
array is updated by the ant while it builds a solution. 

3. compute and store in the tour Jength variable the objective function 
value of the solution it generates; the computation is done by summing 
the length of the n arcs in the ant's tour. 

An ant is then represented by a structure that comprises one variable 
tour _length to store the ant 's objective function value, one ( n+ 1 )-dimensional 
array tour to store the ant's tour, and one n-dimensional array visited to store 
the visited cities. 

The algorithm. 

The main tasks to be considered in an ACO algorithm are the solution con­
struction, the management of the pheromone trails, and the additional tech­
niques such as local search. In addition, the data structures and parameters 
need to be initialized and some statistics about the run need to be main­
tained. Figure 5.3 gives a high-level view of the algorithm. 
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Data Initialization In the data initialization, (1) the instance has to be 
read; (2) the distance matrix has to be computed; (3) the nearest-neighbor 
lists for all cities have to be computed; (4) the pheromone matrix and the 
choice_info matrix have to be initialized; (5) the ants have to be initialized; 
(6) the algorithm's parameters must be initialized; and (7) some variables 
that keep track of statistical information, such as the used CPU time, the 
number of iterations, or the best solution found so far, have to be initialized. 
Figure 5.5 shows a possible organization of these tasks into several data 
initialization procedures. 

procedure lnitializeData 
Readlnstance 
ComputeDistances 
Corn puteN earestNeigh borlists 
ComputeChoicel nformation 
1 n itia I izeAnts 
1 n itia lizeParameters 
1 nitializeStatistics 

end-procedure 

Figure 5.5: Procedure to initialize the algorithm. 

Solution Construction The tour construction is managed by the proce­
dure ConstructSolutions, shown in figure 5.6 

procedure ConstructSolutions 
for k = 1 to m do 

for i = 1 to n do 
ant[k].visited[i] +- false 

end-for 
end-for 
step +- 1 
for k = 1 to m do 

r +- random{l, ... , n} 
ant[k] .tour[step] +- r 
ant[k].visited[r] +- true 

end-for 
while ( step < n) do 

step +- step + 1 
for k = 1 to m do 
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N eighbor ListAsDecisionRule ( k, step) 
end-for 

end-while 
for k = 1 to m do 

ant[k] .tour[n + 1] - ant[k].tour[l] 
ant [ k]. tour_length f-- ComputeTourLength( k) 

end-for 
end-procedure 

Figure 5.6: Pseudo-code for the solution construction procedure for AS. 

The solution construction requires the following phases: 

1. The ant's memory must be initialized, by marking all the cities as 
unvisited, that is, by setting all the entries of the array ants. visited to 
false for all the ants; 

2. Each ant has to be assigned a random initial city; the function random 
returns a number chosen according to a uniform distribution over the 
set { 1, ... , n} ; 

3. Each ant constructs a complete tour; at each construction step the ants 
apply the AS action choice rule. The procedure NeighborListASDeci­
sionRule implements the action choice rule and takes as parameters the 
ant identifier and the current construction step index. This procedure 
exploits candidate lists and is discussed below; 

4. Finally, the ants move back to the initial city and the tour length of 
each ant's tour is computed. 

The solution construction of all ants is synchronized in such a way that the 
ants build solutions in parallel. 

Action Choice Rule with Candidate Lists Figure 5. 7 shows the 
pseudo-code for the action choice rule with candidate list. In the action 
choice rule, an ant located at city i probabilistically chooses to move to an 
unvisited city j based on the pheromone trails rg and the heuristic informa-

tion rJZ [see equation (3.1)]. 
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procedure NeighborlistASDecisionRule( k, i) 
input k % ant identifier 
input i % counter for construction step 
c t- ant[k].tour[i - 1] 
sum_probabilities t-- 0.0 
for j = 1 to nn do 

if ant[k].visited[nn_list[c][j]] then 
selection_probability[j] - 0.0 

else 
selection_probability [j] - choice_info[ c ][ nn_list [ c] [j]] 
sum_probabilities - sum_probabilities + selection_probability [j] 

end-if 
end-for 
if (sum_probabilities = 0.0) then 

ChooseBestNext( k, i) 
else 

r - random[0,sum_probabilities] 
jt--1 
p t-- selection_probability [j] 
while (p < r) do 

jt-j+l 
p - p + selection_probability [j] 

end-while 
ant[k].tour[i] t-- nn_list[c][j ] 
ant[k].visited[nn_list[c][j]] - true 

end-if 
end-procedure 
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Figure 5.7: AS with candidate lists: pseudo-code for the action choice rule. 

The procedure works as follows: 

1. the current city c of ant k is determined; 

2. when choosing the next city, one needs to identify the appropriate city 
index from the candidate list of the current city c; this is the object of 
the first for loop; 
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3. to deal with the situation in which all the cities in the candidate 
list have already been visited by ant k ( characterized by the variable 
sum_probabilities still at 0.0), the procedure ChooseBestNext is used to 
identify the city with maximum value [r/J] [1JZ] as the next to move to; 
this process is the abject of the test if-then-else. 

