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Instabilidade de Lyapunov para equações diferenciais descontínuas

Resumo
O presente trabalho estuda a instabilidade de Lyapunov para equações diferenciais des-
contínuas através do uso da noção de solução de Carathéodory para equações diferen-
ciais. A partir do primeiro teorema de instabilidade de Lyapunov e do teorema de insta-
bilidade de Chetaev, que tratam da instabilidade para equações diferenciais ordinárias,
dois resultados de instabilidade de Lyapunov para equações diferenciais descontínuas
são obtidos.
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Abstract
The present work studies the Lyapunov instability for discontinuous differential equations
through the use of the notion of Carathéodory solution to differential equations. From Lya-
punov’s first instability theorem and Chetaev’s instability theorem, which deal with instability
to ordinary differential equations, two Lyapunov instability results for discontinuous differ-
ential equations are obtained.
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1 INTRODUCTION

Discontinuous differential equations are ordinary differential equations with the discontinu-
ous right side and determine discontinuous systems. Such differential equations are treated, for
example, in [1], [2], [3], [4], [5] and [6]. The study of the Lyapunov stability to discontinuous
differential equations using the notion of Carathéodory solution can be found in [3] and [6].

Based on instability results for ordinary differential equations, the present work studies the
instability for discontinuous systems determined by

ẋ(t) = f(t, x(t)) (1)

where f : R×Rn → Rn and f(t, 0) = 0 for all t ∈ [0,∞). For this, the notion of Carathéodory
solution to Eq. (1) is used here. Thus, from Lyapunov’s first instability theorem (see [7,
Theorem 9.16]) and Chetaev’s instability theorem (see [7, Theorem 9.22]), two Lyapunov
instability results are stablished to Eq. (1). Moreover, examples that illustrate the established
results are considered.

The existence of Carathéodory solutions for (1) can be found in [8]. In [4] we can find the
study on the continuation of solutions.

2 PRELIMINARIES

This section provides basic concepts and results that will be used in the development of
the work.

2.1 Absolutely continuous functions

Absolutely continuous functions are treated, for example, in [9]. In the next definition, ‖.‖
denotes the Euclidean norm in Rn.

Definition 2.1. A function x : [a, b] → Rn is called absolutely continuous if for any ε > 0,
there exists δ > 0 such that, for any countable collection of disjoint subintervals [ak, bk] of
[a, b] satisfying ∑

(bk − ak) < δ,

implies that ∑
‖x(bk) − x(ak)‖ < ε.

We also define absolutely continuous functions on a given interval I ⊂ R.

The work uses the notion of Lebesgue integral. Consider an interval I ⊂ R. We say that
a statement P holds almost everywhere (a.e.) on I, if the set N given by

N = {t ∈ I : P does not hold at t}
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has Lebesgue measure zero. A more complete approach to Lebesgue measure and integral can
be found in [10]. As can be seen in [11], an absolutely continuous function x : [a, b] → Rn

is differentiable almost everywhere, and its derivative ẋ(·) is a Lebesgue integrable function.
The Newton-Leibniz formula is also true; that is,

x(t2) − x(t1) =
∫ t2

t1
ẋ(t)dt

for all t1, t2 ∈ [a, b], t1 < t2.

2.2 Carathéodory solutions

Below we have the definition of Carathéodory solution to Eq. (1).

Definition 2.2. Consider an interval I ⊂ R. It is said that a function x : I → Rn is a
Carathéodory solution to Eq. (1) on I if x(t) is absolutely continuous and ẋ(t) = f(t, x(t))
for a.e. t ∈ I.

Suppose that S(x0) denotes the set of Carathéodory solutions x(t) to Eq. (1) on [0,∞)
with x(0) = x0. If f(t, 0) = 0 for every t ∈ [0,∞), then the function x : [0,∞) → Rn defined
by x(t) = 0 for t ∈ [0,∞) is such that x ∈ S(0).

Example 2.3. Let f : R × R → R be defined by

f(t, x) =

 0, x = 0
1, x 6= 0.

If x : R → R is given by

x(t) =


t+ 1, t ≤ −1
0, −1 < t ≤ 1
t− 1, t > 1

then x is a Carathéodory solution to Eq. (1) on R. Since ẋ(t) = f(t, x(t)) = 1 for t < −1,
ẋ(t) = f(t, x(t)) = 0 for −1 < t < 1, and ẋ(t) = f(t, x(t)) = 1 for t > 1.

