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1.  BACKGROUND 

Food web ecology, with its long and rich tradition 
(Elton 1927), has seen many new applications and 
approaches. Although the suitability and relevance 
of food web approaches have been advocated (e.g. 
for Arctic ecosystems; Post et al. 2009), surprisingly 
few studies have applied such approaches in manag-

ing wildlife that is subjected to rapid climate change. 
In this study, we share some important experiences 
we have gained from different case studies in the 
Norwegian project SUSTAIN (www.sustain.uio.no). 

In the terrestrial Arctic, climate has unarguably 
been the most important driver of species’ adaptation 
(Callaghan et al. 2004a) and the structure and func-
tioning of tundra ecosystems (Post et al. 2009, Ims et 
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ABSTRACT: Scientists and wildlife managers implementing adaptive monitoring and manage-
ment schemes, are tasked with providing predictions of population responses to harvest and envi-
ronmental changes. Such predictions are useful not only to forecast direct effects of climate, pro-
ductivity, land use, or habitat degradation, but also changes in the food web, such as expanding/
increasing species that are predators, prey, and competitors of populations of concern. Explicit 
consideration of food webs and their dynamics in more complex models could provide better pre-
dictions of future changes, and allow us to better assess the influence of management actions. 
Here, we present our perspective on what we have learned from conducting a number of case 
studies using such a food web approach with a focus on climate and harvest impacts and their 
implications for management. We found empirical support for many of our hypothesized food web 
effects, and were able in some cases to obtain short-term forecasts with slightly lower prediction 
error using models that account for food web dynamics compared with simpler models. Predic-
tions are the foundation of adaptive management because they allow quantitative assessment of 
the effects of management actions; however, evaluating predictions requires adequate and high-
quality monitoring data. Results from our case studies show that a combination of long-term mon-
itoring and different types of study designs coupled with models of adequate complexity are likely 
required to better understand populations’ responses to environmental changes and harvest, as 
well as the consequences for food webs.  
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al. 2013a). Due to short and cool summers, the struc-
ture and functioning of tundra ecosystems are mainly 
determined by low primary productivity, restricted 
plant growth, and metabolic activity from bacteria, 
fungi, and invertebrates (Bliss 1997, Callaghan et al. 
2004a). Low primary productivity, in turn, limits sec-
ondary productivity (Oksanen et al. 1981, Oksanen & 
Oksanen 2000, Callaghan et al. 2004b). Thus, the bio-
trophic web (hereafter tundra food web) is usually 
considered to be composed of 3 major trophic levels: 
plants, herbivores, and predators (Krebs et al. 2003, 
Ims & Fuglei 2005). Despite their relatively low struc-
tural complexity, tundra food webs are often gov-
erned by strong and complex inter-specific interac-
tions, especially between trophic levels (Ims & Fuglei 
2005). Tundra food webs are bottom-up limited due 
to their low primary productivity; however, both her-
bivores and predators can exert a strong top-down 
control on lower trophic levels. For instance, reindeer 
and caribou are known to generate strong shifts in 
vegetation state (Ravolainen et al. 2020), while pred-
ators such as mustelids, birds of prey, and foxes can 
generate extensive fluctuations in small mammalian 
herbivores and ground-nesting birds (Ims et al. 
2019, Marolla et al. 2019). When present, multi-annual 
population cycles of small rodent species (lemmings 
and voles) often lie at the basis of bottom-up and top-
down interaction cycles (Ims & Fuglei 2005, Krebs 
2011, Henden et al. 2020, 2021a) and are closely con-
nected to the functioning of the whole ecosystem. 
These non-trivial fluctuation patterns show periods of 
transience, with shifts in occurrence, periodicity, and 
amplitude of population cycles (Moss & Watson 2001, 
Henden et al. 2009, Fuglei et al. 2020), which compli-
cates the dynamics of tundra systems even further. 

Many of these ‘regulatory functions’ in tundra food 
webs are now experiencing severe changes, of which 
several are linked (van der Wal & Stien 2014, Le 
Moullec et al. 2019). The most prominent impact of 
rapid climate change in the Arctic (Post et al. 2009) 
is represented by increased plant biomass due to 
increased primary productivity (especially of tall 
woody plants, e.g. Myers-Smith et al. 2015), a phe-
nomenon known as ‘Arctic greening.’ Dampening 
and irregular small rodent cycles (Ims et al. 2008, 
Kausrud et al. 2008) and intensified outbreaks of 
insect herbivores in the tundra−boreal forest ecotone 
(Jepsen et al. 2011, 2013) have also been attributed to 
changes in climate. However, climate change inter-
acts with changes in land use, which represent 
another emerging driver in the Arctic. Anthropo -
genic landscape-use and climate change in combina-
tion with extirpation of apex predators (Elmhagen et 

