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Summary 

Natural products have been used by humans since ancient times as benefactors for improved health. 

Prior to modern medicine and chemistry, these compounds remained hidden in the plants, animals and 

other organisms used to heal inflammation, wounds, headache and stomachache among other 

conditions. Since the start of modern drug discovery with isolation of morphine in 1805, numerous 

natural products have been isolated from plants, animals, macroorganisms and microorganisms. Today, 

natural products, or their derivatives, are used as pharmaceuticals within a wide range of therapeutic 

areas, including cancer, pathogenic infections, inflammation and pain.   

Microbial natural products have played a particularly important role in the field of antibiotics. The 

discovery of penicillin from the Pencillium rubens fungus by Alexander Fleming in 1928 marked the 

beginning of the “Golden Age” of antibiotics that lasted until 1962, where most antibiotic classes in 

clinical use today were discovered. 

Several marketed drugs originate from marine microorganisms. Marine microorganisms are 

underexplored, thus representing a potential source for discovering novel bioactive compounds. In this 

project, Arctic marine microorganisms were fermented under different conditions based on the OSMAC 

approach and evaluated for their production of antibacterial and cytotoxic compounds.  

In paper I, a Pseudomonas sp. bacterium was cultivated in different growth media. The fermentation 

extracts were fractionated and tested for bioactivity, revealing different bioactivity profiles of the 

fractions from the different media. Dereplication of the active fractions by UHPLC-HR-MS and 

molecular networking led to identification of six rhamnolipid compounds, including one novel mono-

rhamnolipid. All six compounds had antimicrobial activities, while three had cytotoxic activities. 

In paper II, a fractionated extract of the bacterium Lacinutrix sp. displayed antibacterial activity. 

Dereplication of the active fraction resulted in identification of two lyso-ornithine lipids, 1 and 2. The 

compounds were isolated and their structures were elucidated with UHPLC-HR-MS and NMR. 

Bioactivity screening showed that 1 had antibacterial activity, while 2 had cytotoxic activity.  

In paper III, the fungus Digitatispora marina was fermented under different cultivation conditions. 

Fermentation extracts were fractionated and bioactivity screening of the fractions revealed antibacterial 

and cytotoxic activities. UHPLC-HR-MS analysis of the fractions showed a compound with an isotope 

distribution pattern for an ion with a single chlorine atom. The compound was isolated, and structure 

elucidation with NMR identified it as chlovalicin B. Its bioactive properties were broadly evaluated, 

revealing it had weak cytotoxic activity but no antimicrobial activities.  
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1 The search for new drugs from nature 

1.1 Natural products  

Natural products are compounds produced by living organisms, e.g. plants, animals and 

microorganisms. They played an important role in ancient medicine and are also essential in today’s 

modern medicine. Particularly plants, but also animal-derived products were used for treating diseases 

in the distant past [1]. Thousands of plants have been described, which have been used for millennia in 

Europe and Asia for treatment of cough, inflammation, wounds, headache and stomachache. Examples 

of ancient remedies are found in the medical work “Hippocratic Corpus” by Hippocrates from Greece, 

circa 460– 370 BC, who described the use of more than 300 medicinal plants, and there is a 5000-year-

old description of 12 drugs developed from 250 plants from Nagpur in India. Fossils studies from 

Kurdistan in Iraq revealed that plants have likely been used as medicine for more than 60 000 years [2-

4]. The chemicals responsible for the therapeutic effect of the medicinal plants were however not known 

before the development of modern chemistry in the eighteenth and nineteenth centuries. The 

introduction to modern drug discovery came in 1805, when morphine was isolated from the opium plant 

Papaver somniferum (Figure 1) by the German pharmacist Friedrich Wilhelm Adam Sertürner. 

Morphine was the first natural product used in its purified form, and it was followed by isolation of 

other drugs such as cocaine, codeine, digitoxin and quinine in the 1800s [4,5]. Another hallmark within 

drug discovery from nature was the discovery of the antibiotic penicillin in 1928 by Alexander Fleming. 

This marked the start of the “Golden Age” of antibiotics that followed the next decades and peaked in 

the 1950s. Between 1940 and 1962, more than 20 new classes of antibiotics were marketed [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Papaver somniferum, the plant that morphine was isolated from. Photo: 

copied from Alchetron [7]. 
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Natural products are categorized into primary and secondary metabolites. Primary metabolites are 

necessary for the immediately survival of the organism, e.g. for growth, development and reproduction. 

Secondary metabolites are considered to provide the producing organism an advantage for long time 

survival, e.g. for defense against other organisms, competition for space and food, or as signaling 

molecules [8,9]. Secondary metabolites are known to display a broad range of bioactivities, including 

anticancer, antibiofilm, antibacterial, antifungal, antiviral and anti-inflammatory activities among 

others. They are structurally diverse, from the simpler structure of lovastatin to the more complex 

structure of palytoxin (Figure 2).  

 

Figure 2. Structurally diverse secondary metabolites. Cholesterol-lowering lovastatin is produced by the fungus 

Aspergillus terreus [10]. Dolastatin 10 was isolated from the sea hare Dolabella auricularia. Synthetic analogues 

are used as anticancer agents [11]. Palytoxin is a highly toxic compound first isolated from marine Palythoa 

tuberculosa [12].  

 

1.1.1 Bioprospecting 

Numerous natural products have been isolated and today more than 400 000 are registered in various 

databases [13]. As reported by Pye et al. (2017) [14], the number of natural products isolated from 

microorganisms and marine derived organisms is increasing, from a few a year in the 1940s, to averagely 

1600 new natural products every year for the last three decades. This is a result of bioprospecting, which 

can be defined as the systematic search for, and development of biologically active compounds from 

nature that can be commercialized [15]. Organisms commonly explored for bioactive natural products 

include plants, microorganisms, invertebrates, algae, fish etc. Advances in analytical technologies and 

development of methods within genomics, proteomics and metabolomics over the last decades have 
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contributed to important information regarding biosynthesis of natural products [16]. Another important 

development in bioprospecting was high throughput screening (HTS) that was implemented in the 

1980s. Automation of screening libraries made it possible to screen a high number of samples in a short 

amount of time. Microtiter plates with 96 wells was the standard format in the beginning of the HTS 

period, but with advances in robotic systems, 384, 1536, 3456 and even 6144 well-formats are used 

today [17,18]. Bioprospecting has been highly successful and has resulted in a diversity of marketed 

drugs originating from natural products, such as anticancer drugs, antibiotics, painkillers, 

hypocholesterolemic agents, anti-coagulants and anti-depressant drugs among others [19]. 

1.1.2 Properties of natural products versus synthetic compounds 

The search for, and development of drugs from nature is a time consuming and costly process. Hence, 

despite of many successful stories of natural products being developed into drugs, the pharmaceutical 

industry shifted its focus from natural product research to combinatorial chemistry in the 1980-1990s in 

an attempt to generate a strategy that would enable faster and cheaper development of new drugs [20]. 

In combinatorial chemistry, numerous chemical building blocks can be used to synthesize different 

compounds simultaneously, to acquire a chemical library that can contain up to millions of analogues 

[21]. However, the combinatorial chemistry approach did not give the wanted results and as an attempt 

to increase the rate of new drugs, the Lipinski`s rule of 5 (Ro5) was introduced in 1997. Lipinski et al. 

(1997) [22] examined the physicochemical properties of compounds that had made it from phase I to 

phase II in clinical trials and came up with four criteria a compound should meet to be more drug-like. 

According to the Ro5, a compound should have:  

 mass less than 500 Daltons  

 5 or less hydrogen bond donors 

 10 or less hydrogen bond acceptors 

 high lipophilicity with an octanol-water partition coefficient (log P) not greater than 5 

The introduction of the Ro5 influenced the way drug research was conducted, but it is now clear that 

the Ro5 should be considered as guidelines and not rules. They have some limitations, and as stated by 

Shultz (2018) [23], the criteria would have been different if they were defined today. Schultz (2018) 

analyzed the FDA approved drugs from 1900-2017. He found that the mass and hydrogen bond 

acceptors had increased in new drugs compared to the average in 1997 when the Ro5 was introduced. 

A limitation with the Ro5 criteria is that they only apply to orally administered drugs, and only 50 % of 

FDA approved drugs are taken orally. Of these, about 20 % violate at least one of the parameters of the 

Ro5. The Ro5 do not apply to drugs that are substrates for transporters or administered with other routes 

(intravenous, intrathecal, intramuscular etc.), which natural products often are [24,25]. Ganesan (2008) 
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[26] analyzed 24 natural products that were developed into drugs between 1970 and 2006 according to 

the Ro5. He found that of the four parameters, log P seemed to be the most precise, indicating that low 

lipophilicity is essential for a drug. To keep a low lipophilicity with increasing molecular weight, polar 

functional groups are required. Nature has accomplished this, but it is not a straightforward process for 

synthetic compounds. Natural products can also violate the hydrogen bond donor and acceptor 

parameter by forming intramolecular H-bond, which is difficult to achieve through combinatorial 

chemistry. Feher and Schmith (2003) [27] compared combinatorial compounds with natural products 

and drugs. They found that combinatorial compounds on average had less chiral centers, higher 

molecular size and more flexibility than drugs and natural products. It is clearly not easy to compete 

with nature, and after two decades with combinatorial chemistry not being as successful as hoped, 

natural product research was brought back into focus. Between 1981-2019, of all new small-molecule 

drugs (excluded vaccines and large peptides (>50 residues)) around 70 % originated from natural 

products, including unaltered natural products, derivatives of natural products and synthetic compounds 

mimicking natural products, demonstrating the important contribution of natural products within the 

field of drug discovery [19]. 

1.2 The marine environment 

To avoid rediscovering already known compounds, one strategy is to investigate less explored places 

and organisms in the search for novel compounds. As most of the search to date has been conducted in 

the terrestrial environment, the ocean represents a potential source for novel chemistry. More than 70 % 

of the earth’s surface consists of ocean, with biological and chemical diversity that differs from the 

terrestrial environment. The ocean is less explored simply because the terrestrial environment is easier 

to access. In contrast to the thousands of terrestrial plants known to be used in ancient medicine, only a 

few algae are described [28]. It was not before the 1970s that natural product research focused on the 

marine environment as a result of development of diving equipment. Further development of manned 

submersibles in the 1980s and remotely operated underwater vehicles in the 1990s made exploration of 

unique places in the ocean possible [28]. The ocean contains a diversity of organisms, some that live 

under stressful and changing conditions, with high pressure and high salinity [29]. Adaption to these 

conditions has potentially led to the biosynthesis of metabolites exclusive to these environments. Since 

the marine environment is less explored than the terrestrial environment, the prospect is that we will see 

more new drugs originating from marine organisms. 

1.2.1 Drugs from the marine environment 

The first marketed drug originating from marine organisms was the anticancer drug cytarabine. It is a 

derivative of a pyrimidine nucleoside initially isolated from the Caribbean sponge Tectitethya crypta 

(Figure 3A) in 1951. It was FDA approved in 1969 and has been used to treat cancer for over 50 years 
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[16,30]. Other anticancer agents from the marine environment include eribulin mesylate, trabectedin 

and lurbinectedin. Eribulin mesylate was FDA approved in 2010 and is a derivative of halichondrin B, 

isolated from the marine sponge Halichondria okadai in 1986 [11,16]. Trabectedin was isolated from 

the Caribbean and Mediterranean Sea tunicate Ecteinascidia turbinata in the 1960s and FDA approved 

in 2015 [30]. Lurbinectedin is a synthetic analogue of ET-736, also isolated from E. turbinata, and was 

FDA approved in 2020 [11]. Several anticancer agents on the market are antibody conjugates, consisting 

of an antibody linked to monomethyl auristatin E (MMAE). MMAE is a synthetic analogue of dolastatin 

10 (Figure 2), a peptide that was isolated from the sea hare Dolabella auricularia (Figure 3B) in 1987. 

These antibody conjugate drugs include brentuximab vedotin, FDA approved in 2011 [11] and 

polatuzumab vedotin and enfortumab vedotin, both FDA approved in 2019. Belantamab mafodotin was 

FDA approved in 2020 and is an antibody conjugate with an antibody linked to monomethyl auristatin 

F, another synthetic analogue of dolastatin 10 [11]. Drugs from marine organisms also include the anti-

viral agent vidarabine and the pain killer ziconotide. Vidarabine was FDA approved in 1976 and 

originates from the same sponge as cytarabine. Ziconotide was isolated from the venom of the cone 

snail Conus magus (Figure 3C). It was FDA approved in 2004 and reached the market as an unaltered 

natural product [30].  

There are also several marine drugs on the market isolated from various fish, for reducing blood 

triglyceride levels For example Lovaza (containing mainly eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA)), Vascepa (the only omega-3-product that exclusively contains EPA) and 

Epanova (a mixture of carboxylic acids, mainly EPA and DHA), approved by FDA in 2004, 2012 and 

2014, respectively [31].  

Figure 3. Marine organisms as sources for drugs. A: The sponge Tectitethya crypta [32], B: Sea hare Dolabella 

auricularia [33], C: Cone snail Conus magus [34]. All photos copied from Alchetron.  

The majority of approved drugs originating from marine organisms have been mentioned here, and they 

are all reported to be isolated from macroorganisms such as invertebrates and fish. However, several of 

these compounds are likely of microbial origin. Today it is known that trabectedin is produced by the 

bacterium Candidatus Endoecteinascida frumentensis [35], and that dolastatin 10 is produced by 

cyanobacteria [36,37]. Dolastatin 10 is a polyketide synthase (PKS) and nonribosomal peptide synthase 
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(NRPS) hybrid product. PKS and NRPS products are among the most abundant secondary metabolites 

isolated from fungi and bacteria [38-41]. Several of the marine compounds that have been developed 

into marketed drugs were isolated from sponges. Up to 40 % of the sponges’ volume can consist of 

microorganisms, and many of the bioactive compounds from sponges are a result of symbiosis with 

their microorganisms, suggesting that they might be produced by symbiotic microorganisms [42,43]. 

This is thought to be true for the sponge-isolated halichondrin B, as the structure resembles known 

products from PKS [38]. The structure is shown in figure 8 in section 1.6 where the development of 

halichondrin B into a drug is described more in detail. 

1.2.2 Drugs from microorganisms 

The story of drugs from microorganisms began in 1928, when Alexander Fleming discovered penicillin. 

It was isolated from a terrestrial fungus for a long time believed to be Penicillium chrysogenum 

(previously known as Penicillium notatum) [44], but in 2011, Houbraken et al. (2011) [45] identified 

the strain as Penicillium rubens. Many important drugs used today originate from microorganisms, such 

as the antibiotics tetracyclines from Streptomyces spp, Dactosporangium spp. and Actinomadura 

brunnea, the antibiotic streptomycin, produced by 1 % of soil actinomycetes, the antimigraine 

ergotamine from Claviceps spp. and the immunosuppressant cyclosporine A from Tolypocladium spp. 

[46]. Most of the microbial drugs are developed from secondary metabolites isolated from terrestrial 

actinomycetes and fungi. Why should we change the focus from successful terrestrial microorganisms 

to marine microorganisms? The antibiotic daptomycin was discovered after screening 107 soil 

actinomycetes, and to discover novel antibiotics from soil actinomycetes it is estimated that new 107 

bacteria must be screened [47]. Hence, a good reason to focus on marine microorganisms (Figure 4) is 

that they are less studied. More importantly, as several of the marketed marine drugs are proved to, or 

believed to originate from microorganisms, it demonstrates that the marine microorganisms have 

already been important contributors to new drugs. Several compounds originating from marine bacteria 

are also in clinical trials today. The anticancer agent salinosporamide A, isolated from the marine 

actinomycete Salinispora tropica, is in phase III, and several compounds originating from marine 

cyanobacteria are in phase I and II in clinical trials as anticancer agents [48,49]. 
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Figure 4. Marine microorganisms. A: Marine actinomycete Streptomyces chumphonensi. Photo: 

copied from Hu et al. (2019) [50]. B: Marine cyanobacteria Synechocystis salina. Photo: copied from 

Costa et al. (2014) [51]. 

 

Regarding marine fungi, the literature often states that no marketed drugs have originated from this 

kingdom, at least no drugs from true marine fungi. Nonetheless, in 1945, Giuseppe Brotzu discovered 

antibacterial compounds produced by the fungus Cephalosporium acremonium (now known as 

Acremonium chrysogenum), isolated from a bay by the sewer in Sardinia. This led to the isolation of 

cephalosporin N, P and C a few years later, marking the beginning of the development of cephalosporins, 

which are still used as antibiotics [52-56]. Although cephalosporin was originally isolated from a fungus 

isolated from the sea, A. chrysogenum is considered to be a marine-derived fungus and not a true marine 

fungus. It is therefore debatable if the cephalosporins are of marine origin or not, but they were indeed 

isolated from a fungus isolated from the marine environment and are therefore sometimes referred to as 

being the first drugs isolated from the marine environment [57].  

1.2.3 Marine fungi 

Many fungi found in the ocean are also found in terrestrial environments, proving they can live both in 

water and on land [58]. As reviewed by Pang et al. (2016) [57], various definitions have been used to 

classify marine fungi (Figure 5). Kohlmeyer (1974) [59] proposed a definition in the 1970s which has 

frequently been used. It states that obligate marine fungi are “those that grow and sporulate exclusively 

in a marine or estuarine habitat” and facultative marine fungi are “those from freshwater or terrestrial 

milieus able to grow (and possibly also to sporulate) in the marine environment”. (Sporulation is the 

production of sexual or asexual spores and is hence related to reproduction and dispersal of fungi). This 

implies that fungi found in both marine and non-marine environments should not be considered marine. 

A much broader term in fungi classification is the use of “marine-derived” fungi, which was introduced 

in the 1990s and has been a popular term within natural products research. This term is based on the 

environment the fungi are isolated from and does not reveal anything about the ecology of the fungi; if 

they are obligate or facultative marine, or actually terrestrial. The result of this definition is that a fungus 



 

8 

 

classified as marine-derived may not be of marine origin at all. For example, a spore from a non-marine 

fungus that has been blown to the sea and later been isolated from the sea can be classified as marine-

derived, when it is actually a terrestrial or freshwater fungus [60,61]. In 2014, Overy et al. (2014) [60] 

introduced the term marine fungi sensu stricto, stating that marine fungi are fungi that exclusively live 

in marine environments, similar to the obligate marine fungi definition of Kohlmeyer (1974). In 2016, 

Pang et al. (2016) [57] suggested a classification in-between the strict definition of obligate (and sensu 

stricto) marine fungi, and the “marine-derived” fungi term. This classification of a marine fungus is 

based on the following three criteria, where a marine fungus should fall within one of them: 

1. It is any fungus that is recovered repeatedly from marine habitats because it is able to grow and 

sporulate (on substrata) in marine environments 

2. It forms symbiotic relationships with other marine organisms 

3. It is shown to adapt and evolve at the genetic level or be metabolically active in marine 

environments 

 

Figure 5. Classification of marine fungi.  

Obligate and sensu stricto (s.s.) marine fungi: grow and 

sporulate only in the marine environment. Marine fungi: 

repeatedly isolated from the marine environment and are 

adapted to the marine environment. Marine-derived fungi: 

isolated from the marine environment, but can be non-

marine fungi as the ecology might be unknown. Facultative 

marine fungi: non-marine fungi able to grow in the marine 

environment [57,59-61]. Adapted from a figure provided by 

Teppo Rämä. 

 

 

 

The studies of marine fungi were limited for many years due to lack of knowledge of isolation methods 

and cultivation conditions, so until 2010, only 690 compounds from marine fungi were reported [62]. 

More focus has been put into this field the last decade, with for example 494 and 470 new secondary 

metabolites reported from marine fungi in 2015 and 2016, respectively [63]. In 2019, 47 % of all new 

reported marine natural products were from fungi, with around 700 fungal metabolites [64]. As reviewed 

by Overy et al. (2014) [60], of all secondary metabolites reported from marine fungi up to 2014, only a 

few of them were isolated from marine fungi sensu stricto. The relatively few secondary metabolites 

isolated from marine fungi, and particularly marine fungi sensu stricto, indicate that there is a potential 
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for discovering novel bioactive fungal secondary metabolites. For example is the anticancer agent 

plinabulin, a synthetic analogue of a halimide produced by marine and terrestrial Aspergillus spp., in 

phase III in clinical trials as anticancer agent [65]. 

1.2.4 Marine bacteria 

Bacteria are highly abundant in the ocean, and 1 µL of seawater can contain as much as 1000 bacteria 

[66]. However, only a small portion of the bacteria counted with microscope can be cultivated on agar 

plates. This difference is known as the “great plate-count anomaly” [67]. Based on the number of known 

bacteria from ribosomal RNA sequences, counting of bacteria with epifluorescence microscopy, and 

observation on how many marine bacteria grow on standard cultivation media, it is estimated that less 

than 1 % of the bacteria in the ocean have been cultivated, and that many major lineages remain to be 

cultivated. Some bacteria may not grow in the laboratory under standard cultivation methods, as the 

medium can for example be toxic. In addition, bacteria are often cultivated alone in the laboratory, which 

can destroy the communication and interactions between other bacteria and organisms. Hence, nutrients 

and chemical signals that are needed for growth, which the bacteria get from interaction with other 

organisms in the natural environment will not be present [16,68]. The contradiction is that to cultivate 

the bacteria, we need to know how to cultivate them, but to obtain the knowledge on how to do that, we 

firstly need to cultivate them. Approaches to overcome this problem can be in situ cultivation and co-

cultivation. These approaches also apply to fungi. 

1.2.5 In situ cultivation  

In in situ cultivation the microorganisms are taken from their natural habitat, diluted and put into 

diffusion chambers before they are placed back into their natural environment where nutrients and 

chemical signals can diffuse into the chambers [69]. The use of isolation chips has increased the 

microbial recovery extensively and has also been beneficial in the discovery of bioactive compounds 

[70,71]. The antibacterial compound teixobactin was for example isolated from the soil bacteria 

Eleftheria terrae grown in an isolation chip in 2015. Teixobactin has been active against several 

bacteria and has a unique mechanism of action. It is hoped that it will enter clinical trials, as it could be 

valuable in the fight against antibiotic resistance. Teixobactin has been widely studied since its 

discovery, but has not entered clinical trials yet [72,73]. 

1.2.6 Co-cultivation 

The marine microorganisms have to compete for substrates and are exposed to chemical signals from 

potential competitors in nature. These interactions are thought to be the main factors for triggering the 

production of secondary metabolites. Two or more microorganism are cultivated together in co-

culivation. The interactions between the microorganisms can mimic their natural environment and 

https://en.wikipedia.org/wiki/Eleftheria_terrae
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provide substances necessary for them to grow and possibly trigger the production of bioactive 

secondary metabolites not observed when they are cultivated alone. Co-cultivation of marine 

microorganisms has been reported to enhance and induce the production of bioactive secondary 

metabolites [74,75].  

1.3 Secondary metabolite production 

In an enclosed vessel, the growth cycle of bacteria and fungi includes a lag phase, an exponential growth 

phase, a stationary phase and a death phase (Figure 6). In the lag phase, the microorganisms adapt to the 

cultivation conditions and start producing RNA, enzymes and molecules needed for cell division and 

growth. In the exponential growth phase, each organism cell divides to form two more cells and so on. 

When nutrition is depleted or waste products inhibit growth, they reach the stationary phase where there 

is no net decrease or increase in the number of microorganisms. After a period with decreasing nutrients 

and accumulation of waste products, more and more cells will die and they enter the death phase [76]. 

Secondary metabolite production usually happens in the late exponential growth phase and stationary 

phase. As a result of less available nutrients, the microorganisms switch from producing biomass to 

secondary metabolites [77,78]. 

 

 

Figure 6. Growth cycle of marine microorganisms in an enclosed vessel. This includes a lag 

phase, an exponential growth phase, a stationary phase and a death phase. Figure adapted 

from Madigan and Martinko (2006) [76]. 
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1.3.1 Biosynthetic gene cluster 

Many secondary metabolites are coded by biosynthetic gene clusters (BGCs) in bacteria and fungi. A 

BGC is two or more genes clustered together which collectively encode a biosynthetic pathway for the 

production of a secondary metabolite. All the enzymes and regulatory genes necessary for the encoding 

of a secondary metabolite are included in the BGC. NRPS and PKS products are two major classes of 

secondary metabolites produced by enzymes encoded in a BGC [79,80]. They display a wide range of 

structural chemistry and bioactivities, and many of them have been developed into drugs. Some of the 

most important drugs in use are NRPS products, such as the antibiotics penicillins, cephalosporins and 

daptomycin, and vancomycin and cyclosporine A with immunosuppressant and anti-inflammatory 

activities [79]. Drugs that origin from PKS include lovastatin for lowering cholesterol, the antibiotics 

tetracyclines and erythromycin A, and the anticancer compound doxorubin [80]. This makes NRPS and 

PKS products popular targets in the search for bioactive secondary metabolites.  

1.3.2 Genome mining unveils hidden potential 

Genome mining has revealed that many microorganisms have the potential to produce secondary 

metabolites not discovered yet. Genome mining is the process of identifying conserved BGCs within 

the genome of a sequenced organism. It involves the identification of genes or domains that are very 

specific for known biosynthetic pathways, such as the major secondary metabolite classes polyketides, 

nonribosomal peptides, ribosomally synthesized and post translationally modified peptides, alkaloids 

and terpenes [81]. The genome is annotated with for example BLAST (Basic Local Alignment Search 

Tool) before the BGC is identified with tools such as antiSMASH (antibiotics and secondary metabolite 

analysis shell) and PRISM (PRediction Informatics for Secondary Metabolomes) commonly used for 

fungi and bacteria [82]. Conserved Domain Database can be used to predict the structures of NRPS and 

PKS products based on comparison of known metabolites. Since many BGCs are silenced under 

standard cultivation conditions, the challenge is to make the microorganisms express these genes to find 

the compounds corresponding to the identified BGCs. As reviewed by Rutledge and Challis (2015) [83], 

different strategies are used in an effort to activate these genes. This includes altering the cultivation 

conditions, engineering the transcription and translation machinery, manipulate transcriptional 

regulators, manipulate pathway-specific regulators, and the use of heterologous expression. In this 

project, the focus was on altering the cultivation conditions, as described in section 2.1.  

1.4 The importance of new drugs 

1.4.1 Antibiotic resistance 

Pathogenic microorganism’s resistance to antibiotics has emerged as a serious health concern. Some 

bacteria have resistance to most of the antibiotic classes on the market, resulting in infections that are 
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difficult to treat. This leads to longer hospital stays and deaths from untreatable infections. Globally, 

antibiotic resistant bacteria are estimated to cause 700 000 deaths every year, a number that is predicted 

to reach 10 million by 2050. The reasons behind this dramatic trend are many and complex, but include 

antibiotic drug research not being prioritized by the pharmaceutical industry, and extensive use and 

misuse of antibiotics within agriculture and medicine [84,85]. Between 1940 and into the 1960s, more 

than 20 classes of antibiotics were discovered. Major classes include e.g. sulfonamides, β-lactams, 

tetracyclines and cephalosporins. Over the next three decades, the new antibiotics on the market were 

derivatives of already known classes. The next classes on the market did not come before 2000 and 

2003, with the synthetic compound oxazolidinone in 2000 (linezolid) and cyclic lipopeptide 

(daptomycin) in 2003 [6]. Oxazolidinones were discovered in the end of the 1970s, and linezolid was a 

result of a 12-year research program [86]. Daptomycin was isolated from soil actinomycetes in the 

1980s. As reported by WHO (2020) [87], of 11 new approved antibiotics since 2017, only two represent 

a novel class (meropenem-vaborbactam and lefamulin). Meropenem is a synthetic derivative of 

thienamycin, isolated from Streptomyces cattleya in 1976 [88]. Lefamulin is a derivative of 

pleuromutilin, isolated from the fungus Clitophilus scyphoides in the 1950s [19,89]. Although 

considered to be new classes, the initial discovery was done long time ago, meaning no new marketed 

classes have been discovered recently. Alexander Fleming warned already in 1945 that the use of 

antibiotics would lead to resistance, and today several multidrug resistant bacteria exists [90]. Examples 

are the gram-negative bacteria Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter 

[84]. In addition, groups of gram-positive bacteria: MRSA and vancomycin-resistant enterococci are 

responsible for infections that are difficult to treat. Enterococcus faecium, Staphylococcus aureus, K. 

pneumoniae, Acinetobacter baumannii, P. aeruginosa and Enterobacter species belong to a group of 

multidrug resistant bacteria that has been named ESKAPE pathogens. To beat infections from these 

bacteria, novel antibiotics are highly needed, as the new antibiotics on the market and in the pipeline do 

not address these pathogens [87].  