Example 2.4. Consider the function f : R × R → R given by

f(t, x) =

 −x+ 1
2 , x < −1

2

x2, x ≥ −1
2 .

Then x : R → R defined by

x(t) =


1
2 − e−t, t < 0
−1
t+2 , t ≥ 0

is such that ẋ(t) = f(t, x(t)) = −x(t) + 1
2 for t < 0, and ẋ(t) = f(t, x(t)) = x2(t) for t > 0.

Thus, x is a Carathéodory solution to Eq. (1) on R.

INTERMATHS | Vol. 2 | N. 2 | Jul - Dez 2021



Lyapunov instability for discontinuous differential equations

Iguer Luis Domini dos Santos
52

Example 2.5. Consider the function f : R × R2 → R2 given by

f(t, x, y) =


(

x√
x2+y2

, y√
x2+y2

)
, (x, y) 6= (0, 0)

(0, 0), (x, y) = (0, 0).

Take an arbitrary θ ∈ [0, 2π). Let X : [0,+∞) → R2 be defined by

X(t) = (t cos(θ), t sin(θ)).

We have Ẋ(t) = f(t,X(t)) = (cos(θ), sin(θ)) for t > 0 and hence X ∈ S
(
(0, 0)

)
.

2.3 Extension of solutions

Below we consider the maximal interval of existence of ordinary differential equations. For
this, let Ω ⊂ R × Rn be an open connected set and f1 : Ω → Rn a continuous function. If
(t0, x0) ∈ Ω, consider the initial value problem

x′(t) = f1(t, x(t)), x(t0) = x0 (2)

where x(t) is a C1 function from some interval I ⊂ R containing the initial time t0 into Rn.
Then the initial value problem (2) has a unique local solution.

Theorem 2.6 ([12]). For every (t0, x0) ∈ Ω the solution to the initial value problem (2)
extends to a maximal existence interval I = (α, β). Furthermore, if K ⊂ Ω is any compact
set containing the point (t0, x0), then there exist times α(K) and β(K) such that α < α(K) <
β(K) < β and (t, x(t)) ∈ Ω \K, for t ∈ (α, β) \ [α(K), β(K)].

Example 2.7. Consider the function f1 : R × (0,+∞) → R given by

f1(t, x) = arctan(
√
x)√

x
.

If x0 > 0 and t0 = 0, let x(t) be the solution of the initial value problem (2) for t ∈ (a, b).
For each t ∈ (0, b) we have

|x(t)| =
∣∣∣∣∣x0 +

∫ t

0
x′(s)ds

∣∣∣∣∣
≤ |x0| +

∫ t

0
|x′(s)|ds

= |x0| +
∫ t

0

arctan(
√
x(s))√

x(s)
ds

≤ |x0| + t.
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In a similar way, for each t ∈ (a, 0) we have

|x(t)| ≤ |x0| + |t|.

It follows from Theorem 2.6 that I = (−∞,+∞) is the maximal existence interval.

Example 2.8. Consider the set A = R2 \ {(0, 0)} and let f1 : R × A → R2 be defined as

f1(t, x, y) =
(

arctan(x2 + y2), arctan(x2 + y2)
x2 + y2

)
.

Take (x0, y0) ∈ A such that x0 > 0 and y0 > 0. If t0 = 0, let (x(t), y(t)) denote the solution
of the initial value problem (2) for t ∈ (a, b). For each t ∈ (0, b),

‖(x(t), y(t))‖ =
∥∥∥∥∥(x0, y0) +

∫ t

0
(x′(s), y′(s))ds

∥∥∥∥∥
≤ ‖(x0, y0)‖ +

∫ t

0

∥∥∥∥∥(x′(s), y′(s))
∥∥∥∥∥ds

≤ ‖(x0, y0)‖ +
∫ t

0

(
|x′(s)| + |y′(s)|

)
ds

= ‖(x0, y0)‖ +
∫ t

0
arctan(x2(s) + y2(s))ds

+
∫ t

0

arctan(x2(s) + y2(s))
x2(s) + y2(s) ds

≤ ‖(x0, y0)‖ +
∫ t

0

π

2ds+
∫ t

0
ds

= ‖(x0, y0)‖ + (π2 + 1)t.

Similarly, for each t ∈ (a, 0) we have

‖(x(t), y(t))‖ ≤ ‖(x0, y0)‖ + (π2 + 1)|t|

and from Theorem 2.6 it follows that I = (−∞,+∞) is the maximal existence interval.