al. 2015) have changed predator communities. In 
particular, generalist mesopredators such as red 
fox Vulpes vulpes and corvids have increased in 
abundance and expanded their distribution ranges 
(Elmhagen et al. 2015, 2017, Sokolov et al. 2016, Gal-
lant et al. 2020). This increase seems to be aided by 
higher availability of subsidies, such as reindeer 
Rangifer tarandus carrion (Stien et al. 2012, Hansen 
et al. 2013, Henden et al. 2014), marine resources 
(Roth 2003, Killengreen et al. 2011, Ims et al. 2017), 
anthropogenic resources (Gallant et al. 2020), and 
increasing populations of some migrant prey species 
like geese (Fox & Madsen 2017). 

Increasing abundances of boreal and human com-
mensal species may affect Arctic species through 
competition (Arctic fox; Henden et al. 2010, Hamel et 
al. 2013) or predation (ground-nesting birds; Kubelka 
et al. 2018, Ims et al. 2019, Marolla et al. 2019, Hen-
den et al. 2021a). For instance, nest predation ap -
pears to have increased in the Arctic (Kubelka et al. 
2018) and has been linked to the recent community-
wide decline in arctic−alpine birds in northern 
Europe (Lehikoinen et al. 2014, 2019). In combina-
tion with changes in small rodent dynamics (Ims et al. 
2008), the expansion of mesopredators may have 
weakened the link between the rodent cycle and the 
cycle of alternative prey populations. Hence, wildlife 
species that used to depend on predation relief in 
years of high abundance of small rodents may now 
experience more constant predation pressure (Ims et 
al. 2019), an effect also exacerbated by the increase 
in anthropogenic subsidies such as carrion from 
semi-domestic reindeer that attract and sustain meso -
predators (Killengreen et al. 2011, 2012). 

Anthropogenic changes impact Arctic ecosystems 
through changes in resource availability, species 
interactions, and food web structure (Post et al. 
2009, Hansen et al. 2013, Ims et al. 2019). Investi-
gating such impacts in rapidly changing systems is 
challenging because the direction and timing in the 
response of different species may vary between 
different pathways in the food web. It is therefore 
increasingly argued that understanding the con -
sequences of environmental change warrants an 
understanding of direct and indirect processes that 
occur with time lags and across several trophic lev-
els (Post et al. 2009, Evans et al. 2013, Urban et al. 
2016). This is particularly important for management 
of species situated at intermediate trophic levels in 
food webs and therefore affected by both lower 
and higher trophic levels. Management interven-
tions may therefore be confounded with other eco-
logical drivers of the management target, drivers 
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that must be taken into account for robust assess-
ment of management effectiveness (Underwood 
1992, Hewitt et al. 2001). 

Due to climate change and the emerging biodiver-
sity crisis, the demand for anticipatory predictions (i.e. 
forecasting) in ecology to aid decision-making at the 
science−policy interface has grown (Clark et al. 2001, 
Mouquet et al. 2015, Petchey et al. 2015, Houlahan et 
al. 2017, Dietze et al. 2018). However, predictions in 
ecology often carry a mismatch be tween predictions 
that focus on climate change re sponses on very long 
timescales and the time horizon relevant for manage-
ment decisions (Pouyat et al. 2010, Hobday et al. 
2016). Short-term predictions matching the time 
horizon relevant for environmental decision-making 
have been proposed to solve this issue (Hobbs et al. 
2015, Nichols et al. 2015, Dietze et al. 2018). Such 
near-term forecasts are iteratively up dated and evalu-
ated as more and new data become available on a rel-
atively short time scale. Predictions on a time scale 
that is relevant for decision-making allows for scien-
tific evidence to increase rapidly as knowledge is 
generated and, most importantly, management strate-
gies to be tailored and evaluated simultaneously 
(Houlahan et al. 2017, Dietze et al. 2018). 

This perspective paper draws on what we have 
learned from case studies of changing tundra food 
webs in both low- and high-Arctic environments, 
focusing on harvested and managed species. We 
present our food web approach in 4 themed sections 
(Sections 2−5) before we highlight remaining chal-
lenges and future research directions (Section 6). 

