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Summary

� The regulatory network of R2R3 MYB transcription factors in anthocyanin biosynthesis is

not fully understood in blue-coloured berries containing delphinidin compounds.
� We used blue berries of bilberry (Vaccinium myrtillus) to comprehensively characterise

flavonoid-regulating R2R3 MYBs, which revealed a new type of co-regulation in anthocyanin

biosynthesis between members of MYBA-, MYBPA1- and MYBPA2-subgroups.
� VmMYBA1, VmMYBPA1.1 and VmMYBPA2.2 expression was elevated at berry ripening

and by abscisic acid treatment. Additionally, VmMYBA1 and VmMYBPA1.1 expression was

strongly downregulated in a white berry mutant. Complementation and transient overexpres-

sion assays confirmed VmMYBA1 and VmMYBA2 to induce anthocyanin accumulation. Pro-

moter activation assays showed that VmMYBA1, VmMYBPA1.1 and VmMYBPA2.2 had

similar activity towards dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS),

but differential regulation activity for UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT)

and flavonoid 3050-hydroxylase (F3050H) promoters. Silencing of VmMYBPA1.1 in berries led

to the downregulation of key anthocyanin and delphinidin biosynthesis genes. Functional

analyses of other MYBPA regulators, and a member of novel MYBPA3 subgroup, associated

them with proanthocyanidin biosynthesis and F3050H expression.
� The existence of 18 flavonoid-regulatingMYBs indicated gene duplication, which may have

enabled functional diversification among MYBA, MYBPA1 and MYBPA2 subgroups. Our

results provide new insights into the intricate regulation of the complex anthocyanin profile

found in blue-coloured berries involving regulation of both cyanidin and delphinidin branches.

Introduction

Flavonoids are a large group of polyphenols in plants. Antho-
cyanins, proanthocyanidins (PAs) and flavonols are the major
classes of flavonoids found in almost all higher plants. PAs as
astringent compounds are considered to provide defence against
herbivory and pathogens in leaves and unripe fruits, while con-
centrations are low in ripe fruits (Czemmel et al., 2012). Antho-
cyanins contribute to the red and blue colours in flowers and ripe
fruits facilitating pollination and seed dispersal but they also have
a role in protecting plants against stress (Saigo et al., 2020). Fruits
and berries are recognised as rich sources of anthocyanins, of
which especially delphinidins and malvidins of blue-coloured
berries have been recently linked to biological and health-
beneficial activities (Overall et al., 2017; Nagaoka et al., 2019;
Heysieattalab & Sadeghi, 2020).

The flavonoid biosynthetic pathway is well elucidated in
plants, and consists of enzymatic steps leading to the different

flavonoid classes (Tohge et al., 2017). Chalcone synthase (CHS),
chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H)
are responsible for producing dihydroflavonol precursors for all
flavonoid branches. At the branch point of flavonoid biosynthe-
sis, flavonoid 30-hydroxylase (F30H) and flavonoid 3050-
hydroxylase (F3050H) direct the dihydroflavonol precursors to
either the cyanidin or delphinidin branch, respectively. Flavonol
synthase (FLS) directs the dihydroflavonol precursors to the
flavonol route, while the action of dihydroflavonol 4-reductase
(DFR) following anthocyanidin synthase (ANS) and its homo-
logue leucoanthocyanidin dioxygenase (LDOX) contributes to
both anthocyanin and PA synthesis (Jun et al., 2018). The
pathway to PAs involves leucoanthocyanidin reductase (LAR)
producing 2,3-trans-2R,3S-flavan-3-ols (e.g. (+)-catechin,
(+)-gallocatechin) and anthocyanidin reductase (ANR) for
production of 2,3-cis-2R,3R-flavan-3-ols (e.g. (�)-epicatechin),
2,3-cis-2S,3S-flavan-3-ol and 2,3-trans-2S,3R-flavan-3-ols (Xie
et al., 2003; Gargouri et al., 2010; Peng et al., 2012). In the final
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step in the pathway to anthocyanins, UDP-glucose flavonoid 3-
O-glucosyltransferase (UFGT) glycosylates anthocyanidins to
anthocyanins.

The transcription of the flavonoid structural genes is directly
controlled by the MBW regulatory complex, consisting of R2R3
MYB transcription factors (TFs), basic helix–loop–helix (bHLH)
TFs and WD40 proteins (Jaakola, 2013; Zhang et al., 2019).
The MYB component is considered as the main regulator in the
complex to specify the target gene (Allan & Espley, 2018). This
specificity is facilitated by N-terminal R2 and R3 DNA-binding
domains conserved in all R2R3 MYBs, while motifs responsible
for transcriptional activation or repression are usually located at
the C-terminus (Dubos et al., 2010; Heppel et al., 2013). The
expression pattern and the DNA-binding specificity of MYBs
and, to some extent, bHLH proteins determine the activation of
flavonoid pathway genes in plant tissues (Jaakola, 2013).

R2R3 MYBs comprise a large gene family in plants divided in
23 subgroups (SGs) regulating various metabolic pathways
(Stracke et al., 2001; Dubos et al., 2010; Jiang & Rao, 2020). An
increasing number of flavonoid-regulating R2R3 MYBs have been
identified from various plant species and the gene homologues
are generally considered to regulate the same pathways (Dubos
et al., 2010; Feller et al., 2011; Saigo et al., 2020) although in
recent years there has been indication of some variation in regula-
tion in fruit and berry bearing species (Uematsu et al., 2014; Zhai
et al., 2016; Peng et al., 2020). Some of the R2R3 MYBs specifi-
cally regulate expression of only one gene, while others have
impacts on various genes and branches of the flavonoid pathway.
Members of MYBA/SG6, such as AtMYB75/PAP1 and
AtMYB90/PAP2 in Arabidopsis and VvMYBA1/2 in grapevine
(Vitis vinifera) specifically contribute to anthocyanin biosynthesis
by regulating UFGT and DFR expression (Takos et al., 2006;
Walker et al., 2007; Heppel et al., 2013; Ravaglia et al., 2013).
PA1-type and TT2/SG5/PA2-type MYBs, including
VvMYBPA1 and VvMYBPA2, respectively, are generally consid-
ered as activators of PA biosynthesis (Bogs et al., 2007; Terrier
et al., 2009). MYBF/SG7 members are positive regulators of
flavonol biosynthesis (Mehrtens et al., 2005; Czemmel et al.,
2009) while MYB5 members, including VvMYB5a/b, have been
reported to modulate the biosynthesis of all flavonoid classes
(Deluc et al., 2006, 2008). The R2R3 MYB family also includes
C2 repressors (SG4), shown to inhibit various branches in the
flavonoid pathway (Dubos et al., 2010; Albert et al., 2014;
Cavallini et al., 2015). However, the overall orchestration of these
key players in the coordination of different branches of flavonoid
biosynthesis is not completely understood, especially in fruits and
berries, which usually show complex flavonoid and anthocyanin
profiles.