1.4.2 Cancer  

Cancer represents another global health problem where new drugs are needed. Cancer is an umbrella 

term, comprising a diverse group of complex diseases. There are many different types of cancer, and 

they behave different in different organs and cell types. The main development of cancer is due to 

oncogenes and tumor suppressor genes. Activation and inactivation of these genes by mutations can 

lead to uncontrolled cell growth and proliferation, resulting in cancer [91]. The “war on cancer” began 

the December 9th in 1969, when the Citizens’ Committee for the Conquest of Cancer published the 

article “Mr. Nixon: You can cure cancer” (Figure 7) in The Washington Post and The New York Times. 

The 23rd of December 1971, President Nixon signed the National Cancer Act. This changed the aspect 

of cancer research and care globally, as it led to the National Cancer Program, including research 
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institutes around the world [92]. Despite of great 

progress and development within cancer 

research, cancer is still a leading cause of death 

worldwide. Chemotherapy and radiation are 

great achievements within modern medicine, 

threating millions of cancer patients. However, 

with the increase in aging and population, the 

number of cancer deaths and new cancer cases 

rises. Around 19.3 million cases and 10.0 

million deaths were estimated in 2020. Female 

breast cancer followed by lung, colorectal, 

prostate and stomach cancers are the main 

groups of cancer, responsible for 46% of new 

cancer cases. The main cause for death is lung 

cancer, followed by colorectal, liver, stomach 

and female breast cancers, contributing to 50.3 

% of cancer deaths [93]. This shows that new 

cancer drugs are still highly needed. Of the 

cancer drugs used today, 60% originate from 

nature, including anticancer drugs from marine 

microorganisms as described in section 1.2.1 [94]. Several compounds from marine microorganisms are 

also in clinical trials today, showing the important contribution of drugs from marine microorganisms 

in the fight against cancer.  

1.5 Biosurfactants  

Biosurfactants are compounds produced by microorganisms with surface activity due to their 

amphiphilic nature. Biosurfactants help to protect the microorganisms against harmful compounds and 

organisms, by changing the cell composition and thereby the membrane permeability [95,96]. They 

consist of a polar head, usually a peptide, amino acid, monosaccharide or disaccharide connected to a 

lipophilic tail, which can be one or more linear, branched, saturated or unsaturated fatty acid. The 

different building blocks lead to structural diversity and more than 2000 biosurfactants have been 

described [97]. Glycolipids comprising rhamnolipids and sophorolipid, lipopeptides such as surfactin 

and lichenysin, and fatty acids are three major classes of biosurfactants. Biosurfactants are used in the 

food and the cosmetic industries. In food, they are used as emulsifiers, for consistency control and stable 

solubilization of ingredients [98,99]. As cosmetics, they are used in anti-wrinkle creams, in deodorants, 

Figure 7. Article published by the Citizens’ Committee for 

the Conquest of Cancer. Published in Washington Post and 

The New York Times, 9th of December 1969 Photo: 

copied from Coleman (2013) [92]. 
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toothpaste and nail care products due to their antimicrobial properties [100]. Biosurfactants have been 

studied for use in other applications, such as the pharmaceutical industry, as they are known to display 

antibacterial, anticancer, antifungal, antiviral and antibiofilm activities. Despite of having potential as 

pharmaceuticals and being extensively studied, with a few exceptions, they are not used as 

pharmaceuticals today. The exceptions include among a few others, the clinical used antibiotics 

daptomycin and polymyxin B and E [101,102]. Contrary to chemical synthetic surfactants, 

biosurfactants are biodegradable, less toxic and can often tolerate higher temperature and pH values 

[103]. Chemical surfactants are used in many industrial applications, and biosurfactants could potential 

be a sustainable replacement, as more than 13 million tons chemical surfactants are used yearly in the 

world, representing a big environmental problem [104]. Biosurfactants have been evaluated for their 

potential as antifouling agents and in bioremediation. Biofouling, the growth of microorganisms 

followed by growth of macroorganisms (algae and invertebrates) is a problem to marine and shipping 

industries. It can result in e.g. corrosion and degradation of the material and increase the weight and 

volume of the immersed structures, such as ships and oil rigs. Alemán-Vega et al. (2020) [105] showed 

that the biosurfactant producing Bacillus niabensis sp. reduced the formation of marine biofilm, and that 

using cell free supernatant of B. niabensis in antifouling paint reduced the attachment of 

macroorganisms with 30% on a painted frame when it was immersed in the ocean. Regarding 

bioremediation, it is reported that the amount of biosurfactant producing microorganisms have increased 

in oil contaminated waters [104]. Hence, they have the potential to be used in bioremediation to enhance 

oil recovery and to remove heavy metals and hydrocarbons from contaminated sites. As reviewed by 

Nikolova and Gutierrez (2021) [106], surfactin has been used to recover sand trapped oil, and lichenysin 

recovered up to 40 % of residual oil from sandstone cores compared to 10 % with chemical surfactants. 

Rhamnolipids have been reported to emulsify petrol and diesel. Although biosurfactants may have the 

potential as antifouling agents and in bioremediation, much of the research is still at laboratorial stages. 

To replace the chemical surfactants, the biosurfactants must perform equal or better than today’s 

chemical surfactants, and they must be profitable. To be profitable, the yield of biosurfactants produced 

by the microorganism should be prominent. For example, P. aeruginosa has been engineered to increase 

its production of rhamnolipids, which are now produced in large scale for commercial use [107]. One 

issue with P. aeruginosa is that it is pathogenic. To achieve a safe production of biosurfactants, it might 

be possible to genetically alter the pathogenic biosurfactant producing microorganism into a non-

pathogenic microorganism or use non-pathogenic hosts to express the synthesis of biosurfactants. 

Another option is to search for new sources for biosurfactants. Arctic marine microorganisms have been 

less explored for the production of biosurfactants; hence, they represent a novel source in the search for 

new producers of biosurfactants, both with the potential of high yield and being non-pathogenic. 

Another potential advantage with biosurfactants from Artic marine microorganisms is that they are 
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adapted to cold water, so they might have other properties than biosurfactants isolated from warmer 

environments. Cold adapted biosurfactants can for example be used as laundry detergents for washing 

clothes at low temperatures to save energy, or for bioremediation at contaminated sites in cold 

environments [104]. 

1.6 From the laboratory to a marketed drug 

The road from the discovery of a bioactive metabolite to a marketed pharmaceutical is long. For the few 

compounds that complete this journey, development normally spans over at least 10-15 years. After 

isolation and structure elucidation of the bioactive secondary metabolite, there are several steps before 

it might become a drug. In short, this development will initially often include molecular mode of action 

(MMOA) determination, analogue production to improve activity and pharmacokinetic properties, and 

to reduce toxicity/off-targets effects and in vivo efficacy studies in e.g. mice. Some secondary 

metabolites reach the market as unchanged drugs, but most are synthesized and modified. Optimization 

can include improving absorption, distribution, metabolism, excretion and toxicity profiles. Chemical 

modifications can be altering the functional groups or ring systems, alter the saturation, or reduce the 

structure complexity of the metabolite [108]. Eribulin, a derivative of halichondrin B isolated from a 

marine sponge, but now known to be produced by cyanobacteria, is a good example of a modified and 

optimized drug (Figure 8) [109]. The active part of halichondrin B was found by testing various 

analogues of the molecule, which led to the synthetic eribulin with a simpler structure. 

 

Figure 8. Structures of halichondrin B and eribulin. Halichondrin B was isolated from the marine sponge 

Halichondria okadai, but is now known to be produced by symbiotic cyanobacteria. By testing analogues, the 

active part of Halichondrin B was found. This led to the synthesis of eribulin, a simpler structure of halichondrin 

B. Eribulin is in combination with mesylate an anticancer drug. The pink structure shows which part of 

halichondrin B is included in the synthetic eribulin [109]. 

When a lead compound is selected, the next step is animal testing to make sure it is safe and truly works 

before potentially entering clinical trials. Clinical trials are performed on humans and involve three 

phases. Phase I normally consists of a small group (20-100 people) of healthy people who are given 

small doses of the drug to test if it is safe. In phase II, the drug is given to a bigger group of people with 
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the disease (100-500 people). In this phase, the goal is to find the most effective dose and the best 

delivery method. Most drugs that fail, fail in phase II. In phase III, the drug is usually tested on 1000-

5000 people with the disease, to further evaluate the safety and benefits of the drug. If the drug passes 

phase III, it can be registered, approved and marketed. The drug will still be supervised while it is on 

the market, which is part of phase IV [110]. All the necessary steps make it difficult to get a compound 

from the laboratory to the pharmacy, so to develop more drugs, collaboration between academic and 

pharmaceutical companies is desired [111]. 

2 Discovery of natural products - the bioprospecting 
pipeline 

As reviewed by Blunt et al. (2016) [112], the cold regions (Arctic and Antarctica) are little explored in 

the search for natural products, and only 330 of the 25 700 reported marine natural products between 

1965 and 2014 were isolated from organisms originating from Arctic and Antarctica. This makes the 

Arctic a promising source in the search for novel bioactive compounds. In this project, marine 

microorganisms isolated from the Arctic ocean and the coast of the Northern Norway were cultivated 

under various conditions to explore their potential for production of bioactive secondary metabolites 

following the bioprospecting pipeline at Marbio (Figure 9). This pipeline follows a bioassay-guided 

isolation approach. In this approach, extracts/fractions of the fermented microorganisms are tested for 

bioactivities in selected bioassays and the active fractions are selected for further work. Dereplication 

of the active fractions/extracts is performed using ultra-high performance liquid chromatography-high 

resolution-mass spectrometry (UHPLC-HR-MS) and database searches to identify the compound(s) 

responsible for the observed activity. A compound with novel structure or novel bioactivity will be 

isolated with preparative-high performance liquid chromatography (prep-HPLC). The structure of the 

purified compound(s) is elucidated with HR-MS and nuclear magnetic resonance (NMR) spectroscopy 

before being retested in the bioassays to evaluate its bioactive profile. 

 

Figure 9. The bioprospecting pipeline at Marbio, which follows a bioassay-guided isolation approach. Adapted 

from a figure provided by Kine Ø. Hansen.  
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2.1 Fermentation and extraction of microorganisms 

Many of the secondary metabolite encoding genes in microorganisms can be silent under standard 

cultivation conditions. By changing the cultivation conditions, such as altering the temperature, light, 

pH, medium composition, shaking, culture flasks and using co-cultivation etc., the number of secondary 

metabolites produced by one strain can increase. Bode et al. (2002) [113] demonstrated this strategy and 

named it the One Strain-Many Compounds (OSMAC) approach. The theory is that various cultivation 

conditions can activate different enzymes responsible for the gene expression of secondary metabolites. 

The genes are usually regulated at transcription level, where the DNA is transcribed into messenger 

ribonucleic acid (mRNA), but they can also be regulated at translation level where the mRNA is used 

to assemble amino acids into a protein, or at protein level where the secondary metabolites are 

synthesized [114]. As shown by Bode et al. (2002), the fungus Sphaeropsidales sp. F-24.707, known to 

produce one antifungal spirobisnaphthalene, produced eight new and six known spirobisnaphthalenes 

when it was cultivated under different conditions. From only six different microorganisms, Bode et al. 

(2002) managed to isolate more than 100 compounds, demonstrating the potential of microorganisms to 

produce secondary metabolites and the importance of fermentation conditions. 

Liquid-liquid or liquid-solid phase extraction is often used for extraction of microbial secondary 

metabolites from the fermentation cultures. In liquid-liquid extraction the compounds are separated 

based on their solubility in two solvents that are immiscible or partially miscible, most often one organic 

and one inorganic solvent. In liquid-solid phase extraction, the analysts are transferred to the solid phase 

before being eluted from the solid phase with a liquid [115]. Adsorbent resin is commonly used for 

recovering secondary metabolites from fermentation cultures [116]. The secondary metabolites are 

transferred onto the resin before being eluted with an organic solvent such as methanol. Different types 

of resins can be used, such as Amberlite XAD, Sepabeads SP-850 and Diaion HP-20, which are non-

ionic and have affinity for hydrophobic and aromatic compounds [117]. 

2.2 Prefractionation 

Prefractionation is a process where crude extracts are fractionated into less complex samples prior to 

bioactivity testing. As crude extracts often are complex mixtures of numerous compounds, this step has 

the following advantages: 

 Lowers the chance of masking activity of secondary metabolites that most often are 

present in low amounts 

 Lowers the chance of a sample producing an active result caused by non-specific 

interactions between components and the assayed subject (e.g. a cell line) 
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Liquid chromatography, such as FLASH chromatography and HPLC, is a common method used for 

prefractionation of extracts. This separates the compounds based on their polarity, so the fractions end 

up with compounds with similar polarity. Normally, the gradient used during prefractionation will go 

from being highly hydrophilic to becoming highly lipophilic (or the opposite way if a normal phase 

column is used), to elute all compounds from the column. This causes hydrophilic sample components 

like salts and carbohydrates to elute early, while lipophilic sample components, such as cell wall lipids, 

will elute in the later fractions. Secondary metabolites normally have a medium lipophilicity, which 

makes them elute in fractions collected when the mobile phase holds a medium lipophilicity. It is also 

important not to divide the extract into too many fractions, as the active compound can be split into too 

many fractions, thus having too low concentration to display activity in the following bioassays [16]. 

2.3 Bioactivity testing 

Bioassays, an in vivo or in vitro assay setup, can be used to detect the presence of biologically active 

components in a sample. In the beginning of drug discovery, phenotypic bioassays were commonly used 

in the search for new drugs. In phenotypic screening, compounds or fractions are tested against cells, 

tissues or in animals to see if they have the wanted effects, without knowing their MMOA or their 

molecular targets. Penicillin was for example discovered because it killed bacteria, while the MMOA 

was determined years later [118]. With the introduction of recombinant technology and genomics, target 

based screening became a popular screening approach. A target can be a molecule known to be important 

in a disease (e.g. a kinase), a single gene or a molecular mechanism that has been identified. Compounds 

can be screened against these targets to see if they have an effect. Both methods have been successful 

in their own way, as phenotypic based screening has resulted in more first-in-class drugs, while target 

based screening has resulted in best-in-class drugs [119]. In this project, phenotypic screening was used. 

Bacterial and fungal extracts and purified compounds were tested against living bacteria, fungus and 

cancer cells (Figure 10) to evaluate their bioactivities. 
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Figure 10. Anticancer assay. Metabolic active cells reduce yellow tetrazolium salt 

added to the wells in the microtiter plate to a formazan product that is dark 

blue/purple. Hence, wells with samples without cytotoxicity turn dark blue, while 

wells with cytotoxic microbial fractions/compounds remain yellow and represent 

dead cancer cells. Photo: V. Kristoffersen. 

 

2.4 High performance liquid chromatography 

HPLC/UHPLC is a valuable technique in natural products research for separating compounds in a 

complex mixture. The chromatographic system consists of a mobile phase and a stationary phase. The 

sample is dispersed into the mobile phase, which is pumped through the stationary phase. This results 

in the compounds in the sample being separated based on their relative affinity towards the stationary 

phase.  

There are four primary HPLC separation methods: normal phase, reverse phase (RP), ion exchange and 

size exclusion. For the purpose of natural product isolation, RP-HPLC is most frequently used [120]. 

The most important component in the RP-HPLC system is the column packing material, which forms 

the base for the separation. Columns with C18 ligands attached to the matrix, commonly silica, is often 

used as a stationary phase for separation of natural products, where separation is mainly based on 

hydrophobic interactions between the compounds and the stationary phase. Other stationary phases 

widely used are fluorophenyl and phenyl-hexyl, which are good for separating aromatic groups due to 

different retention mechanisms [121]. Separation is achieved using an increasing concentration of an 

organic gradient, where methanol and acetonitrile are commonly used as organic solvents. The 

compounds in the polar mobile phase are pushed through the column and are retained by hydrophobic 

and Van der Waal force interactions with the C18 ligand in the column. Hydrophobic compounds such 

as fats and lipids are retained longer on the C18 stationary phase, while more polar compounds are 

eluted first [122]. To detect the compounds, ultraviolet/visible (UV/Vis) detectors or MS detectors can 
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be used. UV/Vis detectors measure the amount of ultraviolet or visible light that is absorbed by the 

compounds in the UV/Vis wavelength range (200–600 nm), while in MS the compounds are ionized 

and detected according to their molecular masses to charge ratio (m/z) [123].  

For isolation of compounds, prep-HPLC is commonly used, while UHPLC is preferred for analysis of 

natural product samples as it separates the compounds better. The better separation is achieved as 

UHPLC has a higher resolution than HPLC due to smaller particles with high surface area. The small 

particle size in the column makes the backpressure in UHPLC is much higher than in HPLC, with 600-

1400 bar versus 400-600 bar [120,124].  

2.5 Mass spectrometry and dereplication 

An important step when searching for novel compounds is to avoid spending time and resources on 

rediscovering known and redundant compounds. The process of identifying a known compound in a 

mixture is known as dereplication. This process normally includes UHPLC-HR-MS analysis and 

database searches [125,126].  

HR-MS is a sensitive, fast and accurate method where a small quantity of a sample is required for good 

analysis. The compounds are first separated by the UHPLC before being analyzed on an MS coupled to 

the UHPLC. Electrospray ionization (ESI) is a widely used technique for analysis of natural products. 

ESI transforms the compounds eluting from the UHPLC into ions and is a soft ionization technique 

resulting in little fragmentation, hence the intact molecule is usually present. A sample is dissolved in a 

polar solvent before it is directed into the ion source in the MS as a spray via a needle. Highly charged 

droplets are formed by a high electrical potential applied to the needle. The droplets are then vaporized 

by warm nitrogen gas, leading the droplets to break down, resulting in ions that desorb into the gas 

phase. The ions are then sent by an electrical field to the mass analyzer, for example a Q-TOF, a system 

that consists of a quadrupole MS (Q) combined with a time-of- flight MS (TOF). The two mass analyzers 

separate the ions based on their m/z values. A quadrupole MS consists of four cylindrical rods parallel 

to each other. These are connected to radio-frequency and direct current voltages. The ion beam is sent 

in at one end of the rod. At one voltage setting, only one m/z ion will pass through the quadrupole and 

reach the mass detector. In a TOF MS, the m/z is determined by the flight time of the ions. Ions are 

accelerated at the start of a flight tube so that all ions have the same kinetic energy. Ions with lower m/z 

ratio travel faster than ions with higher m/z and will reach the detector faster [127]. 

The HR-MS can provide the elemental composition in addition to fragment data (when MS/MS is used), 

which are useful for dereplication. The elemental composition can be used to search databases such as 

MarinLit, SciFinder, ChemSpider and Dictionary of marine natural products. Good databases are 

necessary for successful dereplication. A database search based on only the elemental composition can 
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lead to several compounds that need to be evaluated [128,129]. With the use of MS/MS, the ion can be 

fragmented and give additional information about the structure. In MS/MS, two mass analyzers can be 

linked to a collision cell, such as Q-TOF. The ion of interest is selected from the first MS before entering 

the collision cell where fragmentation occurs. The fragments are then analyzed by the second MS [127].  

Molecular networking is a powerful method to organize the fragment data based on fragments similarity 

and correlations between them, as similar compounds will have similar fragmentations. These fragment 

data can then be used to search MS fragment libraries like the Global Natural Products Social molecular 

networking (GNPS). Programs such as Cytoscape can be used to visualize the molecular network [130-

132]. 

Molecular networking has proven to be a valuable tool for identifying various compounds from marine 

microorganisms. As reported by Patiño et al. (2021) [133], molecular networking was used for 

identification of biosurfactants. They evaluated the production of biosurfactants from five marine 

bacteria and identified six biosurfactants. Dereplication of the bacterial extracts was performed using 

GNPS libraries, where one cluster identified various compounds in the surfactin family (Figure 11).  

 

Figure 11. Molecular network of compounds from the surfactin family, copied from Patiño et al. (2021) [148]. 

The nodes in the network cluster are connected due to the similar fragmentation patterns of the 

compounds. The nodes with orange color represent surfactin isoforms not identified by search in the 

GNPS libraries. Compounds can only be identified if their MS/MS spectra are available in the MS/MS 

libraries, so if compounds are not identified, it can mean that they are novel compounds, or that they are 

not present in the library. Molecular networking was also used to identify the novel antibacterial amino-

polyketide derivatives vitroprocines, produced by the marine bacterium Vibrio sp. [134], and Oppong-

Danquah et al. (2018) used molecular networking to analyze the metabolite diversity between co-

cultivated marine derived fungi and phytopathogens, and their respective mono-cultures. This revealed 

induced production of molecular network clusters in the co-cultivation cultures, including putative novel 

compounds [135]. 

https://www.frontiersin.org/people/u/552238
https://www.frontiersin.org/people/u/552238
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2.6 Structure elucidation 

Structure elucidation of natural products is an important, but not always straightforward process. As 

reported by Suyama et al. (2011) [136], 135 marine compounds were miss-assigned between 1981-2010, 

with the majority between 1996 and 2010. As described in paper I, Tedesco et al. (2016) [137] also 

miss-assigned a rhamnolipid structure. Structure elucidation of natural products commonly includes 

NMR spectroscopy combined with the structural information acquired from HR-MS analysis. 

2.6.1 Nuclear magnetic resonance spectroscopy 

NMR spectroscopy is a valuable technique in structure elucidation of natural products. The basis for 

NMR is that the nuclei of some isotopes have non-zero spins (I) that can be manipulated by radio-

frequency pulses and detected. Regarding natural products, proton NMR and carbon NMR are the most 

useful NMR methods, as natural compounds contain hydrogens and carbons. The most abundant 

hydrogen isotope, 1H (natural abundance 99.98 %) has spin number I= ½. The most abundant carbon 

isotope 12C (~98.9% abundance), has zero-spin and cannot be used in NMR. Carbon isotope 13C on the 

other hand (natural abundance 1.1 %), has spin number ½ and can be used in NMR. The number of 

orientations a nucleus can have in an external magnetic field is 2I +1. For example will 1H and 13C with 

spin number ½ have two energy levels. When the sample is placed into a strong magnetic field, and at 

the same time is exposed to radiofrequency radiation, the nuclei of the compound can be perturbed to 

create a spin coherence. Their magnetic moments will then precess at their resonance frequency and a 

spectrum can be acquired. Chemical shifts and spin-spin coupling give rise to signals with splitting 

patterns resulting from their coupling constants, and is very useful for interpreting proton NMR spectra. 

Another important feature in proton NMR is that integration of the signals gives the relative number of 

protons in each signal. In carbon spectra, proton decoupling is applied to remove the proton couplings 

so that 1H does not split the 13C signals. This, together with little spin-spin coupling due to the low 13C 

abundances, makes the carbon NMR spectrum relatively simple, with sharp signals for each chemically 

nonequivalent carbon [138].  
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3 Aim of the project 

The aim of this project was to use the OSMAC approach to explore Arctic marine microorganisms for 

their production of bioactive secondary metabolites and characterize isolated metabolites. 

The objectives were 

 Ferment Arctic marine microorganisms under different cultivation conditions 

 Screene fractionated fermentation extracts for antibacterial and cytotoxic activities 

 Dereplicate active fractions to identify bioactive compound(s) 

 Isolate the active compound(s) 

 Structure elucidate the isolated compound(s) 

 Screen purified compound(s) for antibacterial and cytotoxic activities 
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4 Summary of papers 

4.1 Paper I 

Characterization of Rhamnolipids Produced by an Arctic Marine 

Bacterium from the Pseudomonas fluorescence Group 

Venke Kristoffersen, Teppo Rämä, Johan Isaksson, Jeanette Hammer Andersen, William H. Gerwick and Espen 

Hansen  

Marine Drugs 2018, 16(5), 163  

An Arctic marine bacterium from the Pseudomonas fluorescence group, strain M10B774, isolated from 

an Atlantic halibut in the Norwegian Sea, was fermented in four different media, M19, VR_1, VR_2 

and SGC, using the OSMAC approach in an attempt to induce the production of antibacterial and 

cytotoxic compounds. Fermentation extracts were fractionated and tested for antibacterial and cytotoxic 

activities, revealing different bioactivity profiles of the fractions from the four media. One M19 fraction 

was active against the three tested gram-positive bacteria and had also cytotoxic activities against cancer 

cells. One VR_2 fraction was active against two gram-positive bacteria, while one VR_1 fraction was 

active against one gram-positive bacterium. The fractions from the SGC medium did not have any 

bioactivities, and none of the tested fractions had antibacterial activities against gram-negative bacteria. 

MS/MS network analysis of the active VR_2 fraction resulted in a molecular network with one cluster 

exclusive to the active fraction where one node matched a rhamnolipid standard present in the GNPS 

library. Clustering of the compounds indicated that they were likely related rhamnolipids. UHPLC-HR-

MS analysis revealed that the suspected related rhamnolipids were present both in active M19 and VR_1 

fractions, but not in the inactive SGC fractions, and that highest amount of rhamnolipids was found in 

the M19 fraction. Hence, this medium was selected for upscaling and isolation. Six related compounds 

were isolated. The structures were elucidated with NMR and were confirmed to be one rhamnolipid 

lipid moiety and five mono-rhamnolipids, including one mono-rhamnolipid with novel structure (Figure 

12).  

The isolated compounds were tested for antibacterial, antibiofilm and cytotoxic activities. All six 

compounds had antibacterial and antibiofilm activities, while 2, 4 and 6 also had cytotoxic activities.  

Using the OSMAC approach on Lacinutrix sp. resulted in the production of different amounts of 

rhamnolipids in the four different media, and subsequently different bioactivity profiles, demonstrating 

the effect of altering cultivation conditions. Molecular networking proved to be a good approach for 
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identifying related compounds, and it was the first time rhamnolipids from a Pseudomonas fluorescence 

group bacterium were described. 

 

Figure 12. Structures of compounds 1–6 isolated from Pseudomonas sp. Compound 3 was described for the first 

time. 
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4.2 Paper II 

Two Novel Lyso-Ornithine Lipids Isolated from an Arctic Marine 

Lacinutrix sp. Bacterium 

Venke Kristoffersen, Marte Jenssen, Heba Raid Jawad, Johan Isaksson, Espen H. Hansen, Teppo Rämä, Kine Ø. 

Hansen and Jeanette Hammer Andersen.  

Molecules 2021, 26(17), 5295. 

The Arctic marine bacterium Lacinutrix sp. strain M09403 was isolated from a Halichondria sp. sponge 

collected in the Barents Sea. The bacterium was cultivated in M19 medium before fractionated 

fermentation extract was screened for antibacterial activities, revealing one fraction with activities 

against gram-positive bacteria. UHPLC-HR-MS analysis of the active fraction and the inactive fractions 

4 and 6 revealed two compounds, 1, with elemental composition C20H40N2O4 and 2, with elemental 

composition C21H42N2O4 exclusively present in the active fraction. UHPLC-HR-MS analysis showed 

that 1 eluted as three peaks and 2 as two peaks. NMR analysis and fragmentation pattern from the 

UHPLC-HR-MS suggested that they were stereoisomers. It was not possible to separate the individual 

isomers on the prep-HPLC due to low chromatographic resolution. The 2-dimentional structures of the 

isolated compounds, two lyso-ornithine-lipids, are shown in Figure 13. The difference between the 

structures is one CH2 group more in the lipid chain of 2. The purified compounds were tested for 

antibacterial and cytotoxic activities. Compound 1 had antibacterial activities against gram-positive 

bacteria, in particular against Streptococcus agalactiae, while 2 had cytotoxic activity against A2058 

human melanoma cells. The different activities between the two compounds show the effect of different 

lipid chain length. As the lyso-ornithine lipids are amphiphilic, their activities are suspected to be due 

to interactions with the membranes of the target cells. This was the first bioactive molecules reported 

from Lacinutrix sp., showing lyso-ornithine lipids with cytotoxic activity and with antibacterial activity 

against gram-positive bacteria. 

 

Figure 13. Structures of lyso-ornithine lipids 1 and 2. 
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4.3 Paper III 

Chlovalicin B, a Chlorinated Sesquiterpene isolated from the 

Arctic marine mushroom Digitatispora marina 
 

Marte Jenssen , Venke Kristoffersen, Kumar Motiram-Corral , Johan Isaksson , Teppo Rämä , Jeanette H. 

Andersen , Espen H. Hansen and Kine Østnes Hansen. 

