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Abstract
The classical Fourier Analysis has been developed in an almost unbelievable
way from the first fundamental discoveries by Fourier. Especially a number
of wonderful results have been proved and new directions of such research
has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-
Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc.
One important reason for this is that this development is not only important
for improving the "State of the art", but also for its importance in other
areas of mathematics and also for several applications (e.g. theory of signal
transmission, multiplexing, filtering, image enhancement, coding theory, digital
signal processing and pattern recogni-tion).

The classical theory of Fourier series deals with decomposition of a function
into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) func-
tions are rectangular waves. The development of the theory of Vilenkin-Fourier
series has been strongly influenced by the classical theory of trigonometric se-
ries. Because of this it is inevitable to compare results of Vilenkin series to those
on trigonometric series. There are many similarities between these theories,
but there exist differences also. Much of these can be explained by modern
abstract harmonic analysis, which studies orthonormal systems from the point
of view of the structure of a topological group.

The aim of my thesis is to discuss, develop and apply the newest develop-
ments of this fascinating theory connected to modern harmonic analysis. In
particular, we investigate some strong convergence result of partial sums of
Vilenkin-Fourier series. Moreover, we derive necessary and sufficient condi-
tions for themodulus of continuity so that norm convergence of subsequences
of Fejér means is valid. Furthermore, we consider Riesz and Nörlund logarith-
mic means. It is also proved that these results are the best possible in a spe-
cial sense. As applications both some well-known and new results are pointed
out. In addition, we investigate some T means, which are "inverse" summability
methods of Nörlund, but only in the case when their coefficients aremonotone.

Themain body of the PhD thesis consists of seven papers (Papers A – G). We
now continue by describing the main content of each of the papers.

In Paper A we investigate some new strong convergence theorems for
partial sums with respect to Vilenkin system.

In Paper B we characterize subsequences of Fejér means with respect to
Vilenkin systems, which are bounded from the Hardy spaceHp to the Lebesgue
space Lp, for all 0 < p < 1/2.We also proved that this result is in a sense sharp.

In Paper C we find necessary and sufficient condition for the modulus of
continuity for which subsequences of Fejér means with respect to Vilenkin
systems are bounded from the Hardy space Hp to the Lebesgue space Lp, for
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all 0 < p < 1/2.
In Paper D we prove and discuss some new (Hp, weak − Lp) type inequal-

ities of maximal operators of T means with respect to Vilenkin systems with
monotone coefficients. We also apply these results to prove a.e. convergence
of such T means. It is also proved that these results are the best possible in
a special sense. As applications, both some well-known and new results are
pointed out.

In Paper E we prove and discuss some new (Hp, Lp) type inequalities of
weighted maximal operators of T means with respect to the Vilenkin systems
with monotone coefficients. We also show that these inequalities are the best
possible in a special sense. Moreover, we apply these inequalities to prove
strong convergence theorems of such T means. We also show that these
results are the best possible in a special sense. As applications, both some
well-known and new results are pointed out.

In Paper F we derive a new strong convergence theoremof Riesz logarithmic
means of the one-dimensional Vilenkin-Fourier (Walsh-Fourier) series. The
corresponding inequality is pointed out and it is also proved that the inequality
is in a sense sharp, at least for the case with Walsh-Fourier series.

In Paper G we investigate (Hp, Lp)- type inequalities for weighted maximal
operators of Nörlund logaritmic means, for 0 < p < 1. Moreover, we apply
these inequalities to prove strong convergence theorems of such Nörlund
logaritmic means.

These new results are put into a more general frame in an Introduction,
where, in particular, a comparison with some new international research and
broad view of such interplay between applied mathematics and engineering
problems is presented and discussed.
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Preface
This PhD thesis is composed of seven papers [A] – [G] and a matching Introduc-
tion. In the Introduction the papers [A] – [G] are discussed and put into a more
general frame. The Introduction is also of independent interest since it contains
a brief discussion on the important definitions and notations in the theory of
Fourier analysis and martingale Hardy spaces.

A very brief presentation of the main content of the seven papers can be
found in the Abstract above and in a more general context at the end of the
Introduction.
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Chapter 1

Introduction
1.1 Preliminaries

1.1.1 Vilenkin groups and functions
Denote by N+ the set of positive integers, N := N+ ∪{0}. Letm := (m0,m1, . . .)
be a sequence of positive integers not less than 2. Denote by

Zmk := {0, 1, . . . ,mk − 1}

the additive group of integers modulomk.
Define the groupGm as the complete direct product of the groupsZmk with

the product of the discrete topologies of Zmk .
The direct product µ of the measures

µk (j) := 1/mk (j ∈ Zmk)

is the Haar measure on Gm with µ (Gm) = 1.
If supn∈Nmn < ∞, then we call Gm a bounded Vilenkin group. If the

generating sequence m is not bounded, then Gm is said to be an unbounded
Vilenkin group.

In this PhD thesis we discuss bounded Vilenkin groups, i.e. the case when
supn∈Nmn <∞.

The elements of Gm are represented by sequences

x := (x0, x1, . . . , xj , . . .)
(
xj ∈ Zmj

)
.

If we define the so-called generalized number system based on m in the
following way :

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as

n =
∞∑
j=0

njMj ,

where nj ∈ Zmj (j ∈ N+) and only a finite number of n′js differ from zero.
Vilenkin group can be metrizable with the following metric:

ρ (x, y) := |x− y| :=
∞∑
k=0

|xk − yk|
Mk+1

, (x ∈ Gm) .
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1. Introduction

It is easy to give a base for the neighborhoods of Gm :

I0 (x) : = Gm,

In(x) : = {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ N) .

Let
en := (0, . . . , 0, xn = 1, 0, . . .) ∈ Gm (n ∈ N) .

If we define In := In (0) , for n ∈ N and In := Gm \ In, then

IN =
N−1⋃
s=0

Is\Is+1 =
(
N−2⋃
k=0

N−1⋃
l=k+1

Ik,lN

)⋃(
N−1⋃
k=1

Ik,NN

)
,

where

Ik,lN :=


IN (0, . . . , 0, xk 6= 0, 0, ..., 0, xl 6= 0, xl+1, . . . , xN−1, . . .),
for k < l < N,
IN (0, . . . , 0, xk 6= 0, xk+1 = 0, . . . , xN−1 = 0, xN , . . .),
for l = N.

The norm (or quasi-norm when 0 < p < 1) of the Lebesgue space Lp(Gm)
(0 < p <∞) is defined by

‖f‖p :=
(∫

Gm

|f |p dµ
)1/p

.

The space weak−Lp (Gm) consists of all measurable functions f , for which

‖f‖weak−Lp := sup
λ>0

λ{µ (f > λ)}1/p < +∞.

The norm of the space of continuous functions C(Gm) is defined by

‖f‖C := sup
x∈Gm

|f(x)| < c <∞.

The best approximation of f ∈ Lp(Gm) (1 ≤ p ≤ ∞) is defined as

En (f, Lp) := inf
ψ∈Pn

‖f − ψ‖p ,

where Pn is set of all Vilenkin polynomials of order less than n ∈ N.
Themodulus of continuity of functions in Lebesgue spaces f ∈ Lp (Gm) and

continuous functions f ∈ C (Gm) are defined by

ωp

(
1
Mn

, f

)
:= sup

h∈In
‖f (· − h)− f (·)‖p

and
ωC

(
1
Mn

, f

)
:= sup

h∈In
‖f (· − h)− f (·)‖C ,

2



Preliminaries

respectively.
Next, we introduce on Gm orthonormal systems, which are called Vilenkin

systems.
At first, we define the complex-valued function rk (x) : Gm → C, the

generalized Rademacher functions, by

rk (x) := exp (2πixk/mk) ,
(
i2 = −1, x ∈ Gm, k ∈ N

)
.

Now, define Vilenkin systems ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=
∞∏
k=0

rnkk (x) , (n ∈ N) .

The Vilenkin systems are orthonormal and complete in L2 (Gm) (for details
see e.g. [1] , [61] and [108]).

It is well-known that for all n ∈ N,

|ψn (x)| = 1,
ψn (x+ y) = ψn (x) ψn (y) ,
ψn (−x) = ψn∗ (x) = ψn (x) ,

ψn (x− y) = ψn (x) ψn (y) ,
ψ
n+̂k (x) = ψsψn (x) , (s, n ∈ N, x, y ∈ Gm) .

Specifically, we call this system the Walsh-Paley system whenm = 2.

1.1.2 Partial sums and Fejér means with respect to the Vilenkin
systems

Next, we introduce some analogues of the usual definitions in Fourier analysis.
If f ∈ L1 (Gm) we can define the Fourier coefficients, the partial sums of
Vilenkin-Fourier series, the Dirichlet kernels, Fejér means, Dirichlet and Fejér
kernels with respect to Vilenkin systems in the usual manner:

f̂ (n) :=
∫
Gm

fψndµ, (n ∈ N) ,

Snf :=
n−1∑
k=0

f̂ (k)ψk, (n ∈ N+) ,

σnf : = 1
n

n−1∑
k=0

Skf, (n ∈ N+) ,

Dn :=
n−1∑
k=0

ψk, (n ∈ N+) ,

Kn : = 1
n

n−1∑
k=0

Dk, (n ∈ N+) .
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1. Introduction

respectively.
It is easy to see that

Snf (x) =
∫
Gm

f (t)
n−1∑
k=0

ψk (x− t) dµ (t)

=
∫
Gm

f (t)Dn (x− t) dµ (t)

= (f ∗Dn) (x) .

It is well-known that (for details see e.g. [1] , [61] and [108]) that for any n ∈ N
and 1 ≤ sn ≤ mn − 1 the following equalities holds:

Dj+Mn = DMn + ψMnDj = DMn + rnDj , j ≤ (mn − 1)Mn,

DMn−j(x) = DMn(x)− ψMn−1(−x)Dj(−x)
= DMn(x)− ψMn−1(x)Dj(x), j < Mn.

DMn (x) =
{

Mn x ∈ In
0 x /∈ In

(1.1)

DsnMn = DMn

sn−1∑
k=0

ψkMn = DMn

sn−1∑
k=0

rkn (1.2)

and

Dn = ψn

 ∞∑
j=0

DMj

mj−1∑
k=mj−nj

rkj

 .

By using (1.1) we immediately get that

‖DMn
‖1 = 1 <∞.

It is obvious that

σnf (x) = 1
n

n−1∑
k=0

(Dk ∗ f) (x)

=
∫
Gm

f (t)Kn (x− t) dµ (t)

= (f ∗Kn) (x) ,

whereKn are the so called Fejér kernels.
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It is well-known that (for details see e.g. [42]) for every n > t, t, n ∈ N we
have the following equality:

KMn
(x) =


Mt

1−rt(x) , x ∈ It\It+1, x− xtet ∈ In,
Mn+1

2 , x ∈ In,
0, otherwise.

Moreover,

snMnKsnMn
=
sn−1∑
l=0

(
l−1∑
i=0

rin

)
MnDMn

+
(
sn−1∑
l=0

rln

)
MnKMn

.

The next equality of Fejér kernels is very important for our further inves-
tigations (for details see Blahota and Tephnadze [26]). In particular, if n =∑r
i=1 sniMni , where n1 > n2 > · · · > nr ≥ 0 and 1 ≤ sni < mni for all

1 ≤ i ≤ r as well as n(k) = n−
∑k
i=1 sniMni , where 0 < k ≤ r, then

nKn =
r∑

k=1

k−1∏
j=1

r
snj
nj

 snkMnkKsnkMnk
+
r−1∑
k=1

k−1∏
j=1

r
snj
nj

n(k)DsnkMnk
.

It is well-known that
‖Kn‖1 < c <∞.

Wedefine themaximal operatorsS∗ and σ∗ of partial sums and Féjermeans
by

S∗f := sup
n∈N
|Snf | ,

σ∗f := sup
n∈N
|σnf | .

Moreover, we define the restricted maximal operators S̃∗# and σ̃∗# of partial
sums and Féjer means by

S̃∗#f := sup
n∈N
|SMn

f | ,

σ̃∗#f := sup
n∈N
|σMn

f | .

1.1.3 Character ρ (n) and Lebesgue constants with respect to
Vilenkin systems

Let us define

〈n〉 := min{j ∈ N : nj 6= 0} and |n| := max{j ∈ N : nj 6= 0},

that isM|n| ≤ n ≤M|n|+1. Set

ρ (n) := |n| − 〈n〉 , for all n ∈ N.
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1. Introduction

For the natural numbers n =
∑∞
j=1 njMj and k =

∑∞
j=1 kjMj we define

n+̂k :=
∞∑
i=0

(ni ⊕ ki)Mi+1

and

n−̂k :=
∞∑
i=0

(ni 	 ki)Mi+1,

where
ai ⊕ bi := (ai + bi)modmi, ai, bi ∈ Zmi

and 	 is the inverse operation for ⊕.
For the natural number n =

∑∞
j=1 njMj , we define functions v and v∗ by

v (n) :=
∞∑
j=1
|δj+1 − δj |+ δ0, v∗ (n) :=

∞∑
j=1

δ∗j ,

where
δj = sign (nj) = sign (	nj) and δ∗j = |	nj − 1| δj .

The n-th Lebesgue constant is defined in the following way:

Ln := ‖Dn‖1 .

For the trigonometric system it is important to note that the results of Fejér
and Szego, latter on proved in [121] gives an explicit formula for the Lebesgue
constants. The most properties of the Lebesgue constants with respect to the
Walsh-Paley system were obtained by Fine in [36]. In [108], p. 34, the two-
sided estimate is proved. In [76], Lukomskii presented the lower estimate with
sharp constant 1/4. Malykhin, Telyakovskii and Kholshchevnikova [77] (see
also Astashkin and Semenov [8]) improved the estimation above and proved
sharp estimate with factor 1. A new and shorter proof which improved upper
bound and provide a similar lower bound can be found in [23]. In particular,
for λ := supn∈N and for any n =

∑∞
i=1 niMi andmn we have the following two

sided estimate:
1

4λv (n) + 1
λ2 v

∗ (n) ≤ Ln ≤ v (n) + v∗ (n) . (1.3)

Moreover, it yields that (see Memic, Simon and Tephnadze [79]):

1
nMn

Mn−1∑
k=1

v (k) ≥ 2
λ2 . (1.4)

From the inequality (1.3) it immediately follows that for any n ∈ N there
exists an absolute constant c, such that

‖Dn‖1 ≤ c logn.
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For example, if we take qnk = M2nk + M2nk−2 + M2 + M0, we have the
following two-sided inequality

nk
2λ ≤

∥∥∥Dqnk

∥∥∥
1
≤ λnk, λ := sup

n∈N
mn.

1.1.4 Definition and examples of Nörlund and T means and its
maximal operators

Let {qk : k ∈ N} be a sequence of nonnegative numbers. The n-th Nörlund
means for the Fourier series of f is defined by

tnf := 1
Qn

n∑
k=1

qn−kSkf, (1.5)

where

Qn :=
n−1∑
k=0

qk.

A representation

tnf (x) =
∫
G

f (t)An (x− t) dµ (t)

plays a central role in the sequel, where

An := 1
Qn

n∑
k=1

qn−kDk

is the so-called Nörlund kernel.
In Moore [80] (see also Tephnadze [130]) it was found necessary and suffi-

cient conditions for regularity of Nörlund means. In particular, if {qk : k ≥ 0} is
a sequence of nonnegative numbers, q0 > 0 and

lim
n→∞

Qn =∞,

then the summability method (1.5) generated by {qk : k ≥ 0} is regular if and
only if

lim
n→∞

qn−1

Qn
= 0.

In addition, if the sequence {qk : k ∈ N} is non-increasing, then the
summability method generated by {qk : k ∈ N} is regular, but if the sequence
{qk : k ∈ N} is non-decreasing, then the summability method generated by
{qk : k ∈ N} is not always regular.

Let {qk : k ≥ 0} be a sequence of non-negative numbers. The n-th T mean
Tn for a Fourier series of f is defined by

Tnf := 1
Qn

n−1∑
k=0

qkSkf,
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where Qn :=
∑n−1
k=0 qk. It is obvious that

Tnf (x) =
∫
Gm

f (t)Fn (x− t) dµ (t) ,

where Fn := 1
Qn

n∑
k=1

qkDk is called the kernel of T means.

We always assume that {qk : k ≥ 0} is a sequence of non-negative numbers
and q0 > 0. Then the summability method (1.1.4) generated by {qk : k ≥ 0} is
regular if and only if limn→∞Qn =∞.

Let tn be Nörlund means with monotone and bounded sequence {qk : k ∈
N}, such that

q := lim
n→∞

qn > c > 0.

If the sequence {qk : k ∈ N} is non-decreasing, then we get that

nq0 ≤ Qn ≤ nq.

In the case when the sequence {qk : k ∈ N} is non-increasing, we have that

nq ≤ Qn ≤ nq0.

In both cases we can conclude that

qn−1

Qn
= O

(
1
n

)
, when n→∞.

One of the most well-known summability methods which is an example
of Nörlund and T means are the so called Fejér means, which is given when
{qk = 1 : k ∈ N} as follows:

σnf := 1
n

n∑
k=1

Skf.

The (C,α)-means (Cesàro means) of the Vilenkin-Fourier series are defined
by

σαnf := 1
Aαn

n∑
k=1

Aα−1
n−kSkf,

where
Aα0 := 0, Aαn := (α+ 1) ... (α+ n)

n! .

It is well-known that (see e.g. Zygmund [186])

Aαn =
n∑
k=0

Aα−1
n−k,

Aαn −Aαn−1 = Aα−1
n , Aαn v nα.

8
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We also consider the "inverse" (C,α)-means Uαn , which is an example of a
T -mean:

Uαn f := 1
Aαn

n−1∑
k=0

Aα−1
k Skf, 0 < α < 1.

Let V αn denote the T mean, where
{
q0 = 0, qk = kα−1 : k ∈ N+

}
, that is

V αn f := 1
Qn

n−1∑
k=1

kα−1Skf, 0 < α < 1.

The n-th Nörlund logarithmic mean Ln and the Riesz logarithmic mean Rn
are defined by

Lnf := 1
ln

n−1∑
k=1

Skf

n− k
,

Rnf := 1
ln

n−1∑
k=1

Skf

k
,

respectively, where

ln :=
n−1∑
k=1

1
k
.

The kernels of the Nörlund logarithmic mean Pn and the Riesz logarithmic
mean Yn are, respectively, defined by

Pnf := 1
ln

n−1∑
k=1

Dkf

n− k
,

Ynf := 1
ln

n−1∑
k=1

Dkf

k
.

Up to now we have considered Nörlund and T means in the case when
the sequence {qk : k ∈ N} is bounded but now we consider Nörlund and T
summabilities with unbounded sequence {qk : k ∈ N}.

Let α ∈ R+, β ∈ N+ and

log(β) x :=
βtimes︷ ︸︸ ︷

log ... logx.

If we define the sequence {qk : k ∈ N} by{
q0 = 0 and qk = log(β) kα : k ∈ N+

}
,

9



1. Introduction

then we get the class of Nörlund means κα,βn with non-decreasing coefficients:

κα,βn f := 1
Qn

n∑
k=1

log(β) (n− k)α Skf.

First we note that κα,βn are well-defined for every n ∈ N+. It is obvious that

n

2 log(β) n
α

2α ≤ Qn ≤ n log(β) nα.