To deepen our understanding of the regulatory role of R2R3
MYBs in flavonoid biosynthesis in blue-coloured berries, we
focused on wild European bilberry (Vaccinium myrtillus), which
has an active flavonoid and anthocyanin metabolism. Antho-
cyanins accumulate in both peel and flesh at berry ripening stage,
while vegetative parts are rich with PAs, which also accumulate in
the berry at early developmental stages (Jaakola et al., 2002;
Karppinen et al., 2016; Suvanto et al., 2020). Due to the similar

complex anthocyanin profile in both peel and flesh, with a total
of 33 different anthocyanin compounds belonging to the del-
phinidin, cyanidin, petunidin, peonidin and malvidin classes
(Jaakola et al., 2002; Riihinen et al., 2008; Zoratti et al., 2014),
bilberry has in recent years become an attractive fruit species for
studying regulation of anthocyanin biosynthesis. The ripening-
related anthocyanin biosynthesis of the nonclimacteric bilberry is
positively regulated by abscisic acid (ABA) (Karppinen et al.,
2013, 2018). However, a comprehensive functional characterisa-
tion of the R2R3 MYB regulators is lacking in commercially
important berries of genus Vaccinium. In blueberries, MYBA-
type TFs of highbush blueberry (Vaccinium corymbosum) and
rabbiteye blueberry (Vaccinium virgatum syn. ashei) were shown
recently as activators of anthocyanin accumulation (Plunkett
et al., 2018; Die et al., 2020), while VcMYBPA1 has earlier been
indicated in PA biosynthesis (Zifkin et al., 2012). Our earlier
studies on Vaccinium species have suggested a role for MYBPA1-
type TF in anthocyanin biosynthesis in V. uliginosum (Primetta
et al., 2015), V. myrtillus (Jaakola et al., 2010) and in blueberry
skin (G€unther et al., 2020) where MYBPA1 expression is posi-
tively correlated with anthocyanin accumulation.

In this study, 18 R2R3 MYB genes, including a large number
of PA-type members, were isolated in full length from bilberry
and characterised for their roles in flavonoid biosynthesis to
obtain a comprehensive overview of their regulatory function,
with a particular focus on berry anthocyanin biosynthesis. Func-
tional analyses demonstrated that two MYBA-type TFs control
anthocyanin biosynthesis, VmMYBA1 in berries and VmMYBA2
in vegetative tissues. A regulatory role for two members from
MYBPA1 and MYBPA2 subgroups in berry anthocyanin biosyn-
thesis and control of delphinidin branch was identified. Our
results suggest a new type of ABA-induced co-regulation among
MYBA, MYBPA1 and MYBPA2 TFs in ripening-associated
anthocyanin biosynthesis and provide functional evidence that
MYBPA1-type TF contribute to anthocyanin biosynthesis during
berry ripening by directly activating key biosynthetic genes. The
findings offer new insights into the regulatory mechanism of
anthocyanin biosynthesis in blue-coloured berries.

Materials and Methods

Bilberry plant material

Bilberry (V. myrtillus L.) plants originated from a natural forest
stand in Oulu (65°010N, 25°280E) and Tromsø (69°420N,
18°510E). The developmental stages of bilberry fruit as well as
samples from vegetative parts were collected as described previ-
ously (Karppinen et al., 2013). White fruits of the bilberry
mutant were collected from a natural forest stand in Utaj€arvi,
Finland. The mutant berries lacked anthocyanins but showed a
few small red spots on their surface indicating a mutation in the
regulatory pathway. ABA treatments (0.5 mM ABA, 2 mM ABA,
water) of bilberry fruits were conducted in Petri dishes as
described earlier (Karppinen et al., 2018) and collected after 2
and 4 d of treatment. Immediately after collection, all samples
were frozen in liquid nitrogen and stored at �80°C.
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Isolation of R2R3 MYB genes

Total RNA was extracted from bilberry tissues, white mutant ber-
ries and ABA-treated berries and cDNA synthesised as described
previously (Karppinen et al., 2018). Full-length coding sequences
of R2R3 MYBs were amplified from cDNA of blue-coloured bil-
berries by PCR, using primers designed to gene sequences identi-
fied in publicly available Vaccinium transcriptomes (Rowland
et al., 2012; Polashock et al., 2014; Nguyen et al., 2018). PCR
products were ligated into pJET-1.2/blunt cloning vector using
CloneJET PCR Cloning Kit (Thermo Fischer Scientific,
Waltham, MA, USA). Sequencing of the genes was performed
using an ABI 3730 DNA sequencer (Applied Biosystems, Foster
City, CA, USA) with a BigDye Terminator Cycle Sequencing
Kit (Applied Biosystems) and deposited in GenBank.

Sequence alignment and phylogenetic analysis

The full-length deduced amino acid sequences of bilberry R2R3
MYBs were aligned using the CLUSTAL OMEGA (https://www.ebi.
ac.uk/Tools/msa/clustalo/) and visualised using GENEDOC soft-
ware (PSC, Pittsburgh, PA, USA). To functionally classify the
bilberry MYBs by phylogenetic tree analysis, the amino acid
sequences of previously characterised eudicot R2R3 MYBs were
obtained from GenBank (Supporting Information Table S1),
covering all known flavonoid-regulating MYB subgroups espe-
cially including studied fruit species. Full-length protein
sequences were aligned with CLUSTALW, and a phylogenetic tree
was constructed according to Hall (2013) using the maximum
likelihood method with JTT+G+I model in MEGA v.6.06
(Tamura et al., 2013) with 1000 bootstrap replicates.

Gene expression analysis in bilberry tissues

Real-time quantitative reverse transcription PCR (qRT-PCR)
analyses were performed as described previously (Karppinen
et al., 2018). The gene-specific primer sequences are listed in
Table S2. Glyceraldehyde-3-phosphate dehydrogenase
(VmGAPDH) was used as a reference gene. For hierarchical clus-
tering analysis, the normalised relative gene expression data were
converted to log2 values, and clustering performed by Pearson
correlation using EXPANDER software (http://acgt.cs.tau.ac.il/
expander/).

Transient overexpression assays

For functional characterisation of MYBs, the full-length coding
regions of VmMYBA-, VmMYB7- and all the VmMYBPA-
type genes were amplified by PCR with gene-specific primers
(Table S3). AtbHLH2 (GenBank accession no. AF251687) was
amplified from Arabidopsis cDNA by PCR with gene-specific
primers (Table S3). The amplified PCR products were digested
using restriction enzymes (Thermo Fischer Scientific) as
described in Table S3, and ligated into cloning site of expression
vector pGreenII 0029 62-SK under the control of CaMV35S
promoter constructed earlier by Hellens et al. (2005).