3 LYAPUNOV INSTABILITY

The main results of the manuscript are stated in Theorems 3.4 and 3.6. Theorem 3.4 is
established from Lyapunov’s first instability theorem (see [7, Theorem 9.16]). On the other
hand, Theorem 3.6 is established from Chetaev’s instability theorem (see [7, Theorem 9.22]).
The functions V in Theorems 3.4 and 3.6 are analogous to Lyapunov functions for ordinary
differential equations (see, for example, [13]).

The Lyapunov stability of equilibrium point x = 0 of Eq. (1) can be formulated analogously
to ordinary differential equations (see, for instance, [7], [12] and [14]).

In what follows, we have a concept of stability (in the sense of Lyapunov) to solution x ≡ 0
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of Eq. (1) with initial condition x(0) = x0.

Definition 3.1. The equilibrium point x = 0 of Eq. (1) is stable if for any ε > 0 there exists
δ = δ(ε) > 0, such that if ‖x0‖ < δ, then ‖x(t)‖ < ε for all t ≥ 0, with x ∈ S(x0).

Definition 3.2. The equilibrium point x = 0 of Eq. (1) is unstable if it is not stable. In this
case, there exist ε > 0 and sequences {xm} and {tm} such that ‖φm(tm)‖ ≥ ε for all m,
whenever φm ∈ S(xm).

Definition 3.3. It is said that a continuous function ψ : [0, r1] → [0,∞) (respectively,
ψ : [0,∞) → [0,∞)) belongs to class K (ψ ∈ K), if ψ(0) = 0 and if ψ is strictly increasing
on [0, r1] (respectively, on [0,∞)).

Below, B(h) denotes the open ball of radius h centered at origin, that is,

B(h) = {x ∈ Rn : ‖x‖ < h}.

Theorem 3.4. Consider V : [0,∞) × Rn → R locally Lipschitz continuous. Suppose that in
every neighborhood of the origin there are points x such that V (0, x) > 0. Suppose, moreover,
that there exist functions ψ1, ψ2 ∈ K obeying the following assertions:

(i) for some h > 0, |V (t, x)| ≤ ψ1(‖x‖) for all (t, x) ∈ [0,∞) ×B(h);

(ii) d
dt
V (t, φ(t)) ≥ ψ2(‖φ(t)‖) for a.e. t ∈ [0,∞), and for all φ ∈ S(x0) with ‖x0‖ < h.

Then the equilibrium point x = 0 of Eq. (1) is unstable.

Proof. Let ε > 0 be such that ε ≤ h. Take a sequence of points {xm} such that 0 <

‖xm‖ < ε, V (0, xm) > 0 and xm → 0. Consider φm ∈ S(xm) and wm : [0,∞) → R, with
wm(t) = V (t, φm(t)). Since wm is absolutely continuous,

wm(t) − wm(0) =
∫ t

0

d

ds
wm(s)ds

for all t ∈ [0,∞). Hence ‖φm(tm)‖ = ε for some tm ∈ (0,∞). For otherwise,

ψ1(‖φm(t)‖) ≥ V (t, φm(t)) = wm(t)

= wm(0) +
∫ t

0

d

ds
wm(s)ds

= wm(0) +
∫ t

0

d

ds
V (s, φm(s))ds

≥ wm(0) +
∫ t

0
ψ2(‖φm(s)‖)ds

≥ wm(0)
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and then
‖φm(t)‖ ≥ ψ−1

1 (wm(0)) = αm > 0

for all t ∈ [0,∞). Thence

ψ1(ε) > ψ1(‖φm(t)‖) ≥ wm(t)

≥ wm(0) +
∫ t

0
ψ2(‖φm(s)‖)ds

≥ wm(0) +
∫ t

0
ψ2(αm)ds

= wm(0) + tψ2(αm)

for all t ∈ [0,∞). Taking t → ∞ we get a contradiction. Therefore the equilibrium point
x = 0 of Eq. (1) is unstable.

Example 3.5. Let f : R × R2 → R2 be defined as

f(t, x, y) =



(
arctan(x2 + y2), arctan(x2+y2)

x2+y2

)
, y > 0

(0, 0), y = 0(
e−x2−y2

, cos( 1
x2+y2 )

)
, y < 0.

