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Foreword 

The content of this thesis mainly focuses on why we would use recycled aggregates in concrete. 

What is the reason that so much research has been conducted on this subject? However, once 

the importance of its use is recognized, its properties are frequently refuted. Since this thesis 

aims to promote the use of the recycled aggregates, this work gives a useful source of 

information on its properties. Furthermore, it also discusses which influences and changes the 

concrete experiences when these aggregates are being used instead of the natural ones. It goes 

without saying that adjustments will have to be made to the processing of the aggregates before 

they can be used in the concrete mix. The non-obvious use is described in detail. But the 

extensive literature study also suggests many options for improvement, so that the concrete 

could still be put into circulation more. By discussing the laboratory tests conducted by fellow 

students at the Arctic University of Norway, links are made with the literature. We check 

whether the information obtained is correct and what actions can be taken in the future to 

increase the use of this type of concrete. 
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use of recycled aggregates. This gives a variety of results, some of which are even 
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1 Introduction 

Due to the increase in the world’s population and the accompanying economic developments, 

large investments are being made in the construction industry (Dhir Obe, Brito, Silva, & Lye, 

2019; Freedonia, 2012). Logically, the number of construction practices in the process 

increases. This causes competition in the construction industry to skyrocket and forces the 

players to focus on the financial aspect rather than sustainability. This large number of practices 

results in a high demand for aggregates, since the bulk of recent construction is made of 

concrete and concrete is about 70% aggregate (Bassani, Diaz Garcia, Meloni, Volpatti, & 

Zampini, 2019; Saini & Singh, 2020). In doing so, the cheapest and easiest option is gradually 

chosen, namely the extraction of natural aggregate sources with the adverse effects on the 

environment that come with it (Dhir Obe et al., 2019). Obtaining these natural aggregates is 

done largely through extensive mining activities, which consumes an excessive amount of 

energy and involves heavy equipment (Saini & Singh, 2020; Verian, Ashraf, & Cao, 2018). 

The mining activities have a major impact on the environment and facilities such as noise, dust, 

atmospheric emissions from machinery engines, groundwater pollution, etc. Natural resources 

are being rapidly depleted at a high rate and natural habitats are being destroyed (Dhir Obe et 

al., 2019; Saini & Singh, 2020). This leads to people having to go the extra mile to obtain good 

quality of aggregates. This in turn has the negative effect of driving up the cost of extraction. 

Thus, alternatives must be sought.  

The most obvious solution to obtain aggregates that are close, is to start reusing old construction 

material. This material is called Construction & Demolition Waste (CDW). But what happened 

(still happens) to CDW, when there is no attempt to reuse them? The main possibility would be 

to incinerate them. However, CDW has the properties of being inert and having a high density, 

making this possibility not recommendable. CDW was/is being dumped into landfills (Saini & 

Singh, 2020), which again makes the reuse of CDW a positive alternative. Construction is one 

of the industries with the largest volume of waste with a contribution of approximately 5% and 

it is also the heaviest waste. Concrete is responsible for about 70% of this waste (Dhir Obe et 

al., 2019; USEPA, 2016). Normally these quantities are tracked but the statistics available now 

are probably still too low due to uncontrolled operations and the inadequate waste management 

policies, leading to illegally dumped CDW (Dhir Obe et al., 2019). And unfortunately, older 

structures that are being demolished do not consist solely out of concrete. CDW consist mainly 

of many different types of materials that are mixed together (e.g., wood, plaster, etc.) (Dhir Obe 

et al., 2019; Saini & Singh, 2020; USEPA, 2016). As can be seen in the chart below, all waste 
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from demolition and construction is divided by quantity. The continued increase in construction 

waste will make recycling concrete waste an important global challenge (Guo et al., 2018). 

 

Figure 1: CDW generated in 2014 for the United States (USEPA, 2016) 

1.1 Recycled aggregates: pros and cons 

The use of all those recycled aggregates (RAs) carries a lot of advantages. Firstly, it has the 

effect of lowering the carbon footprint (Dhir Obe et al., 2019). According to (Saini & Singh, 

2020; V. W. Y. Tam, Soomro, & Evangelista, 2018), the reduction of carbon emissions is up 

to 28% and it boosts the conservation of natural resources. According to (Hossain, Poon, Lo, 

& Cheng, 2016; Verian et al., 2018), the use of RA from CDW in Hong Kong reduces up to 

65% of the greenhouse gas footprint and saves the energy consumption up to 58%. Another 

study by (Coelho & Brito, 2013; Coelho & de Brito, 2013c; Dhir Obe et al., 2019) indicated 

that up to 85% less energy was consumed through the use of a CDW recycling plant, compared 

to the conventional approach. This study also reported that 90% lower CO2 emissions were 

observed. Other studies mentioned a CO2 emissions reduction by about 15% - 20% (Guo et al., 

2018; Kazmi et al., 2020; Xiao, Li, Fan, & Huang, 2012). These values can be explained by the 

reduced transport to and from the mining sites, the reduced consumption of energy and volume 

of CDW (Dhir Obe et al., 2019). The figure below shows the generated waste by each economic 

activity during the years 2004 – 2014. 
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Figure 2: Generated waste by each economic activity (Eurostat, 2017) 

The use of recycled concrete aggregates (RCAs) instead of natural aggregates (NAs) also 

ensures that no new mining sites are opened. A well-defined example was given by (Guo et al., 

2018; Kazmi et al., 2020; Xiao, Li, Fan, et al., 2012), who stated that the use of RA could save 

up to 60% of limestone resources. RCA’s transport still needs to be done, but since RCA’s unit 

weight is lighter than NA’s, less transport energy is required (Verian et al., 2018). According 

to some experiences in (Dhir Obe et al., 2019), they come to a statement which shows that the 

extraction of NA poses a higher threat to the environment than the use of RA. The use of RCA 

logically also ensures that less waste is dumped in landfills (Bovea & Powell, 2016; Dhir Obe 

et al., 2019; Faleschini, Zanini, Pellegrino, & Pasinato, 2016; James W. Mack, 1993; Verian et 

al., 2018). The use of RA also has an economical advantage by reducing the construction costs 

(USGS, 2000; Verian et al., 2018). With all of the above, it can be concluded that the use of 

RCA can certainly be considered. Especially since it still possesses the qualities that make it 

possible to make concrete that has a high structural strength. The universal trend aims towards 

recycling of construction waste as RA in the concrete structures, which can be attributed to the 

urge to overcome the depletion of natural resources and environmental pollution, to avoid the 

accumulation of debris in the landfills, to have less air pollution, etc. (Kazmi et al., 2020; Munir, 

Kazmi, Wu, Patnaikuni, Wang, et al., 2020; Sasanipour & Aslani, 2020a). Although there is 

still a long way to go, it can be said that the use of RCA is rich in potentials and it can only be 

encouraged (Guo et al., 2018; Verian et al., 2018).  

Despite the benefits, the drawbacks of using RCA must also be considered. It has its own carbon 

footprint and it can definitely affect nature and the environment in a way that is similar to the 

use of NA (Dhir Obe et al., 2019; Lopez Gayarre, Gonzalez Perez, Lopez-Colina Perez, Serrano 
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Lopez, & Lopez Martinez, 2016). To remove the greater amount of mortar that is adhered to 

the RA there is a need for energy-intensive thermal treatments that can impact the environment 

greatly (Dhir Obe et al., 2019; Guo et al., 2018). All installations also need space to settle, 

which in turn takes land. The machines also produce sound, dust, vibrations, gas and odor 

(DETR, 2000; Dhir Obe et al., 2019; Omary, Ghorbel, & Wardeh, 2016). The aggregates must 

be removed from the recycled concrete and washed. As a result, there is a very high 

consumption of water that can also pollute the groundwater and contaminate land (DETR, 2000; 

Dhir Obe et al., 2019). Furthermore, CDW is difficult to process. Due to the high level of 

contamination, it affects the end product in a negative way (Dhir Obe et al., 2019). In order to 

minimize this contamination, quality controls and pre-crushing separation and/or post-crushing 

separation can be used (Dhir Obe et al., 2019). The low quality of the waste is one of the biggest 

obstacles that needs to be overcome. The concerns about the durability of RAs in concrete 

structures are what limits its use (Kazmi et al., 2020). According to (Saini & Singh, 2020), the 

processing of CDW should be approached according to the mindset of the 3R-concept: Reduce, 

Recycle and Replace. One solution could be searching and finding sustainable resources that 

can replace the natural components in the production of concrete (Guo et al., 2018).  

Some challenges emerge when working with RAs that are worth mentioning. When buildings 

are demolished, it usually means that they have been in use for many years and that some of 

the materials may have reached the end of their useful life. That implies that some parts of the 

materials are unusable (Dhir Obe et al., 2019). A lot of waste coming from new residential and 

non-residential constructions is wood, which therefore cannot be used to make new concrete. 

Demolition and refurbishment activities tend to produce higher amounts of concrete and bricks 

which makes them more interesting for RAs (Dhir Obe et al., 2019; Mália, de Brito, Pinheiro, 

& Bravo, 2013). All the different materials found in building waste each have their own 

characteristics and make it very difficult to maintain a consistent quality of concrete (Bravo, de 

Brito, Pontes, & Evangelista, 2015a, 2015b; Rodrigues, Carvalho, Evangelista, & de Brito, 

2013; Saini & Singh, 2020). In order to keep the demolition as cost-effective as possible, 

buildings are broken down in one go. What follows is unsorted waste that creates a more 

complex or even impossible recycling process (Dhir Obe et al., 2019). For an improvement of 

the identification of the materials and a separation at the source, there should be a selective 

demolition and adequate on-site operations. On this basis a collection can then be built up and 

a separation can be made of materials that have the potential to be recycled (Dhir Obe et al., 

2019; EC, 2016). This aims to have sound waste management policies that allow for accurate 
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qualification and segregation of CDW. (Dhir Obe et al., 2019; Noguchi, Park, & Kitagaki, 

2015). By having standards and specifications, there will be a higher awareness of the use of 

RA and guidance documents will persuade people more to try out the use of RA (Knoeri, 

Binder, & Althaus, 2011; Knoeri, Nikolic, Althaus, & Binder, 2014). Aspects that may affect 

the estimation of the CDW, in order to identify them and decide if they can be reused, are the 

date and the purpose of the construction that is to be demolished (Dhir Obe et al., 2019). The 

quality of RAs is highly dependent on the waste separation process. Sorting has to be done at 

all stages. This results in a large variety of products obtained that are available for various 

applications. Keep in mind that complex machinery is required for proper dismantling resulting 

in financial pressure, as well as health, safety and other required standards. Due to the selective 

dismantling of the structures and in doing so obtaining more different materials, there is an 

increase in transportation. This therefore has a negative impact on the environment (Coelho & 

de Brito, 2012). To minimize the road haulage distance, recycling plants should be placed in 

strategic places. These places should be capable of receiving and processing waste from 

multiple nearby potential demolition and construction sites. They should preferably be located 

in the vicinity of potential aggregate users, for the purpose of eliminating a lot of road haulage 

operations, a minimization of transportation costs and time and encouragement of using 

recycled materials (Braga, Silvestre, & de Brito, 2017; Coelho & de Brito, 2013b). But if RAs 

are categorized according to their intrinsic properties rather than their composition, it is possible 

to maximize the use of RAs, assign the most appropriate application and thus improve the 

performance of the final product. Unlike NAs where aggregates can be collected at any time, 

the quantity and availability of RAs depends on buildings being demolished. This results in a 

low quantity of CDW and an intermittent supply of it. Since only a small amount of RA and 

conventional raw materials have to be used, this leads to impracticality due to more complex 

logistics and associated high costs. A lack of provisions/standards for the use of RA prevents a 

better understanding of these RAs and the concrete in which they are incorporated. And that in 

turn has the effect of inhibiting their use in practice (Coelho & de Brito, 2011).  

The perfect recycling process desires the reuse of aggregates for several times but this is not 

always possible. As recycling progresses, the RCA will contain less and less of the original NA 

and more of the attached mortar. This has a significant negative impact on the quality of the 

recycled aggregates and the newly made concrete. This multiple recycling will increase the 

coarse RA’s water absorption capacity which will cause a decrease in the effective water-

cement ratio (W/C) and inferior workability (Brito, Gonçalves, & Santos, 2006; S. B. Huda & 



 

Page 6 of 125 

Alam, 2014). The increased content of the attached mortar will lead to an increase in the 

requirement of water in the concrete mixes, which in turn will affect the mechanical behavior 

of the concrete. Furthermore, the recycled aggregates of repeated recycling cycles will show an 

increase in the rate of strength development. There will also be an increase in the dry RCA’s 

replacement level, which will cause a decrease in the effective W/C ratio and a decline in 

consistence.  

Economically, the costs of access to recycling plants are very high (Coelho & de Brito, 2013a, 

2013b). On the other hand, the reclamation of reusable materials and redirecting recyclable 

wastes to certified beneficiation plants ensures that there can be higher profits compared to 

ordinary demolition methods (Coelho & de Brito, 2011; Hurley, McGrath, Fletcher, & Bowes, 

2001). In addition, there is a high level of uncertainty and lack of shareholder confidence as 

there is a great lack of recognition for the different materials available. However, they are very 

important in the process. The shareholders are involved in making decisions such as whether 

or not to use RA in a construction according to technical feasibility, so their importance cannot 

be neglected. There is also a price sensitivity towards the supply of RA. The use of NAs was/is 

a fully developed industry, hence a supply of NAs at relatively low prices is available. Taxes 

on the mining of NAs do not take into account the effect on the environment (Knoeri et al., 

2014).  

In order to find a viable solution for CDW and to protect the natural aggregate resources, 

especially the non-renewable resources, there is a global increase in research on recycling 

aggregates (Omary et al., 2016).  

2 Terminology 

This section clarifies some of the terms in order for the reader to fully understand the meaning 

of this thesis.  

• Concrete is one of the most widely used construction materials. The constituents of 

concrete are mainly cement, water, admixture and aggregates. The aggregate takes up 

approximately 70% - 80% of the concrete mixture and could be coarse and fine (Bassani 

et al., 2019; Saini & Singh, 2020; Verian et al., 2018).  

• Demolition is when a very large volume of materials, whose physical life has not yet 

expired, is broken down and replaced (Dhir Obe et al., 2019) 
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• CDW stands for Construction and Demolition Waste and indicates the end of service 

life of structures. 

• The processed CDW that is useful in this work can be divided into three categories: 

o Recycled concrete aggregate (RCA). In order to comply with the name RCA, 

the product must consist of at least 90%, in mass, concrete fragments and natural 

aggregates (Dhir Obe et al., 2019). RCA can be obtained by concrete structures 

that are demolished or crushing existing concrete (Verian et al., 2018). These 

can be classified in terms of coarse and fine fractions (Saini & Singh, 2020).  

o Recycled Masonry Aggregate (RMA). In order to comply with the name RMA, 

the product must consist of at least 90%, in mass, a combination of any of 

lightweight and aerated concrete blocks, blast-furnace slag blocks and bricks, 

ceramic bricks and sand-lime bricks (Dhir Obe et al., 2019).  

o Mixed Recycled Aggregate (MRA). When the two above are combined, then 

there could have been spoken about MRA. This means less than 90% of concrete 

fragments and NA, by mass (Dhir Obe et al., 2019).  

• Fine aggregates have a size that is up to 4.75 mm (Constructor) 

• Coarse aggregates have a size that can’t go through a sieve of 4.75 mm. The maximum 

size is dependent of certain conditions. (Constructor) 

• Concrete that is made with recycled aggregates is also called recycled aggregate 

concrete (RAC) 

• Durability is the ability of concrete to keep its own shape and serviceability. It’s capable 

of resisting various types of damage and retains its strength after exposure to the 

environment (Guo et al., 2018; Kazmi et al., 2020). 

• Interfacial Transition Zone (ITZ) is the bond between the paste and aggregates. Usually, 

the ITZ is weaker than both the aggregate and the hydrated cement paste. In the ordinary 

concrete with NA, the ITZ is located between the mortar and the aggregate. For concrete 

made with RCA, between the original aggregate, the old mortar and the new mortar is 

the ITZ (M. Etxeberria, Vázquez, Marí, & Barra, 2007; V. W. Y. Tam, Gao, & Tam, 

2005; Verian et al., 2018) et al. 

• SCC is the abbreviation for Self-Compacting Concrete. It primary consists of binder, 

sand, coarse aggregates and admixture (Saini & Singh, 2020)]. This concrete has the 

potential to fill every corner of the mold without the need for external vibration, thanks 

to its self-consolidating properties. SCC has the advantageous properties of high 
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deformability, good flowability, better finish and resistance to segregations. This makes 

SCC the best choice for structures that have congested reinforcement. Due to the 

microstructure that has fewer defects, SCC has enhanced durability.  

3 What are the general properties of RA and how do 
they differ from NA? 

If RAs are to be used in concrete, it is very important to know what properties they have that 

could potentially affect the final product and its performance (Dhir Obe et al., 2019). The 

mechanical performance of recycled aggregates could turn out to be similar to that of the natural 

aggregates, but this depends, inter alia, on the source of the RAs. The use of RAs could even 

improve the performance of the intended applications. But it has been found that properties like 

density, specific gravity, water absorption capacity, etc. of RAs are generally lower compared 

to those of coarse NAs (Saini & Singh, 2020). The main reason for the difference in properties 

of RA to NA is the presence of the old mortar that is still adhered on the RAs. This mortar is 

responsible for the generally lower specific gravity of RA in comparison to that of NA. It is 

also the main cause of the higher water absorption capacity and lower resistance to abrasion 

(Verian et al., 2018). Due to the adhered mortar, RAs tend to be more porous and be coarser 

and rougher than NAs (Dhir Obe et al., 2019; Dhir, Limbachiya, Leelawat, BS, & 882, 1999; 

Omary et al., 2016). When working with the bonded mortar, care must be taken to minimize 

the amount of fine RA, as the finer fraction accumulates a higher quantity of pulverized old 

mortar and causes the quality to deteriorate (Angulo et al., 2004; M. Etxeberria, Vázquez, et 

al., 2007; Müller & Winkler, 1998).. The RAs quality is also generally lower than that of NA 

because of this lower particle density. However, this can be beneficial if there is a need for 

concrete with lower density, for example to reduce the load of a structure (e.g., floors of 

skyscrapers). This resistance to fragmentation is expressed by a coefficient, namely the Los 

Angeles (LA) coefficient, which therefore has a greater value for RA than for NA (Dhir Obe et 

al., 2019; Omary et al., 2016). The lower quality of RA and the limited use of it is related to the 

physical properties of RA that tend to show very high variation and can be very inconsistent. 

On the other hand, the chemical composition of RAs can accommodate to the performance of 

the final product (Dhir Obe et al., 2019; Sasanipour & Aslani, 2020a; Tabsh & Abdelfatah, 

2009). The composition must be determined in advance in order to be able to produce 

aggregates of good quality,  to minimize the constraints imposed by RA and to avoid 

complications for the final product (Dhir Obe et al., 2019). RAs can always contain impurities 

from destruction that can negatively affect the performance of the final product. The quantities 
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of these impurities that can still be worked with are determined by the quality control and 

depend on the recycling methods (Noguchi et al., 2015). Furthermore, standards and 

specifications have already been laid down with which the recycled aggregate must comply. 

These state, among other things, that there is an upper limit of about 5% for the total amount of 

impurities. Although this may be more for lower quality RAs. Furthermore, there is also a limit 

for organic materials, namely 2,5% for lower quality RA and between 0,5% and 1% for average 

RA. The amount of glass is also limited due to the risk of alkali-silica reactions (Bravo et al., 

2015a, 2015b; Van Praagh, Modin, & Trygg, 2015).  

3.1 Mortar content 

Some old mortars are intrinsically attached to the surface of the aggregates, making them 

actually part of the RCA. This causes a lighter system to be created in the RCA (Verian et al., 

2018). According to (Q. Liu, Xiao, & Sun, 2011; Roesler, Lange, Salas, Brand, & Arboleda, 

2013) the amount of Reclaimed Mortar Content (RMC) of coarser fractions (> 9,5 mm) is lower 

than the finer fractions of RCA (4,75 to 9,5 mm). The mortar’s nature is more porous and less 

dense than the aggregate mix, which makes the RCA particles have a higher water absorption 

capacity (Kisku et al., 2017). The higher absorption correlates to the specific gravity having a 

lower value. However, this is not valid for fine NA, whose average absorption values are 

relatively constant over the observed range of specific gravity (ACPA, 2009; Verian, 2012). 

Another study from (Duan & Poon, 2014; Omary et al., 2016; Younis & Pilakoutas, 2013) 

stated that the low specific gravity could be more ascribed to the quality of the virgin aggregates 

than the proportion of the old mortar. The old mortar ultimately causes an increase in the water 

absorption capacity of the RCA, as well as a reduction in the specific gravity (Kisku et al., 

Figure 3: Schematic figure of old and new ITZ (isku et 
al. (2017 )) 
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2017; Verian et al., 2018). With a surface containing mortar layers, the use of RCA creates two 

types of ITZ, namely an old and a new one, as seen in figure 3.  

The new ITZ and its porosity distribution is significantly affected by the strength of the RCA 

source concrete and the initial moisture status of the RCA (Le, Le Saout, Garcia-Diaz, 

Betrancourt, & Rémond, 2017; M. B. Leite & Monteiro, 2016). (Snyder, Vandenbossche, 

Smith, & Wade, 1994) also noticed a higher mass loss due to the presence of cracked particles 

during the demolishing process, and softer old mortar. 

3.2 Influences of R(C)A on concrete 

One of the concerns of using RCA is the higher mortar and the impurity contents of fine RCA 

(Verian et al., 2018). The negative characteristics of RCA that have been discussed up to here, 

e.g., higher water absorption capacity, higher porosity, and lower density, and the negative 

effects on the performance on the concrete, e.g., compressive strength, tensile strength, and 

modulus of elasticity (Sasanipour & Aslani, 2020a), (Kwan, Ramli, Kam, & Sulieman, 2012; 

Ozbakkaloglu, Gholampour, & Xie, 2018; Sasanipour & Aslani, 2020b) states that the 

maximum replacement rate of RCA should be limited. Regardless, efforts are always being 

made to raise that number as high as possible. For concrete in general, the weakest point is the 

ITZ (J. Zhang, Taylor, & Shi, 2015). Time progressively improves the mechanical performance 

of concrete. The rate with which this is done depends on the design of the mix (Dhir Obe et al., 

2019). The mechanical performance and durability of the concrete is directly related to the 

physical properties of the coarse aggregates (Kazmi et al., 2019a, 2020; Y. Kim, Hanif, Kazmi, 

Munir, & Park, 2018; Xuan, Zhan, & Poon, 2017). Due to the higher water absorption capacity 

of RCA, the rough surface and irregular shapes of the aggregates, the workability of concrete 

decreases with the containment of RCA (Kurda, de Brito, & Silvestre, 2017a; Verian et al., 

2018). Due to the increase of the porosity, the permeable voids and the weaker ITZ, there will 

be an increase in the W/C ratio which leads to a reduction in the compressive strength of the 

concrete (Popovics & Ujhelyi, 2008; Sasanipour & Aslani, 2020a). The increased porosity is 

also responsible for an increase in penetration of CO2 in the concrete, i.e., increased carbonation 

depth (Amorim, Brito, & Evangelista, 2012; Kazmi et al., 2020). The old porous mortar adhered 

to the RCAs will reduce the tensile and flexural strength.  

RCA also decreases the workability of SCC due to the texture of the surface of the aggregates 

which inhibits a good flow (González-Taboada, González-Fonteboa, Martínez-Abella, & 

Seara-Paz, 2017; Saini & Singh, 2020; R. B. Singh & B. Singh, 2018) et al. If there is only a 
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replacement of 30%, then there will be no noticeable change in durability of the SCC, but it 

may expand the variability of the results (Kapoor, Singh, & Singh, 2016; Santos, da Silva, & 

de Brito, 2019; N. Singh & S. P. Singh, 2018) et al. What could be important for tests in the 

laboratory, is the fact that RCA-concrete shows a lower slump than current concrete when they 

have the same W/C ratio (Smith, 2018; Sturtevant, 2007; Verian et al., 2018) et al. The concrete 

requires around 5% to 15% additional water in the mix when RCA is used instead of NA, 

increasing the water to binder ratio of the concrete. This practice could actually be avoided if 

the aggregates are properly handled and the design of the concrete formulation is done properly 

(Verian, 2012). The retain of water in RA might work self-healing and cause a slower cure as 

it releases water at a later time and it might contribute to the additional hydration. Some of the 

advantages of using RCA in concrete are that both coarse and fine aggregates can be used in 

concrete and that the concrete could be designed in such a way that it matches the quality of 

NA-concrete. 

4 Aggregates and concrete with aggregates 

In this comprehensive section, various properties of concrete made from RCA are discussed. 

To understand these influences, this section starts with the properties of the aggregates 

themselves. Then it is discussed how these properties affect the concrete. This section is 

concluded with possibilities with which the concrete can be improved. The challenges to be 

dealt with can thus be reduced.  

4.1 The properties that decide/influence the durability of the 
aggregates 

The quality and the properties of RCA depend mainly on the original aggregate’s features and 

the condition in which the demolished concrete is in (Verian et al., 2018). But the production 

process is also capable of significantly affecting the properties of RCA (Guo et al., 2018).  