Figure 5.8 shows the pseudo-code for the procedure ChooseBestNext. 

procedure ChooseBestNext( k.i) 
input k % ant identifier 
input i % counter for construction step 
V .-0.0 
e .- ant[k].tour[i - 1] 
for j = 1 to n do 

if not ant [ k]. visite,d [j] then 
if ehoice_info[ e] [j] > v then 

ne .- j % city with maximal r 0 1J/3 
v .- ehoiee_info[e]U] 

end-if 
end-if 

end-for 
ant[k].tour[i] .- ne 
ant[k].visite,d[ne] .- true 

end-procedure 

Figure 5.8: AS: pseudo-code for the procedure ChooseBestNext. 

By using candidate lists the computation time necessary for the ants to 
construct solutions can be significantly reduced, because the ants choose 
from a smaller set of cities. In fact the computation time is reduced only if 
the procedure ChooseBestNext does not need to be applied too often. 

PERSONNAL CONTRIBUTION 

In this work, according to the new pheromone matrix TAU, both 
procedures NeighborlistASDecisionRule and ChooseBestNext have 
been adapted mainly in the programming of the action choice rule, 
i.e. in the calculation of the r 0 ry/3. 
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The Pheromone U pdate 

The last step in an iteration of AS is the pheromone update, implemented 
by the procedure ASPheromoneUpdate (see figure 5.9), which comprises 
two pheromone update procedures: the pheromone evaporation and the 
pheromone deposit. 

procedure ASPheromoneUpdate 
Evaporate 
for k = 1 to m do 

DepositPheromones( k) 
end-for 
Corn puteChoicel nformation 

end-procedure 

Figure 5.9: AS: Management of the pheromone updates. 

The procedure Evaporate decreases the value of the pheromone trails on all 
the arcs ( i,j) by a constant factor p. The procedure DepositPheromone adds 
pheromone to the arcs belonging to the tours constructed by the ants. Finally 
the procedure ComputeChoicelnformation computes the matrix choice_info to 
be used in the next algorithm iteration. 

PERSONNAL CONTRIBUTION 

In this work, according to the new pheromone matrix TAU, both 
procedures Evaporate and DepositPheromone have been modified. 
The modification doesn't concern the evaporation or updating 
process. It concerns the way the number of the line in the ma­
trix Tau is computed, based on a sequence of indeces of cities. 

5.3 Modifications of the existing AS algo­
rithm 

As explained in the previous subsections, the procedures used for the man­
agement of the pheromone matrix or for the calculation of a solution based 
on the information of that matrix have been adapted. The experimental 
setup and the results obtained are the object of the next chapter. 
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PERSONNAL CONTRIBUTION 

AU procedures of the basic AS algorithm concerned by the new 
pheromone matrix have been adapted. Those procedures concern 
mainly the memory allocation, the initialization of the matrix, the 
construction of a solution, mainly through the procedure imple­
menting the action choice rule, the evaporation and the updating 
of the pheromones. 



Chapter 6 

Experimental Results 

In this chapter, we present the results obtained with the new algorithms 
applied on tests files of 50 cities. We discuss those results and propose some 
ways to improve the new algorithms. 

6.1 Available software package 

The ACO family algorithms for the TSP is available as a software package 
freely available subject to the GNU General Public Licence. This software 
package called ACOTSP was developed, in his Version 1.0, by Thomas Stützle 
in connection with the book "Ant Colony Optimization" [Dorigo, M., Stützle 
T. (2004)] and is available from http://www.aco-metaheuristic.org/aco-code. 
The software was developed in ANSI C under Linux, using the GNU 2.95.3 
gcc compiler. The software is distributed as a gzipped tar file. 

This software package provides an implementation of various Ant Colony Op­
timization (ACO) algorithms for the symmetric Traveling Salesman Problem 
(TSP). The ACO algorithms implemented are Ant System (AS), MAX-MIN 
Ant System, Rank-based version of Ant System, Best-Worst Ant System, 
and Ant Colony System. It was developed to have one common code for the 
various known ACO algorithms that were at some point applied to the TSP 
in the literature. 
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The contents of the package is the following: 

1. The main control routines, main: acotsp.c; 

2. The procedures to implement the ants behaviour: ants.c and ants.h; 

3. The input, output and statistics routines: InOut.c and InOut.h; 

4. The procedures specific to the TSP: TSP.c and TSP.h; 

5. The local search procedures: ls.c and ls.h; 

6. The additional useful and helping procedures: utilities.c and utilities.h; 

7. The command line parser: parse.c and parse.h; 

8. The time measurement: timer.c and timer.h; 

Sorne problem instances froin TSPLIB are also available. For this work, we 
produced our own test files. The coordinates of the cities were randomly 
generated using a random generator as described in "Numerical Recipes in 
C". They were stored in set of 100 test files. 

6.2 Specific parameters and command line 

Given the large number of ACQ algorithms available in the package, also the 
number of command line options is relatively large. We give hereafter those 
that were useful for our work, i.e. those that were used in the execution of 
our new versions of the AS algorithms. They are given in their short and 
long options. 