It follows that

qn−1

Qn
≤ c log(β) (n− 1)α

n log(β) nα

= O

(
1
n

)
→ 0, as n→∞.

If wedefine the sequence {qk : k ∈ N}by
{
q0 = 0, qk = log(β) kα : k ∈ N+

}
,

then we get the class of T means Bα,βn with non-decreasing coefficients:

Bα,βn f := 1
Qn

n−1∑
k=1

log(β) kαSkf.

We note that Bα,βn are well-defined for every n ∈ N.
It is obvious that n2 log(β) nα

2α ≤ Qn ≤ n log(β) nα → 0, as n→∞.
Let us define the maximal operators t∗ and T ∗ of Nörlund and T means,

respectively, by

t∗f := sup
n∈N
|tnf | ,

T ∗f := sup
n∈N
|Tnf | .

The well-known examples of maximal operators of Nörlund and T means
are maximal operator of Cesáromeans σα,∗,Nörlund logarithmic mean L∗ and
Reisz logarithmic mean R∗ which are defined by:

σα,∗f := sup
n∈N
|σαnf | ,

L∗f := sup
n∈N
|Lnf | ,

R∗f := sup
n∈N
|Rnf | .

We also define some new maximal operators κα,β,∗ and βα,∗ as follows:

κα,β,∗f := sup
n∈N

∣∣κα,βn f
∣∣ ,

βα,∗f := sup
n∈N
|βαnf | .

10
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1.1.5 Weak-type and strong-type inequalities and a.e convergence
The convolution of two functions f, g ∈ L1(Gm) is defined by

(f ∗ g) (x) :=
∫
Gm

f (x− t) g (t) dt (x ∈ Gm) .

It is easy to see that

(f ∗ g) (x) =
∫
Gm

f (t) g (x− t) dt (x ∈ Gm) .

It is well-known (for details see e.g. [1] , [61] and [108]) that if f ∈ Lp (Gm) ,
g ∈ L1 (Gm) and 1 ≤ p <∞, then f ∗ g ∈ Lp (Gm) and

‖f ∗ g‖p ≤ ‖f‖p ‖g‖1 ,

In classical Fourier analysis (see e.g. [186]), a point x ∈ (−∞,∞) is called a
Lebesgue point of an integrable function f if it yields that

lim
h→0

1
h

∫ x+h

x

|f(t)− f (x)| dµ(t) = 0.

OnGm we have the following definition of Lebesgue point: A point x on the
Vilenkin group is called Lebesgue point of f ∈ L1 (Gm) , if

lim
n→∞

Mn

∫
In(x)

f (t) dt = f (x) a.e. x ∈ Gm.

It is well-known that if f ∈ L1 (Gm) , then

lim
n→∞

SMn
f(x) = f(x) a.e. on Gm,

where SMn is the Mn-th partial sum with respect to the Vilenkin system (for
details see e.g. [1], [61] and [108]).

We introduce the operatorWA by

WAf(x) :=
A−1∑
s=0

Ms

ms−1∑
rs=1

∫
IA(x−rses)

|f(t)− f (x)| dµ(t).

A point x ∈ Gm is a Vilenkin-Lebesgue point of f ∈ L1(Gm), if

lim
A→∞

WAf(x) = 0.

Inmost applications the a.e. convergence of {Tn : n ∈ N} can be established
for f in some dense class ofL1 (Gm) . In particular, the following result plays an
important role for studying this type of questions (see e.g. the books [61], [108]
and [186]).

11
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Lemma 1.1.1. Let f ∈ L1 and Tn : L1 → L1 be some sub-linear operators and

T ∗ := sup
n∈N
|Tn| .

If
Tnf → f a.e. for every f ∈ S,

where the set S is dense in the space L1 and the maximal operator T ∗ is bounded
from the space L1 to the space weak − L1, that is

sup
λ>0

λµ {x ∈ Gm : |T ∗f (x)| > λ} ≤ ‖f‖1 ,

then
Tnf → f, a.e. for every f ∈ L1 (Gm) .

Remark 1.1.2. Since the Vilenkin function ψm is constant on In(x) for every
x ∈ Gm and 0 ≤ m < Mn, it is clear that each Vilenkin function is a complex-
valued step function, that is, it is a finite linear combination of characteristic
functions

χ (E) =
{

1, x ∈ E,
0, x /∈ E.

On the other hand, notice that, by (1.2), it yields that

χ (In(t)) (x) = 1
Mn

Mn−1∑
j=0

ψj (x− t) , x ∈ In(t),

for each x, t ∈ Gm and n ∈ N. Thus each step function is a Vilenkin polynomial.
Consequently, we obtain that the collection of step functions coincides with a
collection of Vilenkin polynomials P . Since the Lebesgue measure is regular
it follows from the Lusin theorem that given f ∈ L1 there exist Vilenkin
polynomials P1, P2..., such that Pn → f a.e. when n → ∞. This means that
the Vilenkin polynomials are dense in the space L1.

1.1.6 Basic notations concerning Walsh groups and functions
Let us define by Q2 the set of rational numbers of the form p2−n, where

0 ≤ p ≤ 2n − 1 for some p ∈ N and n ∈ N.
Any x ∈ [0, 1] can be written in the form

x =
∞∑
k=0

xk2−(k+1),

where each xk = 0 or 1. For each x ∈ [0, 1] \ Q2 there is only one expression
of this form. We shall call it the dyadic expansion of x. When x ∈ Q2 there
are two expressions of this form, one which terminates in 0’s and one which
terminates in 1’s. By the dyadic expansion of an x ∈ Q2 we shall mean the one

12
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which terminates in 0’s. Notice that 1 � Q2 so the dyadic expansion of x = 1
terminates in 1’s.

Ifmk = 2, for all k ∈ N, we have dyadic group

G2 =
∞∏
j=0

Z2,

which is called the Walsh group
Rademacher functions are defined by:

ρn(x) := (−1)xn .

We define Walsh functions wn by

wn :=
∞∏
k=0

ρnkk .

LetL0 represent the collection of a.e. finite, Lebesguemeasurable functions
from G2 into [−∞,∞]. For 0 < p <∞ let Lp represent the collection of f ∈ L0

for which

‖f‖p :=
(∫

G2

|f |p
)1/p

is finite. Moreover, let L∞ represent the collection of f ∈ L0 for which

‖f‖∞ := inf{y ∈ R : |f(x)| ≤ y for a.e. x ∈ G2}

is finite. It is well known that Lp is a Banach space for each 1 ≤ p ≤ ∞.
If f ∈ L1 (G2) , then we can establish the Fourier coefficients, the partial

sums of the Fourier series, the Fejér means, the Dirichlet and Fejér kernels with
respect to the Walsh system w in the usual manner:

f̂w (k) : =
∫
G2

fαkdµ, (k ∈ N) ,

Swf : =
n−1∑
k=0

f̂ (k)wk, (n ∈ N+, S
w
0 f := 0) ,

Dw
n : =

n−1∑
k=0

wk, (n ∈ N+) .

We state well-known equalities for Dirichlet kernels (for details see e.g. [61]
and [108]):

Dw
2n (x) =

{
2n, if x ∈ In
0, if x /∈ In

13
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and

Dw
n = wn

∞∑
k=0

nkrkD
w
2k = wn

∞∑
k=0

nk (Dw
2k+1 −Dw

2k) , for n =
∞∑
i=0

ni2i.

Next we sketch the graph of some Dirichlet kernels on G2:
The most properties of Lebesgue constants with respect to the Walsh-Paley

system were obtained by Fine in [36]. Moreover, in [108], p. 34, the two-sided
estimate

V (n)
8 ≤ Ln ≤ V (n)

was proved, where n =
∑∞
j=1 nj2j and V (n) is defined by

V (n) :=
∞∑
j=1
|nj+1 − nj |+ n0.

If f ∈ L1 (G2) , then the Fejér means σwn and Fejér kernelsKw
n with respect

to the Walsh system w are, respectively, defined by

σwn f : = 1
n

n−1∑
k=0

Swk f, (n ∈ N+) ,

Kw
n : = 1

n

n−1∑
k=0

Dw
k , (n ∈ N+) .

The n-th Nörlund logarithmic mean Lαn and the Riesz logarithmic mean Rαn
with respect to the Walsh system ψ (Walsh system w) are defined by

Lwn f := 1
ln

n−1∑
k=1

Swk f

n− k
, (n ∈ N+) , (n ∈ N+) ,

respectively, where

ln :=
n−1∑
k=1

1
k
.

The kernels of the Nörlund logarithmic mean Pαn and the Riesz logarithmic
mean Y αn are, respectively, defined by

Pwn f := 1
ln

n−1∑
k=1

Dw
k f

n− k
, (n ∈ N+) ,

Y wn f := 1
ln

n−1∑
k=1

Dw
k f

k
(n ∈ N+) .

14
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1.1.7 On martingale Hardy spaces for 0 < p ≤ 1
The σ-algebra generated by the intervals

{In (x) : x ∈ Gm}

will be denoted by zn (n ∈ N) .
A sequence f =

(
f (n) : n ∈ N

)
of integrable functions f (n) is said to be

a martingale with respect to the σ-algebras zn (n ∈ N) if (for details see e.g.
Weisz [173] and Burkholder [31])

1) fn is zn measurable for all n ∈ N,
2) SMn

fm = fn for all n ≤ m.
The martingale f =

(
f (n), n ∈ N

)
is said to be Lp-bounded (0 < p ≤ ∞) if

f (n) ∈ Lp and

‖f‖p := sup
n∈N
‖fn‖p <∞.

If f ∈ L1 (Gm) , then it is easy to show that the sequenceF = (SMn
f : n ∈ N)

is a martingale. This type of martingales is called regular. If 1 ≤ p ≤ ∞ and
f ∈ Lp (Gm) , then f =

(
f (n), n ∈ N

)
is Lp-bounded and

lim
n→∞

‖SMnf − f‖p = 0

and consequently ‖F‖p = ‖f‖p (see [90]). The converse of the latest statement
holds also if 1 < p ≤ ∞ (see [90]): for an arbitrary Lp-bounded martingale
f =

(
f (n), n ∈ N

)
there exists a function f ∈ Lp (Gm) for which f (n) = SMn

f.
If p = 1, then there exists a function f ∈ L1 (Gm) of the preceding type if and
only if f is uniformly integrable (see [90]), namely, if

lim
y→∞

sup
n∈N

∫
{|fn|>y}

|fn (x)| dµ (x) = 0.

Thus the map f → f := (SMn
f : n ∈ N) is isometric from Lp onto the space

of Lp-bounded martingales when 1 < p ≤ ∞. Consequently, these two spaces
can be identified with each other. Similarly, the spaceL1 (Gm) can be identified
with the space of uniformly integrable martingales.

Analogously, the martingale f =
(
f (n), n ∈ N

)
is said to be weak − Lp-

bounded (0 < p ≤ ∞) if f (n) ∈ Lp and

‖f‖weak−Lp := sup
n∈N
‖fn‖weak−Lp <∞.

The maximal function f∗ of a martingale f is defined by

f∗ := sup
n∈N

∣∣∣f (n)
∣∣∣ .

In the case f ∈ L1(Gm), the maximal functions f∗ are also given by

f∗ (x) := sup
n∈N

1
|In (x)|

∣∣∣∣∣
∫
In(x)

f (u) dµ (u)

∣∣∣∣∣ .
15



1. Introduction

For 0 < p < ∞ the Hardy martingale spaces Hp consist of all martingales
for which

‖f‖Hp := ‖f∗‖p <∞.

Vilenkin-Fourier coefficients of the martingale f =
(
f (n) : n ∈ N

)
must be

defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫
Gm

f (k)ψidµ.

Investigation of the classical Fourier analysis, definition of several variable
Hardy spaces and real Hardy spaces and related theorems of atomic decompo-
sitions of these spaces can be found in Fefferman and Stein [34] (see also Later
[73], Torchinsky [156], Wilson [175]).

A bounded measurable function a is a p-atom if there exist an interval I
such that ∫

I

adµ = 0, ‖a‖∞ ≤ µ (I)−1/p
, supp (a) ⊂ I.

Explicit constructions of p-atoms can be found in the papers [18] and [19] by
Blahota, Gát and Goginava.

Next, we note that the Hardy martingale spacesHp (Gm) for 0 < p ≤ 1 have
atomic characterizations:

The following useful lemmawas proved byWeisz [171, 173] (see also Persson,
Tephnadze and Weisz [105]):

Lemma 1.1.3. A martingale f =
(
f (n) : n ∈ N

)
is in Hp (0 < p ≤ 1) if and only if

there exist a sequence (ak, k ∈ N) of p-atoms and a sequence (µk : k ∈ N) of real
numbers such that, for every n ∈ N,

∞∑
k=0

µkSMn
ak = f (n), a.e.,

where
∞∑
k=0
|µk|p <∞.

Moreover,

‖f‖Hp v inf
( ∞∑
k=0
|µk|p

)1/p

,

where the infimum is taken over all decomposition of f =
(
f (n) : n ∈ N

)
of the

form (1.1.3).

Explicit constructions of Hp martingales can be found in the papers [104],
[105], [124], [125], [128], [131], [136], [138], [141], [142], [145], [149] and [150].

By using atomic characterization it can be easily proved that the following
Lemmas hold:

16
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Lemma 1.1.4. Suppose that an operator T is sub-linear and for some 0 < p0 ≤ 1∫
−
I

|Ta|p0 dµ ≤ cp <∞

for every p0-atom a, where I denotes the support of the atom. If T is bounded from
Lp1 to Lp1 , (1 < p1 ≤ ∞) , then

‖Tf‖p0
≤ cp0 ‖f‖Hp0

.

Moreover, if p0 < 1, then we have the weak (1,1) type estimate

λµ {x ∈ Gm : |Tf (x)| > λ} ≤ ‖f‖1

for all f ∈ L1.

A proof of Lemma 1.1.4 can be found in Weisz [171] (see also Persson,
Tephnadze and Weisz [105]).

Lemma 1.1.5. Suppose that an operator T is sub-linear and for some 0 < p0 ≤ 1

sup
λ>0

λp0µ

{
x ∈

−
I : |Tf | > λ

}
≤ cp0 < +∞

for every p0-atom a, where I denote the support of the atom. If T is bounded from
Lp1 to Lp1 , (1 < p1 ≤ ∞) , then

‖Tf‖weak−Lp0
≤ cp0 ‖f‖Hp0

.

Moreover, if p0 < 1, then

λµ {x ∈ Gm : |Tf (x)| > λ} ≤ ‖f‖1 ,

for all f ∈ L1.

The best approximation of f ∈ Lp(Gm) (1 ≤ p ≤ ∞) is defined as

En (f, Lp) := inf
ψ∈Pn

‖f − ψ‖p ,

where Pn is set of all Vilenkin polynomials of order less than n ∈ N.
The concept of modulus of continuity ωHp in martingale Hardy space Hp

(p > 0) is defined by

ωHp

(
1
Mn

, f

)
:= ‖f − SMn

f‖Hp .

We need to understand the meaning of the expression f − SMn
f, where

f is a martingale and SMn
f is function. Hence, we give an explanation in the

following remark:

17
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Remark 1.1.6. Let 0 < p ≤ 1. Since

SMn
f = f (n), for f =

(
f (n) : n ∈ N

)
∈ Hp

and (
SMk

f (n) : k ∈ N
)

= (SMk
SMn

f, k ∈ N)

=
(
SM0f, . . . , SMn−1f, SMnf, SMnf, . . .

)
=
(
f (0), . . . , f (n−1), f (n), f (n), . . .

)
,

we obtain that
f − SMn

f =
(
f (k) − SMk

f : k ∈ N
)

is a martingale, for which

(f − SMn
f)(k) =

{
0, k = 0, . . . . , n,
f (k) − f (n), k ≥ n+ 1, (1.6)

We also pronounce that Watari [167] showed that there are strong connec-
tions between the concepts

ωp

(
1
Mn

, f

)
, EMn (Lp, f) and ‖f − SMnf‖p , p ≥ 1, n ∈ N.

In particular,

1
2ωp

(
1
Mn

, f

)
≤ ‖f − SMnf‖p ≤ ωp

(
1
Mn

, f

)
(1.7)

and
1
2 ‖f − SMnf‖p ≤ EMn (Lp, f) ≤ ‖f − SMnf‖p .

The next lemma gives a deception what happens when p > 1. The proof can
be found in Neveu [90] (see also Weisz [174]).

Lemma 1.1.7. Let p > 1. Then
Hp ∼ Lp.

Remark 1.1.8. Since
‖f‖Hp ∼ ‖f‖p ,

when p > 1, by applying (1.7), we obtain that

ωHp

(
1
Mn

, f

)
∼ ωp

(
1
Mn

, f

)
.

A proof of the next lemma can be found in [171] (see also book [108]).
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Some results on partial sums and classical summability methods of
Vilenkin-Fourier series

Lemma 1.1.9. If f ∈ L1, then the sequence F := (SMnf : n ∈ N) is a martingale
and

‖F‖Hp ∼
∥∥∥∥sup
n∈N
|SMn

f |
∥∥∥∥
p

.

Moreover, if F := (SMnf : n ∈ N) is a regular martingale generated by f ∈ L1,
then

F̂ (k) =
∫
Gm

f (x)ψk (x) dµ (x) = f̂ (k) , k ∈ N.

1.2 Some results on partial sums and classical summability
methods of Vilenkin-Fourier series

In this part we have described a selected part of the area where the results in
this PhD thesis belong to. We have also put these new results into this more
general frame.

According to the Riemann-Lebesgue lemma (for details see e.g. the book
[108]) we have that f̂ (k)→ 0, when k →∞, for each f ∈ L1.

It is well-known (see e.g. the books [1] and [108] ) that if f ∈ L1 and the
Vilenkin series T (x) =

∑∞
j=0 cjψj (x) convergences to f in L1-norm, then

cj =
∫
Gm

fψjdµ := f̂ (j) , i.e. in this case the approximation series must be
a Vilenkin-Fourier series. An analogous result is true also if the Vilenkin series
convergences uniformly on Gm to an integrable function f .

By using the Lebesgue constants we easily obtain that Snkf convergence to
f in L1-norm, for every integrable function f , if and only if supk Lnk ≤ c <∞.
There are various results when p > 1.

It is also well-known that (see e.g. [106] and the books [105] and [108])

‖Snf‖p ≤ cp ‖f‖p , when p > 1,

but it can be proved also a more stronger result (see e.g. [106] and the books
[105] and [108]):

‖S∗f‖p ≤ cp ‖f‖p , when f ∈ Lp, p > 1.

Moreover, in the case p = 1 Watari [168] (see also Gosselin [62] and Young
[180]) proved that there exists an absolute constant c such that, for n = 1, 2, ...,

λµ (|Snf | > λ) ≤ c ‖f‖1 , f ∈ L1(Gm), λ > 0.