In preparation 

Digitatispora marina, a marine basidiomycete fungus was isolated from Betula sp. driftwood collected 

at Vannøya, Norway. The fungus was cultivated under different conditions as part of a screening 

program at Marbio. Fractionated extracts of the fungus had antibacterial and cytotoxic activities. 

UHPLC-HR-MS analysis of the fractions showed a compound with the characteristic chlorine isotopic 

pattern in a 3:1 ratio with elemental composition C15H23O5Cl. It was isolated with prep-HPLC before 

structure elucidated with NMR. The compound was determined to be chlovalicin B (Figure 14), a novel 

variant of the previously isolated compound chlovalicin. Chlovalicin, differing from chlovalicin B with 

a methoxy group in the C3 position where chlovalicin B has a hydroxyl group had previously been 

isolated from the fungus Sporothrix sp. Chlovalicin B was screened for antibacterial activity in a growth 

inhibition assay against five pathogenic bacterial strains, the gram-positive Staphylococcus aureus, 

Enterococcus faecalis, Streptococcus agalactiae and the gram-negative Pseudomonas aeruginosa and 

Escherichia coli. It was tested for inhibition of biofilm formation of Staphylococcus epidermidis and for 

cytotoxicity against the malignant A2058 human melanoma cell line and the non-malignant lung 

fibroblast MRC-5 cell line in an anticancer assay. It was also tested for antifungal activity against 

Candida albicans. Chlovalicin B had no antimicrobial activities at concentrations up to 100 µM and 

weak activity against the A2058 cells, with ~50% cell survival at 50 µM, the highest test concentration. 

It had no activity against the MRC-5 cell line at 50 µM. Chlovalicin had previously been reported to 

display activity against the mouse melanoma cell line B16, with IC50 = 37 µM, which can indicate that 

the chlovalicins affect a common cellular target in melanoma cell lines. 

 

Figure 14. Structure of chlovalicin B.  
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5 Discussion  

As described throughout the introduction, miccrooganisms have been essential sources for antibiotics 

and anticancer drugs for many years. Most of the drugs originate from terrestrial species, but marine 

microorganisms have also contributed to vital drugs used today. Arctic marine microorganisms were 

grown under different cultivation conditions in this project. This resulted in the isolation of rhamnolipids 

in paper I, one with novel structure, two novel lyso-ornitine lipids in paper II, and the novel compound 

chlovalicin B in paper III, isolated from the bacteria Pseudomonas sp. and Lacinutrix sp., and the fungus 

Digitatispora marina, respectively. The rhamnolipids and lyso-ornithine lipids had moderately 

antibacterial and cytotoxic activities, while chlovalicin B had some cytotoxic activity. 

5.1 Selection of microorganisms 

The microorganisms used in this project were sampled from the Arctic. The bacteria were collected 

from the Arctic waters by Marbank, the national marine biobank of Norway, while the fungus was 

collected as a project to explore the diversity of fungi growing on wooden logs along the coast of 

Northern Norway [139]. The foundation for selecting marine microorganisms in the search for novel 

antibacterial and cytotoxic compounds was that microorganisms have been the source for most of the 

antibiotics used today, in addition to several anticancer agents as mentioned in section 1.2. As the marine 

environment is less explored than the terrestrial environment, marine microorganisms represent an 

underexplored source, which can increase the chances of discovering novel bioactive compounds from 

these microorganisms.  

Diverse Arctic marine microorganisms were screened for antibacterial and cytotoxic activities as part 

of a screening program at Marbio. The three microorganisms used in this project displayed antibacterial 

and/or cytotoxic activities in this initial screening and were thus selected for further studies.  

Pseudomonas spp. belonging to the Gammaproteobacteria class have been isolated from both marine 

and terrestrial environments and are known to produce various bioactive compounds [140-143]. The 

two other microorganisms, Lacinutrix sp. from the Flavobacteriia class and Digitatispora marina from 

the Basidiomycota division have exclusively been isolated from the marine environment and had as 

reported in paper II and III, respectively, not previously been assessed for their production of secondary 

metabolites. The examination of the three microorganisms resulted in the isolation of several bioactive 

novel compounds. This demonstrates that exploring Artic marine microorganisms is a valid strategy for 

discovering compounds with novel chemistry.  

One objective of this project was to isolate compounds with antibacterial and cytotoxic activities. It was 

not stated in the aim of the project, but the overall goal was as might be expected to discover compounds 
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that could potentially become anticancer agents or drugs. However, the activities of the isolated 

compounds were not sufficient to be considered as potential drug leads compared to marketed antibiotics 

and cancer drugs [144,145]. The microorganisms were selected for further work based on observed 

bioactivities of fractionated extracts. Other criteria could have been considered, for example the genome 

size and the presence of BGCs. Although no BGCs were described and no NRPS and PKS products 

were isolated in this project, they have been the source for many drugs and are central in the search for 

new drugs as mentioned in section 1.3.1, and will thus be included in this discussion. 

As reported by Donadio et al. (2007) [41], the genome size is important for the presence of BGCs. 

Donadio et al. (2007) analyzed 223 bacterial strains and found that bacteria with genome size less than 

three Mbp seem to not display the genes for PKS and NRPS. Considering the genome size of the bacteria 

used in this project, the assembled genome of Lacinutrix sp was 3.6 Mbp, while Pseudomonas sp. was 

not fully genome sequenced. Cho et al. (2015) [146] analyzed 11 different strains within the 

Pseudomonas fluorescence group where the genomes ranged from 5.9-7.1 Mbp. Assuming the genome 

of Pseudomonas sp. is within this range, the genome sizes of the two bacteria indicate that they should 

have the potential to produce a diversity of secondary metabolites. Lacinutrix sp. was subjected to 

genome mining and was analyzed with antiSMASH and PRISM for the presence of PKS and NRPS 

gene clusters, but no such structures were predicted (data was not included in paper II). This shows that 

even if the genome size is within the range of containing the genes for NRPS and PKS, they may not be 

part of the genome. 

Considering the genome size and presence of BGCs of bacteria known to have produced numerous 

bioactive secondary metabolites, actinomycetes from the Actinobacteria class have large genomes, 

ranging from five to nine Mbp [147]. Around 40-50 % of all bioactive compounds discovered today are 

produced by actinomycetes, mainly Streptomyces, and 75% of marketed antibiotics are derived from 

Streptomyces [147-149]. The genus Streptomyces has genome size around 8-9 Mbp and is known to 

have at least 20-30 BGCs [150,151]. Low et al. (2018) reported a Streptomyces sp. with 52 BGCs [152], 

hence the genetic diversity within one species can differ substantially. Cyanobacteria have also been 

the source for numerous secondary metabolites, as more than 2010 secondary metabolites, including 

450 from marine species have been characterized [153,154]. Leao et al. (2017) [155] analyzed four 

strains from the genus Moorea, which has produced more than 40% of all natural products reported from 

cyanobacteria. These four strains had the genome size ranging from 8.37-9.71 Mbp, with 33 to 44 BGCs 

per genome. Dolastatin 10, which is a component in several anticancer drugs as described in section 

1.2.1 is for example produced by cyanobacteria, and several compounds from cyanobacteria are in 

clinical trials as anticancer drugs [49]. Myxobacteria have also been a rich source of secondary 

metabolites, mainly PKS and NRPS products, with various bioactivities which includes antibacterial, 
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anticancer, antifungal and antioxidant activities. Myxobacteria have some of bacteria’s biggest 

genomes, the Sorangium strain So ce56 has for example a 13Mbp genome with 17 BGCs [156,157].  

The genome of Digitatispora marina was sequenced and the assembled genome was 36.89 Mbp. It was 

not analyzed for the presence of BGCs, but comparing the genome size with fungi known to be prolific 

producers of bioactive secondary metabolites, such as Penicillium, Aspergillus and Fusarium, there is 

no reason it should not have BGCs and the potential to produce various secondary metabolites. 

Penicillium, Aspergillus and Fusarium are well studied filamentous fungi from the Ascomycota division 

[158] with varying genome sizes and number of BGCs. Yang et al. (2016) [159] analyzed 13 Penicillium 

spp. and found that their genome size ranged from 24.2 to 39.5 Mbp. The genome size of Aspergillus 

ranges from 28 to 40 Mbp [160] and the Fusarium genome ranges from 36.4 Mbp to 50.4 Mbp [161]. 

Vesth et al (2018), [162] analyzed 37 Aspergillus and Penicillium genomes and identified 2717 BGCs, 

which can explain the remarkable production and diversity of secondary metabolites from these fungi. 

Penicillium has been the source for various drugs, including the antibiotics penicillins, the antifungal 

griseofulvin and mevastatin for lowering cholesterol [163]. Numerous compounds with various 

bioactivities have been isolated from Aspergillus, including the cholesterol lowering drug lovastatin 

[164]. Li et al. (2020) [161] reviewed the secondary metabolite production from Fusarium and found 

that 678 secondary metabolites had been isolated as of December 2019, with 272 exclusively to 

Fusarium. These metabolites include NRPS and PKS products [165].  

Digitatispora marina belongs to the Basidiomycota division which is less studied than Ascomycota. 

Basidiomycetes are known to produce compounds belonging to the major secondary metabolite classes. 

Many compounds are produced by terrestrial fungi from this division, including pleuromutilin, which is 

the source for lefamulin, a new class of antibiotics that was FDA approved in 2019 [166]. There are also 

promising anticancer drugs originating from Basidiomycota, such as irofulven, a semisynthetic 

compound initially isolated from a terrestrial Omphalotus illudens. It did not pass the clinical trials, but 

it shows the potential of basidiomycetes as producers of bioactive metabolites [167,168].  

5.2 One strain-Many compounds 

As biosynthetic gene clusters can be silent under standard cultivation conditions, the OSMAC approach 

was used in this project as an attempt to induce or/and enhance the expression of these genes, and thereby 

the production of their corresponding secondary metabolites. As reported in paper I, Pseudomonas sp. 

was fermented in four different media M19, VR_1, VR_2 and SGC. The components of the four media 

are depicted in table 4 in paper I. The three first media are rich nutrient media where the main differences 

are the carbon source and nitrogen source which are known to affect the production of secondary 

metabolites [148,169]. In the VR_2 medium, iron and bromine were added. Iron contributes to regulate 
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the genes responsible for secondary metabolite synthesis, which affects the production of secondary 

metabolites [170,171]. Brominated compounds from the marine environment are known to display 

various biological activities such as anticancer [172,173], antibacterial [174,175] and anti-inflammatory 

[176] activities. Hence, the theory was that adding bromine and iron to the VR_2 medium would 

increase the production of brominated and bioactive secondary metabolites. The SGC medium was a 

low nutrient medium. The metabolite production occurs in the end of the growth phase and in the 

stationary phase when nutrition is depleted [77,78], hence, the concept was that a medium with little 

nutrients would stress the bacteria into producing secondary metabolites.  

The use of the OSMAC approach on the Pseudomonas sp. resulted in fractionated fermentation extracts 

with various bioactivities, where a fraction from cultivation in the M19 medium had most activities. 

Lacinutrix sp. in paper II was fermented in the same media as Pseudomonas sp., excluding the SGC 

medium. The fraction from fermentation in the M19 medium had strongest antibacterial activities and 

was selected for further work. Based on the observed bioactivities from the flash fractions of 

Pseudomonas sp. and Lacinutrix sp., adding bromine and iron to the VR_2 medium did not increase the 

production of more antibacterial and cytotoxic compounds. 

Many bacteria were fermented in the SGC medium as part of the screening project of Artic marine 

microorganisms at Marbio. The biomass yield was in general low, and the fractions showed little 

bioactivities (data not shown). It is possible that the medium had too little nutrition and that the bacteria 

never entered a proper exponential growth phase. However, low nutrition media could have the potential 

for stressing the bacteria into producing secondary metabolites, if a suitable low nutrient medium is 

used.  

The co-cultivation approach was used on Digitatispora marina in paper III. The fungus was cultivated 

both as mono-cultures and co-cultures with an Arctic marine bacterium. HR-MS analysis revealed that 

D. marina did not show a clear response to the co-cultivation, hence, the co-cultivating data was not 

included in paper III. Our experience was that it takes time and effort to find the correct ratio of the 

fungus and the bacterium for how to induce the production of secondary metabolites. The results show 

that the co-cultivation procedure used in this project could be optimized and confirms that co-cultivation 

does not necessarily affect the production of secondary metabolites. Other co-cultivation conditions 

could have resulted in the production of more secondary metabolites, as co-cultivation of marine 

microorganisms has been reported to enhance and induce the production of anticancer, antibacterial and 

antifungal compounds among others [74,177-179]. Options could be to add the co-cultivating 

microorganism at different ratios or at different times, co-cultivate several microorganisms together, use 

different growth media etc. Another factor to consider, particularly for the slow-growing D. marina, is 
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that slow growth increases the chances of bacteria outgrowing the fungi. One way to overcome this issue 

is adding bacterial lipopolysaccharide (LPS) instead of living bacteria cells. LPS is the major component 

present in the outer membrane of gram-negative bacteria and are known to affect the production of 

secondary metabolites in some fungi [180,181]. By using LPS instead of living bacteria, the bacteria 

will not overtake the cultures. In addition, by using LPS, you will know which organism is the true 

producer of observed secondary metabolites. It is also possible to co-cultivate the microorganisms 

without physical contact between them, for example by growing them in a vessel where they can be 

separated with a filter that allows for exchange of chemical signals and metabolites between the different 

microorganisms [182].  

In this project, liquid cultures were used in the OSMAC approach, followed by extraction. This is a 

common method for upscaling and harvesting microbial secondary metabolites [183-190]. 

VanderMolen et al. (2013) evaluated terrestrial fungi grown on solid media and in liquid cultures. They 

found that the biomasses of fungi grown on solid medium were larger compared to the biomasses 

obtained from fermentation in liquid medium. The production of two marker compounds were also 

lower in the liquid cultures [191]. Shomura et al. (1979) [192] reported that some soil actinomycetes 

only produced antibiotics during solid medium fermentation, and not in liquid cultures. These studies 

involved terrestrial species, but the results might also apply to marine microorganisms. Hence, including 

solid fermentation in the OSMAC approach could potentially lead to the discovery of more bioactive 

secondary metabolites. 

5.3 Bioassay-guided isolation  

5.3.1 Identification of compounds 

The bioassay-guided isolation approach was used in this project, and identification of the isolated 

compounds was performed by UHPLC-HR-MS analysis of bioactive fractions. The compounds isolated 

in the three papers were identified based on prominent peaks in the HR-MS chromatograms, molecular 

networking and isotopic pattern. Rhamnolipid 2 in paper I was a prominent peak exclusive in the HR-

MS chromatogram of the active fraction from the M19 medium, shown in Figure 15.  

Figure 15. Base peak intensity HR-MS chromatogram of fraction 5 from M19 medium. Rhamnolipid 2 was 

one of the major peaks in the active fraction, shown as the dimer [2M + H], m/z 1009.6737. 
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The active VR_2 fraction which also contained 2 was subjected to molecular networking for further 

analysis and dereplication (Figure 16). The nodes in the molecular network were connected due to 

similar fragmentation patterns of the compounds. Molecular networking proved to be an efficient 

approach for identifying similar compounds based on MS/MS fragmentation pattern, as several 

rhamnolipids were identified in the fraction. 

Figure 16. Molecular network cluster of rhamnolipids from Pseudomonas sp. The 

five blue nodes and 555.935 and 581.956 represent rhamnolipids. 

 

The lyso-ornithine lipids isolated in paper II were among the most prominent peaks in the HR-MS 

chromatograms of the active fraction as displayed in Figure S3 in paper II. On the UHPLC-HR-MS it 

was possible to detect 1 as three isomers and 2 as two isomers. However, the isomers could not be 

separated from each other on the prep-HPLC due to lower chromatographic resolution. It is possible 

that HPLC column with a chiral stationary phase could have separated them, but this was not tested 

[193]. 

It was decided to isolate chlovalicin B described in paper III as the mass specter displayed the chlorine 

isotopic 3:1 ratio pattern (Figure 17). Many marine secondary metabolites contain halogens, mainly 

bromine and chlorine, due to the relatively high concentrations of these halogens in the sea, compared 

to the soil [194,195]. The presence of chlorine(s) is known to affect the bioactivity of some compounds. 

For example two chlorines are needed in the antibiotic vancomycin for its bioactivity, and 

salinosporamide A in phase III clinical trial as anticancer agent has one chlorine substituent that is 

required for its activity [196].  
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Figure 17. Chlorine isotopic pattern of chlovalicin B: [M+Na]+, m/z 341.1132 and 343.1103. 

 

The formation of non-covalent dimers and proton and sodium adducts are often observed in electrospray 

ionization and can complicate the assignment of the molecular mass in the MS-spectra [197]. The 

formation of adducts depends on the concentration and on the energies in the ion source [128]. The 

microorganisms were fermented with sea salt and/or seawater containing sodium, possibly increasing 

the concentration of sodium in the samples Sodium from glassware were samples are prepared and 

stored can also be transferred to the samples. The base peak of chlovalicin B was the sodium adduct, 

while the proton adducts were the base peaks for the lyso-ornithine lipids. Different adduct pattern due 

to different ion sources was observed, e.g. the protonated dimer of rhamnolipid 2 was the base peak in 

the Q-TOF, while the sodium adduct was the base peak on the prep-HPLC-MS.  

Additional, as described in paper I, some of the nodes in the rhamnolipid molecular network represented 

di-rhamnolipid not present in the sample. Their appearance were likely due to dimerization in the HR-

MS, as the rhamnose moiety can detach from the lipid moiety in the ion source and react with a mono-

rhamnolipid to form a di-rhamnolipid.  

Another factor complicating the identification of the active compound is that the size of the peaks in the 

chromatograms depends on the ionization efficiency of the compounds. With the use of ESI, the 

compounds´ efficiency to ionize in a solvent can give results that differ by several orders of magnitude 

from the same concentration of different compounds, so the highest peak is not necessary the most 

abundant compound in a sample [198]. Hence, compounds that might be bioactive can have low 

ionization efficiency, which can lead to no signal on the HR-MS, or they can have so low signal that 

they are considered too minor to be essential for the bioactivity and consequently not selected for 

isolation.  
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The compounds isolated in this project were isolated based on their MS signals. Some compounds do 

not ionize and cannot be detected on the MS. To overcome this problem, UV/Vis can sometimes be 

used. To be detected by the UV/Vis detector, the compounds must have a chromophore so that they can 

absorb light in the UV/Vis region (wavelength 200-600 nm) [123].  

5.3.2 Bioactivity of isolated compounds 

The bioassays used in this project were phenotypic, as the screening included gram-positive and gram-

negative bacteria, fungus and human cells, where the MMOA of the bioactive compounds were 

unknown. This is an advantage as compounds with various MMOA can be identified.  

The rhamnolipids and lyso-ornithine lipids described in paper I and II, respectively, had various 

antimicrobial activities against gram-positive bacteria and cytotoxic activities against cancer cells. No 

activities were seen against the gram-negative bacteria for any of the tested compounds, which is likely 

due to the outer LPS layer of gram-negative bacteria, making it more difficult for the bioactive 

compounds to access the target`s membrane [180].  

The rhamnolipids and lyso-ornithine lipids are biosurfactants and were isolated without knowing their 

MMOA. However, biosurfactants are known to affect the membrane of target cells due to their 

amphiphilic structure, by binding to the membrane of the targets and disrupt it [199]. Biosurfactants 

have been studied for use in the pharmaceutical industry, but only a few are used as drugs, such as the 

antibiotics daptomycin and polymyxin B and E. These antibiotics are cyclic lipopeptides and structurally 

very different from the biosurfactants discovered in this project, with a much bigger head group and 

consequently a higher molecular weight. Daptomycin consists of 13 amino acids, 10 that form a circle, 

linked to a fatty acid [200], while polymyxin B and E consist of 10 amino acids where seven form a 

circle, linked to a fatty acid [201]. Although biosurfactants are not widely used as pharmaceuticals today, 

they might have potential in the future as the research continues.  

Chlovalicin B described in paper III had weak cytotoxic activity against cancer cells and no 

antimicrobial activities. Chlovalicin (with a methoxy group in the C-3 position of the cyclohexane ring 

versus a hydroxyl group for chlovalicin B) has showed cytotoxic activity against a different melanoma 

cell line used in this project, in addition to osteoclastogenesis inhibition activity [202,203]. The different 

substituents of the cyclohexane ring can potentially affect the bioactivities, but even though chlovalicin 

B was not very active in the tested bioassays, it is possible that it has other bioactivities. 

The bioassay-guided isolation approach used in this project did not lead to the isolation of compounds 

with potential to become antibiotic or anticancer drug leads, but this approach has previously been 

successful in the discovery of potential drug leads. Fractionated extract of the cnidarian Thuiaria 
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breitfussi showed cytotoxic activity in the anticancer bioassay, leading to the identification and isolation 

of breitfussins in 2012 (personal communication with Kine Ø. Hansen). The breitfussins are now being 

developed and investigated as kinase inhibitors [204].  

Bioassay-guided isolation is preferred when you are looking for a compound with specific bioactivity. 

However, it means that compounds with interesting chemistry that are not active in the selected 

bioassays are not detected. As chlovalicin B only had very weak cytotoxic activity, it was not responsible 

for the observed activity of the D. marina fraction in the initial screening and would not have been 

discovered if other compounds in the fraction had not been active. Another approach frequently used 

for isolation of compounds is chemistry-guided isolation. In this approach, UHPLC-HR-MS can be used 

to examine the fraction or extract for compounds with interesting chemistry, such as halogenated 

compounds, or if you are looking for specific functional groups. The isolation of the compounds is then 

motivated by the chemistry of sample components, versus bioassay-guided isolation where isolation is 

performed based on observed activity of a fraction or extract.  

In the fraction where chlovalicin B was isolated from, two other compounds were also suspected to be 

responsible for the activities in the initial screening (data not shown). However, isolation of these two 

compounds proved to be challenging as they eluted very close to each other. Due to the slow growing 

D. marina, low yield of biomass and metabolites, time limitations and the fact that we isolated 

chlovalicin B that was suspected to be a bioactive component, this project was put on hold.  

5.4 Sample supply and yield 

In natural products research, one issue is the sample supply. Regarding plants and invertebrates that are 

the origin of many drugs, large amounts of the organisms must sometimes be sampled to obtain enough 

material for research. One example is bryostatin 1, isolated from the bryozoan Bugula neritina collected 

in waters off the California coast. To obtain 18 g of bryostatin 1, 13 000 kg of the bryozoan was collected 

over several years [205]. Collecting organisms is expensive, and the conditions in the sea varies. 

Different environmental conditions affect both the production of secondary metabolites and the presence 

of living organisms, so the macroorganism itself may not be harvested in the next sampling, and if it is 

harvested, the wanted compound may not be produced [206]. When working with microorganisms, it is 

in theory possible to overcome the supply issue by growing as much of the microorganisms in the 

laboratory as needed to achieve enough of the wanted compound. However, some microorganisms 

cannot be grown, or are difficult to grow in the laboratory. Some microorganisms grow slowly and 

produce small amounts of the secondary metabolite, making large-scale production laborious.  

For example, basidiomycete cultures are known to grow slowly and to have low yields [207]. This was 

also the experience with Digitatispora marina in paper III. The fungus was cultivated for more than four 
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months, and from a total of 30 L culture, 0.6 mg of chlovalicin B was isolated. Comparing with the 

bacteria, Pseudomonas sp. in paper I and Lacinutrix sp. in paper II were cultivated for 2-3 weeks before 

extraction. Rhamnolipid 2 produced by Pseudomonas sp. was the compound with highest yield/ L 

culture of all the isolated compounds, with around 300 mg isolated from around 17 L culture. This 

demonstrates that the yield of secondary metabolites produced by the microorganisms can differ largely. 

One solution for slow growing microorganisms and/or with low yield can be genetic modification. 

Bailey et al. (2016) [208] increased the yield of pleuromutilin after reconstruction of the biosynthetic 

pathway into the heterologous host Aspergillus oryzae, a fungus that also grows faster than the original 

pleuromutilin producing basidiomycete.  

Cultivation and isolation challenges are reasons why marine myxobacteria have not been explored 

much. They grow slowly and are thus outgrown by other organisms during the isolation process, and 

they cannot be cultivated in rich media as this results in poor cell density [157]. Hence, promising 

microorganisms may not be investigated for the production of secondary metabolites, as it demands 

a lot of work and resources. 

6 Conclusion 

The use of the OSMAC approach showed that different growth media affected the production of 

bioactive compounds. This approach led to the isolation of compounds with novel chemistry. The 

isolated compounds may not seem too interesting since they did not display sufficient antibacterial or 

cytotoxic activities to have the potential to become drug leads. However, it is important to publish these 

results and include the compounds in the databases. This will help to make the dereplication process 

faster for all natural products researchers. In addition, studying them, so-called basic research, to get a 

better understanding of their function and properties, may result in the compounds being useful in the 

pharmaceutical industry or in other applications one day. In addition, we acquire more knowledge about 

what compounds the various microorganisms are capable of producing.  

Molecular networking proved to be a valuable tool for dereplication, as related compounds clustered 

together based on their similar MS/MS fragmentation patterns. This was visualized as connected nodes 

in a molecular network, which resulted in rapid identification of several rhamnolipids. 

Working with Digitatispora marina revealed some challenges in the search for novel secondary 

metabolites. The fungus grew slowly, had low yield, and promising compounds were challenging to 

isolate. In addition, co-cultivation with a bacterium did not result in the detection of more secondary 

metabolites. However, D. marina was only cultivated in one medium and in co-cultivation with one 
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bacterium, which led to the isolation of the novel compound chlovalicin B, indicating it is a promising 

source for novel secondary metabolites. 

The relatively small genome size of Lacinutrix sp. and the genome mining not identifying any BGCs 

for NRPK and PKS may not make it the best choice in the search for secondary metabolites. 

Pseudomonas sp. and Digitatispora marina on the other hand are still considered to have the potential 

to produce even more interesting chemistry than was discovered in this project, if other cultivation 

conditions are used. There is no reason to believe that the chemical diversity of marine organisms is not 

equally rich to that of terrestrial organisms, so the likelihood of discovering novel secondary 

metabolites may not be limited by the capacity of the microorganisms to produce them, but by the 

research approach. 

7 Further work and personal considerations 

Rhamnolipids are widely studied, so no more effort will be put into this project. Pseudomonas sp. 

produced relatively large amounts of rhamnolipid 2, so it could be possible to replace it with the 

pathogenic P. aeruginosa for industrial production of rhamnolipids. This is out of the scope of our 

research group, but it is worth to have in mind. 

The lyso-ornithine lipids were isolated as isomers as it was not possible to separate them on our prep- 

HPLC system. It would be possible to try to separate them with HPLC using a chiral stationary phase 

[193]. However, as the compounds did not have strong antibacterial or cytotoxic activities, the project 

has at the moment ended. 

Chlovalicin B will be tested in other bioassays. As two other interesting compounds produced by 

Digitatispora marina have not been isolated yet, more effort will be put into isolating them and more of 

chlovalicin B. If any of the compounds turn out to be bioactive, MMOA studies will be performed. D. 

marina was only grown in one medium and in co-cultivation with one bacterium, so other media and 

co-cultivation conditions will be tried, including solid medium. This might induce and/or enhance the 

production of secondary metabolites, increase the yield or make the fungus grow faster.  

After working with microorganisms, gaining more experience and knowledge, I think an important 

object in the search for microbial secondary metabolites is the selection of microorganisms. Going 

through the collection of microbial strains at Marbank, it contains few strains of the mentioned 

microorganisms known to be prolific producers of bioactive secondary metabolites. This shows that if 

the aim is to explore specific microorganisms, it is important to start the selection already in the sampling 

and isolation process, by using isolation methods specific for the wanted microorganisms [209-211].  
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Another important approach in my opinion is to sequence the microbial genomes and analyze them for 

BGCs. At least if you work with microorganisms were the genome size and presence of BGCs are not 

known. As long as the microorganisms display BGCs, they will be interesting to explore for the 

production of secondary metabolites. For example teixobactin isolated from Eleftheria terrae is 

synthesized by two NRPSs [212]. This potential antibiotic would not have been discovered if the 

strategy was to focus on species known to be prolific producers of secondary metabolites. Genome 

mining of Penicillium, Aspergillus and Streptomyces have revealed that they all have BGCs, including 

NRPS, PKS and hybrid PKS-NRPS, where the corresponding products are not known [213-215]. In a 

study of Grijseels et al. (2017) [163], genome mining identified 10 Penicillum spp. with a high diversity 

of BGCs. Analysis of secondary metabolite production revealed that the production varied when the 

Penicillium spp. were cultivated in two different media. Hence, I believe the combination of genome 

mining and OSMAC represents a promising approach to investigate both well studied and less studied 

microorganisms for the production of novel bioactive compounds. With the evolving crisis of antibiotic 

resistant microbes and the increase in cancer deaths, new drugs are in high demand and all potential 

sources should be explored. 