4.1.1 Density 

The density of aggregates is very important as larger values will give better performance (de 

Brito & Alves, 2010; Dhir Obe et al., 2019). Unfortunately, the density of the recycled 

aggregates is lower than that of the natural ones (figure 4). This is mainly due to the old mortar 

that still sticks to the aggregates (Omary et al., 2016; R. V. Silva, de Brito, & Dhir, 2014).  
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Figure 4: The dinsity of concrete with different amounts of RCA (J. F. Dong, Wang, & Guan, 2013; M. Etxeberria, 
Vázquez, et al., 2007; Marinković, Radonjanin, Malešev, & Ignjatović, 2010; Verian, 2012; Xiao, Li, & Zhang, 

2005) 

The RCA’s density is overall independent of the original concrete’s strength. According to 

[(Padmini, Ramamurthy, & Mathews, 2009; C. S. Poon, Shui, & Lam, 2004)], a contrary 

statement was concluded, namely if RCA comes from a concrete with lower strength, the 

aggregates will have a higher density. This was probably due to the lower strength concrete’s 

mortar that was weaker and easier to remove.  However, the density of RCA is still higher than 

that of RMA and MRA, in which RMA has the lowest. Best suited for structural concrete is 

coarse RCA, although coarse MRA of good quality can also be used. (Dhir Obe et al., 2019) 

also stated that all fine RA and coarse RMA is best for non-structural concrete. Other properties 

that influence density are listed below: 

• Adhered cement mortar.  

As has been mentioned repeatedly, mortar is very porous compared to natural 

aggregates, as a result of which RA shows a progressively lower density (Desmyter, 

Vrijders, & Boehme, 2010; Nixon, 1978; V. W. Y. Tam & Tam, 2009) et al. If the size 

of the RA-fractions decreases, the content of mortar will increase (Adams et al., 2016). 

When multiple destruction processes are performed resulting in CDW, the friable 

material will decrease in size and start to accumulate in finer fractions. Knowing that 

the density of finer fractions is much lower, this has a negative result (Dhir et al., 1999; 

L. Evangelista & de Brito, 2007; Ravindrarajah & Tam, 1987) et al.  

• Removing the adhered mortar 
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There are a lot of different processes that exist to remove the mortar. The number of 

treatments or crushing stages has a direct impact on the RCA’s quality. When that 

number increases, the coarse RCA will have a higher density due to the attached cement 

mortar that is cumulatively broken up (Nagataki, Gokce, Saeki, & Hisada, 2004; Pedro, 

de Brito, & Evangelista, 2015). Because of the greater build-up of mortar as a result of 

the crushing, the greater yield of fine RCA due to the increasing processes will have a 

decreasing density (Kasai, 2004). 

• Strength of the parent material. 

The quality of the cement paste is the cause of the strength of the concrete. If the cement 

paste is denser and has less porous mortar, than the concrete will have a higher strength 

(Kikuchi, Dosho, Miura, & Narikawa, 1998). If RCA comes from concrete with lower 

strength, than the RCA will have a slightly higher density (Padmini et al., 2009; C. S. 

Poon, Shui, & Lam, 2004). There is a strong correlation between the original brick’s 

compressive strength and the resulting aggregate’s density in case of RMA. If original 

bricks have enhanced mechanical characteristics, the aggregates will have a higher 

density (Bazaz, Khayati, & Akrami, 2006; Khalaf, 2006; Khalaf & DeVenny, 2004a) et 

al.  

• Fragments from crushed masonry. 

The type of building material plays a huge role in the density of the aggregates. There 

is a preference for material with a higher proportion of RCA, so that performance can 

be similar to concrete with NA. When there are high porosity levels of ceramic products, 

the density of the RMA will usually be lower than that of RCA and there will be an even 

bigger difference with NA (Khalaf & DeVenny, 2004a, 2004b; Salomon & Paulo, 

2007). Higher quantities of NA lead to a higher density, whereby the presence of RCA 

will slightly reduce the density (Angulo et al., 2004; C. S. Poon & Chan, 2006a, 2006b) 

et al. The resulting MRA’s density will increase with an increase of RCA content and 

decrease with an increase of RMA content (Angulo et al., 2004; Dhir, Paine, & Halliday, 

2008; Jiménez, Agrela, Ayuso, & López, 2011). 

The change of the water absorption capacity of RA is influenced by the density. An increase of 

the water absorption is the result of a decrease in the aggregate’s density and since strength is 

connected to density, it will affect this too (Omary et al., 2016). When the amount of 

substitution increases the porosity of the concrete, the density of the concrete will decrease.  
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4.1.2 Water absorption capacity 

Water absorption capacity is owed to the greater porosity of RCA (Ait Mohamed Amer, 

Ezziane, Bougara, & Adjoudj, 2016; A. S. Brand, Roesler, & Salas, 2015; Dhir Obe et al., 

2019). RCA are, compared with NA, characterized with higher values of water absorption 

capacity because of the quality and the amount of adhered cement mortar. Aspects that 

influence the water absorption capacity can be found below: 

• Adhered cement mortar. 

Owing to the presence of the attached porous mortar, the absorption capacity of RCA is 

higher than the capacity of NA (Abdulla, 2015; Nixon, 1978; Ravindrarajah & Tam, 

1987). Fine RCA-fractions show higher water absorption (Marinkovic, Dragas, 

Ignjatovic, & Tosic, 2017), whereas coarse RCAs exhibit the opposite (Ignjatovic, 

Marinkovic, & Tosic, 2017). This can be explained by the accrual of the crushed mortar 

in fine material (Chandra, 2004; Amnon Katz, 2003; Müller & Winkler, 1998) et al. The 

absorption of the fine particles has a slower rate in comparison with the coarse fractions 

(Bravo et al., 2015b; Pedro et al., 2015; Rodrigues et al., 2013) et al. Old attached mortar 

residues from lower strength masonry and plaster mortars are likely to be found in 

RMAs, which contributes to the water absorption capacity of the aggregates. A higher 

water absorption capacity is caused by the adhered mortar and the cracks present in the 

RCA. Water can flow into the concrete due to these cracks (de Juan & Gutiérrez, 2009; 

Dhir Obe et al., 2019; Gomes & de Brito, 2009; Guo et al., 2018). 

• Processing. 

RA with high water absorption capacity is likely to be produced by inadequate sorting 

or disposal methods for contaminants due to the porous contaminant’s presence (C.-S. 

Poon & Chan, 2007; C.-S. Poon, Kou, Wan, & Etxeberria, 2009). If the number of 

process stages increases, the water absorption capacity of coarse RA tends to be lower 

due to the amount of decreasing attached mortar (de Juan & Gutiérrez, 2009; M. 

Etxeberria, Vázquez, et al., 2007; T. C. Hansen, 1992) et al. The water absorption 

capacity of RA can be reduced by washing, using admixtures, microwave heating, etc. 

(Ismail & Ramli, 2014; Katkhuda & Shatarat, 2016; Wegen & Haverkort, 1998).  

• Strength of the parent materials. 

The compressive strength of the concrete where the RCA is coming from is not a factor 

that determines the water absorption capacity of the aggregates when the material is 

exposed to a high number of processing stages (Gokce, Nagataki, Saeki, & Hisada, 
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2011). When RCA is obtained from a higher strength concrete with the same mortar 

bonded to it, the aggregates will have lower water absorption capacity than if they were 

obtained from a lower strength concrete. For bricks that are stronger and less porous, 

this will probably result in a less porous aggregate and, logically, lower water absorption 

capacity (Khalaf & DeVenny, 2005).  

• Fragments from crushed masonry. 

RA’s water absorption capacity is directly linked with the constituent’s porosity. Coarse 

RAs will absorb less water than their fine fraction counterparts (Khalaf & DeVenny, 

2004a).  

• RMA has the highest water absorption capacity, followed by MRA and the lowest 

values can be found at RCA. RMA is usually derived from relatively uniform materials 

and its properties will therefore usually be similar to the original material when broken 

into different sizes.  

WA24h is the water absorption coefficient defined after a given soaking duration of 24 hours. 

By increasing the mortar content, this coefficient will increase (Omary et al., 2016; Younis & 

Pilakoutas, 2013; C. J. Zega, Villagran-Zaccardi, & Di Maio, 2010). This is due to the increased 

open porosity of the aggregates. Between the relative density and the water absorption 

coefficient determined after 24 hours is a linear relationship. However, experimental results 

showed that the 24 hours soaking duration is insufficient to determine the water absorption 

coefficient. A disadvantage of a higher WA24h coefficient is that the aggregates can then be less 

resistant to frost (Omary et al., 2016).  

4.1.3 Resistance to fragmentation 

The resistance to fragmentation can be determined by the Los Angeles test (N.F.E.N, 2011; 

Omary et al., 2016). The LA coefficient will increase as the density decreases due to the rising 

of the porosity (Perdikou & Nicholaides, 2014; Younis & Pilakoutas, 2013) et al. In other 

words, gravels with a porosity on the low side, will be characterized with a higher resistance to 

fragmentation. Below are factors that influence the resistance of fragmentation: 

• Amount of old adhered cement paste to the aggregates. 

The properties of the ITZ will affect the strength of the concrete. The mortar attached 

to the original is RCA’s weakest section. The resistance to fragmentation of RCA is 

lower as the amount of adhered mortar is higher (Abdulla, 2015; Butler, West, & Tighe, 

2011; Dhir Obe et al., 2019) et al.  
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• Processing. 

If there is an increase in the amount of processing stages, the quantity of attached old 

mortar will reduce, as well as the other low-strength and lightweight pollutants. This 

increases the resistance to fragmentation of the RCA (Maeda, Shigeishi, Namihira, 

Ohtsu, & Akiyama, 2008; Nagataki et al., 2004; Narahara et al., 2007). It must be taken 

into account that some destruction techniques are intrusive and can cause micro-cracks 

in the RCA. Those micro-cracks will reduce the resistance to fragmentation of the RCAs 

(CCANZ, 2011). A solution to this might be to treat the RCA by accelerated carbonation 

and thus improve its resistance to fragmentation (J Zhang et al., 2015). 

• Strength of the parent material. 

As the original concrete’s strength increases, so will the RCA’s resistance to 

fragmentation do too (M. Etxeberria, Marí, & Vázquez, 2007; Nagataki et al., 2004) et 

al. There is a good correlation between the original ceramic brick unit’s compressive 

strength and the aggregate impact values of RMA (Khalaf, 2006; Khalaf & DeVenny, 

2004a, 2005).  

• Fragments from crushed masonry. 

The composition of RA is highly affecting the resistance to fragmentation. The 

resistance of MRA is expected to be somewhere between that of RCA and RMA and if 

the amount of RMA rises, the fragmentation value will decrease (Bazaz et al., 2006; 

Dhir & Paine, 2007) et al.  

4.1.4 Quality of RA 

Several factors drive the quality of RA, such as the original concrete’s quality, presence of 

impurities and the treatment of RA (Noguchi et al., 2015; Verian et al., 2018). By evaluating 

the main properties and characteristics of RA, the quality of RA could quantitatively be 

measured (Dhir Obe et al., 2019). The RA’s quality and the bond between the paste and the 

aggregate are very important in the determination of the fracture behavior of concrete (A. 

Brand, Amirkhanian, & Roesler, 2014; Verian et al., 2018). The properties of the RAs can be 

controlled during the processing phase. If there is a decrease in the material’s porosity, the 

mechanical performance of the concrete will improve. This is mostly associated with RCAs 

coming from concrete with high strength or RMAs coming from ceramic brick units with high 

strength (Dhir Obe et al., 2019; Khalaf, 2006; Khalaf & DeVenny, 2004a, 2004b, 2005; S.-C. 

Kou, Zhan, & Poon, 2014). When crushing bricks with an improved mechanical performance, 
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it will yield aggregates with lower water absorption capacity, increased oven-dry density and 

higher resistance to fragmentation.  

In addition to the aforementioned characteristics, special attention should also be given to 

particle size distribution and organic content. The evaluation of these combined properties may 

provide an indirect indication of the aggregate’s porosity and thus strength of the parent 

material, which has a substantial influence on the mechanical performance of concrete. With a 

decreasing quality of RA, there will be a decrease in RAC’s relative compressive strength (De 

Brito & Silva, 2016). Recycled aggregate concrete (RAC) is more likely to be produced with a 

higher compressive strength than the corresponding concrete with NA when the quality of the 

RA is better. This rise depends on RA’s moisture content, mix design and the superplasticizer’s 

content. RA’s strength related to that of the new cementitious matrix is in turn related to the 

quality of RA. For lower values of the W/C ratio, the RAC’s compressive strength is more 

dependent on the aggregate’s strength, which, on the other hand, is dependent on the original 

material’s strength (Le et al., 2017). RACs produced with lower W/C ratios, but with RCAs 

whose parent concrete has relatively lower strength, will cause a malfunction in the relatively 

weaker attached old mortar. The breakage of a defective conventional concrete specimen is 

likely to occur at the ITZ between the NA and the mortar. But in the RA, it will likely develop 

through the RA, most likely at the level of the old IT. Since it may contain several micro-cracks, 

thus making it weaker than the adjacent new mortar (Peng, Chu, & Pu, 2016).  

4.1.5 Adhered mortar 

The attached old mortar on RCAs will directly influence the performance of the RAC 

(Sasanipour & Aslani, 2020a). The RAC mixes made with RCAs differs from the conventional 

concrete that is cast with NAs, in that the cement mortar on RCA sticks to the former. The RA’s 

inferior properties compared to those of NA may be due to the fact that old mortar sticks to the 

surface of RA (Kazmi et al., 2020; S.-C. Kou, Poon, & Etxeberria, 2011). The RCA’s have 

lower stiffness in comparison to NA, caused by the presence of attached cement paste that is 

porous and weak by nature (Dhir Obe et al., 2019). The attached and loose mortars add to the 

angularity, the rough surface structure and the fine RCA particle’s high absorption (L. 

Evangelista, Guedes, de Brito, Ferro, & Pereira, 2015; Verian et al., 2018). The following is an 

analysis of the effects of adding fine RAs from CDW on the performance of mortar in its fresh 

and hardened condition: 

• Fresh mortar properties. 
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Consistence is one of the most important properties that is very widely evaluated to 

consider in its fresh state. It allows for a practical judgement on the degree and duration 

of workability and the amount of water needed to obtain sufficient plasticity. An 

example of why studying the consistency of mortars with fine RAs is so important is 

their high water absorption capacity (Dhir Obe et al., 2019; R. V. Silva et al., 2014). 

This results in the absorption of the free mixing water of the mortar and will reduce its 

consistence and so the workability. Furthermore, the presence of fine RA particles will 

decrease the yield stress and plastic viscosity, which will cause an anti-thixotropic effect 

of the mortars (V Corinaldesi, Monosi, & Moriconi, 2007; Valeria Corinaldesi & 

Moriconi, 2009). A decrease in fresh density is observed when the quantity of fine RAs 

increases. This is mainly due to the lower density of fine RAs compared to that of fine 

NAs.  

Conflicting results were published about the amount of air. (Cuenca-Moyano, Martín-

Morales, Valverde-Palacios, Valverde-Espinosa, & Zamorano, 2014) stated that the 

amount of air increased with the amount of fine RCA. On the other hand, (A. C. J. 

Evangelista, Tam, & Santos, 2017; Guadalupe Cabrera-Covarrubias, Manuel Gomez-

Soberon, Luis Almaral-Sanchez, Corral-Higuera, & Consolacion Gomez-Soberon, 

2017) stated that the amount of air in mortar is most likely to remain untouched when 

fine RA particles are used as a substitute for fine NAs. To explain what water retentivity 

affects, it is important to know what it exactly is. It is the mortar’s ability to retain its 

mixing water. It is an indirect measure of the capacity of mortar to keep its workability 

for a longer time. The mortar must indicate a high value of this water retentivity since 

it allows good hydration of the cement.  

• Hardened mortar properties. 

In contrast to most other building materials, mortars are usually designed to have a lower 

compressive strength and a lower modulus of elasticity than the surrounding masonry. 

This is because overstrength mortars could cause the units to loosen and crack (Dhir 

Obe et al., 2019; Veiga, 1997). The compressive strength is mostly the main criteria for 

selecting a mortar type because it is easy to measure and related to other properties. The 

hardened properties and the consistence of RA-mortars are influenced by the initial 

water content. But the fine RA’s high absorption capacity can decrease the consistence 

of the mortar (R. V. Silva, de Brito, & Dhir, 2015b). This could be compensated with 

extra water to achieve the targeted consistence. But if this isn’t done, the compressive 

strength will either be unaffected or lower than the target mortar (Cuenca-Moyano et 
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al., 2014; A. C. J. Evangelista et al., 2017; M B Leite, Lima, & Santos, 2009) et al. For 

the incorporation of fine RA with lower rates of water compensation (50 – 70%) the 

mortar is going to have higher compressive strength due to the effective W/C ratio that 

is reduced, which leads to a denser cement matrix. If higher water compensation rates 

(80% - 100%) are being set, the compressive strength of the mortars with fine RA will 

be similar or slightly lower (Le et al., 2017). Using RA as a partial replacement for sand, 

decreases the water demand of the mortar, which leads to a decrease in the content of 

effective water to maintain a constant consistence. An indirect assessment of the 

durability is the water absorption capacity of a cementitious product. If mortar has a low 

permeability to water and a high permeability to water vapor, then this mortar would 

have a good durability. Although the permeability features here mentioned are directly 

proportional.  

To remove the attached mortar, different methods could be used, e.g., heat grinding mechanical 

grinding and soaking of RA in acid and water. The last method is able to improve the durability 

of RAC by decreasing the water absorption and porosity of RA (Kazmi et al., 2020; Nagataki 

et al., 2004; Pedro et al., 2015).  

4.1.6 Conclusion 

Due to the insufficient recycling procedures of the CDW recycling plants, a wide range of RAs 

are produced that sometimes even have an unknown composition. This is especially the case 

for recycled sand which will accumulate porous impurities (i.e., old attached mortar). Because 

of this, the physical properties of the RA often show great variation and are inconsistency, 

which makes them considered low quality and are therefore used less.  

With all the coarse aggregate’s properties, the water absorption and the concrete’s carbonation 

show a strong relation (Kazmi et al., 2020). The RCA’s water absorption and porosity are higher 

than the ones of NA, but the RCA has a lower density. The RCA’s fragmentation resistance is 

greatly lower than the same resistance of NA (Omary et al., 2016). 

4.2 The properties that decide/influence the durability of the 
concrete 

The durability and mechanical properties of the concrete are highly dependent on the 

aggregate’s properties, e.g., the specific gravity, absorption, amount of contaminant, etc. (Saini 

& Singh, 2020; Verian, 2012; Verian, 2015; Verian et al., 2018). Due to its inferior durability 
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performance, the use of RAC is more limited than natural aggregate concrete (NAC) (Guo et 

al., 2018; Kazmi et al., 2020). This weaker durability of RAC is, among other things, due to the 

attached mortar on the RA (Guo et al., 2018). This indicates that the amount of attached mortar 

and the quality of the original concrete have a great effect on the properties of the resulted 

concrete. Concrete that contains RCA has a lower modulus of elasticity, compared to NAC and 

that decrease is in proportion to the increase of RCA in the mix (M. Etxeberria, Vázquez, et al., 

2007; Verian, 2012; Verian et al., 2018). The durability and mechanical performance of the 

concrete can also be predicted by the porosity of the coarse aggregates (Kazmi et al., 2020). 

The porosity of the concrete is greatly influenced by the ratio of substitution. When the 

percentage of it increases, the concrete’s porosity will do so too, leading to a reduction in the 

concrete’s density (Chakradhara Rao, Bhattacharyya, & Barai, 2011b; Omary et al., 2016; 

Wardeh, Ghorbel, & Gomart, 2015) et al. The raise of the RAC’s porosity can be ascribed to 

the heightened paste volume. The porosity of the concrete is, in addition to the ratio of 

substitution, also influenced by the volume of the paste and the porosity of the granular mix. 

The raise in these three aspects ensures that the concrete becomes more porous. The greatest 

strength properties of RAC are achieved when the RCA was in the partially-saturated moisture 

state, before the mixing with the TSMA method (see section 4.3.7) (A. S. Brand et al., 2015; 

Verian et al., 2018).  

4.2.1 Size of RA 

The size and shape of the recycled aggregates are influenced by the number of processing stages 

and the type of used crusher in these processes (Dhir Obe et al., 2019). The natural gravel’s 

wear resistance depends on the size fraction of these gravels (Omary et al., 2016). All 

aggregates can be divided into fine and coarse particles. When using both fine and coarse 

factions of RA, the degree of the loss in strength will be greater. The negative impacts on the 

concrete often limits or prevents the use of fine RA (Verian et al., 2018; Zaharieva, Buyle-

Bodin, Skoczylas, & Wirquin, 2003). The fine RCAs contain many contaminants which reduce 

the strength of the concrete (Smith, 2018). The high porosity is characteristic of the fine 

aggregates when compared the coarse aggregates This is caused by the higher quantity of 

adhered mortar in the fine RAs (Omary et al., 2016; R. V. Silva et al., 2014). The fractions of 

the fine recycled aggregates with the smaller size (125 – 500 µm) contain a high amount of 

mortar, while the larger ones (1 – 4mm), in the ITZ between the paste and the aggregates, 

contains a large number of cracks (L. Evangelista et al., 2015; Verian et al., 2018). Mortars that 

contain 25% to 100% fine RAs, tend to exhibit higher drying shrinkage due to the greater 
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porosity, which makes it possible for water to rapidly evaporate (Fan, Huang, Hwang, & Chao, 

2015). The properties of the fine RAs were in many cases responsible for the problems in 

workability, the strength reduction of the concrete and the raise in the volumetric instability 

(i.e., shrinkage, creep and coefficient of thermal expansion) (Obla, Kim, & Lobo, 2007). For 

fine RCA to have no great effect on the mechanical properties, the lab-made fine recycled 

particles can be used up to 30% replacement (L. Evangelista & de Brito, 2007).  

4.2.2 Compressive strength 

The compressive strength shows a good correlation with other mechanical properties and 

durability. This makes it a good quality indicator for the concrete in general (Dhir Obe et al., 

2019). Compressive strength is often used to evaluate the general performance of the concrete. 

It is mostly the main criteria to select a mortar type. The measurement is relatively easy and is 

relatable to other properties.  The compressive strength of concrete reacts strongly to the mix 

design and depends on the choice of aggregates, since the compressive strength on its turn 

heavily depends on the physical and mechanical properties of the used RCA’s (Omary et al., 

2016). The development rate of the strength of concrete with RCA is higher than that of 

concrete with NA (Verian et al., 2018). Generally, the overall performance of the concrete will 

decrease with a larger amount of RA (Dhir Obe et al., 2019). And as (Piaw, 2006) stated, there 

is thus a very strong correlation between the loss of compressive strength and the increasing 

amount of RA. This strength decrease of the RAC at a larger amount of RA is more pronounced 

for mixes with a lower W/C factor (Dhir et al., 1999; A. Rao, Jha, & Misra, 2007) et al. For a 

given W/C ratio, RA with lower quality will cause greater strength losses.  

For concrete mixes with higher W/C ratio, the compressive strength depends more on the new 

cement paste’s strength than the RA’s strength. According to (Verian et al., 2018), when there 

is a high level of water-cementitious material ratio (W/Cm), the cement paste’s quality will be 

closer to that of the old mortar than pastes made with low W/C (Dhir Obe et al., 2019). But by 

lowering the W/C ratio, the compressive strength of concrete containing RA and NA will be 

improved (Verian et al., 2018). The quality of the cement paste affects the strength of the 

concrete: if the mortar is less porous and denser, it will be stronger. Due to the higher water 

content, the new cement paste will be relatively weak, which makes the porosity increase and 

yields a poorer bond strength in the ITZ (Dhir Obe et al., 2019). The lower compressive strength 

in the concrete with recycled aggregates is caused by the existence of two types of ITZ in the 

matrix (Verian et al., 2018). SCC’s strength decreases under a static loading as the recycled 
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aggregates are introduced in the mix. The main cause of this decrease in the flexure and static 

compressive strength are the RCA’s inferior properties that result in the creation of a weak ITZ. 

This can be compensated by using a blend of silica fume (SF) and metakaolin (MK), because 

this can improve the refinement of the pore size and microstructure of the concrete (Saini & 

Singh, 2020). The effects of SF and MK will be discussed later. A reduction in compressive 

strength is more likely since there is greater number of weaker layers (Sasanipour & Aslani, 

2020a). During casting, there are two negative effects that form weak layers valid for both 

recycled and natural aggregates: 

1. The dispersion of anhydrous materials becomes looser in the vicinity of aggregates, 

resulting in a higher W/C factor and more porosities; 

2. An increase in water under aggregate particles is caused by microbleeds during concrete 

compaction (Ollivier, Maso, & Bourdette, 1995). 