The constructed vectors were transformed into electrocompe-
tent Agrobacterium tumefaciens (GV3101) cells, followed by
growth on LB agar medium supplemented with selective antibi-
otics at 28°C. Harvested cells were resuspended in infiltration
buffer (10 mM MES (pH 5.6), 10 mM MgCl2, 200 lM acetosy-
ringone) to reach an OD600 of 0.5. After incubation at room
temperature for 2–3 h, the Agrobacterium solution was infiltrated
into the abaxial side of leaves of 5-wk-old Nicotiana benthamiana
(lab strain) using a syringe. Agrobacterium cells containing MYB
constructs were introduced to leaves alone or with an equivalent
dose of Agrobacterium cells containing the constructs with
AtbHLH2 from Arabidopsis (Feng et al., 2015). Empty vector or
vector containing only AtbHLH2 served as a negative control to
reveal the effect of MYB gene expression. Infiltration sites were
collected 6 d after infiltration and stored at �80°C until they
were used for qPCR analyses and measurement of flavonoids. At
least three plants were transformed with each construct, and each
transformation was repeated at least twice. The overexpression of
VmMYBA1 and VmMYBA2 was repeated using pNWA101 or
pHEX expression vectors with peach (Prunus persica) PpbHLH3
construct with similar results.

For qRT-PCR analyses, total RNA was extracted from infil-
trated sites of N. benthamiana leaves using a SpectrumTM Plant
Total RNA kit (Sigma, St Louis, MO, USA) with on-column
DNase I (Sigma) digestion followed by cDNA synthesis using
SuperScript IV reverse transcriptase (Invitrogen, Carlsbad, CA,
USA). A MiniOpticon instrument and CFX MANAGER software
2.0 (Bio-Rad, Hercules, CA, USA) with SsoFastTM EvaGreen
Supermix (Bio-Rad) was utilised with gene-specific primers
(Table S4). The qRT-PCR conditions included an initial incuba-
tion at 95°C for 30 s followed by 40 cycles of 95°C for 5 s, and
60°C for 10 s. The relative expression was normalised to the
expression of NbActin. The amplification of only one product in
qRT-PCR analyses was confirmed by a melting curve analysis.

Biolistic complementation assays

To verify that VmMYBA1 and VmMYBA2 genes can complement
anthocyanin mutation, the coding sequences of the genes were
amplified by PCR using gene-specific primers (Table S3), cloned
into pENTR-D-TOPO and recombined into the binary vector
pNWA101 under the control of a CaMV35S promoter by LR
clonase II (Life Technologies, Carlsbad, CA, USA). Biolistic exper-
iments were performed as described earlier for Antirrhinum majus
roseadorsea (myb�) plants (Schwinn et al., 2016), which lacks antho-
cyanin pigmentation in petals. The lack of pigmentation is due to
a mutation in the MYBA-type gene providing an effective tool to
assess the ability of MYBA genes to complement the mutation
(Schwinn et al., 2006). Antirrhinum plants were grown under stan-
dard growth conditions without supplemental light in a glasshouse
that was heated at 15°C and ventilated at 25°C. 35S:GFP-ER con-
struct, which localises the GFP signal to the endoplasmic reticu-
lum (Haseloff et al., 1997), was co-transformed as an internal
control. 35S:GFP alone served as the negative control. At least
three flowers were transformed with each construct and each trans-
formation was repeated at least twice.
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Promoter activation assays

To confirm MYB interaction with promoters of anthocyanin
biosynthetic genes of Vaccinium origin, the vectors above for
biolistic complementation assays were used for VmMYBA1 and
VmMYBA2. The coding sequences of VmMYBPA1.1 and
VmMYBPA2.2 were amplified by PCR using gene-specific
primers (Table S3) and cloned as described above. The promoter
fragment for UFGT was isolated from V. virgatum ‘Velluto Blue’
genomic DNA and promoters of F3050H and ANS from V. co-
rymbosum and inserted into the pGreenII 0800-Luc vector
(Table S3). The DFR promoter of V. virgatum described by Plun-
kett et al. (2018) was also used. Dual luciferase assays were per-
formed on leaves of 5-wk-old N. benthamiana by Agrobacterium
infiltration as previously described (Hellens et al., 2005), with at
least three independent plants. VmMYB constructs were tested in
combination with PpbHLH3 (Zhou et al., 2015b). The reporter
gene for b-glucuronidase (GUS) under the control of the 35S
promoter, or PpbHLH3 alone were used as negative controls.

Virus-induced gene silencing

To analyse the effect of virus-induced gene silencing (VIGS) on
berries, bilberry plants with their roots were harvested at the stage
when fruits were small unripe green and were placed in boxes
(50 cm9 70 cm) with forest peat soil. The VIGS experiment was
performed according to the protocol described in Karppinen
et al. (2018). A fragment of VmMYBPA1.1 (243 bp) was PCR-
amplified with gene-specific primers (Table S3) and introduced
into the pTV00 vector which was subsequently transformed into
A. tumefaciens cells (GV3101). At least 150 unripe green bilber-
ries in six individual bushes/boxes were injected and the experi-
ment was repeated twice. As a control, only Agrobacterium with
pBINTRA6-vector was injected into the berry. Both silenced and
control plants were grown at 18°C with 60% humidity and
125 lmol m�2 s�1 light intensity as described previously (Karp-
pinen et al., 2018) before berries were collected after c. 10 d of
injection, and stored at �80°C until used for RNA extraction.
RNA extraction and qRT-PCR were performed similarly as
described above for N. benthamiana leaves using gene-specific
primers (Table S2). The relative expression was normalised to the
expression of VmGAPDH.

Determination of flavonoids

For berries, frozen tissues were ground to a fine powder with a
mortar and pestle under liquid nitrogen and 0.1 g tissue powder
was extracted and analysed for total anthocyanins as described
previously (Karppinen et al., 2018). Anthocyanins, PAs and
flavonols from N. benthamiana leaves were analysed by liquid
chromatography–high resolution accurate mass–mass spectrome-
try (LC–HRAM–MS). Freeze-dried, ground leaf samples
(24 mg) were extracted in 1 ml ethanol/water/formic acid
(80 : 20 : 1, v/v/v) and diluted (29) with methanol, prior analysis
by LC–HRAM–MS as described in Methods S1. All chemical
analyses were performed with at least three biological replicates.

Accession numbers

The sequence data in this article have been deposited into
GenBank under accession numbers indicated in Table S5.

Results

MYBPA-type TFs possess a large group among flavonoid-
regulating R2R3 MYBs

Many important fruit and berry crops have been identified with
multiple R2R3 MYB TFs regulating their flavonoid pathways
(Czemmel et al., 2012; Ravaglia et al., 2013; Schaart et al., 2013;
Zhai et al., 2016; Zhou et al., 2016; Wang et al., 2017). To study
the regulatory network of MYBs in flavonoid biosynthesis in
blue-coloured berries, we isolated full-length coding sequences of
18 putative flavonoid-regulating R2R3 MYB genes from bilberry.
Some of the sequences had close identity with one another but
clearly represented separate genes (Table S5). The phylogenic
clustering and the alignment of the amino acid sequences, show-
ing the presence of N-terminal R2 and R3 DNA-binding
domains (Figs 1, 2a), confirmed the bilberry sequences as mem-
bers of R2R3 MYB regulators. With the exception of VmMYBF,
the bilberry R2R3 MYBs are predicted to interact with a bHLH
partner (Fig. 2). Unlike MYBs controlling anthocyanin and PA
biosynthesis, flavonol biosynthesis regulating MYBs (MYBF,
SG7) act independently of a bHLH partner (Mehrtens et al.,
2005).