Uniform and point-wise convergence and some approximation properties
of the partial sums with respect to the Vilenkin (Walsh) and trigonometric sys-
tems in L1 norms were investigated by Antonov [7], Avdispahić and Memić [9],
[11], Goginava [48, 49], Shneider [109], Sjölin [117], Onneweer and Waterman
[94, 95]. Fine [36] derived sufficient conditions for the uniform convergence,
which are in complete analogy with the Dini-Lipschitz conditions. Gulićev [63]
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estimated the rate of uniform convergence of a Walsh-Fourier series by using
Lebesgue constants and modulus of continuity. Uniform convergence of sub-
sequences of partial sums was investigated also in Goginava and Tkebuchava
[53], Fridli [37] and Gát [41]. Approximation properties of the two-dimensional
partial sums with respect to Vilenkin and trigonometric systems can be found
[108] and [186].

Results on a.e. convergence of Vilenkin-Fourier series were proved in [106].
Important information concerning divergence of Vilenkin-Fourier series on the
sets of measure zero and a.e. convergence can be found in Bitsadze [14,
15], Bugadze [29, 30], Fejér [35] Gosselin, [62] Kahane [66], Katznelson [70],
Karagulian [67, 68], Kheladze [71, 72], Lebesgue [74] Stechkin [119] Young [178,
179, 181] and Zhizhiashvili [183].

Some estimates of Fourier coefficients and absolute convergence and di-
vergence of Fourier Series with respect to complete orthonormal systems were
studied in Bochkarev [28], Gogoladze and Tsagareishvili [55, 56, 57, 91], Kashin
and Saakyan [69], Oniani [92, 93], Tsagareishvili and Tutberidze [157, 158, 159],
Tetunashvili [151, 152, 153], Tevzadze [154], Tkebuchava [155] and Zhizhiashvili
[182, 183, 184, 185] . Approximation of functions on locally compact Abelian
groups was investigate by Ugulava [165, 166] (see also [32]).

Since H1 ⊂ L1, according to Riemann-Lebesgue theorem, it yields that
f̂ (k)→ 0 when k →∞, for every f ∈ H1. The classical inequality of Hardy type
is well known in the trigonometric as well as in the Vilenkin-Fourier analysis
and was proved in the trigonometric case by Hardy and Littlewood [64] (see
also the book [33]) and for the Walsh system it was proved in the book [108].
Some inequalities relative to Vilenkin-Fourier coefficients were considered in
[97], [110], [114], [115], [122], [169], [172] and [173].

It is known (for details see e.g. the books [108] and [173]) that the
subsequence SMn

of the partial sums is bounded from the martingale Hardy
space Hp to the Lebesgue space Lp, for all p > 0. However, (see Tephnadze
[139]) there exists a martingale f ∈ Hp (0 < p < 1) , such that

sup
n∈N
‖SMn+1f‖weak−Lp =∞.

The reason of the divergence of SMn+1f is that when 0 < p < 1 the Fourier
coefficients of f ∈ Hp are not uniformly bounded (see Tephnadze [123]). On the
other hand, there exists an absolute constant cp, depending only on p, such that

‖SMn
f‖p ≤ cp ‖f‖Hp , p > 0, n ∈ N+.

Tephnadze [139] (see also [126] and [130]) proved that for every 0 < p < 1,
the maximal operator

S̃∗pf := sup
n∈N

|Snf |
(n+ 1)1/p−1

is bounded from the Hardy spaceHp to the Lebesgue space Lp.Moreover, the
rate of the sequence (n+ 1)1/p−1 is in the sense sharp.
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It follow that for any 0 < p < 1 and f ∈ Hp, there exists an absolute constant
cp, depending only on p, such that

‖Snf‖p ≤ cp (n+ 1)1/p−1 ‖f‖Hp , n ∈ N+.

Blahota, Persson, Nagy and Tephnadze ([147]) proved that for any 0 < p ≤ 1
and a sub-sequence of positive numbers {αk : k ∈ N}, satisfying the condition

sup
k∈N

ρ (αk) = κ <∞, (1.8)

themaximal operator S̃∗,Mf := supk∈N |Sαkf | is bounded from the Hardy space
Hp to the space Lp. Moreover, for every 0 < p < 1 and any sub-sequence of
positive numbers {αk : k ∈ N} satisfying the condition

sup
k∈N

ρ (αk) =∞, (1.9)

there exists amartingale f ∈ Hp, (0 < p < 1) such that supk∈N ‖Sαkf‖weak−Lp =
∞.

It follows that for any p > 0 and f ∈ Hp, the maximal operator S̃∗# defined
by

S̃∗#f := sup
n∈N
|SMn

f |

is bounded from the Hardy space Hp to the space Lp. We also obtain that if
p > 0 and f ∈ Hp, then the maximal operator defined by

sup
n∈N+

|SMn+1f |

is not bounded from the Hardy spaceHp to the space Lp.
It is well-known that (for details see [130])

‖SMn
f − f‖Hp → 0, f ∈ Hp (p > 0) .

Tephnadze [139] (see also [126] and [130]) proved that for any 0 < p < 1 and
f ∈ Hp there exists an absolute constant cp depending only on p such that

‖Snf‖Hp ≤ cpn
1/p−1 ‖f‖Hp .

In the some paper [139] Tephnadze proved that for any 0 < p < 1, f ∈ Hp

andMk < n ≤Mk+1 there is an absolute constant cp depending only on p such
that

‖Snf − f‖Hp ≤ cpn
1/p−1ωHp

(
1
Mk

, f

)
.

From this estimate it immediately follows that if 0 < p < 1, f ∈ Hp and

ωHp

(
1
Mn

, f

)
= o

(
1

M
1/p−1
n

)
, when n→∞,
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then
‖Skf − f‖Hp → 0, as k →∞.

Moreover, for every 0 < p < 1 there exists a martingale f ∈ Hp, for which

ωHp

(
1
Mn

, f

)
= O

(
1

M
1/p−1
n

)
, when n→∞

and
‖Skf − f‖weak−Lp 9 0, when k →∞.

Tephadze [140] proved that for any 0 < p < 1 and f ∈ Hp there exists an
absolute constant cp, depending only on p, such that

‖Snf‖Hp ≤
cpM

1/p−1
|n|

M
1/p−1
〈n〉

‖f‖Hp .

Moreover, for every 0 < p < 1 and any increasing sequence of nonnegative
integers {nk : k ∈ N} such that condition (1.9) is satisfied and for any non-
decreasing sequence {Φn : n ∈ N} , satisfying the condition

lim
k→∞

M
1/p−1
|nk|

M
1/p−1
〈nk〉 Φnk

=∞,

there exists a martingale f ∈ Hp, such that

sup
k∈N

∥∥∥∥SnkfΦnk

∥∥∥∥
Lp,∞

=∞.

Moreover, if 0 < p < 1, f ∈ Hp and {nk : k ∈ N} is an increasing sequence
of nonnegative integers, then ‖Snkf‖Hp ≤ cp ‖f‖Hp holds true if and only if
condition (1.8) is satisfied.

In [132] (see also [140]) it was proved that if 0 < p < 1, f ∈ Hp and
Mk < n ≤ Mk+1, then there exists an absolute constant cp, depending only
on p, such that

‖Snf − f‖Hp ≤
cpM

1/p−1
|n|

M
1/p−1
〈n〉

ωHp

(
1
Mk

, f

)
, (0 < p < 1) .

It follows that if {nk : k ∈ N} is an increasing sequence of nonnegative integers
such that

ωHp

(
1

M|nk|
, f

)
= o

M1/p−1
〈nk〉

M
1/p−1
|nk|

 , as k →∞,

then ‖Snkf − f‖Hp → 0, as k →∞.Moreover, if {nk : k ∈ N} is an increasing
sequence of nonnegative integers such that condition (1.9) is satisfied, then
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there exists a martingale f ∈ Hp and a subsequence {αk : k ∈ N} ⊂ {nk :
k ∈ N}, for which

ωHp

(
1

M|αk|
, f

)
= O

M1/p−1
〈αk〉

M
1/p−1
|αk|

 , as k →∞

and lim sup
k→∞

‖Sαkf − f‖weak−Lp > c > 0, as k →∞.

In Tephnadze [139] (see also [130]) it was proved that for every f ∈ H1, then
the maximal operator, defined by

S̃∗f := sup
n∈N+

|Snf |
log (n+ 1) ,

is bounded from the Hardy spaceH1 to the space L1.Moreover, the rate of the
sequence log (n+ 1) is in the sense sharp. Hence, for any f ∈ H1, there exists
an absolute constant c, such that

‖Snf‖1 ≤ c log (n+ 1) ‖f‖H1
, n ∈ N+.

From this estimate it immediately follows that if f ∈ H1 and Mk < n ≤
Mk+1, then there is an absolute constant c such that

‖Snf − f‖H1
≤ c lgnωH1

(
1
Mk

, f

)
.

By using this estimate we obtain that if f ∈ H1 and

ωH1

(
1
Mn

, f

)
= o

(
1
n

)
, when n→∞,

then ‖Skf − f‖H1
→ 0, when k → ∞. Moreover (for details see [139]), there

exists a martingale f ∈ H1 for which

ωH1

(
1

M2Mn

, f

)
= O

(
1
Mn

)
, when n→∞

and ‖Skf − f‖1 9 0, when k →∞.
In [132] (see also [140]) it was proved that if f ∈ H1 and Mk < n ≤ Mk+1,

then there exists an absolute constant c such that

‖Snf‖H1
≤ c (v (n) + v∗ (n)) ‖f‖H1

.

Moreover, if {Φn : n ∈ N} is any non-decreasing andnon-negative sequence
satisfying lim

n→∞
Φn =∞ and {nk ≥ 2 : k ∈ N} is a subsequence such that

lim
k→∞

v (nk) + v∗ (nk)
Φnk

=∞,
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then there exists a martingale f ∈ H1 such that

sup
k∈N

∥∥∥∥SnkfΦnk

∥∥∥∥
1
→∞, as k →∞.

In [132] (see also [140]) it was also proved that if f ∈ H1 andMk < n ≤Mk+1,
then there exists an absolute constant c such that

‖Snf − f‖H1
≤ c (v (n) + v∗ (n))ωH1

(
1
Mk

, f

)
.

It follows that if f ∈ H1 and {nk : k ∈ N} is a sequence of non-negative
integers such that

ωH1

(
1

M|nk|
, f

)
= o

(
1

v (nk) + v∗ (nk)

)
, as k →∞,

then ‖Snkf − f‖H1
→ 0, when k →∞.Moreover, if {nk : k ≥ 1} is a sequence

of non-negative integers such that supk∈N (v (nk) + v∗ (nk)) = ∞, then there
exists a martingale f ∈ H1 and a sequence {αk : k ∈ N} ⊂ {nk :∈ N} for which

ωH1

(
1

M|αk|
, f

)
= O

(
1

v (αk) + v∗ (αk)

)
and lim sup

k→∞
‖Sαkf − f‖1 > c > 0 when k →∞.

Simon [111] proved that for any f ∈ Hp, there exists an absolute constant cp,
depending only on p, such that

∞∑
k=1

‖Skf‖pp
k2−p ≤ cp ‖f‖pHp , (0 < p < 1) .

In Tephnadze [122]) it was proved sharpness of this result in a special sense.
In particular, if 0 < p < 1 and {Φn : n ∈ N} is any non-decreasing sequence
satisfying the condition lim

n→∞
Φn = +∞, there exists a martingale f ∈ Hp such

that
∞∑
k=1

‖Skf‖pweak−Lp Φk
k2−p =∞.

In Gát [43] the following strong convergence result was obtained for all
f ∈ H1:

lim
n→∞

1
logn

n∑
k=1

‖Skf − f‖1
k

= 0

For the trigonometric analogue see Smith [118] (see also [54]) and for theWalsh-
Paley system see Simon [113], for Vilenkin-like systems see Blahota [16] and
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for the two-dimentional diagonal partial sums by Goginava and Gogoladze [51].
Moreover, for all f ∈ H1, there exists an absolute constant c, such that

1
logn

n∑
k=1

‖Skf‖1
k

≤ c ‖f‖H1
and lim

n→∞

1
logn

n∑
k=1

‖Skf‖1
k

= ‖f‖H1
(n = 2, 3...) .

In [160] (see paper A) was investigated some new Hardy type inequalities for
partial sums of Vilenkin-Fourier series.

In the one-dimensional case Yano [177] proved that

‖Kn‖ ≤ 2 (n ∈ N).

Consequently,

‖σnf − f‖p → 0, when n→∞, (f ∈ Lp, 1 ≤ p ≤ ∞).

However (see [65] and [108]) the rate of convergence can not be better then
O
(
n−1) (n→∞) for non-constant functions. a.e, if f ∈ Lp, 1 ≤ p ≤ ∞ and

‖σMn
f − f‖p = o

(
1
Mn

)
, when n→∞,

then f is a constant function.
Fridli [38] used dyadic modulus of continuity to characterize the set of

functions in the space Lp, whose Vilenkin-Fejér means converge at a given rate.
It is also known that (see e.g books [1] and [108])

‖σnf − f‖p

≤ cpωp
(

1
MN

, f

)
+ cp

N−1∑
s=0

Ms

MN
ωp

(
1
Ms

, f

)
, (1 ≤ p ≤ ∞, n ∈ N) .

By applying this estimate we immediately obtain that if f ∈ lip (α, p) , i.e.,

ωp

(
1
Mn

, f

)
= O

(
1
Mα
n

)
, n→∞,

then

‖σnf − f‖p =


O
(

1
MN

)
, if α > 1,

O
(

N
MN

)
, if α = 1,

O
(

1
Mα
N

)
, if α < 1.

On the other hand, if 1 ≤ p ≤ ∞, f ∈ Lp and

‖σMn
f − f‖p = o (1/Mn) , as n→∞,

then f is a constant function.
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Weisz [170] considered the norm convergence of Fejér means of Vilenkin-
Fourier series and proved that

‖σkf‖p ≤ cp ‖f‖Hp , p > 1/2 and f ∈ Hp.

This result implies that

1
n2p−1

n∑
k=1

‖σkf‖pp
k2−2p ≤ cp ‖f‖

p
Hp
, (1/2 < p <∞) . (1.10)

If (1.10) holds for 0 < p ≤ 1/2, then we have that

1
log[1/2+p] n

n∑
k=1

‖σkf‖pp
k2−2p ≤ cp ‖f‖

p
Hp
, (0 < p ≤ 1/2) . (1.11)

Furthermore, in Tephnadze [129] it was shown that the assumption p > 1/2
in (1.10) is essential. In particular, is was proved that there exists a martingale
f ∈ H1/2 such that

sup
n∈N
‖σnf‖1/2 = +∞.

For Vilenkin systems in [143] it was proved that (1.11) holds, though inequality
(1.10) is not true for 0 < p ≤ 1/2.

Some new strong convergence result for Fejermeanswas considered in [58]
and [164].

In the one-dimensional case the weak type inequality

µ (σ∗f > λ) ≤ c

λ
‖f‖1 , (f ∈ L1, λ > 0)

can be found in Zygmund [186] for the trigonometric series, in Schipp [107] for
Walsh series and in Pál, Simon [96] for bounded Vilenkin series. Fujji [40] and
Simon [112] verified that σ∗ is bounded from H1 to L1. Weisz [170] generalized
this result and proved the boundedness of σ∗ from the martingale space Hp

to the Lebesgue space Lp for p > 1/2. Simon [111] gave a counterexample,
which shows that boundedness does not hold for 0 < p < 1/2. A corresponding
counterexample for p = 1/2 is due to Goginava [20] (see also [18] and [19]). In
[129] Tephnadze proved that there exist a martingale f ∈ H1/2 such that

sup
n∈N
‖σnf‖1/2 = +∞.

Moreover, there exists a martingale f ∈ Hp, for 0 < p < 1/2, such that

sup
n∈N
‖σnf‖weak−Lp = +∞.

It follows that there exist a martingale f ∈ H1/2 such that

‖σ∗f‖1/2 = +∞.
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Furthermore, there exists a martingale f ∈ Hp for 0 < p < 1/2, such that

‖σ∗f‖weak−Lp = +∞.

Weisz [172] proved that σ∗ is bounded from the Hardy space H1/2 to the
space weak − L1/2. In [135] it was proved that the maximal operator σ̃∗p with
respect to Vilenkin systems defined by

σ̃∗p := sup
n∈N

|σn|
(n+ 1)1/p−2 ,

where 0 < p < 1/2, is bounded from the Hardy spaceHp to the Lebesgue space
Lp. Moreover, the order of deviant behavior of the n-th Fejér mean was given
exactly. That is, for any non-decreasing sequence {Φn : n ∈ N} satisfying the
condition

lim
n→∞

(n+ 1)1/p−2

Φn
= +∞,

we have that

sup
k∈N

∥∥∥∥σM2nk
+1fk

ΦM2nk+1

∥∥∥∥
weak−Lp

‖fk‖Hp
=∞.

As a consequence of this we immediately get that

‖σnf‖p ≤ cp (n+ 1)1/p−2 (n+ 1) ‖f‖Hp ,

but also a stronger result is known (for details see e.g. [130]). In particular, if
0 < p < 1/2 and f ∈ Hp, there exists an absolute constant cp, depending only
on p, such that

‖σnf‖Hp ≤ cpn
1/p−2 ‖f‖Hp .

In [134] (for Walsh system see [46]) it was proved that the maximal operator
σ̃∗ with respect to Vilenkin systems, defined by

σ̃∗ := sup
n∈N

|σn|
log2 (n+ 1)

,

is bounded from the Hardy spaceH1/2 to the Lebesgue space L1/2.
Moreover, for any non-decreasing sequence {Φn : n ∈ N} satisfying the

condition

lim
n→∞

log2 (n+ 1)
Φn

= +∞,

we have that

sup
k∈N

∥∥∥σqnk fkΦqnk

∥∥∥
1/2

‖fk‖H1/2

=∞.
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It follows from this that

‖σnf‖1/2 ≤ c log2 (n+ 1) ‖f‖H1/2
.

but an even stronger result is known (for details see e.g. [130]). In particular, if
f ∈ H1/2, then there exists an absolute constant c, such that

‖σnf‖H1/2
≤ c log2 (n+ 1) ‖f‖H1/2

.

Some analogical theorems for the Walsh-Kaczmarz system were proved in
[52] and [122].

For the one-dimensional Vilenkin-Fourier series Weisz [170] proved that the
maximal operator σ#, defined by

σ#f = sup
n∈N
|σMn

f | ,

is bounded from the martingale Hardy space Hp to the Lebesgue space Lp for
p > 0. He also proved that

‖σMnf − f‖Hp → 0, f ∈ Hp (p > 0) .

On the other hand, the operator |σMn
f | is not bounded from the space Hp

to the space Hp, for 0 < p ≤ 1. This result for the Walsh system can be found
in Goginava [49] and for bounded Vilenkin systems in Persson and Tephnadze
[98].

Approximation properties of subsequences of Fejér means with respect to
the one-dimensional Walsh-Fourier series was considered in Persson, Teph-
nadze and Tutberidze [100] (see paper B) and Tutberidze [162] (see paper C).

Tephnadze [99] proved that if 0 < p ≤ 1/2 and {αk : k ∈ N} is a subse-
quence of positive numbers such that

sup
k∈N

ρ (αk) = κ < c <∞,

then the maximal operator σ̃∗,M, defined by

σ̃∗,Mf := sup
k∈N
|σαkf | ,

is bounded from the Hardy spaceHp to the Lebesgue space Lp.
Moreover, if 0 < p ≤ 1/2 and {αk : k ∈ N} is a subsequence of positive

numbers satisfying the condition

sup
k∈N

ρ (αk) =∞,

then there exists a martingale f ∈ Hp such that

sup
k∈N
‖σαkf‖weak−Lp =∞, (0 < p < 1/2) .
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It immediately follows that for 0 < p ≤ 1/2, and f ∈ Hp, there exists an
absolute constant cp, depending only on p, such that

‖σnkf‖p ≤ cp ‖f‖Hp , k ∈ N,

if and only if
sup
k∈N

ρ (nk) < c <∞.