(Dhir Obe et al., 2019) stated that the reduction of compressive strength mainly depends on the 

quality, size and type of the RA’s. Only for gradually higher replacement levels the compressive 

strength would decrease. However, this is not valid for all RAs. The compressive strength also 

changes when the RAs have extremely changing properties that depend on the main composing 

material’s type and strength, the subjected processes and the moisture state. (Verian et al., 2018) 

also stated that the attached mortar on the surface of the RCAs contributes to a reducing 

compressive strength since they have a lower density. If the mechanical performance of the 

aggregates is considerably lower than that of the old mortar, the compressive strength of the 

concrete will lessen since there will be a rupture mechanism between the weaker sections of 

the material (Dhir Obe et al., 2019). There can be an increase in the rate of the development in 

the strength if the residue of non-hydrated old cement adhering to the surface of the RCAs 

reacts with water (Verian et al., 2018).  

A loss of performance may be less noticeable when working with finer RA derived from 

ceramic stones or other aluminosilicate materials. They will develop pozzolanic reactions that 

will mitigate the loss of strength or even produce an increase in strength (Dhir Obe et al., 2019). 

If the RAs have a higher porosity, the moisture state should definitely be taken into 

consideration as it affects the development of strength and consistency. Depending on that 

moisture condition, the compressive strength can have a loss of up to 30% or an increase of up 

to 20% when the entire 100% of aggregates are replaced with RACs (Verian et al., 2018). The 

compressive strength of the concrete is also influenced by the resistance to fragmentation, as 
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Los Angeles coefficient which is related to the relative density and the WA24h (Omary et al., 

2016).  

Not only do the aggregates play a major role in influencing compressive strength, the other 

elements in the mix are insignificant as well. The greater amount of water added to obtain a 

desired workability is also a driver for lowering the compressive strength (Verian et al., 2018). 

When the water content decreases and the amount of cement content increases, a constant 

compressive strength will be obtained. For low or medium concrete mixes, the compressive 

strength will strongly depend on the strength of the mortar phase (Dhir Obe et al., 2019).  

The variation of the compressive strength suggests that it is not feasible to explain the 

compressive strength variation based on the replacement level alone. This scatter depends 

primarily on the RA’s quality and moisture state. The intermediate replacement levels’ strength 

variation can be interpreted without regard to the dispersion normally associated with concrete 

testing (Dhir Obe et al., 2019).  

Concrete with an improved compressive strength can be produced if there is a combination of 

using saturated RCA and two stage mixing approach (TSMA), see section 4.3.7. There is also 

a possibility to add extra cement in the mixture to improve the strength of the concrete. By 

replacing NA with RA at 25% to 50% weight base levels there will be an improvement of the 

compressive and tensile strength if adjustments are applied in the mixture proportion (Verian 

et al., 2018).  

4.2.2.1 Fraction size of RA 

Size of the RAs is one of the factors that influence the compressive strength. When producing 

with larger RAs, therefore having a lower amount of attached mortar, the loss in strength will 

come from processing the material (Dhir Obe et al., 2019; Gesoglu, Guneyisi, Oz, Taha, & 

Yasemin, 2015; Vinay Kumar, Ananthan, & Balaji, 2017). If NA is replaced by coarse RCA 

up to 30% or by fine RCA up to 20%, there will be little effect on the mechanical performance 

of the resulting concrete (Dhir & Paine, 2004). The strength producing RAC with a higher 

compressive strength, is more possible with coarse RA, while lower strengths are usually the 

result of the use of fine aggregates. Contradictorily, there were some studies that claimed that 

in adding concrete, the use of fine aggregates provided equal or even better strength over natural 

sand due to its more uneven and porous surface. This led to a higher surface area and it improves 

the interlocking bond between the paste and the aggregate (Verian et al., 2018). When using 
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fine recycled masonry aggregates in the mortar, there could be a similar or even better 

compressive strength observed when comparing it to mortar with NAs. This enhancement 

comes about through the reaction between the fine RMA’s alumina (Al2O3) / silica (SiO2) 

content and the cement paste’s calcium hydroxide that occurs over time.  

4.2.2.2 Different types of RA 

The lowest strength loss is found in concrete mixes made with RCA, followed by mixes with 

MRA and then RMA (Dhir Obe et al., 2019). This degree of strength loss can be greater if both 

fine and coarse fractions of RCA are used (Gesoglu et al., 2015; Vinay Kumar et al., 2017). If 

there is an increase in the number of ceramic particles or other masonry wall demolition 

fragments, the RAC will likely show a lower compressive strength (Anastasiou, Georgiadis 

Filikas, & Stefanidou, 2014). However, a considerable decline of the mechanical performance 

will not always result from the use of RMA. A decrease in the compressive strength is a likely 

cause of the use of fine fractions of RMA, but the overall strength reduction will not be that 

noticeable as that from concrete with coarse fractions of RMA. This is due to the RMA’s 

pozzolanicity (Debieb & Kenai, 2008; Khatib, 2005; T. Vieira, Alves, de Brito, Correia, & 

Silva, 2016) et al. If sand is replaced with fine RMA, it may even lead to an increased strength 

development over time (Khatib, 2005; T. Vieira et al., 2016; Wild, Khatib, Sabir, & Addis, 

1996). 

4.2.3 Tensile and flexural strength 

In the mechanics of brittle fracture in concrete, the load applied to the specimen causes the 

largest crack to be oriented perpendicular to this load, which is the initiation of the failure of 

the specimen. The size and the shape of the specimen will affect the strength since a larger 

specimen has a higher probability of containing a larger number of critical cracks (Dhir Obe et 

al., 2019; A.M. Neville & Brooks, 2010). If concrete is made with RCA, the splitting tensile 

strength will be up to 6% lower in comparison to that of concrete with NA. Other studies 

mention that there is a reduction of up to 10% of the tensile strength when coarse recycled 

aggregates replaced only coarse NA in the concrete (Amnon Katz, 2003; Verian et al., 2018).  

Before the coming statements can be made, it is important to know what flexural strength is. It 

is an indirect assessment of the strength of the material of the carrier adhesion and the crack 

sensitivity (Dhir Obe et al., 2019). (Amnon Katz, 2003; Verian et al., 2018) stated that the 

flexural strength of RAC is up to 10% lower than concrete made with NAs, especially when 

the aggregates that are used are saturated. Due to the stress gradient that can delay the cracking 



 

Page 25 of 125 

progress, the shape of the aggregate has a greater impact on the flexural strength compared to 

the compressive or splitting tensile strength of a same specimen. A logical consequence of this 

is that higher flexural strength will be obtained with angular aggregates than with round 

aggregates, especially when working with mixes with low W/C ratios. But on the other hand, 

the latter aggregates need a lower amount of water than the former so the flexural strength of 

the two can still be equal (Dhir Obe et al., 2019; A.M. Neville & Brooks, 2010). The concrete 

that contains more angular-shaped aggregates may also explain its higher flexural strength by 

the improved ITZ between the aggregates and the cement matrix. If aggregates have a glassy 

surface, then this is not the case, this leads to a poor bond at the ITZ which is the cause of lower 

tensile strength (Dhir Obe et al., 2019; P, Chisholm, J, & Harrison, 2008). Most of the recycled 

aggregates to have a rougher surface compared to the natural ones. This causes the cementitious 

matrix have contact with the greater surface area of the aggregates and the C-S-H’s (calcium 

silicate hydrate) formation into the old mortar’s pores due to the ITZ’s improved bond strength 

(Dhir Obe et al., 2019; T. Li, Xiao, & Zhu, 2016). Research unfortunately shows that the 

fracture will almost never go through the new ITZ, but always through the old ITZ or the 

recycled aggregates. However these usually have a lower tensile strength compared to the 

concrete with natural aggregates (Dhir Obe et al., 2019; Xiao, Li, Shen, & Poon, 2015). So far, 

it can be concluded that the failure mechanism of the concrete with recycled aggregates is a 

complex phenomenon that depends on a number of factors related to the aggregates such as 

size, quality, porosity, content and moisture state. The tensile strength is negatively impacted 

by the concrete’s open porosity (O. Cakir, 2014; Gómez-Soberón, 2002; Omary et al., 2016) 

that is related to the porosity of the granular mixture. The splitting tensile strength will be 

reduced when an aggregate is used in the mix with an increasing L.A. coefficient. 

Some studies analyzed the tensile strength while increasing the number of recycled aggregates. 
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Figure 5: The RAC's splitting tensile strength with increasing content of (a) coarse RA (b) fine RA (Ajdukiewicz & 
Kliszczewicz, 2002, 2007; Akbarnezhad, Ong, Zhang, Tam, & Foo, 2011) et al. 

Regardless of the relatively large spread of values, it can be theorized that an equal or even 

slightly higher splitting tensile strength could be noted when making concrete with coarse 

recycled aggregates compared to typical concrete (Dhir Obe et al., 2019). This was possibly 

due to the larger surface area which provided better bond strength at the ITZ. Regardless, 

usually the insertion of coarse and fine aggregates (figure 5 (a) and (b)) results in a lower 

splitting tensile strength. The values of the study were divided into type and quality class of the 

aggregates and from this it was found that the splitting tensile strength underwent greater loss 

with an increasing amount of MRA as compared to concrete made with RCA (see figure 6 (c) 

and (d)).  

 

Figure 6: The RAC's splitting tensile strength with increasing content of (c) different types of RA (d) different 
quality classes of RA (Ajdukiewicz & Kliszczewicz, 2002, 2007; Akbarnezhad et al., 2011) et al. 

There is a greater possibility that failure through the critical cracks will happen faster at lower 

loads since the MRAs have greater porosity and are generally weaker than the RMAs (Correia, 
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de Brito, & Pereira, 2006; Dhir & Paine, 2007; Mas, Cladera, Olmo, & Pitarch, 2012). These 

values also showed that with an increased amount of RA and a decreasing quality of these 

aggregates, the splitting tensile strength will lower (R. V. Silva et al., 2014). This conclusion is 

further confirmed by another study by (Yang, Chung, & Ashour, 2008) in which RAs were used 

with similar oven-dried density and values for water absorption capacity leading to similar loss 

of tensile strength.  

In the way that the compressive strength develops, the splitting tensile strength will also develop 

in a similar way (Dhir Obe et al., 2019). Although there is a possibility that there may be a 

smaller probability of the presence of critical locations where failure may occur due to the 

enhanced bond strength (e.g., the ITZ between the mortar and natural aggregates). (C. S. Poon 

& Kou, 2010) did a long-term study on the mechanical performance of concrete made with 

recycled aggregates and increasing content of coarse RCA and fly ash (FA). With an increase 

in content of RCA, this study revealed a decrease in splitting tensile strength after 28 days. 

However, after one year of casting, the splitting tensile strength was equal or even higher than 

that of the usual concrete. This result is possibly due to the superficial pores that were filled 

with the new cement paste, due to the higher surface area of the coarse aggregates. This thus 

enhanced the bond strength at the ITZ.  

The potential decrease in splitting tensile strength because of the incorporating RCAs, can be 

compensated by adding more cement. An improvement of the splitting tensile strength was 

brought about by the TSMA-method (see section 4.3.7) and the use of saturated aggregates (A. 

S. Brand et al., 2015; Verian et al., 2018). As mentioned in the section of compressive strength, 

the effect of mineral admixtures in the concrete with RAs is expected to be equal to the effect 

in concrete with NAs regardless of the number of coarse RAs that were inserted (Berndt, 2009; 

Dhir Obe et al., 2019; Rohi M. Salem & Jackson, 2003). In a study of (Berndt, 2009; S.-c. Kou, 

Poon, & Agrela, 2011) where different types of mineral additions were used as replacement of 

part of the cement, the results suggested that the RCA’s higher quantity was not a hindrance to 

the increase or decrease in splitting tensile strength. Also, the combination of the supplementary 

cementitious materials (SCM) with the RAs did not influence the strength development. A 

reduction in strength was however caused by the addition of FA in the concrete, except for 

concrete mixes that inserted 25% FA. The blend of SF and MK can compensate for the weaker 

ITZ due to the inferior properties of RCA, which is the main cause of reduction in the 

compressive and flexural strength. It can enhance the pore size refinement and microstructure 

by forming hydration products that are relatively dense (C. S. Poon & Kou, 2010). If the RCAs 
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replace the natural ones with 25 % to 50% weight base, the compressive and splitting tensile 

strengths can then be improved when there are adjustments made in the mixture proportion (M. 

Etxeberria, Vázquez, et al., 2007; Verian et al., 2018). Further methods and substances that lead 

to the improvement/deterioration of these strengths can be found in other sections. 

Eurocode 2 (Dhir Obe et al., 2019; EN-1992-1-1, 2008) says that the splitting tensile strength 

from the characteristic compressive strength should be estimated. The relationship between the 

characteristic compressive strength and the splitting tensile strength of concrete is the same as 

suggested in Eurocode 2. It is independent of the quality, size of type of the recycled aggregates 

(R. V. Silva, de Brito, & Dhir, 2015c). Between the measured/predicted value of the flexural 

strength of the concrete made with recycled aggregates and the concrete made with natural 

aggregates, no statistical differences were observed by the method proposed in Eurocode 2 

(Tosic, Marinkovic, & Ignjatovic, 2016). In practical terms, this means that certain existing 

provisions can be used without any change. To better understand the impact of various factors 

related to the RA’s use on the splitting tensile strength, the data was broken down by content, 

type, quality class and size of the recycled aggregates. This resulted in the observation that there 

are no statistically major differences between the compressive and tensile strength. They are 

influenced by the same RA-related factors, so it is possible that the addition of RA could lead 

to a reduction in the performance of both properties. But  it also showed that the original natural 

aggregates have an impact on the relationship between the properties of the concrete made with 

recycled aggregates. At a given compressive strength, specimens made with RCA which 

originally involved rolled pebble particles, may exhibit a flexural strength higher than expected 

(Zhou & Chen, 2017).  

4.2.4 Flexural fatigue strength 

Even when the normally vibrated concrete (NVC) testing is done under controlled conditions, 

the fatigue life of the concrete will show wide distribution (Saini & Singh, 2020). NVC is a 

concrete in which a piston is inserted and vibrated during the liquid phase to reduce the amount 

of air bubbles in the concrete. Due to its fewer defects and enhanced microstructure, SCC 

presents a greater fatigue performance due to its improper compaction, as in NVC (S Goel, 

Singh, & Kaushik, 2012; Sanjay Goel, Singh, & Singh, 2012). If the use of recycled aggregates 

in the SCC rises, it will result in a decrease of the fatigue strength of the SCC. A solution to 

this could be to use SCMs such as silica fume and metakaolin. The use of SCC is not surprising 
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as it has wide applicability and benefits. It appears that NVC made with natural aggregates is 

not superior to the fatigue behavior of SCC.  

In terms of endurance limit, the SCC made with NA shows superior fatigue performance 

compared to NVC. The amount of RCA appears to decrease the values of the shape parameter 

at each stress level, which is evident from the values of the distribution parameters. The SCC 

mix with 50% replacement level of the NAs with RCA’s shows lower values of the shape 

parameter in comparison with the mix where the replacement level is 0%. The SCC with 50% 

replacement level’s fatigue life’s variation in the dispersion of fatigue life is hereby indicated. 

The SCC with recycled aggregates having lower values for the shape parameter indicate greater 

variability, while an improvement in the distribution parameter was indicated for mixed SCC 

mixtures at certain stress levels.  

Significant improvement has been found for blended SCC mixes in comparison to control 

mixes. The main cause of all this is mainly the poorer properties of RCA, which in turn is the 

cause of the attached old mortar around the aggregates. There are micro defects in the concrete 

due to the cracks in the mortar and the weaker ITZ between the recycled aggregates and the 

new mortar. To compensate for the decrease in fatigue performance in the SCC that contains 

recycled aggregates, SF and MK can be used. The positive effect of using the two is that it 

provides a denser formation of hydration products which improves the ITZ around the 

aggregates. The homogeneity of the SCC will be restored through the use of SF and MK. This 

is done by enhancing the pore size refinement and microstructure to achieve a similar 

performance to an SCC mix with a 0% replacement level. Positive effects in terms of reducing 

the variation of fatigue life distribution of SCC were induced by both SF and MK (Saini & 

Singh, 2020).  

4.2.5 Water/cement ratio 

There will be a strong mortar with lower porosity that does not allow penetration of the chloride 

ions at low W/C ratios (Sasanipour & Aslani, 2020a). The compressive strength of a sample of 

RAC is likely to be more dependent on the aggregates’ strength, which in turn depends on the 

parent concrete’s strength, when there is a relatively low W/C ratio (Dhir Obe et al., 2019; Le 

et al., 2017). (Sasanipour & Aslani, 2020a) states that a higher W/C ratio is capable of affecting 

on electrical resistivity because it has made it easier to make a larger number of porosities in 

the concrete and the bond between the aggregate and cement past become weaker. The total 

charge passed (TCP) rises too if the W/C ratio increases due to the fact that the porous structure 
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of the mortar increases with an increase of the W/C ratio (ASTM, 2016). For the W/C ratio to 

have a value of 0.3, all mixes will behave the same and the TCP-tolerance will not exceed up 

to 15%. One of the consequences of a higher W/C factor is also that it will cause a higher slump. 

To obtain the best approach for making RAC, it is best to keep an equivalent W/C ratio and 

compensate the absorbed water. The disadvantage is that concrete types made in this way will 

show a reduction in the mechanical behavior (Dhir Obe et al., 2019). 

4.2.6 Impermeability 

The impermeability is mainly determined by the content of recycled aggregates, the W/C factor, 

the waste concrete’s original strength, the curing age and the presence/absence of mineral 

additives (Guo et al., 2018). A disadvantage is that the impermeability of concrete with RA is 

weaker than that with NA (Guo et al., 2018; Verian et al., 2018). This was confirmed by (Guo 

et al., 2018), who reported a decrease in the RAC’s impermeability as the replacement ratio of 

the RA increased, regardless of the RA’s quality. Also (Torben C. Hansen, 1986; Verian et al., 

2018) stated that concrete with NA had a permeability that is two to five times lower than that 

of concrete with RCA for mixtures with a W/Cm of 0.5 to 0.7. But on the other hand, RA has 

a higher porosity, so it can store some water and during the development of the microstructure, 

provide an internal curing, which improves the impermeability of the concrete (Guo et al., 2018; 

Jiake Zhang, Caijun Shi, et al., 2015). When the replacement level of the recycled aggregates 

increases, the penetration depth of the concrete with RA is lower under pressure. (Martínez-

Lage, Martínez-Abella, Vázquez-Herrero, & Pérez-Ordóñez, 2012) stated this and explained 

that this is due to the RAs that are not fully saturated with water and therefore can still absorb 

more water. For a given W/C ratio and an increased replacement level of RAs, greater oxygen 

permeability of concrete with RA could be observed (Thomas, Setién, Polanco, Alaejos, & 

Sánchez de Juan, 2013). But with a constant ratio of RA, the water absorption, penetration depth 

and oxygen permeability of RAC augmented with the increase of the W/C factor. The 

production process can impact the RA’s physical properties greatly, as well as the concrete’s 

performance (e.g., permeability). 

The particle size also impacts the impermeability of the RAC. A smaller surface area is created 

with a larger size of coarse aggregates, with additional adhering mortar reducing the amount of 

water required and thus improving the concrete’s strength (Guo et al., 2018). On the other hand, 

they do cause the disadvantage that the number of defects in the RA particles themselves are 

increasing. The coarse aggregates do not influence the RAC’s impermeability as much as fine 
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RAs doe. This is because of a greater number of capillary channels in the concrete system 

(Bravo et al., 2015a; Fan, Huang, Hwang, & Chao, 2016; Martínez-Lage et al., 2012). As 

(Verian et al., 2018) stated, the permeability is dictated as the continuity and the size of the 

hydrated cement paste’s pores.  If the W/C ratio is kept relatively small, the permeability of the 

RAC with fine aggregates is comparable as that of the concrete with NA (Guo et al., 2018; 

Levy & Helene, 2004; Thomas et al., 2013) et al.  

With the increase of the RA’s size, the gas permeability of the concrete with RA augmented. 

This had two reasons. First of all, with the rise of the coarse RA’s size, the flow path’s tortuosity 

drops. The second reason is that with the increasing size of the aggregates, there is a decrease 

in the possibility of bleeding. With a rise of fine/coarse aggregate ratio, the air permeability and 

the effective W/C factor of the RAC decrease. The RAC’s density increases with the increasing 

curing age, while its water and gas permeability, and the capillary water absorption decreases 

(Basheer, Basheer, & Long, 2005; Guo et al., 2018).  

To enhance the RAC’s permeability, mineral admixtures could be used to fill in the pores and 

so produce a pozzolanic effect. If the mineral admixtures are added in an alkaline environment, 

the pozzolanic reaction could promote the generation of a secondary C-S-H gel and refine the 

pore structures (Guo et al., 2018; X. Zhang & Wu, 2002). The incorporation of a bigger number 

of RA could happen with the mineral admixture’s use. Out of all of this could be concluded 

that an addition of an assured content of mineral admixtures can enhance the interface structure 

and thus the performances of concrete made with RAs. A study by (Faella, Lima, Martinelli, 

Pepe, & Realfonzo, 2016; Kurda et al., 2017a; Somna, Jaturapitakkul, & Amde, 2012) showed 

that concrete with RA exhibited after 28 days, a lower water permeability in comparison with 

a control concrete sample when cement was replaced by a certain amount of FA. This was also 

confirmed by (Bhikshma & Divya, 2012; Verian et al., 2018), who used 30% of FA as a 

replacement for ordinary Portland cement (OPC). What also enhances the RAC’s 

impermeability greatly, is using ultra-fine materials like SF and MK. Due to the fine mineral 

admixtures who play on the hydration of cement an effect of microcrystalline nucleation, an 

acceleration takes place of the cement’s hydration and a growth of the hydration products. The 

treatment of the RAs is also a way to affect the RAC’s impermeability. There was a decrease 

of 38% of the water absorption of concrete with microbial carbonate treated RA in comparison 

to concrete with no treated RAs. Even a slight improvement in the impermeability was noticed 

in comparison to concrete with NA (Guo et al., 2018; J. Wang et al., 2017). This was due to the 

CaCO3 that covered the surface of RAs and/or filled its inner pores. A last improvement can be 
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done by silane. It can penetrate into a RA’s porous structure and cause a reduction in the water 

ingression (Zhu, Kou, Poon, Dai, & Li, 2013).  

4.2.7 Freeze – thaw resistance 

To evaluate the durability of concrete, freezing and thawing are frequently used as an index 

(Guo et al., 2018; Omary et al., 2016). These tests are done to assess the resistance of the 

material once it is exposed to similar conditions. In this way, the influence on the hardened 

properties can also be determined by an acceleration of the aging process of the material (Dhir 

Obe et al., 2019). Studies showed that the durability of recycled aggregates is lower than that 

of natural aggregates under freeze-thaw cycles in water (Omary et al., 2016). Due to the 

crushing stage, the old cement paste will contain micro-cracks which will reduce the RCA’s 

resistance to subsequently freezing-thawing. The freeze-thaw cycles have more impact on the 

recycled aggregates, in comparison to the natural ones because the natural granulates are 

protected against frost by the old adhered cement paste . (Omary et al., 2016) confirmed, that 

if there is a strong cohesion between the natural aggregates and the old paste for concrete with 

recycled aggregates, then the natural aggregates will be protected by the old paste against the 

degradations caused by frost. Therefore, after the freezing-thawing cycles, there will be a higher 

wear resistance. Looking at the granular distributing after freeze-thaw cycles, those of natural 

granulates will remain about the same, while those of the recycled granulates will change. The 

recycled aggregates are more severely damaged by the freeze-thaw cycles, resulting in a greater 

production of fine particles in the breakdown of the old cement paste around the RCA that is 

detached from the NA by the frost.  By incorporating fine RA that was pre-soaked, the 

resistance to freeze-thaw of RAC was not detrimental (Bogas, Brito, & Ramos, 2016; Guo et 

al., 2018). The W/C factor had more impact on the resistance to freeze-thaw of the concrete 

than the used type of aggregates. If the degree of water saturation is less than 91.7%, a study 

by (Zaharieva, Buyle-Bodin, & Wirquin, 2004) stated that the concrete will probably not be 

subjected to damage from freezing and thawing. With the increase of the number of freezing-

thawing cycles, both the relative dynamic modulus and the cubic compressive strength of the 

concrete with RCA decreased linearly. Under the same freezing-thawing cycles, the cubic 

compressive strength was lower for RAC in comparison with that of NAC (Wu, Jing, & Wang, 

2017). This can be seen in the graph of figure 7. Due to the higher porosity of RAC, it has a 

lower freezing-thawing resistance compared with current concrete with NA. The RAC will 

therefore show a higher absorption and decreased mechanical performance (Rohi M. Salem & 

Jackson, 2003; Verian, 2012; Verian et al., 2018). As the number of freezing-thawing cycles 
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rises, the RAC’s, similar to NAC, compressive, splitting tensile and flexural strength will 

decrease (Guo et al., 2018; Haitao & Shizhu, 2015; Šeps, Fládr, & Broukalová, 2016).  