Let V (t, x, y) = x. Consider a sequence of points {(am, bm)} such that am, bm > 0,
‖(am, bm)‖ < ε and (am, bm) → (0, 0). If φm = (xm, ym) is such that φm ∈ S

(
(am, bm)

)
, it

follows that

d

dt
φm(t) =

(
arctan(x2

m(t) + y2
m(t)), arctan(x2

m(t) + y2
m(t))

x2
m(t) + y2

m(t)

)

and then xm(t), ym(t) > 0 for t ≥ 0. Thus,

d

dt
V (t, φm(t)) = d

dt
xm(t)

= arctan(x2
m(t) + y2

m(t))

= ψ(‖φm(t)‖)

for a.e. t ∈ [0,∞), with ψ(u) = arctan(u2) for all u ≥ 0. From Theorem 3.4 and its proof
we conclude that the equilibrium point (x, y) = (0, 0) of Eq. (1) is unstable.

Theorem 3.6. Let V : [0,∞) × Rn → R be locally Lipschitz continuous. Suppose that V
satisfies the following properties:

(i) for each ε > 0 and for any t ≥ 0, there exists x ∈ B(ε) such that V (t, x) < 0. Consider
a fixed constant h > 0. The set {(t, x) ∈ [0,∞) × B(h) : V (t, x) < 0} is called
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the “domain V < 0”. The domain V < 0 is bounded by the hypersurfaces which are
determined by ‖x‖ = h and by V (t, x) = 0 and it may consist of several component
domains;

(ii) there is a component domain D of the domain V < 0 such that V is bounded below
and 0 ∈ ∂D;

(iii) there exists ψ ∈ K such that d
dt
V (t, φ(t)) ≤ −ψ(|V (t, φ(t))|) for a.e. t ∈ [0,∞), and

for all φ ∈ S(x0) with (0, x0) ∈ D and x0 ∈ B(h).

Then the equilibrium point x = 0 of Eq. (1) is unstable.

Proof. Let M > 0 be such that −M ≤ V (t, x) for all (t, x) ∈ D. Take δ > 0 arbitrary and
consider (0, x0) ∈ D, with x0 ∈ B(δ)∩B(h). If φ0 ∈ S(x0), then the function w : [0,∞) → R
given by w(t) = V (t, φ0(t)) is absolutely continuous. For each t ≥ 0 we have |w(t)| ≥ |w(0)|,
since

w(t) = w(0) +
∫ t

0

d

ds
w(s)ds

≤ w(0) −
∫ t

0
ψ(|w(s)|)ds

≤ w(0) < 0

for all t ≥ 0. Thus, ‖φ0(t0)‖ = h for some t0 ∈ (0,∞). For otherwise,

w(t) ≤ w(0) −
∫ t

0
ψ(|w(s)|)ds

≤ w(0) −
∫ t

0
ψ(|w(0)|)ds

= w(0) − tψ(|w(0)|)

and then w(t) → −∞ as t → +∞. What contradicts the lower bound −M ≤ w(t). Then
there exists t0 > 0 such that (t0, φ0(t0)) ∈ ∂D. Since w(t0) < 0, we have ‖φ0(t0)‖ = h. So
the equilibrium point x = 0 of Eq. (1) is unstable.

Example 3.7. Let f : R × R → R be defined by

f(t, x) =


arctan(

√
x)√

x
, x > 0

0, x = 0
cos( 1

x2 ) + sin( 1
x3 ), x < 0.

Consider the function V : [0,∞) × R → R given by

V (t, x) =

 −x2, x ≥ 0
x2, x < 0.
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Take a constant h > 0. In this case the domain V < 0 is given by [0,∞) × (0, h). Take
D = [0,∞) × (0, h) and let δ > 0 be arbitrary. Consider (0, x0) ∈ D, with x0 < δ. If
φ0 ∈ S(x0) it follows that

d

dt
φ0(t) =

arctan(
√
φ0(t))√

φ0(t)

and then φ0(t) > 0 for t ≥ 0. Thus,

d

dt
V (t, φ0(t)) = −2φ0(t)

d

dt
φ0(t)

= −2
√
φ0(t) arctan(

√
φ0(t))

= −ψ(|V (t, φ0(t))|)

for a.e. t ∈ [0,∞), with ψ(u) = 2 4
√
u arctan( 4

√
u) for all u ≥ 0. It follows from Theorem 3.6

and its proof that the equilibrium point x = 0 of Eq. (1) is unstable.

4 CONCLUSIONS

The manuscript contributes to the qualitative theory of discontinuous differential equa-
tions. More specifically, the manuscript establishes two results on Lyapunov instability from
Lyapunov’s second method for ordinary differential equations. The two results established here
are stated in Theorems 3.4 and 3.6. The Theorems 3.4 and 3.6 are analogies of Lyapunov’s
first instability theorem and Chetaev’s instability theorem, respectively.
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