As a consequence, if p > 0 and f ∈ Hp, then there exists an absolute
constant cp, depending only on p, such that

‖σMn
f‖p ≤ cp ‖f‖Hp , (p > 0) .

In [123, 127] it was proved that if 0 < p < 1/2, f ∈ Hp and

ωp

(
1
Mn

, f

)
= o

(
1

M
1/p−2
n

)
when n→∞,

then
‖σnf − f‖Hp → 0, when n→∞.

Moreover, there exists a martingale f ∈ Hp (0 < p < 1/2) for which

ω

(
1
Mn

, f

)
Hp

= O

(
1

M
1/p−2
n

)
when n→∞

and
‖σnf − f‖weak−Lp 9 0, when n→∞.

When p = 1/2 we have the following results: If f ∈ H1/2 and

ωH1/2

(
1
Mn

, f

)
= o

(
1
n2

)
, when n→∞,

then
‖σnf − f‖H1/2

→ 0, when n→∞.

Moreover, there exists a martingale f ∈ H1/2 for which

ωH1/2

(
1
Mn

, f

)
= O

(
1
n2

)
, when n→∞

and
‖σnf − f‖1/2 9 0, when n→∞.

We state some consequences of this result investigated in [123] for the
Walsh system to clearly see the difference of divergence rates for various
subsequences: Let 0 < p < 1/2, f ∈ Hp. Then there exists an absolute constant
cp, depending only on p, such that

‖σMn+1f‖Hp ≤ cpM
1/p−2
n ‖f‖Hp , n ∈ N (1.12)
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and ∥∥σMn+M[n/2]f
∥∥
Hp
≤ cpM1/2p−1

n ‖f‖Hp , n ∈ N. (1.13)

Moreover, the rates M1/p−2
n and M

1/2p−1
n in inequalities (1.12) and (1.13) are

sharp in the same sense.
Blahota and Tephnadze [26] proved that if 0 < p < 1/2 and f ∈ Hp, then

there exists an absolute constant cp, depending only on p, such that
∞∑
k=1

‖σkf‖pp
k2−2p ≤ cp ‖f‖

p
Hp
,

Moreover, if 0 < p < 1/2 and {Φk : k ∈ N} be any non-decreasing sequence
satisfying the conditions Φn ↑ ∞ and

lim
k→∞

k2−2p

Φk
=∞,

then there exists a martingale f ∈ Hp such that
∞∑
k=1

‖σkf‖pweak−Lp
Φk

=∞.

As a corollary we also get that if 0 < p < 1/2 and f ∈ Hp, then there exists
an absolute constant cp, depending only on p, such that

∞∑
k=1

‖σkf‖pHp
k2−2p ≤ cp ‖f‖pHp ,

1
n

n∑
k=1

‖σkf‖pHp
k1−2p ≤ cp ‖f‖pHp ,

1
n

n∑
k=1

‖σkf − f‖pHp
k1−2p = 0,

and
1
n

n∑
k=1

‖σkf‖pHp
k1−2p = ‖f‖pHp .

Blahota and Tephnadze [26] also considered the endpoint case p = 1/2 and
they proved that if f ∈ H1/2, then there exists an absolute constant c such that

1
logn

n∑
k=1

‖σkf‖1/21/2

k
≤ c ‖f‖1/2H1/2

.

It follows from this that if f ∈ H1/2, then

1
logn

n∑
k=1

‖σkf‖1/2H1/2

k
≤ c ‖f‖1/2H1/2

,
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lim
n→∞

1
logn

n∑
k=1

‖σkf − f‖1/2H1/2

k
= 0

and

lim
n→∞

1
logn

n∑
k=1

‖σkf‖1/2H1/2

k
= ‖f‖1/2H1/2

.

Approximationproperties and strong convergence results ofMarcinkiewicz-
Fejermeanswith respect toWalsh and Kaczmarz systemswere studied by Nagy
and Tephnadze [85, 86, 87, 88, 89].

It is well-known that the so-called T means are generalizations of the
Fejér, Reisz and logarithmic means. The T summation is a general summability
method. Therefore it is of prior interest to study the behavior of operators re-
lated to Nörlund means of Fourier series with respect to orthonormal systems.

Since T means are inverse of Nörlundmeans we first state some interesting
results concerning Nörlund summability, which has high influence on the new
results for T means of Vilenkin-Fourier series.

In [47] Goginava investigated the behavior of Cesàro means of Walsh-
Fourier series in detail. In the one-dimentional case approximation properties
of Cesàro means was studied by Akhonadze [2, 3, 4, 5] (see also [6]) and
two-dimensional case approximation properties of Nörlund and Cesàro means
were considered by Nagy (see [82], [84] and [83]). The maximal operator σα,∗
(0 < α < 1) of the (C,α) means of Vilenkin systems was investigated by Weisz
[169]. In this paper Weisz proved that σα,∗ is bounded from the martingale
space Hp to the Lebesgue space Lp for p > 1/ (1 + α) . Goginava [50] gave a
counterexample which shows that boundedness does not hold for 0 < p ≤
1/ (1 + α) . Weisz and Simon [116] showed that the maximal operator σα,∗ is
bounded from the Hardy spaceH1/(1+α) to the space weak − L1/(1+α).

Strong convergence theorems and boundedness of weighted maximal op-
erators of the (C,α) means of Vilenkin systems on the Hardy spaces when
0 < p ≤ 1/(1 + α) were considered by Blahota and Tephnadze [25] and Bla-
hota, Tephnadze and Toledo [27]. Summability of some general methods were
considered by Blahota, Nagy and Tephnadze [21].

In [101] (see also [137]) the maximal operator of the Nörlund summation
method (see (1.5)) was investigated. In particular, it was proved that the
maximal operator t∗ of the summability method (1.5) with non-decreasing
sequence {qk : k ∈ N} is bounded from the Hardy space H1/2 to the space
weak − L1/2.

Moreover, for any 0 < p < 1/2 and non-decreasing sequence {qk : k ∈ N}
satisfying the condition

q0

Qn
≥ c

n
, (c > 0) ,

there exists a martingale f ∈ Hp, such that

sup
n∈N
‖tnf‖weak−Lp =∞.
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In [102] it was proved that if 0 < p < 1/2 and the sequence {qk : k ∈ N} is
non-decreasing, then the maximal operator t̃∗p,1, defined by

t̃∗p,1f := sup
n∈N

|tnf |
(n+ 1)1/p−2 ,

is bounded from the Hardy martingale spaceHp to the Lebesgue space Lp.
Moreover, according to the fact that the Fejér means are examples of

Nörlund means with non-decreasing sequence {qk : k ∈ N} we immediately
obtain that the asymptotic behaviour of the sequence of weights{

1/ (k + 1)1/p−2 : k ∈ N
}

in Nörlund means can not be improved.
Let the sequence {qk : k ∈ N} be non-decreasing. Then the maximal opera-

tor t̃∗1, defined by
∼
t
∗
1f := sup

n∈N

|tnf |
log2 (n+ 1)

,

is bounded from the Hardy space H1/2 to the Lebesgue space L1/2. Further-
more, in view of the fact that the Fejér means are examples of Nörlund means
with non-decreasing sequence {qk : k ∈ N} we immediately obtain that the
asymptotic behaviour of the sequence of weights{

1/ log2 (n+ 1) : n ∈ N
}

in Nörlund means can not be improved.
In [101] it was proved that for all Nörlund means with non-increasing se-

quence {qk : k ∈ N} there exists a martingale f ∈ Hp such that

sup
n∈N
‖tnf‖weak−Lp =∞.

It follows that for any 0 < p < 1/2 and Nörlund means tn with non-
increasing sequence {qk : k ∈ N}, themaximal operator t∗ is not bounded from
the martingale Hardy space Hp to the space weak − Lp, that is there exists a
martingale f ∈ Hp, such that

sup
n∈N
‖t∗f‖weak−Lp =∞.

In the same paper [101] it was also derived a corresponding necessary
condition for the Nörlund means with non-increasing sequence {qk : k ∈ N},
when 1/2 ≤ p < 1. In particular, if 0 < p < 1/ (1 + α) , 0 < α ≤ 1, and non-
increasing sequence {qk : k ∈ N} satisfying the condition

lim
n→∞

nα

Qn
= c > 0, 0 < α ≤ 1, (1.14)
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then there exists a martingale f ∈ Hp such that

sup
n∈N
‖tnf‖weak−Lp =∞.

Moreover, for any non-increasing sequence {qk : k ∈ N} satisfying the
condition

lim
n→∞

nα

Qn
=∞, (0 < α ≤ 1) , (1.15)

there exists a martingale f ∈ H1/(1+α), such that

sup
n∈N
‖tnf‖weak−L1/(1+α)

=∞.

It follows that for any 0 < p < 1/ (1 + α) , 0 < α ≤ 1 and non-increasing
sequence {qk : k ∈ N} satisfying the condition (1.14) there exists a martingale
f ∈ Hp such that

‖t∗f‖weak−Lp =∞.

Furthermore, if {qk : k ∈ N} is a non-increasing sequence satisfying the
condition (1.15), then there exists a martingale f ∈ H1/(1+α) such that

‖t∗f‖weak−L1/(1+α)
=∞.

In [78] it was proved that themaximal operator t∗ of the Nörlund summabil-
ity method with non-increasing sequence {qk : k ∈ N}, satisfying the condition

1
Qn

= O

(
1
nα

)
, when n→∞ (1.16)

and
qn − qn+1 = O

(
1

n2−α

)
, when n→∞, (1.17)

is bounded from the Hardy space H1/(1+α) to the space weak − L1/(1+α), for
0 < α ≤ 1.

Moreover, for 0 < α ≤ 1 and non-increasing sequence {qk : k ∈ N}
satisfying the conditions

lim
n→∞

nα

Qn
≥ cα > 0 (1.18)

and
|qn − qn+1| ≥ cαnα−2, n ∈ N. (1.19)

there exists a martingale f ∈ H1/(1+α) such that

sup
n∈N
‖tnf‖1/(1+α) =∞.

In [101] (see also [24]) it was proved that if f ∈ Hp, where 0 < p < 1/ (1 + α)
for some 0 < α ≤ 1, and {qk : k ∈ N} is a sequence of non-increasing
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numbers satisfying the conditions (1.16) and (1.17), then the maximal operator
∼
t
∗
p,α, defined by

∼
t
∗
p,α := |tnf |

(n+ 1)1/p−1−α ,

is bounded from the martingale Hardy spaceHp to the Lebesgue space Lp.
Moreover, if {Φn : n ∈ N+} is any non-decreasing sequence, satisfying the

condition

lim
n→∞

(n+ 1)1/p−1−α

Φn
= +∞, (1.20)

then there exists Nörlund means with non-increasing sequence {qk : k ∈ N}
satisfying the conditions (1.18) and (1.19) such that

sup
k∈N

∥∥∥∥ tM2nk
+1fk

ΦM2nk
+1

∥∥∥∥
weal−Lp

‖fk‖Hp
=∞.

Let 0 < p < 1/ (1 + α) and f ∈ Hp. Then there exists an absolute constant
cp,α, depending only on p and α, such that

‖tnf‖p ≤ cp,α (n+ 1)1/p−1−α ‖f‖Hp , n ∈ N+.

On the other hand, if {Φn : n ∈ N} is any non-decreasing sequence satisfy-
ing the condition (1.20), then there exists a martingale f ∈ Hp such that

sup
n∈N

∥∥∥∥ tnfΦn

∥∥∥∥
weak−Lp

=∞.

Moreover, let {Φn : n ∈ N} is any non-decreasing sequence satisfying the
condition (1.20). Then the maximal operator

sup
n∈N

|tnf |
Φn

is not bounded from the Hardy spaceHp to the space weak − Lp.
In [22] (see also [24]) it was proved that if f ∈ H1/(1+α),where 0 < α ≤ 1 and

{qk : k ∈ N} be a sequence of non-increasing numbers satisfying the conditions
(1.16) and (1.17), then there exists an absolute constant cα depending only on α
such that the maximal operator

∼
t
∗
α := |tnf |

log1+α (n+ 1)

is bounded from the martingale Hardy space H1/(1+α) to the Lebesgue space
L1/(1+α).

34



Some results on partial sums and classical summability methods of
Vilenkin-Fourier series

Moreover, if {Φn : n ∈ N+} is any non-decreasing sequence satisfying the
condition

lim
n→∞

log1+α (n+ 1)
Φn

= +∞,

then there exists Nörlund means with non-increasing sequence {qk : k ∈ N}
satisfying the conditions (1.18) and (1.19) such that

sup
k∈N

∥∥∥supn
∣∣∣ tnfkΦn

∣∣∣∥∥∥
1/(1+α)

‖f‖H1/(1+α)

=∞.

In [102] it was proved that if 0 < p < 1/2, f ∈ Hp and the sequence
{qk : k ∈ N} is non-decreasing, then there exists an absolute constant cp de-
pending only on p such that

∞∑
k=1

‖tkf‖pp
k2−2p ≤ cp ‖f‖

p
Hp
.

On the other hand, according the fact that Fejér means are examples of
Nörlund means with non-decreasing sequence {qk : k ∈ N} we immediately
obtain that the asymptotic behaviour of the sequence of weights{

1/k2−2p : k ∈ N
}

in Nörlund means can not be improved.
In [102] it was proved that if f ∈ H1/2 and the sequence {qk : k ∈ N} is

non-decreasing satisfying condition (1.21) below, then there exists an absolute
constant c, such that

1
logn

n∑
k=1

‖tkf‖1/21/2

k
≤ c ‖f‖1/2H1/2

.

In Blahota and Tephnadze [24] was investigated Nörlund means with non-
increasing sequence {qk : k ∈ N} in the case 0 < p < 1/ (1 + α) where
0 < α < 1. In particular, if f ∈ Hp, where 0 < p < 1/ (1 + α) , 0 < α ≤ 1 and
{qk : k ∈ N}, is a sequence of non-increasing numbers satisfying the conditions
(1.16) and (1.17), then there exists an absolute constant cα,p, depending only on
α and p such that

∞∑
k=1

‖tkf‖pHp
k2−(1+α)p ≤ cα,p ‖f‖

p
Hp
.

In Blahota, Persson and Tephnadze [22] it was proved that if f ∈ H1/(1+α),
where 0 < α ≤ 1 and {qk : k ∈ N} is a sequence of non-increasing numbers
satisfying the conditions (1.16) and (1.17), then there exists an absolute constant
cα depending only on α such that

1
logn

n∑
m=1

‖tmf‖1/(1+α)
H1/(1+α)

m
≤ cα ‖f‖1/(1+α)

H1/(1+α)
.
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In [161] (see paper D) we investigated the maximal operator T ∗ of the
summability method (1.1.4) with non-increasing sequence {qk : k ≥ 0}. In
particular, we proved that T ∗ is bounded from the Hardy space H1/2 to the
space weak − L1/2.

Moreover, for any 0 < p < 1/2 and non-increasing sequence {qk : k ≥ 0}
satisfying the condition

qn+1

Qn+2
≥ c

n
, (c ≥ 1) ,

then there exists a martingale f ∈ Hp, such that

sup
n∈N
‖Tnf‖weak−Lp =∞.

We also proved that the maximal operator T ∗ of the summability method
(1.1.4) with non-decreasing sequence {qk : k ≥ 0} satisfying the condition

qn−1

Qn
= O

(
1
n

)
, as n→∞ (1.21)

is bounded from the Hardy spaceH1/2 to the space weak − L1/2.
Moreover, for any 0 < p < 1/2 and non-decreasing sequence {qk : k ≥ 0},

there exists a martingale f ∈ Hp, such that

sup
n∈N
‖Tnf‖weak−Lp =∞.

Similar problems for Walsh-Kaczmarz system were proved by Gogolashvili
and Tephnadze [59, 60].

In [163] (see paper E) we proved that if 0 < p ≤ 1/2, f ∈ Hp and a sequence
{qk : k ≥ 0} is either non-decreasing numbers (without any restrictions) or
non-increasing numbers, satisfying the condition

1
Qn

= O

(
1
n

)
, as n→∞, (1.22)

then the maximal operator T̃ ∗p , defined by

T̃ ∗p f := sup
n∈N+

|Tnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

(1.23)

is bounded from the Hardy spaceHp to the space Lp.
Since the maximal operator σ̃∗p defined by

σ̃∗pf := sup
n∈N+

|σnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the martingale Hardy space Hp to the space Lp and the rate
of denominator (n+ 1)1/p−2 log2[1/2+p] is in a sense sharp and Fejer means is
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example of T means, for a non-decreasing and non-increasing sequence we
obtain that these weights are also sharp in (1.23).

In [163] we also investigated strong convergence of T means with respect
to Vilenkin systems. In particular, if 0 < p < 1/2, f ∈ Hp and {qk : k ≥ 0} is a
sequence of non-increasing or non-decreasing numbers, then there exists an
absolute constant cp, depending only on p, such that the inequality

∞∑
k=1

‖Tkf‖pp
k2−2p ≤ cp ‖f‖

p
Hp

holds.
Moreover, if f ∈ H1/2 and {qk : k ≥ 0} is a sequence of non-increasing

numbers, satisfying the condition (1.22), then there exists an absolute constant
c, such that the inequality

1
logn

n∑
k=1

‖Tkf‖1/21/2

k
≤ c ‖f‖1/2H1/2

(1.24)

holds.
If the sequence {qk : k ≥ 0} is non-decreasing and satisfying condition, then

the inequality (1.24) is true also for any f ∈ H1/2.
Well-known examples of Nörlund and T means are Riesz and Nörlund

logarithmic means.
Riesz logarithmic means with respect to the trigonometric system was

studied by many authors. We mention, for instance, the papers by Szasz [120]
and Yabuta [176]. These means with respect to the Walsh and Vilenkin systems
were investigated by Baramidze, Gogolashvili, Nadirashvili [12] (see also [13]),
Gàt [43] and Simon [111]. Blahota and Gát [17] considered norm summability of
Nörlund logarithmic means and showed that Riesz logarithmic meansRn have
better approximation properties on some unbounded Vilenkin groups than the
Fejér means. Moreover, in [133] it was proved that the maximal operator of
Riesz means is bounded from the Hardy space Hp to the Lebesgue space Lp
for p > 1/2 but not when 0 < p ≤ 1/2. Strong convergence theorems and
boundedness of weighted maximal operators of Riesz logarithmic means were
considered in Lukkassen, Persson, Tutberidze, Tephnadze [75] (see paper F)
and Tephnadze [133].

In [144] Tephnadze proved that the maximal operator of Riesz logarithmic
means R∗ is bounded from the Hardy space H1/2 to the space weak − L1/2.
Moreover, there exists a martingale f ∈ Hp, where 0 < p ≤ 1/2 such that

‖R∗f‖p = +∞.