Analysis of signature sequence motifs and phylogenetic com-
parison with previously characterised eudicot flavonoid-
regulating R2R3 MYBs were used to functionally classify the bil-
berry MYBs. VmMYBA1 and VmMYBA2 clustered in a phylo-
genetic tree close to the blueberry VcMYBA within the R2R3
MYB subgroup 6 (SG6; Stracke et al., 2001) which regulates
anthocyanin biosynthesis (Fig. 1). Both sequences contained an
[A/S]NDV motif, an Arg residue in the R2 domain, a Val residue
in the R3 domain and motif 6 (Figs 2a,b, S1), all described to be
conserved among eudicot anthocyanin-regulating MYBs
(Table S6), suggesting related function for VmMYBA1 and
VmMYBA2. In all other MYBs, the [A/S]NDV motif was
changed to NDEI or DNEV (Fig. 2a), as commonly found in
PA-type MYBs and C2 repressors (Table S6).

Our analysis identified a large group of PA-type MYBs. Five of
them fell into a PA2/TT2 clade (SG5) in the phylogenetic tree
(Fig. 1) and contained a signature TT2-box motif (Figs 2b, S1;
Table S6). VmMYBPA1.1 and VmMYBPA1.2 were identified as
being similar to PA1-type MYBs (Fig. 1) and containing C1,
PA1 and G-28 motifs (Figs 2b, S1; Table S6). Instead,
VmMYBPA3 formed its own group with Medicago truncatula
MtPAR (Fig. 1) and contained no previously described C-
terminal motifs in its sequence (Figs 2b, S1). Two R2R3 MYBs
were designated as VmMYB5a and VmMYB5b based on their
close phylogenetic relationship with other MYB5 activators
(Fig. 1) and presence of C1 and C3 motifs (Figs 2b, S1;
Table S6). VmMYBF was identified as a flavonol-specific MYB
(SG7) based on phylogenetic analysis (Fig. 1) and the presence of
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SG7 and SG7-2 motifs (Figs 2b, S1; Table S6). VmMYB7
grouped together with peach PpMYB7 showing no previously
described motifs (Figs 1, 2b, S1).

In addition, four MYBs were identified as C2 repressors based
on the presence of C1 and C2 motifs (Figs 2b, S1; Table S6), and
clustered in a phylogenetic tree into the C2 repressor clade (SG4)
under two subclades (Fig. 1), which have been described

previously (Chen et al., 2019). VmMYBC2.1 and VmMYBC2.2
were identified as members of the subclade D2 of C2 repressors
by showing an additional TLLLFR/C5 repression motif (Figs 2b,
S1; Table S6) and a characteristic amino acid substitution from
DNEI to DNEV (Cavallini et al., 2015; Chen et al., 2019).
Instead, VmMYBC2.3 was directed to subclade A of C2 repres-
sors, due to the presence of the C4 motif (Figs 2b, S1; Table S6).

MYBA/SG6

C2 repressor/SG4
(AtMYB4-like)

MYBPA2/SG5
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Fig. 1 Phylogenetic analysis of flavonoid-
related R2R3 MYBs. The bilberry R2R3 MYBs
are indicated with black circles. The numbers
near branches indicate bootstrap estimates
for 1000 replicates (only values > 50% are
shown). Bar, 0.5 substitutions per site. The
R2R3 MYB sequences were classified into
nine flavonoid-related MYB subclades,
including MYBA/SG6 associated with
anthocyanin biosynthesis, PA1-type and
PA2-type/TT2/SG5 MYBs generally
associated with proanthocyanidin
biosynthesis, MYBF/SG7 associated with
flavonol biosynthesis, MYB5 associated with
general flavonoid biosynthesis, C2 repressor
group (SG4) under two subclades (FaMYB1-
like and AtMYB4-like), MYB7 subclade and
newMYBPA3 subclade described in this
study. At, Arabidopsis thaliana; Dk,
Diospyros kaki; Fa, Fragaria9 ananassa; Fv,
Fragaria vesca; Gh, Gossypium hirsutum;
Md,Malus9 domestica; Mt,Medicago
truncatula; Pp, Prunus persica; Pt, Populus
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The bilberry MYBs were named according to the sequence
analysis. Generally, the naming followed the style used in
grapevine, reflecting their proposed functions. The earlier
described bilberry VmMYB1 and VmMYB2 genes (Jaakola et al.,
2010) were renamed as VmMYBC2.1 and VmMYBPA1.1, respec-
tively. As VmMYBPA3 did not show any signature motifs of
PA1 or PA2 subgroups, it was named under a new subgroup,
MYBPA3, together with M. truncatula MtPAR, which also does
not contain any previously described C-terminal motifs but has
been shown to regulate PA biosynthesis (Verdier et al., 2012).

R2R3 MYBs show differential expression profiles with
VmMYBA1 and VmMYBPA1.1 expression similar to
anthocyanin biosynthetic genes

To investigate the spatial and temporal expression patterns of the
VmMYB genes and to correlate the expression to their target
genes for providing clues into their function, the measurements
of transcript abundance followed by hierarchical clustering

analysis were performed for various tissues (berry, leaf, stem, rhi-
zome) as well as for different stages of berry development. In bil-
berry, PAs accumulate at the early stages of berry development
while anthocyanins begin to accumulate at fruit ripening (Jaakola
et al., 2002; Karppinen et al., 2016; Suvanto et al., 2020). Our
results revealed that the transcripts of VmMYBA1 and
VmMYBPA1.1 were most highly associated with ripening fruit,
showing a similar expression pattern to the structural genes
related to anthocyanin biosynthesis (Figs 3, S2, S3), suggesting
the involvement in regulation of anthocyanin accumulation in
berry. The pattern of VmMYBPA1.1 expression most closely
resembled that of VmANS and VmCHS, while VmMYBA1 corre-
lated most closely with VmF3H and VmUFGT expression
(Fig. 3), which might reflect their regulatory targets.

For all the other VmMYB genes, the expression was found to
be highest in tissues other than berry, although transcripts of
VmMYBC2.1, VmMYBC2.2, VmMYB5a and VmMYB5b were
also detected at relatively high levels in berries (Figs 3, S2), indi-
cating a role both in reproductive and vegetative tissues.