2.  OVERALL SCHEME 

Studying entire food webs (Pimm 1982) is chal-
lenging due to the large number of species and 
trophic links, even in relatively simple ecosystems 
such as tundra food webs. Hence, many studies take 
into account only a single trophic interaction (e.g. 
predator−prey) as a basis for adaptive management 
(Johnson et al. 2019, Serrouya et al. 2019). In our food 
web approach (Fig. 1), we attempt to strike a balance 
between focusing on one interaction vs. the whole 
web (Hunter et al. 2018). We generally reduce the 
complexity by considering only a subset of focal 
species with key functional roles in the food web (Ims 
& Yoccoz 2017). Thus, we reduce complex maps of 
static food web structure (Fig. 2a,b) to what we con-
sider the most relevant and responsive parts of the 
food web (Ims & Yoccoz 2017), and infer the likely 
strong food web interactions from analyses of statisti-

cal models that are based on time series of species 
abundances and environmental drivers (simplified ex -
amples depicted in Fig. 2c,d). Hence, we target those 
key trophic interactions that we expect to change 
rapidly and exhibit the most pronounced effects. 

Once key food web interactions are identified 
(Fig. 1), we generate hypotheses on likely direct and 
indirect pathways of climate and human impact on 
the target species and present them in the form of 
conceptual models (Figs. 1 & 3). The use of mathe-
matical models gives insight into hypothesized 
mechanisms and helps to generate refined theoreti-
cal predictions (Box 1). We then use time series data 
in statistical models to estimate relationships and 
generate explanatory models. We use these explana-
tory models to generate short-term predictions or 
’forecasts’ (Fig. 4) and assess and recommend man-
agement actions (Fig. 5). Whenever possible, the steps 
are performed jointly with stakeholders through a 
structured involvement process (Henden et al. 2020, 
Hamel et al. 2021, this Special). 

3.  INCLUDING DIRECT AND INDIRECT  
INTERACTIONS 

Many food webs have a reticulated topology with 
one or more predators on top and several alternative 
prey below (Figs. 1−3; Box 1; see Ims et al. 2013c, 
Legagneux et al. 2014, Henden et al. 2017). Predators 
can therefore be mediators of indirect food web inter-
actions between alternative prey. This ‘looped’ topol-
ogy differs from simpler food webs consisting of 
parallel chains (Wollrab et al. 2013) and can lead 
to complex responses to perturbations. For instance, 
increased abundance of one species due to climate 
change or management can translate to increases or 
decreases in the abundance of other species by act-
ing through their shared predator. This mechanism is 
known as apparent competition (Holt 1977) or appar-
ent mutualism/facilitation (Holt 1977, Abrams et al. 
1998), depending on the outcome, but the conditions 
that should give rise to one or the other remain slip-
pery in practice. 

Which of the 2 patterns we observe in tundra food 
webs differs across systems (Ims et al. 2011, Kleiven 
et al. 2018, Marolla et al. 2019, Henden et al. 2020). 
Although prediction in this realm is difficult, we are 
beginning to understand some of the likely mecha-
nisms in tundra food webs through a combination of 
accumulated case studies, previous theoretical stud-
ies, and current modeling. In a case study focusing 
on the lesser white-fronted goose Anser erythropus 

3
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(Marolla et al. 2019), for instance, it was not clear 
which type of indirect interaction should be expected 
regarding the effect of different prey types on preda-
tion. Thus, we built mathematical models to make 
theory-based predictions (Box 1), which were then 
compared/assessed with long-term monitoring data. 
Overall, our studies support the notion that predation 
plays an important role in Arctic food webs (Ims et al. 
2013b, 2019). However, predation remains quantita-
tively a poorly known interaction due to a paucity of 
direct data on predator abundances, movements, and 
foraging behavior in the food webs we study. The 
exact functional response of predators is vital infor-
mation for predicting apparent competition or mutu-
alism. In the few cases where functional responses 
have been estimated for Arctic predators (e.g. Gilg et 
al. 2003, Therrien et al. 2014), these functions have 
not been used to analyze dynamics in the context of 
food web management options. 

We have investigated and quantified previously 
suspected but undocumented processes in food web 
dynamics that are ultimately linked to climate/

weather (Marolla et al. 2019, 2021, Henden et al. 
2020). Many of these processes concern scavenging-
driven predation (Mellard et al. 2021), where carrion 
links target species indirectly through shared preda-
tors. We observe that target species in our food webs 
can have a negative, or apparent competition, rela-
tionship to carrion availability (Marolla et al. 2019, 
2021) or a positive, or apparent mutualism, re -
lationship to carrion availability (Henden et al. 2020), 
mediated by shared predators. A candidate explana-
tion for the contrasting effect of this subsidy is the dif-
ference in timing of reproduction between target 
ground-nesting bird species. Birds that are present 
year-round and also breed during a peak carrion 
subsidy may have a positive relationship with carrion 
availability (Henden et al. 2020), while the same rela-
tionship may be negative for migrating birds that are 
present and breed later in the season (Marolla et al. 
2019). Moreover, different predator identities be -
tween studies, different geographical sites, and dif-
ferent temporal data resolution (e.g. year range and 
sub-annual carrion abundance) may be responsible 