In [133] Tephnadze proved that for any 0 < p < 1/2, the maximal operator
∼
R
∗

p, defined by
∼
R
∗

p := sup
n∈N

logn |Rnf |
(n+ 1)1/p−2 ,
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is bounded from the Hardy spaceHp to the space Lp.
Moreover, for 0 < p < 1/2 and non-decreasing function ϕ : N+ → [1,∞)

satisfying the condition
(n+ 1)1/p−2

log (n+ 1)ϕ (n) =∞,

the maximal operator

sup
n∈N

|Rnf |
ϕ (n)

is not bounded from the Hardy spaceHp to the space weak − Lp.
In the case p = 1/2 he also proved that the maximal operator R̃∗, defined

by

R̃∗f := sup
n∈N

|Rnf |
log (n+ 1) ,

is bounded from the Hardy spaceH1/2 to the space L1/2.
Moreover, for any non-decreasing function ϕ : N+ → [1,∞) satisfying the

condition
lim
n→∞

log (n+ 1)
ϕ (n) = +∞,

the maximal operator

sup
n∈N

|Rnf |
ϕ (n)

is not bounded from the Hardy spaceH1/2 to the space L1/2.
In [75] (see paper F) we also proved that if 0 < p < 1/2 and f ∈ Hp(Gm),

then there exists an absolute constant cp, depending only on p, such that the
inequality

∞∑
n=1

logp n ‖Rnf‖pHp
n2−2p ≤ cp ‖f‖pHp

holds, where Rnf denotes the n-th Reisz logarithmic mean with respect to the
Vilenkin-Fourier series of f.

Móricz and Siddiqi [81] investigated the approximation properties of some
special Nörlund means of Walsh-Fourier series of Lp functions in norm. The
case when {qk = 1/k : k ∈ N} was excluded, since the methods of Móricz and
Siddiqi are not applicable to Nörlund logarithmic means. Fridli, Manchanda
and Siddiqi [39] improved and extended the results of Móricz and Siddiqi [81]
to dyadic homogeneous Banach spaces and martingale Hardy spaces. In [45]
Gát and Goginava proved some convergence and divergence properties of the
Nörlund logarithmic means of functions in the class of continuous functions
and in the Lebesgue space L1. In particular, they gave a negative answer to the
question of Móricz and Siddiqi [81]. Gát and Goginava [44] proved that for each
measurable function satisfying φ (u) = o

(
u log1/2 u

)
, as u → ∞, there exists

an integrable function f such that∫
Gm

φ (|f (x)|) dµ (x) <∞
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and that there exists a set with positive measure such that the Walsh-
logarithmic means of the function diverges on this set. It follows that weak-(1,1)
type inequality does not hold for the maximal operator of Nörlund logarithmic
means L∗, defined by

L∗f := sup
n∈N
|Lnf | .

On the other hand, there exists an absolute constant cp such that

‖L∗f‖p ≤ cp ‖f‖p , when f ∈ Lp, p > 1.

If we consider the following restricted maximal operator L̃∗#, defined by

L̃∗#f := sup
n∈N
|LMn

f | , (Mk := m0...mk−1, k = 0, 1...)

then

λµ
{
L̃∗#f > λ

}
≤ c ‖f‖1 , f ∈ L1(Gm), λ > 0.

Hence, if f ∈ L1(Gm), then

LMnf → f, a.e. on Gm.

In [10] (see also [13]) it was proved that if f ∈ L1(Gm), then LMn
f(x)→ f(x)

for all Lebesgue points.
In [122] (see also [148] ) it was proved that there exists a martingale f ∈ Hp,

(0 < p ≤ 1), such that the maximal operator of Nörlund logarithmic means L∗
is not bounded in the Lebesgue space Lp. In particular, it was proved that there
exists a martingale f ∈ Hp such that

‖L∗f‖p = +∞.

Boundedness of weighted maximal operators of Nörlund logarithmic
means was considered in [103]. In particular, it was proved that the maximal
operator

∼
L
∗
, defined by

∼
L
∗
f := sup

n∈N

|Lnf |
log (n+ 1) ,

is bounded from the Hardy spaceH1 (Gm) to the space L1 (Gm) .
Moreover, if ϕ : N+ → [1,∞) is a non-decreasing function satisfying the

condition
lim
n→∞

log (n+ 1)
ϕ (n) = +∞, (1.25)

then there exists a martingale f ∈ H1 (Gm) , such that the maximal operator

sup
n∈N

|Lnf |
ϕ (n)
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is not bounded from the Hardy spaceH1 (Gm) to the Lebesgue space L1 (Gm) .
In Tephnadze and Tutberidze [146] (see paper G) it was proved that the

maximal operator
∼
L
∗

p, defined by

∼
L
∗

pf := sup
n∈N

|Lnf |
(n+ 1)1/p−1 ,

is bounded from the Hardy spaceHp (Gm) to the space Lp (Gm) .
We also proved that for 0 < p < 1 and a non-decreasing function ϕ : N+ →

[1,∞) satisfying the condition

lim
n→∞

n1/p−1

lognϕ (n) = +∞,

then there exists a martingale f ∈ Hp (Gm) , such that the maximal operator

sup
n∈N

|Lnf |
ϕ (n+ 1)

is not bounded from the Hardy spaceHp (Gm) to the space Lp (Gm) .
In the same paper we also state the following problem:
Open Problem. For any 0 < p < 1 and non-decreasing function Θ : N+ →

[1,∞) is it true or not that the following maximal operator
∼
L
∗

p, defined by

∼
L
∗

pf := sup
n∈N

|Lnf |
Θ (n+ 1)

is bounded from the Hardy spaceHp (Gm) to the Lebesgue space Lp (Gm) and
the rate of Θ : N+ → [1,∞) is sharp, that is, for any non-decreasing function
ϕ : N+ → [1,∞) satisfying the condition

lim
n→∞

Θ (n)
ϕ (n) = +∞,

then there exists a martingale f ∈ Hp (Gm) , such that the maximal operator

sup
n∈N

|Lnf |
ϕ (n+ 1)

is not bounded from the Hardy spaceHp (Gm) to the space Lp (Gm) .

According to the Theorems above we can conclude that there exist absolute
constants C1 and C2 such that

C1n
1/p−1

log(n+ 1) ≤ Θ (n) ≤ C2n
1/p−1.
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Later on, Memic generalized result of Tephnadze and Tutberidze [146] (see
paper G) and proved that the maximal operator

sup
n∈N

logn |Lnf |
(n+ 1)1/p−1

is bounded from the Hardy spaceHp (Gm) to the space Lp (Gm) .
Sharpness of this result immediately follows by using the negative result of

Tephnadze and Tutberidze [146] (see paper G), which is already stated above.
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1. INTRODUCTION

It is well-known that the Vilenkin system does not form a basis in the space L1 (Gm) (for details see
[8] and [14]). Moreover, there is a function in the Hardy space H1 (Gm) such that the partial sums of f
are not bounded in L1-norm (for details see [12, 13, 21, 22]) . However, a subsequence SMn of partial
sums are bounded from the Hardy space H1 (Gm) to the Lebesgue space L1 (Gm) (see [2, 23]):

‖SMk
f‖H1

≤ c ‖f‖H1
(k ∈ N). (1.1)

Moreover, in Gát [7] (see also Simon [18, 19]), it was proved the following strong convergence result: for
all f ∈ H1

lim
n→∞

1

log n

n∑

k=1

‖Skf − f‖1

k
= 0,

where Skf denotes the k-th partial sum of the Vilenkin-Fourier series of f.

It follows that there exists an absolute constant c such that

1

log n

n∑

k=1

‖Skf‖1

k
≤ c ‖f‖H1

, (n = 2, 3...) (1.2)

and for all f ∈ H1

lim
n→∞

1

log n

n∑

k=1

‖Skf‖1

k
= ‖f‖H1

.

A similar result for trigonometric system was proved by Smith [20], and for Walsh-Paley system by
Simon [17]. Observe that if the partial sums of Vilenkin-Fourier series will be bounded from H1 to L1,
then we also would have

sup
n∈N+

1

n

n∑

m=1

‖Smf‖1 ≤ c ‖f‖H1
, (1.3)

3The research is supported by Shota Rustaveli National Science Foundation grant no. PHDF-18-476
*E-mail: giorgi.tutberidze1991@gmail.com
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but, as it was mentioned above, the boundedness of the partial sums does not hold from H1 to L1.
However, we have the inequality (1.2).

On the other hand, in the one-dimensional case, Fujii [6] and Simon [16] have proved that the
maximal operator Fejér mean is bounded from H1 to L1, that is,

sup
n∈N+

∥∥∥∥∥
1

n

n∑

m=1

Smf

∥∥∥∥∥
1

< c ‖f‖H1
. (1.4)

So, a natural question that arises is that if the inequality (1.3) holds true, which would be a generalization
of the inequality (1.4), or do we have a negative answer to this problem?

In this paper, we prove that there exists a function f ∈ H1 such that

sup
n∈N+

1

n

n∑

m=1

‖Smf‖1 = ∞.

The paper is organized as follows: In Section 2 we present some necessary notation and definitions. In
Section 3 we state the main results of the paper. The detailed proofs of the main results are given in
Section 4.

2. DEFINITIONS AND NOTATION

Let N+ denote the set of the positive integers, N = N+ ∪ {0}, and let m = (m0,m1, . . . ) denote a
sequence of positive integers not less than 2. Denote by Zmk

= {0, 1, . . . ,mk − 1} the additive group of
integers modulo mk, and define the group Gm to be the complete direct product of the group Zmj with
the product of the discrete topologies of Zmj

,s. The direct product μ of the measures μk ({j}) = 1/mk,
j ∈ Zmk

is the Haar measure on Gm with μ (Gm) = 1.

If supn∈N mn < ∞, then we call Gm a bounded Vilenkin group. If the generating sequence m is not
bounded, then Gm is said to be an unbounded Vilenkin group.

The elements of Gm are represented by sequences of the form x = (x0, x1, . . . , xk, . . . ), xk ∈ Zmk
. It

is easy to give a base for the neighborhood of Gm, namely we have

I0(x) = Gm, In(x) = {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1}, x ∈ Gm, n ∈ N.

Denote In = In(0) for n ∈ N and In = Gm\In. Let en = (0, ..., 0, xn = 1, 0, ...) ∈ Gm, n ∈ N. If we
define the so-called generalized number system based on m in the following way: M0 = 1, Mk+1 =
mkMk, k ∈ N, then every n ∈ N can be uniquely expressed as n =

∑∞
k=0 njMj , where nj ∈ Zmj (j ∈

N), and only a finite number of nj ‘s differ from zero. Define |n| = max {j ∈ N; nj �= 0}.
Next, on the group Gm we introduce an orthonormal system, which is called the Vilenkin system.

To this end, we first define the complex-valued functions rk(x) : Gm → C, the generalized Rademacher
functions:

rk(x) = exp (2πıxk/mk)
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

Now define the Vilenkin system ψ = (ψn : n ∈ N) on Gm as follows:

ψn(x) =
∞∏

k=0

rnk
k (x), n ∈ N.

Note that in the special case where m = 2, the above defined system is called the Walsh-Paley system.
The norm (or quasi norm) in the space Lp(Gm) is defined by

‖f‖p =

(∫

Gm

|f(x)|p dμ(x)

)1/p

, 0 < p < ∞.

Note that the Vilenkin system is orthonormal and complete in L2 (Gm) (see [1, 25]).
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For f ∈ L1 (Gm) we define the Fourier coefficients, the partial sums of the Fourier series, the Fejér
means, and the Dirichlet kernels with respect to the Vilenkin system in the usual manner:

f̂(k) : =

∫

Gm

fψkdμ, k ∈ N,

Snf : =

n−1∑

k=0

f̂ (k) ψk, n ∈ N+, S0f = 0,

σnf : =
1

n

n−1∑

k=0

Skf, Dn =

n−1∑

k=0

ψk, n ∈ N+.

Recall that

DMn(x) =

⎧
⎨
⎩

Mn, x ∈ In

0, x /∈ In.
(2.1)

and

DsnMn = DMn

sn−1∑

k=0

ψkMn = DMn

sn−1∑

k=0

rk
n, 1 ≤ sn ≤ mn − 1. (2.2)

The n-th Lebesgue constant is defined by Ln = ‖Dn‖1 . It is well-known that (see [25]):

Ln = O(log n), n → ∞. (2.3)

Moreover, there exist absolute constant c1 and c2 such that

c1 log n ≤ 1

n

n∑

k=1

L (k) ≤ c2 log n, n = 2, 3, .... (2.4)

(For unbounded Vilenkin systems this result can be found in [5], while for bounded Vilenkin systems in
[9] and [11, 24]).

The concept of the Hardy space (see [4]) can be defined in various manners, for instance, by a maximal
function f∗ = supn∈N |SMnf |, f ∈ Gm, saying that f belongs to the Hardy space if f∗ ∈ L1 (Gm) .
This definition is suitable if the sequence m is bounded. In this case a good property of the space{
f ∈ L1 (Gm) : f∗ ∈ L1 (Gm)

}
is the atomic structure (see [4]). To define the Hardy type space for

an arbitrary m, we first introduce the concept of the atoms (see [16]). A set I ⊂ Gm is called an interval if
for some x ∈ Gm and n ∈ N , I is of the form I =

⋃
k∈U

In (x, k), where U is obtained from Zmn by dyadic

partition.
The sets U1, U2, ... ⊂ Zmn , are obtained by means of such a partition as follows:

U1 =
{

0, ...,
[mn

2

]
− 1
}

, U2 =
{[mn

2

]
, ...,mn − 1

}
,

U3 =

{
0, ...,

[
[mn/2] − 1

2

]
− 1

}
, U4 =

{[
[mn/2] − 1

2

]
, ...,

[mn

2

]
− 1

}
, ...,

where [a] denotes the integral part of a number a. We define the atoms as follows: a function a ∈
L∞ (Gm) is called an atom if either a ≡ 1 or there exists an interval I to satisfy sup a ⊂ I, |a| ≤ |I|−1

and
∫
I a = 0, where |I| denotes the Haar measure of I .

Now we define the space H1 (Gm) to be the set of all functions f =
∞∑
i=0

λiai, where ai’s are atoms and

for the coefficients λi we have
∞∑
i=0

|λi| < ∞ (for details see [26, 27]). Observe that H1 (Gm) is a Banach
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space with respect to the norm

‖f‖H1
= inf

∞∑

k=0

|λk| < ∞, (2.5)

where the infimum is taken over all decompositions f =
∞∑
i=0

λiai. It is known (see [7]) that ‖f‖H1
is

equivalent to ‖f∗∗‖1

(
f ∈ L1 (Gm)

)
, where f** (x) = supI |I|−1

∣∣∫
I f
∣∣, (x ∈ Gm, x ∈ I and I is an interval).

Since by (2.1)

f∗(x) = sup
n∈N

1

|In (x)|

∣∣∣∣∣

∫

In(x)
f (u)μ (u)

∣∣∣∣∣ ,

we have f∗ ≤ f∗∗ and, thus, H (Gm) ⊂
{
f ∈ L1 (Gm) : f∗ ∈ L1 (Gm)

}
. Moreover, these spaces coin-

cide if the sequence m is bounded.

3. THE MAIN RESULT
Our main result is the following theorem.

Theorem 3.1. a) Let f ∈ H1. Then there exists an absolute constant c such that

sup
n∈N

1

n log n

n∑

k=1

‖Skf‖1 ≤ ‖f‖H1
.

b) Let ϕ : N+ → [1,∞) be a nondecreasing function satisfying the condition:

lim
n→∞

log n

ϕn
= +∞. (3.1)

Then there exists a function f ∈ H1 such that

sup
n∈N

1

nϕn

n∑

k=1

‖Skf‖1 = ∞.

Corollary 3.1 (see [10, 16, 18]). There exists a function f ∈ H1 such that

sup
n∈N

1

n

n∑

k=1

‖Skf‖1 = ∞.

4. PROOF OF THEOREM 3.1
To prove assertion (a) of the theorem, we use (2.3) to conclude that

1

n log n

n∑

k=1

‖Skf‖1 ≤
c ‖f‖H1

n log n

n∑

k=1

log k ≤ c ‖f‖H1
,

and the result follows.
Now we proceed to prove assertion (b). To this end, observe first that under the condition (3.1) there

exists an increasing sequence of positive integers {αk : k ∈ N} such that

lim
k→∞

log Mαk

ϕ2Mαk

= +∞

and

∞∑

k=0

ϕ
1/2
2Mαk

log1/2 Mαk

< c < ∞. (4.1)
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Let f =
∞∑

k=1

λkak, where ak = rαk
DMαk

= D2Mαk
− DMαk

and

λk =
ϕ

1/2
2Mαk

log1/2 Mαk

.

Taking into account the definition of H1 and (2.5) and applying (4.1) we can conclude that f ∈ H1.
Moreover, we have

f̂(j) =

⎧
⎪⎨
⎪⎩

λk, j ∈ {Mαk
, ..., 2Mαk

− 1} , k ∈ N

0 , j /∈
∞⋃

k=1

{Mαk
, ..., 2Mαk

− 1} .
(4.2)

Next, taking into account that Dj+Mαk
= DMαk

+ ψ
Mαk

Dj , when j ≤ Mαk
, we can apply (4.2) to obtain

that

Sjf = SMαk
f +

j−1∑

v=Mαk

f̂(v)ψv = SMαk
f + λk

j−1∑

v=Mαk

ψv (4.3)

= SMαk
f + λk

(
Dj − DMαk

)
= SMαk

f + λkψMαk
Dj−Mαk

= I1 + I2.

In view of (1.1) we obtain

‖I1‖1 ≤
∥∥∥SMαk

f
∥∥∥

1
≤ c ‖f‖H1

. (4.4)

By combining (2.4) and (4.4) we get

‖Snf‖1 ≥ ‖I2‖1 − ‖I1‖1 ≥ λkL (n − Mαk
) − c ‖f‖H1

.

Therefore, we can write

sup
n∈N+

1

nϕn

n∑

k=1

‖Skf‖1 ≥ 1

2Mαk
ϕ2Mαk

∑

{Mαk
≤l≤2Mαk}

‖Slf‖1

≥ 1

2Mαk
ϕ2Mαk

∑

{Mαk
≤l≤2Mαk}

(
L (l − Mαk

)ϕ
1/2
2Mαk

log1/2 Mαk

− c ‖f‖H1

)

≥
cϕ

1/2
2Mαk

2Mαk
log1/2 Mαk

ϕ2Mαk

Mαk
−1∑

l=1

L (l) − c ‖f‖1/2
H1

≥
cϕ

1/2
2Mαk

log Mαk

log1/2 Mαk
ϕ2Mαk

≥ c log1/2 Mαk

ϕ
1/2
2Mαk

→ ∞, as k → ∞.

This completes the proof of assertion (b). Theorem 3.1 is proved.
Acknowledgments. The author would like to thank the referee for helpful suggestions, which

improved the final version of the paper.
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Abstract. In this paper we characterize subsequences of Fejér means with respect to Vilenkin

systems, which are bounded from the Hardy space Hp to the Lebesgue space Lp, for all 0 <
p < 1/2. The result is in a sense sharp.

1. Introduction

In the one-dimensional case the weak (1,1)-type inequality for the maximal oper-

ator of Fejér means

σ∗ f := sup
n∈N

|σn f |

can be found in Schipp [12] for Walsh series and in Pál, Simon [10] for bounded

Vilenkin series. Here, as usual, the symbol σn denotes the Fejér mean with respect

to the Vilenkin system (and thus also called the Vilenkin-Fejér means, see Section 2).