VmMYBA1
VmMYBA2
VmMYB7
VmMYBC2.1
VmMYBC2.2
VmMYBC2.3
VmMYBC2.4
VmMYB5a
VmMYB5b
VmMYBPA1.1
VmMYBPA1.2
VmMYBPA2.1
VmMYBPA2.2
VmMYBPA2.3
VmMYBPA2.4
VmMYBPA2.5
VmMYBPA3
VmMYBF

R2 R3 C1 Motif 6 SG7 TT2 PA1 C2 C3 G-28 TLLLFR C4 SG7-2
VmMYBA1

VmMYB7 bHLH    DNEI 210
VmMYBC2.1 bHLH   DNEV

bHLH   SNDV 261
VmMYBA2 bHLH   SNDV 261

VmMYBC2.3 bHLH    DNEI 264

233
VmMYBC2.2 bHLH   DNEV 221

VmMYB5a bHLH    DNEI 356
VmMYBC2.4 bHLH    DNEI 268

VmMYB5b bHLH    DNEI 313
VmMYBPA1.1 bHLH    DNEI 274
VmMYBPA1.2 bHLH    DNEI 294
VmMYBPA2.1 bHLH    DNEI 302
VmMYBPA2.2 bHLH    DNEI 275
VmMYBPA2.3 bHLH    DNEI 266
VmMYBPA2.4 bHLH    DNEI 265

VmMYBF              DNEI 403

VmMYBPA2.5 bHLH    DNEI 266
VmMYBPA3 bHLH    DNEI 253

                                                                                                         
VRKGTWTKEEDYLLKKCIEKHGEGKWHQVPYKAGLNRCRKSCRLRWLNYLRPNIKRGNFTVDEVDLIIRLHKLLGNRWSLITGRLPGRTSNDVKNYWNTHLKKKS
VRKGAWTEEEDCLLKKCIEKHGEGKWHQVPYKSGLNRCRKSCRLRWLNYLRPNIKRGNFTLDEVDLIIRLHKLLGNRWSLIAGRLPGRTSNDVKNYWNTHLHKKS
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LHRGPWTAREDSVLTKYIQVHGEGNWRSLPKKAGLLRCGKSCRLRWMNYLRPDIKRGNITPDEDDLIIKMHALLGNRWSLIAGRLPGRTDNEIKNYWNTHVSKKL
LNRGAWTAMEDKTLTEYIRVNGEGKWRNLPKRAGLKRCGKSCRLRWLNYLRPDIKRGNISDDEEDLIIRLHKLLGNRWSLIAGRLPGRTDNEIKNYWNTNIGKKF
LNRGAWTAIEDKILTDYIKLHGEGKWRNLPKRAGLKRCGKSCRLRWLNYLRPDIKRGNITRDEEDLIIRLHKLLGNRWSLIAGRLPGRTDNEIKNYWNTSICKKV
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LKRGRWTEEEDAILSKYIQAHGEGSWRSLPKNAGLLRCGKSCRLRWINYLKSELKRGNITLDEEEIIIKMHATLGNRWSLIASHLPGRTDNEIKNYWNSHLSRKV

bHLH SNDV/DNEI* *

R2 domain R3 domain

(b)

(a)

Fig. 2 Identification of conserved domains in bilberry R2R3 MYBs. (a) Amino acid sequence alignment of R2 and R3 domains of VmMYBs. Conserved
residues are highlighted in black, and partial conservation is indicated in grey. The conserved regions of the bHLH interacting motif and ‘SNDV/DNEI’ motif
are shown in boxes. Asterisks indicate the Arg residue in R2 domain and the Val residue in R3 domain, conserved among anthocyanin-regulating MYBs. (b)
Schematic diagram of organisation of conserved domains and motifs in VmMYB sequences. Numbers on the right indicate length in amino acids. Motif
features are described in Supporting Information Table S6.
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Furthermore, the upregulated expression of VmMYBC2.1,
VmMYBC2.2, VmMYBC2.4, VmMYB5b and VmMYBPA2.2
at the stage of berry ripening may imply an association with
berry anthocyanin biosynthesis. Conversely, the transcript
levels of VmMYBA2, VmMYB7, VmMYBC2.3, VmMYB5a,
VmMYBPA1.2, VmMYBPA2.1, VmMYBPA2.3, VmMYBPA2.4,
VmMYBPA2.5 and VmMYBPA3 were highest in flower or at the
early berry developmental stage accompanied by a decreasing
trend towards berry ripening (Figs 3, S2), suggesting that some of
them might be associated with the regulation of PA biosynthesis
in unripe berries or flavonoid biosynthesis in flowers. Association
with PA biosynthesis was also supported by their expression
resembling most closely that of VmANR expression (Fig. 3).
However, the high transcript abundance of VmMYBA2,
VmMYBC2.3, VmMYBPA1.2, VmMYBPA2.1, VmMYBPA2.4,
VmMYBPA2.5 and VmMYBF in stem and/or rhizome and/or
green leaves (Figs 3, S2) suggest roles mainly in vegetative tissues.

Expression of VmMYBA1 and VmMYBPA1.1 is
upregulated by ABA and downregulated in a white berry
mutant

To investigate the gene expression of the VmMYBs more closely
in berries, transcript levels were measured in berries with acceler-
ated or suppressed anthocyanin biosynthesis. ABA has been
recognised as a major positive regulator and accelerator of ripen-
ing and anthocyanin biosynthesis in nonclimacteric fruit, such as

bilberry (Karppinen et al., 2013, 2018; Chen et al., 2020). There-
fore, we hypothesised that R2R3 MYB genes that have a role in
berry anthocyanin biosynthesis would be upregulated in berries
under ABA treatment. Our results demonstrated that exogenous
ABA applied to unripe berries upregulated the expression of espe-
cially VmMYBA1 and VmMYBPA1.1, even at the lower ABA
concentration (Fig. 4a), suggesting that these genes are under the
hormonal control of ABA and are able to react sensitively to the
ABA signal at the time of berry ripening. Also, the expression of
VmMYBC2.1, VmMYBC2.2, VmMYB5b, VmMYBPA1.2,
VmMYBPA2.1 and VmMYBPA2.2 was significantly induced by
ABA (Fig. 4a). Conversely, the transcript levels of VmMYBA2,
VmMYB7, VmMYBC2.3, VmMYBPA2.3, VmMYBPA2.4 and
VmMYBPA3 were significantly downregulated by ABA, indicat-
ing that they may regulate pathways that are not induced at the
time of berry ripening, such as the PA pathway, or have a func-
tional role in tissues other than berries.