 

 

Figure 7: Comparison of RAC's and NAC's cubic compressive strength in relation to the number of freeze-thaw 
cycles (Wu et al., 2017) 

When samples are subjected to freeze-thaw cycles, there will be an increase in the weight loss 

of the concrete and a decrease in the relative dynamic elastic modulus. The loss of relative 

strength of RAC was similar to that of NAC in a study on resistance of freezing-thawing, 

regardless if there were air-entraining admixtures used (Dhir Obe et al., 2019). It was found by 

(Gokce, Nagataki, Saeki, & Hisada, 2004; Verian et al., 2018) that, when subjected to 500 

freeze-thaw cycles, there was a better resistance to freezing-thawing for RAC with coarse 

aggregates that were derived from air-entrained concretes than concrete with coarse RCA from 

concrete that was not air-entrained. In a study where 25 freeze-thaw cycles were executed, the 

increase of the RAC’s mass with the increase of the number of cycles was rapidly. But the 

increase slowed down or even ceased to increase after 75 to 100 cycles (Guo et al., 2018). There 

were two factors that caused this: 

• The loss of mass and crumbling of mortar are the result of the internal pressure and 

internal cracks when the concrete is frozen and all this leads to the further extension of 

the cracks 

• The concrete’s mass increases because the water can penetrate into the concrete due to 

the concrete’s enclosed pores that are connected to the freezing action of the water 
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The two forementioned factors will interact with each other where the total water content that 

is absorbed will determine the final mass and the spalling of the concrete will determine the 

mass loss.  

(Verian, 2012; Verian et al., 2018; Verian, Whiting, Jitendra, Olek, & Snyder, 2013) used the 

freezing-thawing cycles in their soundness test on aggregate in a brine solution. This was done 

to determine the disintegration resistance of the aggregates by repeatedly applying rapid freeze-

thaw cycles in the presence of a sodium chloride solution. From this test, it resulted that 

recycled aggregates experienced a noticeably higher deterioration in comparison to the natural 

ones due to a higher mass loss caused by the freeze-thaw cycles in the brine solution. In tests 

to analyse the resistance of frost, it could be observed that the recycled concrete aggregate’s 

resistance to freezing-thawing is less in comparison to that of natural aggregates. But the 

degradation and porosity of the RCA’s, estimated through water absorption, was not greatly 

(Omary et al., 2016).  

4.2.8 Frost resistance 

The frost resistance of concrete is primarily affected by the water content in the concrete, its 

porosity, the type of aggregate that is used and the environmental conditions (Guo et al., 2018). 

To find out the frost resistance of the concrete, it can be subjected to a freeze-thaw cycle that 

measures the dynamic elastic modulus, the rate at which the concrete loses weight and the rate 

at which it loses strength. During this freeze-thaw cycle, the absorbed water can penetrate into 

the cement paste, causing the insertion of RAs to reduce the frost resistance of RAC. If concrete 

is made with recycled aggregates, their incorporation percentage, source and chemical 

composition have an important impact on their frost resistance (Omary et al., 2016). With an 

increase in the fineness and the replacement level of fine RA, the RAC’s dynamic elastic 

modulus will decrease significantly. When the fine RA’s minimum size is less than 0,16 mm 

and the replacement level of it is minimum 40%, there is also a decrease in the RAC’s resistance 

to frost (Guo et al., 2018; J. Y. Sun & Geng, 2012). This is because as the freeze-thaw cycle 

increases, the cracks inside the concrete continue to increase and water can penetrate into it. 

Also, the water absorption capacity, which is higher with RAs, and its degree of saturation 

ensures that RAC has a lower resistance to frost (Zaharieva et al., 2004). This resistance 

decreases with the W/C factor increase, due to the porosity, average aperture and the RAC’s 

number of capillary pores (Bogas et al., 2016; Cui, Ohaga, Kitatsuji, & Tanaka, 2007; Yildirim, 

Meyer, & Herfellner, 2015). The RAC’s change of weight increases if the replacement level of 
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coarse RA increases and the water absorption capacity is linearly correlated with it (Tuyan, 

Mardani-Aghabaglou, & Ramyar, 2014). Regardless of the content of fine RA, the losses in 

mass for high-strength RAC were observed to be a lot lower in comparison to those with normal 

strength. If concrete is made with RA that comes from non-air -entrained concrete, the 

resistance to frost was found to be relatively weak, even when there was an incorporation in the 

concrete of an air-entraining agent (Gokce et al., 2004). This is due to the smaller average 

aperture and the coefficient of pore spacing of the RA’s attached mortars. For these reasons, 

RAC is usually not used in harsh environment as it has weak resistance to frost.  

But (Rohi M. Salem & Jackson, 2003) stated that concrete with RCA, that has W/C factor value 

of maximum 0.5 and an incorporation of air content of 5% can be used in moderate cold and 

unsaturated environments. If concrete is prepared with RAs that originates from high-

performance concrete, a similar or even better resistance to frost can be observed compared to 

that of NAC (Ajdukiewicz & Kliszczewicz, 2002). On the other hand, if the RA comes from 

concrete that was high-strength of air-entrained, the resistance to frost of the RAC will be 

excellent and will perform equally to that of ordinary air-entrained concrete (K. Liu, Yan, Hu, 

Sun, & Zou, 2016; Rohi M. Salem & Jackson, 2003). Improving the frost resistance of RAC 

can be brought about by a decrease in the content of mixing water or decreasing the water 

saturation. If pre-saturated RA is used, the water that normally is contained in the pores of the 

RA will be released for a further hydration of the cement (Bogas et al., 2016; Yildirim et al., 

2015). This means that, due to this internal curing effect, the resistance to frost of RAC will be 

enhanced (A. J. Chen, Wang, & Ma, 2015; Seara-Paz, González-Fonteboa, Martínez-Abella, & 

González-Taboada, 2016; Yildirim et al., 2015). An improvement can also be brought about by 

using additions to the concrete mix. If FA or MK is incorporated, the mineral admixtures will 

from C-S-H due to the reaction with Ca(OH)2, which in turn will make the microstructure of 

the concrete denser and enhance the strength of the concrete (W. H. Luo, Wei, & Luo, 2006; 

Salem & Burdette, 1998; J. Y. Sun & Geng, 2012). Another option is the addition of a good 

number of rubber particles, which will provide space in the concrete for the expansion of the 

volume of frozen water. When the ice melts, the particles will produce an elastic recovery, 

which in turn will limit the concentration stress, tiny crack’s extension and the production of 

propagation (A. J. Chen et al., 2015).  
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4.2.9 Resistance to high temperature 

The exposure of concrete to high temperatures causes a deterioration of the mechanical 

properties of that concrete. This is due to the changes of the different components which are 

significant. This mainly indicates the physiochemical changes in the aggregates and mortar, but 

also the thermal incompatibility (Dhir Obe et al., 2019; J. P. B. Vieira, Correia, & de Brito, 

2011). The lower thermal conductivity and the lower thermal expansion coefficient of the 

RMAs means that concrete containing a higher amount of coarse RMA has a slightly greater 

resistance to fire damage (Hachemi & Ounis, 2015; Khalaf & DeVenny, 2004a; Martins, 

Correia, & de Brito, 2016). Within the cementitious microstructure this could lead to lower 

thermal stresses and, logically, less cracks. Due to the mixing process, the inherently increased 

moisture content can cause serious explosive splashes if the concrete is heated to above 600°C 

(T. C. Hansen, 1992; Martins et al., 2016). In concrete with coarse RMA, the damage of the 

induction of high temperature was likely to be less important. This was due to the lower values 

of the RMA’s coefficient of thermal conductivity and the thermal expansion, which lead to 

minor thermal stresses within the cementitious microstructure and the decrease of cracks.  

In structural applications the use of concrete with RAs may provide enhanced resistance to high 

temperatures. (H. Dong, Cao, Bian, & Zhang, 2014) stated that the RAC’s resistance to high 

temperatures was better than the resistance of concrete with NA’s if they had the same cross 

section and equivalent class in compressive strength. This was due to the lower rate of 

temperature penetration and a delay in crack occurrence of the RACs who had a lower density 

in comparison to NAC. Also (Y. Liu, Ji, Zhang, Wang, & Chen, 2016; Y. Liu, Wang, Chen, & 

Ji, 2016) stated that an increase of recycled aggregates had a slight influence on the failure 

mechanism after exposure to high temperature. For temperatures up to 400°C the absolute 

modulus of elasticity of concrete with RA tended to decrease less rapidly as concrete with NA, 

although they had a comparable decrease in compressive strength (C J Zega & Maio, 2006). 

For concrete subjected to high temperature, the incorporation of RCAs did not affect its residual 

mechanical behavior. 

EC2 states that the tensile strength should be ignored for concrete exposed to high temperatures. 

However, a method adopted in the EC2 can be used whenever needed. The results indicate that 

concrete with RAs, regardless of the replacement level of RA, can comply with the method 

mentioned in EC2 for the estimation of the tensile strength for concrete at high temperatures 

(Dhir Obe et al., 2019).  
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4.2.10 Resistance to impact loading 

The concrete’s resistance to impact loading is proportional to the stiffness and resistance of its 

components (Dhir Obe et al., 2019; L. Li, Xiao, & Poon, 2016; Nazarimofrad, Shaikh, & Nili, 

2017). With the replacement level, the resulted acceleration in RAC samples increased for a 

given impact energy. The behavior of beams of RAC with different coarse granulate 

replacement levels (0%, 25%, 50% and 100%) was determined by (Chakradhara Rao, 

Bhattacharyya, & Barai, 2011a) using the impact of a drop hammer. The vibration of the 

specimen was influenced by the stiffness of the material. In other words, there was a decrease 

of the acceleration as the modulus of elasticity increased. For concrete made with a higher 

replacement level of coarse RCA, the maximum displacement increased due to the weight 

impact. So far, it can be concluded that there can be a lower resistance to impact loading when 

the amount of coarse recycled aggregates increases. Another study was done by (Xiao et al., 

2015), who examined the RAC’s compressive behavior under quasi-static loading with a high 

strain rate. The first conclusion was that with a rise in strain rate, the compressive strength and 

initial modulus of elasticity increased. However, the compressive strength declined when the 

amount of coarse RCA was increased. Also, under quasi-static loads, the propagation of the 

cracks in concrete with RCA was different from when it was subjected to impact loading. A 

third study by (Ismail & Ramli, 2014) investigated the low-velocity impact loading of concrete 

with treated RCA and untreated RCA. Based on the energy absorbed by the samples, the impact 

resistance was evaluated. These tests showed that there was effectively a reduction in the 

resistance to impact loading but they were improved when the aggregates were treated. By 

visually inspecting the samples, it was concluded that the cracks in the conventional concrete 

had a more devious pattern compared to the RAC-samples. The RAC-samples showed rather a 

linear pattern. It is possible that crack propagation was held back by the relatively higher stress 

capacity of the natural aggregates. (Nazarimofrad et al., 2017) confirms a decrease in impact 

resistance by using RAC. With an increasing amount of coarse recycled aggregates, the number 

of weight strokes to the formation of an initial fracture decreased. However, this increased when 

the amount of attached mortar was increased. What can be concluded from this section is that 

an increase in the number of aggregates recycled causes a reduction in the resistance to impact. 

This is not surprising as the resistance and stiffness of the existing parts has a proportional 

influence on the resistance to impact loading of the investigated concrete. An improvement of 

this overall performance of concrete subject to impact can be achieved by the insertion of some 

mineral additives.  
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4.2.11 Carbonation resistance 

Carbonation, together with the penetration of chloride ions, is a disadvantage as it is responsible 

for the corrosion of the reinforcement in the reinforced concrete (Guo et al., 2018). What 

exactly happens, is that a series of chemical reactions takes place in the concrete under the 

CO2’s presence, which then enhances the decrease in the pH grade in the concrete. The 

permeability and the concrete’s moisture content affect the carbonation’s rate. As the 

replacement ratio of RAs increases, the depth of carbonation of the RAC increases with it. (R. 

V. Silva, Neves, de Brito, & Dhir, 2015) examined the influence of the amount of RA on the 

depth in RAC caused by the relative carbonation. Figure 8 suggests that a replacement level of 

100% of coarse RA causes a carbonation depth of RAC that is about 2.5 times higher than with 

concrete with NA, with a probability of 95% (a). This is about 8.7 times higher with a 

replacement level of 100% fine RA due to the fine RA’s higher capacity of water absorption 

(b).  

 

Figure 8: Replacement level of RA in relation to the relative carbonation depth (R. V. Silva, Neves, et al., 2015) 
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One of the important factors for RAC’s carbonation is still water, as (Geng & Sun, 2013) 

mentioned. If the replacement rate of fine RCA exceeds 40%, a sensible W/C ratio should be 

considered. The cause for this is that an increase in water leads to a rise in the concrete’s 

porosity and thus CO2 can enter the concrete more easily. An increase in carbonation with an 

increase in the W/C ratio is possible due to the similar effect of the W/C ratio on the carbonation 

of concrete with RA as it is with concrete with NA (Lei & Xiao, 2008). Unfortunately, the 

higher porosity of the RAs in the concrete caused a slight acceleration in the carbonation rate 

compared to NAC (Otsuki, Miyazato, & Yodsudjai, 2003). As FA is often used to improve 

concrete properties, this had a negative effect on the SCC’s resistance to carbonation. (H. Sun, 

Wang, & Sun, 2006) found that with the increasing FA content, the carbonation depths 

increased for SCCs with RA. This was confirmed by (S.-C. Kou & Poon, 2013), who stated 

that an increase of the carbonation depth was noticed if cement was replaced with FA in 

concrete with RA. What also has an effect on the resistance to carbonation is the application of 

the TSMA method under a relatively high W/C ratio. This is probably because the mortar that 

adheres to the RA has a lower water-binder ratio and the lesser amount of water near the 

aggregate. This can limit the crystal growth causing an amplification of the ITZ (Otsuki et al., 

2003).  

A study by (Lei & Xiao, 2008) showed a decrease in carbonation depth when the replacement 

ratio of RA, with 40% content of adhered mortar, was at least 70%. This could be possible due 

to the greater amount of cement and the reduced rate of carbonation caused by the high amount 

of attached mortar. The coarse RA’s increasing replacement ratio can also make the RAC 

achieve an equal strength and carbonation depth as concrete made with NA if the RAC has a 

lower W/C ratio (R. V. Silva, Neves, et al., 2015). The carbonation depth can also be decreased 

by adding components to the mixture. With an incorporation of slag, the microstructure 

becomes denser, as well as reducing the number of pores result in a remarkable reduction (Lei 

& Xiao, 2008). Metakaolin has high fineness particles which can compensate for the loss in the 

resistance of carbonation and thus against the ingress of CO2 by improving the microstructure 

(i.e., reduce the number of pores and make it denser) (Singh & Singh, 2016). The presence of 

superplasticizer (SP) can greatly reduce the depth of carbonation at early ages (Matias, Brito, 

Rosa, & Pedro, 2014). The improvement of the resistance to carbonation by SP’s is due to the 

hindering of mixed crystal’s growth and the denser crystals on the cement particle’s surface. 

Another enhancement to the resistance of carbonation is the addition of a coat oil-type or silane 
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repellent on the RA’s surface (Tsujino, Noguchi, Tamura, Kanematsu, & Maruyama, 2007; Zhu 

et al., 2013). 

4.2.12 Chloride penetration resistance 

One of the factors that primarily affects the concrete structure’s durability and is considered to 

be one of the most serious degradation mechanisms, is the corrosion of the reinforcement that 

is induced by chloride (Guo et al., 2018; Kazmi et al., 2020; Martı́n-Pérez, Zibara, Hooton, & 

Thomas, 2000; Otsuki et al., 2003). The problem is that RAC with rebars will be more prone 

to corrosion and other deteriorations that are chloride-related if there is a higher content for 

chloride (Verian et al., 2018). The RAC’s resistance to chloride penetration will decrease if the 

W/C factor increases (Guo et al., 2018). The resistance to chloride penetration will also decrease 

for concrete that is made with RCA if the permeability of it increases (Verian et al., 2018). And 

if a compressive load is used, the diffusion coefficient of chloride of the RAC will decrease 

first, whereafter it increases with the compressive load that increases (Guo et al., 2018).  

For the resistance to chloride penetration, a decrease is found for RAC compared to NAC. The 

increase in the porosity of concrete containing porous RA can be related to this (Guo et al., 

2018; Kazmi et al., 2020; T. Vieira et al., 2016). (S.-c. Kou, Poon, & Agrela, 2011; S. C. Kou 

& Poon, 2012) from (Verian et al., 2018) found that the resistance to chloride penetration was 

more than 40% less for RAC with 100% RCA in comparison to concrete with NA. According 

to (Rahal, 2007), NA has a lower content of chloride than RCA. And (Verian, 2012) confirmed 

that in a leachate solution the RCA’s content of chloride ions was more than double compared 

to that of NA. The study by (Guo et al., 2018) where different grades of resistance to chloride 

penetration were observed for a decreasing content of attached mortar. This means that the 

content of adhered mortar on recycled aggregates have an enormous impact on the RAC’s 

chloride penetration resistance. Due to the amount of attached mortar that is higher and the 

content of clay, the effect of coarse RA on the penetration of chloride is less obvious than that 

of fine RA (Bravo et al., 2015a; L. Evangelista & de Brito, 2010; Guo et al., 2018).  
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Figure 9: The total charge passed in relation to the content of coarse RA (Andreu & Miren, 2014; Kapoor et al., 
2016; Matias et al., 2014) et al. 

To test the resistance to chloride penetration, the RAC’s TPC will be measured, with a testing 

method called ASTM C 1202, in coulombs (Bravo et al., 2015a; Guo et al., 2018). Figure 9 

shows that the TCP increases as the replacement level of the RA increases (Bravo et al., 2015a; 

Faella et al., 2016; Kapoor et al., 2016), regardless of the RA’s quality. The results of the tests 

by (Bravo et al., 2015a; L. Evangelista & de Brito, 2010) indicated that there is a 95% chance 

that concrete with 100% coarse RA will have a TPC that is about 2.07 greater than concrete 

with NA. Due to this higher value of TPC, it can also be deduced that introducing a higher 

amount of RCA into the concrete will lower the resistivity of this concrete (Verian et al., 2018). 

When testing, it should be taken into account that the resistance to chloride enhances with the 

curing age of the concrete (Bravo et al., 2015a; Guo et al., 2018; Somna et al., 2012). An 

improved performance in a chloride environment than NAC could be achieved by RAC when 

it was prepared at a low W/C factor due to the C-S-H gels that assist the binding of the chloride 

(Vázquez, Barra, Aponte, Jiménez, & Valls, 2014). A lower penetration of chloride in the 

concrete could be noticed when the RA was derived from a concrete with higher original 

strength than concrete that contained RA from a lower strength concrete due to the lower water 

absorption capacity (S.-c. Kou & Poon, 2015). The resistance of chloride penetration can be 

enhanced with the addition of mineral admixtures. Within the mineral admixtures, the single 

ones have a less good affect in comparison to the binary or ternary ones. The increased C-S-H 

amount, caused by the mineral admixtures, can have a bigger absorption of chloride ions. Those 

admixtures also refine the pore size. The enhancement of the resistance can also be done by a 

surface treatment of the RAC’s outer layer of pretreating the RAs. When this method is used, 

the surface of the RA or RAC is coated with a slurry of silane or a pozzolanic slurry, which will 
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improve the resistance of the transport of ions and the microstructure (Kong et al., 2010; S.-C. 

Kou & Poon, 2010; Zhu et al., 2013). The RAC’s resistance to penetration can be enhanced by 

CO2 curing, steam curing, adding superplasticizers and double-mixing the mix or triple mixing 

(C.-S. Poon, Kou, & Chan, 2006; S.-C. Kou et al., 2014; Matias et al., 2014; Zhan, Poon, & 

Shi, 2016). Whereas the CO2 treatment a very feasible and effective method is for the RAC in 

enhancing the resistance of chloride penetration. Besides enhancing the mechanical properties, 

it will also reduce the water absorption capacity and the porosity of the recycled aggregates.  

4.2.13 Alkali-silica reaction  

The alkali-silica reaction (ASR) is a chemical reaction between the concrete’s alkali hydroxides 

and the unstable silica mineral (Guo et al., 2018). A clear understanding of the ASR’s 

mechanism in RAC has become more difficult since the interface characteristics and 

microstructure of this concrete is more complex than the regular concrete. The concrete’s 

dimensional stability and durability are affected by the expansion and cracking induced by the 

reaction. An ASR is expected in new concrete when recycled aggregates are added that have 

originally reactive aggregates. Comparable expansions as for concrete with original aggregate 

can be observed if the recycled aggregates come from a concrete already contaminated with 

ASR, as (Shehata, Christidis, Mikhaiel, Rogers, & Lachemi, 2010) and (Mukhopadhyay, 2013) 

stated. When the reactive RAs were used to make a new RAC, comparable expansion hazards 

were used for this reason. When the reactive aggregates were mixed with fine and coarse 

recycled aggregates in an environment that was highly alkaline, the expansion of the concrete 

with fine RAs was slightly grander than that with coarse RAs (McCarthy, Csetenyi, Halliday, 

& Dhir, 2015). The reaction process can be influenced by the changes in the effective W/C ratio 

that can be brought about by the effect of the water absorption capacity of the aggregates on 

the ASR, this water absorption must certainly be taken into account. Also, the crushing method 

affected the expansion of RA, where smaller coarse aggregates result in a bigger expansion. 

The reduction of the alkalinity of the pore solution can be achieved by the usage of SCMs 

(Johnson & Shehata, 2016). Another product that can reduce the ASR’s caused expansion of 

concrete with RA effectively, is the introduction of lithium nitrate (Shehata et al., 2010). If the 

choice is made to add RA that is reactive or possibly reactive, then the ARS must be prevented 

and this can be done with four methods. Thus, use of low alkali cement is one option, mineral 

admixtures could also be added, the RA’s water absorption capacity could be strictly controlled 

or the last option is to maintain a low alkali content of concrete.  



 

Page 43 of 125 

 

In comparison to concrete made with NA, the RAC’s resistance to all forms of deformation will 

be potentially lower (Dhir Obe et al., 2019). The structure’s overall integrity deflection, and 

cracking are heavily affected by deformations in the structural design. Due to the hydration, the 

loading time and the ambient conditions, concrete will experience numerous forms of changes 

in volume. While the concrete’s aggregates deliver an internal restraint, the concrete will 

encounter a volumetric change while deforming. This means that the deformation’s magnitude 

depends on the aggregate’s stiffness in the concrete. The concrete’s resistance to load-

dependent and load-independent deformations will be lower if the RCA’s stiffness in the 

concrete is lower than that of natural aggregates. If those estimations of the concrete’s 

deformation are inaccurate, unwanted consequences can develop (Dhir Obe et al., 2019). A 

distinction can be made between the three main deformations:  

• The modulus of elasticity is an elastic deformation property that is load dependent 

• Creep is a deformation property that depends on load and time 

• Shrinkage is the deformation property that is expressed with time and independent of 

the load. 

These deformations are discussed in more detail in the following sections.  

4.2.14 Elastic deformation 

When concrete is subjected to a compressive load, the modulus of elasticity (EC) will describe 

the concrete’s instantaneous deformation, based on the stress-strain relationship and its secant 

slope (Dhir Obe et al., 2019). Because this property is used in structural members of buildings 

to estimate its deflection and buckling, it is highly important. When there is a replacement level 

of 100% of coarse NA with RCA, the EC can show a reduction of 6% to 40% and an average 

value of 30% (K. W. Anderson, Uhlmeyer, & Russell, 2009; Dhir Obe et al., 2019; K. Sagoe-

Crentsil & Brown, 1998).  

For concrete in compression the relationship between stress and strain is not truly linear, but 

for the low levels of strain and stress, it is considered to be. This relationship is dependent of 

the concrete’s stiffness, constituents and testing methods. Several studies have been done to 

compare the concrete with coarse NA and that with coarse RCA. The comparison between the 

two is shown in the following picture and can be divided in three regions:  
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Figure 10: The stress-strain relationship for concrete with coarse NA (red) and coarse RA (green) (G. M. Chen, 

He, Yang, Chen, & Guo, 2014; Folino & Xargay, 2014; 陈宝璠 & Chen, 2013) 

• Region 1: the stress-strain relationship is more or less linear for up to 30% of its eventual 

strength, for the concrete with coarse NA, as for the concrete with coarse RCA. The 

stress of the NA concrete will be higher at a given strain compared to that of the concrete 

with RCA. 

• Region 2: the relationship between stress and strain is more parabolic. It can be noted 

that the RAC with coarse RCA has a higher peak strain (= strain corresponding to the 

peak stress) in comparison to that of concrete with NA.  

• Region 3: the curves of both the RAC and NAC will soften after the peak, this means 

that they will descend after the peak. The rate of this descending is normally faster for 

the RCA concrete than for the NA concrete. Unfortunately, it can also be deduced from 

the figure that the ultimate strain of the concrete with coarse RCA is less than that of 

the concrete with coarse NA. The strain where the crushing failure of the concrete 

occurs, is called the ultimate strain of the concrete.  

Regardless that the test to determine the EC is simple, to study the coarser RCA’s behavior, the 

variables that are used for doing this, often vary in terms of type of test method, the type of 

specimen used, the curing conditions and the properties of the aggregates (Dhir Obe et al., 2019; 

Lye, Dhir, & Ghataora, 2016). Because the attached cement paste on the coarse recycled 

concrete aggregates is weak and porous, the EC of the RAC was theoretically higher than that 

of the corresponding concrete with coarse NA for 4.5% of all the data. If all other properties 

were kept equal, the EC could not be increased by the usage of RCA. A study by (Dhir Obe et 

al., 2019) showed a decreasing rate in the decrease of the EC of the concrete as the content of 
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coarse RCA increased. If the concrete’s compressive strength increases, the drop in the relative 

value of EC will decrease at a given content for coarse RCA. As the strength of the concrete 

increases, the volume of coarse aggregates will decrease. This causes a reduction in the overall 

effect on the concrete’s properties. At a higher strength, a relatively smaller decrease in the 

concrete’s EC will occur due to the relatively smaller impact on the attached cement paste where 

coarse RCA is used. High-quality coarse aggregate is required to make concrete with high 

strength. It is expected that the quality of the coarse RCAs will be better to produce concrete 

with high strength. As a result, the decrease in the EC will probably be smaller due to the use of 

RCA.  