 

“Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that 

we may fear less.” –Marie Curie 
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Abstract: The marine environment is a rich source of biodiversity, including microorganisms that
have proven to be prolific producers of bioactive secondary metabolites. Arctic seas are less explored
than warmer, more accessible areas, providing a promising starting point to search for novel bioactive
compounds. In the present work, an Arctic marine Pseudomonas sp. belonging to the Pseudomonas (P.)
fluorescence group was cultivated in four different media in an attempt to activate biosynthetic
pathways leading to the production of antibacterial and anticancer compounds. Culture extracts
were pre-fractionated and screened for antibacterial and anticancer activities. One fraction from
three of the four growth conditions showed inhibitory activity towards bacteria and cancer cells.
The active fractions were dereplicated using molecular networking based on MS/MS fragmentation
data, indicating the presence of a cluster of related rhamnolipids. Six compounds were isolated
using HPLC and mass-guided fractionation, and by interpreting data from NMR and high-resolution
MS/MS analysis; the structures of the compounds were determined to be five mono-rhamnolipids
and the lipid moiety of one of the rhamnolipids. Molecular networking proved to be a valuable tool
for dereplication of these related compounds, and for the first time, five mono-rhamnolipids from a
bacterium within the P. fluorescence group were characterized, including one new mono-rhamnolipid.

Keywords: arctic bacteria; bioactive; OSMAC (one strain, many compounds); molecular
networking; rhamnolipids

1. Introduction

It is estimated that only a small percentage of the existing marine bacterial diversity has been
cultivated to date. As a result, there is a strong likelihood to isolate previously uncultured bacterial
strains and some of these will produce new secondary metabolites (SMs) [1]. It is also likely to find
novel SMs from already cultivated bacteria by applying the OSMAC (one strain many compounds)
approach [2]. The concept behind this approach is that some metabolic pathways remain silent during
standard cultivation conditions and the corresponding SMs are not synthesized. Introducing small
changes into the cultivation conditions can activate different metabolic pathways which may lead to
the production of numerous SMs from a single strain [2].
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When searching for novel SMs from natural sources, it is important to reduce the time and
resources spent on rediscovering known compounds. The process of identifying known compounds
is known as “dereplication”. The most common method of dereplication in natural product (NP)
drug discovery employs mass spectrometry (MS) in combination with liquid chromatography, as this
combination is both sensitive and well suited for analyzing complex mixtures. Further, when using
high-resolution MS, the accurate mass of the compound can be used to calculate the elemental
composition which can then be used to search databases such as MarinLit, Dictionary of Natural
Products, and SciFinder to identify known molecules. However, this approach will only recognize
compounds that are identical to those in the databases, and any that are similar but non-identical to
existing compounds will not be identified [3–5]. A strategy to overcome this limitation is to include
information on MS/MS fragmentation in the dereplication process, as fragments will be characteristic
for common structural features in a molecular class. These fragment data can be used to search MS
fragment libraries such as Global Natural Products Social molecular networking (GNPS) [6]. As the
number of NPs included in these fragmentation libraries is rapidly increasing, this method is becoming
very useful for dereplication as well as compound class identification. The MS fragmentation data
from compounds in a given sample can also be organized into molecular networks, a feature which
also displays the mass differences between compounds in a network cluster. Therefore, compounds
with similar structures will give similar fragmentation patterns and group together [7,8].

In the current study, we cultivated in four different media a newly isolated Arctic marine
Pseudomonas sp. strain M10B774 that is affiliated with the P. fluorescence group. Fractions of the culture
extracts were screened for antibacterial activity against the pathogenic bacteria Staphylococcus aureus,
Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli and Pseudomonas aeruginosa in a growth
inhibition assay. Cytotoxic activity of the fractions was also evaluated against three cancer cell
lines, human melanoma (A2058), human breast carcinoma (MCF7) and human colon carcinoma
(HT29), as well as the non-malignant normal lung fibroblast cell line (MRC5). Further, the project
demonstrated the use of MS/MS-based molecular networking as a dereplication strategy to identify
known compounds, their analogs and related compounds. The use of this strategy led to the isolation of
one new and four known mono-rhamnolipids as well as the lipid moiety from one of the rhamnolipids.

2. Results

2.1. Identification of the Isolate M10B774

The bacterium isolate M10B774 was isolated from an Atlantic halibut in the Norwegian Sea on a
medium containing Difco Marine Broth 15 g/L, peptone 5 g/L, 300 mL filtered seawater and 700 mL
Milli-Q water (FMAP). To identify the bacterium, 16S rRNA sequencing and Basic Local Alignment
Search Tool (BLAST) searches against reference sequences in GenBank were performed [9]. Based on
these results, a set of related sequences were selected and a phylogenetic tree created (Figure S1).
This phylogenetic analysis showed that the isolate is closely related to P. gessardii and belongs to the
P. fluorescence group. The identity was not fully resolved, but it is suggested that the isolate is a new
species or perhaps conspecific with P. gessardii.

2.2. Bioactive Extracts

The Pseudomonas sp. isolate was evaluated for its potential to produce antibacterial and cytotoxic
compounds. It was cultivated in four different growth media: M19, VR_1, VR_2 and SGC (media
compositions are listed in Section 4.2), in volumes of 2 × 200 mL. Compounds excreted into the
medium were collected by adding Diaion® HP20ss resin beads to the cultures. The resin was collected
and extracted with methanol (MeOH). Dried extracts were fractionated with flash chromatography
into six fractions and screened for antibacterial activity in a growth inhibition assay against E. coli,
S. aureus, P. aeruginosa, E. faecalis and S. agalactiae. The fractions were screened for cytotoxic activity
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against three cancer cell lines, A2058, HT29 and MCF7, as well as the non-malignant MRC5 cell line,
using a viability assay.

With six fractions obtained from each of the four extracts, 24 fractions were screened for
bioactivity. Fraction 5, eluting in 100% methanol from the M19, VR_1 and VR_2 growth media
showed activity in both the antibiotic and cytotoxicity assays. The screening results showed that
cultivating this Pseudomonas sp. in the four different growth media led to different bioactivity profiles
(Table 1). Fraction 5 from the VR_1, VR_2 and M19 media showed activity in the antibacterial assay
(OD600 nm < 0.05), whereas no activity was observed in the SGC fractions. The M19 Fraction 5 was
active against all three of the Gram-positive bacteria, whereas the VR_2 Fraction 5 showed activity
against just two of them, S. agalactiae and E. faecalis. Further, Fraction 5 from the VR_1 culture was
active against only one bacterium, S. agalactiae. None of the tested fractions had any effect on the
assayed Gram-negative bacteria (E. coli and P. aeruginosa).

In the cytotoxicity assay, only the M19 Fraction 5 was active against all the four tested cell lines
(Table 1). Based on these bioactivity results, active Fraction 5 from the VR_2 media was analyzed using
LC-MS/MS to generate molecular networks for the compounds present in this fraction.

Table 1. The antibacterial activities of chromatography Fraction 5 (eluting with 100% MeOH) from the
extracts of Pseudomonas sp. grown in four different media were tested in a growth inhibition assay.
Cytotoxic activities of the fractions were evaluated with a cell viability assay. Test concentration for
both assays was 50 µg/mL.

Growth Inhibition Assay Viability Assay

Media E. coli N S.aur P P.aer N E.F P S.aga P A2058 MCF7 HT29 MRC5 *

VR_1 − − − − + − − − −
VR_2 − − − + + − − − −
M19 − + − + + + + + +
SGC − − − − − − − − −
Antibacterial assay: +, OD600 nm < 0.05 and active; −, OD600 nm > 0.05 and inactive. P Gram-positive;
N Gram-negative. S.aur, S. aureus; P.aer, P. aeruginosa; E.F, E. faecalis; S.aga, S. agalactiae. Viability assay: +, >50% cell
death; −, <50% cell death. * Non-malignant cell line.

2.3. Identification of Bioactive Compounds

A molecular network-based approach using MS/MS data from active Fraction 5 (sample VR_2)
as well as the inactive Fractions 4 and 6 utilized the GNPS platform in an attempt to identify the
compounds responsible for the observed antibacterial activity. The molecular networking gave rise
to 183 clusters. One of the clusters was especially promising because the nodes (compounds) were
exclusively present in active Fraction 5. Moreover, one of the nodes matched with that of a rhamnolipid
standard that was present in the GNPS library.

Rhamnolipids are secondary metabolites that consist of one or two rhamnose moieties linked
to one or two saturated or unsaturated fatty acids [10,11], and are known to have potent surfactant
properties [11]. The clustering of the compounds indicated that they were likely related rhamnolipids.
UHPLC-HR-ESI-MS analysis of the fraction suggested that the compounds were present as Na+

adducts. UHPLC-HR-ESI-MS of active Fraction 5 from the M19 and VR_1 samples revealed that the
same compounds were present (i.e., identical retention times, accurate mass and collisional cross
sections), whereas the inactive Fraction 5 from the SGC sample did not contain detectable amounts of
any of these compounds. Based on the chromatographic and culture condition distribution of these
rhamnolipids, it was suspected that they were responsible for the observed activity; resultingly, they
were selected for isolation and structure elucidation.
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2.4. Characterization of the Isolated Compounds

Compounds 1–6 were isolated as viscous liquids. Their molecular formulae were calculated
using accurate mass and isotope distribution from HR-ESI-MS. The structures shown in Figure 1 were
determined using 1D and 2D NMR as well as and MS/MS fragmentation. Compound 1 was found
to be the lipid moiety of compound 2, and compounds 2–6 were found to be mono-rhamnolipids
with different fatty acids. Proton scalar coupling constants, as well as chemical shifts, were in close
agreement with the previously reported relative configuration of the rhamnose moiety; 3J(1,2 1.7 Hz),
3J(2,3 3.3 Hz), 3J(3,4 9.5 Hz), and 3J(4,5 9.5 Hz). The observed NOESY/ROESY patterns with two
overlapping anti-phase zero quantum coherence artifacts for H3–H4 and H4–H5 suggests that extra
care should be taken when interpreting these results. This conclusion is consistent with a rhamnose
sugar since the zero quantum coherences (ZQCs) suggest that H4, H5 and H6 are sequentially anti and
axial to each other, thus giving rise to strong scalar couplings with very little ROE contribution, but
with significant ZQC due to their similar chemical shifts. Together with chemical shifts and coupling
constants, all sugar moieties in 2–6 are fully consistent with rhamnose in α position. HSQC, HMBC,
H2BC and HSQC-TOCSY were successfully employed to fully assign the resonances of the lipid chains
and the positions of unsaturation.
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Figure 1. Structures of compounds 1–6 isolated from Pseudomonas sp.
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The molecular formula of 1 was calculated to be C20H38O5 (m/z 381.2609, [M + Na]+, calcd
381.2611), suggesting two degrees of unsaturation. 1D and 2D NMR spectra (Figures S4–S8) showed
that the compound was a di-lipid comprised of two-saturated 3-hydroxydecanoic acids that were
linked through an ester bond. MS/MS fragmentation confirmed that each fatty acid consisted of
10 carbon atoms (Figure S46).

The molecular formula of 2, C26H48O9 (m/z 527.3192, [M + Na]+, calcd 527.3191), indicated three
degrees of unsaturation. 1D and 2D NMR data (Figures S9–S13) revealed that it was the known
rhamnolipid Rha-C10-C10 [11], consisting of one rhamnose moiety with the same fully saturated
C10-C10 di-lipid moiety as in 1. The size and saturation of the lipid chains were confirmed with MS/MS
fragmentation data (Figure S47).

Compound 3 had the same molecular formula as that of compound 4, C28H50O9 (m/z 553.3344,
[M + Na]+, calcd 553.3347), but a different retention time, suggesting that it had a different unsaturation
pattern. 2D NMR data (HSQC + HMBC) indicated that 3 was indeed a rhamnolipid very similar to
4, but with the double bond at position 7′–8′ instead of 5′–6′ (Figure 1). The structures of the lipid
chains were assembled by HMBC and H2BC correlation data as a result of the central placement of the
double bond which induced good spectral dispersion throughout the 12-carbon chain and allowed
for the unambiguous identification of all carbon resonances. MS/MS fragmentation data confirmed
the length of the lipid chains to be C10 and C12, with an unsaturation on the C12 chain (Figure S48).
The assignments are summarized in Table 2 and Figure 2. The configuration of the olefinic protons of
compound 3 could not be directly assessed because of spectral overlaps in both the proton and the
carbon dimensions for 7′/8′ as well as 6′/9′. It is reported here in a cis configuration by analogy to
the other rhamnolipids isolated in this work. See below for the determination of the configuration of
compounds 4 and 6.
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Figure 2. Selected 2D-NMR correlations for compound 3 and 6. HMBC and H2BC revealed the position
of unsaturation in the lipid chain, and the full lipid spin systems were identified in HSQC-TOCSY.
HMBC and ROESY correlations confirmed the rhamnose moiety structure, while ROESY as well as
homo- and heteronuclear coupling constants determined the olefinic protons to be in cis configuration.
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Table 2. 1H and 13C NMR assignments for compound 3 and the observed HMBC and H2BC correlations
(1H→13C).

Position δC, Type δH (J in Hz) COSY HMBC H2BC ROESY

1 98.7, CH 4.62, s 3′,3,5 3′,2,4′

2 70.3, CH 3.52 o 3,4
3 69.3, CH 3.41 o 4 4
4 71.9, CH 3.12, t (9.1) 3,5 10,5 5 5
5 69.0, CH 3.43 o 4,6 4 6 3′,4,6
6 17.8, CH3 1.08, d (6.1) 5 4,5 5 4,5
1′ 170.3, C
2′ 40.1, CH2 3′ 1′,3′ 3′ 3′

3′ 72.9, CH 3.91, d (5.6) 2′,4′ 1′ 2′ 2′,1,4′

4′ 32.1, CH2
1.45, dt (10.0,

6.4) 5′,3′ 2′,3′ 5′ o

5′ 24.3, CH2 1.30 o 6′,4′ 7′ o

6′ 26.3, CH2 1.98 o 7′,5′ 8′,7′ 7′,5′ o

7′ 129.9, CH 5.33 o 6′ 9′,6′ 8′,6′ o

8′ 129.3, CH 5.32 o 9′ 9′,6′ 9′,7′ o

9′ 26.6, CH2 2.00 o 10′,8′ 11′,10′,8′,7′ 10′,8′ o

10′ 31.3, CH2 1.27 o 9′ 9′ o

11′ 21.7, CH2 1.27 o 12 12′,10′ 12′ o

12′ 13.8, CH3 0.86, t (6.9) 11′ 11′,10′ 11′ o

1′′ 170.6 *, C
2′′ 40.4, CH2 2.38 o 1′′

3′′ 71.0, CH 5.11, s b 2′′,4′′ 1′

4′′ 33.7, CH2 1.52, s b 3′′ 2′′ o

5′′ 24.7, CH2 1.20 o o

6′′ 28.6 **, CH2 1.23 o 7′′ o

7′′ 28.8 **, CH2 1.23 o 9′′ o

8′′ 31.2, CH2 1.22 o 9′′,7′′ o

9′′ 22.1, CH2 1.25 o 10′′ 10′′,8′′ 10′′ o

10′′ 14.0, CH3 0.85, t (7.0) 9′′ 9′′,8′′ 9′′ o

* Not detectable in 1D, extracted from 2D HMBC ** Assignments could not be unambiguously distinguished b Broad
peak o Overlapping peak in 1H.

Compound 4, which was recently isolated and identified from Pseudomonas sp. [12], was assigned
the molecular formula C28H50O9 (m/z 553.3348 [M + Na]+, calcd 553.3347). 1D and 2D NMR
(Figures S19–S26), together with MS/MS fragmentation (Figure S49), confirmed the lipid chains
to be 10 and 12 carbon atoms long, with the unsaturation present in the C12 chain at position 5′–6′

(Figure 1). Upon closer examination, it was found that the configuration of the olefinic protons was in
a cis configuration, which is in disagreement to what has been previously reported [12]. The vicinal
3JHH coupling constant between the two vinyl protons was determined to be roughly 10.9 Hz from
deconvolution and simulation of the 1D proton multiplets (dtt, J = 10.9, 7.3, 1.5 Hz) (Figure S27).
The ROE between the two protons has a dominant antiphase character (Zero Quantum artifact) and is
close to the diagonal, making it inconclusive as it could be present in both configurations. However,
a ROE/NOE connectivity can be traced from 4′→5′→6′→7′ as well as a direct 4′→7′ consistent with cis
(Figure S26). Furthermore, there are no direct ROE/NOE from 4′→6′ or 7′→5′, which would have been
expected in a trans configuration. The 3JCH couplings involving the olefinic protons were estimated to
be between 9–10 Hz which also favors a cis configuration over trans (Figures S28 and S29).

The molecular formula of compound 5, C28H52O9 (m/z 555.3503, [M + Na]+, calcd 555.3504),
indicated structural similarity to 3 and 4, but without the unsaturation on one of the lipid chains,
as it had one less degree of unsaturation. 1D and 2D NMR (Figures S30–S34) as well as MS/MS
fragmentation (Figure S50) confirmed it was a Rha-C10-C12, hence, the same lipid chain lengths as
3 and 4, but fully saturated. A database search revealed that it was a known compound, previously
identified from Pseudomonas aeruginosa [13].
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The molecular formula of 6 was determined to be C30H54O9 (m/z 581.3660, [M + Na]+, calcd
581.3660), indicating four degrees of unsaturation and one lipid chain two carbons longer than
compounds 3, 4 and 5. The four degrees of unsaturation indicated that one lipid chain possessed
a double bond. 1D and 2D NMR data (Figures S35–S43) established 6 to be the mono-rhamnolipid
Rha-C14:1-C10, with the unsaturation at position 7′–8′. From MS/MS fragmentation (Figure S51),
the lipid chain lengths were confirmed to be 10 and 14 carbons long, with the unsaturation being
present in the longer chain. A database search showed that rhamnolipids with the composition
Rha-C14:1-C10 are indeed known, but neither the position of unsaturation nor the order of the lipid
chains were assigned in the previous studies [11]. However, comparing the NMR and MS/MS
fragmentation data with the data from Tedesco et al. [12], it seems probable that their compound 3
has the same structure as our compound 6. Our 1D and 2D NMR data were nearly identical to that
reported, with the mean error of carbon chemical shifts = 0.69 ppm. Furthermore, the MS fragmentation
data showed an identical pattern. However, they interpreted their data differently and described
a different structure (Rha-C12:1-C12). We believe that the key fragment at m/z 265.18 represents the
sodium adduct of the first fatty acid (i.e., 1′–14′) which indicates that the two lipid chains are C10 and
C14 instead of both being C12. This is in agreement with the fragmentation mechanism of compounds
3, 4, 5 and 6. The difference in mass of the fragments between 6 and 3, 4, and 5 correspond to C2H4,
suggesting that the additional C2H4 is added to the unsaturated chain instead of the saturated chain
as Tedesco et al. reported for their compound 3. Simulations in Mass Frontier 7.0 were not conclusive
as both tentative structures of 6 could form fragments of the correct mass within a reasonable number
of steps. Careful examination of the HSQC-TOCSY data for 6 allowed us to unambiguously identify
all 14 carbons in the spin system of the suggested unsaturated lipid chain (Figures S41 and S42),
thus conclusively establishing the identity of the rhamnolipid with two chains of 10 and 14 carbons,
respectively, and where the longer chain possesses a double bond at position 7′–8′. The assignments
are summarized in Table 3 and Figure 2. Analogous to compound 3, the configuration of the olefinic
protons was found to be in a cis configuration. The vicinal 3JHH coupling constant between the two
nearly overlapping olefinic protons was determined to be roughly 10.9 Hz from deconvolution and
simulation of the 1D proton multiplets (dtt, J = 10.9, 6.6, 0.6 Hz) (Figure S15). The ROE/NOE pattern is
less dispersed because of the greater distance to the branching point, but careful inspection allowed
us to identify that all observable correlations did indeed follow the same pattern as in compound 4
(Figure S44). Most importantly there are no direct ROE/NOE from 4′→6′ or 7′→5′, which would have
been expected in a trans configuration.

Table 3. 1H and 13C NMR assignments for compound 6 and the observed HMBC and H2BC correlations
(1H→13C).

Position δC. type δH (J in Hz) COSY HMBC H2BC R/NOESY

1 99.8, CH 4.78, d (1.5) 2 3′ 2,3′,4′,5′

2 72.8, CH 3.74, dd (3.3, 1.7) 1,3 1, **
3 72.0, CH 3.67 o 2,4 2,4 2,4 **
4 74.2, CH 3.31 o 3,5 5,6 3,5 **
5 70.1, CH 3.67 o 4,6 6 4,6 **
6 17.9, CH3 1.25, d (6.1) 5 4 5 4,5
1′ 172.8, C 2′

2′ 41.2, CH2
2.56, dd (15.1, 7.6)

2.47 o 3′ 4′ w 3′ 3′,4′

3′ 74.7, CH 4.11, dq (7.5, 5.6) 2′,4′ 2′,5′ 2′,4′ 1,2′,4′,5′

4′ 33.5, CH2 1.56 o 3′,5′ 2′,5′ 5′ 1,2′,3′,5′,6′

5′ 25.9, CH2 1.30, qd (7.4, 1.5) 4′,6′ 6′ 4′,6′ 1,3′,4′,6′

6′ 28.1, CH2 2.05 o 5′,7′ 5′,(7′,8′) 7′ 4′,5′,7′w,7′

7′ 130.3, CH 5.34 o 6′ 5′,(6′,9′) 6′,8′ 6′
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Table 3. Cont.

Position δC. type δH (J in Hz) COSY HMBC H2BC R/NOESY

8′ 131.5, CH 5.37 o 9′ (6′,9′),10′ w 7′,9′ 9′

9′ 28.2, CH2 2.07 o 8′,10′ (7′,8′) 8′,10′ 8′,10′,11′

10′ 30.8, CH2 1.31 o 9′ 9′ 9′ 9′

11′ 30.1, CH2 1.32 o 9′

12′ 32.99, CH2
* 1.30 o 14′ 13′

13′ 23.7, CH2
* 1.31 o 14′ 12′,14′ 14′ 14′

14′ 14.45, CH3
* 0.91, t (7.0) * 13′ 13′ 13′ 13′

1′′ 177.1, C 2′′

2′′ 42.3, CH2 2.47 o 3′′ 4′′ w 3′′ 3′′,4′′

3′′ 73.6, CH 5.31, m 2′′,4′′ 2′′ 2′′,4′′ 2′′

4′′ 35.4, CH2 1.61, q (6.6) 3′′,5′′ 2′′ 5′′ 2′′,5′′

5′′ 26.3, CH2 1.33 o 4′′ 4′′ 4′′ 4′′

6′′ 30.6, CH2 1.31 o

7′′ 30.4, CH2 1.31 o

8′′ 32.95, CH2 * 1.28 o 10′′ 9′′

9′′ 23.7, CH2 * 1.31 o 10′′ 8′′,10′′ 10′′ 10′′

10′′ 14.46, CH3 * 0.90, t (7.0) * 9′′ 9′′ 9′′ 9′′

* Assignments could not be chain-specifically distinguished; o overlapping peak in 1H; shift extracted from 2D
HMBC; w weak.

2.5. Bioactivity of Compounds 1–6

2.5.1. Antibacterial Activity

The six isolated compounds were tested for antibacterial activity in a growth inhibition assay and
in a biofilm formation inhibition assay. Test concentrations in both bioassays were 50, 100 and 150 µM.
In the growth inhibition assay, the compounds were tested against five pathogenic bacteria. All of the
compounds were active against the three Gram-positive bacteria (Figure 3); however, none showed
activity against the two Gram-negative bacteria E. coli and P. aeruginosa (Figure S2). Compounds
1–5 also showed a dose dependent activity against E. faecalis. Compared to the control, 1 had some
effect at all three test concentrations, but it was less active than the other five compounds. Compound
2 was highly active (OD600 nm ≤ 0.05) against E. faecalis at the two highest concentrations, while
compound 3 showed high activity against E. faecalis only at the highest concentration of 150 µM.
Compounds 4 and 5 were highly active at the two highest concentrations, while 6 had high activity at
all three concentrations.

Against S. aureus, all compounds displayed a dose dependent activity. Compounds 1, 3 and 6 had
some effect at all concentrations compared to the control, but they did not show a high level of activity
even at 150 µM. Compounds 2 and 5 were highly active at 150 µM, and 4 was active at the two highest
concentrations. All compounds were highly active against S. agalactiae from 50 µM.



Mar. Drugs 2018, 16, 163 9 of 19
Mar. Drugs 2018, 16, x FOR PEER REVIEW  9 of 19 

 

 
Figure 3. Growth inhibition assay of 1–6 tested at three concentrations against the Gram-positive 
bacteria E. faecalis, S. aureus and S. agalactiae. Bacteria and medium (50:50) were used as negative 
growth controls. Values are means of two replicates, error bars indicate standard deviation. 

2.5.2. Inhibition of Biofilm Formation 

The ability of the six compounds to inhibit biofilm formation was tested using the Gram-positive 
bacterium Staphylococcus epidermidis. All compounds displayed a dose dependent activity (Figure 4). 
Compounds 1 and 2 displayed high activity with OD600 nm values below 0.2 (controls had OD ~1.0) at 
50 µM, whereas the other compounds had high activity at 100 µM and above (Figure 4). Compound 
3 seemed to have higher effect at 100 µM compared to 150 µM, but that is likely due to variations in 
the assay. 

 

Figure 4. Biofilm formation inhibition assay performed on S. epidermidis. Values are mean of three 
replicates, ± standard error. 

2.5.3. Cytotoxic Activity 
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Figure 3. Growth inhibition assay of 1–6 tested at three concentrations against the Gram-positive
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growth controls. Values are means of two replicates, error bars indicate standard deviation.

2.5.2. Inhibition of Biofilm Formation

The ability of the six compounds to inhibit biofilm formation was tested using the Gram-positive
bacterium Staphylococcus epidermidis. All compounds displayed a dose dependent activity (Figure 4).
Compounds 1 and 2 displayed high activity with OD600 nm values below 0.2 (controls had OD ~1.0) at
50 µM, whereas the other compounds had high activity at 100 µM and above (Figure 4). Compound
3 seemed to have higher effect at 100 µM compared to 150 µM, but that is likely due to variations in
the assay.
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2.5.3. Cytotoxic Activity

The human melanoma cancer cell line A2058 and the non-malignant MRC5 cell line were used
to test compounds 1–6 for activity in an MTS cell viability assay (Figure 5). Compounds 2, 4 and 6
showed a dose-dependent activity against A2058 cells. They had no effect at the lowest concentration,
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but compound 6 had some activity at 100 µM, with around 40% cell survival. At 150 µM, compounds
2, 4 and 6 showed high activity with 0% cell survival. Compounds 1, 3 and 5 did not display any
activity against the A2058 cells. While compounds 2, 4 and 6 also displayed activity against MRC5
cells at 150 µM, with 0% cell survival, compounds 1, 3 and 5 showed no effect against this cell line at
the tested concentrations.
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3. Discussion

This newly isolated Pseudomonas sp. strain was cultured in four different media, and the culture
extracts were subsequently fractionated into six fractions each prior to bioactivity screening. SMs are
often produced in small quantities, and other compounds, such as media components and primary
metabolites, can mask their activities. This risk is mitigated when the extracts are pre-fractionated,
which generally increases the hit rate in bioassays [11]. The bioactivity screening of the fractions from
the four media revealed that the selected media influenced the production of bioactive compounds.
Activity was observed in Fraction 5 from the M19, VR_1 and VR_2 media. These are all nutrient
rich media wherein the main difference is the energy source, a feature which is known to affect the
production of secondary metabolites [11,14]. The M19 medium has D-mannitol as the energy source,
and Fraction 5 from this medium showed activity against all three of the tested Gram-positive bacterial
strains. In addition, it was the only fraction that showed activity in the cancer cell viability assay, where
it was active against all three of the cancer cell lines as well as the non-malignant cell line. The fractions
deriving from the extracts formed from growth in the VR_1 and VR_2 media were similar; both media
contain yeast and malt extracts as energy source. The difference between them is that the VR_2 medium
contains iron sulfate and potassium bromide, which are components of seawater [15]. Adding trace
elements to a growth medium is known to effect the production of secondary metabolites [16], and this
modification seemed to have some effect in our study, as the VR_2 Fraction 5 was active against
both E. faecalis and S. agalactiae, whereas the VR_1 Fraction 5 was active only against S. agalactiae
in the antibacterial assay. No samples from the SGC medium had any activity in the bioactivity
screening. This was the only low nutrient medium used; we had hypothesized that stressing the
Pseudomonas sp. might induce the production of new secondary metabolites. As the samples from this
growth medium did not have any activity, it may be that the nutrient level was too low to allow the
production of energetically costly antibacterial and anticancer compounds. These results demonstrate
that a diverse selection of growth media is important when searching for bioactive compounds from
cultured microorganisms.