In addition, VmMYB transcript levels compared with those of
flavonoid structural genes were quantified in the naturally occur-
ring white mutant of bilberry lacking anthocyanins (Fig. 4b).
The expression of anthocyanin and PA biosynthetic genes was
generally downregulated in mutant berries, with the exception of
VmLAR2 (Fig. 4c). Also, the expression of most of the VmMYBs
predicted to be associated with anthocyanin or PA regulation was
decreased. In particular, the expression of VmMYBA1 and
VmMYBPA1.1, along with VmCHS, VmANS and VmUFGT, was
strongly downregulated and barely detectable in the mutant

S1 S2 S3 S4 S5 L S R
LAR1a
LDOX
MYB5b
CHI Expression
DFR
F3'H
CHS
MYBPA1.1
ANS
F3'5'H
UFGT
F3H
MYBA1
MYBPA2.1
MYB7
ANR
MYBPA1.2
MYBPA2.5
MYBPA2.4
MYBA2
MYBPA2.3
MYB5a
MYBPA3
LAR2
MYBF
LAR1b
MYBPA2.2
MYBC2.1
MYBC2.2
MYBC2.3
MYBC2.4

Fig. 3 Expression profiles of VmMYBs
compared with flavonoid structural genes in
bilberry tissues. Red and green boxes indicate
high and low relative expression levels,
respectively, of four biological replicates.
Hierarchical clustering analysis was
performed based on the expression levels
during berry development and only included
positive VmMYBs. S1, flower; S2, small
unripe green berry; S3, large unripe green
berry; S4, ripening purple berry; S5, fully ripe
blue berry; L, leaf; S, stem; R, rhizome.
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Fig. 4 Expression analysis of VmMYBs in berries with accelerated and suppressed anthocyanin biosynthesis. (a) Expression of VmMYBs in abscisic acid
(ABA)-treated bilberries. The relative expression of the genes was quantified after 48 and 96 h from the beginning of the treatment (0.5 mM ABA, 2 mM
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berries (Fig. 4c), suggesting their essential roles in the white berry
phenotype. The expression of the positive regulators VmMYBA2,
VmMYB5b and VmMYBF, was upregulated in the white mutant
berries, indicating that their transcript levels are not determining
the lack of berry anthocyanins.

Members from MYBA and MYBPA regulators upregulate
F3050H and genes associated with both anthocyanin and PA
biosynthesis

To functionally characterise VmMYBs predicted in PA or antho-
cyanin biosynthesis, Agrobacterium-mediated transient overex-
pression assays in N. benthamiana leaves were performed.
Accumulation of delphinidin 3-rutinoside and small amounts of
flavan-3-ols were detected in leaves infiltrated with constructs
containing VmMYBA1 and VmMYBA2 genes (Figs 5, S4, S5).
The addition of a bHLH partner construct had no benefit for the
accumulation of delphinidin 3-rutinoside, but was required for
the production of gallocatechin. The pigmentation on leaves was
more intense with VmMYBA1 than with the VmMYBA2 con-
struct (Figs 5a, S4). All PA-type VmMYBs overexpressed with the
bHLH partner enabled the accumulation of gallocatechin
(Figs 5c, S5) and some of the PA2-type and PA3-type members
in addition small amounts of other flavan-3-ols (Figs 5d, S5).
Overexpression of VmMYBs generally decreased the content of
flavonols, with the exception of some VmMYBs leading to the
accumulation of myricetin glycosides from delphinidin branch
(Fig. S6). Therefore, our results indicated dihydroflavonol pre-
cursor direction to delphinidin branch instead of cyanidin and
flavonol branches by VmMYB TFs. No anthocyanins or PAs was
detected in leaves infiltrated with bHLH construct alone or empty
vector.

The infiltration sites of N. benthamiana leaves were confirmed
for the presence of transgene expression (Fig. S7) followed by
analyses of flavonoid structural gene expression to reveal the
specific regulatory impacts on flavonoid biosynthesis.
VmMYBA1 and VmMYBA2 overexpression induced the expres-
sion of all the anthocyanin and PA biosynthetic genes (with the
exception of NbLAR and NbF30H for VmMYBA2) in N. ben-
thamiana leaves (Fig. 6a), in accordance with our chemical anal-
yses. The expression of NbF3050H, NbDFR, NbANS and
NbUFGT was most strongly induced by VmMYBA1 and
VmMYBA2 overexpression, suggesting a role as a regulator of
the anthocyanin pathway and delphinidin branch. As the
expression of N. benthamiana endogenous TF NbAN1, a bHLH
involved in anthocyanin biosynthesis (Montefiori et al., 2015),
also showed induction by VmMYBA1 and VmMYBA2 overex-
pression, we can assume that the VmMYBA1 and VmMYBA2
action in N. benthamiana is most likely mediated through the
activation of NbAN1. Such hierarchical regulation of the bHLH
genes by anthocyanin MBW complexes is well established
(Albert et al., 2014; Montefiori et al., 2015) and our data
showed that VmMYBA1 and VmMYBA2 TFs are capable of
operating within these in N. benthamiana. This is also sup-
ported by our findings that both VmMYBA1 and VmMYBA2
constructs were able to induce anthocyanin accumulation

without the addition of a bHLH partner construct (Fig. 5),
while the activity of MYBA-type TFs has earlier been shown to
be dependent on the interaction with a bHLH (Walker et al.,
2007; Huang et al., 2013; Liu et al., 2016). The addition of a
construct containing the AtbHLH2 partner, the TT8-type
bHLH necessary for PA production in most groups of
angiosperms (Zhang et al., 2020), enabled the production of
PAs.

For the PA-type MYBs infiltrated with bHLH partner,
VmMYBPA1.1 overexpression was shown to induce the expres-
sion of NbF3050H, NbDFR, NbANS and NbLAR, while
VmMYBPA1.2 overexpression additionally induced the expres-
sion of NbANR and higher rate of NbDFR expression (Fig. 6b),
demonstrating the functional divergence between the two
MYBPA1 regulators. Overexpression with the VmMYBPA2-type
genes or VmMYBPA3 led to the upregulation of NbF3050H,
NbDFR and NbANS expression, but also showed divergence in
gene induction (Fig. 6a,c). Additionally, VmMYBPA2.2 upregu-
lated NbF30H, NbLAR and NbANR expression (Fig. 6a),
VmMYBPA2.1 and VmMYBPA3 upregulated NbLAR expres-
sion, VmMYBPA2.3 NbLAR and NbANR expression, and
VmMYBPA2.5 NbUFGT, NbLAR and NbANR expression
(Fig. 6c), suggesting a subfunctionalisation among the PA2-type
TFs. Similar to all MYBPA-type regulators, VmMYB7 overex-
pression induced NbF3050H and NbDFR expression, indicating
the importance of the F3050H regulation of delphinidin branch in
blue-coloured berries.

Members from MYBA and MYBPA regulators activate
promoters of F3050H and genes associated in anthocyanin
biosynthesis

The regulatory role of VmMYBA1 and VmMYBA2 in antho-
cyanin biosynthesis was further confirmed by transient biolistic
complementation assays using the Antirrhinum roseadorsea (Sch-
winn et al., 2006), which lacks anthocyanin pigmentation in its
petals due to mutation in the MYB gene, Rosea1. VmMYBA1
and VmMYBA2 both complemented roseadorsea, restoring antho-
cyanin pigmentation to bombarded cells (Fig. 7a), confirming
VmMYBA1 and VmMYBA2 as anthocyanin regulators.