-r, - tries 
-s, - tours 
-t,-time 
-i, - tsplibfile 
-a,- alpha 
-b, - beta 
-e, - rho 
-u, - as 

# number of independent trials 
# number of steps in each trial 
# maximum time for each trial 
# inputfile (TSPLIB format necessary) 
# alpha (influence of pheromone trails) 
# beta (influence of heuristic information) 
# rho (pheromone trail evaporation) 
# apply basic Ant System if selected 
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PERSONNAL CONTRIBUTION 

For our work, a new parameter was added to introduce the concept 
of memory depth. The parsing procedures were also modified. 
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All those options take some default values; the parameter "-i, - tsplibfile" is 
the only mandatory option, because the program may not work without an 
input file. 

For each test file, it is possible to execute several times the same algo­
rithm; at each trial, the pheromone matrix is reinitialized but not the nearest 
neighbor list. In this work we decide to execute only one run for each test 
file. 

6.3 Experimental settings 

The original AS algorithm has been adapted for the cases where the memory 
depth is equal to 2 and 3. The table 6.1 hereafter presents the evolution of 
the number of lines and the number of pheromones values to be stored, of 
the matrix Tau, in function of the total number of cities and the memory 
depth. 

Nbr. cities Mem. depth Nbr. lines(10°) Nbr. val.(106 ) 

25 2 0,0006 0,016 
25 3 0,014 0,361 
25 4 0,318 7,951 
50 2 0,025 0,125 
50 3 0,120 6,005 
50 4 5,6 282,3 
100 2 0,01 500,0 
100 3 0,98 2450,5 
100 4 95,1 4754,5 

Table 6.1: Evolution of the number of pheromone values to be stored, in 
function of the number of cities and the memory depth. 
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Very simply, we decided to store the new matrix Tau fully in memory. Fol­
lowing the previous table, as the number of pheromone values grows rapidly 
with the total number of cities and the memory depth, we decided to adapt 
the AS algorithm only for the case where the memory depth is equal to 2 or 
3. Even in this situation, the first tests evolved slowly when the size of the 
test files was bigger or equal to 50 cities, especially for a memory depth equal 
to 3. So we came to the conclusion to fix the number of cities in each test 
file to 25, and this for bath algorithm with memory depth equal to 2 and 3. 

The structure of each test file comprises mainly the name of the file, the 
total number of the cities, the metric used and the list of the coordinates 
of the nodes. Those coordinates are generated using a procedure producing 
random numbers uniformly distributed in [0,1] (see Press, W.H., Teukolsky 
S.A., Numerical recipes in C). The final integer coordinates range from O to 
100. The list of the coordinates finish by an EOF mark. As explained before, 
we fixed the total number of cities to 25 and the metric used is the euclidean 
one. 

At the beginning of the execution of an algorithm, the name of the test 
file is given as a parameter. The parsing of the command line includes the 
analysis of the test file. It produces the calculation of the distance matrix, 
which characterizes this instance of the problem. 

Our experimental process is driven by a main script program called 
"Param" written in PERL (see annexe). This program first prepares the 
directories and the tables to store the results produced during the execu­
tion of an algorithm; it also prepares the tables which register the parameter 
used during each run. It makes then a call to another program called "ran­
dom.c", which generates randomly 100 test files, using the random procedure 
previously presented. 

The program "Param" is now ready to process each execution script we 
want to submit to our diff erent algorithms. Each script may redefine every 
parameter to be used by the algorithms. When a parameter is not redefined 
in the script, the algorithm uses the default value for this parameter. A 
command line is build with all the parameters and is given to a procedure 
called "Exec". To write our different scripts, we focused on the following 
parameters: the exponents a and /3 used in the probabilistic decision rule 
(see equation 4.1) and the evaporation parameter p. Although it is possible 
to execute an algorithm more than one time with the same test file, we 
decided to limit this number of independent trial to 1. Finally the first tests 
we made showed us that the results obtained didn't evolve significantly after 
an execution time of 15 seconds. We fixed then the execution time to this 
value for all algorithm. 
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The "Exec" procedure ( available in the annexe) is written in PERL and 
executes two embedded loops. The first loop covers the different algorithms 
by increasing order of memory depth. The first algorithm to be executed will 
be the classical Ant System; the second one will be our version with memory 
depth equal to 1 and the third one our version with memory depth equal to 3. 
For each algorithm, the second loop executes the command line received from 
the calling program "Param", and this for the 100 generated test files . The 
results are stored in dedicated directories. The "Exec program" also process 
those directories to produce two registering tables. Those tables register, for 
each algorithm, for each test file and for each script, in one table the values 
of the parameters, and in the other table the results corresponding to this 
set of parameters. 

When all the scripts registered in the program "Param" have been 
processed, a last call to a procedure called "commands3.r" is made. This 
procedure is written in Rand is available in the annexe. It process the table 
produced by the program "Exec", registering the results by algorithm, by test 
file, by script. For each algorithm, the program "commands3.r" calculate the 
mean of the results over the 100 test files. 