5

Fig. 2. Static food web maps of (a) low-Arctic and (b) high-Arctic ecosystems and example dynamics (time series) of strong 
drivers within each for the (c) low Arctic and (d) high Arctic. R. legged buzzard: rough-legged buzzard; LWF: lesser white-
fronted. (c) Time series of LWF goose breeding success (fledgling success, i.e. number of fledglings per breeding pair) and ro-
dent abundance (average catches per grid). (d) Time series showing counts of Svalbard rock ptarmigan performed in a study 
area of ca. 1200 km2 in Svalbard, and average winter temperature (December−March) calculated using data from the Svalbard 
airport weather station. Note that the scale of the 2 y-axes differs in both c and d. Figure panels after (a,b) Henden et al. (2017),  

(c,d)  Marolla et al. (2019, 2021)
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for these contrasting patterns. Consequently, more 
studies are needed to confirm these patterns. 

The permanence of indirect interactions in tundra 
food webs is evident from evolved life-history traits to 
cyclic interactions in several species (e.g. Andersson 
1981, Tannerfeldt & Angerbjörn 1998). As some of 
these interactions are now changing rapidly, ignor-
ing food web interactions has consequences for 
understanding and predicting what will happen to 
managed populations (Trijoulet et al. 2020). 

4.  SHORT-TERM PREDICTIONS 

We performed a near-term forecasting approach, 
based on explanatory statistical food web models, to 
case studies of harvested populations of low-Arctic 
willow ptarmigan Lagopus lagopus (Henden et al. 
2020) and Svalbard rock ptarmigan L. muta hyper-

borea (Marolla et al. 2021). A key goal was to inform 
stakeholders about the near-future state of the popu-
lation, information to be used as a basis for adaptive 
management of ptarmigan. An additional goal was to 
assess whether the predictive ability of the statistical 
models improved by including food web interactions 
in contrast with simpler models (i.e. a multi-model 
ap proach; cf. Henden et al. 2020, Marolla et al. 2021). 

Our food web models highlighted several envi-
ronmental drivers explaining ptarmigan population 
growth and thereby the recent changes in ptarmigan 
populations. For the willow ptarmigan case, delayed 
winter start, increased precipitation around hatching, 
and intensified moth outbreaks had a negative influ-
ence on ptarmigan population growth. For the Sval-
bard case, increased temperatures during winter had 
the strongest positive effect on ptarmigan population 
growth, likely because it reduced the energy needed 
for thermoregulation during winter. Hence, our mod-

6

Fig. 3. Conceptual models of 6 food web case studies (see references to original studies below). The models depict expected in-
teractions between the components of the food web and the target species. Solid arrows represent direct effects, dashed ar-
rows represent indirect effects or paths. Each conceptual model was tailored to a specific study case, therefore the meaning of 
the arrows can change slightly among diagrams. For example, dashed arrows in (a), (b) and (e) show the entire indirect path 
through the food web (e.g. in panel a, environmental change that affects small rodents, which in turn affects carnivores/
scavengers until the effect becomes direct). However, in panels c, d, and f, dashed arrows connect the target species with 
species at the same trophic level or environmental factors that exert an indirect effect through the main predator, and the ex-
pectation (i.e. +/−) is placed on the dashed arrow, highlighting the predicted direction of the relationship that is actually 
tested. References to original studies: (a) Henden et al. (2020), (b) Marolla et al. (2021), (c) Henden et al. (2021a), (d) Marolla et  

al. (2019), (e) Henden et al. (2021b), (f) Ims et al. (2019)
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eling approach has widened the scope for potential 
mitigating actions, by highlighting novel drivers of 
ptarmigan population dynamics, including manage-
able drivers such as management-enhanced forest 
regrowth after moth outbreaks (Henden et al. 2020, 
Marolla et al. 2021). Interestingly, our results indicate 
that protection against hunting or reduced hunting 
quotas would have limited effects on population state 
because current harvest was not among the key driv-
ers of ptarmigan population dynamics of either Sval-

bard rock ptarmigan or willow ptarmigan (see also 
Sandercock et al. 2011). 