The ability of VmMYBA1, VmMYBA2, VmMYBPA1.1 and
VmMYBPA2.2 to directly activate key structural genes in the
flavonoid biosynthetic pathway was evaluated by promoter acti-
vation assays. VmMYBA1, VmMYBA2, VmMYBPA1.1 and
VmMYBPA2.2 were all capable of strongly activating the pro-
moters of DFR and ANS (Fig. 7b). However, differential activity
was observed upon the F3050H and UFGT promoters. F3050H
was more strongly activated by VmMYBPA1.1 and
VmMYBPA2.2 than the MYBA TFs, indicating their key role in
directing precursors toward the delphinidin branch. By contrast,
the promoter of UFGT was strongly activated by VmMYBA1
and VmMYBA2, but also weakly by VmMYBPA1.1 (Fig. 7b).
These findings suggested that overlapping regulation occurs for
some common biosynthetic steps of anthocyanin and PA biosyn-
thesis. The constructs only with GUS or PpbHLH3 could not
activate the promoters.
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Suppression of VmMYBPA1.1 represses anthocyanin
biosynthesis and delphinidin branch in berries

To clarify the role of VmMYBPA1.1 in berry anthocyanin
biosynthesis, the VIGS method was used to suppress

VmMYBPA1.1 expression during bilberry fruit ripening. After c.
10 d of injection of the VmMYBPA1.1-VIGS vector, chimeric
fruits with green sectors at the site of injections were found
(Fig. 8a), demonstrating reduced anthocyanin accumulation. The
transcript levels of VmMYBPA1.1 were confirmed to be
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suppressed in these berries compared with control berries
(Fig. 8b) accompanied by the significant downregulation of
VmCHS, VmF3050H, VmANS and VmLAR1a expression. This
suggests that VmMYBPA1.1 is an important regulator of berry
anthocyanin biosynthesis and delphinidin branch genes (Suvanto
et al., 2020). We also found that VmUFGT expression was down-
regulated, but not significantly, by contrast with significant
upregulation of VmLDOX, and slight but not significant upregu-
lation of VmLAR2 and VmANR (Fig. 8b). These results are likely
to indicate a positive effect of VmMYBPA1.1 on specific antho-
cyanin biosynthesis pathway gene but negative for the competing
PA pathway specific genes at the time of berry ripening.

Discussion

MYBA-type R2R3 TFs are well known as positive regulators of
anthocyanin biosynthesis and are usually considered responsible
for controlling anthocyanin accumulation (reviewed in Jaakola,
2013; Allan & Espley, 2018). The current knowledge of tran-
scriptional regulation of anthocyanin and PA biosynthesis is
largely based on studies that have been performed in model
species and tissues such as for Arabidopsis thaliana, Petunia
hybrida, Antirrhinum majus and red fruits of the Rosaceae family,
which exhibit simpler PA and anthocyanin profiles compared

with blue-coloured berries. The present study was undertaken in
bilberry, the berries of which show complex anthocyanin and
flavonoid profiles, including compounds produced from both
cyanidin and delphinidin branches (Jaakola et al., 2002; Zoratti
et al., 2014). Our study demonstrated, in total, 18 flavonoid
pathway-regulating R2R3 MYBs from bilberry (Fig. 9), a number
comparable with that found earlier in grapevine, the widest
flavonoid-specific R2R3 MYB family characterised so far (Czem-
mel et al., 2012; Table S1). A majority of the characterised bil-
berry MYBs was identified by sequence analysis as PA-regulating
MYBs. This raised the question whether some of these PA-type
MYB TFs have a regulatory role in berries beyond driving PA
production. Here, we showed evidence that, in addition to the
MYBA-type regulator, also two members from MYBPA1 and
MYBPA2 subgroups have an essential role in berry anthocyanin
biosynthesis.

From the two bilberry MYBA-type TFs showing the direct reg-
ulation of anthocyanin biosynthesis, only VmMYBA1 seems to
have this role in berries, corroborating earlier results of VcMYBA
in blueberry (Plunkett et al., 2018; Die et al., 2020). The newly
identified gene family member, VmMYBA2, was mainly
expressed in unripe berries and other plant tissues. Furthermore,
its expression was suppressed by ABA in berries and upregulated
in the white bilberry mutant. This demonstrates that VmMYBA2
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Fig. 7 Complementation and promoter activation analysis of VmMYB TFs. (a) Complementation of anthocyanin biosynthesis in Antirrhinum majus

roseadorsea (myb�) petals by VmMYBA1 and VmMYBA2. Petals were biolistically transformed with plasmid DNA containing 35S:VmMYBA1 or 35S:
VmMYBA2with 35S:GFP (internal control) or 35S:GFP alone (negative control). Fluorescence by GFP can be seen under blue light while anthocyanins are
visible under white light. Anthocyanin pigmentation in bombarded cells is indicated by arrows. Bars, 200 lm. (b) VmMYBA1, VmMYBA2, VmMYBPA1.1
and VmMYBPA2.2 mediated activation of F3050H, DFR, ANS and UFGT promoters. VmMYBs were tested in combination with the bHLH partner,
PpbHLH3. The constructs containing GUS or bHLH alone served as negative controls. Firefly luciferase (Luc) values are reported relative to Renilla
luciferase (Ren) control. Values represent means� SEs of at least three biological replicates. Letters indicate significant differences assessed by one-way
ANOVA and Tukey’s test (P < 0.05) on log-transformed data.
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is not responsible for ripening-associated berry pigmentation but
may be responsible for regulating anthocyanin accumulation in
vegetative tissues.

We detected that, along with VmMYBA1, the transcripts of
VmMYBPA1.1 were highly induced at the initiation of berry
ripening, significantly induced in ABA-treated berries, and
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strongly downregulated in the white berry mutant lacking antho-
cyanin biosynthesis. These results are in line with our earlier gene
expression level studies in Vaccinium species showing the correla-
tion of MYBPA1.1 expression with anthocyanin accumulation
(Jaakola et al., 2010; Primetta et al., 2015; G€unther et al., 2020).
In the current study, overexpression of VmMYBPA1.1 in N. ben-
thamiana upregulated NbF3050H, NbDFR and NbANS expres-
sion. VmMYBPA1.1-suppressed berries showed
significant downregulation of flavonoid biosynthetic genes
VmCHS, VmF3050H and VmANS with a slight impact also on
UFGT expression, while the promoter activation assays con-
firmed VmMYBPA1.1 to activate promoters of F3050H, DFR,
ANS and UFGT. Based on the overall data from our study, we
propose that VmMYBPA1.1 contributes to berry anthocyanin
biosynthesis and directs dihydroflavonol precursors to delphini-
din branch. In particular, VmF3050H and VmANS seem to be the
key regulatory targets to facilitate this role in bilberry fruit. The
similar expression pattern between VmMYBPA1.1 and VmANS
in bilberry tissues may imply that VmMYBPA1.1 helps to over-
come the important enzymatic bottleneck in anthocyanin biosyn-
thesis described in Vaccinium fruits (Primetta et al., 2015; Zorenc
et al., 2017; G€unther et al., 2020).