The results generated by an algorithm consist in the length of the best­
so-far tour build by the ants. Only an improvement in the obtained tour 
length is registered, with its corresponding CPU time and its corresponding 
number of iterations. An iteration is counted when all the ants of the colony 
have constructed one tour at the end of the procedure "ConstructSolutions" 
(see section 5.2.1). The presentation of the final results in the graphie can 
be made with the CPU time or the iteration number in abscissa. We chose 
to work by parity of iterations. 

We give hereafter a resume of the experimental settings used for our tests: 

1. Three algorithms are tested: the classic Ant System, its new version 
with a memory depth of 2 and its version with a memory depth of 3; 

2. 100 test files are randomly generated; 

3. This set of test files is the same used by each algorithm; 

4. For each algorithm, the number of trial for a given test file is fixed to 
l; 

5. Each test file comprises the euclidean coordinates of 25 cities, randomly 
generated in a uniform distribution ranging from O to 100; 
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6. Our scripts modify the value of the parameters a, f3 and p; 

7. The maximum execution time is fixed to 15 seconds. 

6.4 Results of the experiments 

6.4.1 Results by algorithm 

Different tests have been made. We always have modified one parameter at 
a time, keeping the others unchanged. 

Impact if we modify a. In a first step, we modified the value of a from 
0.5 to 2, keeping /3(= 2) and p(= 0.5) constant (see figure 6.1 to 6.4). We 
wanted to see how the new algorithms (AS2 and AS3) would react if we put 
more or minder emphasis to the new pheromones. 

If a = 0.5, we see that AS2 reaches a better result than the classical Ant 
System (ASl), but this last one is out of its optimal range of parameters, 
where a must be equal to 1. So with a = 0.5, AS2 gives a better result than 
ASl, but this result is not better than this obtained by ASl when it works 
in its normal range of parameters. As3 gives a bad quality result. 

If a = 1, we see that ASl and AS2 reach a similar result. But AS2 doesn't 
provide a better result than ASl. The quality of the solution of AS3 stays 
bad. 

If a = 1.5, we see that AS2 reaches a good quality result, but needs for 
that a bigger amount of iterations. The quality of the solution for ASl is still 
decreasing, because we are still far from the optimal range of its parameters. 
The quality of the solution of AS3 is still decreasing. 

As a conclusion, we can say that AS2, for every studied values of a, gives 
similar results as ASl, when this algorithm is in its optimal conditions. But 
never gives AS2 a better result than ASl. AS3 seems to stay worst than ASl 
and AS2 for every value of a. It cornes quickly to stagnation and reaches a 
bad quality solution, in regards of the result of the two previous algorithms. 
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Figure 6.1: Best tour length versus nurnber of iterations, for a = 0.5, f3 = 2 
and {J = 0.5 
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Figure 6.2: Best tour length versus number of iterations, for a = 1, /3 = 2 
and p = 0.5 
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Figure 6.3: Best tour length versus number of iterations, for a = 1.5, /3 = 2 
and p = 0.5 
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Figure 6.4: Best tour length versus number of iterations, for a = 2, /3 = 2 
and p = 0,5 
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Impact if we modify {3. In a second time (see figure 6.5 to 6.8), we 
considered the situation where the values of the parameters are the following: 
a = 2 and p = 0.5, the value of {3 being modified from 2 to 5, giving more 
emphasis to the heuristic. We wanted to see if it was possible to improve the 
results obtained with AS2, and possibly to reach a better solution than this 
obtained with ASl, when it works in its normal range of parameter values. 

For every values of {3 we have tested (from 2 to 5), we observe that AS2 
gives a better solution than ASl and AS3. ASl and AS3 corne quickly to 
stagnation ( after maximum 2000 iterations); AS2 reaches later its best result 
(after 6000 iterations). We also observed that the higher the value of {3 we 
have, the more the three algorithms converge. But never AS2 gives a better 
result than ASl in its optimal range of parameters. As a conclusion, the fact 
to increase the value of {3 doesn't improve the quality of results provided by 
AS2; AS3 stay bad for every values but converges to the results of ASl and 
AS2 as {3 increases. 