To estimate the concrete’s EC, the rock types of the used aggregates will be taken in by the 

Eurocode 2 who has limited them to basalt, quartzite, limestone and sandstone. For concrete 

that is made with basalt, quartzite, limestone and sandstone, the different EC values are shown 

in the figure 11.  

The line for concrete with NA where the strength is less than 60 MPa, can be found between 

sandstone and limestone, but for a strength more than 60 MPa, the line can be found between 

limestone and quartzite. If at a given strength, the concrete’s EC reduces while the content of 

coarse RCA increases, the trend lines will move from between limestone-concrete and 

quartzite-concrete progressively to the area between sandstone-concrete and limestone-

concrete.  

Another property is the dynamic elastic modulus ED to measure the concrete’s damage 

evaluation after an exposure to weathering (e.g., freeze-thaw). If coarse NA is replaced with 

coarse RCA, the concrete’s ED will result in a reduction.  

The ratio under axial load of the axial strain to the corresponding transverse strain within the 

elastic range is called the Poisson ratio. This ratio will marginally increase when the coarse NA 

is replaced with coarse RCA in concrete in most cases (Ajdukiewicz & Kliszczewicz, 2002, 

2007; Dhir Obe et al., 2019; S. Huda & Alam, 2015) et al.  
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Figure 11: Ec in relation to the concrete with coarse NA's / coarse RCA's compressive strength (Dhir Obe et al., 
2019) 
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4.2.15 Creep deformation 

Due to a sustained load over time, dimensional change will occur and that phenomenon is called 

creep. The serviceability of structures can be affected by this time- and load-dependent 

phenomenon, so it is a very important matter to structural engineers. Aggregates that are used 

in the production can’t undergo creep; it will take place in hardened cement paste (Dhir Obe et 

al., 2019; A M Neville, Dilger, & Brooks, 1983). The deformation by creep in concrete can be 

affected by some physical properties of the aggregates (e.g., stiffness). (R. V. Silva, de Brito, 

& Dhir, 2015a) found that an increase in the creep strain of the concrete with values in the 

orders of 20% to 90% and an increase in the creep coefficient of the concrete in orders of 10% 

to 65% can be obtained by using an RCA content of 100%, depending on its quality. A study 

by (Task Force of Standing Committee of Concrete of Spain, 2004) stated that a content of 

coarse RCA of 20% resulted in no change in the concrete’s creep. While the content of 100% 

resulted in values for concrete’s creep that were widely varied. As the content of coarse RCA 

in the concrete increases, the rate of the concrete’s creep increase will decrease. For an increase 

in the content of coarse RCA, the relative creep will increase and for a given content of coarse 

RCA, that increase will become smaller as the strength of the concrete increases (Dhir Obe et 

al., 2019). This could be explained as the concrete’s design strength increases, the content per 

unit volume of the coarse aggregates will decrease due to the content of the cement that 

increases. If coarse RCA is used, the presence of the attached cement past in the RCA and its 

impact will proportionately decrease but will in turn slightly increase the concrete’s creep 

deformation. The concrete’s creep increase due to the coarse RCA is mainly caused by the 

concrete’s porosity that is caused by the porous property of the attached cement paste on the 

RCAs. But regardless of the content of coarse RCA that is used, there is a strong relationship 

between the porosity of the concrete and its creep. Due to the higher volume of paste in RAC 

in comparison to concrete with natural aggregates, there will be a greater creep for RAC up to 

30% to 60% in comparison with current concrete (Committee, 2001; Verian et al., 2018). This 

is caused by, as stated before, that the paste or mortar amount in concrete is proportional to the 

concrete’s creep. With an increasing rate, the drying creep coefficient of the concrete will 

increase as there is an increase of the RAC’s porosity (Dhir Obe et al., 2019). The concrete’s 

porosity is still a function of the duration of the moist curing. Good cement hydration can take 

place by sufficient curing time. This has the ultimate positive effect that the concrete’s porosity 

can be reduced due to the denser structure of the cement paste. But as the duration of curing 

increases, the creep ratio will show a decrease for both RAC and concrete with natural 

aggregates. At a given time in this curing duration, the RAC’s creep ratio will have a lower 
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value than that of concrete with natural aggregates. This suggests that at that time the NA’s 

concrete is less sensitive than that of concrete with RCA.  

Out of all this information, following conclusions can be drawn. First, as the content of sand is 

kept the same in the mix of concrete that contains coarse RCA, the concrete’s creep will 

increase at a rate that decreases as the replacement level of NA increases. Second, the 

magnitude of this creep increase will decrease due to the increase in the concrete’s design 

strength when coarse RCA is used. The creep of concrete with NA is less sensitive to the 

duration of moist curing than that of concrete with RCA (Dhir Obe et al., 2019). 

4.2.16 Shrinkage deformation 

Shrinkage is a time-dependent property, just like creep, but in this case, there is no load 

necessary for the deformation to occur in the concrete (Dhir Obe et al., 2019). Shrinkage comes 

in four types: plastic, autogenous, drying and carbonation shrinkage. As it is the most common 

cause of cracks formed in concrete, its structural interest is increasing. The shearing allows 

gases and liquids to flow into the concrete and reduce the performance of the concrete or even 

cause corrosion of the steel reinforcement. (Dhir Obe et al., 2019) stated that with a replacement 

level of 20% of RCA, the concrete’s shrinkage was not significantly influenced. But when that 

level was increased to 100% of coarse RCA, the shrinkage increased by 20% to 50%, other 

studies have been suggesting lower as higher percentages. An increase of 70% to 100% 

shrinkage was found for concrete with both fine and coarse RCAs compared to concrete with 

NAs. Whereas for concrete made with coarse RCA and natural sand the increase was ‘only’ 

20% to 50% (Committee, 2001; Verian et al., 2018). 

When concrete has just been made, it is in its fresh state. The concrete is still damp and it can 

lose water because the water can evaporate from the surface when the concrete is placed but 

not hardened. This is how plastic shrinkage occurs. If the rate of bleeding, water in the concrete 

that rises to the surface, is lower than the evaporation’s rate, plastic shrinkage cracking can 

occur (Dhir Obe et al., 2019). If NA in the concrete is replaced with coarse RCA, the plastic 

shrinkage increases (Bendimerad, Rozière, & Loukili, 2016; Gonzalez-Corominas & 

Etxeberria, 2016; Souche et al., 2017). And if RCAs are used with a higher absorption property 

(Gonzalez-Corominas & Etxeberria, 2016) or the concrete is exposed to drying circumstances 

(Souche et al., 2017), the plastic shrinkage increases even more. Higher plastic shrinkage can 

also increase if concrete is made with RCA in a condition that is fully saturated and surface-dry 

in comparison to concrete that was made with RCA in a condition that was partially saturated 
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or oversaturated (Gonzalez-Corominas & Etxeberria, 2016). The cause of this could be the 

excess of water that in the first situation the partially saturated RCAs did not fully absorbed the 

water, or in the second situation that the oversaturated RCA released water. But in a study by 

(Souche et al., 2017), one case showed that the use of oversaturated RCA in concrete had a 

higher plastic shrinkage than concrete that used partially saturated RCAs. No opinion can be 

expressed for the comparison of fine and coarse recycled concrete aggregates, since studies 

have proven contradictory matters (Eckert & Oliveira, 2015; Salgues, Souche, Devillers, & 

Garcia-Diaz, 2018). The RCA’s saturation condition also affects the plastic shrinkage cracking 

of the concrete. With a rise in the degree of the RCA’s saturation, the crack initiation time 

increases, as the crack width does (Salgues et al., 2018; Souche et al., 2017).  

In contrast to the previous type of shrinkage, no moisture exchange takes place with the 

surrounding environment with autogenous shrinkage. This type takes place during the hydration 

of cement and is relatively small. High autogenous shrinkage can be found in concrete that has 

a W/C ratio that is very low (A. M. Neville, 1995). Regardless of the little information available 

about the autogenous shrinkage, it does say that concrete with coarse RCA (Gonzalez-

Corominas & Etxeberria, 2016), fine RCA (H. Kim & Bentz, 2008), and a mix of the two 

(Maruyama & Sato, 2005) cause a decrease in the concrete’s autogenous shrinkage. This is due 

to the supplementary internal curing water in the RAC, provided by the RCA’s higher water 

absorption capacity. Unfortunately, this cannot be seen in the total shrinkage of the concrete, 

despite this positive effect. There is less inhibition on drying shrinkage, due to the lower 

stiffness of RCAs compared to NAs, which plays a greater role in the overall shrinkage of the 

concrete.  

Drying shrinkage is caused by the ceasing of the damp curing of concrete and it consequently 

being exposed to drying conditions that cause the internal moisture of the cements paste to be 

lost. It is an important factor because it is inevitable (Dhir Obe et al., 2019). It is influenced by 

the concrete’s W/Cm and content of paste (Verian et al., 2018). Because of its attached and new 

mortar, RAC contains a higher amount of paste, thus compared to concrete with NA, it has a 

higher drying shrinkage’s magnitude (Beltrán, Barbudo, Agrela, Galvín, & Jiménez, 2014; 

Khatib, 2005; Verian, 2012) et al. A higher drying shrinkage occurred with the incorporation 

of fine RCA’s because of its higher absorption due to the relatively higher content of old paste 

in comparison to coarse RCA (Fan et al., 2015). For the fact that follows, the following method 

was used to test the concrete: the samples were largely moist cured for a maximum of one 

month, after which the tests were prepared in an environment with a temperature of 20°C to 
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30°C and a relative humidity (RH) of 40% to 60%. For 2 weeks to 6 months, the RAC with 

coarse RCA was mainly stored in a dry environment (Dhir Obe et al., 2019). RAC’s W/C ratio 

was kept comparable to that of the reference concrete with NA. These tests showed that the 

shrinkage of concrete with NA could be more than that of concrete with coarse RCA. However, 

because the stiffness of the natural aggregates must be higher than the coarse RC aggregates, 

this could not be accepted. This is due to the presence of the attached cement paste in the RCA’s, 

which is porous and weak. If NA is replaced by coarse RCA in concrete, the shrinkage of the 

concrete is expected to increase at a decreasing rate if the content of coarse RCA increases. If 

the replacement level is 100%, on average, the concrete’s shrinkage could be up to 30% higher. 

The eventual concrete’s shrinkage can be influenced by the void’s development and the 

moisture’s movement, which in turn are affected by the rock type, packing, particle size 

distribution and the coarse aggregate’s grading that is used in the concrete. As already 

mentioned, the drying process of the concrete is the cause of most of the shrinkage stresses. 

The exposure condition’s relative humidity is what mainly affects the drying process. With 

relative humidity increasing, for a given coarse RCA content, the magnitude of the shrinkage 

value will decrease. In estimating the effects of shrinkage under the presence of coarse RCA 

when exposing the structural concrete to different humidity conditions, the foregoing 

relationship can be very helpful (Dhir Obe et al., 2019).  

The images of figure 12 show the profiles for the concrete with RCA’s rate of shrinkage change 

compared to that of concrete with NA and that for each individual force group. This figure 

shows that those profiles are quite similar, but for a given amount of RCA, the strength of the 

concrete will increase, with the result that the relative change will decrease (Dhir Obe et al., 

2019).  

Due to the lowering of the acidity of the concrete, corrosion can occur in the reinforcing steel, 

this is due to carbonation. But shrinkage can also be the result of carbonation. The coarse RCA 

does not necessarily participate in the carbonation process, but its natural porosity can have an 

effect on the carbonation’s rate and the amount of it. But it can also affect the carbonation-

induced shrinkage, which is dependent on the RCA’s saturation degree and ambient humidity 

(Dhir Obe et al., 2019). 

If coarse NA was replaced with coarse RCA while the use of sand was kept equal, and the 

content of RCA increases, then the concrete’s shrinkage increases at a decreasing rate. As the 

ambient humidity increases, the shrinkage’s relative increase of the concrete will decrease if 
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there is a usage of coarse RCA and the corresponding sand and its content is kept the same. 

When using coarse RCA, the concrete’s design strength will influence the shrinkage’s relative 

increase. Here, the design strength’s increase will decrease the magnitude of the shrinkage’s 

increase of the concrete.  

 

Figure 12: Shrinkage of coarse RCA WRT the NA for a variation of strength groups (Dhir Obe et al., 2019) 
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4.2.17 Conclusion 

Between the compressive strength of the concrete and the coarse aggregate’s water absorption 

capacity and its porosity, a strong relationship can be observed. Likewise, there is a strong 

relationship between the splitting tensile strength of the concrete and the coarse aggregate’s 

porosity. Furthermore, between the concrete’s flexural strength and the coarse aggregate’s 

crushing value, porosity and attached mortar, a good relation can be noticed (Kazmi et al., 

2020). Despite that the aggregates have lower elasticity modulus and strengths (i.e., 

compressive, splitting tensile and flexural), the concretes that contain RCA have in some way 

yielded a comparable or even higher fracture energy than those with natural aggregates. Some 

other studies agreed on this and have shown similar results (Amirkhanian, 2012; S. Kou, 2006; 

Verian et al., 2018). However, other studies found a decrease in the fracture properties for the 

addition of RCA in the concrete (Q. Liu et al., 2011; Roesler et al., 2013) et al. 

The attached mortar of the RAs will primarily determine the RAC’s durability. The higher this 

content is, the higher the water absorption and porosity will be and this in turn will cause a 

worse performance of RAC’s durability (Guo et al., 2018). (Kazmi et al., 2020) also stated that 

to predict the concrete’s durability performance, the coarse RCA’s porosity is an important 

property. The RAC’s durability will also decrease with a higher amount of RA and higher W/C 

factor. For fine RA will this effect be more obvious in comparison to coarse RA (Guo et al., 

2018; Kazmi et al., 2019a, 2020; Munir, Kazmi, Wu, Patnaikuni, Zhou, et al., 2020). The two 

key reasons for the higher water absorption and porosity of the RA are the old adhered mortar 

of the RA’s surface and the ITZ between the aggregate and this adhered old mortar. All of this 

can lead to a poor permeability to chloride-ions, a low carbonation resistance, acid resistance 

and low resistance to sulfate-attack (Kazmi et al., 2020; Sáez del Bosque et al., 2017; J Zhang 

et al., 2015) et al. It can be stated that all the concrete’s mechanical properties have a strong 

relationship with the durability properties. But this RAC’s durability problem can be minimized 

by adding a mineral admixture. More information on this can be found in the next section (Guo 

et al., 2018).  

4.3  Ideas for improvement 

This section provides opportunities that can improve and sometimes remove the challenges that 

the use of recycled aggregates in concrete causes. In this introductory section, some general 

matters or less relevant but interesting matters are mentioned.  
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The first matter that should be discussed are the supplementary cementitious materials (SCM). 

Like the dosage of superplasticizer (SP) and the change of the viscosity modifying agent  

(VMA), the SCM can change the rheology of SCC (Saini & Singh, 2020). The usage of SCMs 

can improve the RCA’s performance, according to (Verian et al., 2018). Some SCMs can 

improve the ITZ and the RAC’s cement paste (e.g., fly ash), which causes an improvement in 

the durability behavior (Kazmi et al., 2020; S.-C. Kou & Poon, 2013; S.-C. Kou, Poon, & 

Etxeberria, 2011; Singh, M, & Arya, 2019). Due to the increase of RCA content, the SCC’s 

durability and mechanical properties decreased. To some extent, this could be controlled by the 

usage of SCM, filler materials, method of surface treatment or presoaking the RCA (Guneyisi, 

Gesoglu, Algin, & Yazici, 2014; Khodair & Luqman, 2017; Saini & Singh, 2020; Y. F. Silva, 

Robayo, Mattey, & Delvasto, 2016) et al.  

Other aspects that can help enhance the properties of the concrete are listed below:  

• Since fine/coarse have a significant impact on the concrete’s characteristics, particles 

with a more regularly shape can be achieved by using a two-crushing stage (Barbudo, 

Agrela, Ayuso, Jiménez, & Poon, 2012; Dhir Obe et al., 2019; Ferreira, Brito, & Barra, 

2011) et al. 

• A strength gain can be obtained by recycled aggregates coming from materials with 

high-strength and/or the usage of partly dry RAs in combination with greater contents 

of plasticizers (Dhir Obe et al., 2019). 

• Dependent on the debris constituents, the pulverized CDW’s usage could have positive 

results (Asensio, Medina, Frías, & de Rojas, 2016; V. Corinaldesi & Moriconi, 2011; 

Dhir Obe et al., 2019; Y.-J. Kim, 2017). To replace part of the cement with waste 

concrete powder, without any treatment could decrease the concrete’s mechanical 

performance. In this way, pozzolanic reactions could be achieved by the hydrated state 

of the cement particles and the reactive constituents that are missing (Dhir Obe et al., 

2019; J. Kim, Nam, Behring, & Muhit, 2014).  

• An increase in strength development rate of the concrete over time can be done by the 

usage of fine RMA (Dhir Obe et al., 2019; Khatib, 2005; T. Vieira et al., 2016; Wild et 

al., 1996). 

• The production process can also have a significant influence. The durability 

performance of the RAC can be enhanced by a two-stage and triple-step RAC mixing. 

On the surface of the RA will be a formation of the cement paste layer (Kazmi et al., 
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2020; V. W.-Y. Tam, Gao, & Tam, 2006; V. W. Y. Tam & Tam, 2008; V. W. Y. Tam, 

Tam, & Wang, 2007).  

• Another improvement method for the durability performance is the usage of bacterial 

bio-deposition of calcite on the RA’s surface. It decreases the RA’s water absorption by 

filling in the pores of the adhered mortar (Grabiec, Klama, Zawal, & Krupa, 2012; 

Kazmi et al., 2020). 

• The presence of SP can reduce the carbonation depth significantly at early ages. The 

resulting depths could even be lower than for concrete with NA. The SP can also hinder 

the mixed crystal’s growth, it makes them denser on the cement particle’s surface, 

whereby the resistance to carbonation improves (Guo et al., 2018; Matias et al., 2014).  

In the following subdivisions are the matters that can have a major impact on various properties 

and/or that may help the lab test.  

4.3.1 Mineral additions 

Mineral additions could be used as an addition to the cement or as a partial replacement of it 

(Dhir Obe et al., 2019). It is expected when using mineral additions, that it will affect the RAC 

in a similar way as it will affect NAC, independently from the amount of coarse recycled 

aggregates that are inserted (Berndt, 2009; S C Kou, Poon, & Chan, 2007; Rohi M. Salem & 

Jackson, 2003). The use of these mineral additions is mainly to enhance the resistance in 

durability-related properties, the workability or consistence and sometimes to cause a higher 

strength. For an improvement of the RAC, one can enhance the RA’s properties and/or add 

mineral admixtures (Guo et al., 2018; C. Shi, Wu, Cao, Ling, & Zheng, 2018; Jiake Zhang, 

Caijun Shi, et al., 2015; J Zhang et al., 2015). Because coarse RAs have a higher specific surface 

area, the reaction of the additions with those coarse RAs will possibly be more inert in the 

concrete’s hydration reactions (Dhir Obe et al., 2019). But due to the specific chemical 

composition that some of the RA’s are composed of, at the ITZ between the cementitious matrix 

and the RA it is possible that new products of hydration may be formed. A microcrystalline 

nucleation effect is played by the fine mineral additives on the cement’s hydration, which 

causes an acceleration of the growth of the hydration products and an acceleration of the 

hydration of cement (Guo et al., 2018). The RAs are capable of reacting with cement and the 

mineral additions, and with a decrease in size those chemical reactions are potentiated. The 

amount of C-S-H can be increased and the pore size can be more refined due to the mineral 

admixture. This results in a bigger absorption of chloride-ions. But the RAC’s resistance to 
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chloride penetration can also still be improved by treating the RAs or adding a surface treatment 

to the exterior layer of the concrete with RAs (Guo et al., 2018; Kong et al., 2010; S.-C. Kou 

& Poon, 2010; Zhu et al., 2013). If the mineral additions are used for this purpose, the 

improvement of the resistance to chloride penetration, a single mineral admixture does not 

cause as many positive effects as binary or ternary mineral admixtures can (Andal, Shehata, & 

Zacarias, 2016; Kapoor et al., 2016; Leng, Feng, & Lu, 2000). However, it is not likely that the 

development of tensile and flexural strength is influenced by the RA and mineral additions 

combination (Dhir Obe et al., 2019; C. S. Poon & Kou, 2010).  

 

Pozzolanic materials are generally used to enhance the overall durability of concrete in an 

effective and feasible way. Fly ash (FA) and silica fume (SF) are widely used powders that 

improve the durability and mechanical properties of the concrete, by forming a thin but strong 

layer (Guo et al., 2018; A Katz, 2004; Sasanipour & Aslani, 2020a) et al. It covers the RCA’s 

surface to limit the absorption of water during the mixing process. Especially SF will improve 

the durability properties because it will reduce the RCA concrete’s permeability (Dimitriou, 

Savva, & Petrou, 2018; Verian et al., 2018). Because each of these pozzolanic powders has 

different impacts, each of them is assigned a separate section. 

4.3.2 Fly ash 

Partially replacing OPC by FA can mitigate the prejudicial effects of RCA (Kurda et al., 2017a; 

Verian, 2012; Verian et al., 2018; Verian et al., 2013) et al. FA creates a pozzolanic reaction 

that can produce a C-S-H that in turn can densify the concrete’s paste matrix. Of concretes 

made with RCA, the C-S-H can compensate for its porous nature (Lothenbach, Scrivener, & 

Hooton, 2011). The required C-H for the pozzolanic reaction in RAC comes from the hydration 

reaction between the water and new cement and also from the adhered mortar on the RCA 

particle’s surface (S.-C. Kou & Poon, 2013). The SCC’s workability can be maintained by the 

help of FA with a lower SP dose and VMA by FA’s ball bearing effect in the matrix (Saini & 

Singh, 2020). Along with OPC, a constant content of 30% FA was used in SCC mixes to 

maintain the intrinsic fresh state properties that could have been degraded due to the RCA 

inclusion in the concrete (Saini & Singh, 2020). Admixtures like water reducers or plasticizers, 

FA and the combination could enhance the concrete’s workability if it contains RCA (S.-c. 

Kou, Poon, & Agrela, 2011; Kurda, de Brito, & Silvestre, 2017b; Verian et al., 2018). Because 
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a lot of research was done on this and the amount of information is not little, this was discussed 

in a separate section:  

Compressive & splitting tensile strength. 

With time, concrete will progressively exhibit an improved mechanical performance, 

and the mix design of the concrete is responsible for its rate (Dhir Obe et al., 2019). The 

concrete’s 28-day compressive strength will reduce due to the addition of FA as a 

replacement for cement (Dhir Obe et al., 2019; Otsuki et al., 2003; Sasanipour & Aslani, 

2020a; Shaikh, 2016) et al. The reduction is proportional to the cement’s content 

replacement unless the FA that is used is very fine. An even greater decrease of the 

concrete’s mechanical performance can be brought about by using FA combined with 

RA (Dhir Obe et al., 2019). Materials with a mechanical performance loss that was 

lower than expected could be obtained because the FA may react chemically with the 

RCA’s attached mortar. There was some interaction between the FA and the coarse 

RCA since the compressive strength’s decrease of the concrete with coarse RCA’s 

content that increased was lower as the content of the FA also increased (S C Kou et al., 

2007). Due to the combination of fine RCA and the sand that is replaced by coarse FA, 

this decrease will become even greater (Kurad, Silvestre, de Brito, & Ahmed, 2017; 

Ravindrarajah & Tam, 1987). Depending on the size of FA and the pozzolanic activity 

with the cement, the addition of FA with RCA with a larger surface area can be 

beneficial for the concrete’s strength development. Compared to concrete that contains 

100% of coarse RCA, the combination of FA with the increase of fine RCA has a 

positive impact on the 28-day compressive strength (Dhir Obe et al., 2019). Replacing 

OPC by 20% of FA was stated by (Verian, 2012; Verian et al., 2018) to enhance the 28-

day concrete’s compressive strength by more than 10% and 5% when it contained 

respectively 50% and 100% coarse RCA. A study by (Dhir Obe et al., 2019; C. S. Poon 

& Kou, 2010) evaluated the 10-year concrete’s mechanical performance with increasing 

amount of coarse RCA and FA. The tests were done 28 days, 1, 3, 5 and 10 years after 

casting. If the casting was done at 28 days, the highest values of compressive strength 

were found for concrete that had 0% of fly ash. But as the content of FA increased, these 

values started to decrease. The initial strength development of the samples is generally 

slower due to the use of additives that exhibit pozzolanicity such as FA. Equivalent or 

higher compressive strength than blends without additives can be noticed after some 

time.  
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o For mixes that contained 25% of FA, there was a higher compressive strength 

development after one year. They acquired a compressive strength that was 

slightly higher than the samples without FA. This was because of the pozzolanic 

activity between the addition and the cement. There was an almost parallel rise 

of all the mixes that contained 25% of FA, and ended with a compressive 

strength that was similar after ten years. By the addition of FA, a reduction was 

caused in the concrete’s splitting tensile strength, except for mixes that 

contained 25% of FA. The concrete’s strength development was similar to those 

without any additions.  

o A similar higher strength development rate was shown for concrete mixes that 

contained 35% of FA, but over a longer period of time. After three years, the 

mix achieved a performance that was comparable to that of the concrete with 

0% FA and thereafter, it exhibited a similar development.  

o Mixes with an amount of 55% of FA had almost the same compressive strength 

achieved after ten years. In comparison with any other mix, this one showed 

strength development trends that were higher. Meaning, that a similar or higher 

compressive strength will probably be presented for mixes with 55% FA. 