We also found that VmANR was not downregulated together
with VmANS in VmMYBPA1.1-suppressed berries. This indicates
that recruitment of MYBPA1-type regulator, which is able to
strongly induce ANS, but importantly not to simultaneously
upregulate ANR, may be crucial to overcome the anthocyanin
biosynthesis bottleneck in ripening berry. It should be noted that
PAs and anthocyanins share the same biosynthetic pathway from
phenylalanine to leucocyanidin/leucodelphinidin and compete
from common precursors. Decoupling ANS and ANR regulation
should theoretically result in an increase in precursor flow to the
anthocyanin branch over the PA branch when coupled with
upregulated DFR and UFGT expression by co-expressed MYBA-
type and bHLH TFs. It has recently been shown that the ‘Black’
peel variety of pomegranate (Punica granatum L.), with excep-
tionally high anthocyanin content, has a mutation in the ANR
gene (Trainin et al., 2021). Also, tobacco plants overexpressing
AtPAP1 accumulated large amounts of anthocyanins, but co-
expression with ANR directed the precursors to PA biosynthesis,
with a reduction in anthocyanin content (Xie et al., 2006).

The spatial and temporal expression patterns of MYB genes
in vivo need to be addressed when considering their function and
deriving the final distribution of the substrates between the PA
and anthocyanin pathways, as well as directing precursors
between cyanidin and delphinidin branch. Our results implied
that, at the time of berry ripening with the presence of ABA,
VmMYBPA2.2 expression is also upregulated together with
VmMYBA1 and VmMYBPA1.1, to further boost the production
of anthocyanins in the delphinidin branch. VmMYBPA2.2 was
shown to activate DFR, ANS and especially the F3050H promoter.
MYBPA-type TFs have not generally been considered as central
regulators of anthocyanin biosynthesis, although a PA1-type
MYB was previously shown to be associated with anthocyanin
biosynthesis at low temperatures in red-fleshed apples (Wang
et al., 2018). Also, PA2-type MYBs, peach PpPeace, PbMYB9

from pear (Pyrus bretschneideri) and MYBC1 from kiwifruit
(Actinidia purpurea) have been shown to activate anthocyanin
biosynthesis (as well as flavonol biosynthesis for PbMYB9) in
addition to PA biosynthesis (Uematsu et al., 2014; Zhai et al.,
2016; Peng et al., 2020), demonstrating diversification in roles
among PA-type MYBs. The large number of PA-type MYB genes
in bilberry found in this study indicates the considerable gene
duplication events inside the group and may have allowed the
diversification of their function. We demonstrated that bilberry
contained a second PA1-type MYB gene, VmMYBPA1.2, with a
very different expression pattern to that of VmMYBPA1.1, resem-
bling the expression pattern of VmANR and PA accumulation in
bilberry (Suvanto et al., 2020). Overexpression of VmMYBPA1.2
in N. benthamiana demonstrated the differentiation from
VmMYBPA1.1 by its ability to strongly upregulate NbANR. Our
results suggested that VmMYBPA1.2 has the conventional role of
MYBPA1 TFs in the regulation of PA biosynthesis at the early
stages of berry development and in vegetative tissues.

Proanthocyanidin biosynthesis was shown to be contributed
also by VmMYBPA2.1, VmMYBPA2.3, VmMYBPA2.4,
VmMYBPA2.5 and VmMYBPA3, representing a novel
MYBPA3 subgroup that includes MtPAR from M. truncatula
(Verdier et al., 2012), as well as VmMYB7 that has a sequence
similarity with peach PpMYB7, reported as the first characterised
member of MYB7 clade regulating PA biosynthesis (Zhou et al.,
2015a). All could induce the accumulation of PAs in N. ben-
thamiana leaves, especially gallocatechin of delphinidin branch
(Fig. 5) by regulating flavonoid biosynthetic genes, including
F3050H (Fig. 6). These results are in agreement with our expres-
sion data in bilberry.

Concerning the other MYB regulators, we identified two
MYB5 members that are considered to provide common precur-
sors for the flavonoid pathway (Li et al., 2019). The gene expres-
sion pattern of VmMYB5a during berry development resembled
that of grapevine VvMYB5a, and the expression of VmMYB5b
that of VvMYB5b, suggesting that they may be homologues
(Deluc et al., 2006, 2008). Also, four C2 repressors were identi-
fied in our study. As VmMYBC2.1, VmMYBC2.2 and
VmMYBC2.4 expression increased at the bilberry fruit ripening
and upon ABA treatment, it is possible that these repressors
provide feedback inhibition in the MBW complexes associated
with anthocyanin biosynthesis (Fig. 9), as described by Albert
et al. (2014). Interestingly, VmMYBC2.3 expression was associ-
ated with tissues that had high PA content (Suvanto et al., 2020)
such as unripe fruit and vegetative tissues, and was strongly inhib-
ited by ABA. This suggests that bilberry C2 repressors may also
display a degree of subfunctionalisation for regulating PA or
anthocyanin biosynthesis, as described earlier (Huang et al.,
2014; Albert, 2015; Cavallini et al., 2015; Jun et al., 2015), indi-
cating the importance of the repression mechanisms for control-
ling distinct branches of the flavonoid pathway.

To conclude, our study reveals a new type of regulatory net-
work of co-expressed members of MYBPA1 and MYBPA2 sub-
groups along with MYBA in the control of ripening-associated
anthocyanin biosynthesis in berries. Based on the present and ear-
lier data, we suggest that the co-regulation of MYBPA1 and
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MYBA TFs is the key mechanism in anthocyanin biosynthesis,
particularly among blue-coloured berries (Fig. 9). The increased
expression of MYBPA1 at the initiation of berry ripening, which
correlates with anthocyanin accumulation, has been reported ear-
lier in blue-coloured berries of bog bilberry, highbush blueberry,
rabbiteye blueberry (V. virgatum), Chinese bayberry (Myrica
rubra) and grapevine (Zifkin et al., 2012; Primetta et al., 2015;
Shi et al., 2018; Yang et al., 2018; G€unther et al., 2020). How-
ever, so far, MYBPA1 TFs have generally been connected to PA
biosynthesis, even if the grapevine VvMYBPA1 has been specu-
lated to also have a role in anthocyanin biosynthesis (Bogs et al.,
2007; Czemmel et al., 2012). Interestingly, blueberry
VcMYBPA1, but not VcMYBA, was recently revealed to be the
target of VcSPL12 repressing anthocyanin biosynthesis in a
microRNA156-SPL module (Li et al., 2020). The differential
regulatory role of MYBPA1 in these blue-coloured berries may
derive from the presence of delphinidin branch/substrates and
substrate preference by flavonoid biosynthetic gene isoforms,
such as ANS and LDOX, which is not fully understood. Further-
more, it should be noted that all the functionally characterised
VmMYBs of this study demonstrated the upregulation of F3050H
expression, indicating that involving the delphinidin branch of
anthocyanin biosynthesis brings new elements to the regulatory
network of MYBs. Therefore, our results provide important new
insight into the regulation of anthocyanin biosynthesis and fruit
ripening in blue-coloured berries containing an active delphini-
din branch.
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