Finally, we didn't observe that evaporation had a significant impact on 
the quality of the final results (No graphies included) . 
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Figure 6.5: Best tour length versus nurnber of iterations, for a = 2, /3 = 2 
and p = 0,5 
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Figure 6.6: Best tour length versus number of iterations, for a = 2, /3 = 3 
and p = 0,5 
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Figure 6. 7: Best tour length versus number of iterations, for a = 2, /3 = 4 
and p = 0,5 
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Figure 6.8: Best tour length versus number of iterations, for a = 2, (J = 5 
and p = 0,5 
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6.5 

6 .5 . RESULTS WITH THE THREE ALCORITHMS IN C ASCADE 

Results with the three algorithms in cas­
cade 

The three algorithms, the basic version corresponding to a memory depth 
equals to 1, and the two new versions (with memory depth equal to 2 and 3) 
were programmed in a serial way, in increasing order of the memory depth. 
At the end of the execution of one algorithm, the last pheromone matrix 
corresponding to the best final solution serves to initialize the corresponding 
bloc of the pheromone matrix of the next algorithm, for the following value of 
memory depth. So the pheromone matrix obtained at the end of Ant System 
will initialize the corresponding part of the Tau matrix for the algorithm with 
a memory depth equal to 2. The other part of the same matrix, dedicated to 
the sequences of two cities, will be initialized as usual, with a tour length build 
by one ant. Again for the algorithm with a memory depth equal to 3, the 
part of the Tau matrix dedicated to sequences with one city will be initialized 
with the pheromone values of Ant System, corresponding to the best tour 
found with this algorithm. The part of the Tau matrix dedicated to sequences 
constituted of two cities will be initialized with the corresponding pheromones 
of the Tau matrix for the algorithm with memory depth of 2. Finally, the 
pheromones dedicated to sequences of three cities will be initialized with a 
tour length build by one ant. 

The experimental setup is slightly modified in regard of this one used for 
the three algorithms. The number of cities for each test file (25) and the total 
number of generated test files (100) stay the same. The main difference is 
that we have now a fourth algorithm, called "ASChained" constructed with 
the three previous one. Each script written in "Param" will also be executed 
for this new algorithm. The execution for the three first algorithm (ASl, 
AS2 and AS3) follows the same plan as explained in section 6.3. The new 
algorithm follows also the same plan; in fact the adaptation mainly concerns 
the programs "Exec" and "commands3.r", where some loops have to include 
this new version. 

By this way, we hope to observe a improvement in the quality of the final 
solution. Unfortunately, this is not the case and we didn't observe such effect, 
as we can see in figure 6.3. In fact, this way of initializing the pheromone 
matrix of each algorithm is not the more adapted. It would be correct to 
implement the serialization so that the transition between each algorithm 
happens at a certain iteration and would be visible on the graph. On our 
graph ASChained is only the result of AS3 initialized with the pheromone 
matrix of ASl and AS2 at the end of their run. 
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6.6 Conclusion of the experiments 

As a conclusion for the set of experiments we have realized, in the experimen­
tal conditions we have used, it is not possible to observe any improvement in 
the final results obtained with AS2 and AS3, related to the new pheromones 
values based on the couple "sequence of last visited cities-cities". The second 
algorithm AS2 provides some better results than ASl, always when this last 
one is out of its best running conditions. The Third algorithm AS3 provides 
always bad results, in every experimental situation. This could indicates a 
problem with the way we implement this algorithm. A possible solution is 
discussed in the next section. 

6.7 Possible improvements 

It is obvious that the algorithm with memory depth equal to 3 provides in 
general bad results. A possibility to improve it is to replace the way we 
calculate the number of the line of the TAU matrix, making intensive calls to 
modulo operator, with the following formula (in the case of a memory depth 
equal to 3): N 2 (v1 - 1) + N(v2 - 1) + v3 where v1, v2andv3 are the number 
of the three last visited cities, in the order of their classification in the test 
file, and N is the total number of cities in the test file. This formula permits 
to calculate the number of all possible combination (with repetition of three 
cities. The size of the matrix will increase because of the combinations with 
repeated cities; the total number of lines will be of N 3 + N 2 + N and the 
number of columns will be equal to N. 



Chapter 7 

Conclusion 

The ACQ metaheuristic was inspired by the foraging behavior of real ants 
and is characterized as being a distributed, stochastic search method based 
on the indirect communication of a colony of artificial ants, mediated by 
artificial pheromone trails. 

The ACO metaheurisitc can be applied to any combinatorial optimization 
problem for which a solution construction can be conceived. An interesting 
case is the TSP problem, not only for its applications but also because it 
constitutes a test bed problem for new algorithmic ideas, in particular ACO. 

In the ACO approach, one key element is the indirect form of memory 
of previous performance. This role is played by the pheromone matrix. The 
first basic algorithm was Ant System (AS) and has been introduced using 
the TSP as an example application. AS achieved encouraging initial results, 
but was found to be inferior to state-of-the-art algorithms for the TSP. His 
importance is more in the inspiration it provides for a number of extensions 
that significantly improved performance. 

ln this work, we tried in a very simple way to define the memory in 
another way than those envisaged by the formal definition of Ant Colony 
Optimization. In the version we have developed, we try to make a diff erence 
between states that are identical from the point of view of Ant Colony Op­
timization, associating the memory with pairs of "sequence of components -
component". We didn't observe within the limits of our experimental condi­
tions any improvement. 
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Annexes 

The reader will also find hereafter, first the program " Param ", written in 
Perl, fixing the different parameters for the execution of the ants' algorithms. 
It permits to program the different scripts of execution. The second program 
" Exec ", written in Perl and called by the " Param " program, constructs 
the tables with the results provided by the execution of the ants' algorithms. 
Finally the third program, " commands3.r ", written with the R software 
and called by the " Param " program, uses the data stored in the tables 
generated by the "commands3.r " program to produce final graphies (CPU 
Time or Iteration versus Tour Length). 