28 days after casting, all the mixes with an increasing replacement level had a 

compressive strength that was progressively lower. But ten years later the difference 

between concrete with RCA and that with NA were minor, except for the mixes that 

contained 55 % of FA and 100% of coarse RCA. An improved ITZ can arise between 

the new cement matrix and the coarse RCA due to not only the residual cementing 

properties of RCA’s non-hydrated cement particles, but also the pozzolanic reactions 

between the FA and the attached mortars can cause this (Amin, Hasnat, Khan, & 

Ashiquzzaman, 2016; Dhir Obe et al., 2019). 

The combination of fine RCA and a high volume of FA can possibly lead to a RAC 

production that has a loss of tensile strength that is lower than expected (Kurad et al., 

2017; Kurda et al., 2017a) or even negligible (S. C. Kou & Poon, 2009).  

Another aspect that was extensively explored with the addition of FA was creep. Since there 

was a lot of information about this, a separate section is also dedicated to it:  

Creep. 

Dependent on the composition of combination, the addition of FA as a cement 

component could change the concrete’s creep deformation and affect the gain of the 
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strength rate at an early age. Depending on the curing’s nature it can thereafter change 

the concrete’s ultimate strength due to tis pozzolanic reactivity (Dhir Obe et al., 2019). 

As a Portland cement replacement or addition of cement, FA can enhance the resistance 

to creep deformation of concrete made with RCA. For testing the creep strain, concrete 

was made with 0% - 35% FA and 0% to 100% coarse RCA. The FA was used as a PC 

addition or as a replacement for PC and measured after 120 days. The outcome of the 

test indicated that as the amount of coarse RCA increased, the concrete’s creep 

increased and that for all samples, both for concrete with and without FA. There are two 

options for the concrete to achieve a creep strain that is similar to or even lower than 

that of concrete with NA. The first option is to use FA as a replacement for PC up to 

25% and up to 75% of coarse RCA. Secondly 100% coarse RCA can be used with FA 

as a replacement for PC up to 35%. FA at contents of 25% and 35% as addition on the 

cement and up to 100% of RCA can also produce a concrete with a creep strain that is 

smaller than concrete with NA and 100% PC (Dhir Obe et al., 2019). 

There are some other mention worthy effects of FA, namely that a proper content of FA or MK 

can significantly enhance the resistance to frost of concrete with RCA. This is due to the 

formation of C-S-H gel by the mineral admixtures and Ca(OH)2 that enhances the strength and 

makes the concrete’s microstructure denser (Guo et al., 2018; Salem & Burdette, 1998; J. Y. 

Sun & Geng, 2012). Also, the addition of 30% FA as a substitute for OPC in the concrete with 

RCA can reduce permeability (Bhikshma & Divya, 2012; Verian et al., 2018). Materials that 

help to coat the RCA’s surface like cement and FA, improve the concrete’s resistance to 

chloride-ion penetration (Sasanipour & Aslani, 2020a). A disadvantage of using FA is that it 

provides an increase in the carbonation depth of SCC made with RA and FA. In other words, 

the replacement of cement with FA can cause the carbonation depth to be increased (Guo et al., 

2018).  

As a conclusion, it lists all the positive aspects that FA can bring about and which were 

identified by several researches. First of all, FA can improve the concrete’s workability (Jalal, 

Pouladkhan, Harandi, & Jafari, 2015; Paleti Siva Sai Krishna, 2011; Verian et al., 2018). It can 

reduce the concrete’s permeability by limiting the water and/or other liquid’s penetration that 

could damage the concrete (Verian, 2012; Verian, 2015) et al. Next is that FA can enhance the 

concrete’s compressive strength at a later age (Verian, 2012; Verian, 2015) et al. It also 

enhanced the concrete’s performance when exposed to freeze-thaw cycles (Verian, 2012; 

Verian, 2015) et al. Further can the shrinkage of RAC be reduced by FA. Due to the concrete’s 
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reduced pH by the pozzolanic reaction, FA can increase the CO2 sequestration in concrete if 

it’s in a condition that is favorable for carbonation (i.e., a humidity of 40% to 70%). However, 

the lower pH can also lead to a de-passivation and make the concrete prone to corrosion. But if 

the secondary C-S-H gel is formed and the concrete is densified, the carbonation rate will 

decrease (M. Limbachiya, Meddah, & Ouchagour, 2012).  

4.3.3 Silica fume & metakaolin 

When replacing cement with a small portion of silica fume (SF) the concrete will have an 

enhanced improved mechanical performance. However, this also depends on the mean particle 

size of the additive (Dhir Obe et al., 2019; B B Mukharjee & Barai, 2015a, 2015b; Pedro, de 

Brito, & Evangelista, 2017). Between the SF and Ca(OH)2, there will be a reaction that causes 

the formation of additional hydration products. Since SF has a rather small particle size, some 

of them can probably fill up the surface pores and microcracks of the RAs, which can improve 

the ITZs and prevent the propagation of cracks through them (Bibhuti Bhusan Mukharjee & 

Barai, 2017; Yaragal, Teja, & Shaffi, 2016). The usage of RA will cause a loss in strength, but 

an increase will be proportional to the content of SF (V Corinaldesi, Orlandi, & Moriconi, 

2002). As stated before, pozzolanic materials will form a coating on the surface of RCAs to 

enhance the attached mortar. Sealing the adhered mortar’s pores can cause an improvement for 

the RAC’s workability, and this can be done by a surface pretreatment such as SF slurry or 

cement slurry. If this SF slurry is used before mixing in the RCA’s production, it can enhance 

the cracks. This, in combination with the formation of a strong bond between the cement paste 

and the aggregates can rise the compressive strength up to 15% (Sasanipour & Aslani, 2020a). 

An increase of compressive and tensile strength of concrete made with RCA will be noticed 

with the addition of 10% SF (Abd Elhakam, Mohamed, & Awad, 2012; Verian et al., 2018). 

However, another source, (Pedro et al., 2017), stated that the use of SF in RCA leads to a lower 

tensile strength. But only at later ages, the positive effects of SF could be observed. The 

improvement of the RAC’s tensile strength is continuous and significant due to the SF’s 

presence. Concrete with SF could achieve a compressive strength of 70 to 85 MPA after around 

90 days (Pedro et al., 2017). The use of SF and its pozzolanic activity results in a low 

permeability of concrete, but it also results in the ability to a reduction of segregation and 

bleeding of the concrete (Aslani, Ma, Yim Wan, & Muselin, 2018; Sasanipour & Aslani, 

2020a). Improving the weaker layers can be done with the coating method on the RCAs and 

will result in a stronger ITZ. To strengthen the RCAs and especially the attached mortars, two 

treatment methods were considered: 
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1. RACCM: immersing the RCAs in the SF slurry. The slurry contains of 250 grams of SF 

for 8 kg of RCA and 1 liter of water.  

2. RACCD: for a duration of 2 hours, RCA, in a dry state, was poured in a desiccator. 

After that, it was impressed in the desiccator by SF slurry and  

3. at last, the RCA’s that are pretreated were transmuted to a drying oven machine for 3 

days at 45°C.  

the methods mentioned above had no influence on the behavior of the concrete’s compressive 

strength, this can be seen on the figure below. 

 

 

Figure 13: Results for the compressive strength test (Sasanipour & Aslani, 2020a) 

In the RACCM and the RACCD methods, the category of the compressive strength didn’t 

change. This was confirmed by (OZguR Cakir & Sofyanli, 2015; Pedro et al., 2017; Sasanipour 

& Aslani, 2020a; Sasanipour, Aslani, & Taherinezhad, 2019) where SF’s effect at 7 and 28 

days were insignificant and a compressive strength’s enhancement could be possible at a later 

age. To reduce the total charge passed, the surface treatments were very effective. However, 

the RACCM method was noticed to be relatively more efficient in comparison to RACCD. But 

both those pretreatments had no great impact on the compressive strength. They both enhanced 

the electrical resistivity, due to a higher content of C-S-H-gel that was formed. Due to the layers 

between the mortar and aggregates and the mortar itself being more porous and weaker than 

the aggregates, there may be penetration of chloride ions. To enhance the chloride-ion 
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penetration resistance, the RACCM method is very effective. A dense structure can be found 

in the vicinity of the aggregates, as well as in the mortar concrete mixes, which can help the 

reduction of the penetration of chloride ions. All this is possible thanks to the finer structure of 

SF, compared to cement, and its pozzolanic activity that will form C-S-H-gel. The density 

around the aggregates will decrease if the RCAs are coated with SF as the new layer confines 

the surrounding RCAs.  The RCA’s can be strengthened by the formation of a C-S-H-gel in 

later time in all W/C ratios. This is due to the filling of the RCA’s pores with SF that reacts 

with the calcium hydroxide (OZguR Cakir & Sofyanli, 2015; Nie et al., 2017; Pedro et al., 

2017; Sasanipour et al., 2019). The interface between the RCAs and the paste can be enhanced 

by a thin layer of SF surrounding the coarse RCAs. 

SF and MK sometimes have the same properties or influences. Some of these are discussed in 

this paragraph. Primarily SF and MK are used as SCMs as a partial binder replacement (Saini 

& Singh, 2020). The properties of SCC with RCA can be enhanced if OPC is partially replaced 

with SF and MK (Kapoor et al., 2016; Verian et al., 2018). A greatly increase in the theoretical 

fatigue life and endurance limit for blended SCC mixes that contain RCA can be achieved by 

adding SF and MK to the mix (Saini & Singh, 2020). By refining the pore size and enhance the 

microstructure, the addition of SF and MK in SCC can help recover its homogeneity such that 

comparable performance in fatigue is achieved compared to the SCC with natural aggregates. 

The improvement of the microstructure can also make the endurance limit increase. A great 

enhancement of the RAC’s impermeability can be achieved by the use of ultra-fine materials 

such as SF and MK (O. Cakir, 2014; Guo et al., 2018; Singh & Singh, 2016). The compressive 

strength will increase and the maximum hydration temperature will lower when SF and MK are 

added in the concrete mixture that contains RCA (Radonjanin, Malešev, Marinković, & Al 

Malty, 2013; Verian et al., 2018). Despite that SF contains a higher content of silica in 

comparison to MK, the concrete containing MK sows a higher strength and durability. When 

comparing SF and MK, it is MK that will show the most favorable results (Kapoor et al., 2016; 

C. S. Poon, Kou, & Lam, 2006; Saini & Singh, 2020). The loss in the resistance to carbonation 

can be compensated by the addition of MK, this is due to the higher fineness of the MK particles 

that are beneficial in the enhancement of the microstructure and the against the CO2 regression. 

4.3.4 Ground granulated blast furnace slag 

Ground granulated blast furnace slag (GGBFS) is also known as slag cement and possesses a 

latent hydraulic property. This property will enhance the concrete properties’ long-term 
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durability (Q. Li, Li, & Yuan, 2012; Lübeck, Gastaldini, Barin, & Siqueira, 2012; Verian et al., 

2018; Wang, Yan, Yang, & Zhang, 2013). Due to the GGBFS and RA there will be a strength 

reduction at the initial stages in the concrete after casting, but this will be compensated at later 

stages by a higher strength gain rate (Berndt, 2009; Dhir Obe et al., 2019; S.-c. Kou, Poon, & 

Agrela, 2011). A more superior quality concrete has resulted with the use of GGBFS in 

combination with FA. This means a higher compressive, flexural and split tensile strength in 

all the levels of the RCA in comparison with the concrete made with OPC and natural 

aggregates. But the result is actually not expected to be affected by the coarse RA’s 

incorporation (Parthiban & Saravana Raja Mohan, 2017; Verian et al., 2018). In a study by 

(Majhi, Nayak, & Mukharjee, 2018) where concrete was made with GGBFS, that replaced up 

to 100% OPC, and up to 60% of coarse RCA, the mechanical properties (i.e., compressive, 

flexural and split tensile strength) decreased as the amount of RCA, GGBFS or both increased. 

4.3.5 Chemical admixtures 

Due to the RA’s higher water absorption capacity and surface that is rougher, the mixes will be 

stiffer and less workable. This can be remedied by adjusting the mix with (super)plasticizer 

content so it is possible to produce high-strength and workable concrete with (partly) dry 

recycled aggregates (Dhir Obe et al., 2019; Prakash & Krishnaswamy, 1998). The action behind 

this will mainly act on the cement and other finer dense particles, however, this depends on the 

chemical basis of the admixture. This means that the incorporation of coarse recycled 

aggregates does not likely affect the efficacy of a plasticizer on the concrete’s hardened 

properties. By increasing the coarse recycled aggregates and making the concrete with 

plasticizer, the average relative compressive strength can slightly increase. By to the presence 

of superplasticizers, the strength development of concrete with an increase in the number of 

coarse aggregates is marginally influenced.  

The fine aggregates can influence the water reducing capacity of some admixtures. In a study 

by (Pereira, Evangelista, & de Brito, 2012a, 2012b), there were two kinds of plasticizer made. 

One regular one that was lignosulphonate based, and a high-range one which consisted of a 

combination of modified polycarboxylates. The specific mechanism of the former one made it 

possible to hinder the efficacy in the reduction of the water content due to the fine RCA’s higher 

surface area in comparison to that of the sand that was replaced. Increasing the effective W/C 

ratio with a higher number for replacement level had to be done for this reason, which slightly 

increased the losses of the compressive strength. 
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Although the plasticizer’s effectiveness turned out to be independent of the increase in coarse 

recycled aggregates, this was still the case with mixes with RAs that were water compensating. 

This means that there will be an absorption of part of the mixing water if those water-

compensated RAs are incorporated at a (partly) dry state. Which will cause a decrease in the 

effective W/C ratio of the mix, whereby the admixtures activities are also influenced. 

Nonetheless, flowing mixes with relatively high values for the compressive strength can still 

be produced by the use of plasticizer. A lab test by (Domingo-Cabo et al., 2009; Domingo, 

Lázaro, Gayarre, Serrano, & López-Colina, 2010) showed that there is a possibility to achieve 

an enhanced mechanical performance for a somewhat higher content of plasticizer and same 

total W/C ratio. From this it can be concluded that the increase in strength through the usage of 

plasticizers resulted in a less effectiveness when the replacement level of (semi-) dry RAs 

increased 

The expected air content is produced using the use of air-introducing auxiliaries. This is only 

slightly influenced by the addition of RCA, as (Dhir et al., 1999; Otsuki et al., 2003; Rohi M. 

Salem & Jackson, 2003) stated, so that effect on the mechanical behavior must remain 

unaffected. In that study, it seemed that the air content was mostly unaffected for mixes who 

had the same target strength. This same target strength was achieved by varying the effective 

W/C ratio while keeping the content of cement the same. The same was observed in a study by 

(Otsuki et al., 2003), where mixes contained 100% coarse RCA. The air content of the mixes 

was not affected if mix design and air-entraining admixture content were kept the same. 

Another study, that examined RAC’s freeze-thaw resistance, showed that regardless of the air-

entraining admixture’s usage, the loss of strength between the concrete with RCA and those 

with NA was the same (Rohi M. Salem & Jackson, 2003).  

4.3.6 CO2 treatment of RA 

To describe the positive effects of this treatment, there is a briefly explanation about what 

exactly happens in the lab during this treatment. When CO2 is added to cause carbonation it 

reacts with calcium hydroxide (CA(OH)2) and calcium silicate hydrate (C-S-H) to produce 

calcium carbonate (CaCO3) and silica gel (SiO2) (Hosseini Zadeh, Mamirov, Kim, & Hu, 2021). 

Treatment in the lab is done with a tank of CO2 that is connected to a sealed vessel that holds 

the aggregates. Treating the recycled aggregates has several positive effects. This method is 

promising and efficient in improving the general properties of the recycled aggregates and 

significantly enhances the durability of the resulting concrete (Guo et al., 2018; C. Shi et al., 
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2016; C. J. Shi, Cao, & Xie, 2016). One of those improved properties is the density of the 

aggregates. By applying this CO2 method, the density of the aggregates can be increased, there 

is a decrease in water absorption and a reduction in crushing value. It can also decrease the 

drying shrinkage, as well as the coefficient of chloride ion diffusion of mortars that have RAs 

treated with carbon dioxide (C. Shi et al., 2018; Jiake Zhang, Caijun Shi, et al., 2015; J Zhang 

et al., 2015). The resistance to the chloride permeability of the RAs can be done very effectively 

and feasibly with treatment of the RAs using the CO2 method. In addition, this method can also 

enhance the mechanical properties of the aggregates. The CO2 technique will improve the old 

ITZ between the aggregates and the attached paste. On top of that, it also enhances the new ITZ 

that was formed between the old and new cement matrix (C. Shi et al., 2018; Jiake Zhang, 

Caijun Shi, et al., 2015; J Zhang et al., 2015). Like steam curing, adding superplasticizers and 

double or triple mixing methods, the CO2 can also improve the resistance to penetration of the 

RAC (C.-S. Poon et al., 2006; S.-C. Kou et al., 2014; Matias et al., 2014; Zhan et al., 2016). 

The CO2 curing is more efficient on fine RCA where higher paste content is present and need 

for water absorption reduction is higher.  

4.3.7 Two stage mixing approach (TSMA) 

This modified mixing technique, TSMA, is a technique when RAs are firstly mixed with sand 

for 60 seconds, then half of the water is added and this mix is mixed for another 60 seconds. 

Then the cement is introduced into the mixture and mixed for 30 seconds and finally the other 

portion of water is added after which this final mixture is mixed for 120 seconds. In figure 14 

the comparison is made between making concrete according to (A) the normal method and (B) 

according to the newly discussed method. By using up to 30% of recycled concrete aggregates 

in the production of concrete and mixing the mixture according to TSMA, there could be an 

improvement of the properties of the resulting concrete to a level that is similar or even better 

than those of the conventional concrete (V. W. Y. Tam et al., 2005; V. W. Y. Tam & Tam, 

2007, 2008; Verian et al., 2018). This technique will improve the concrete made with RCA’s 

ITZ, and logically enhance the quality of the overall RAC- concrete. A disadvantage to this 

technique is that because the mixing water is divided into two servings and added in the mixture 

at two different times, there is a longer mixing time.  
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Figure 14: (A) Normal mixing approach (B) TSMA (V. W. Y. Tam & Tam, 2007) 

Some modifications to this technique may also suggested, which incorporates SF, or a 

combination of SF with cement in the pre-mixing process (V. W. Y. Tam & Tam, 2007, 2008). 

This technique with SF will be abbreviated as TSMAS, the one with SF and cement as TSMASC. 

Their production processes are shown in figures 15 and 16. A denser old cement mortar is 

developed by filling old pores and cracks with SF when the TSMAS-technique is used. Since a 

certain amount of SF and cement are present in the mix, the TSMASC -technique will ensure 

that the ITZ is further improved between the cement paste and the recycled aggregates. Due to 

the improved ITZ, the RCA concrete’s compressive strength will be higher. A higher strength 

enhancement is observed with RCA concrete specimens made with the TSMASC method 

compared to the specimens made with the TSMAS method. But still, the RCA concrete made 

with the two modified methods still give a much better performance than RCA concrete made 

with the original TSMA method. This only results in the conclusion that the two modification 

methods, TSMAS and TSMASC, are more effective in improving the strength of the concrete 

than the initial TSMA method (V. W. Y. Tam & Tam, 2008).  

 

Figure 15: Production process of TSMAS (V. W. Y. Tam & Tam, 2008) 

 

Figure 16: Production process of TSMASC (V. W. Y. Tam & Tam, 2008) 
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4.3.8 Reducing the mortar content on RA 

In previous sections it was already shown that the adhered mortar has no improving properties 

when making new concrete. Removing them is then a logical consequence in improving the 

result. The removal or reduction of the attached mortar to the aggregates shows improvement 

to the final product’s quality (Committee, 2001; Verian et al., 2018). There are several options 

available to accomplish this: 

• The RCA’s adhered mortar concrete can be crushed into smaller sizes and subsequently 

washed off with water of the aggregates; 

• The RAs could be submerged for five days in a sulphuric acid solution, then 

subsequently washed and sieved to remove the adhered mortar (Parthiban & Saravana 

Raja Mohan, 2017);  

• The removal can also be done by submerging the RCA in a hydrochloric acid (HCl) 

solution for 24 hours (Katkhuda & Shatarat, 2017); 

• If RCA is placed in a modified concrete mixer with a capacity of 8 m³, water is added 

and it rotates for five hours at a speed of 10 rpm, the RCA particles will be fully 

submerged and it will remove the mortar (Dimitriou et al., 2018). 

• Some more options are listed under the heading 4.3.16 Other RA treatment methods.  

4.3.9 Mixture design modification 

The use of RCA in concrete has been shown to change many properties of the concrete. To 

compensate for these changes, the mix of the concrete can be modified (Beltrán et al., 2014; M. 

Etxeberria, Vázquez, et al., 2007; Verian et al., 2018). To keep the workability the same but 

improve the compressive strength of the concrete with RCA, additional admixtures and cement 

are required. While keeping the amount of water the same, an additional amount of cement can 

be added to the mix to compensate for the decrease in the strength of the concrete with recycled 

aggregates (M. Etxeberria, Vázquez, et al., 2007). 

4.3.10 Limiting the amount of RA in concrete mixture 

With this method, it should be reported that not all sources agree on the limit of the amount of 

RCA that does not affect the compressive strength of the concrete. (S.-c. Kou, Poon, & Agrela, 

2011) mentioned that the incorporation up to 50% of RCA did not influence the compressive 

strength of the RAC, while (Abd Elhakam et al., 2012) stated that using RCA up to 25% of total 

aggregates does not affect the compressive strength. Further, there is also a controversy in the 

use of the amount of coarse recycled aggregates. According to (Verian, 2012), there are similar 
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to slightly better properties of RCA than NA if concrete pavement contains 30% of coarse RCA. 

But (M. C. Limbachiya, Leelawat, & Dhir, 2000) reported that an addition of coarse RCA up 

to 30% has no influence on the strength of the concrete. It can be debated that one speaks of 

properties and the other of strength, but it was shown earlier that one is closely related to the 

other. The essence, however, is why one would reduce the use of RCA in a mix. This is to 

minimize the alteration of the properties of the concrete that is caused by the insertion of RCA 

(Verian et al., 2018).  

4.3.11 Self-healing RA 

To obtain self-healing aggregates, the aggregates must be kept in water for 30 days (Gesoglu et 

al., 2015; Verian et al., 2018). This method will improve the recycled aggregate’s quality as 

well as the concrete that incorporates these aggregate’s quality (Abd Elhakam et al., 2012; 

Şahmaran, Keskin, Ozerkan, & Yaman, 2008; Zhong & Yao, 2008) et al.  

4.3.12 Coating RA surface with pozzolanic powder 

The pozzolanic powder will cover the surface of each particle of the RCAs in this method and 

will form a film layer. The process of the making is seen in figure 17. In comparison to the 

conventional concrete, this RCA concrete had a significant improvement in compressive and 

flexural strength, as in workability if the concrete was mixed with this technique.  During the 

initial stage of mixing, the pozzolanic powder film will limit the absorbed water on the surfaces 

of the RCAs (J. Li, Xiao, & Zhou, 2009; Verian et al., 2018).  

 

Figure 17: Schematic process of coating RCA with pozzolanic powder (J. Li et al., 2009) 

4.3.13 Surface-modification technology 

In this method, the surfaces of the aggregate particles will be covered with a coarse paste that 

contains an inorganic admixture. The surface-modification technology improves the 

performance of RCA with low quality. The method will provide an increase in both the 

compressive and tensile strength and in the shear strength of the RAC (Choi et al., 2016; Choi, 

Kitagaki, & Noguchi, 2014; Choi, Lim, Choi, Kitagaki, & Noguchi, 2014; Verian et al., 2018). 
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4.3.14 Using saturated aggregate 

Before the batching process, saturating the RCA particles will enhance the performance of the 

concrete (A. S. Brand et al., 2015; M. B. Leite & Monteiro, 2016; Pickel, Tighe, & West, 2017; 

Verian et al., 2018). The RCA will be saturated if the aggregates are immersed for 24 hours in 

water (Ferreira et al., 2011). A disadvantage here may be that 100% saturation may however 

have a detrimental effect on the concrete. Research has shown that 90% saturation is an ideal 

level (Ferreira et al., 2011). In comparison to dry RCA is the ITZ for RAC between the paste 

and the aggregate particles denser. There is a possibility that moisture could be transported from 

the matrix of the aggregate to the bulk of the concrete due to the higher absorption capacity of 

the recycled aggregates compared to the natural aggregates (M. B. Leite & Monteiro, 2016). 