Fujji [6] and Simon [14] verified that σ∗ is bounded from H1 to L1 . Weisz [23]

generalized this result and proved boundedness of σ∗ from the martingale space Hp

to the Lebesgue space Lp for p > 1/2. Simon [13] gave a counterexample, which

shows that boundedness does not hold for 0 < p < 1/2. A counterexample for p = 1/2

was given by Goginava [8] (see also [2] and [3]). Weisz [24] proved that the maximal

operator of the Fejér means σ∗ is bounded from the Hardy space H1/2 to the space

weak − L1/2 . The boundedness of weighted maximal operators are considered in [9],

[16] and [17].

Weisz [22] (see also [21]) also proved that the following theorem is true:

THEOREM W:(WEISZ). Let p > 0 . Then the maximal operator

σ∇,∗ f = sup
n∈N

|σMn f | (1)
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where M0 := 1, Mn+1 := mnMn (n ∈ N) and m := (m0,m1, . . .) be a sequences of the

positive integers not less than 2, which generate Vilenkin systems, is bounded from the

Hardy space Hp to the space Lp .

In [11] the result of Weisz was generalized and it was found the maximal subspace

S ⊂ N of positive numbers, for which the restricted maximal operator on this subspace

sup
n∈S⊂N

|σn f | of Fejér means is bounded from the Hardy space Hp to the space Lp for

all 0 < p 6 1/2. The new theorem (Theorem 1) in this paper show in particular that

this result is in a sense sharp. In particular, for every natural number n = ∑∞
k=0 nkMk,

where nk ∈ Zmk
(k ∈ N+) we define numbers

〈n〉 := min{ j ∈ N : n j 6= 0}, |n| := max{ j ∈ N : n j 6= 0}, ρ (n) = |n|− 〈n〉

and prove that

S = {n ∈ N : ρ (n) 6 c < ∞.}
Since ρ(Mn) = 0 for all n ∈ N we obtain that {Mn : n ∈ N} ⊂ S and that follows

i.e. that result of Weisz [22] (see also [21]) that restricted maximal operator (1) is

bounded from the Hardy space Hp to the space Lp.
The main aim of this paper is to generalize Theorem W and find the maximal

subspace of positive numbers, for which the restricted maximal operator of Fejér means

in this subspace is bounded from the Hardy space Hp to the space Lp for all 0 < p 6
1/2. As applications, both some well-known and new results are pointed out.

This paper is organized as follows: In order not to disturb our discussions later on

some preliminaries (definitions, notations and lemmas) are presented in Section 2. The

main result (Theorem 1) and some of its consequences can be found in Section 3. The

detailed proof of Theorem 1 is given in Section 4.

2. Preliminaries

Denote by N+ the set of the positive integers, N := N+∪{0}. Let m := (m0,m1, . . .)
be a sequence of the positive integers not less than 2. Denote by Zmn := {0,1, . . . ,mn −
1} the additive group of integers modulo mn . Define the group Gm as the complete

direct product of the groups Zmn with the product of the discrete topologies of Zmn‘s.

In this paper we discuss bounded Vilenkin groups, i.e. the case when supn∈N mn < ∞.
The direct product µ of the measures µn ({ j}) := 1/mn, ( j ∈ Zmn) is the Haar

measure on Gm with µ (Gm) = 1.
The elements of Gm are represented by sequences

x := (x0,x1, . . . ,xn, . . .) , (xn ∈ Zmn) .

It is easy to give a base for the neighbourhood of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . ,yn−1 = xn−1} (x ∈ Gm, n ∈ N) .

Set In := In (0) , for n ∈ N+ and
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en := (0, . . . ,0,xn = 1,0, . . .) ∈ Gm (n ∈ N) .

Denote

I
k,l
N :=

{
IN(0, . . . ,0,xk 6= 0,0, . . . ,0,xl 6= 0,xl+1,..., xN−1 ), k < l < N,
IN(0, . . . ,0,xk 6= 0,0, . . . ,0), l = N.

It is easy to show that

IN =

(
N−2⋃

i=0

N−1⋃

j=i+1

I
i, j
N

)
⋃
(

N−1⋃

i=0

I
i,N
N

)
, n = 2,3, ... (2)

If we define the so-called generalized number system based on m in the following

way :

M0 := 1, Mn+1 := mnMn (n ∈ N),

then every n ∈ N can be uniquely expressed as n = ∑∞
k=0 nkMk, where nk ∈ Zmk

(k ∈
N+) and only a finite number of nk‘s differ from zero. Let

〈n〉 := min{ j ∈ N : n j 6= 0} and |n| := max{ j ∈ N : n j 6= 0},

that is M|n| 6 n 6 M|n|+1. Set ρ (n) = |n|− 〈n〉 , for all n ∈ N.
Next, we introduce on Gm an orthonormal system, which is called the Vilenkin

system. At first, we define the complex-valued function rk (x) : Gm → C, the general-

ized Rademacher functions, by

rk (x) := exp(2π ixk/mk) ,
(
i2 = −1,x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=
∞

∏
k=0

r
nk

k (x) (n ∈ N) .

Specifically, we call this system the Walsh-Paley system, when m ≡ 2.
The norms (or quasi-norms) of the spaces Lp(Gm) and weak−Lp (Gm) (0 < p < ∞)

are respectively defined by

‖ f‖p
p :=

∫

Gm

| f |p
dµ , ‖ f‖p

weak−Lp
:= sup

λ>0

λ pµ ( f > λ ) < ∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [20]).

If f ∈ L1 (Gm) we can define Fourier coefficients, partial sums, Dirichlet kernels,

Fejér means, Fejér kernels with respect to the Vilenkin system in the usual manner:

f̂ (k) :=
∫

Gm

f ψkdµ ( k ∈ N) ,
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Sn f : =
n−1

∑
k=0

f̂ (k)ψk, Dn :=
n−1

∑
k=0

ψk ( n ∈ N+ ) ,

σn f : =
1

n

n−1

∑
k=0

Sk f , Kn :=
1

n

n−1

∑
k=0

Dk ( n ∈ N+ ) .

Recall that (see e.g. [1])

DMn (x) =

{
Mn, if x ∈ In,
0, if x /∈ In,

(3)

and

DsnMn = DsnMn

sn−1

∑
k=0

ψkMn
= DMn

sn−1

∑
k=0

rk
n, (4)

where n ∈ N and 1 6 sn 6 mn − 1.
The σ -algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by ̥n

(n ∈ N) . Denote by f =
(

f (n),n ∈ N
)

a martingale with respect to ̥n (n ∈ N) (for

details see e.g. [21]). The maximal function of a martingale f is defined by

f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ .

In the case f ∈ L1(Gm), the maximal functions are just also given by

f ∗ (x) = sup
n∈N

1

|In (x)|

∣∣∣∣
∫

In(x)
f (u)µ (u)

∣∣∣∣ .

For 0 < p < ∞ the Hardy martingale spaces Hp (Gm) consist of all martingales f ,

for which

‖ f‖Hp
:= ‖ f ∗‖p < ∞.

If f ∈ L1(Gm), then it is easy to show that the sequence (SMn ( f ) : n ∈ N) is a

martingale. If f =
(

f (n),n ∈ N
)

is a martingale, then the Vilenkin-Fourier coefficients

must be defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫

Gm

f (k) (x)ψ i (x)dµ (x) .

The Vilenkin-Fourier coefficients of f ∈ L1 (Gm) are the same as those of the

martingale (SMn f : n ∈ N) obtained from f .

A bounded measurable function a is said to be a p-atom if there exists an interval

I , such that ∫

I
adµ = 0, ‖a‖∞ 6 µ (I)−1/p , supp(a) ⊂ I.

For the proof of the main result (Theorem 1) we need the following Lemmas:
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LEMMA 1. (see e.g. [22]) A martingale f =
(

f (n),n ∈ N
)

is in Hp (0 < p 6 1)

if and only if there exist a sequence (ak,k ∈ N) of p-atoms and a sequence (µk,k ∈ N)
of real numbers such that for every n ∈ N :

∞

∑
k=0

µkSMn ak = f (n) (5)

and
∞

∑
k=0

|µk|p < ∞.

Moreover, ‖ f‖Hp
∽ inf(∑∞

k=0 |µk|p)
1/p

, where the infimum is taken over all decompo-

sition of f of the form (5).

LEMMA 2. (see e.g. [22]) Suppose that an operator T is σ -linear and for some

0 < p 6 1 ∫

−
I

|Ta|p
dµ 6 cp < ∞,

for every p-atom a, where I denotes the support of the atom. If T is bounded from

L∞ to L∞, then

‖T f‖p 6 cp ‖ f‖Hp
.

LEMMA 3. (see [7]) Let n > t, t,n ∈ N, x ∈ It\ It+1 . Then

KMn (x) =

{
0, if x − xtet /∈ In,

Mt

1−rt(x)
, if x − xtet ∈ In.

LEMMA 4. (see [17]) Let x ∈ I
i, j
N , i = 0, . . . ,N − 1, j = i+ 1, . . . ,N . Then

∫

IN

|Kn (x − t)|dµ (t) 6 cMiM j

M2
N

, for n > MN .

LEMMA 5. (see [11]) Let n ∈ N. Then

|Kn (x)| 6 c

n

|n|
∑

l=〈n〉
Ml

∣∣KMl

∣∣6 c

|n|
∑

l=〈n〉

∣∣KMl

∣∣ (6)

and

|nKn| >
M2

〈n〉
2πλ

, x ∈ I〈n〉+1

(
e〈n〉−1 + e〈n〉

)
, (7)

where λ := supmn.
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3. The main result and applications

Our main result reads:

THEOREM 1. a) Let 0 < p < 1/2, f ∈ Hp. Then there exists an absolute constant

cp , depending only on p, such that

∥∥σnk
f
∥∥

Hp
6

cpM
1/p−2

|nk|

M
1/p−2

〈nk〉
‖ f‖Hp

.

b) (sharpness) Let 0 < p < 1/2 and Φ(n) be any nondecreasing function, such

that

sup
k∈N

ρ (nk) = ∞, lim
k→∞

M
1/p−2

|nk|

M
1/p−2

〈nk〉 Φ(nk)
= ∞. (8)

Then there exists a martingale f ∈ Hp, such that

sup
k∈N

∥∥∥∥
σnk

f

Φ(nk)

∥∥∥∥
weak−Lp

= ∞.

COROLLARY 1. Let 0 < p < 1/2, and f ∈ Hp. Then there exists an absolute

constant cp , depending only on p, such that
∥∥σnk

f
∥∥

Hp
6 cp ‖ f‖Hp

, k ∈ N

if and only if

sup
k∈N

ρ (nk) < c < ∞.

As an application we also obtain the previous mentioned result by Weisz [21], [22]

(Theorem W).

COROLLARY 2. Let 0 < p < 1/2, f ∈ Hp. Then there exists an absolute constant

cp , depending only on p, such that

‖σMn f‖Hp
6 cp ‖ f‖Hp

, n ∈ N.

On the other hand, the following unexpected result is true:

COROLLARY 3. a) Let 0 < p < 1/2, f ∈ Hp. Then there exists an absolute con-

stant cp , depending only on p, such that

‖σMn+1 f‖Hp
6 cpM

1/p−2
n ‖ f‖Hp

, n ∈ N.

b) Let 0 < p < 1/2 and Φ(n) be any nondecreasing function, such that

lim
k→∞

M
1/p−2

k

Φ(k)
= ∞.
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Then there exists a martingale f ∈ Hp, such that

sup
k∈N

∥∥∥∥
σMk+1 f

Φ(k)

∥∥∥∥
weak−Lp

= ∞.

REMARK 1. From Corollary 2 we obtain that σMn are bounded from Hp to Hp ,

but from Corollary 3 we conclude that σMn+1 are not bounded from Hp to Hp . The

main reason is that Fourier coefficients of martingales f ∈ Hp are not uniformly bounded

(for details see e.g. [18]).

In the next corollary we state some estimates for the Walsh system only to clearly see

the difference of divergence rates for the various subsequences:

COROLLARY 4. a)Let 0 < p < 1/2, f ∈ Hp. Then there exists an absolute con-

stant cp , depending only on p, such that

‖σ2n+1 f‖Hp
6 cp2(1/p−2)n ‖ f‖Hp

, n ∈ N (9)

and ∥∥σ
2n+2[n/2] f

∥∥
Hp

6 cp2
(1/p−2)n

2 ‖ f‖Hp
, n ∈ N, (10)

where [n/2] denotes an integer part of n/2 .

b) The rates 2(1/p−2)n and 2
(1/p−2)n

2 in inequalities (9) and (10) are sharp in the

same sense as in Theorem 1.

4. Proof of Theorem 1

Proof. a) Since

sup
n∈N

∫

Gm

|Kn (x)|dµ (x) 6 c < ∞, (11)

we obtain that

M
1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|

is bounded from L∞ to L∞. According to Lemma 2 we find that the proof of Theorem

1 will be complete, if we show that

∫

IN

∣∣∣∣∣∣
M

1/p−2

〈nk〉 σnk
a(x)

M
1/p−2

|nk|

∣∣∣∣∣∣

p

< c < ∞,

for every p -atom a, with support I and µ (I) = M−1
N . We may assume that I = IN . It is

easy to see that σnk
(a) = 0 when nk 6 MN . Therefore, we can suppose that nk > MN .
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Since ‖a‖∞ 6 M
1/p
N we find that

M
1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|
6

M
1/p−2

〈nk〉

M
1/p−2

|nk|

∫

IN

|a(t)|
∣∣Knk

(x − t)
∣∣dµ (t) (12)

6
M

1/p−2

〈nk〉 ‖a‖∞

M
1/p−2

|nk|

∫

IN

∣∣Knk
(x − t)

∣∣dµ (t) 6
M

1/p−2

〈nk〉 M
1/p
N

M
1/p−2

|nk|

∫

IN

∣∣Knk
(x − t)

∣∣dµ (t)

6 M
1/p−2

〈nk〉 M2
|nk|

∫

IN

∣∣Knk
(x − t)

∣∣dµ (t) .

Without loss the generality we may assume that i < j . Let x ∈ I
i, j
N and j < 〈nk〉 .

Then x − t ∈ I
i, j
N for t ∈ IN and, according to Lemma 3, we obtain that

∣∣KMl
(x − t)

∣∣= 0, for all 〈nk〉 6 l 6 |nk| .

By applying (12) and (6) in Lemma 5, for x ∈ I
i, j
N , 0 6 i < j < 〈nk〉 we get that

M
1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|
6 M

1/p−2

〈nk〉 M2
|nk|

|nk|
∑

l=〈nk〉

∫

IN

∣∣KMl
(x − t)

∣∣dµ (t) = 0. (13)

Let x ∈ I
i, j
N , where 〈nk〉 6 j 6 N. Then, in the view of Lemma 4, we have that

∫

IN

∣∣Knk
(x − t)

∣∣dµ (t) 6 cMiM j

M2
N

.

By using again (12) we find that

M
1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|
6

M
1/p−2

〈nk〉 M
1/p
N

M
1/p−2

|nk|

∫

IN

∣∣Knk
(x − t)

∣∣dµ (t) (14)

6
M

1/p−2

〈nk〉 M
1/p
N

M
1/p−2

|nk|

MiM j

M2
N

6 M
1/p−2

〈nk〉 MiM j.

By combining (2) and (12)-(14) we get that

∫

IN

∣∣∣∣∣∣
M

1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|

∣∣∣∣∣∣

p

dµ

=
N−2

∑
i=0

N−1

∑
j=i+1

∫

I
i, j
N

∣∣∣∣∣∣
M

1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|

∣∣∣∣∣∣

p

dµ +
N−1

∑
i=0

∫

I
k,N
N

∣∣∣∣∣∣
M

1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|

∣∣∣∣∣∣

p

dµ

6
〈nk〉−1

∑
i=0

N−1

∑
j=〈nk〉

∫

I
i, j
N

∣∣∣∣∣∣
M

1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|

∣∣∣∣∣∣

p

dµ +
N−2

∑
i=〈nk〉

N−1

∑
j=i+1

∫

I
i, j
N

∣∣∣∣∣∣
M

1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|

∣∣∣∣∣∣

p

dµ
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+
N−1

∑
i=0

∫

I
i,N
N

∣∣∣∣∣∣
M

1/p−2

〈nk〉
∣∣σnk

a(x)
∣∣

M
1/p−2

|nk|

∣∣∣∣∣∣

p

dµ

6
〈nk〉−1

∑
i=0

N−1

∑
j=〈nk〉

∫

I
i, j
N

∣∣∣M1/p−2

〈nk〉 MiM j

∣∣∣
p

dµ +
N−2

∑
i=〈nk〉

N−1

∑
j=i+1

∫

I
i, j
N

∣∣∣M1/p−2

〈nk〉 MiM j

∣∣∣
p

dµ

+
N−1

∑
i=0

∫

I
i,N
N

∣∣∣M1/p−2

〈nk〉 MiMN

∣∣∣
p

dµ

6 cpM
1−2p

〈nk〉

〈nk〉−1

∑
i=0

N−1

∑
j=〈nk〉

(MiM j)
p

M j
+cpM

1−2p

〈nk〉
N−2

∑
i=〈nk〉

N−1

∑
j=i+1

(MiM j)
p

M j
+cpM

1−2p

〈nk〉
N−1

∑
i=0

(MiMN)p

MN

6 cpM
1−2p

〈nk〉

〈nk〉
∑
i=0

M
p
i

N−1

∑
j=〈nk〉+1

1

M
1−p
j

+ M
1−2p

〈nk〉
N−2

∑
i=〈nk〉

M
p
i

N−1

∑
j=i+1

1

M
1−p
j

+ cp

N−1

∑
i=0

M
p
i

M
p
N

6 cpM
1−2p

〈nk〉 M
p

〈nk〉
1

M
1−p

〈nk〉
+ cpM

1−2p

〈nk〉
N−2

∑
i=〈nk〉

1

M
1−2p
i

+ cp 6 cp < ∞.

The proof of the a) part is complete.

b) Let {nk : k > 0} be a sequence of positive numbers, satisfying condition (8).

Then

sup
k∈N

M|nk|
M〈nk〉

= ∞. (15)

Under condition (15) there exists a sequence {αk : k > 0} ⊂ {nk : k > 0} such

that α0 > 3 and

∞

∑
k=0

M
(1−2p)/2

〈αk〉 Φp/2 (αk)

M
(1−2p)/2

|αk|
< c < ∞. (16)

Let

f (n) = ∑
{k; |αk|<n}

λkak,

where

λk =
λ M

(1/p−2)/2

〈αk〉 Φ1/2 (αk)

M
(1/p−2)/2

|αk|

and

ak =
M

1/p−1

|αk|
λ

(
DM|αk|+1

− DM|αk |

)
.

Here λ = supn∈N mn . By applying Lemma 1 we can conclude that f ∈ Hp.
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It is evident that

f̂ ( j) =





M
1/2p

|αk| M
(1/p−2)/2

〈αk〉 Φ1/2 (αk) ,

if j ∈
{

M|αk|, ..., M|αk|+1 − 1
}

, k = 0,1,2...,
0 ,

if j /∈
∞⋃

k=0

{
M|αk|, ..., M|αk|+1 − 1

}
.