HR-ESI-MS analyses of the fractions showed that the isolated rhamnolipids were present in the
samples from the M19, VR_1 and VR_2 media, but not in the inactive SGC sample. Rhamnolipids
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are known to have antibacterial and cytotoxic activities, so these compounds were suggested and
later confirmed to be responsible for the observed bioactivity [17]. Yield, diversity and ratios of
rhamnolipids depend on cultivation conditions [18–20], so differences in the rhamnolipid content and
composition due to different media composition can explain why the three samples were active in
the different bioassays. However, it is also possible that non-identified compounds were responsible
for some of the observed bioactivity. The effect of the media composition was clearly observed for
compound 1, as it was among the most abundant peaks in the HR-ESI-MS of the M19 extract, while it
was found only in minute amounts in the VR_1 and VR_2 extracts.

MS/MS fragmentation followed by molecular networking proved to be an effective way to
dereplicate these related rhamnolipids. Using HR-ESI-MS for dereplication of bioactive compounds is
a powerful tool, as the elemental composition can be used to search databases of known compounds.
However, subtle changes in the chemical structure of a known compound can be difficult to recognize,
such as position of unsaturation and relative carbon chain length of fatty acid chains. Using MS/MS
fragmentation patterns to establish relationships between molecules within a sample as well as between
unknown compounds and library references can facilitate the dereplication process.

The molecular network cluster also suggested that the VR_2 Fraction 5 contained di-rhamnolipids.
From HR-ESI-MS analysis, it appeared that the di-rhamnolipids had the same retention time as the
mono-rhamnolipids with the same lipid chains, the only difference being an extra rhamnose moiety
in the di-rhamnolipidc (e.g., Rha-Rha-C10-C10, and Rha-C10-C10). The same feature was observed in
the prep-HPLC-MS data obtained during isolation of the mono-rhamnolipids from the M19 extracts;
it appeared that the mono-rhamnolipids and traces of the corresponding di-rhamnolipids had the
same retention times. However, when analyzing the purified compounds by NMR, di-rhamnolipids
were not detected. This suggests that the di-rhamnolipids were likely generated in the ion source of
the MS. Rhamnose moieties are easily removed from the lipid moiety in the ion source, resulting in
free rhamnose moieties which can react with a mono-rhamnolipid, forming a di-rhamnolipid species.
Indeed, considering the structural differences of mono- and di-rhamnolipids, they are not expected to
have the same retention times. Déziel et al. [21] and Behrens et al. [22] showed that mono-rhamnolipids
and the corresponding di-rhamnolipids had different retention times on reversed-phase HPLC columns,
supporting the idea that the proposed di-rhamnolipids were generated in the ion source.

Rhamnolipids were first discovered in 1946 by Bergstrøm et al. [23] as a product of P. aeruginosa.
Subsequently, other Pseudomonas sp. and bacteria from the genus Burkholderia have been discovered
to produce rhamnolipids, but the known producers are still limited to only a few species [11,24,25].
Rhamnolipids have been widely studied, and today more than 60 congeners and isomers have been
identified and characterized, as reviewed by Abdel-Mawgoud et al. in 2010 [11]. In addition to
having antibacterial and cytotoxic activity, rhamnolipids have also shown antiviral, antifungal and
anti-biofilm activities. Most studies have focused on P. aeruginosa, which is currently used for the
industrial production of rhamnolipids. However, one issue arising from use of this bacterium for
commercial production is its human pathogenicity [26–28]. Bacteria from the P. fluorescence group
are not known to be human pathogens, so the Pseudomonas sp. strain used in this study could be a
candidate to replace P. aeruginosa for industrial production of rhamnolipids. Hence, it is important to
gain insight into which rhamnolipids this M10B744 strain produces.

The Pseudomonas sp. strain M10B744 was partly identified by phylogenetic analysis of the 16S
rRNA gene, and is either a P. gessardii, or a new species closely related to P. gessardii. P. gessardii is not
well studied, but P. fluorescence and P. synxantha, belonging to the P. fluorescence group, are reported to
produce rhamnolipids [29–33]. However, the only rhamnolipid structurally characterized from this
group is the di-rhamnolipid Rha-Rha-C10-C10 isolated from a P. fluorescence strain [34]. Thus, the five
mono-rhamnolipids we isolated in the current study are the first mono-rhamnolipids structurally
characterized from the P. fluorescence group.

In this study, we were able to describe the fatty acids and their order for all the isolated
rhamnolipids, including the position and stereochemistry of the double bonds. However, the absolute
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stereochemistry of C-3′ and C-3′′ remains unresolved. The structure of compound 3 is described for the
first time in this study. Searches in databases indicate that it is a new compound. Rhamnolipids with
the same elemental composition and lipid chain lengths have been reported in several studies [21,22,35],
but without the position of unsaturation or order of lipid chains identified. The previously reported
structures are not necessarily identical to 3, as it contains an unsaturation that in principal can be
present in different positions. This is illustrated for compound 4 which had the same elemental
composition and lipid chain lengths as 3, C10–C12:1, but with the unsaturation at a different position
(Figure 2). Compound 4 was recently described by Tedesco et al. as an isolate from an Antarctic
P. aeruginosa [12].

We identified compound 6 as a mono-rhamnolipid with lipid chains C10 and C14:1. Rhamnolipids
with these chains have previously been reported, but the position of the unsaturation and order of
chain lengths have not been previously assigned [36]. However, comparison of our NMR and MS/MS
fragmentation data with data from the study by Tedesco et al. revealed that the data were identical,
and that compound 6 is the same rhamnolipid as their compound 3, which they described as a novel
rhamnolipid with C12 and C12:1 lipid chains. MS/MS analysis of 6 gave a key fragment at m/z 411.24,
and this mass corresponds the loss of a C10 lipid chain (Figure S51). Although this fragment was also
present in the data of Tedesco et al., it was not assigned to any specific loss. In conclusion, both the
NMR data (Figures S35–S45) and the MS/MS data (Figure S51) strongly indicated that the lipid chains
are C10 and C14:1, and not C12 and C12:1 as reported by Tedesco et al. [12].

Much of the previous bioactivity screening of rhamnolipids has been performed on mixtures
or on non-characterized rhamnolipids [37–42]. In the current study, we assessed the bioactivity of
these natural products individually, and tested the isolated compounds in their pure form. In the
antibacterial assay, all compounds showed some effect against the three Gram-positive bacteria strains.
However, no activity was observed against the two Gram-negative bacteria strains, which usually
are less sensitive to antimicrobial agents due to their outer cell wall that contains lipopolysaccharides
acting as an extra barrier [43]. All isolated compounds were active in the biofilm formation inhibition
assay against Gram-positive S. epidermidis.

A number of antimicrobial agents are amphiphilic compounds, such as daptomycin [44] and
brilacidin [45], that function by binding to membranes as detergents, leading to membrane lysis.
Rhamnolipids are amphiphilic due to their lipophilic lipid chain and hydrophilic rhamnose moiety,
and are reported to act by affecting the membrane of target cells [46,47]. Sotirova et al. [48] found that
rhamnolipids are inserted into the phospholipid membrane of cells, thus affecting their structure and
function, which can lead to cell death. Al-Tahhan et al. [49] reported that rhamnolipids lead to the loss
of lipopolysaccharides (LPS) and subsequent alteration of the outer membrane in the Gram-negative
bacterium P. aeruginosa. Jiang et al. [50] reported that rhamnolipids can also induce cytotoxicity by
reducing the surface tension of the culture medium, and this is also an effect of their amphiphilic
nature [51,52].

As the rhamnose moiety is the same for all five of the mono-rhamnolipids studied herein,
the variations in bioactivity between these compounds must be a result of differences in the lipid
chains. The difference in activity in the cytotoxicity assay between 3 and 5 (not active) and 4 (highly
active with 0% cell survival for both A2058 and MRC5) is somewhat surprising. Compounds 3, 4 and
5 are structurally very similar to one another, as they have the same lipid chain lengths, C10-C12, but
3 and 4 have an unsaturation at different positions in chain B, and 5 is fully saturated. On the other
hand, it is possible that there are some inaccuracies in the test concentrations, a matter that should be
considered when working with small amounts of isolated natural products.

The effect of the rhamnose moiety was seen when comparing the activity of 1 and 2, as they had
the same lipid moiety but 2 also contained a rhamnose moiety. Fatty acids are known to have surfactant
activity and to exhibit antibacterial activity by affecting the membrane of cells [53,54]. This was verified
in the antibacterial assays, as 1 was active in both the growth inhibition and anti-biofilm assays, similar
to the rhamnolipids, indicating that the presence of a rhamnose moiety in compound 2 did not
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substantially enhance the antibacterial activity. However, in the viability assays, compound 1 did
not show any activity, whereas 2 was active against both cell lines; thus, it is clear that including a
rhamnose moiety had an effect on the activity against the human A2058 and MRC5 cells.

In conclusion, using different cultivation media for the Pseudomonas sp. strain M10B744
gave extracts with different bioactivity profiles, appearently due to changes in the production of
rhamnolipids. The rhamnolipids were initially identified by the use of MS/MS fragmentation
data and molecular networking, demonstrating the utility of this approach for dereplication.
Five mono-rhamnolipids were characterized for the first time from a bacterium within the P. fluorescence
group. One of the rhamnolipids was a new molecule, demonstrating that Arctic marine bacteria can be
a valuable resource for new bioactive molecules.

4. Materials and Methods

4.1. Microorganism

Isolation: Pseudomonas sp. strain M10B774, was isolated from an Atlantic halibut
(Hippoglossus hippoglossus) in the Norwegian Sea, dd◦ N 77,46707333 and dd◦ E 10,609719 in January
2010. It was streaked onto FMAP agar consisting of: 15 g Difco marine broth (279110, Becton, Dickinson
and Company, Franklin Lakes, NJ, USA), 15 g agar (A1296, Sigma-Aldrich, St. Louis, MO, USA),
700 mL Milli-Q water (Merck Millipore, Darmstadt, Germany), 300 mL filtrated seawater (FSW,
5 µm pore size, ceramic membrane filter 0.2 µm, UV filter) and 5 g peptone from caseine (82303,
Sigma-Aldrich). After isolation the strain was stored in FMAP broth (without agar) and 30% glycerol
(G5516, Sigma-Aldrich) at −80 ◦C.

Identification: The isolate was stored at −80 ◦C, plated on FMAP agar plate and grown at 10 ◦C
for 7 days before a single colony was inoculated into an Eppendorf tube with 100 µL of Milli-Q and
boiled for 5 min. PCR was performed on a thermal cycler (Mastercycler epgradient S, Eppendorf,
Hamburg, Germany) using 1 µL of the bacterial lysate as template, 1 µM of forward primer (27F,
AGAGTTTGATCMTGGCTCAG), 1 µM of reverse primer (1492R, CGGTTACCTTGTTACGACTT)
and 12.5 µL of ThermoPrimeTM 2× ReddyMix PCR master mix (ThermoFisher Scientific, Waltham,
MA, USA) in a total volume of 25 µL. PCR was carried out using the following program: 94 ◦C for
5 min, 30 cycles at 94 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 1 min, followed by a final extension
at 72 ◦C for 10 min. The PCR products were analyzed by electrophoresis on a 1.0% agarose gel and
documented with Bioimaging system, Syngene. The PCR product of 16S rRNA gene was purified
with QIAquick PCR purification kit according to the manufacturer′s instructions (QIAGEN, Hilden,
Germany). The primers 27F or 1492R were employed to sequence the purified PCR product. Sequence
data were collected by the sequencing lab at University Hospital of North Norway (Tromsø, Norway).
Homology searches were performed using the Basic Local Alignment Search Tool (BLAST) provided
by the NCBI server (http://www.ncbi.nlm.nih.gov/BLAST) and the strain was identified using
phylogenetic interference. See detailed description of the identification process in Supplementary
Information Figure S1.

4.2. Fermentation and Extraction of Secondary Metabolites

Pseudomonas sp. was grown in 2 × 1 L Erlenmeyer flasks at 10 ◦C at 140 rpm in 200 mL M19,
VR_1, VR2 and SGC medium (Table 4). All medium components were from Sigma-Aldrich, except
Iron (II) sulfate heptahydrate (FeSO4·7H2O) and potassium bromide (KBr) from Merck. SGC medium
were suspended in 100% FSW, whereas the three other media were in 50:50 FSW and Milli-Q.

http://www.ncbi.nlm.nih.gov/BLAST
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Table 4. Components of growth media used for fermentation of Pseudomonas sp. with product numbers.
The amounts of medium ingredients are given in g/L.

Medium D-Mannitol
(63560)

Peptone
(82303)

D-Glucose
(D9434)

Casein
Hydrolase
(22090)

Malt Extract
(70167)

Yeast Extract
(Y1625)

FeSO4 · 7H2O
(1.03965)

KBr
(22186)

M19 20 20 - - - - - -
VR_1 - 11.11 - - 6.67 6.67 - -
VR_2 - 11.11 - - 6.67 6.67 0.044 0.044
SGC - - 4 3 - - - -

The bacterium was cultivated in the four different media until growth was visible (1–2 weeks).
To collect secondary metabolites excreted into the medium, Diaion®HP-20 resin beads (13607, Supelco
Analytica, Bellefonte, PA, USA), 40 g/L, which were soaked in MeOH (34860, Sigma-Aldrich) for
20 min and washed extensively in Milli-Q water, were added to the cultures 3–4 days before extraction.
Extraction was performed by filtrating the cultures under vacuum, using a fine mesh cheesecloth (1057,
Dansk Hjemmeproduktion, Ejstrupholm Danmark)). Resin beads captured on the cheesecloth were
washed with 100 mL Milli-Q and extracted twice with 150 mL MeOH before vacuum filtered through
Whatman Ø 90 mm No. 3 filter (Whatman plc, Buckinghamshire, UK). The extracts were dried under
pressure and stored at −20 ◦C.

4.3. Fractionation

Extracts of Pseudomonas sp. cultivated in the four media were dissolved in 8 mL 90% MeOH.
Then, 2 g Diaion® HP-20ss resin beads were added before the mixture was dried under pressure.
Resin (6.5 g) was soaked in MeOH for 20 min before being exchanged with Milli-Q water and packed
in a flash cartridge (Biotage® SNAP Ultra, Biotage, Uppsala, Sweden). The cartridge was equilibrated
in 5% MeOH before the extract/resin mixture was loaded on top. Fractionation was performed
using a Biotage SP4TM system with flow rate 12 mL/min and gradient 5–100% MeOH over 32 min,
and MeOH:acetone (34850, Sigma-Aldrich) to 100% acetone over 18 min. This resulted in six fractions
that were dried under pressure at 40 ◦C.

4.4. Bioactivity

4.4.1. Growth Inhibition Assay

Media used in the growth inhibition assay include Muller Hinton broth (MH, 275730, Becton,
Dickinson and Company) and Brain Heart Infusion broth (BHI, 53286, Sigma-Aldrich). Bacteria
strains that were cultured in MH medium included S. aureus (ATCC 25923), E. coli (ATCC 259233) and
P. aeruginosa (ATCC 27853), and in BHI medium included E. faecalis (ATCC 29122) and S. agalactiae
(ATCC 12386). Fresh bacteria colonies were inoculated in respective growth medium and incubated
overnight at 37 ◦C. The number of cells was adjusted in fresh medium to reach the log phase, and added
to a 96-well microtiter plate (734-2097, NunclonTM, Thermo Scientific) with 1500–15,000 CFU/well,
total volume 100 µL/well. Flash fractions in the primary screening were dissolved in Milli-Q water
with 1% dimethyl sulfoxide (DMSO, D4540, Sigma-Aldrich) to 1 mg/mL and tested in duplicates at
concentrations 50 µg/mL. The isolated compounds 1–6 were dissolved in Milli-Q water with 1% DMSO
and added to the wells in duplicates, at the final concentrations 50 µM, 100 µM and 150 µM. The plate
was incubated overnight at 37 ◦C before the growth was measured my assessing the absorbance for
at 600 nm with 1420 Multilabel Counter VICTOR3

TM (Perkin Elmer, Waltham, MA, USA). Bacterium
suspension diluted with water (1:1) was used as growth control. A dilution series of gentamycin from
32 to 0.01 µg/mL were used as positive assay controls; the growth medium was used as a negative
growth control.
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4.4.2. Biofilm Inhibition Assay

Staphylococcus epidermidis (ATCC 35984) grown in Tryptic Soy Broth (TSB, 105459, Merck,
Kenilworth, NJ, USA) overnight at 37 ◦C was diluted in fresh medium with 1% glucose (D9434,
Sigma-Aldrich) before being transferred to a 96-well microtiter plate; 50 µL/well were incubated
overnight with 50 µL of compound 1–6 dissolved in Milli-Q water added in duplicates. The bacteria
were then removed from the plate and the plate washed with tap water. The biofilm was fixed at 65 ◦C
for 1 h before 70 µL 0.1% crystal violet (115940, Merck Millipore) was added to the wells for 10 min
of incubation. Excess crystal violet solution was then removed and the plate dried for 1 h at 65 ◦C.
Seventy microliters of 70% EtOH were then added to each well and the plate incubated on a shaker for
5–10 min. Biofilm formation inhibition were assessed by the presence of violet color and was measured
at 600 nm absorbance using a 1420 Multilabel Counter VICTOR3

TM. Fifty microliters of a non-biofilm
forming Staphylococcus haemolyticus (clinical isolate 8-7A, University hospital, UNN, Tromsø, Norway)
mixed in 50 µL autoclaved Milli-Q water was used as a control; 50 µL S. epidermidis mixed in 50 µL
autoclaved Milli-Q water was used as the control for biofilm formation; and 50 µL TSB with 50 µL
autoclaved Milli-Q water was used as a medium blank control.

4.4.3. Cytotoxicity Assay

Cell viability of fractions and pure compounds was tested in an MTS in vitro cell proliferation
assay against three cancer cell lines; human melanoma A2058 (ATCC, CRL-1147TM), human breast
carcinoma MCF7 (ATCC HTB-22TM) and human colon carcinoma HT29 (ATCC HTB-22TM) and one
non-malignant cell line, normal lung fibroblasts MRC5 (ATCC CCL-171TM). The cells were seeded in a
96-well microtiter plate in Roswell Park Memorial Institute (RPMI-1640 medium, FG1383, Merck) with
10% Fetal Bovine serum (FBS, S0115, Biochrom, Cambridge, UK) at a concentration of 2000 cells/well
for the three cancer cell lines and 4000 cells/well for MRC5. After incubation for 24 h at 37 ◦C
and 5% CO2, the medium was replaced with fresh RPMI-1640 medium which included 10% FBS
and gentamycin (10 µg/mL. A2712, Merck). The samples were added in triplicate, fractions at a
concentration of 50 µg/mL, and isolated compounds 1–6 at concentrations of 50, 100 and 150 µM,
to form a total volume of 100 µL/well. After an additional 72 h incubation at 37 ◦C and 5% CO2,
10 µL CellTiter 96®AQueous One Solution Reagent (G3581, Promega) with tetrazolium compound
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner
salt] and phenazine ethosulfate were added to each well before incubation for 1 additional hour.
The absorbance was measured at 485 nm with a DTX 880, and cell viability calculated. RPMI-1640
with 10% FBS and 0.5% TritonTM X-100 (Sigma-Aldrich) were used negative controls.

4.5. Dereplication, Isolation and Structure Elucidation

4.5.1. LC-MS/MS and Molecular Networking

LC-MS/MS data for molecular networking were obtained with a system consisting of a Thermo
Finnigan Surveyor Autosampler Plus, LC-Pump-Plus and PDA Plus coupled a Thermo Finnigan LCQ
Advantage Max mass spectrometer. The flash chromatography fractions were dissolved in MeOH to a
concentration of 1 mg/mL, and 20 µL of each fraction was injected onto a Kinetex C18 column (5 µm,
4.6 mm × 100 mm) (Phenomenex, Torrance, CA, USA). The mobile phase consisted of acetonitrile
(ACN) and H2O (both containing 0.1% formic acid) with a flow of 0.7 mL/min, and the components
were eluted with the following gradient: 30% ACN for 5 min, increase to 99% ACN over 17 min, hold
at 99% ACN for 4 min. The MS was run in positive electrospray, and data from m/z 190 to 2000 was
recorded with automated full dependent MS/MS scan enabled. The chromatograms were converted
to .mzxml files using msConvert (www.proteowizard.sourceforge.net), and the chromatograms were
submitted to GNPS for analysis (www.gnps.ucsd.edu). Cytoscape 3.6.0 (www.cytoscape.org) was used
to visualize the molecular networks. A cosine value of 0.7 was used to generate the molecular network.

www.proteowizard.sourceforge.net
www.gnps.ucsd.edu
www.cytoscape.org
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4.5.2. HR-MS/MS

High-resolution mass spectrometry was run with ESI+ ionization using UPLC-QToF-MS. It was
performed on an Acquity UPLC I-class and a Vion IMS QToF with an Acquity UPLC C18 column
(1.7 µm, 2.1 mm × 100 mm) (all from Waters). The samples were run with a 12 min gradient increasing
from 10% to 90% acetonitrile (ACN, 75-05-08, Merck) with 1% formic acid (FA, 069141, Biosolve, Dieuze,
France) in ultra pure water (7732, Merck) and a flow rate 0.45 mL/min. Waters UNIFI 1.8.2 Scientific
Information System software was used to process the data.

4.5.3. Isolation of Compounds 1–6

Purification of the rhamnolipids was performed using a prep-HPLC system (Waters) consisting of
a 600 HPLC pump, a 3100 mass spectrometer, a 2996 photo diode array detector and a 2767 sample
manager. The system was controlled with MassLynx version 4.1. Various columns were used (all
from Waters): X-Terra RP-18 Prep Column (10 µM, 10 mm × 300 mm), Atlantis Prep dC18 Column
(10 µM, 10 mm × 250 mm), XSelect CSH Prep Fluoro-Phenyl (5 µM, 10 mm × 250 mm). Gradients
were optimized using Milli-Q water with 0.1% FA (33015, Sigma-Aldrich) and acetonitrile (34851,
Sigma-Aldrich) with 0.1% FA as mobile phase. Flow rate was constant at 6 mL/min. Flash Fraction
5 was resuspended in 100% MeOH, and the initial separation of the rhamnolipids was done on the
Atlantis dC18 column using a gradient from 50% to 100% ACN over 15 min. The combinations of
gradients and columns used for the final isolation of each compound are listed in Table 5.

Table 5. Column, gradient and run-time used for isolation of compound 1–6.

Compound Column Gradient (%) ACN Time (min)

1 XSelect 55–57 7.00
2 Atlantis 70–78 10.00
3 Atlantis 68–72 10.00
4 Atlantis 70–80 12.30
5 X-Terra 70–78 10.00
6 Atlantis 80–96 12.00

4.5.4. NMR

All NMR spectra were acquired on a Bruker Avance III HD spectrometer equipped with an
inverse detected TCI probe with cryogenic enhancement on 1H, 2H and 13C, operating at 599.90 MHz
and 150.86 MHz for 1H and 13C, respectively. Samples were prepared in DMSO-d6 and methanol-d4,
and recorded at 298 K.

All experiments were acquired using standard pulse sequences for Proton, Presat, Carbon,
DQFCOSY, ECOSY, HSQC (bip), HMBC (bip), H2BC (bip), HSQCTOCSY (mlev), TOCSY (clean
mlev), NOESY and ROESY (adiabatic) in Topspin 3.5pl7, using gradient selection where applicable,
and processed in Mnova 12.0.0. Spectra were referenced on the residual solvent peak of methanol-d4

(δH = 3.31 and δC = 49.00) or DMSO-d6 (δH = 2.50 and δC = 39.52).

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/5/163/s1.
Figures S1–S45, including a phylogenetic three of Pseudomonas sp., strain M10B774, bioactivity data as well as 1D
and 2D NMR data, Figures S46–S51, MS/MS data of compounds 1–6, and HR-ESI-MS spectra of compounds 1–6
can be found online.
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Figure S1. Phylogenetic tree of Pseudomonas species in the P. fluorescence group based on 16S rRNA gene 
sequences. The studied isolate M10B774 is shown in bold. Branch labels represent identification and accession 
codes of the Pseudomonas sequences in GenBank, node support is given as posterior probabilities (PP). P. jessenii 
was used as an outgroup for the other taxa. The accurate identity and placement of M10B774 remains unresolved, 
because of the adjacent polytomy and lack of node support at nearby nodes of the tree. However, the study 
isolate seems to be most closely related, if not conspesific, with P. gessardii. 

 

 

Figure S2. Antibacterial growth inhibition assay of compounds 1-6 tested at three concentrations against Gram-
negative P. aeruginosa and E.coli. Bacteria cells and medium (50:50) was used as negative control (0µM). Values 
are mean of two parallels. 



Table S3. 13C NMR assignments for compounds 1-6. 

 
1 

 (dmso-d6) 
2  

(methanol-
d3) 

3  
(dmso-d6) 

4  
(dmso-d6) 

5  
(dmso-d6) 

6 
(methanol-

d3) 
1  100.62 98.7 98.75 98.69 99.82 
2  72.29 70.3 70.54 70.97 72.79 
3  72.19 69.3 70.47 70.31 72.03 
4  74.04 71.9 71.85 71.87 74.24 
5  70.00 69.0 68.76 68.93 70.14 
6  17.79 17.8 17.77 17.83 17.92 
1’ 170.59 172.31 170.3 170.03 170.32 172.77 
2’ 42.76 41.18 40.1 39.54 40.06 41.25 
3’ 67.06 75.45 72.9 72.47 72.94 74.73 
4’ 36.69 34.25 32.1 30.38 32.47 33.51 
5’ 24.49 25.78 24.3 124.37 24.66 25.89 
6’ 28.70* 30.58 26.3 132.34 28.63* 28.08 
7’ 28.70* 30.25* 129.9 26.80 28.71* 130.29 
8’ 31.28* 32.86* 129.3 28.73 28.84* 131.46 
9’ 22.10* 23.59* 26.6 26.80 28.98* 28.22 
10’ 13.94* 14.32* 31.3 31.17* 31.22* 30.83 
11’   21.7 22.09* 22.11* 30.08 
12’   13.8 13.94* 13.96* 32.99* 
13’      23.73* 
14’      14.46* 
1’’ 171.62 174.27 170.6 171.65 172.56 177.07 
2’’ 38.81 39.88 40.4 38.79 40.43 42.31 
3’’ 69.97 72.60 71.0 70.73 71.39 73.59 
4’’ 33.36 34.96 33.7 33.29 33.61 35.40 
5’’ 24.97 26.11 24.7 24.54 24.11 26.33 
6’’ 28.70* 30.30 28.6 28.37 28.99* 30.56 
7’’ 28.70* 30.18* 28.8 28.55 29.07* 30.36 
8’’ 31.19* 32.82* 31.2 31.19* 31.30* 32.95* 
9’’ 22.10* 23.58* 22.1 22.08* 22.10* 23.73* 
10’’ 13.94* 14.32* 14.0 13.93* 13.95* 14.45* 

* Carbon resonances are not chain specifically assigned due to near identical shifts 



 

Figure S4. 1D proton of 1 in DMSO-d6, T=298 K. 

Figure S5. 1D carbon of 1 in DMSO-d6, T=298 K. 



 

Figure S6. 2D superimposed 13C-HSQC and HMBC of 1 in DMSO-d6, T=298 K.  

 

Figure S7. 2D DQF-COSY of 1 in DMSO-d6, T=298 K. 



 

Figure S8. 2D ROESY (300 ms) of 1 in DMSO-d6, T=298 K. 

Figure S9. 1D proton of 2 in methanol-d4, T=298 K. 



 

Figure S10. 1D carbon of 2 in methanol-d4, T=298 K. 

 

Figure S11. 2D superimposed 13C-HSQC and HMBC of 2 in methanol-d4, T=298 K.  