The advantage of this method over dry recycled aggregates can also be found in mortars where 

the compressive strength of specimens made with dry fine RCAs is lower than those made with 

saturated fine RCAs (Le et al., 2017).  

4.3.15 Incorporating fiber into concrete mixture 

Some of the disadvantages of using RCA in concrete can be offset by the use of fibers 

(Afroughsabet, Biolzi, & Ozbakkaloglu, 2017; Gao, Zhang, & Nokken, 2017; Katkhuda & 

Shatarat, 2017; Verian et al., 2018). There may be an increase in the splitting tensile and flexural 

strength compared to conventional concrete if the concrete is made with 20% treated recycled 

aggregates, 80% natural aggregates and 1% to 1,5% basalt fibers (Katkhuda & Shatarat, 2017). 

An increase of up to 60% in tensile strength and up to 88% in flexural strength in concrete made 

with RCA can be obtained after 28 days when using double hooked-end steel fiber. It is the 

better bonds between the RCA and the cement paste that provide the improvements. This is due 

to the rough surface of the RCA and the effect of the interlocking fibers and aggregates 

(Afroughsabet et al., 2017). An addition of up to 2% of the total volume of steel fibers can 

increase the shear strength (Gao et al., 2017). Another fiber, the synthetic macro-fibers can also 

improve the resulting concrete. The incorporation of these fibers up to 0,2% of the total volume 

can improve the concrete with 50% RCA’s fracture properties in such a way that those are 

similar to that of concrete made with natural aggregates (Bordelon, Cervantes, & Roesler, 

2009).  

4.3.16 Other RA treatment methods 

When the RA-treatment methods mentioned above, are applied to a large scale, this brings 

backdates to which its use remains limited, namely a difficult embodiment, further 



 

Page 69 of 125 

environmental problems and extra time and costs (Kazmi et al., 2020; Xuan, Zhan, & Poon, 

2016; Xuan et al., 2017). If the example is taken from the removal of mortar, the challenges 

here are the high need for energy, the emission of CO2, the large mountain of waste that is 

created and the increase in the amounts of sulfate and chloride in the RAs (Kazmi et al., 2020; 

Xuan et al., 2016, 2017). One of the solutions to improve the RAC’s performance while owing 

to the ease of execution, the eco-friendly environment, the economy and the efficiency is RA 

immersing an acetic acid solution and RA’s accelerated carbonation (L. Wang et al., 2017; 

Xuan et al., 2016, 2017). These were only two examples, in total there are five that are discussed 

here: 

1. Immersion in acetic acid; 

2. Immersion in acetic acid with rubbing; 

3. Accelerated carbonation; 

4. Immersion in acetic acid with accelerated carbonation; 

5. Immersion in lime with accelerated carbonation.  

The weakening and removal of the adhered old mortar to the surface of the RA is achieved by 

the solution of acetic acid, which will react with the calcium carbonate (CaCO3) and the cement 

hydration products. It will also produce waste by-products, that can be used in the new concrete 

as an admixture (P. Chen et al., 2017; L. Wang et al., 2017). Enhanced mechanical performance 

and durability of the RAC is obtained by making the RA’s surface denser. This can be done by 

carbonating RA under pressure in specially designed rooms that can cause accelerated 

carbonation, and in this way produce CaCO3 in the pores, which in turn ensures this denser 

surface (Xiao, Li, & Poon, 2012; Xuan et al., 2016). The effectiveness of the RA’s treatment 

with the accelerated carbonation is primarily dependent on the adhered mortar’s number of 

reactive components (Zhan, Xuan, & Poon, 2018). A more enhanced water absorption capacity 

of concrete with carbonated RA can be noticed in comparison to that of RAC. For improving 

the performance of RAC, the accelerated carbonation and the immersion in acetic acid are the 

most effective and environment friendly methods (Kazmi et al., 2019b; L. Wang et al., 2017; 

Xuan et al., 2016). To remove the adhered old mortar on the surface of RA, the washed RA can 

be undercoated in a solution with 3% acetic acid for 24 hours (L. Wang et al., 2017). As a result, 

acetic acid immersed RA, or A-RA is formed. For a removal that is more effective, the A-RAs 

can be mechanically sanded against each other by putting them in a concrete mixer for 5 minutes 

and thus obtain acetic acid immersed and mechanically rubbed RA (AR-RA). In comparison to 

RAC samples, the AR-RAC ones showed a rise in the splitting tensile strength of 23% and in 
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the flexural strength of 60% (L. Wang et al., 2017). To be able to calculate the amount of 

attached mortar, the RAs were also immersed in a solution of sodium sulfate and thereafter to 

seven freeze-thaw cycles exposed (A Abbas et al., 2008; Abdelgadir Abbas et al., 2009). To 

approve the effectiveness of RA’s treatment with an accelerated carbonation, the amount of 

CO2, that is used in the production of CaCO3 in the pores of the attached mortar of RA, is an 

important parameter (Xuan et al., 2016). The RAC’s compressive strength experiences a 

positive influence from the RA’s treatment. The reason for this could be the combination of 

two methods. Firstly, the immersion of RA in acidic solution to remove the adhered old mortar 

(L. Wang et al., 2017) and secondly, the deposition of CaCO3 after the accelerated carbonation 

to densify the old adhered mortar’s pore-structure (Xuan et al., 2017; Zhan et al., 2018). The 

immersion in acidic solution-treatment and the accelerated carbonation-treatment makes the 

properties of RA enhance, and in turn increases the concrete’s elastic modulus (S. Luo, Ye, 

Xiao, Zheng, & Zhu, 2018; L. Wang et al., 2017; Zhan et al., 2018). For concrete samples that 

contain treated RA’s a rise in the splitting tensile and flexural strength can be observed. When 

using treated RA in concrete, a decrease can be noticed in the volume of the permeable voids. 

This is important since the reduction of those voids can support the overcoming of the inferior 

RAC’s durability performance. For concrete that contains treated RA, an enhancement in the 

resistance to chloride can be observed compared to concrete with untreated RA. This can be 

due to the denser adhered mortar that was achieved by the accelerated carbonation, followed 

by the precipitation of CaCO3 of the mortar and the acid treatment (Xuan et al., 2017; Zhan et 

al., 2018; J Zhang et al., 2015), followed by the mortar removal (L. Wang et al., 2017). RAC 

containing treated RA will show an improved microstructure with denser ITZ in comparison to 

RAC with untreated RA. Green constructions can be achieved by overcoming the RAC’s 

inferior durability properties, due to the AR-RA’s and immersion in lime with the accelerated 

carbonation method.  
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Figure 18: Reduction of compressive strength of concrete with NA, untreated RA and RA after acid immersion 
(Kazmi et al., 2020) 

One of the main properties that is required in chemically aggressive environments is the 

concrete’s resistance to acid. However, the resistance of current concrete to acid attacks is low 

(Bakharev, Sanjayan, & Cheng, 2003). When introducing RAs in the mix, this resistance drops 

even further. The graph in figure 18 shows the reduction of the NAC’s and RAC’s compressive 

strength when untreated and treated with acid immersion. The cause of this can be the high 

porosity or the absorption capacity of RAC, which facilitates the penetration of the acid, 

resulting in a decalcification of the C-S-H in the concrete (Alnahhal et al., 2018; K. J. Rao, 

Keerthi, & Vasam, 2018). An improvement can be noticed in concrete that contains treated RA, 

due to the lower water absorption capacity and porosity, which in turn results in a lower acid 

penetration in the RAC (L. Wang et al., 2017; Xuan et al., 2017). By treating the RA’s by 

immersing them in lime with accelerated carbonation and the immersing in acetic acid with 

rubbing techniques, the resistance to acid can be enhanced when concrete is exposed to 

chemically aggressive environments. In this way cleaner and durable constructions can be 

produced. Concrete with treated RA also shows an increase in carbonation resistance compared 

to concrete with untreated RA. This can also be related to the porosity reduction. The technique 

that could be used to improve the resistance to carbonation of RAC are the immersion in lime 

with accelerated carbonation and the acetic acid with rubbing technique. From all this it can be 

concluded that in general treated RA will improve the physical properties RAC in comparison 

to untreated RA.  

A lot of methods are developed to examine the effects of the treatment techniques on RA. X-

ray diffraction analysis and thermogravimetric analysis can be used to study the techniques on 
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mineralogical composition and the aggregate’s thermal behavior. The X-ray diffraction patterns 

will show the enhanced chemical compositions of the RA’s, while the thermogravimetric curve 

will show the decomposition of CaCO3. To study the impact of the methods on the pore-

structure and the microstructure characteristics, the mercury intrusion porosimetry and 

scanning electron microscopy can be executed. They show the improved microstructure, the 

denser ITZ and enhanced porosity of the RAC that contains treated RA (S. Luo et al., 2018; 

Xuan et al., 2017). Going deeper into these methods would take the scope of this work too far 

and are therefore not furtherly addressed. 

4.3.17 Conclusion 

It is recommended to use SCMs (i.e., FA, SF, MK and GGBFS) since they have proven to 

enhance the RCA concrete’s quality (Berndt, 2009; Verian et al., 2018; Verian et al., 2013) et 

al. The use of FA or a slag coating will react with the concrete’s existing Ca(OH)2 and form a 

secondary C-S-H product that will strengthen the ITZ layer and they will also enhance the RA’s 

pore structure. If RA is modified with CO2, it can produce CaCO3 by reacting with the hydration 

products in the concrete. This will strengthen the micro pore structure of the concrete. For this 

reason, the use of pozzolanic materials and treating the aggregates with CO2 previous to using 

them in concrete is suggested to have a RAC that is more durable (Guo et al., 2018). By coating 

the surface of the RA with SF (Amnon Katz, 2003), SCMs (J. Li et al., 2009) and an admixture 

of inorganic paste (Choi et al., 2016), the RAC will show an enhanced packing density and a 

better behavior in durability in comparison to concrete with RA that was not treated (Kazmi et 

al., 2020). The batched concrete’s quality is influenced by the RCA’s treatment prior to the 

mixing. If this is in combination with a good mix design and a good batching, the (partially) 

saturated RCA will show an enhancement in the performance of the concrete in comparison to 

concrete that contains dry RCA (Verian et al., 2018). The batching techniques that have been 

modified (i.e., TSMA, TSMAS, TSAMSC) have proven to enhance the RCA concrete’s quality.  
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5 Laboratory  

This part of the thesis is mainly about the lab tests that were performed in Norway by fellow 

students. This section starts with a summary of what to consider when making concrete. This 

was based on literature. After that, the various lab results are listed and links are made with the 

information seen in the literature.  

5.1 How to prepare the best possible concrete using RA 

5.1.1 Consistence 

One of the primarily properties of the fresh concrete is the consistence or workability and 

several methods can be used to evaluate it, such as the slump test. For a given mix composition 

and size limit, several aggregate characteristics impact the concrete’s consistence, such as the 

shape, surface texture, absorption and distribution of the particle size. The RAC will absorb 

significant amounts of mixing water, so the RA’s high water absorption capacity significantly 

impacts the behavior of the fresh material.  

When concrete is made with NA, the NAs have a water absorption capacity that is normally 

very low in the (semi-)dry state, therefore the water that is needed for compensating for the 

NA’s absorption during the mixing process, is very little. However, when RAs are used in the 

production of concrete, one should pay attention to its higher water absorption, due to the 

microstructure that is porous ad the attached mortar or ceramic particles (Barra & Vázquez; 

Dhir Obe et al., 2019). Initially, it was suggested that the RAs in the SSD state should be used 

(T. C. Hansen, 1992). In this way the RA would be prevented from absorbing the mix’s free 

water, that otherwise could reduce the RAC’s workability excessively. Several studies have 

been released that describe the concrete’s fresh properties under the influence of an increase in 

the content of RA. But only three of them have been used in the RAC’s mix design while they 

maintained a consistence that was constant. Since the first method was used in the laboratory 

tests, this one will be explained in more detail.  

• Prior to the mixing process, the RA is pre-saturated for a certain period of time. 

This method will prevent the absorption of excessive water and is capable of 

maintaining a constant consistence (Koulouris, Limbachiya, Fried, & Roberts, 2004; 

Topcu & Sengel, 2004; Y Kimura, 2004). This method has the disadvantages that in 

practice it is difficult to implement and the slump values can result unstable due to the 

RA’s apparent SSD state. This condition ensures that the pores of the surface retain the 
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leftover water, resulting in mixtures with an increased degree of slump (Debieb & 

Kenai, 2008; Kutegeza & Alexander, 2004).  

• To partly or fully compensate for the RA’s absorbed water, extra water is added during 

the mixing; 

• Maintaining a constant consistence and W/C ratio was achieved by adding 

superplasticizers in the RAC mix.  

Data from several studies were put together and divided into four categories.  

1. Contains all data from all studies. The only trend that could be derived here is that for a 

higher replacement level, the spread of values is greater. The upper and lower limit of 

95% of the data show a range of -120mm and +140mm.  

 

Figure 19: The difference in slump with an increase in RA content - all mixes (Amorim et al., 2012; Butler et al., 
2011; Buyle-Bodin & Zaharieva, 2002)et.al 

 

2. Contains only mixes with compensation for water, pre-saturation method inclusive and 

where the effective W/C ratio was equivalent. The range has been changed to -67mm to 

+150mm, which indicates that an extra water addition avoids a workability loss. 
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Figure 20: The difference in slump with an increase in RA content - water-compensated mixes (Amorim et al., 

2012; Butler et al., 2011; Buyle-Bodin & Zaharieva, 2002) et al. 

 

However, some loss in slump could occur (Kutegeza & Alexander, 2004) as a result of 

the increased RA’s roughness ad shape index which increases the interparticle friction 

(Assaad & Daou, 2017; Mas et al., 2012; Radonjanin, Marinković, & Malešev, 2010) 

and the cleanliness level of the RAs (Montgomery; Wegen & Haverkort, 1998). Given 

the RA’s higher water absorption, for RAC with a content of RA that increases, the 

slump values will yet be higher (S.-W. Kim & Yun, 2013; S. C. Kou & Poon, 2009; C. 

S. Poon & Kou, 2010). This can possibly occur due to the RCA’s enhanced shape index 

in relation to that of NA (Pickel et al., 2017). But the slump variation will not be affected 

by this factor (Nealen & Rühl, 1997; Nealen & Schenk, 1998). The RA will be in an 

SSD state if it’s first pre-saturated for 24 hours, after which it is air-dried for 1 hour 

before the mixing. However, that the surface will be really dry is hard to guarantee 

(Ferreira et al., 2011). Due to the surface pores of some treated RAs that contain a 

particular amount of water, the W/C ratio will be higher and thus the workability will 

increase 

 

3. Contains the same data as in category 2 but without the studies that used the water 

compensating method with adding water corresponding to an SSD RA. This shows a 

slump variation with greatly smaller range.  



 

Page 76 of 125 

 

Figure 21: The difference in slump with an increase in RA content - selected mixes (Amorim et al., 2012; Butler et 
al., 2011; Buyle-Bodin & Zaharieva, 2002) et al. 

 

The figure suggests that a replacement level of 100% has an interval between -57mm 

and +35mm. Mixes with a replacement level of 20% had a standard deviation that was 

higher than expected, namely more or less 8.5mm. With the assumption that there was 

a proper compensation for the water absorption of the RAs, the RA’s greater roughness 

can be partly the cause of the slight decreasing trend with the increase in content of RA.  

 

4. Shows RAC’s slump loss for mixes with the same W/C ratio as the concrete with NA 

and thus concrete where the used RA has a high absorption for the mixing water.  

 

Figure 22: The difference in slump with an increase in RA content - constand W/C factor (Amorim et al., 2012; 
Butler et al., 2011; Buyle-Bodin & Zaharieva, 2002) et al. 

 

With the increase of the content of RA, there was a significant slump loss. The increased 

content of RA usually progresses linearly with the slump difference. The addition of 
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RA with a replacement level of 100% can suggest a slump loss between 30mm and 

100m. The slump will be very dependent on the RA’s water absorption capacity if the 

RAC mixes are uncompensated (Mefteh, Kebaïli, Oucief, Berredjem, & Arabi, 2013). 

To maintain a workability that is comparable when using fine RA (Debieb & Kenai, 2008; L. 

Evangelista & de Brito, 2007, 2014) or the combined use of fine and coarse RA (D. J. Anderson, 

Smith, & Au, 2016; S. C. Kou & Poon, 2009; X.-b. Zhang et al., 2008), the amount of water 

that is required is higher than when fractions are used that are coarser. This amount will increase 

with the increasing replacement levels and this is due to the water absorption capacity that is 

typically higher with finer fractions of RA. Which in turn is due to the higher amount of attached 

mortar that is porous and the bigger surface area. The RAC mixes can present a workability 

that is similar to that of the mixes with natural aggregates if the content of water is correctly 

calculated and the RA has enough time to absorb the extra water, regardless of the RA’s size, 

type and capacity of water absorption. For a study by (C. S. Poon, Shui, Lam, Fok, & Kou, 

2004), the mixes contained RA in an oven dry-state and with extra water to compensate for 

what will be absorbed in time. This study showed that the initial mix’s lump increased as the 

content that was replaced by RA increased. From this it can be concluded that to be able to 

absorb the extra water, the coarse RCA had been given too little time. In a study by (Carro-

López et al., 2015), the results claimed that the identification of the time between mixing and 

casting is needed. How this conclusion was reached is left out of this work. 

To determine the RA’s effects on the concrete’s workability, the compaction factor can be used. 

These tests suggest that the measurement will decrease for a constant W/C factor as the content 

of RA increases (Ray & Venkateswarlu, 1991).  

The distribution of the particle size that varies and the lower quality of RA that has a more 

irregular shape will require an extra amount of water (Yang et al., 2008) that differs from the 

water that is needed to compensate. This will make the effective W/C factor increase. When 

RCA comes from products that have a strength class that is different, the shape will not likely 

be affected, so the extra amount of water is only dependable on the capacity of the water 

absorption and the content of attached mortar (Otsuki et al., 2003). RA from a lower quality 

can be highly contaminated with constituents that are unwanted which will affect the concrete’s 

hardened performance.  
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5.1.2 Rheology 

The rheology is the study of the matter’s flow. Rheological characteristics are influenced by 

parameters that are related to the constituent materials of the mix (i.e., the particle size 

distribution of the RA, the moisture state, the shape, and the roughness of the surface due to the 

attached mortar). For concrete mixes that are made in an increasing content of coarse RCA a 

different state of moisture and a W/C factor of 0.60, the figure below stages its yield stress (a) 

and plastic viscosity (b).  

 

Figure 23: (a) Yield stress and (b) Plastic viscosity with an increase in dry/SSD RCA for a W/C factor of 0.60 (Ait 
Mohamed Amer et al., 2016) 

From this figure, it can be deduced that the yield stress and plastic viscosity will increase when 

the amount of RCA in an SSD state increases (Ait Mohamed Amer et al., 2016; Barra Bizinotto, 

Faleschini, Jiménez Fernández, & Aponte Hernández, 2017; Dhir Obe et al., 2019; Faleschini 

et al., 2014). For mixes with a reduction in water content, this is a common outcome (Dhir Obe 

et al., 2019; Newman & Choo, 2003). Another study by (Dhir Obe et al., 2019; K. Kim, Shin, 

& Cha, 2013) found a lower yield stress when adding coarse RCA in an SSD state. With an 

increasing level of replacement there was a large increase in slump, allowing for a more regular 

form of RCA compared to NA, or an accidental addition of mixing water through the SSD state 

of the coarse RCA. The two parameters will further increase for the addition of coarse RCA at 

a dry state that increases. Which suggests a mix that is stiffer and more viscous to the point 

where it was impossible to evaluate the mixes when the content of RCA was 80% and 100% 

(Ait Mohamed Amer et al., 2016; Dhir Obe et al., 2019). For this reason, it’s suggested that in 

the SCC production there is no use of RA in a dry state (Dhir Obe et al., 2019; Kebaïli, Mouret, 

Arabi, & Cassagnabere, 2015). 
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In figure 24 are the yield stress and plastic viscosity presented for an increasing content of SSD 

RCA and a decreasing W/C ratio.  

 

Figure 24: (a) Yield stress (b) Plastic viscosity wint increasing SSD RCA and different ratios for W/C factor(Ait 

Mohamed Amer et al., 2016) 

As the W/C ratio decreases, both properties increase significantly and further increase with the 

content of RCA that increases. The surface that is rougher with the SSD RCA that is 

incorporated has a greater enhancement as the content of the effective water decreases (Dhir 

Obe et al., 2019; Güneyisi, Gesoglu, Algın, & Yazıcı, 2016; Iris, Belen, Fernando, & Diego, 

2017). Part of the increasing yield stress of concretes with dry coarse RCA can be compensated 

for by adding high-range water-reducing admixtures but it won’t do anything for the plastic 

viscosity (Ait Mohamed Amer et al., 2016; Dhir Obe et al., 2019). All these previous 

conclusions were drawn when concrete was still in its fresh state, however when looking at the 

state after 15 minutes, there is little variation. This suggests an equivalent effective content of 

water and as the time proceeded, an increase in the plastic viscosity and yield stress was 

observed due to the absorption of the mixing water by the fine RCAs. 

5.1.3 Stability 

Freshly mixed concrete must always be stable in addition to having good workability. This is 

necessary so that all constituent materials remain a uniform whole while the concrete sets. 

Segregation of the constituents and bleeding are two stable-related challenges that can crop up. 

They can both influence the performance of the concrete in both the mechanical and durability 

properties, as well as the performance in its cured state. With an increase in the content of RA, 

it was found by (Dhir Obe et al., 2019; Koulouris et al., 2004; Kutegeza & Alexander, 2004; 

Yanagibashi, Yonezawa, Arakawa, & Yamada, 2002) that bleeding was lower of equivalent as 
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with concrete with NA. Magnitude will appear to decrease as the RA’s water uptake increases 

(Dhir Obe et al., 2019; Yang et al., 2008). An enhanced stability could be noticed when the 

content of RA increased, as the segregation decreased. This was promoted by the use of FA and 

is more likely to arise in SCC (Carro-López et al., 2015; Dhir Obe et al., 2019; Dhir et al., 1999; 

S. C. Kou & Poon, 2009). But partially replacing NA with RA has also been observed to reduce 

the stability (Debieb & Kenai, 2008; Dhir Obe et al., 2019; M C Limbachiya, Leelawat, & Dhir, 

1998; C. S. Poon, Kou, & Lam, 2007). The moisture state of the RA is partly the cause of this. 

(Dhir Obe et al., 2019; Ismail & Ramli, 2014; M C Limbachiya et al., 1998; C. S. Poon et al., 

2007) observed that in the presence of SSD RA bleeding can occur, which can lead to a feeble 

mechanical bond, caused by the increase of the W/C factor in the ITZ between the cement paste 

and the RA. This can take place when a compensation for water is used during the mixing, 

where the total absorption capacity of RA is compensated for. A more or less 25% increase in 

the rate of bleeding was observed under these circumstances when mixes were used with a 

replacement level of 100% of coarse RCA due to the little time RA was given to absorb this 

compensating water (Dhir Obe et al., 2019; C. S. Poon et al., 2007). This led to a W/C ratio that 

was initially higher and effective. With passing time, this greater bleeding was compensated 

for to a point at with there was insignificant difference between the concrete with RCA and that 

with NA. Although many studies show that the absorption of the mixing water can be prevented 

by using RA in a SSD state, only a portion of that absorption capacity of the RAs will be 

compensated (Dhir Obe et al., 2019; Miren Etxeberria, Gonzalez-Corominas, & Pardo, 2016). 

This water content should actually be equal to that what RA absorbs until the casting process 

to ensure an adequate workability.  

5.1.4 Air content 

To measure the fresh concrete mixes’ air content, a method is used that is performed on vibrated 

samples that also allow an assessment of the potential porosity of the cementitious concrete. 

When it comes to the impact of the addition of coarse RA on the concrete’s air content, the 

findings are somewhat contradictory (Assaad & Daou, 2017; Dhir Obe et al., 2019). With an 

increase in the content of RA, many noticed a slight increase (Andal et al., 2016; Mohammed 

Seddik & Ryoichi, 2010; A. Rao et al., 2007) et al., while few others observed a decrease in the 

air content (Casuccio, Torrijos, Giaccio, & Zerbino, 2008; Ferreira et al., 2011; Radonjanin et 

al., 2010; K. K. Sagoe-Crentsil, Brown, & Taylor, 2001). From the literature, it could be 

deduced that in the production of RAC with the addition of oven-dry RA a slightly higher 

amount of air is trapped than for the concrete that is made with NA. If concrete has to be tested 
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that contains more porous aggregates, the test method to determine the amount of air will be 

less adequate (Dhir Obe et al., 2019; Holm & Bremner, 2000). The attached mortar on the 

RCAs can also be a factor that potentiates the entrapped air. Higher contents of air were reported 

for mixes that contained RCAs that came from multiple recycling stages (Dhir Obe et al., 2019; 

S. B. Huda & Alam, 2014). The RCA’s progressively increased roughness can lead to an 

increased content of entrapped air during the RAC’s compaction process. An increase in the 

content of air can be noticed for mixes that contain an increased content of fine RA (Dhir Obe 

et al., 2019; L. Evangelista & de Brito, 2007; Jacobsen, Rommetvedt, & Gjengstø; Amnon 

Katz, 2003; Wegen & Haverkort, 1998). With the addition of coarse RA fractions, the air 

content could increase even further, whereas the content of air was 8.2%-8.5% when completely 

replacing both of the natural size fractions (Dhir Obe et al., 2019; Jacobsen et al.). This was due 

to the fine RA’s higher porosity and angularity compared to that of NA, where the latter 

provides a decrease in the vibrated fresh concrete’s packing density and triggers a larger 

entrapment of air. Concrete exposed to freeze-thaw cycles often have air-entrained additives, 

studies conducted on the use of these additives in the production of concrete with RAs found 

that the presence of RA did not affect their effect (Dhir Obe et al., 2019).  