Program Param : execution scripts 

#!/usr/bin/perl 

useExec; 

system 'rm -f /home/ddarquennes/ACOTSPVl0spl/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp2/resultats/*'; 
system 'rm -f /home/ddarquennes/ ACOTSPVl 0sp3/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/resultats/*'; 
system 'rm -f /home/ddarquennes/resultats/*'; 

system 'rm -f /home/ddarquennes/ACOTSPVl0spl/F*.tsp'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp2/F*.tsp'; 
system 'rm -f /home/ddarquennes/ ACOTSPVl 0sp3/F*. tsp'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/F* .tsp'; 
system 'rm -f /home/ddarquennes/F*.tsp'; 

system 'rm -f /home/ddarquennes/instance0603 .dat' ; 
system 'rm -f /home/ddarquennes/values0603 .dat' ; 
system 'rm -f /home/ddarquennes/datas0603 .dat'; 
system 'rm -f /home/ ddarquennes/resfin0603 . dat' ; 

system "gcc -o random randomc" ; 

system "nice -19 ./random"; 

system 'cp /home/ddarquennes/F* /home/ddarquennes/ ACOTSPVl 0sp l '; 
system 'cp /home/ddarquennes/F* /home/ddarquennes/ACOTSPV10sp2'; 
system 'cp /home/ddarquennes/F* /home/ddarquennes/ACOTSPV10sp3' ; 
system 'cp /home/ddarquennes/F* /home/ddarquennes/ACOTSPV10sp4' ; 

open(RESULT, ">>values0603 .dat"); 
open(INST, ">>instance0603.dat"); 

$param= l ; 

$titre[!] = "Sp "; 
$titre[2] =" I_nam "; 
$titre[3] = " Param "; 
$titre[4] =" Ne" ; 
$titre[5] =" Mfr "; 
$titre[6] =" Mfo "; 
$titre[7] =" Opt" ; 
$titre[8] =" Maxim_Time "; 
$titre[9] = "NAn "; 



$titre[10] =" NNe "; 
$titre[ll] =" Alpha "; 
$titre[12] =" Beta "; 
$titre[ 13] = " Rho "; 
$titre[14] =" Q_0 "; 
$titre[15] =" Br_up "; 
$titre[16] =" Ls "; 
$titre[l 7] =" Rr "; 
$titre[18] =" Elit" ; 
$titre[19] =" Nn "; 
$titre[20] = " Dlb" ; 
$titre[21] =" As"; 
$titre[22] =" Ea "; 
$titre[23] = " Ra "; 
$titre[24] = " Mm "; 
$titre[25] =" Bw "; 
$titre[26] = " Ac "; 
for($L = 1 ; $L < 27 ; $L++) { 

print INST $titre[$L]; 
} 
print INST "\n" ; 

$res[l] = "Sp "; 
$res[2] =" I_nam "; 
$res[3] = " Param "; 
$res[4] = "Last "; 
$res[5] = " Value "; 
$res[ 6] = " lter "; 
$res[7] =" Tune"; 
for($L = 1 ; $L < 8 ; $L++){ 

print RESULT $res[$L]; 
} 
print RESULT "\n"; 

$tpar[l] =" -r 1 "; 
$tpar[2] =" -s 100 "; 
$tpar[4] = Il -t 15 "; 
$tpar[5] =" -o 1 "; 
$tpar[6] =" -m 25 "; 
$tpar[7] = Il -g 20 "; 
$tpar[8] =" -a 0.5 "; 
$tpar[9] =" -b 4 "; 
$tpar[10] =" -e 0.5 "; 
$tpar[ll] =" -q 0.0 "; 
$tpar[12] =" -c 100 "; 
$tpar[13] =" -f6 "; 

# number of independent trials 
# number of steps in each trial 

# maximum time for each trial 
# stop if tour better or equal optimum is found 
# number of ants 

# nearest neighbours in tour construction 
# alpha (influence of pheromone trails) 

# beta (influence of heuristic information) 
# rho: pheromone trail evaporation 
# q_0: prob. ofbest choice in tour construction 
# number of elitist ants 

# number of ranks in rank-based Ant System 



# No.of nearest neighbours for local search $tpar[l4] =" -k 20 "; 
$tpar[l5] =" -10 "; 
$tpar[l6] = " -d 1 "; 
$tpar[ 17] = " --as "; 
$tpar[l8] =" --eas "; 
$tpar[l9] ="--ras"; 
$tpar[20] =" --mmas "; 
$tpar[21] =" --bwas "; 
$tpar[22] = " --acs "; 

# 0: no local search 1: 2-opt 2: 2. 5-opt 3: 3-opt 
# 1 use don't look bits in local search 
# apply basic Ant System 
# apply elitist Ant System 
# apply rank-based version of Ant System 