 

Figure S12. 2D DQF-COSY of 2 in methanol-d4, T=298 K. 

 

Figure S13. 2D ROESY (300 ms) of 2 in methanol-d4, T=298 K. 



 

Figure S14. 1D proton of 3 in DMSO-d6, T=298 K. 

 

Figure S15.  1D carbon of 3 in DMSO-d6, T=298 K. 
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Figure S16. 2D superimposed 13C-HSQC and HMBC of 3 in DMSO-d6, T=298 K. 

 

Figure S17.  Blown up aliphatic region of superimposed 2D 13C-HSQC and HMBC of 3 in DMSO-d6, T=298 K. 
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Figure S18. Blown up aliphatic region of superimposed 2D 13C-HSQC and H2BC of 3 in DMSO-d6, T=298 K.  

 

Figure S19. 1D proton of 4 in DMSO-d6, T=298 K. 
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Figure S20. 1D carbon of 4 in DMSO-d6, T=298 K. 

 

Figure S21. 2D superimposed 13C-HSQC and HMBC of 4 in DMSO-d6, T=298 K. 
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Figure S22. 2D 13C-HSQCTOCSY of 4 in DMSO-d6, T=298 K.  

 

Figure S23.  Blown up aliphatic region of the 2D 13C-HSQCTOCSY of 4 in DMSO-d6, T=298 K.  
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Figure S24. Blown up aliphatic region of superimposed 2D 13C-HSQC and H2BC of 4 in DMSO-d6, T=298 K. 

 

Figure S25.  2D DQF-COSY of 4 in DMSO-d6, T=298 K.  
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Figure S26. 2D ROESY (300 ms) of 4 in DMSO-d6, T=298 K.

 

Figure S27. Comparison between experimental and simulated multiplets of the olefinic protons of 4. The fit was 
made using a qsine2(12°) window function (upper panel), and then compared to the raw multiplets (lower panel). 
The best fit was found to be a dtt, 10.9, 7.3, 1.5 Hz multiplet, which indicates a cis configuration (expected 3J5’6’ ~ 11 
Hz). The right panel shows the simulated peak for the expected trans coupling ~19 Hz with shows a poor fit.  
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Figure S28. The 3JCH couplings of the olefinic protons are estimated using a selective CLIP-HSQMBC experiment. 
Values of 9.3 and 10.1 Hz is found for 3JH6’C4’ and 3JH5’C7’ respectively, suggesting anti configurations of the C and 
H.   

 

Figure S29. The 3JCH couplings of the olefinic protons are estimated using a SJS-HSQC experiment (j-resolved in 
f1). Values of 9.0 and 9.4 Hz is found for 3JH6’C4’ and 3JH5’C7’ respectively, suggesting anti configurations of the C 
and H. 
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Figure S30. 1D proton of 5 in DMSO-d6, T=298 K. 

 

Figure S31. 1D carbon of 5 in DMSO-d6, T=298 K. 



 

Figure S32. 2D superimposed 13C-HSQC and HMBC of 5 in DMSO-d6, T=298 K. 

 

Figure S33. 2D DQF-COSY of 5 in DMSO-d6, T=298 K. 



 

Figure S34. 2D ROESY (300 ms) of 5 in DMSO-d6, T=298 K. 

 

Figure S35. 1D proton of 6 in methanol-d4, T=298 K. 
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Figure S36. 1D carbon of 6 in methanol-d4, T=298 K. 

 

Figure S37. 2D superimposed 13C-HSQC and HMBC of 6 in methanol-d4, T=298 K.  
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Figure S38.  Blown up aliphatic region of superimposed 2D 13C-HSQC and H2BC of 6 in methanol-d4, T=298 K. 

 

Figure S39. Blown up aliphatic region of superimposed 2D 13C-HSQC and HSQC-TOCSY of 6 in methanol-d4, 
T=298 K. 
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Figure S40. 2D 13C-HSQC and HSQC-TOCSY at noise level of 6 in methanol-d4, T=298 K. 

 

Figure S41. 2D DQF-COSY of 6 in methanol-d4, T=298 K. 
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Figure S42. 2D ROESY (300 ms) of 6 in methanol-d4, T=298 K.  

 

Figure S43. Blown up cyclic region of 2D ROESY (300 ms) of 6 in methanol-d4, T=298 K.  
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Figure S44. Expansion of the nearly overlapped olefinic protons in a 2D NOESY (500 ms) of 3 in methanol-d4, 
T=298 K. The absence of NOE6’,8’ and NOE9’,7’ follows the cis-pattern observed for 4, which could be reliably 
determined to be in cis configuration.  

 

 

Figure S45. Comparison between experimental and simulated multiplets of the nearly overlapped olefinic 
protons of 3. The fit was made using a qsine2(12°) window function (upper panel), and then compared to the raw 
multiplets (lower panel). The best fit was found to be a dtt, 10.9, 6.6, 0.6 Hz multiplet, which indicates a cis 
configuration (expected 3J7’8’ ~ 11 Hz). The right panel shows the simulated peak for the expected trans coupling 
~19 Hz with shows a poor fit. 
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Figure S46. MS/MS spectrum of 1 [M + Na] +. Ion mode ESI+. 

 

 

Figure S47. MS/MS spectrum of 2 [M + Na] +. Ion mode ESI+. 

 

 

Figure S48. MS/MS spectrum of 3 [M + Na] +. Ion mode ESI+. 



 

Figure S49. MS/MS spectrum of 4 [M + Na] +. Ion mode ESI+. 

 

 

Figure S50. MS/MS spectrum of 5 [M + Na] +. Ion mode ESI+. 

 

 

Figure S51. MS/MS spectrum of 6 [M + Na] +. Ion mode ESI+. 
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Abstract: The Lacinutrix genus was discovered in 2005 and includes 12 Gram-negative bacterial
species. To the best of our knowledge, the secondary metabolite production potential of this genus
has not been explored before, and examination of Lacinutrix species may reveal novel chemistry.
As part of a screening project of Arctic marine bacteria, the Lacinutrix sp. strain M09B143 was
cultivated, extracted, fractionated and tested for antibacterial and cytotoxic activities. One fraction
had antibacterial activity and was subjected to mass spectrometry analysis, which revealed two
compounds with elemental composition that did not match any known compounds in databases.
This resulted in the identification and isolation of two novel isobranched lyso-ornithine lipids,
whose structures were elucidated by mass spectrometry and NMR spectroscopy. Lyso-ornithine
lipids consist of a 3-hydroxy fatty acid linked to the alpha amino group of an ornithine amino acid
through an amide bond. The fatty acid chains were determined to be iso-C15:0 (1) and iso-C16:0 (2).
Compound 1 was active against the Gram-positive S. agalactiae, while 2 showed cytotoxic activity
against A2058 human melanoma cells.

Keywords: marine bacteria; lipoamino acid; secondary metabolites; amphiphilic compounds; an-
tibacterial; cytotoxic; anti-cancer

1. Introduction

Bacteria are the producers of many secondary metabolites that have been developed
into drugs, including the tetracycline and aminoglycoside classes of antibiotics [1,2], that
has paved the way for better health for millions of people around the world. Most of
the bacterial secondary metabolites have been isolated from terrestrial organisms [3],
suggesting that the chemical diversity of natural products can be expanded by investigating
bacteria from other habitats.

The Arctic marine environment is home to numerous microorganisms thriving in cold
water under the stark seasonal changes from midnight sun to polar darkness. Compared
to terrestrial microorganisms, the bacteria living under these conditions must be adapted
to cold saline water. It is therefore believed that these bacterial species have specialized
metabolic systems tailored for survival in this niche environment. Today there are several
marketed drugs originating from the marine environment [4]. While most of them were
isolated from invertebrates, the true producers of many of these secondary metabolites are
now known to be symbiotic bacteria, showing that marine bacteria is a promising source of
new bioactive secondary metabolites [5,6]. To increase the likelihood of discovering novel
bioactive compounds, one strategy is to search in underexplored places and sources. As
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the Arctic water is less investigated than warmer waters and terrestrial environments, it
represents a potential source for the discovery of novel bioactive bacterial compounds.

The Lacinutrix genus belongs to the family Flavobacteriaceae, which is the largest family
in the Bacteroidetes phylum [7]. The genus consists of Gram-negative marine bacteria
that have been isolated from both cold polar waters and warm waters. This genus was
first described in 2005 by Bowman and Nichols, when L. copepodicola was isolated from an
Antarctic marine calanoid copepod [8]. Today the genus includes 12 marine species, five
isolated from polar waters and seven from warm waters. In addition to L. copepodicola, the
polar species includes L. mariniflava, L. algicola [9] and L. jangbogonensis isolated from the
Antarctic [10], and L. himadriensis isolated from the Arctic [11]. Species isolated from warm
waters include L. iliipiscaria and L. gracilariae isolated from China [12–14], L. cladophorae
and L. chionocetis from Japan [13,15], L. venerupis from Spain [16] and L. undariae and
L. salivirga isolated from South Korea [17,18]. To date, the studies of Lacinutrix sp. have
mainly focused on describing novel species; analyzing their genomic and cellular fatty
acid content [10,16,19], while their ability to produce secondary metabolites has not yet
been assessed.

As part of the current study, two new lyso-ornithine lipids were isolated and char-
acterized. Lyso-ornithine lipids are known to be precursors of ornithine lipids, which
are the most common lipoamino acids found in the bacterial membrane. Ornithine lipids
are widely distributed in Gram-negative bacteria, but are also present in Gram-positive
bacteria. The biosynthesis of ornithine lipids occurs in two steps, where the first step is
the formation of lyso-ornithine-lipids from ornithine and 3-hydroxy fatty acyl-acyl carrier
protein. Ornithine lipids are formed in the next step by the transfer of an acyl group from
fatty acyl-acyl carrier protein to lyso-ornithine [20–22].

In the present work, the Arctic marine Lacinutrix sp. strain M09B143 was isolated from
a Halichondria sp. sponge collected in the Barents Sea. The potential of the bacterium to
produce bioactive metabolites was evaluated. It was cultivated and the secreted metabolites
were extracted from the fermentation broth. The extract was fractionated into six fractions
that were tested for antibacterial and cytotoxic activity. Fraction 5 was active against Gram-
positive bacteria and was therefore selected for further chemical analysis. This resulted in
the isolation and identification of two novel iso-branched lyso-ornithine lipids that were
tested for antibacterial and cytotoxic activities.

2. Results
2.1. Isolation and Identification

Lacinutrix sp. strain M09B143 was isolated from a Halichondria sp. sponge collected in
the Barents Sea. It was identified as a Lacinutrix sp. using 16S rRNA sequencing and Basic
Local Alignment Search Tool (BLAST) searches against reference sequences in GenBank.
The 16S rRNA gene sequence analysis confirmed that M09B143 was affiliated with the
genus Lacinutrix, a member of the family Flavobacteriaceae and phylum Bacteroidetes,
corresponding to the information provided by the Norwegian Marine Biobank Marbank.
The bacterium clustered separately on its own branch with L. algicola (NR_043592), and
sister taxon for this branch was L. mariniflava (NR_043592). L. algicola and L. mariniflava
are both isolated from a red alga of the family Gigartinaceae [9]. Figure 1 shows the results
from the phylogenetic analysis using PhyML. The phylogenetic analysis was also run
using the MrBayes 3.2.6 plug-in in Geneious, and the results of this analysis are shown in
Supplementary Information Figure S1. There were some differences between the Bayesian
Inference tree and the Maximum Likelihood tree, caused by different placement of non-
supported nodes in ML and Bayesian analyses and especially the polytomy at one basal
node in the tree from MrBayes. The clade consisting of Lacinutrix M09B143, L. algicola, L.
mariniflava and L. jangbogonensis was statistically supported and topologically similar using
both methods.
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Figure 1. Maximum likelihood tree based on 16S rRNA gene sequences and showing the phylogenetic placement of the 
strain M09B143 (in bold) within Bacteroidetes. The tree was rooted with Flavivirga jejuensis as the outgroup. Branch sup-
port is given as aLRT values. 

2.2. Bioactivity of Fractionated Extract 
The M09B143 strain was fermented in 2 × 200 mL M19 medium in 1 L flasks. Second-

ary metabolites excreted into the medium were extracted with Diaion® HP20 resin and 
eluted with methanol. The bacterial extract was fractionated into six fractions by flash 
column chromatography and the fractions were tested for antibacterial and cytotoxic ac-
tivities at 50 µg/mL. Only flash fraction 5, eluting at 100% methanol was active. It was 
active against the Gram-positive bacteria Streptococcus agalactiae, Enterococcus faecalis and 
Staphylococcus aureus (Figure 2). The activity appeared to be most potent against S. agalac-
tiae, followed by E. faecalis. The six fractions were not active against the Gram-negative 
bacteria Escherichia coli and Pseudomonas aeruginosa, or against the A2058 human mela-
noma cells (Figure S2). 

 
Figure 2. Antibacterial effect of flash fractions 1–6 from M09B143 extract against Gram-positive bac-
teria tested at 50 µg/mL in a growth inhibition assay (two technical replicates). Fraction 5 was active 
and was selected for further analysis with UHPLC-HR-MS to identify the compound(s) responsible 
for the observed activity. 

Figure 1. Maximum likelihood tree based on 16S rRNA gene sequences and showing the phylogenetic placement of the
strain M09B143 (in bold) within Bacteroidetes. The tree was rooted with Flavivirga jejuensis as the outgroup. Branch support
is given as aLRT values.

2.2. Bioactivity of Fractionated Extract

The M09B143 strain was fermented in 2 × 200 mL M19 medium in 1 L flasks. Sec-
ondary metabolites excreted into the medium were extracted with Diaion® HP20 resin
and eluted with methanol. The bacterial extract was fractionated into six fractions by
flash column chromatography and the fractions were tested for antibacterial and cytotoxic
activities at 50 µg/mL. Only flash fraction 5, eluting at 100% methanol was active. It was
active against the Gram-positive bacteria Streptococcus agalactiae, Enterococcus faecalis and
Staphylococcus aureus (Figure 2). The activity appeared to be most potent against S. agalactiae,
followed by E. faecalis. The six fractions were not active against the Gram-negative bacteria
Escherichia coli and Pseudomonas aeruginosa, or against the A2058 human melanoma cells
(Figure S2).
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Figure 2. Antibacterial effect of flash fractions 1–6 from M09B143 extract against Gram-positive
bacteria tested at 50 µg/mL in a growth inhibition assay (two technical replicates). Fraction 5
was active and was selected for further analysis with UHPLC-HR-MS to identify the compound(s)
responsible for the observed activity.
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2.3. Dereplication

Based on the observed antibacterial activity, fraction 5 was subjected to UHPLC-
HR-MS analysis. The resulting data were compared to the equivalent data recorded for
the inactive fractions 4 and 6 to identify compounds that were exclusively present, or
present in higher amounts in fraction 5. The dereplication led to the identification of two
compounds, 1, with elemental composition C20H40N2O4 and 2, with elemental composition
C21H42N2O4. Compound 1 was the major peak, and 2 was among the most prominent
peaks in the MS chromatogram of fraction 5 (Figure S3). Both compounds were only
present in very small amounts in the inactive fractions 4 and 6. All other major peaks
in the UHPLC-HR-MS chromatogram of fraction 5 were determined to be either media
components, or compounds present in comparable amounts in the inactive fractions 4 and
6. Consequently, 1 and 2 were suspected to be responsible for the observed bioactivity of
fraction 5. Fragmentation patterns in the UHPLC-HR-MS analysis indicated that they were
lipoamino acids, and from their elemental composition and relatively similar retention time,
it was assumed that the two compounds differed from each other with a methylene group
in the lipid chain. Searches in relevant databases, such as ChemSpider, did not provide any
hits that matched the two compounds. Moreover, the dereplication analysis revealed that
1 eluted in three peaks and 2 as two peaks. This indicated that different isomers of both
compounds were produced by the bacterium (Figure S4). The three peaks recorded for
sample 1 all had the same elemental composition, and the two peaks for sample 2 had the
same elemental composition. Fragmentation patterns from MS/MS on the UHPLC-HR-MS
were also identical for the different peaks. This strongly indicates that 1 was a mixture of
three stereoisomers and that 2 was a mixture of two stereoisomers.

2.4. Isolation of Compound 1 and 2

For purification of the two compounds, upscale cultivation of Lacinutrix sp. M09B143
and isolation were performed in two rounds using a preparative HPLC-MS system. The
strain was fermented in 64 × 250 mL in round one, which resulted in 25.0 g of dry extract.
Fractionation of the extract yielded 515.0 mg of fraction 5. Extensive efforts were put into
separating the isomeric variants of each compound from each other. However, due to the
lower chromatographic resolution of the preparative column, it was not possible to do so.
Therefore, the three variants of 1 were isolated and further processed together, and so were
the two variants of 2. In the text below, compound 1 refers to the sample containing the
three variants of 1, and compound 2 refers to the sample containing the two variants of 2.

The first isolation step of the two compounds in round one yielded 8.0 mg of 1 and
5.0 mg of 2. After the second purification step, the yield of 1 was 1.5 mg and 0.6 mg of 2.

Fermentation and isolation in round two included 56 × 400 mL cultures, which
resulted in 28.02 g of dry extract that was fractionated and yielded 1021.2 mg of fraction 5.
First purification step of the two compounds with preparative HPLC-MS gave 26.8 mg of 1
and 23.2 mg of 2. Compound 2 was subjected to a second purification step, resulting in
4.9 mg of 2.

The two compounds were isolated as light brown waxes; total yield was 28.3 mg of 1
and 5.5 mg of 2. The purity of the isolated compounds was checked using UHPLC-HR-MS.
This revealed that 1 and 2 were completely separated from each other and that the samples
only contained minor impurities.

2.5. Structure Elucidation

The structures of 1 and 2 (Figure 3) were elucidated using 1D (1H and 13C, Table 1)
and 2D (HSQC, HMBC, HSQC-TOCSY and COSY, COSY only recorded for 2). NMR exper-
iments in methanol-d3 and UHPLC-HR-MS analysis. The compounds were determined
to consist of a polar ornithine head group linked to a mono-hydroxylated 15:0 (1)/16:0
(2) iso-fatty acid through an amide bond. The structures of the individual variants of 1
and 2 could not be determined individually, but the presence of two stereoisomers in the
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5-position could be observed as two near isochronous C-5 resonances and an unresolvable
H-5 multiplet pattern.
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Table 1. 1H and 13C assignments for 1 and 2.

(1) (2)

position δC, type δH (J in Hz) δC, type δH (J in Hz)

2 40.2, CH2 2.95, t (7.3) 40.2, CH2 2.95, t (7.3)
3 24.6, CH2 1.71, dtd (17.1, 9.5, 8.5, 4.2) 24.6, CH2 1.77–1.64, m e

4 30.9, CH2 1.91, ddd (10.0, 8.4, 4.8) 30.9, CH2 1.90, m
5 54.8, C 4.28, dq (9.9, 3.9, 2.6) 54.8, CH 4.28, d (5.4)
6 178.0, C - 178.0, C -
7 - 7.63, d (8.0) - 7.62, d (8.0)
8 173.7, C - 173,7, C -

9a 45.0, CH2
2.39, dd (14.3, 3.9) 45.0, CH2

2.39, dd (14.4, 4.0)
9b 2.30, dd (14.4, 9.2) 2.30, dd (14.4, 9.2)
10 69.9, CH 3.95, ddt (8.9, 5.8, 3.1) 69.9, CH 3.95, m
11 38.4, CH2 1.49, m b 38.4, CH2 1.52, m
12 26.6, CH2 1.35, m c 26.6, CH2 1.48, dq (7.1, 4.4, 3.9)
13 30.7–30.6, CH2

a 1.40–1.22, m c 30.7–30.6, CH2
d 1.40–1.22, m f

14 30.7–30.6, CH2
a 1.40–1.22, m c 30.7–30.6, CH2

d 1.40–1.22, m f

15 30.7–30.6, CH2
a 1.40–1.22, m c 30.7–30.6, CH2

d 1.40–1.22, m f

16 30.7–30.6, CH2
a 1.40–1.22, m c 30.7–30.6, CH2

d 1.40–1.22, m f

17 30.7–30.6, CH2
a 1.40–1.22, m c 30.7–30.6, CH2

d 1.40–1.22, m f

18 28.4, CH2 1.40–1.22, m c 30.7–30.6, CH2
d 1.40–1.22, m f

19 40.1, CH2 1.16, qd (7.5, 4.2) 28.4, CH2 1.40–1.22, m f

20 29.0, CH 1.52, m b 40.1, CH2 1.17, q (7.1)
21 22.9, CH3 0.86, dd (10.9, 6.7)

29.0, CH 1.77–1.64, m e

22 23.6, CH3 0.87, d (6.8)23 - -
a–f Signals are overlapping.

The molecular formula of 1 was calculated to be C20H40N2O4 (m/z 373.3055, [M + H]+,
calcd 373.3066) by HRESIMS, corresponding to two degrees of unsaturation. The ornithine
substructure (atoms 1 to 7) of 1 was assembled through correlations found in the HMBC
spectrum (Figures 4 and S5). Deshielding of carbon atom CH2-2 (δC 40.2) places the NH2
group at the delta carbon of the amino acid. The carbonyl group was determined to
be located at C-6 (δC 178.0). The fatty acid chain was found to be linked to the polar
head group through an amide bond between NH-7 (δH 7.63) and C-8 (δC 173.3) based
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on a HMBC correlation between the two. Furthermore, carbon atoms C-9 to C-13, and
C-17 to C-23 were linked through HSQC-TOCSY experiments (Figures 4 and S6), where
the C-13 to C-17 resonances overlap in both dimensions. A hydroxy group was placed
at carbon atom CH-10 (δC 69.9) based on HSQC data (Figure S5) and the deshielded
shift value of the carbon atom. In agreement with previously reported data for similar
compounds [23,24], the central methines (CH2-13 to CH2-17) could not be individually
assigned due to complete signal overlap (Figures S7 and S8). The two equivalent CH3
groups (CH3-21 and CH3-22) of the iso-terminal of the fatty acid were assigned based
on 1H and HMBC spectrum analysis, and were furthermore linked to a -CH-CH2-CH2-
fragment (CH-20 (δC 29.0), CH2-19 (δC 40.1) and CH2-18 (δC 28.4)) through HMBC and
HSQC-TOCSY correlations. Consequently, the structure of 1 was assigned as 5-amino-2-(3-
hydroxy-13-methyltetradecanamido) pentanoic acid.
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Through HRESIMS analysis, 2 was determined to have a molecular formula of
C21H42N2O4 (m/z 387.3212 [M + H]+, calcd 387.3223). The structure of 2 (Figure 3) was
assigned by analyzing the data from 1H, 13C, HSQC, HMBC, HSQC-TOCSY and COSY
NMR experiments (Figures S9–S13). The structure of 2 was unambiguously assigned
in a similar manner as described above for 1 and was found to have an extension of
the fatty acid chain by a CH2-group compared to 1 and was consequently assigned as
5-amino-2-(3-hydroxy-14-methylpentadecanamido) pentanoic acid.

2.6. Bioactivity Testing of Isolated Compounds
2.6.1. Antibacterial Assay

The two lyso-ornithine lipids were tested for antibacterial activity against the Gram-
positive bacteria S. agalactiae, E. faecalis and S. aureus, and against the Gram-negative
bacteria E. coli and P. aeruginosa in a growth inhibition assay in three biological replicates,
each containing three technical replicates. The compounds were tested at 10, 50, 100
and 150 µM. As shown in Figure 5, 1 was active against S. agalactiae, while 2 showed no
activity. A dose-response curve was observed for 1, with minimum inhibitory concentration
between 100 and 150 µM. Compound 1 also had modest effect against E. faecalis and S.
aureus at the highest concentrations, but visible growth was observed in the wells at all
concentrations, so complete growth inhibition was not achieved (Figure S14). Neither of
the compounds were active against the Gram-negative bacteria (Figure S15).

2.6.2. Cytotoxic Effect of Isolated Lyso-Ornithine Lipids

The cytotoxicity of the two lyso-ornithine lipids was evaluated against human melanoma
cell line A2058 and the non-malignant lung fibroblasts MRC-5 cell line at the concentrations
10, 25, 50, 100 and 150 µM. Some cytotoxic activity against the A2058 cell line was observed
for 2, with 23% cell survival at 50 µM, and ~0% cell survival at 100 and 150 µM (Figure 6).
Compound 1 showed no activity against A2058 cells. Neither of the compounds were
active against MRC-5 cells (Figure S16). The compounds were tested in three biological
replicates with at least eight technical replicates in total.
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3. Discussion

The antibacterial activity of a fractionated extract from the Arctic marine bacterium
Lacinutrix sp. led to the identification of two novel lyso-ornithine lipids, 1 and 2.

Lyso-ornithine lipids are amphiphilic due to their nonpolar fatty acid chain and
their polar amino acid head group. Previous studies from our group have identified
amphiphilic compounds with antibacterial and cytotoxic activities [23,25]. This includes
Lipid 430, with similar structure as the lyso-ornithine lipids. Lipid 430 and 2 have the
same iso-branched fatty acid chain, they differ at the head group where Lipid 430 has two
serine amino acids whereas 2 has one ornithine amino acid. Lipid 430 was active against
the Gram-positive bacterium S. agalactiae and against A2058 human melanoma cells. In
addition, lipoamino acids are reported to have various bioactivities, such as antibacterial,
insecticidal, hemolytic, coagulant and macrophage activity [26–28]. Hence, it was likely
that the two isolated compounds would be bioactive. After isolation, the two compounds
were tested for antibacterial and cytotoxic activities. Compound 1 had some effect against
Gram-positive bacteria, particularly S. agalactiae, and 2 was moderately cytotoxic to A2058
human melanoma cells. Considering the similarities in the structures of 1 and 2, this
discrepancy in bioactivity was unanticipated. As the compounds are mixtures of isomers,
this could be a factor for the discrepancy in activity. However, based on our data, the
isomers have the same iso-branched fatty acid linked to an ornithine head group, therefore,
the differences in observed bioactivity are most likely due to the different length of the fatty
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acid chain. The length of the fatty acid chain is known to affect the bioactivity of amphiphilic
compounds. For example, Nashida et al. (2018) [29] synthesized mannosylerythritol lipids
with various lipid chain length with different antibacterial activity. A study from Tareq et al.
(2019) [30] also shows how small differences in the fatty acid chain can affect the bioactivity
of amphiphilic compound. They isolated two gageostatins that showed differences in
activity against various bacteria and fungi. The only difference between the two isolated
gageostatins was a CH2 in the lipid chain, similar to the differences between 1 and 2 in the
present study.

The two isolated lyso-ornithine lipids showed no activity against the Gram-negative
bacteria. This is likely due to the lipopolysaccharide on the outer membrane of Gram-
negative bacteria, making it harder for the compounds to access the membrane, as the
bioactivity of amphiphilic compounds is commonly due to membrane interactions. Tahara
et al. (1977) [31] reported a lyso-ornithine lipid with the same molecular formula as 2,
but with an unbranched fatty acid chain instead of an iso-branched chain, that killed the
Gram-negative E. coli and P. aeruginosa in liquid cultures at 360 µg/mL and 480 µg/mL,
respectively. These concentrations are 6-9 times higher than the maximum concentration
used in our study, and much higher compared to minimum inhibitory concentrations of
marketed antibiotics [32], indicating a fairly weak activity against Gram-negative bacteria.

As lyso-ornithine lipids are precursors for ornithine lipids, it was possible that the
extract could contain ornithine lipids. The UHPLC-HR-MS data were therefore specifically
checked for the presence of such compounds, but no signals that matched the mass and
elemental composition of potential ornithine lipids were detected, indicating that no
ornithine lipids were produced. This could be due to the growth conditions used in
this study, as the membrane lipid composition can be changed as part of the regulation
of membrane fluidity. The amount of iso-branched lipids and lipoamino acids in the
membrane is affected by temperature and cultivation conditions [33–36]. Some bacteria
produce lipoamino acids only under limiting phosphate conditions, while others produce
them regularly [37–40].

In the present study we found that lyso-ornithine lipids have some antibacterial and
cytotoxic activities. Previous bioactivity studies of lyso-ornithine lipids are limited. In
addition to the mentioned study of Tahara et al. (1977), they include a study by Williams
et al. (2019) [41], where a lyso-ornithine lipid with good surface activity was described. Sur-
face activity is a feature possessed by surfactants, which are compounds with amphiphilic
nature. Biosurfactants (surfactants produced by microorganisms) have the potential to
replace chemical surfactants within industrial applications such as remediation of heavy
metal and hydrocarbon-contaminated sites, soil washing technology and in cosmetics. In
addition, they are known to have various bioactivity properties. These properties include
cytotoxicity and antibacterial activity, and are due to their interaction with membranes of
target cells, affecting the integrity and stability of the membranes [42–45]. From this, it
is likely that the activity of 1 and 2 is a result of the two compounds interacting with the
membranes of the bacteria and the human melanoma cells.