(17)

Moreover,

σαk
f

Φ(αk)
=

1

αkΦ(αk)

M|αk |
∑
j=1

S j f +
1

αkΦ(αk)

αk

∑
j=M|αk |+1

S j f := I + II.

Let M|αk| < j 6 αk. Then, by applying (17) we get that

S j f = SM|αk |
f + M

1/2p

|αk| M
(1/p−2)/2

〈αk〉 Φ1/2 (αk)
(

D j − DM|αk |

)
. (18)

By using (18) we can rewrite II as

II =
αk − M|αk|
αkΦ(αk)

SM|αk |
f +

M
1/2p

|αk| M
(1/p−2)/2

〈αk〉
αkΦ1/2 (αk)

αk

∑
j=M|αk|

(
D j − DM|αk |

)

:= II1 + II2.

Since (for details see e.g. [5] and [19])

∥∥∥SM|αk|
f

∥∥∥
weak−Lp

6 cp ‖ f‖Hp

we obtain that

‖II1‖p
weak−Lp

6
(

αk − M|αk|
αkΦ(αk)

)p∥∥∥SM|αk|
f

∥∥∥
p

weak−Lp

6
∥∥∥SM|αk |

f

∥∥∥
p

weak−Lp

6 cp ‖ f‖p
Hp

< ∞.

By using part a) of Theorem 1 (see also Corollary 2) we find that

‖I‖p
weak−Lp

=

(
M|αk|

αkΦ(αk)

)p∥∥∥σM|αk |
f

∥∥∥
p

weak−Lp

6 cp ‖ f‖p
Hp

< ∞.

Let x ∈ I〈αk〉−1,〈αk〉
〈αk〉+1

. Under condition (8) we can conclude that 〈αk〉 6= |αk| and
〈
αk − M|αk|

〉
= 〈αk〉 . Since

D j+Mn = DMn + ψMnD j = DMn + rnD j, when j < Mn (19)

if we apply estimate (7) in Lemma 5 for II2 we obtain that

|II2| =
M

1/2p

|αk| M
(1/p−2)/2

〈αk〉
αkΦ1/2 (αk)

∣∣∣∣∣∣

αk−M|αk |
∑
j=1

(
D j+M|αk|

− DM|αk|

)
∣∣∣∣∣∣
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=
M

1/2p

|αk| M
(1/p−2)/2

〈αk〉
αkΦ1/2 (αk)

∣∣∣∣∣∣
ψM|αk|

αk−M|αk|
∑
j=1

D j

∣∣∣∣∣∣

>
cpM

1/2p−1

|αk| M
(1/p−2)/2

〈αk〉
Φ1/2 (αk)

(
αk − M|αk|

)∣∣∣Kαk−M|αk |

∣∣∣>
cpM

1/2p−1

|αk| M
(1/p+2)/2

〈αk〉
Φ1/2 (αk)

.

It follows that

‖II2‖p
weak−Lp

> cp


M

(1/p−2)/2

|αk| M
(1/p+2)/2

〈αk〉
Φ1/2 (αk)




p

µ
{

x ∈ Gm : |IV2| > cpM
(1/p−2)/2

|αk| M
(1/p+2)/2

〈αk〉

}

> cp

M
1/2−p

|αk| M
1/2+p

〈αk〉 µ
{

I〈αk〉−1,〈αk〉
〈αk〉+1

}

Φp/2 (αk)
>

cpM
1/2−p

|αk|

M
1/2−p

〈αk〉 Φp/2 (αk)
.

Hence, if we apply (16) for large k ,

∥∥σαk
f
∥∥p

weak−Lp
> ‖II2‖p

weak−Lp
−‖II1‖p

weak−Lp
−‖I‖p

weak−Lp

> 1

2
‖II2‖p

weak−Lp
>

cpM
1/2−p

|αk|

2M
1/2−p

〈αk〉 Φp/2 (αk)
→ ∞, as k → ∞.

The proof is complete.
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Abstract. In this paper we �nd necessary and su�cient condition for
the modulus of continuity for which subsequences of Fejér means with
respect to Vilenkin systems are bounded from the Hardy space Hp to
the Lebesgue space Lp, for all 0 < p < 1/2.
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1. Introduction

It is known (for details see e.g. and [12] and the books [16] and [31,
34]) that the subsequence SMn of the partial sums are bounded from the
martingale Hardy space Hp to the Lebesgue space Lp, for all p > 0. It
follows that for any F ∈ Hp,

‖SMk
F − F‖p → 0, as k →∞

and

‖SMk
F − F‖Lp,∞ → 0, as k →∞,(1)

However, (see Tephnadze [12, 27]) there exists a martingale F ∈ Hp

(0 < p < 1) , such that

sup
n∈N
‖SMn+1F‖Lp,∞ =∞.

The reason of the divergence of SMn+1f is that when 0 < p < 1 the Fourier
coe�cients of f ∈ Hp are not uniformly bounded (see Tephnadze [26, 27]).
In particular, for f ∈ Hp(Gm) where 0 < p < 1,

‖Snkf − f‖p → 0, as k →∞
holds if and only if

(2) sup
k∈N

d (nk) ≤ c <∞,

The research was supported by Shota Rustaveli National Science Foundation grant
PHDF-18-476.
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2 G. TUTBERIDZE

where d (nk) is de�ned by (6).
In the one-dimensional case the weak-(1, 1)-type inequality for the maxi-

mal operator of Fejér means σ∗f := supn∈N |σnf | can be found in Schipp [15]
for Walsh series and in Pál, Simon [9] for bounded Vilenkin series. Fujji [5]
and Simon [18] veri�ed that σ∗ is bounded from H1 to L1. Weisz [33] gen-
eralized this result and proved boundedness of σ∗ from the martingale space
Hp to the Lebesgue space Lp for p > 1/2. Simon [17] gave a counterexample,
which shows that boundedness does not hold for 0 < p < 1/2. A counterex-
ample for p = 1/2 was given by Goginava [7] (see also [2, 3] and [14]). Weisz
[34] (see also [11] and [29]) proved that the maximal operator of the Fejér
means σ∗ is bounded from the Hardy space H1/2 to the space weak − L1/2.
The boundedness of weighted maximal operators are considered in [20, 21],
[28]. Similar problems for Walsh-Kaczmarz-Fejér means were considered in
[8], [22, 23].

Weisz [32] (see also [31]) also proved that for any p > 0 the maximal
operator

σ∇,∗f = sup
n∈N
|σMnf |

is bounded from the Hardy space Hp to the space Lp. It follows that for
F ∈ Hp we get

‖σMk
F − F‖p → 0, as k →∞

and

‖σMk
F − F‖Lp,∞ → 0, as k →∞,(3)

Moreover, Weisz [32] (see also [31]) also proved that for any f ∈ Hp,

(4) ‖σMk
f − f‖Hp → 0, as k →∞.

In [10] was generalized result of Weisz (see Theorem W) and was proved
that if 0 < p ≤ 1/2 and {nk : k ≥ 0} be a sequence of positive numbers, such
that condition (6) is ful�lled. Then the maximal operator

σ̃∗,∇f = sup
k∈N
|σnkf |

is bounded from the Hardy space Hp to the space Lp. Moreover, under
condition (2) there exists an absolute constant cp, depending only on p, such
that

‖σnkf‖Hp ≤ cp ‖f‖Hp .
It was also proved that these results are sharp.

In [13] was considered case when supk∈N d (nk) =∞ and was proved that
the following is true:
Theorem PTT: (Persson, Tephnadze, Tutberidze)

a) Let 0 < p < 1/2, f ∈ Hp. Then there exists an absolute constant cp,
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FEJÉR MEANS 3

depending only on p, such that

‖σnkf‖Hp ≤
cpM

1/p−2
|nk|

M
1/p−2
〈nk〉

‖f‖Hp .

b) (sharpness) Let 0 < p < 1/2 and Φ (n) be any nondecreasing function,
such that

(5) sup
k∈N

d (nk) =∞, lim
k→∞

M
1/p−2
|nk|

M
1/p−2
〈nk〉 Φ (nk)

=∞.

Then there exists a martingale f ∈ Hp, such that

sup
k∈N

∥∥∥∥
σnkf

Φ (nk)

∥∥∥∥
Lp,∞

=∞.

Similar problems for Walsh system when 0 < p ≤ 1/2 was proved in [24].
Moreover, it was found necessary and su�cient condition for the modulus
of continuity for which subsequences of Fejér means with respect to Walsh
system are bounded from the Hardy space Hp to the Lebesgue space Lp, for
all 0 < p ≤ 1/2.

The main aim of this paper is to generalized results considered in [24] for
bounded Vilenkin systems when 0 < p < 1/2. As applications, both some
well-known and new results are pointed out.

We note that analogical results for Vilenkin systems when p = 1/2 are
open problems.

This paper is organized as follows: in order not to disturb our discussions
later on some de�nitions and notations are presented in Section 2. The main
results and some of its consequences can be found in Section 3. For the
proofs of the main results we need some auxiliary Lemmas. These results
are presented in Section 4. The detailed proof of the mine result is given in
Section 5.

2. Definitions and Notations

Denote by N+ the set of the positive integers, N := N+ ∪ {0}. Let m :=
(m0,m1, . . . ) be a sequence of the positive integers not less than 2. Denote
by Zmn := {0, 1, . . . ,mn − 1} the additive group of integers modulo mn.
De�ne the group Gm as the complete direct product of the groups Zmn with
the product of the discrete topologies of Zmn ‘s.

In this paper we discuss bounded Vilenkin groups, i.e. the case when
supn∈Nmn <∞.

The direct product µ of the measures µn ({j}) := 1/mn, (j ∈ Zmn) is the
Haar measure on Gm with µ (Gm) = 1.

The elements of Gm are represented by sequences

x := (x0, x1, . . . , xn, . . .) , (xn ∈ Zmn) .

It is easy to give a base for the neighbourhood of Gm :
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4 G. TUTBERIDZE

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ N) .

Set In := In (0) , for n ∈ N+ and

en := (0, . . . , 0, xn = 1, 0, . . . ) ∈ Gm (n ∈ N) .

Denote

Ik,lN :=

{
IN (0, . . . , 0, xk 6= 0, 0, . . . , 0, xl 6= 0, xl+1,..., xN−1 ), k < l < N,
IN (0, . . . , 0, xk 6= 0, 0, . . . , 0), l = N.

It is easy to show that

IN =



N−2⋃

i=0

N−1⋃

j=i+1

Ii,jN


⋃

(
N−1⋃

i=0

Ii,NN

)
.

If we de�ne the so-called generalized number system based on m in the
following way :

M0 := 1, Mn+1 := mnMn (n ∈ N),

then every n ∈ N can be uniquely expressed as n =
∑∞

k=0 nkMk, where
nk ∈ Zmk (k ∈ N+) and only a �nite number of nk‘s di�er from zero. Let

〈n〉 := min{j ∈ N : nj 6= 0} and |n| := max{j ∈ N : nj 6= 0},
that is M|n| ≤ n ≤M|n|+1.

Set

(6) d (n) = |n| − 〈n〉 for all n ∈ N.

Next, we introduce on Gm an orthonormal system, which is called the
Vilenkin system. At �rst, we de�ne the complex-valued function rk (x) :
Gm → C, the generalized Rademacher functions, by

rk (x) := exp (2πixk/mk) ,
(
i2 = −1, x ∈ Gm, k ∈ N

)
.

Now, de�ne the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=

∞∏

k=0

rnkk (x) (n ∈ N) .

Speci�cally, we call this system the Walsh-Paley system, when m ≡ 2.
The norms (or quasi-norms) of the spaces Lp(Gm) and weak − Lp (Gm)

(0 < p <∞) are respectively de�ned by

‖f‖pp :=

∫

Gm

|f |p dµ, ‖f‖pLp,∞ := sup
λ>0

λpµ (|f | > λ) <∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [30]).
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FEJÉR MEANS 5

If f ∈ L1 (Gm) we can de�ne Fourier coe�cients, partial sums, Dirichlet
kernels, Fejér means, Fejér kernels with respect to the Vilenkin system in
the usual manner:

f̂ (k) :=

∫

Gm

fψkdµ ( k ∈ N) ,

Snf :=

n−1∑

k=0

f̂ (k)ψk, Dn :=

n−1∑

k=0

ψk ( n ∈ N+ ) ,

σnf :=
1

n

n−1∑

k=0

Skf, Kn :=
1

n

n−1∑

k=0

Dk ( n ∈ N+ ) .

Recall that (see e.g. [1])

DMn (x) =

{
Mn, if x ∈ In,
0, if x /∈ In.

The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted
by zn (n ∈ N) . Denote by F =

(
F (n), n ∈ N

)
a martingale with respect to

zn (n ∈ N) (for details see e.g. [31]). The maximal function of a martingale
F is de�ned by

F ∗ = sup
n∈N

∣∣∣F (n)
∣∣∣ .

In the case f ∈ L1(Gm), the maximal functions are also be given by

f∗ (x) = sup
n∈N

1

|In (x)|

∣∣∣∣∣

∫

In(x)
f (u)µ (u)

∣∣∣∣∣ .

For 0 < p < ∞ the Hardy martingale spaces Hp (Gm) consist of all mar-
tingales F , for which

‖F‖Hp := ‖F ∗‖p <∞.
If f ∈ L1(Gm), then it is easy to show that the sequence (SMnf : n ∈ N) is

a martingale. If F =
(
F (n), n ∈ N

)
is martingale, then the Vilenkin-Fourier

coe�cients must be de�ned in a slightly di�erent manner:

F̂ (i) := lim
k→∞

∫

Gm

F (k)ψidµ.

The Vilenkin-Fourier coe�cients of f ∈ L1 (Gm) are the same as those of
the martingale (SMnf : n ∈ N) obtained from f .

A bounded measurable function a is said to be a p-atom if there exists an
interval I, such that∫

I
adµ = 0, ‖a‖∞ ≤ µ (I)−1/p , supp (a) ⊂ I.

The modulus of continuity of the function f ∈ Lp (Gm) , is de�ned by

ωp (1/Mn, f) := sup
h∈In
‖f (·+ h)− f (·)‖p .
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6 G. TUTBERIDZE

The concept of modulus of continuity in Hp(Gm) (p > 0) is de�ned in the
following way

ωHp (1/Mn, F ) := ‖F − SMnF‖Hp .
We need to understand the meaning of the expression F − SMnF where

F is a martingale and SMnF is function. Since

SMnF = F (n), for F =
(
F (n) : n ∈ N

)
∈ Hp

and (
SMk

F (n) : k ∈ N
)

= (SMk
SMnF, k ∈ N)

=
(
SM0F, . . . , SMn−1F, SMnF, SMnF, . . .

)

=
(
f (0), . . . , f (n−1), f (n), f (n), . . .

)

we obtain that F − SMnF is a martingale, for which

(7) (F − SMnF )k =

{
0, k = 0, . . . . , n,
Fk − Fn, k ≥ n+ 1,

Since ‖F‖Hp ∼ ‖F‖p , for p > 1, we obtain that

ωHp (1/Mn, F ) ∼ ‖F − SMnF‖p , p > 1.

On the other hand, there are strong connection among this de�nitions:

ωp (1/Mn, f) /2 ≤ ‖f − SMnf‖p ≤ ωp (1/Mn, f) ,

and

‖f − SMnf‖p /2 ≤ EMn (f, Lp) ≤ ‖f − SMnf‖p .

3. The Main Result and applications

Our main result reads:

Theorem 1. a) Let 0 < p < 1/2, F ∈ Hp(Gm), supk∈N d (nk) =∞ and

(8) ωHp
(
1/M|nk|, F

)
= o


M

1/p−2
〈nk〉

M
1/p−2
|nk|


 , as k →∞.

Then

(9) ‖σnkF − F‖Hp → 0, as k →∞.
b) Let supk∈N d (nk) = ∞. Then there exists a martingale F ∈ Hp(Gm)

(0 < p < 1/2) , for which

(10) ωHp
(
1/M|nk|, F

)
= O


M

1/p−2
〈nk〉

M
1/p−2
|nk|


 , as k →∞
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FEJÉR MEANS 7

and

(11) ‖σnkF − F‖Lp,∞ 9 0, as k →∞.
Corollary 1. Let 0 < p < 1/2, and F ∈ Hp(Gm). Then there exists an
absolute constant cp, depending only on p, such that

‖σnkF‖Hp ≤ cp ‖F‖Hp , k ∈ N

if and only if when supk∈N d (nk) < c <∞.
As a application we also obtain the previous mentioned result by Weisz

[31], [32]:

Corollary 2. Let 0 < p < 1/2, F ∈ Hp(Gm). Then there exists an absolute
constant cp, depending only on p, such that

‖σMnF‖Hp ≤ cp ‖F‖Hp , n ∈ N.

On the other hand, the following unexpected new result is also obtained:

Corollary 3. a)Let 0 < p < 1/2, F ∈ Hp. Then there exists an absolute
constant cp, depending only on p, such that

‖σMn+1F‖Hp ≤ cpM
1/p−2
n ‖F‖Hp , n ∈ N.

b) Let 0 < p < 1/2 and Φ (n) be any nondecreasing function, such that

lim
k→∞

M
1/p−2
k

Φ (k)
=∞.

Then there exists a martingale F ∈ Hp, such that

sup
k∈N

∥∥∥∥
σMk+1F

Φ (k)

∥∥∥∥
Lp,∞

=∞.

Remark 1. From Corollary 2 we obtain that σMn are bounded from Hp(Gm)
to Hp(Gm), but from Corollary 3 we conclude that σMn+1 are not bounded
from Hp(Gm) to Hp(Gm). The main reason is that Fourier coe�cients of
martingale f ∈ Hp(Gm), (0 < p < 1) are not uniformly bounded (for
details see e.g. [25]).

In the next corollary we state theorem for Walsh system only to clearly
see di�erence of divergence rates for the various subsequences:

Corollary 4. a) Let 0 < p < 1/2, F ∈ Hp(Gm). Then there exists an
absolute constant cp, depending only on p, such that

(12) ‖σ2n+1F‖Hp ≤ cp2
n(1/p−2) ‖F‖Hp , n ∈ N

and

(13) ‖σ22n+2nF‖Hp ≤ cp2
n(1/p−2) ‖F‖Hp , n ∈ N.

Here σ2n+1 and σ22n+2n are Fejér means of Walsh-Fourier series.

b) The rates 2n(1/p−2) and 2n(1/2p−1) in inequalities (12) and (13) are
sharp in the same sense as in Theorem 1.
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8 G. TUTBERIDZE

4. AUXILIARY LEMMAS

For the proof of Theorem 1 we need the following Lemmas:

Lemma 1 (see e.g. [32]). A martingale F =
(
F (n), n ∈ N

)
is in Hp(Gm) (0 < p ≤ 1)

if and only if there exist a sequence (ak, k ∈ N) of p-atoms and a sequence
(µk, k ∈ N) of real numbers such that for every n ∈ N :

(14)
∞∑

k=0

µkSMnak = F (n)

and
∞∑

k=0

|µk|p <∞.

Moreover, ‖F‖Hp(Gm) v inf (
∑∞

k=0 |µk|p)
1/p , where the in�mum is taken

over all decomposition of f of the form (14).