5.1.5 Fresh density 

The density of the concrete will decrease as the content of RCA in the concrete increases (Dhir 

Obe et al., 2019; M. Etxeberria, Vázquez, et al., 2007; Verian et al., 2018). A greater decrease 

of this property is seen when both the fine and coarse natural aggregates are replaced with RA 

(Dhir Obe et al., 2019; Jacobsen et al.; S. C. Kou & Poon, 2009). It is the result of the relative 

lighter attached mortar that is present of material that is porous and ceramic (Dhir Obe et al., 

2019; T. C. Hansen, 1992; Nixon, 1978). When RCA has a lower specific gravity, the concrete 

containing RCA will have lower density (Verian et al., 2018). But if the replacement level for 

NA is up to 50%, the density of the concrete will not be significantly affected (Marinković et 

al., 2010; Verian et al., 2018). If that replacement level is increased to 100% coarse RA, the 

concrete will have a density that is 1% to 7% lower than the concrete with natural aggregates, 

with an average of 4% (Dhir Obe et al., 2019). 

5.1.6 Moisture content 

Since the water absorption of natural aggregates is often low, the moisture content is usually 

ignored. However, this should be taken into account when using RA as they do have a potential 

impact on the concrete’s fresh and hardened properties. The moisture content is dependent on 



 

Page 82 of 125 

the constituent material’s porosity, which for RCA is amplified by the content of the attached 

mortar. If RCA is used in the SSD state, the mixing water’s excessive absorption can be avoided 

and reasonable workability can be maintained (Dhir Obe et al., 2019; T. C. Hansen, 1992). 

(Dhir Obe et al., 2019; Ferreira et al., 2011) did a comparison of mixes with RAs that were pre-

saturated and mixes where the water compensation approach was used. Making mixes with 

RCA that hade more predictable levels of workability and slight improved mechanical behavior 

can be possible when using the latter method in comparison to the former one. Two factors 

explain this enhancement. Firstly, the surface and pores of the RAs have a greater envelopment 

which improves the mechanical bond in the ITZ. Secondly, the water absorption capacity of the 

aggregates is not fully compensated for, which means that the mixes, with passing time, have a 

slightly lower effective W/C factor. Several studies by Tam (V. W. Y. Tam et al., 2005; V. W. 

Y. Tam & Tam, 2007, 2008) evaluated another perspective of mixing. The mixing procedure 

was divided into two different stages, causing to benefit the RAC’s mechanical performance. 

Dividing the mixing process into two stages (TSMA) happened as follows: along with part of 

the mixing water the aggregates are introduced first, this will ensure that some of that water is 

absorbed by the aggregates, cement is then added after a certain period along with the rest of 

the mixing water. This resulted in mixes where the absorption capacity of the RAs is partly or 

fully compensated for. Furthermore, the surface of the RAs will be more enveloped effectively 

with the cement paste, which provides an improved ITZ and a lower loss of compressive 

strength, or in the study by (Guneyisi et al., 2014) even a gain in strength. If the binder would 

be introduced at a later time in the mixing procedure, after aggregates have absorbed the water 

it would then envelop them end thus act as a pore sealant (M B Leite, 2001; A. M. Neville, 

1995). The RA’s moisture state at the start of the mixing process, even when the total content 

of water is the same, will have a significant impact on the concrete’s mechanical performance. 

The comparison made by (C. S. Poon, Shui, Lam, et al., 2004) between the use of air-dried 

RCA and SSD RCA stated that there was some bleeding around the particles for SSD RCA, 

and therefor decreased the mechanical bond in the ITZ. In some cases, the mechanical 

performance could be enhanced by increasing the level of the RA replacement, according to 

(Dhir Obe et al., 2019; N Y Ho, 2013; Ridzuan, Ibrahim, Ismail, & Diah, 2005). The partly dry 

RA reduces the effective W/C ratio, and this in turn causes this compressive strength increase 

for mixes where the content of initial free water is the same as that of the conventional concrete. 

The free mix water will over time be absorbed by the uncompensated RA, leading to a 

cementitious matrix with a lower effective W/C factor, which in turn leads to a better release 

of temperature during the hydration in the concrete (Koenders, Pepe, & Martinelli, 2014), a 
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porous microstructure that is finer (García-González, Rodríguez-Robles, Juan-Valdés, Pozo, & 

Guerra-Romero, 2015; Gonzalez-Corominas & Etxeberria, 2016) and a compressive strength 

that is higher (J A Carneiro, 2014).  

5.2 Lab tests 

5.2.1 Mix design 

5.2.1.1 Mix design of the concrete 

In order to be able to judge the results of the tests, the properties of the concrete and aggregates 

must be reviewed. The literature study of this work has already clearly shown that the properties 

determine the concrete. The mix design that was used for these lab tests can be seen in Table 1. 

Table 1: Mix design lab tests 

Concrete mix design 

Design specifications Material properties 

Exposure class M60 Binder [kg/m³] 346 

Strength class C30/37  Free water [kg/m³] 156 

Slump class S4-200mm Air [%] 2,00 

Air entrainer No Water/binder ratio 0,45 

 

The binder that was used, was Norcem standard FA. This is standard cement that has FA 

incorporated. This cement is fully adapted to the climate conditions of Norway. Given the 

geographical location and the known weather conditions, the lab tests that are carried out in 

Norway have to be done differently than in Belgium. As an example, in Norway, the freeze-

thaw cycles must be taken more into account. The concrete is always protected with foils during 

the curing process.  

A fixed W/B ratio was established in advance and the amount of free water was calculated on 

the basis of this. 
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5.2.1.2 Bland in % of RCA and NA 

In order to investigate the influence of the recycled aggregates on the concrete, samples were 

made with 3 different amounts of those aggregates. To make comparisons with common 

concrete, the first replacement level was set at 0%. Thus, the concrete contains 100% natural 

aggregates. The second type of samples were made with a replacement level of 5% to 20% 

recycled aggregates. And finally, the samples with the greatest number of recycled aggregates 

contain a replacement level of 20% to 60%. All tests further described in this section are divided 

into these three categories of aggregate quantity.  

5.2.2 concrete properties 

5.2.2.1 Density 

In the literature study that was previously discussed, it could be noted that the density of the 

concrete samples can say a lot about the performance of the concrete. There are many properties 

that influence this density. For samples that were used to measure the compressive strength, the 

calculation of the sample’s density is shown in annex 1. The density can be calculated using 

the following formula: 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [
𝑘𝑔

𝑚3] =
𝑚𝑎𝑠𝑠 [𝑘𝑔]

𝑣𝑜𝑙𝑢𝑚𝑒 [𝑚3]
 

 The arrows next to the values indicate the comparison with the control concrete where no use 

was made of recycled concrete aggregates. It indicates whether the value has increased or 

decreased compared to the control concrete. The development of the density after 3 and 28 days 

can be seen in the figures 25 and 26.  

 

Figure 25: Correlation between density and amount of recycled aggregates after 3 days 
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Figure 26: Correlation between density and amount of recycled aggregates after 28 days 

For the concrete that contained 5% to 20% RCA, the density first increased, whereafter it 

decreased. The concrete with 20% to 60% RCA showed an immediate decrease of the density. 

From this it can be deduced that the density thus decreases with time and the number of recycled 

aggregates. It has already been stated in section 5.1.5 that the increase in RCAs will cause a 

decrease in density and this is thus confirmed here. The statement that was made in section 

5.1.5 that a replacement level of 50% of coarse RCA will not significantly affect the density is 

invalidated. There was also a statement that said that the loss of density for concrete containing 

100% RCA would have an average value of 4%. If the losses are calculated for this lab test for 

concrete with the maximum amount of RCA, the average is: 

After 3 days: 
3,3+2,2+2,62

3
= 2,71 𝑘𝑔/𝑚³ 

After 28 days: 
3,97+4,36+3,16

3
= 3,83 𝑘𝑔/𝑚³ 

The big difference between the two is probably that the concrete takes time to reach its final 

properties. It is known from the literature study that the use of FA also ensures that the 

properties need more time to develop. The value after 28 days is very close to the average value 

indicated in the study that was done in the literature, where a replacement level of 100% was 

used instead of a maximum of 60%. 
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When observing the shrinkage of the concrete, which will be discussed later, the density of the 

concrete was also measured.  The development of the density in time for the three categories 

can be seen in the figures 27 to 29, the results can be found in annex 3.  

 

Figure 27: Development of density in time for concrete with a replacement level of 0% 

 

Figure 28: Development of density in time for concrete with a replacement level of 5% - 20% 
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Figure 29: Development of density in time for concrete with a replacement level of 20% - 60% 

It can be deduced from these figures that the decrease in densit accelerates with the increase in 

the amount of recycled aggregates. This is in line with the findings from the literature.  

5.2.2.2 Compressive strength 

The compressive strength of the samples was tested at 3 days and 28 days. The values that were 

observed are summarized in figure 30 and the exact results can be found in annex 2. The 

concrete’s compressive strength is strongly influenced by the mix design since it is dependent 

on the properties of the used aggregates. It can be noted from the table that the compressive 

strength values decrease as the amount RCA increases. The decrease of the strength will be 

more pronounced for mixes with a W/C ratio that is lower. As mentioned in section 4.2.2, the 

compressive strength of concrete with RCA will have a development rate that is higher than 

concrete with a replacement level of 0%. The values in the table do not confirm this.  
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Figure 30: Development of the compressive strength after (red) 3 days (bleu) 28 days in relation to the content of 
RCA 

The concrete with an RCA amount of 0% has an average increase of 20.59 MPa after 25 days. 

According to the statement of the literature, the difference between compressive strengths for 

an increase in the amount of RCA should be bigger. The strength difference for the concrete 

with 5% - 20% RCA is 19,07 MPa and is less than for the first one. If the development rate was 

higher, this difference should be bigger. For a replacement level of 20% - 60%, this difference 

is even less, namely 14,46 MPa. This shows the complete opposite of the statement.  

The overall performance of the RAC will decrease as the amount of RA increases. If 28 days 

was effectively the day on which all concrete reached its highest strength, these values are in 

line with that. But since FA is used in the cement, the final strength is not reached until later. 

The concrete can now only be judged on the rate of development, which is less here instead of 

more.  

The inferior properties of RCA are the main cause of the lower strength. A blend of SF and MK 

can compensate this because they can improve the microstructure’s refinement of the pore size. 

The quality of the RCA’s has a huge impact on the compressive strength. This could be another 

option to improve these values. Changing the mixing process to a TSMA could also help to 

enhance the values of these tests.  

5.2.2.3 Chloride migration 

To test the penetration of the chloride, the TCP was measured for the different samples. The 

observed values can be found in Table 2.  
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Table 2: Chloride migration test 

  Coulomb [Q] Chloride penetration [mm] 

REF RCA 0% 

A 1431 12,2 

B 2158 12,6 

C 2255 14,5 

Ref RCA 5% - 20% 

A 1783 (↑) 9,6 (↓) 

B 2642 (↑) 16,8 (↑) 

C 2814 (↑) 17,6 (↑) 

Ref RCA 20% - 60% 

A 3107 (↑) 21,0 (↑) 

B 3931 (↑) 22,1 (↑) 

C 3907 (↑) 27,1 (↑) 

 

Section 4.2.12 mentioned that the chloride penetration depth increases with RAC in comparison 

to NAC. The values in Table 2 confirm this. The graph that was used to indicate the relation 

between the TCP and the coarse RA content is repeated in figure 31. 

 

Figure 31: The total charge passed in relation to the content of coarse RA (Andreu & Miren, 2014; Kapoor, Singh, 
& Singh, 2016; Matias, Brito, Rosa, & Pedro, 2014) et al. 

When the values in Table 2 are compared with the above figure, it can be concluded that the 

values from the table are clearly higher than 95% UCL from figure 31. Section 4.2.12 

mentioned that the resistance to chloride penetration of the RAC decreases when the W/C factor 

increases. In order to continue with the same concrete mix but to obtain a higher value for the 
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resistance, the W/C ratio can be reduced. But the curing age of the concrete should be taken 

into account. The chloride resistance improves with the concrete’s curing age. Another way to 

improve these values is to use RAs with a parent concrete that has a higher strength, due to the 

water absorption capacity that is lower. Also, mineral admixtures could be used to improve the 

chloride penetration resistance. The last option is to use the CO2 treatment that is very effective 

to improve this property because it will reduce the water absorption capacity.  

5.2.2.4 Shrinkage 

For the shrinkage test, different samples with different degrees of RCA amounts were made. 

The shrinkage was measured regularly. The different values can be found in annex 3 a to b. 

How fast the shrinkage increased can be derived in the figures 32 to 34. 

 

Figure 32: Increase in shrinkage with time for concrete with a replacement level of 0% 
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Figure 33: Increase in shrinkage with time for concrete with a replacement level of 5% - 20% 

 

 

Figure 34: Increase in shrinkage with time for concrete with a replacement level of 20% - 60% 

The overall shrinkage between two measurements will be greater when more RCA is used. As 

mentioned in section 4.2.16, shrinkage is time dependent and will increase as the time goes by. 

A statement in this section reported that a replacement level of 20% would not significantly 

influence the shrinkage. But the values of annex 3 show an increase in shrinkage development.  

Shrinkage is influenced by the aggregates rock type, the particle size distribution, etc. This is 

an aspect that can easily been changed in these lab tests.  
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5.3 Future research 

In section 5.1.1 three methods were discussed to improve the workability of the concrete. Since 

the first one was used in the lab tests, an idea for lab tests in the future might be to try the other 

two. 

The first one is the water compensation during the process of mixing. Water is added into the 

mix with the amount that RA absorbs until the mixing process is completed. This amount is 

thus dependent on the RA’s water absorption capacity. This means that the water will only 

compensate for a certain part of the total water absorption capacity and it will not put RA in an 

SSD state. It is suggested that the mixing is done in a TSMA way so that before the rest of the 

constituents is added, the water absorption can take place. It is a practical and effective method 

that reaches the level of workability similar to concrete with natural aggregate without the W/C 

ratio that needs to be altered. The bond between the hardened cement and the RA’s will be 

enhanced with this method.  

 

Figure 35: Effective water content (Dhir Obe et al., 2019) 

The second method uses superplasticisers where the mix has a constant W/C factor. From a 

point of view for the mechanical performance, this method has encouraging outcomes in studies 

that were done. However, due to the RA’s water absorption, the SPs can lose their effectiveness. 

Figure 35 shows the behaviour of the content of water in in concrete. Dependent on the time 

they are in the water and the water absorption capacity, the (partly) dry RAs will absorb part of 

the water. A reduction over time in the W/C ratio can be observed if (semi-)dry RA is added 

into the mix, it will also reduce the concrete’s consistence. That is why there is an addition of 

extra water to increase the W/C ratio and so improve the consistence. This method will lead to 

a possible enhanced mechanical behaviour and a lower level of porosity of the hardened 

concrete. 
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The high workability losses in the initial phase of mixtures with large amounts of (partly) dry 

RA can be compensated with SPs, but this cannot be done so much over a longer period of time. 

Therefore, it is recommended from a practical point of view that a water compensation approach 

should be used.  
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6 Conclusion 

This thesis starts with the following research question: Why would we use recycled aggregates 

in concrete instead of natural aggregates? It begins with a very extensive literature study in 

which the advantages and disadvantages are first investigated. Due to the insufficient recycling 

procedures of the CDW recycling plants, a wide range of RAs are produced that sometimes 

even have an unknown composition. Because of this, the physical properties of the RA often 

show great variation and inconsistency, which makes them considered low quality and are 

therefore used less.  

This work continues with a useful source of information on properties of recycled aggregates 

that decide the durability of the concrete. Here we could find strong relations between the 

compressive strength of the concrete and the coarse aggregate’s water absorption capacity and 

its porosity, between the splitting tensile strength of the concrete and the coarse aggregate’s 

porosity and between the concrete’s flexural strength and the coarse aggregate’s crushing value, 

porosity and attached mortar. However, different studies do not always agree with each other 

about the fracture properties.  It can be stated that all the concrete’s mechanical properties have 

a strong relationship with the durability properties. 

The following section provided opportunities that could improve and sometimes remove the 

challenges that the use of recycled aggregates in concrete causes. Supplementary cementitious 

materials such as fly ash, silica fume and metakaolin are recommended to be used since they 

have proven to enhance the RCA concrete’s quality. By coating the surface of the RA with SF, 

SCMs and an admixture of inorganic paste, the RAC will show an enhanced packing density 

and a better behavior in durability in comparison to concrete with RA that was not treated. The 

batched concrete’s quality is influenced by the RCA’s treatment prior to the mixing. 

This thesis ends with a discussion of the lab results that were obtained from the students from 

the Arctic University of Norway.  

The effective widespread use of recycled aggregates is still a long way off and many studies 

still need to be undertaken to bring a consistent concrete to the market. Further research is 

definitely needed to improve the quality so that it may become the norm in the future. 
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Annex 

1. Density 

0% RCA 

 
3 days 28 days 

A B C A B C 

Volume [cm³] 3413,86 3440,45 3409,96 3395,64 3396,86 3408,17 

Mass [g] 8247,4 8306,6 8224,3 8195,8 8299,8 8287,1 

Density 
[kg/m³] 

2415,86 2414,4 2411,84 2413,63 2443,37 2431,54 

RCA5/20 

 
3 days 28 days 

A B C A B C 

Volume [cm³] 3396,67 3398,16 3392,35 3427,18 3396,83 3415,64 

Mass [g] 8236,6 8252,5 8185,2 8255,3 8169,3 8262,1 

Density 
[kg/m³] 

2424,90(↑) 2428,52(↑) 2412,84(↑) 2408,77(↓) 2404,98(↓) 2418,90(↓) 

RCA20/60 

 
3 days 28 days 

A B C A B C 

Volume [cm³] 3388,28 3354,57 3402,59 3419,39 3381,50 3375,65 

Mass [g] 7915,6 7921,5 7991,1 7925,5 7901,8 7949 

Density 
[kg/m³] 

2336,17(↓) 2361,41(↓) 2348,53(↓) 2317,81(↓) 2336,77(↓) 2354,81(↓) 
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2. Compressive strength 

  Sample A Sample B Sample C average 

0% RCA 

3 days 34,66 MPa 35,48 MPa 35,06 MPa 35,07 MPa 

28 days 55,21 MPa 56,42 MPa 55,36 MPa 55,66 MPa  

5% - 20% RCA 

3 days 33,33 MPa 35,46 MPa 34,39 MPa 34,39 MPa (↓) 

28 days 54,2 MPa 52,71 MPa 53,48 MPa 53,46 MPa (↓) 

20% - 60% RCA 

3 days 30,76 MPa 30,35 MPa 31,12 MPa 30,74 MPa (↓) 

28 days 45,06 MPa 44,66 MPa 45,88 MPa 45,2 MPa (↓) 
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3. Shrinkage 

a. 0% RCA 

Day/ Sample  A ∆ B ∆ C ∆ 

0 Density [kg/m³] 2438  2456  2437  

1 Density [kg/m³] 2438 0 2456 0 2437 0 

∆l [mm] -0.057  -0.335  -0.14  

3 Density [kg/m³] 2421 17 2439 17 2420 17 

∆l [mm] -0.091 0.034 -0.364 0.029 -0.175 0.035 

4 Density [kg/m³] 2419 2 2437 2 2418 2 

∆l [mm] -0.097 0.006 -0.372 0.008 -0.181 0.006 

6 Density [kg/m³] 2415 4 2434 3 2414 4 

∆l [mm] -0.118 0.021 -0.385 0.013 -0.204 0.023 

7 Density [kg/m³] 2414 1 2433 1 2413 1 

∆l [mm] -0.124 0.006 -0.386 0.001 -0.204 0 

15 Density [kg/m³] 2408 6 2428 5 2408 5 

∆l [mm] -0.177 0.053 -0.442 0.056 -0.251 0.047 

21 Density [kg/m³] 2405 3 2425 3 2404 4 

∆l [mm] -0.196 0.019 -0.449 0.007 -0.267 0.016 

28 Density [kg/m³] 2404 1 2425 0 2403 1 

∆l [mm] -0.206 0.010 -0.45 0.001 -0.273 0.006 

35 Density [kg/m³] 2404 0 2425 0 2403 0 

∆l [mm] -0.206 0 -0.45 0 -0.273 0 
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b. 5% - 20% RCA 

Day/ Sample  A ∆ B ∆ C ∆ 

0 Density [kg/m³] 2425  2451  2444  

1 Density [kg/m³] 2425 0 2451 0 2444 0 

∆l [mm] -0,139  -0,182  -0,205  

2 Density [kg/m³] 2411 14 2434 17 2426 18 

∆l [mm] -0.152 0.013 -0.205 0.023 -0.226 0.021 

3 Density [kg/m³] 2407 4 2431 3 2422 4 

∆l [mm] -0.168 0.016 -0.216 0.011 -0.244 0.018 

5 Density [kg/m³] 2401 6 2425 6 2417 5 

∆l [mm] -0.192 0.024 -0.240 0.024 -0.259 0.015 

6 Density [kg/m³] 2399 2 2424 1 2415 2 

∆l [mm] -0.197 0.005 -0.246 0.006 -0.272 0.013 

7 Density [kg/m³] 2397 2 2422 2 2414 1 

∆l [mm] -0.215 0.018 -0.263 0.017 -0.287 0.015 

14 Density [kg/m³] 2392 5 2417 5 2408 6 

∆l [mm] -0.265 0.050 -0.307 0.044 -0.333 0.046 

21 Density [kg/m³] 2388 4 2414 3 2405 3 

∆l [mm] -0.337 0.072 -0.340 0.033 -0.292 -0.041 

28 Density [kg/m³] 2386 2 2412 2 2403 2 

∆l [mm] -0.316 -0.021 -0.361 0.021 -0.387 0.095 

35 Density [kg/m³] 2386 0 2412 0 2403 0 

∆l [mm] -0.316 0 -0.361 0 -0.387 0 
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c. 20% - 60% RCA 

Day/ Sample  A ∆ B ∆ C ∆ 

0 Density [kg/m³] 2357  2362  2378  

1 Density [kg/m³] 2357 0 2362 0 2378 0 

∆l [mm] -0.156  -0.163  -0.115  

2 Density [kg/m³] 2343 14 2350 12 2367 11 

∆l [mm] -0.175 0.019 -0.190 0.027 -0.142 0.027 

3 Density [kg/m³] 2336 7 2344 6 2360 7 

∆l [mm] -0.194 0.019 -0.199 0.009 -0.155 0.013 

5 Density [kg/m³] 2328 8 2335 9 2351 9 

∆l [mm] -0.223 0.029 -0.231 0.032 -0.186 0.031 

6 Density [kg/m³] 2326 2 2333 2 2349 2 

∆l [mm] -0.232 0.009 -0.237 0.006 -0.193 0.007 

7 Density [kg/m³] 2324 2 2330 3 2346 3 

∆l [mm] -0.257 0.025 -0.261 0.024 -0.209 0.016 

14 Density [kg/m³] 2316 8 2323 7 2338 8 

∆l [mm] -0.315 0.058 -0.316 0.055 -0.276 0.067 

21 Density [kg/m³] 2311 5 2317 6 2333 5 

∆l [mm] -0.337 0.022 -0.340 0.024 -0.292 0.016 

28 Density [kg/m³] 2309 2 2315 2 2331 2 

∆l [mm] -0.383 0.046 -0.391 0.051 -0.343 0.051 

35 Density [kg/m³] 2309 0 2315 0 2331 0 

∆l [mm] -0.383 0 -0.391 0 -0.343 0 
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Abbreviations 

ASR Alkali-silica reaction CDW Construction & demolition waste 

C-S-H Calcium silicate hydrate CTE Coefficient of thermal expansion 

FA Fly ash GGBFS Ground granulated blast furnace 

ITZ Interfacial transition zone LA Los Angeles 

MK Metakaolin MRA Mixed recycled aggregate 

NA Natural aggregate NAC Natural aggregate concrete 

NVC Normally vibrated concrete OPC Ordinary Portland cement 

PC Portland cement RA Recycled aggregate 

RAC Recycled aggregate concrete RCA Recycled concrete aggregate 

RH Relative humidity RMA Recycled masonry aggregate 

RMC Reclaimed mortar content SCC Self-compacting concrete 

SCM Supplementary cementitious 

materials 

SF Silica fume 

TCP Total charge passed TSMA Two stage mixing approach 

VMA Viscosity modifying agent WA Water absorption 
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