Concerning near-term forecasting, the predictive 
performance of all models generally increased (i.e. 
the prediction error diminished) with increasing length 
of the time series used to parameterize the models, as 
expected (Henden et al. 2020, Marolla et al. 2021). In 
both case studies, however, the more complex mod-
els did not perform markedly better than the simpler 
models. Therefore, whether including food web inter-

7

We briefly describe an alternative prey model (see 
graphic at bottom of this Box) after Marolla et al. (2019) 
where the probability aR for a predator P to attack an alter-
native resource R (rodents or carrion or other non-focal 
prey in our food webs) depends on the density of the alter-
native preferred resource R so that 

 

where b is a shape parameter and hR is the handling time 
of that alternative resource. We include this probability of 
attack aR in the multispecies disc equation (Macarthur & 
Pianka 1966, Charnov 1976, Fryxell & Lundberg 1994), 
which determines the predation rate on the focal prey item 
(i.e. the prey). Predation rate on the focal prey item is then 
defined as 

 

where aF is the probability for attacking prey F and hR is 
the handling time of prey F. Thus, what drives the change 
in predation rate is largely a function of attack aR(R) on the 
preferred alternative prey, abundance of alternative prey, 
and abundance of predators. We define the rate of change 
of predators P to be governed by 

 

where mP is the mortality rate, and e is the energy conver-
sion of prey species into predators. 

We can observe predator–prey cycles with this model if 
prey have a non-linear growth rate. Under conditions 
where we observed cycles, we found the alternative prey 
can have a positive impact on the focal prey population 
(apparent mutualism), in agreement with previous predic-
tions on the impact of predator switching (Abrams & Mat-
suda 1996). This positive impact occurs for at least part of 
the alternative prey cycle. However, during the part of the 
cycle when the alternative prey is in low abundance, pre-
dation can be high on the focal prey species. For parame-
ters where we did not observe cycles, we found the alter-
native prey can have a negative influence on the focal prey 
(apparent competition), as observed previously (Holt & 
Bonsall 2017). 

We find that predator mortality rate is a very important 
parameter in this model (where there is always non-linear 
functional responses and preferred prey), as it can control 
whether cycles are observed, which also determines 

whether one can expect to have apparent competition or 
apparent mutualism between the prey. Thus, a manage-
ment action such as predator control that increases preda-
tor mortality may influence cycles and outcomes. In our 
models, we consider alternative resources to act independ-
ently of one another on the focal prey in the model, but 
future work could look at the interactive effect of several 
alternative prey species because they may act in concert, 
and in opposition to what increasing predator mortality 
does to increase cycles. For example, an additional alter-
native prey species could change the vital rates of the 
predator (reduce mortality) that then dampen the preda-
tor-prey cycles.

a R
R
h R

R

b

R
b

( )
1

=
+

F
a FP

a Rh a Fh
F

R R F F
Predation ( )

1
=

+ +

dP
dt

P
a e R a e F

a Rh a Fh
mR R F F

R R F F
P1( )= +

+ +
−

Box 1. Predator functional response and alternative prey cycles

50 60 70 80 90 100
0

2

4

6

8

10

12

Time

Ab
un

da
nc

es
 a

nd
 p

re
fe

re
nc

e

Numerical simulation of the alternative prey model illus-
trating the cycles of the alternative prey R (green line), 
predator P (dark blue line), and probability of attack on the  

alternative prey aR(R) (purple dashed line)

Food web module of predator P, focal prey item F, and  
alternative resource R



Clim Res · Advance View

actions substantially improves our ability to forecast 
climate-induced effects on ptarmigan populations re -
mains unclear. However, some caution is warranted. 
The case studies were based on relatively short time 
series (15 and 17 yr) and low quality and spatial res-

olution of the variables representing 
local climate (e.g. Svalbard case) and 
food web interactions. Better predic-
tions could be gained by im proving 
spatial matching of ptarmigan data 
and predictor variables and by model-
ing more mechanistic variables and 
relations that could account for non-
linear dynamics due to predator func-
tional responses (Box 1). 

While more complex models did not 
perform distinctly better in the short 
term, they may be better on a time scale 
of 10 to 20 yr, as these systems may not 
be stationary, and some inertia of cli-
mate change impacts is ex pected. A 
theoretical dynamical systems ap-
proach may help give insights into 
longer-term behavior. As more and bet-
ter data is incorporated in the predic-
tions in the coming years, in particular 
due to application of new technologies 
and methodologies in ecosystem-based 
monitoring (Ims & Yoccoz 2017), confi-
dence will rise in the better-performing 
models. Such probabilis tic evidence can 
be further examined alongside mecha-
nistic evidence (Luján & Todt 2020) 
from food web and other studies. This 
may allow for more precise and useful 
predictions with re spect to the most im-
portant drivers of population dynamics 
and trends (Nichols et al. 2007, 2019). 