# apply MAX-MIN Ant System 
# apply best-worst Ant System 

# apply Ant Colony System 

#1 
$tpar[l0] =" -e 0.0025 "; 
$corn! = $tpar[l].$tpar[2]; 
$corn2 = $tpar[ 4]. $tpar[ 8]. $tpar[ 9]. $tpar[ 1 0]. $tpar[ 1 5]. $tpar[ 1 7] ; 
$param = execut($coml,$corn2,$param); 
system 'rm-f /home/ddarquennes/ACOTSPVI0spl/resultats/*'; 
system 'rm -f /home/ddarquennes/ ACOTSPVI 0sp2/resultats/*'; 
system 'rm -f /home/ddarquennes/ ACOTSPVI 0sp3/resultats/*' ; 
system 'rm -f /home/ddarquennes/ ACOTSPVI 0sp4/resultats/*'; 
system 'rm -f /home/ddarquennes/resultats/*'; 

#2 
$tpar[I0] = " -e 0.0050 "; 
$corn! = $tpar[l].$tpar[2]; 
$co rn2 = $tpar[ 4] . $tpar[ 8]. $tpar[ 9]. $tpar[ 10]. $tpar[ 15]. $tpar[ 1 7] ; 
$param = execut($coml,$corn2,$param); 
system 'rm-f /home/ddarquennes/ACOTSPVI0spl/resultats/*'; 
system 'rm-f /home/ddarquennes/ACOTSPV10sp2/resultats/*'; 
system 'rm-f /home/ddarquennes/ACOTSPV10sp3/resultats/*'; 
system 'rm-f /home/ddarquennes/ACOTSPV10sp4/resultats/*'; 
system 'rm-f /home/ddarquennes/resultats/*' ; 

#3 
$tpar[I0] = " -e 0.0075 "; 
$corn! = $tpar[l].$tpar[2]; 
$corn2 = $tpar[ 4]. $tpar[8]. $tpar[ 9]. $tpar[ 1 0]. $tpar[ 15]. $tpar[ 17]; 
$param = execut($coml,$corn2,$param); 
system 'rm -f /home/ddarquennes/ ACOTSPVI 0sp 1/resultats/*'; 
system 'rm-f /home/ddarquennes/ACOTSPV10sp2/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp3/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/resultats/*'; 
system 'rm -f /home/ddarquennes/resultats/*'; 

#4 
$tpar[l0] =" -e 0.01 "; 
$corn!= $tpar[l].$tpar[2]; 



$com2 = $tpar[ 4]. $tpar[ 8]. $tpar[ 9]. $tpar[ 10]. $tpar[ 15]. $tpar[ 1 7]; 
$param = execut($coml ,$com2,$param); 
system 'rm -f /home/ddarquennes/ACOTSPVl0spl/resultats/*'; 
system 'rm -f /home/ddarquennes/ ACOTSPVl 0sp2/resultats/*'; 
system 'rm-f /home/ddarquennes/ACOTSPV10sp3/resultats/*'; 
system 'rm -f /home/ddarquennes/ACOTSPV10sp4/resultats/*'; 
system 'rm -f /home/ddarquennes/resultats/*'; 

system 'R < commands3.r--save'; 

#fin 
#system 'rm-f /home/ddarquennes/ACOTSPVl0spl/F*.tsp'; 
#system 'rm -f /home/ddarquennes/ACOTSPV10sp2/F*.tsp'; 
#system 'rm -f /home/ddarquennes/ ACOTSPVl 0sp3/F*. tsp'; 
#system 'rm-f /home/ddarquennes/ACOTSPV10sp4/F*.tsp'; 
#system 'rm-f /home/ddarquennes/F*.tsp'; 



Exec program : construction of data tables 

package Exec; 
require Exporter; 

our @ISA = qw(Exporter); 
our@EXPORT = qw(execut); 

f###I. definition fonction 

sub execut { # debut sous-programme 

$coml = shift(@_J; 
$com2 = shift(@_J; 
$param = shift(@_J; 

open(RESULT, ">>values0603.dat"); 
open(INST, ">>instance0603.dat"); 

for($j = l; $j < 5; $j++) { 
$partl = "cd ACOTSPVI0sp"; 
$part2 =";for fichier in \$(ls F*.tsp); do echo \"test avec sp \" "; 
$part3 = "; nice -19 ./acotsp "; 
$part4 = "; done"; 
$commande!= $partl.$j.$part2.$j.$part3.$coml." -p ".$j.$com2." -i \$fichier ".$part4; 

system $commande!; 

$part! 1 = "cp /home/ddarquennes/ACOTSPVl0sp"; 
$partl2 = "/resultats/* /home/ddarquennes/resultats"; 

$commande2 = $part! 1.$j.$partl2; 

system $commande2; 