The approach used in this study, investigating underexplored Artic marine bacteria
for the production of novel compounds resulted in the characterization of two compounds
not described before, showing the potential of Arctic marine bacteria as a source for novel
compounds. Bioassay-guided isolation was used to identify the two compounds, as the
selection of fractions for further analysis was based on the observed activity in the bioassays.
The use of phenotypic bioassays resulted in the isolation of two active compounds with
unspecific mode of action. The activity places them outside the potency level needed to
be considered relevant for further development toward becoming commercially available
pharmaceuticals. Despite of being widely studied, with a few exceptions, the use of
biosurfactants within the pharmaceutical industry is today limited. Regarding replacing
biosurfactants with chemical surfactants, biosurfactants are today used in cosmetics and
in food, but in other industrial applications such as bioremediation and antifouling, the
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research is still at laboratorial level [46,47]. However, as the research continues, that may
change one day.

4. Materials and Methods
4.1. Sampling and Identification of Lacinutrix sp.

The strain was isolated from a Halichondria sp. sponge in the Barents Sea at 74◦22′12” N
and 19◦11′54.2652 E, in January 2009. Glycerol stocks of the bacterium were prepared and
provided by Marbank. The bacterial glycerol was plated onto FMAP agar (15 g Difco Marine
Broth (Becton Dickinson and Company, Franklin Lakes, NJ, USA), 5 g peptone from casein,
enzymatic digest (Sigma, St. Louis, MS, USA), 15 g/L agar, 700 mL ddH2O, and 300 mL
filtrated sea water), and incubated at 10 ◦C until sufficient growth. The characterization
of the bacterial strains was done by sequencing of the 16S rRNA gene through colony
PCR and Sanger sequencing as described previously [48]. The primer set used for gene
amplification was the 27F primer (forward primer; 5′-AGAGTTTGATCMTGGCTCAG) and
the 1429R primer (reverse primer; 5′-TACCTTGTTACGACTT), both from Sigma. The PCR
product was sequenced at the University Hospital of North Norway (Tromsø, Norway).
The forward and reverse sequences obtained were assembled using the Geneious Prime®

2021.0.3 software (https://www.geneious.com/) (accessed on 2 July 2021), with the built-in
Geneious assembler (sequences trimmed using a 0.05 error probability limit). The Lacinutrix
M09B143 16S rRNA sequence was deposited in Genbank with the following accession
number MZ414169. Reference sequences for the phylogenetic analysis were obtained
from Genbank and were selected among top BLAST results of the M09B143 sequence and
from recent phylogenetic studies on Lacinutrix sp. strains (Supplementary Table S1). The
multiple sequence alignment of 23 sequences (including the outgroup Flavivirga jejuensis)
was conducted using the multiple sequence alignment plug-in Clustal Omega 1.2.2 [49] in
Geneious, using the default settings. The alignment was manually adjusted, resulting in a
final alignment of 1413 bp length.

Phylogenetic analysis was conducted using the online version of PhyML 3.0 (http:
//www.atgc-montpellier.fr/phyml/) (accessed on 2 July 2021) [50], and Smart Model
Selection [51] was used to select the appropriate substitution model, using the Akaike
Information Criterion (AIC) as selection criterion and aBayes for branch support. This
suggested the following model to be most appropriate for the dataset: GTR + G + I. The
tree was rooted with F. jejuensis, branch support is given as aLRT (approximate likelihood
ratio test) values. In addition, a phylogenetic analysis was conducted on the same align-
ment, using the MrBayes 3.2.6 [52] plug-in in Geneious. The analysis was run with the
GTR substitution model and rate variation gamma, chain length 1,100,000, subsampling
frequency 200 and burn-in length 550,000. The resulting consensus tree was built using
default settings.

4.2. Fermentation

The M09B143 Lacinutrix strain was cultivated in 250 and 400 mL M19 medium in 1 L
Erlenmeyer flasks at 10 ◦C with 140 rpm shaking for 2–3 week until sufficient growth. M19
medium was prepared of 1 L Milli-Q water (Merck Millipore), 20 g D-Mannitol (63560),
20 g Peptone (82303) and 20 g Sea Salt (S9883), all from Sigma-Aldrich. Diaion® HP-20 resin
beads (13607, Supelco Analytica) activated in methanol (34860, Sigma-Aldrich) for 20 min
and washed with Milli-Q water were added to the cultures to extract compounds secreted
into the medium. After 3–4 days the resin was separated from the cultures by filtrating
the cultures under vacuum using a mesh cheesecloth (1057, Dansk Hjemmeproduktion,
Ejstrupholm, Danmark). Resin collected on the cheesecloth were washed with 100 mL
Milli-Q water and compounds adsorbed to the resin was eluted with methanol. The elution
was done twice at 140 rpm for 1 h in 150 mL methanol per 40 g resin. The extract was
vacuum filtered through Whatman Ø 90 mm No. 3 filter (Whatman plc), dried under
reduced pressure at 40 ◦C and stored at −20 ◦C.

https://www.geneious.com/
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
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4.3. Flash Fractionation, Bioactivity Testing of Flash Fractions, and Dereplication

Extract of M09B143 was dissolved in 90% methanol before Diaion® HP20 resin was
added and the sample was dried under pressure at 40 ◦C. For each sample, 2 g of extract,
2 g of resin and 8 mL methanol were used. Flash column (Biotage® SNAP Ultra, Biotage,
Uppsala, Sweden) was prepared with 6.5 g resin activated in methanol for 20 min before
rinsing with Milli-Q water. The resin was loaded in the column and equilibrated with
5% methanol before the extract sample was loaded on top of the column. Fractionation
was performed with a Biotage SP4TM system using first a step-wise gradient from 5–100%
methanol over 36 min (the steps were 5, 25, 50 and 75% methanol, 6 min each, and 100%
methanol for 12 min). Then a gradient with methanol:acetone (34850, Sigma-Aldrich) for
4 min and 100% acetone for 12 min was used. The flow rate was 12 mL/min, resulting in
27 sub fractions with 24 mL in each tube. Sub fraction 1–3, 4–6, 7–9, 10–12, 13–15 and 16–27
were pooled together to a total of six flash fractions and dried under pressure at 40 ◦C.

4.4. Dereplication

The samples were analyzed with ESI+ and ESI- ionization mode on a UPLC-QToF-MS
for dereplication. The system (all from Waters) consisted of an Acquity UPLC I-class
coupled to a PDA detector and a Vion IMS QToF. An Acquity C18 UPLC column (1.7 µm,
2.1 mm × 100 mm) was used for the separation. Milli-Q water was used for mobile phase
A and acetonitrile (HiPerSolv, VWR) for mobile phase B, both containing 0.1% formic acid
(v/v) (33015, Sigma). A 12-min gradient increasing from 10% to 90% acetonitrile with flow
rate 0.45 mL/min was used. UNIFI 1.9 (Waters) was used to process the data.

4.5. Purification of 1 and 2

The compounds were purified in two different isolation rounds.

4.5.1. Purification Round One

A preparative HPLC-system (Waters) with a 600 HPLC pump, a 2996 photo diode
array detector, a 3100 mass spectrometer and a 2767 sample manager was used to isolate the
two compounds. MassLynx version 4.1 was used to control the system. The mobile phases
consisted of A; Milli-Q water and B; acetonitrile (Prepsolv®, Merck), both containing 0.1%
formic acid (v/v), and flow rate was set to 6 mL/min. Atlantis Prep dC18 column (10 µm,
10 mm × 250 mm) (Waters) was used for the initial separation of the two compounds
with gradient 10–88% acetonitrile over 13 min. XSelect CSH Prep Fluoro-Phenyl column
(5 µm, 10 mm × 250 mm) (Waters) was used for final purification of 1, gradient 10–76%
acetonitrile over 10 min. For the final purification of 2, XSelect CSH Phenyl-Hexyl prep
column (5 µm, 10 mm × 250 mm) (Waters) was used with gradient 10–54% acetonitrile
over 11 min.

4.5.2. Purification Round Two

The initial purification of the compounds in the second round was performed with
the same preparative HPLC-system described in the previous section, and the same mobile
phases and flow rate. A SunFire C18 OBD column (5 µm, 10 mm × 250 mm) with gradient
50–85% acetonitrile over 10 min was used. A second purification step was performed
with 2 on a preparative HPLC-system consisting of Acquity Arc Sample Manager FTN-R,
Acquity Arc Quaternary Solvent Manager-R, Acquity Arc Column manager, Acquity QDa
Detector and Photodiode Array Detector 2998. Masslynx software was used to control the
system. An Atlantis T3, C18 column (3 µm, 3 mm × 150 mm) was used. Flow rate was set
to 1.5 mL/min, with gradient 35–55% acetonitrile over 12.5 min.

4.6. Antibacterial Activity

Antibacterial activity screening of the fractions and isolated compounds was per-
formed in a growth inhibition assay against the Gram-positive bacteria S. aureus (ATCC
25923), E. faecalis (ATCC 29122), and S. agalactiae (ATCC 12386), and the Gram-negative bac-
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teria E. coli (ATCC 259233) and P. aeruginosa (ATCC 27853). Flash fractions in the primary
screening were dissolved in Milli-Q water with 1% dimethyl sulfoxide (DMSO, D4540,
Sigma-Aldrich) to 1 mg/mL, further diluted with Milli-Q water and tested in duplicates
at final concentration 50 µg/mL. The isolated compounds were dissolved in DMSO to
20 mM. They were further diluted in Milli-Q water and added to the wells at the final
concentrations 10, 50, 100, and 150 µM. The assay was performed as previously described
by Kristoffersen et al. (2018) [25]. In total, three biological experiments were performed,
with three replicates in each experiment.

4.7. Cytotoxic Activity Assay

The cytotoxicity of the fractions in the preliminary screening and of 1 and 2 was
tested in an MTS in vitro cell proliferation assay. The fractions and compounds were tested
against human melanoma A2058 cells (ATCC, CRL-1147TM). The isolated compounds
were in addition tested against normal lung fibroblasts MRC-5 cells (ATCC CCL-171TM).
The flash fractions were dissolved in Milli-Q water with 1% DMSO to 1 mg/mL and further
diluted in Roswell Park Memorial Institute cell media (FG1383, Merck) with 10% fetal
bovine serum (S0115, Biochrom) and tested at 50 µg/mL in three replicates.

Compounds 1 and 2 were dissolved in DMSO to 20 mM, and further diluted in
Roswell Park Memorial Institute cell media with 10% fetal bovine serum and tested at the
concentrations 10, 25, 50, 100 and 150 µM. One biological experiment with three replicates
(test concentration 25 µM was not used here), and two biological experiments with four
replicates each were performed. The bioassay was performed as previously described by
Kristoffersen et al. (2018) [25].

4.8. NMR Spectroscopy

The structures of 1 and 2 were established by 1D and 2D NMR experiments. NMR
spectra were acquired in methanol-d3 (CD3OH) and 298 K in a 3 mm shigemi tube on a
Bruker Avance III HD spectrometer operating at 600 MHz for protons, equipped with an
inverse TCI cryo-probe enhanced for 1H, 13C, and 2H.

5. Conclusions

Lacinutrix sp. was evaluated for its production of bioactive molecules. This resulted
in the isolation and characterizing of two novel lyso-ornithine lipids. The bioactive profil-
ing revealed that 1 had some antibacterial activity against the Gram-positive bacterium
S. agalactiae, with minimum inhibitory concentration between 100 and 150 µM, and that
2 had moderate cytotoxic activity against human melanoma A2058 cells with 23% cell
survival at 50 µM, and ~0% cell survival at 100 µM. The length of their lipid chain seemed
to affect their activity as (considering the 2-dimentional structure of the two compounds)
they only differed with one methylene group in the lipid chain, but showed activity in
different bioassays. Should the two compounds be more potent in other bioassays, further
studies to determine the structure of the isomers can be performed. This is to our knowl-
edge the first time bioactive molecules have been reported from Lacinutrix sp., and the first
data describing lyso-ornithine lipids with cytotoxic activity, and with antibacterial activity
against Gram-positive bacteria. This shows that exploration of the secondary metabolite
content of underexplored bacteria is a viable strategy to discover novel molecules.

Supplementary Materials: The following are available online, Figure S1: Bayesian Inference tree
based on 16S rRNA gene sequence similarity. Figure S2: Fractions 1-6 tested against Gram-negative
bacteria and human melanoma A2058 cells. Figure S3: UHPLC-HR-MS base peak intensity chro-
matogram of flash fraction 5. Figure S4: Extracted UHPLC-HR-MS mass chromatogram of 1 and 2.
Figure S5: HSQC + HMBC (600 MHz, CD3OH) spectrum of 1. Figure S6: HSQC-TOCSY (600 MHz,
CD3OH) spectrum of 1. Figure S7: 1H NMR (600 MHz, CD3OH) spectrum of 1. Figure S8: 13C
(151 MHz, CD3OH) spectrum of 1. Figure S9: 1H NMR (600 MHz, CD3OH) spectrum of 2. Figure S10:
13C (151 MHz, CD3OH) spectrum of 2. Figure S11: HSQC + HMBC (600 MHz, CD3OH) spectrum of 2.
Figure S12: HSQC-TOCSY (600 MHz, CD3OH) spectrum of 2. Figure S13: COSY (600 MHz, CD3OH)
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spectrum of 2. Figure S14: Antibacterial activity of 1 and 2 against Gram-positive bacteria. Figure S15:
Antibacterial activity of 1 and 2 against Gram-negative bacteria. Figure S16: Cytotoxic activity of 1
and 2 against non-malignant lung fibroblast cell line MRC-5. Table S1: 16S rRNA sequences used in
the phylogenetic analysis of Lacinutrix M09B143.
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Table S1. The names, accession numbers and lengths (bp) of all 16S rRNA sequences used in the phylogenetic analysis of 
Lacinutrix M09B143. All sequences were acquired from Genbank. 

Name/Information Acc.nr Length (bp) 
Algibacter agarivorans strain KYW560 16S ribosomal RNA gene JN864025 1452 

Algibacter miyuki strain WS-MY6 from South Korea 16S ribosomal RNA gene KC662118 1441 
Algibacter pectinivorans strain JC2675 from South Korea 16S ribosomal RNA gene HM475134 1442 

Algibacter psychrophilus strain PAMC 27237 16S ribosomal RNA gene KJ475138 1510 
Algibacter wandonensis 16S ribosomal RNA gene KC987358 1443 

Flavirhabdus (now Lacinutrix) iliipiscaria strain Th68 16S ribosomal RNA gene JX412960 1486 
Flavivirga jejuensis strain JC2682 from South Korea 16S ribosomal RNA gene, partial 

sequence (outgroup) 
HM475139 1439 

Lacinutrix (chionocetis) sp. MAB-07 16S ribosomal RNA gene KT272396 1421 
Lacinutrix (cladophorae) sp. 7Alg 4 16S ribosomal RNA gene KU510085 1478 

Lacinutrix algicola strain AKS293 16S ribosomal RNA NR_043592 1496 
Lacinutrix copepodicola strain DJ3 16S ribosomal RNA gene AY694001 1364 

Lacinutrix gracilariae strain Lxc1 16S ribosomal RNA NR_148656 1444 
Lacinutrix himadriensis strain E4-9a 16S ribosomal RNA NR_108471 1488 

Lacinutrix jangbogonensis strain PAMC 27137 16S ribosomal RNA NR_134754 1443 
Lacinutrix mariniflava strain AKS432 16S ribosomal RNA NR_043593 1454 

Lacinutrix salivirga gene for 16S ribosomal RNA LC339518 1460 
Lacinutrix sp. strain M09B143 16S ribosomal RNA gene Must submit Must submit 

Lacinutrix undariae strain W-BA8 16S ribosomal RNA gene KP309835 1442 
Lacinutrix venerupis strain Cmf 20.8 16S ribosomal RNA NR_145942 1337 

Mesoflavibacter aestuarii strain KYW614 16S ribosomal RNA gene JX854528 1443 
Mesoflavibacter sabulilitoris strain GJMS-9 16S ribosomal RNA gene KJ816860 1446 

Olleya aquimaris strain L-4 16S ribosomal RNA gene FJ886713 1443 
Olleya namhaensis strain WT-MY15 16S ribosomal RNA gene JQ327134 1441 



 

 

 

Figure S1. Bayesian Inference tree based on 16S rRNA gene sequence similarity and showing the phylogenetic placement 
of the isolate M09B143 (in bold) within Bacteroidetes. The tree was rooted with Flavivirga jejuensis as the outgroup. Branch 
support is given Bayesian posterior probability. 

 

Figure S2. Fractions 1-6 showed no activity against the Gram-negative bacteria E. coli and P. aeruginosa in the growth 
inhibition assay, results shown in A. There was visible growth in all wells, and the OD values were 0.37 or higher. In 
comparison, the OD value of fraction 5 was 0.05 when it was active against S. agalactiae (Figure 2). The assay was performed 
in duplicates. Fractions 1-6 showed no activity against human melanoma A2058 cells, results shown in B. Cell survival 
was 75 % or higher for the fractions. The assay was performed with three technical replicates. 



 

 

 
Figure S3. UHPLC-HR-MS base peak intensity chromatogram of fraction 5 of Lacinutrix sp., where 1 is the major peak, 
and 2 among the highest peaks.  

 

 
Figure S4. Extracted UHPLC-HR-MS mass chromatogram of 1 shown in A, and 2 shown in B. Possible isomers were 
observed, as 1 eluted in three peaks and 2 eluted in two peaks. 



 

 

 

Figure S5. HSQC + HMBC (600 MHz, CD3OH) spectrum of 1. 

 

Figure S6. HSQC-TOCSY (600 MHz, CD3OH) spectrum of 1. 



 

 

 

 

Figure S7. 1H NMR (600 MHz, CD3OH) spectrum of 1. 

 

Figure S8. 13C (151 MHz, CD3OH) spectrum of 1. 



 

 

 

Figure S9. 1H NMR (600 MHz, CD3OH) spectrum of 2. 

 

Figure S10. 13C (151 MHz, CD3OH) spectrum of 2. 



 

 

 

Figure S11. HSQC + HMBC (600 MHz, CD3OH) spectrum of 2. 

 

Figure S12. HSQC-TOCSY (600 MHz, CD3OH) spectrum of 2. 



 

 

 

Figure S13. COSY (600 MHz, CD3OH) spectrum of 2. 

 

Figure S14. Antibacterial activity of 1 and 2 was tested in a growth inhibition assay. The results are shown for the Gram-
positive bacteria E. faecalis in A and S. aureus in B. The assay was performed in three biological experiments with three 
technical replicates each. 



 

 

 

Figure S15. Antibacterial activity of 1 and 2 was tested in a growth inhibition assay. The results are shown for the Gram-
negative bacteria E. coli in A and P. aeruginosa in B. The assay was performed in three biological experiments with three 
technical replicates each. 

 

Figure S16. Cytotoxic activity of 1 and 2 was tested against non-malignant lung fibroblasts MRC-5 cells in a viability assay 
at 10, 25, 50, 100 and 150µM. Three experiments were conducted, one with three replicates (test concentration 25 µM was 
not used in this setup) and two with four replicates. 
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Article 1 

Chlovalicin B, a Chlorinated Sesquiterpene Isolated from the 2 

Arctic Marine Mushroom Digitatispora marina 3 
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Abstract: As part of our search for bioactive metabolites from understudied marine microorgan- 12 

isms, the new chlorinated metabolite chlovalicin B (1) was isolated from liquid cultures of the Arctic 13 

marine basidiomycete Digitatispora marina, collected and isolated from driftwood found at Vannøya, 14 

Norway. The structure of the novel compound was elucidated by spectroscopic methods including 15 

1D and 2D NMR and analysis of HRMS data, revealing that 1 shares its molecular scaffold with a 16 

previously isolated compound, chlovalicin. The compound was evaluated for its antibacterial activ- 17 

ities against a panel of five bacteria, ability to inhibit bacterial biofilm formation, antifungal activity 18 

against Candida albicans and for cytotoxic activities against malignant and non-malignant human 19 

cell lines. Compound 1 displayed weak cytotoxic activity against the human melanoma cell line 20 

A2058 (~50% survival at 50 µM), otherwise no activity was detected. This is the first reported iso- 21 

lated compound from the marine mushroom sensu stricto D. marina. 22 

Keywords: Digitatispora marina; marine fungus sensu stricto; Basidiomycota; bioprospecting; chlo- 23 

rinated secondary metabolite; natural products 24 
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1. Introduction 26 

Fungi isolated from the marine environment have proven to be a promising source 27 

of novel bioactive compounds [1]. Still, marine derived fungi are under-explored com- 28 

pared to their terrestrial counterparts [1,2], and the studies of marine fungi have mainly 29 

been focused on just a few genera, that is; Penicillium, Aspergillus, and in part Fusarium and 30 

Cladosporium [1]. The Digitatispora genus was first described by Gaston Doguet in 1962. It 31 

consists of two spesies: Digitatispora marina Douget and Digitatispora lignicola E.B.G. Jones, 32 

which both grow on and decay marine-submerged wood. The genus, which is part of the 33 

Atheliaceae family and Basidiomycota phylum, has been included in a number of phylo- 34 

genetic studies, and has been placed in different orders and families. In a recent study by 35 

Sulistyo and co-authors, Digitatispora was placed in the order Agaricales with strong sup- 36 

port both from bootstrap and posterior probability (BS/PP = 98/1.00) [3]. In Index Fun- 37 

gorum, Digitatispora marina is placed in the family Niaceae (order Agaricales, accessed 38 

March 2021), while in MycoBank Digitatispora is systematically placed in Atheliaceae (or- 39 

der Atheliales, accessed March 2021).  40 

In a survey from 2014, Rämä and co-workers identified 28 different species of marine 41 

fungi, out of which Digitatispora marina was the only basidiomycete [4]. Tibell and co-au- 42 

thors (2020) performed a survey on marine fungi from the Baltic Sea, revealing that only 43 

two of the 77 recorded species belonged in Basidiomycota, one of which was Digitatispora 44 

marina [5]. In 2015, only 21 of the 1,112 identified species of marine fungi were Basidiomy- 45 

cota, as opposed to the Ascomycota which contributed to 805 species [6], indicating that 46 

Basidiomycota are less widespread in marine habitats. The distribution of the marine fun- 47 

gus has been studied, but its biosynthetic potential has not yet been assessed. The current 48 

article provides new and valuable information regarding the biosynthetic potential of the 49 

marine genus Digitatispora, and of marine Basidiomycota in general. 50 

As part of our ongoing search for novel bioactive metabolites from under-explored 51 

Arctic marine fungi, Digitatispora marina was chosen for up-scaled cultivation for the iso- 52 

lation of metabolites. The up-scaled culture was extracted and fractionated, and the frac- 53 

tions were analyzed using UHPLC-ESI-HRMS. This led to the identification of a chlorin- 54 

ated compound. When using the elemental composition of this compound as input in 55 

compound database searches, no likely hits were found, and the compound was therefore 56 

presumed to be novel. After compound isolation and structure elucidation, the compound 57 

was determined to be a new chlorinated chlovalicin variant, chlovalicin B (1). Compound 58 

1 shares its molecular scaffold with the previously isolated compound chlovalicin [7]. The 59 

structure of 1 differs from that of chlovalicin by having the methoxy group in the C3 po- 60 

sition of the cyclohexane ring replaced by a hydroxyl group. To the authors’ knowledge, 61 

this is the first publication of a compound isolated from the genus Digitatispora and the 62 

first isolation of a chlovalicin variant from a basidiomycete. Herein, the cultivation of D. 63 

marina, extraction, isolation and structure elucidation of 1 is described along with the eval- 64 

uation of its antimicrobial, cytotoxic and anti-inflammatory properties.  65 

2. Results and Discussion 66 

The D. marina fungus was isolated from driftwood of the Betula sp. (Figure S1) col- 67 

lected at Vannøya, Norway, in 2010 [4]. As part of a routine screening campaign of marine 68 

fungi, the D. marina isolate was cultivated under different cultivation schemes, extracted 69 

and fractionated into six fractions using RP-flash chromatography. The fractions were as- 70 

sayed for bioactivity and different fractions from several different cultivation schemes 71 

were bioactive (cytotoxicity and/or antibacterial). The capability of D. marina to produce 72 

bioactive metabolites has not been previously examined. This, coupled with the observed 73 

bioactivity in our routine screening campaign, nominated this fungus for further exami- 74 

nation. 75 
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A large-scale cultivation of the fungus was initiated to obtain sufficient extract 76 

amount for compound isolation. The fungus was cultivated in several rounds using a liq- 77 

uid malt extract medium, yielding a total of 30 L fermentation broth. This media was se- 78 

lected for scale-up as the fungus grew well in this media during the initial cultivation. The 79 

metabolites were harvested from the fermentation broth using Diaion® HP20 resin and 80 

extracted with methanol, resulting in 25.1 g extract. Aliquots of the fungal extract were 81 

repeatedly fractionated into six fractions using the same RP flash chromatography proto- 82 

col as in the production of fractions for the routine screening mentioned above. In order 83 

to generate sufficient amounts for compound isolation of each fraction, the different flash 84 

fractions were pooled and dried together. The fractions were analyzed using UHPLC-ESI- 85 

HRMS in an attempt to identify novel compounds. In flash fractionation five (eluting at 86 

100% methanol, yield 244.3 mg) compound 1 was identified. HRESIMS analysis revealed 87 

that the molecular ion cluster of 1 displayed the distinctive isotopic pattern of a mono- 88 

chlorinated compound ([M+Na]+ = m/z 341.1132 and m/z 343.1103 in a 1:0.33 ratio. The 89 

molecular formula was established as C15H23O5Cl by UHPLC-ESI-HRMS ([M+Na]+ = m/z 90 

341.1132). The low-collision and high-collision energy mass spectra of 1 can be seen in 91 

Supplementary Figure S2. The elemental composition was used as input in various data- 92 

base searches (e.g. Dictionary of Natural Products and ChemSpider) yielding no plausible 93 

hits. The compound was therefore suspected to be novel, and it was nominated for isola- 94 

tion. The compound was isolated from the pooled flash fraction five using mass guided 95 

preparative HPLC fractionation, yielding 0.6 mg of 1. 96 

Compound 1 (1-(chloromethyl)-1,2,3-trihydroxy-2-(1´-methyl-2´-(5´-methylbut-4´- 97 

en)oxiran-1´-yl) cyclohexan-4-one) was isolated as a brown powder and its structure was 98 

elucidated by high resolution MS and NMR (Figure 1). The UV λmax of 1 was 221.60 nm. 99 

The m/z value of 341.1132 ([M+Na]+) suggested a molecular formula of C15H23ClO5 with 100 

four degrees of unsaturation. A set of 1D (1H and 13C) and 2D (COSY, TOCSY, HSQC, 101 

HMBC and H2BC) NMR experiments were acquired to elucidate the structure (Figures 102 

S3-S8 in the Supplementary Information). 103 

 104 

 105 

 106 

Figure 1: The structure of chlovalicin B (1). 107 

 108 

The 1H spectrum displayed all the expected 23 protons and all 15 carbons were de- 109 

tected in the 13C spectrum. HSQC allowed the identification of three methyl- and four 110 

methylene groups, one methine proton (5.22 PPM) as well as two aliphatic CH groups 111 

with deshielded chemical shifts (4.83 and 2.79 PPM). The three remaining protons were 112 

attributed to hydroxyl protons (4.27, 4.45 and 5.79 PPM). Four quaternary carbons (75.3, 113 

81.7, 60.4 and 133.9 PPM) and one ketone carbon remained (209.6 PPM). COSY, HMBC 114 

and H2BC displayed sufficient correlations to unambiguously connect the observed frag- 115 

ments into 1. The observed correlations are summarized in Table 1 and Figure 2. 116 

 117 



Molecules 2021, 26, x FOR PEER REVIEW 4 of 9 
 

 