5.  ASSESSING MANAGEMENT 
ACTIONS 

Among the actions implemented for 
species that are conservation targets, 
mesopredator culling actions have been 
implemented in many places, in -
cluding Fennoscandia (Angerbjörn et 
al. 2013, Ims et al. 2017). However, the 
success of such actions is rarely as -
sessed, and when the actions are as-
sessed, they are often deemed un -
successful (Salo et al. 2010, Kämmerle 

& Storch 2019, Marolla et al. 2019, Henden et al. 
2021a). This is partly because proper experimental 
designs to assess the efficacy of large-scale predator 
control actions (e.g. spatial scale, temporal and 
spatial controls of actions) are often difficult or even 
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Fig. 4. Prediction error and near-term prediction of line-transect survey counts 
of low-Arctic willow ptarmigan populations (see Fig. 3a; Henden et al. 2020). 
(a) Iterative percent (percent/100) prediction error for the 3 candidate models, 
where error bars indicate confidence intervals. (b) Abilities of 3 candidate mod-
els to predict next year’s mean observed density (counts/sampling area). Ar-
rows point to the model that is best each year at predicting next year’s observed 
density, and blue-shaded area indicates the confidence envelope. Figure panels  

after Henden et al. (2020)
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im possible to implement (Taylor et al. 2017). Accord-
ingly, it has been suggested that accounting for po-
tential confounding drivers of natural dynamics (e.g. 
food web interactions) may alleviate these constraints 
and improve the accuracy of impact assessments 
(Stewart-Oaten et al. 1986, 1992). We describe 2 case 
studies that targeted the lesser white-fronted goose 
and the willow ptarmigan to illustrate different 
themes regarding management action assessments. 
Both focal species are locally red listed, and the an-
thropogenically driven expansion/increase in red fox 
abundance in Arctic ecosystems (Elmhagen et al. 
2017) is one of the suspected causes for their red list 
status. Consequently, the common management 
action implemented in these cases was red fox 
culling to decrease population abundance. 

5.1.  Lesser white-fronted goose 

In the case of the Critically Endan-
gered Fenno scandian lesser white-
fronted goose population (Fig. 3d), the 
small size of the population only permit-
ted a culling program where red foxes 
were removed from the breeding area, 
with no possibility for having a control 
area. We could therefore only assess the 
effect of fox culling using a before−after 
comparison. The culling action was 
assumed to work, since the population 
started to increase following the start of 
the culling. Nonetheless, when we ac -
counted for important food web dynam-
ics and local climate variables, we 
found no support for an effect of red fox 
culling on goose re productive success 
(Marolla et al. 2019). Breeding success 
was mainly driven by the rodent cycle, 
showing a strong and temporally con-
sistent synchrony, and was also affected 
by an anthropogenic food web driver, 
i.e. abundance of reindeer carrion. Our 
food web ap proach allowed us to in -
clude variables that confounded as sess -
ment of the culling action and eval uate 
its efficiency in absence of a proper 
experimental de sign. We further built 
upon these quantified food web rela-
tionships to investigate whether a slight 
increase in adult survival during the 
reproductive season, possibly fostered 
by the fox culling, contributed to the 
observed change in population growth 
rate after fox culling started. A full-

cycle demographic analysis suggested that other 
demographic processes, e.g. winter survival of adult 
birds, may have been more important in driving the 
increase in the goose population than the culling 
action (Marolla 2020). 

5.2.  Willow ptarmigan 

In the case of the willow ptarmigan (Fig. 3c), the 
fox-culling effort consisted of an action and a control 
area that was monitored both before (5 yr) and after 
the onset of the action (12 yr). In contrast to the goose 
case, the monitoring did not provide reliable data on 
the most important drivers of food web dynamics (i.e. 
rodents and reindeer) nor harvest levels prior to the 
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Fig. 5. (a) Explanatory model denoting the main food web and management 
drivers of willow ptarmigan density, where values with red boxes denote esti-
mated coefficients of the covariates/predictor with 95% confidence interval. 
Solid arrows denote direct effects, while dashed arrows denote indirect effects 
of different drivers on ptarmigan population density. Also indicated are ex-
pected signs (+/−) of driver effects from the conceptual model (see Fig. 1). (b) 
Management action assessment. Estimated impact of the red fox culling action 
on ptarmigan population density (log-scale), adjusted for the influence of food 
web covariates (black line and filled symbols). For comparison, dark orange 
line and open circles denote the unadjusted estimates from a before−after−
control−impact−paired−series model. Figure panels after Henden et al. (2021a)
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action (Henden et al. 2021a). A simple before−after−
control−impact−paired−series analysis (Stewart-Oaten 
et al. 1992), without food web covariates, indicated 
that red fox culling slightly limited the decline of the 
willow ptarmigan population in the experimental 
area. Still, 3 food web drivers, namely small rodents, 
reindeer carrion, and ptarmigan harvest levels, 
showed large spatiotemporal variation. When these 
drivers were included as covariates in a linear 
mixed model using data only after the onset of 
culling, we found that the culling action actually 
resulted in ~40% higher ptarmigan population den-
sity (4.3 more ptarmigan km−2) in the action area. 
Similar to the goose case, this example illustrates the 
strength of using a food web approach to more reli-
ably estimate the impact of management actions to 
preserve wildlife. These 2 cases show that manage-
ment action assessments can benefit from long-term 
food web monitoring that yields time series of both 
the target species and influential food web drivers 
that may confound the impact assessment. This 
might be particularly important in food webs with 
strong spatio-temporal dynamics, such as boreal and 
arctic food webs governed by non-trivial inter action 
cycles. 