$rep = "/home/ddarquennes/resultats"; 
opendir DH, $rep or die "Impossible d'ouvrir $rep: $!"; 
foreach $fichiers (readdir DH) { # begin foreach 

if($fichiers ne "." and $fichiers ne " .. ") { # if 
$fichiers = $rep. "/". $fichiers; 

open(TITI, $fichiers) or die "impossible d'ouvrir $fichiers : $!"; 
$nbl = 0; 
LIGNE: while($ligne = <TITI>) {#LIGNE 

$nbl++; 
} #LIGNE 
close TITI; 



open(TOTO, $fichiers) or die "impossible d'ouvrir $fichiers : $!"; 
select INST; 
$i = l ; 
$nbli = O; 
LIGNE 1: while($ligne = <TOTO>) { # LIGNEl 

$nbli++; 
last LIGNEl if $i > 25 ; 
$der = rindex($ligne, "\t"); 
substr($ligne, 0, $der+ 1) =" "; 
$<lem = rindex($ligne, "\n"); 
substr($ligne, $<lem, $<lem+ 1) =" "; 
if ($i = 2){ 

$tab[$i] = $ligne." ".$param." "; 
} else { 
$tab[$i] = $ligne; 
} 

if ($i = 1 ){ $S p = $ligne;} 
if ($i = 2){ $Inst = $ligne;} 
print $tab[$i] ; 
$i++; 
} #ELIGNEl 

print "\n" ; 
select RESULT; 
LIGNE2: while($ligne = <TOTO>) { # LIGNE2 

if ($i < 26) { 
$i++; 
next LIGNE2; 

} 
$nbli++; 
$_ = $ligne; 
s/[a-z]+/ /; 
s/[a-z]+/ /; 
s/[a-z]+/ /; 
if($nbli = $nbl) { 

} else { 
$last = O; 

} 
$_ = $Sp." ".$Inst." ".$param." ".$last." ".$_; 
print "$_"; 
$i++; 

} #ELIGNE2 
} # end if 
close TOTO; 

} # end foreach 
} # end for 
$param++; 
retum $param; 

} # end sous-programme $last = 1; 



Commands3.r program : final graphies 

Val <- read. table("values0603. dat", header=TRUE) 

u <- subset(Val, V al$Lrust 1) 
write.table(u, file="datas0603.dat", quote=TRUE, row.names=FALSE, col.names=TRUE) 
Vall <- read.table("datas0603.dat", header=TRUE) 
resfin <- aggregate(Vall[,5:7], list(Sp=Vall$Sp, Param=Val1$Param), median) 
resfin 
write.table(resfin, append = TRUE, file="resfin0603.dat", quote=FALSE, col.names=TRUE) 

nbpa <- 4 
# assign("pa", c(0.0025, 0.0050, 0.0075, 0.01)) 
nbsp <- 4 
nbfi <- 100 

cnt <- 0 

pa <- 1:nbpa 
sp <- 1:nbsp 
su <- seq(0.05, 15.05, by=5) 
fi <- 1:nbfi 

t <- length(pa)*nbsp*length(su) 
z <- seq(l, t, by=l} 
o <- l:length(su) 
abs <- numeric(length( o)) 

sure<- numeric(length(fi)) 
fire <- numeric(length(z)) 

for(i in 1:length(pa)) { 
for(k in l:length(sp)) { 

for(n in 1 :length(su)) { 
for(m in 1:length(fi)) { 

# number of tested parameters 
# number of memory depth types 
# number of test files 

# vector for number of parameters 
# vector for number of memory depth type 
# vector for number of subdivision abscisse 
# vector for number of test files 

# max number of final results 
# size of vector for final-results 

# vector of abscisses 

# vector of sub-results 
# vector of final-results 

j <- subset(Val, Val$Param = i & Val$Sp = k & Val$l_nam == m) 
sure[m] <- min(j$Value[j$Time <= su[n]]) 

} 

} 
} 

} 
cnt <<- cnt + 1 
fire[cnt] <- mean(sure) 



opar <- par() 
pdf() 

cnt <- 0 

for(i in 1:length(pa)) { 

} 

plot(su, abs, type="n", xlab="CPU Tirne", ylab="Tour length", xlim=c(0, 15), ylirn=c(400, 
700)) 

legend(l0, 700, legend=c("Algo l", "Algo 2", "Algo 3", "Algo 4"), pch=l:4) 
switch(~ title("Alpha=0.5 Beta=4 Evap=0.0025"), title("Alpha=0.5 Beta=4 Evap=0.0050"), 

title("Alpha=0.5 Beta=4 Evap=0.0075"), title("Alpha=0.5 Beta=4 Evap=0.01")) 
for(k in factor(sp )) { 

} 

for(n in l :length(su)) { 
cnt <<- cnt + 1 
abs[n] <- fire[cnt] 

} 
switch(k, points(su, abs, pch=l), points(su, abs, pch=2), points(su, abs, pch=3), points(su, 

abs, pch=4)) 
switch(k, lines(su, abs, lty=l), lines(su, abs, lty=l), lines(su, abs, lty=l), lines(su, abs, 

lty=l)) 

write.table(fire, file="resfü603.dat", quote=FALSE, row.names=FALSE, col.names=TRUE) 