Table 1: NMR spectroscopic dataa of chlovalicin B (1) (600 Mhz, DMSO-d6) 118 

Position δC, type δH (J in Hz) COSY HMBCb 

1 75.3, C   7a, 6a, 6b 

1OH  5.79, s   
2 81.7, C   3, 7a, 2', 6a, 1'Me 

2OH  4.27, s   

3 75.9, CH 4.83, d (7.1) 3OH 5b 

3OH  4.45, d (8.3)   
4 209.6, C    

5a 
34.4, CH2 

2.64, td (13.9, 6.9) 6a, 6b 6a, 6b 

5b 2.15, ddd (14.2, 5.1, 1.4) 5b  

6a 
31.5, CH2 

2.09, ddd (13.4, 6.9, 1.6) 5a, 5b, 6a 7a, 7b, 5a, 5b 

6b 1.91, td (13.5, 5.3)   

7a 
51.9, CH3 

3.70, d (11.0) 7  
7b 3.63, d (11.0)   

1'Me 15.8, CH3 1.48, s   
1' 60.4, C   2', 3'b, 1'Me 

2' 55.2, CH 2.79, t (6.5) 3'a, 3'b 3'a, 3'b. 6', 7', 1'Me 

3'a 
26.7, CH2 

2.27, dt (14.6, 7.1) 2', 4' 2', 7' 

3'b 2.19, mc   
4' 119.2, CH 5.21, t (7.4) 3'a, 3'b  
5' 133.9, C   3'a, 3'b, 6', 7' 

6' 25.5, CH3 1.70, s  4', 7' 

7' 17.8, CH3 1.63, s   4', 6' 
a 1H 1D, 13C 1D, 1H-COSY and 1H, 13C-HMBC 119 
b 1H 1D, 13C-HMBC correlations are from the proton(a) stated to the indicated carbon 120 
c Overlapping and/or broadened peaks impending complete analysis 121 

 122 

 123 

 124 

Figure 2: Selected COSY (bold) and HMBC (black arrows) correlations used to assemble the struc- 125 

ture of chlovalicin B (1). 126 

In more detail, long-range proton-carbon correlations between 6’, 7’ and 4’ plus a 127 

clear ROE between 4’ and 6’ established the methyl vinyl group. The spin system could 128 

be traced continuously through the molecule, the key correlations being the 3JC2H2’, 3JC2H1’Me, 129 

3JC2H2’ and 3JC1’H3’ to cross the epoxide, and from there the ring system displayed all the 130 
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expected long-range correlations. The epoxide itself was indicated by both carbons being 131 

less deshielded by the oxygen (55.2 and 60.4 PPM) than had been expected for free hy- 132 

droxyls (70-80 PPM). Furthermore, in epoxides you expect the one bond proton-carbon 133 

coupling to be around ~180 Hz, which is unusually high compared to the normally ex- 134 

pected ~140 Hz for sp3 carbons next to oxygens. The 1JCH2’ is estimated to ~177 Hz from 135 

the incomplete filtering of the one bond coupling in the HMBC spectra for 1, this support- 136 

ing an epoxide. The only remaining potential uncertainty was the position of the chlorine 137 

atom vis-à-vis the hydroxyl groups as the influence on the attached carbon chemical shifts 138 

are similar. The three free hydroxyls were observable (5.79, 4.45 and 4.27 PPM). The 3-OH 139 

(4.45 PPM) could be assigned to C3 through a 3JH3HO3 COSY correlation, while the other 140 

two were connected to carbons not carrying any proton. The ROESY pattern is not entirely 141 

unambiguous since no conformation analysis has been conducted, but it is consistent with 142 

the assignment of 1-OH at 5.79 PPM and 2-OH at 4.27 PPM and the relative stereochem- 143 

istry reported in the original chlovalicin publication [7]. ROEs are observed between 144 

H1’me and H3 as well as between 2-OH and H7b, indicating that the 2-OH and 3-OH are 145 

both on the same side of the ring, which is consistent with the absolute configuration re- 146 

ported for chlovalicin where both hydroxyls and the chlorinated methyl group are below 147 

the ring [8]. Furthermore, in carbon spectra that are sufficiently well resolved it can be 148 

possible to observe a small 37/35Cl isotope shift of carbon resonances bound to chlorine [9]. 149 

A possible isotope shift of 1.2 Hz is indeed observed for C1 (Figure S4), but it cannot be 150 

excluded that the observed splitting is caused by slowly exchanging conformations since 151 

the line width is broadened and the shift slightly larger than the expected 0.5-0.9 Hz at 152 

150 MHz carbon Larmor frequency. The shift is however conformation and temperature 153 

dependent, making it a viable explanation. Over all, the carbon chemical shifts of 1 are in 154 

excellent agreement with the published chemical shifts of chlovalicin [7] except for the C3, 155 

which is the carbon where 1 has a hydroxyl group instead of a methoxy group (Figure S4).  156 

Compound 1 is structurally related to a group of compounds that have all been stud- 157 

ied for their angiogenesis inhibiting properties, including fumagillin, ovalicin and 158 

chlovalicin [7,10-14]. In 1949, Elbe and Hanson isolated fumagillin from a culture of As- 159 

pergillus fumigatus [11,12], and since then, several compounds with relating chemical 160 

structures have been isolated from different fungal sources, all containing the cyclohexane 161 

ring and one or two epoxides (one epoxide when there is a chloride attached to the cyclo- 162 

hexane unit, as with chlovalicin and 1). Most of these compounds have been studied for 163 

their ability to inhibit angiogenesis, and many have also been successfully synthesized 164 

[10]. Chlovalicin was isolated from the fermentation broth of a soil-derived Sporothrix sp. 165 

fungus, its structure elucidated and assayed for bioactivity in 1996 [7,13]. Compounds 166 

belonging to the fumagillin family have also been isolated from marine-derived fungi; 167 

chlovalicin from a marine-derived Aspergillus niger [15], and ligerin from a marine-derived 168 

Penicillium sp. [16], both containing chloride in their structures. It is not uncommon for 169 

marine organisms to incorporate halogens into their chemical structures [17], as chloride 170 

is present in large amounts both in seawater and the artificial sea salts used in the current 171 

study. Chlovalicin is similar to ovalicin, but substituted with a chlorinated methylene moi- 172 

ety at the C1 position of the cyclohexane ring, represented by an epoxide ring in ovalicin. 173 

In 1, the methoxy group in the C3 position of the cyclohexane ring is replaced by a hy- 174 

droxyl group. Chlovalicin was found to inhibit the growth of IL-6 dependent MH60 cells 175 

(IC50 = 7.5 µM) and B16 mouse melanoma cells (IC50 = 37 µM) [13]. Chlovalicin has also 176 

displayed inhibitory activity on osteoclastogenesis [18].  177 

The bioactivity of 1 was broadly evaluated. The compound was tested for antibacte- 178 

rial activities against five bacterial strains, for the ability to inhibit biofilm formation by S. 179 

epidermidis, for antiproliferative activities against two human cell lines, one malignant and 180 

one non-malignant and for antifungal activity against Candida albicans. The compound did 181 

not show any activity against the bacterial strains at 100 µM (highest assayed concentra- 182 

tion) or towards biofilm formation at a concentration of 50 µM (highest assayed concen- 183 

tration). The compound was also assessed for antifungal activity against Candida albicans, 184 
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and no activity was discovered at concentrations up to 100 µM (highest assayed concen- 185 

tration). The compound displayed weak activity against the human melanoma cell line 186 

A2058 at 50 µM (~50% cell survival, highest assayed concentration). Further testing 187 

against this cell line was not prioritized due to the high concentration needed and low 188 

quantities of isolated compound. No activity was observed against the human non-malig- 189 

nant lung fibroblast cell line MRC-5 at 50 µM of 1. Chlovalicin has shown activity against 190 

a mouse melanoma cell line, B16, with IC50 = 37 µM [13], while displaying no or signifi- 191 

cantly weaker activity against other cell lines. This may indicate that the chlovalicins affect 192 

a common cellular target on A2058 and B16 (both melanoma cell lines). 193 

We isolated 0.6 mg of chlovalicin B (1) from 30 L liquid culture of the marine fungus 194 

D. marina. This is the first report of isolated compounds from the Digitatispora genus, and 195 

the first fumagillin/ovalicin derivative isolated from a Basidiomycete. The current study 196 

adds on to the knowledge on cultivation of strictly marine fungi with the purpose of iso- 197 

lating novel compounds from these understudied organisms.  198 

 199 

3. Materials and Methods 200 

3.1. General Experimental Procedures 201 

NMR spectra were acquired in DMSO-d6 on a Bruker Avance III HD spectrometer 202 

(Bruker, Billerica, MA, USA) operating at 600 MHz for protons, equipped with an inverse 203 

TCI cryo probe enhanced for 1H, 13C, and 2H. All NMR spectra were acquired at 298 K, in 204 

3-mm solvent-matched Shigemi tubes using standard pulse programs for proton, carbon, 205 

HSQC, HMBC, COSY, and ROESY with gradient selection and adiabatic versions where 206 

applicable. 1H/13C chemical shifts were referenced to the residual solvent peak (DMSO-d6: 207 

δH = 2.50, δC = 39.51). UHPLC-ESI-HRMS was performed using an Acquity I-class UPLC 208 

with an Acquity UPLC C18 column (1.7 µm, 2.1 mm x 100 mm), coupled to a Vion IMS 209 

QToF and a PDA detector (all from Waters). ESI+ ionization was used. The gradient ex- 210 

tended over 12 minutes, increasing from 10% to 90% acetonitrile (LiChrosolv®, 1.00029, 211 

Supelco) with 0.1% formic acid (33015, Sigma-Aldrich) in Milli-Q® H2O, with a flow rate 212 

of 0.45 mL/min. Waters UNIFI 1.8.2 Scientific Information System was used to process and 213 

analyze the data. The preparative-HPLC system consisted of a 600 HPLC pump, a 3100 214 

mass spectrometer, a 2996 photo diode array detector and a 2767 sample manager (all 215 

from Waters). The system was controlled with MassLynx version 4.1. 216 

 217 

3.2. Fungal Material and Cultivation Condition 218 

The fungus was isolated from driftwood of the Betula sp. by Teppo Rämä, collected 219 

at Vannøya, Norway, in 2010 [4]. The fungus was identified as Digitatispora marina 220 

through morphological and sequencing studies by Rämä. Strain ITS sequence and LSU 221 

sequence are accessible from Genbank with the NCBI accession numbers KM272371 and 222 

KM272362, respectively. The fungus was stored in 20% glycerol solution at -80⁰C, as sub- 223 

merged pieces of agar with mycelium. It was grown and kept on malt agar with sea salts 224 

(4 g/L store bought malt extract (Moss Malt Extrakt, Jensen & Co AS), 40 g/L sea salts 225 

(S9883, Sigma-Aldrich), 15 g/L agar (A1296, Sigma-Aldrich) and Milli-Q® H2O). Agar with 226 

fresh mycelium was used to inoculate the liquid culture, approximately ¼ to ½ agar plate 227 

per flask. For the isolation of compounds, the fungus was cultivated in liquid malt extract 228 

medium containing 4 g/L malt extract (Moss Malt Extrakt, Jensen & Co AS), 40 g/L sea 229 

salts (S9883, Sigma-Aldrich) and Milli-Q® H2O. The fungus was cultivated over several 230 

rounds, in 250 mL media in 1000 mL culture flasks for 73-110 days at 13⁰C without shak- 231 

ing. The total volume of culture used to obtain 1 was 30 L. 232 

 233 

 234 

 235 

 236 
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3.3. Extraction and Isolation 237 

After cultivation, the metabolites were extracted from the fermentation broth using 238 

Diaion® HP-20 resin (13607, Supelco), and extracted from the resin using methanol (20864, 239 

HPLC grade, VWR) in two rounds as described previously (Schneider et al., 2020). The 240 

cultures were incubated with the resin for 3-5 days before the extraction. The resin and 241 

fungal mycelium was separated from the liquid by vacuum filtration through a cheese- 242 

cloth filter (Dansk hjemmeproduktion, Danmark). The extract was dried under reduced 243 

pressure at 40⁰C, yielding an extract of 25.1 g. The extract was fractionated using RP flash 244 

chromatography (Biotage SP4™ system), with Diaion® HP-20SS resin as the stationary 245 

phase. The extract was dissolved in 90% methanol and fractionated (maximum 2 g extract 246 

per round of fractionation). An aliquot was combined with 2 g resin before removing the 247 

solvent under reduced pressure. The column was equilibrated using 5% methanol before 248 

the extract-column material was applied to the top of the pre-equilibrated column. The 249 

following stepwise elution method with a flow rate of 12 mL/min was used: methanol:wa- 250 

ter (5:95, 25:75, 50:50, 75:25. Six min per step) followed by methanol (100% over 12 min). 251 

The eluate was collected in six minute fractions, which subsequently were dried under 252 

reduced pressure at 40⁰C. In preparation for the isolation of 1, the eluent resulting in flash 253 

fraction five (samples eluting in the first six minutes of 100% methanol) from repeated 254 

rounds of flash fractionation were pooled and dried under vacuum yielding 244.3 mg 255 

sample. 256 

Isolation of 1 from the flash fraction was performed using mass-guided preparative- 257 

HPLC. The first round of isolation of 1 was performed with a XSelect CSH Prep Fluoro- 258 

Phenyl column (5 µM, 10 mm × 250 mm, Waters) with a gradient of 10-100% acetonitrile 259 

over 15 minutes with a flow rate of 6 mL/minute. In order to remove additional impurities, 260 

a second isolation step was performed using a XSelect™ CSH™ phenyl hexyl prep column 261 

(5 µm, 10 x 250 mm, Waters), with a gradient of 10-100% acetonitrile over 15 minutes with 262 

a flow rate of 6 mL/minute, yielding 0.6 mg of 1.  263 

 264 

Chlovalicin B (1) 265 

Brown powder. UV = (ACN) λmax 221.60 nm. 1H and 13C NMR data (see Table 1).  266 

HRMS m/z 341.1132 [M+Na]+ (calculated for C15H24O5ClNa = 341.1132). The collision cross 267 

section (CCS) of the sodium adduct of 1 was 178.11 Å2. 268 

 269 

4.5. Bioactivity testing of compound 1 270 

Compound 1 was tested in a variety of assays to broadly assess possible biological 271 

activities. The compound was tested for biofilm inhibition properties against a biofilm 272 

forming Staphylococcus epidermidis as previously described [19]. The compound was as- 273 

sayed at one concentration, 50 µM, using three technical replicates (n=3). The compounds 274 

ability to inhibit the growth of five bacterial strains was assessed, as previously described 275 

[19], at 100 µM using three technical replicates (n=3). The assayed strains were the follow- 276 

ing: Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeru- 277 

ginosa (ATCC 27853), Enterococcus faecalis (ATCC 29212) and Streptococcus agalactiae (ATCC 278 

12386), all strains from LGC Standards (Teddington). Antifungal activity was assayed 279 

against Candida albicans at 50 µM, as described previously [20]. Potential anti-inflamma- 280 

tory activity was assayed at 50 µM in an ELISA based assay that monitors the tumor ne- 281 

crosis factor α (TNFα) and interleukin-1β (IL-1β) production of a human acute monocytic 282 

leukemia cell line (THP-1) in the presence of 1 was conducted, as previously described 283 

[21]. Lastly, 1 was assessed for its antiproliferative activities at 50 µM towards the human 284 

melanoma cell line A2058 and the human non-malignant lung fibroblast cell line MRC-5 285 

as previously described [22]. 286 

 287 

 288 
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4. Conclusions 289 

As part of our ongoing search for novel compounds from under-studied marine 290 

fungi, chlovalicin B (1) was isolated from the liquid culture of an Arctic marine mushroom, 291 

Digitatispora marina. This represents the first compound isolated from the Digitatispora ge- 292 

nus, and the first reported fumagillin/ovalicin-like compound isolated from a Basidiomy- 293 

cete. The current study adds on to the knowledge on the biosynthetic potential of marine 294 

fungi sensu stricto, especially obligate marine Basidiomycetes.  295 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 296 

Digitatispora marina in different growth conditions, Figure S2: Low-collision and high-collision en- 297 

ergy mass spectra of chlovalicin B (1) in ESI+, Figure S3: 1H NMR (600 MHz, DMSO-d6) spectrum of 298 

chlovalicin B (1), Figure S4: 13C (151 MHz, DMSO-d6) spectrum of chlovalicin B (1), Figure S5: HSQC 299 

+ HMBC (600 MHz, DMSO-d6) spectrum of chlovalicin B (1), Figure S6: COSY (600 MHz, DMSO-d6) 300 

spectrum of chlovalicin B (1), Figure S7: H2BC (600 MHz, DMSO-d6) spectrum of chlovalicin B (1), 301 

Figure S8: ROESY (600 MHz, DMSO-d6) spectrum of chlovalicin B (1) 302 

Author Contributions:. Conceptualization, M.J., T.R., J.H.A., E.H.H., K.Ø.H..; methodology, M.J., 303 

V.K., K.M.C., J.I.; validation, M.J., V.K., K.M.C., J.I. and K.Ø.H.; formal analysis, M.J. and K.Ø.H.; 304 

investigation, M.J., V.K., K.Ø.H., K.M.C.; resources, J.H.A.; data curation, M.J., K.Ø.H., K.M.C. and 305 

J.I.; writing—original draft preparation, M.J. and K.Ø.H.; writing—review and editing, M.J., K.Ø.H., 306 

E.H.H. and J.H.A.; visualization, M.J. and K.Ø.H.; supervision, J.H.A. and E.H.H.; project admin- 307 

istration, M.J. and K.Ø.H.; funding acquisition, J.H.A. 308 

Funding: This research was funded by the DigiBiotics project of the Research Council of Norway 309 

(Project ID 269425), the AntiBioSpec project of UiT the Arctic University of Norway (Cristin ID 310 

20161323, the Ocean Medicines project (H2020-MSCA-RISE; Grant ID 690944) and the Centre for 311 

New Antibacterial Strategies at UiT the Arctic University of Norway. The publication charges for 312 

this article has been funded by the publication fund of UiT the Arctic University of Norway.  313 

Data Availability Statement: The data are available within the article and in the Supplementary 314 

Materials. 315 

Acknowledgments: The authors would like to acknowledge the technical support by Kirsti Helland 316 

and Marte Albrigtsen by execution of the bioactivity assays and the contribution of Chun Li in the 317 

sequencing of the genetic elements of the isolate.  318 

Conflicts of Interest: The authors declare no conflict of interest. 319 

Sample Availability: Samples of the compounds not are available from the authors. 320 

References 321 

1. Imhoff, J.F. Natural products from marine fungi--still an underrepresented resource. Mar Drugs 2016, 14, 1-19, 322 

doi:10.3390/md14010019. 323 

2. Overy, D.P.; Rämä, T.; Oosterhuis, R.; Walker, A.K.; Pang, K.-L. The neglected marine fungi, sensu stricto, and their isolation 324 

for natural products' discovery. Mar Drugs 2019, 17, 1-20, doi:10.3390/md17010042. 325 

3. Sulistyo, B.P.; Larsson, K.-H.; Haelewaters, D.; Ryberg, M. Multigene phylogeny and taxonomic revision of Atheliales s.l.: 326 

Reinstatement of three families and one new family, Lobuliciaceae fam. nov. Fungal Biol 2021, 125, 239-255, 327 

doi:10.1016/j.funbio.2020.11.007. 328 

4. Rämä, T.; Mathiassen, G.; Kauserud, H. Marine fungi new to Norway, with an outlook to the overall diversity. Agarica 2014, 329 

35, 35-47. 330 

5. Tibell, S.; Tibell, L.; Pang, K.-L.; Calabon, M.; Jones, E.B.G. Marine fungi of the Baltic Sea. Mycology 2020, 11, 195-213, 331 

doi:10.1080/21501203.2020.1729886. 332 

6. Jones, E.B.G.; Suetrong, S.; Sakayaroj, J.; Bahkali, A.H.; Abdel-Wahab, M.A.; Boekhout, T.; Pang, K.-L. Classification of 333 

marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015, 73, 1-72, 334 

doi:10.1007/s13225-015-0339-4. 335 



Molecules 2021, 26, x FOR PEER REVIEW 9 of 9 
 

 

7. Takamatsu, S.; Kim, Y.P.; Komiya, T.; Sunazuka, T.; Hayashi, M.; Tanaka, H.; Komiyama, K.; Omura, S. Chlovalicin, a new 336 

cytocidal antibiotic produced by Sporothrix sp. FO-4649. II. Physicochemical properties and structural elucidation. J Antibiot 337 

(Tokyo) 1996, 49, 635-638, doi:10.7164/antibiotics.49.635. 338 

8. Aliev, A.E.; Harris, K.D.M. 37Cl/35Cl isotope effects in 13C NMR spectroscopy of chlorohydrocarbons. Magn Reson Chem 339 

1993, 31, 54-57, doi:10.1002/mrc.1260310111. 340 

9. Sergeyev, N.M.; Sandor, P.; Sergeyeva, N.D.; Raynes, W.T. 37Cl/35Cl-Induced 13C Isotope Shifts in Chlorinated Methanes. 341 

J. Magn. Reson. 1995, 115, 174-182, doi:10.1006/jmra.1995.1164. 342 

10. Yamaguchi, J.; Hayashi, Y. Syntheses of Fumagillin and Ovalicin. Chem. Eur. J 2010, 16, 3884-3901, 343 

doi:10.1002/chem.200902433. 344 

11. Eble, T.E.; Hanson, F.R. Fumagillin, an antibiotic from Aspergillus funigatus H-3. Antibiot. Chemother. 1951, 1, 54-58. 345 

12. Hanson, F.R.; Eble, T.E. AN ANTIPHAGE AGENT ISOLATED FROM ASPERGILLUS SP. J Bacteriol 1949, 58, 527-529, 346 

doi:10.1128/jb.58.4.527-529.1949. 347 

13. Hayashi, M.; Kim, Y.-P.; Takamatsu, S.; Preeprame, S.; Komiya, T.; Masuma, R.; Tanaka, H.; Komiyama, K.; Omura, S. 348 

Chlovalicin, a New Cytocidal Antibiotic Produced by Sporothrix sp. FO-4649. I Taxonomy, Fermentation, Isolation and 349 

Biological Activities. J Antibiot (Tokyo) 1996, 49, 631-634, doi:10.7164/antibiotics.49.631. 350 

14. Sigg, H.P.; Weber, H.P. Isolierung und Strukturaufklärung von Ovalicin. Helv. Chim. 1968, 51, 1395-1408, 351 

doi:10.1002/hlca.19680510624. 352 

15. Uchoa, P.K.S.; Pimenta, A.T.A.; Braz-Filho, R.; de Oliveira, M.d.C.F.; Saraiva, N.N.; Rodrigues, B.S.F.; Pfenning, L.H.; Abreu, 353 

L.M.; Wilke, D.V.; Florêncio, K.G.D.; et al. New cytotoxic furan from the marine sediment-derived fungi Aspergillus niger. 354 

Nat. Prod. Res. 2017, 31, 2599-2603, doi:10.1080/14786419.2017.1283499. 355 

16. Vansteelandt, M.; Blanchet, E.; Egorov, M.; Petit, F.; Toupet, L.; Bondon, A.; Monteau, F.; Le Bizec, B.; Thomas, O.P.; Pouchus, 356 

Y.F.; et al. Ligerin, an Antiproliferative Chlorinated Sesquiterpenoid from a Marine-Derived Penicillium Strain. J. Nat. Prod. 357 

2013, 76, 297-301, doi:10.1021/np3007364. 358 

17. Neumann, C.S.; Fujimori, D.G.; Walsh, C.T. Halogenation Strategies In Natural Product Biosynthesis. Chem. Biol 2008, 15, 359 

99-109, doi:10.1016/j.chembiol.2008.01.006. 360 

18. Liu, D.-H.; Sun, Y.-Z.; Kurtán, T.; Mándi, A.; Tang, H.; Li, J.; Su, L.; Zhuang, C.-L.; Liu, Z.-Y.; Zhang, W. Osteoclastogenesis 361 

Regulation Metabolites from the Coral-Associated Fungus Pseudallescheria boydii TW-1024-3. J. Nat. Prod 2019, 82, 1274- 362 

1282, doi:10.1021/acs.jnatprod.8b01053. 363 

19. Schneider, Y.; Jenssen, M.; Isaksson, J.; Hansen, K.Ø.; Andersen, J.H.; Hansen, E.H. Bioactivity of serratiochelin A, a 364 

siderophore isolated from a co-culture of Serratia sp. and Shewanella sp. Microorganisms 2020, 8, 1-17, 365 

doi:10.3390/microorganisms8071042. 366 

20. Jenssen, M.; Rainsford, P.; Juskewitz, E.; Andersen, J.H.; Hansen, E.H.; Isaksson, J.; Rämä, T.; Hansen, K.Ø. Lulworthinone, 367 

a New Dimeric Naphthopyrone From a Marine Fungus in the Family Lulworthiaceae With Antibacterial Activity Against 368 

Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Front. Microbiol. 2021, 12, doi:10.3389/fmicb.2021.730740. 369 

21. Lind, K.F.; Hansen, E.; Østerud, B.; Eilertsen, K.-E.; Bayer, A.; Engqvist, M.; Leszczak, K.; Jørgensen, T.Ø.; Andersen, J.H. 370 

Antioxidant and anti-inflammatory activities of barettin. Mar Drugs 2013, 11, 2655-2666, doi:10.3390/md11072655. 371 

22. Hansen, K.Ø.; Isaksson, J.; Bayer, A.; Johansen, J.A.; Andersen, J.H.; Hansen, E. Securamine Derivatives from the Arctic 372 

Bryozoan Securiflustra securifrons. J. Nat. Prod 2017, 80, 3276-3283, doi:10.1021/acs.jnatprod.7b00703. 373 

 374 



SUPPLEMENTARY MATERIAL 

Chlovalicin B, a Chlorinated Sesquiterpene Isolated from the Arctic Marine 

Mushroom Digitatispora marina 

Marte Jenssena, Venke Kristoffersena, Kumar M. Corralb, Johan Isakssonb, 

Teppo Rämaa, Jeanette H. Andersena, Espen H. Hansena and Kine Ø. Hansena* 

aMarbio, UiT–The Arctic University of Norway, Breivika, Tromsø N-9037, Norway 

bDepartment of Chemistry, UiT–The Arctic University of Norway, Breivika, Tromsø N-9037, 

Norway  

*corresponding author 

E-mail: kine.o.hanssen@uit.no 

 

Abstract 

As part of our search for bioactive metabolites from understudied marine microorganisms, the 

new chlorinated metabolite chlovalicin B (1) was isolated from liquid cultures of the Arctic 

marine basidiomycete Digitatispora marina, collected and isolated from driftwood found at 

Vannøya, Norway. The structure of the novel compound was elucidated by spectroscopic 

methods including 1D and 2D NMR and analysis of HRMS data, revealing that 1 shares its 

molecular scaffold with a previously isolated compound, chlovalicin. The compound was 

evaluated for its antibacterial activities against a panel of five bacteria, ability to inhibit bacterial 

biofilm formation, antifungal activity against Candida albicans and for cytotoxic activities 

against malignant and non-malignant human cell lines. Compound 1 displayed weak cytotoxic 

activity against the human melanoma cell line A2058 (~50% survival at 50 µM), otherwise no 

activity was detected. This is the first reported isolated compound from the marine mushroom 

sensu stricto D. marina. 

Key words 

Digitatispora marina; marine fungus sensu stricto; Basidiomycota; bioprospecting; chlorinated 

sec-ondary metabolite; natural products 
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Figure S1. Digitatispora marina in different growth conditions. 1) D. marina growing on driftwood of 

the Betula sp. Photo: Teppo Rämä, 2) D. marina grown in liquid culture in malt extract medium 

supplemented with sea salts. Photo: Marte Jenssen, 3) D. marina grown on corn meal agar (top) and 

malt extract agar (bottom). Photo: Marte Jenssen  

 

 

 

Figure S2. Low-collision (top) and high-collision (bottom) energy mass spectra of chlovalicin B (1) in 

ESI+ 



Figure S3. 1H NMR (600 MHz, DMSO-d6) spectrum of chlovalicin B (1) 

 

 

 

Figure S4. 13C (151 MHz, DMSO-d6) spectrum of chlovalicin B (1) 

 

 

 

 



Figure S5. HSQC + HMBC (600 MHz, DMSO-d6) spectrum of chlovalicin B (1) 

 

 

 

Figure S6. COSY (600 MHz, DMSO-d6) spectrum of chlovalicin B (1) 

 

 

 

 



Figure S7. H2BC (600 MHz, DMSO-d6) spectrum of chlovalicin B (1) 

 

 

Figure S8. ROESY (600 MHz, DMSO-d6) spectrum of chlovalicin B (1) 
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