As we mainly work with managed species or pop-
ulations, our food web approach can lead to a wider 
set of management actions, that is, to manage more 
than one species in the food web. However, this 
wider set of actions can be more difficult to im -
plement if managers must prioritize between differ-
ent conservation targets (Beschta et al. 2020), take 
into consideration the interests of different stake-
holder groups, or different agencies/groups are in -
volved in the actions (see Hamel et al. 2021, this 
Special). Objective functions can make such trade-
offs ex plicit (Runge & Walshe 2014). Thus, while our 
food web approach introduces other challenges, it 
also increases the opportunity for more holistic 
ecosystem-based monitoring and management (Ims 
& Yoccoz 2017). 

6.  REMAINING CHALLENGES AND FUTURE 
DIRECTIONS 

We have uncovered a number of challenges while 
implementing our food web approach. While many 
issues arise from a lack of sufficient spatial and tem-
poral food web data due to data collection chal-
lenges, other challenges remain for implementing 
our approach. We suggest future studies should try to 
address and resolve the following 4 challenges. 

6.1.  Challenge 1: Non-linear and hidden  
interactions in food webs 

In our cases, we have mostly resorted to linear sta-
tistical analyses because these gave both reasonable 
fits to the data and short-term predictions that were 
close to observations. However, non-linearities in 
food web interactions can change theoretical predic-
tions (Box 1) and can lead to abrupt shifts in the state 
of the system. Complex dynamics can give false im -
pressions of the state of a system, especially when 
trying to predict mid- and long-term dynamics (Hast-
ings et al. 2018). For example, ghost attractors in 
non-linear systems may cause patterns in time series 
that may be interpreted as stable, or as state shifts 
enforced by environmental change, when in fact 
they are not. Interactions may remain hidden 
because of lack of data on food web components, but 
also because of indirect and higher-order (non-pair-
wise) mechanisms, i.e. trait-mediated indirect inter-
actions (Levine et al. 2017); such hidden interactions 
may underlie nonlinearities. Climate−harvest inter-
actions, combined with other drivers, remain unre-
solved for all of our cases due to a lack of adequate 
data. In the future, harvester behavior and how that 
may change with environmental drivers should be 
modeled explicitly, as it differs from other predators 
(Mysterud et al. 2020) and may ultimately affect pop-
ulation responses. 

6.2.  Challenge 2: Food web models 

Because different types of models have different 
advantages, we suggest the way forward is to take 
multiple approaches to model building. Theoretical 
models of food webs (McCann 2012) have a long 
tradition in ecology and have been instrumental in 
developing important predictions for tundra food 
webs (Oksanen et al. 1981). Statistical models, and 
in particular dynamic structural equation models 
(SEMs) (cf. Henden et al. 2021b, this Special) that 
can incorporate direct and indirect effects, time-
series dynamics, measurement errors, as well as 
proxies through the use of latent variables (Aspa -
rouhov et al. 2018), integrate detailed ecological 
knowledge about food webs in the analyses of empir-
ical data. In SEMs, latent variables refer to variables 
that are not directly observed or measured, but in -
ferred from other variables (i.e. indicators) that are 
directly measured (Spearman 1904; Box 2). While it 
is unclear how the theoretical and statistical ap -
proaches can be merged (Barraquand et al. 2017; 
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Box 2), they should be seen as complementary tools 
to understand and predict food web dynamics, as 
well as suggest additional monitoring data and 
designs. 

6.3.  Challenge 3: Temporal and spatial scales 

Within-year variability should be included ex -
plicitly because seasonal patterns are impacted by 
climate changes. Often, ‘shoulder seasons’ are ig-
nored despite their large impact on vital rates and the 
sort of food web interactions that cause these impacts. 
Similarly, the consequences of spatial and temporal 
variability in climate drivers and food web compo-
nents at different spatial and temporal scales need to 
be better understood (Box 3), particularly to disentan-
gle short-term effects that could be mitigated (e.g. an-
nual harvest) from the long-term impacts that are 
harder to mitigate (e.g. climate change). 

6.4.  Challenge 4: Forecasts and predictions 

In our case studies, we focused on providing 
short-term predictions (i.e. from months to a year). 

These have been deemed useful by stakeholders 
for harvested and red-listed species (Hamel et al.  
2021, this Special). For now, we have compara-
tively little information on what happens to these 
food webs when they become rewired due to envi-
ronmental changes (Griffith et al. 2019), and if in -
direct interactions stabilize them. Especially, con-
sidering that temperature may increase as much as 
12°C in winter and 6°C in summer by the turn of 
the century (projection from CMIP5; cf. Overland 
et al. 2014), it is likely that the Arctic region with-
out an arctic climate will eventually host com-
pletely novel food webs. Like Planque (2016), we 
think that our current understanding and data on 
food webs, as well as the occurrence of ‘black 
swan’ events associated with fatter distribution 
tails than often as sumed (as illustrated for conta-
gious diseases: Cirillo & Taleb 2020), lead to sig-
nificantly higher uncertainties of long-term ecolog-
ical forecasts than those given using standard 
biodiversity modeling (e.g. Thuiller et al. 2019). A 
proper understanding of risks associated with dif-
ferent management strategies indeed requires that 
the distribution of outcomes is approximately 
known, and not just its mean or variance (Cirillo & 
Taleb 2020). 
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Ecology has a long tradition of mathematical modeling 
of trophic interactions, with models of plant−herbivore 
(Lotka 1920) and predator−prey (Volterra 1926) systems 
starting around the same time as early empirical works by 
Elton (e.g. Elton 1924, Elton & Nicholson 1942). More or 
less at the same time, Wright (1920) expanded multiple 
regression models to his path coefficients approach of ana-
lyzing direct and indirect effects. These 2 approaches 
developed more or less independently until the end of the 
last century, and it is only in recent decades that attempts 
have been made to integrate them, that is, putting the 
dynamical approach of models such as Lotka−Volterra in 
the statistical framework provided by structural equation 
models (SEMs) or causal models, the modern extension of 
Wright’s path coefficients. 

Wootton pioneered different approaches for understand-
ing direct and indirect ecological interactions, using a com-
bination of classical community models (Wootton 1994a) 
and SEMs of experimental studies (Wootton 1994b). How-
ever, these early analyses were not integrated in the sense 
that SEMs were not dynamic or linked in parameters to 
community models. A related approach was to interpret 
models of single, linear food chains (predator−prey−
vegetation) as delay-coordinates of the only component of 
the system that was observed (predator = lynx or prey = 
small rodents, depending on the system), and analyze it 
using statistical models for time series (Bjørnstad et al. 

1995, Stenseth et al. 1997). The latter approach was limited 
in the sense that coefficients measuring direct and lagged 
effects could result from trophic interactions. However, 
without direct measurements, different interpretations 
were possible. 

Recent years have seen considerable developments of 
SEMs and related approaches (e.g. instrumental vari-
ables), particularly in social sciences and epidemiology, 
but also increasingly in ecology (e.g. Grace & Irvine 
2020). However, the use of dynamic SEMs (DSEMs; 
Asparouhov et al. 2018) is much rarer (this study) and, 
more importantly, such models are not related to the 
mathematical  dynamical models developed to analyze 
trophic webs. Recent developments of DSEMs, however, 
provide a powerful approach, since they incorporate 
measurement error and site- and time-specific covariates 
(Asparouhov et al. 2018). Linking the 2 approaches 
implies that the mathematical models are discretized in a 
way that leads to models fitted on observed variables 
having interpretable and unbiased coefficients of under-
lying mechanisms, including processes occurring on dif-
ferent time scales (e.g. functional vs. numerical re -
sponses). Work done on survival models have shown that 
SEMs that are fit to discretized data may not reflect the 
underlying continuous mechanisms (Aalen et al. 2016, 
2018). This is clearly an area where more work and data 
are needed.

Box 2. Statistical and mathematical models of trophic interaction
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7.  CONCLUSIONS 

The task of providing management guidance for 
target species is not insurmountable but does pose 
many challenges that are further magnified by rapid 
climate and other environmental changes. Our food 
web approach aims to address these challenges by 
modulating model complexity, while focusing on 
interactions that can affect target species or have 
considerable impacts on other parts of the food web. 
Although our approach succeeds in some areas, chal-
lenges remain. We will need to build more evidence, 
through the accumulation of case studies that verify 
mechanisms linking trophic interactions to managed 
populations, in order to determine whether this ap -
proach is significantly better than simpler ap proaches 
for supporting management decisions. Nevertheless, 
leaning on our experiences, we conclude that this 
approach remains promising as a valuable tool to 
provide answers to managers that are asked to plan 
for changing tundra ecosystems. 
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