Lemma 2 (see e.g. [32]). Suppose that an operator T is σ-linear and for
some 0 < p ≤ 1 ∫

−
I

|Ta|p dµ ≤ cp <∞

for every p-atom a, where I denote the support of the atom. If T is bounded
from L∞ to L∞, then

‖TF‖p ≤ cp ‖F‖Hp .

Lemma 3 (see [6]). Let n > t, t, n ∈ N, x ∈ It\It+1. Then

KMn (x) =

{
0, if x− xtet /∈ In,
Mt

1−rt(x) , if x− xtet ∈ In.

Lemma 4 (see [21]). Let x ∈ Ii,jN , i = 0, . . . , N − 1, j = i+ 1, . . . , N . Then
∫

IN

|Kn (x− t)| dµ (t) ≤ cMiMj

M2
N

, for n ≥MN .

Lemma 5 (see [10]). Let n ∈ N. Then exists an absolute constant c, such
that the following upper estimation holds true

(15) |Kn (x)| ≤ c

n

|n|∑

l=〈n〉
Ml |KMl

| ≤ c
|n|∑

l=〈n〉
|KMl

| .

Moreover, we have the following lower estimation:

(16) |nKn| ≥
M2
〈n〉

2πλ
, for x ∈ I〈n〉+1

(
e〈n〉−1 + e〈n〉

)
, where λ := sup

n∈N
mn.
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5. Proof

Proof of Theorem 1. Let 0 < p < 1/2, f ∈ Hp(Gm) and Mk < n ≤
Mk+1. By applying part a) of Theorem PTT we can conclude that

‖σnF − F‖pHp
≤ ‖σnF − σnSMk

F‖pHp + ‖σnSMk
F − SMk

F‖pHp + ‖SMk
F − F‖pHp

= ‖σn (SMk
F − F )‖pHp + ‖SMk

F − F‖pHp + ‖σnSMk
F − SMk

F‖pHp

≤ cp
(
M1−2p
|n|

M1−2p
〈n〉

+ 1

)
ωpHp (1/Mn, F ) + ‖σnSMk

F − SMk
F‖pHp .

By simple calculation we get that

σnSMk
F − SMk

F =
Mk

n
(SMk

σMk
F − SMk

F ) =
Mk

n
SMk

(σMk
F − F ) .

Let p > 0. Then (see inequality (4))

(17) ‖σnSMk
F − SMk

F‖pHp

≤ 2Mk

np
‖SMk

(σMk
F − F )‖pHp ≤ cp ‖σMk

F − F‖pHp → 0, as k →∞.

On the other hand, under the condition (8) we also get that

(18) cp

(
M1−2p
|n|

M1−2p
〈n〉

+ 1

)
ωpHp (1/Mn, F )→ 0

by combining (17) and (18) we complete the proof of part a).
Now, prove second part of theorem. Since supk∈N d (nk) = ∞, we obtain

that, for 0 < p < 1/2 there exists a subsequence {sk : k ≥ 1} ⊂ {nk : k ≥ 1}
such that limk→∞ d(sk) =∞ and

M
1/p−2
〈sk〉

M
1/p−2
|sk|

=
1

(
m〈sk〉 . . .m|sk|−1

)1/p−2 ≤
1

2d(sk)(1/p−2)
→ 0.

It follows that there exists {αk : k ≥ 1} ⊂ {sk : k ≥ 1} such that |α0| 6= 〈α0〉 ,
d (αk) is an increasing sequence satisfying limk→∞ d (αk) =∞ and

(19)
M

1/p−2
〈αk〉

M
1/p−2
|αk|

≤


M

1/p−2
〈αk−1〉

M
1/p−2
|αk−1|




2

for all k ∈ N.

By using (19) we get that

M
1/p−2
〈αk〉

M
1/p−2
|αk|

≤


M

1/p−2
〈αk−1〉

M
1/p−2
|αk−1|




2

≤ . . . ≤


M

1/p−2
〈α0〉

M
1/p−2
|α0|



k+1

≤ 1

2(k+1)(|α0|−〈α0〉)(1/p−2)

and
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(20)
∞∑

k=0


M

1/p−2
〈αk〉

M
1/p−2
|αk|



p

≤
∞∑

k=0

1

2(k+1)(|α0|−〈α0〉)(1−2p) < c <∞.

For λ = supk∈Nmk we set F =
(
F (n), n ∈ N

)
where

F (n) =
∑

{i: |αi|<n}

λM
(1/p−2)
〈αi〉

M
(1/p−2)
|αi|

a
(p)
i , a

(p)
k :=

M
1/p−1
|αk|
λ

(
DM|αk|+1

−DM|αk|

)

Since a
(p)
i (x) is p-atom if we use equality (7) we �nd that

(
F − SM|αn|F

)
k

=

{
0, k = 0, . . . . , |αn| ,
F (k) − F (|αn|), k ≥ |αn|+ 1,

and

F − SM|αn|F =


0, ..., 0,

n+s∑

i=n

M
1/p−2
〈αi〉

M
1/p−2
|αi|

a
(p)
i , ...


 , s ∈ N+

is martingale. On the other hand, according that d(αn) is increasing and
d(α0) 6= 0 we obtain that d(αn) 6= 0, for all n ∈ N+. Hence, by combining
(19) and Lemma 1 we get that

ωHp(1/M|αn|, F ) = ‖F − SM|αn |F‖Hp

≤
∞∑

i=n

M
1/p−2
〈αi〉

M
1/p−2
|αi|

≤
∞∑

i=1


M

1/p−2
〈αn〉

M
1/p−2
|αn|



i

= O


M

1/p−2
〈αn〉

M
1/p−2
|αn |


 , as n→∞.

It is easy to show that

(21) F̂ (j) =





M|αk|M
1/p−2
〈αk〉 , j ∈

{
M|αk|, ...,M|αk|+1

− 1
}
, k = 0, 1, ...

0 , j /∈
∞⋃
i=0

{
M|αk|

, ...,M|αk|+1
− 1
}
.

Let M|αk| < j < αk. By using (21) we get that

SjF = SM|αk|
F +

j−1∑

v=M |αk|

F̂ (v)wv = SM|αk|
F +M|αk|M

1/p−2
〈αk〉

(
Dj −DM|αk|

)
.

Hence,

σαkF =
1

αk

M|αk|∑

j=1

SjF +
1

αk

αk∑

j=M|αk|+1

SjF(22)

=
M|αk|
αk

σM|αk|
F +

(
αk −M|αk|

)
SM|αk|

F

αk
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+
M|αk|M

1/p−2)
〈αk〉

αk

αk∑

j=M|αk|
+1

(
Dj −DM|αk|

)
= I + II + III.

SinceDj+Mn = DMn + ψMnDj , when j < Mn+1 we obtain that

|III| =
M|αk|M

1/p−2
〈αk〉

αk

∣∣∣∣∣∣

αk−M|αk|∑

j=1

(
Dj+M|αk|

−DM|αk|

)
∣∣∣∣∣∣

(23)

=
M|αk|M

1/p−2
〈nk〉

αk

∣∣∣∣∣∣

αk−M|αk|∑

j=1

Dj

∣∣∣∣∣∣

=
M|αk|M

1/p−2
〈αk〉

αk

(
αk −M |αk|

) ∣∣∣∣Kαk−M|αk|

∣∣∣∣

≥ cM
1/p−2
〈αk〉

(
αk −M|αk|

) ∣∣∣∣Kαk−M|αk|

∣∣∣∣ .

By combining (22) and (23) we can conclude that

‖σαkF − F‖pLp,∞ = ‖I + II + III − F‖pLp,∞

= ‖III +
M|αk|
αk

σM|αk|
F +

(
αk −M|αk|

)
SM|αk|

F

αk
− F‖pLp,∞

= ‖III +
M|αk|
αk

(
σM|αk|

F − F
)

+
αk −M|αk|

αk

(
SM|αk|

F − F
)
‖pLp,∞

≥ ‖III‖pLp,∞ −
(
M|αk|
αk

)p
‖σM|αk|F − F‖

p
Lp,∞

−
(
αk −M|αk|

αk

)p
‖SM|αk|F − F‖

p
Lp,∞

≥ ‖III‖pLp,∞ − ‖σM|αk|F − F‖
p
Lp,∞ − ‖SM|αk|F − F‖

p
Lp,∞ .

By combining (1) and (3) we �nd that

‖SM|αk|F − F‖
p
Lp,∞ → 0, ‖σM|αk|F − F‖

p
Lp,∞ → 0, as k →∞,

and

‖σαkF − F‖pLp,∞ ≥ ‖III‖
p
Lp,∞ − o(1), as k →∞.

Let x ∈ I〈αk〉+1

(
e〈αk〉−1 + e〈αk〉

)
. By using Lemma 5 we have that

µ
{
x ∈ Gm :

(
αk −M|αk|

) ∣∣∣Kαk−M|αk|

∣∣∣ ≥ cM2
〈αk〉
}

≥ µ
(
I〈αk〉+1

(
e〈αk〉−1 + e〈αk〉

))
≥ c

M〈αk〉
,
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12 G. TUTBERIDZE

and

‖
(
αk −M|αk|

)
Kαk−M|αk|

‖pLp,∞
≥ cM2p

〈αk〉µ
{
x ∈ Gm :

(
αk −M|αk|

) ∣∣∣Kαk−M|αk|

∣∣∣ ≥ cM2
〈αk〉
}

≥ cM2p
〈αk〉

1

M〈αk〉
= cM2p−1

〈αk〉 .

It follows that

‖III‖pLp,∞ ≥M
1−2p
〈αk〉 ‖

(
αk −M|αk|

)
Kαk−M|αk|

‖pLp,∞ ≥ c > 0.

Hence, for su�ciently large k, we can write that

‖σαkF − F‖pLp,∞ ≥ ‖III‖
p
Lp,∞ − o(1) ≥ 1

2
‖III‖pLp,∞ >

c

2
9 0, as k →∞

and proof is complete. �
Acknowledgment: The author would like to thank the referee for helpful

suggestions, which improved the �nal version of the paper.
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Abstract. In this paper we prove and discuss some new (Hp,weak−Lp) type inequalities of maximal
operators of T means with respect to Vilenkin systems with monotone coefficients. We also apply
these results to prove a.e. convergence of such T means. It is also proved that these results are the
best possible in a special sense. As applications, both some well-known and new results are pointed
out.

1 Introduction

For the notation used in this introduction see Section 2.

Weisz [20] proved boundedness of σ∗ from the martingale space Hp to the space Lp, for p> 1/2.
Simon [13] gave a counterexample, which shows that boundedness does not hold for 0< p< 1/2. A
counterexample for p = 1/2 was given by Goginava [6] (see also [15, 16] and [12]). Moreover, Weisz
[22] proved that the following is true:
Theorem W1. The maximal operator of the Fejeans σ∗ is bounded from the Hardy space H1/2 to the
space weak-L1/2.

Riesz‘s logarithmic means with respect to the Walsh and Vilenkin systems were investigated by
Simon [13], Blahota and Gbg. For the Vilenkin systems in [17] and for the Walsh system in [14]
it were proved that the maximal operator of Riesz‘s means R∗ is bounded from the Hardy space
H1/2 to the space weak−L1/2, but is not bounded from the Hardy space Hp to the space Lp, when

2010 Mathematics Subject Classification: 42C10, 42B25.
? The research was supported by Shota Rustaveli National Science Foundation grant FR-19-676.
Keywords: Vilenkin system, Vilenkin group, T means, martingale Hardy space, weak−Lp spaces, maximal operator,
Vilenkin-Fourier series.
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2 G.Tutberidze

0< p 6 1/2. Since the set of Vilenkin polynomials are dense in L1, by well-known density argument
due to Marcinkiewicz and Zygmund [7] we have that Rn f → f , a.e. for all f ∈ L1.

Mz and Siddiqi [8] investigated the approximation properties of some special Nrlund means of
Walsh-Fourier series of Lp function in norm. In the two-dimensional case similar problems was stud-
ied by Nagy [9, 10]. In [11] (see also [1, 5]) it was proved some (Hp,Lp)-type inequalities for the
maximal operators of Nrlund means, when 0< p 6 1.

In [3] and [4] were investigated T means and studied some approximation properties of these
summability methods in the Lebesgue spaces for Lp, 1 6 p 6 ∞. In this paper we prove analogous
theorems considered in [11] and derive some new (Hp,Lp)-type inequalities for the maximal operators
of T means, when 0< p 6 1. We also apply these results to prove a.e. convergence of such T means.
It is also proved that these results are the best possible in a special sense. As applications, both some
well-known and new results are pointed out.

The paper is organized as follows: In Section 3 we present and discuss the main results and in
Section 4 the proofs can be found. Moreover, in order not to disturb our discussions in these Sections
some preliminaries are given in Section 2.

2 Preliminaries

Denote by N+ the set of the positive integers, N := N+∪{0}. Let m := (m0, m1, ...) be a sequence of
the positive integers not less than 2. Denote by

Zmk := {0,1, ...,mk−1}

the additive group of integers modulo mk.
Define the group Gm as the complete direct product of the groups Zmi with the product of the

discrete topologies of Zm j ‘s.
The direct product µ of the measures

µk ({ j}) := 1/mk ( j ∈ Zmk)

is the Haar measure on Gm with µ(Gm) = 1.
In this paper we discuss bounded Vilenkin groups, i.e. the case when supn mn < ∞.
The elements of Gm are represented by sequences

x := (x0,x1, ...,x j, ...) ,
(
x j ∈ Zm j

)
.

It is easy to give a base for the neighborhood of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, ...,yn−1 = xn−1},
where x ∈ Gm, n ∈ N.

Denote In := In (0) for n ∈ N+, and In := Gm \ In.

If we define the so-called generalized number system based on m in the following way :

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as n = ∑∞
j=0 n jM j, where n j ∈ Zm j ( j ∈ N+) and only a

finite number of n j‘s differ from zero.
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Maximal operators of T means with respect to the Vilenkin system 3

Next, we introduce on Gm an orthonormal system which is called the Vilenkin system. At first, we
define the complex-valued function rk (x) : Gm→ C, the generalized Rademacher functions, by

rk (x) := exp(2πixk/mk) ,
(
i2 =−1,x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=
∞

∏
k=0

rnk
k (x) , (n ∈ N) .

Specifically, we call this system the Walsh-Paley system when m≡ 2.
The norms (or quasi-norms) of the spaces Lp(Gm) and weak−Lp (Gm) (0< p< ∞) are respec-

tively defined by

‖ f‖p
p :=

∫

Gm

| f |p dµ and ‖ f‖p
weak−Lp

:= sup
λ>0

λpµ( f > λ)<+∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [18]).
Now, we introduce analogues of the usual definitions in Fourier-analysis. If f ∈ L1 (Gm) we can

define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet kernels with respect
to the Vilenkin system in the usual manner:

f̂ (n) :=
∫

Gm

f ψndµ (n ∈ N) ,

Sn f :=
n−1

∑
k=0

f̂ (k)ψk, Dn :=
n−1

∑
k=0

ψk , (n ∈ N+)

respectively. Recall that

DMn (x) =
{

Mn, if x ∈ In,
0, if x /∈ In.

(2.1)

The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by zn (n ∈ N) . Denote
by f =

(
f (n),n ∈ N

)
a martingale with respect to zn (n ∈ N) (for details see e.g. [19]).

For 0< p< ∞ the Hardy martingale spaces Hp (Gm) consist of all martingales for which

‖ f‖Hp
:= ‖ f ∗‖p < ∞, where f ∗ := sup

n∈N

∣∣∣ f (n)
∣∣∣ .

A bounded measurable function a is called a p-atom, if there exists an interval I, such that
∫

I
adµ = 0, ‖a‖∞ 6 µ(I)−1/p , supp(a)⊂ I.

Weisz [21] proved that the Hardy spaces Hp have atomic characterizations. In particular the fol-
lowing is true:

Proposition 2.1. A martingale f =
(

f (n),n ∈ N
)

is in Hp (0< p 6 1) if and only if there exists a
sequence (ak,k ∈ N) of p-atoms and a sequence (µk,k ∈ N) , of real numbers, such that, for every
n ∈ N,
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4 G.Tutberidze

∞

∑
k=0

µkSMnak = f (n),
∞

∑
k=0
|µk|p < ∞. (2.2)

Moreover,

‖ f‖Hp
v inf

(
∞

∑
k=0
|µk|p

)1/p

,

where the infimum is taken over all decomposition of f of the form (2.2). We also need the following
result of Weisz [21]:

Proposition 2.2. Suppose that the operator T is σ-linear and for some 0< p< 1

‖T f‖weak−Lp
6 cp ‖ f‖Hp

,

then T is of weak type-(1,1) i.e.
‖T f‖weak−L1

6 c‖ f‖1 .

If f =
(

f (n),n ∈ N
)

is a martingale, then the Vilenkin-Fourier coefficients must be defined in a
slightly different manner:

f̂ (i) := lim
k→∞

∫

Gm

f (k)ψidµ.

Let {qk : k > 0} be a sequence of non-negative numbers. The n-th Nrlund and T means for a
Fourier series of f are respectively defined by

tn f =
1

Qn

n

∑
k=1

qn−kSk f ,

and

Tn f :=
1

Qn

n−1

∑
k=0

qkSk f , (2.3)

where Qn := ∑n−1
k=0 qk. It is obvious that

Tn f (x) =
∫

Gm

f (t)Fn (x− t)dµ(t) ,

where Fn := 1
Qn

n
∑

k=1
qkDk is called the T kernel.

We always assume that {qk : k > 0} is a sequence of non-negative numbers and q0 > 0. Then the
summability method (2.3) generated by {qk : k > 0} is regular if and only if limn→∞ Qn = ∞.

If we invoke Abel transformation we get the following identities, which are very important for the
investigations of T summability:

Qn :=
n−1

∑
j=0

q j =
n−2

∑
j=0

(q j−q j+1) j+qn−1(n−1) (2.4)

and

Fn =
1

Qn

(
n−2

∑
j=0

(q j−q j+1) jK j +qn−1(n−1)Kn−1

)
. (2.5)
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The well-known example of Nörlund summability is the so-called (C,α)-mean (Cesàro means),
which are defined by

σα
n f :=

1
Aα

n

n

∑
k=1

Aα−1
n−k Sk f , 0< α< 1,

where

Aα
0 := 0, Aα

n :=
(α+1) ...(α+n)

n!
, α 6=−1,−2, ...

We also consider the ”inverse” (C,α)-means, which is an example of a T -means:

Uα
n f :=

1
Aα

n

n−1

∑
k=0

Aα−1
k Sk f , 0< α< 1.

Let V α
n denote the T mean, where

{
q0 = 1, qk = kα−1 : k ∈ N+

}
, that is

V α
n f :=

1
Qn

n

∑
k=1

kα−1Sk f , 0< α< 1.

The n-th Riesz‘s logarithmic mean Rn and the Nrlund logarithmic mean Ln are defined by

Rn f :=
1
ln

n−1

∑
k=1

Sk f
k

and Ln f :=
1
ln

n−1

∑
k=1

Sk f
n− k

,

respectively, where ln := ∑n−1
k=1 1/k.

Up to now we have considered T means in the case when the sequence {qk : k ∈ N} is bounded
but now we consider T summabilities with unbounded sequence {qk : k ∈ N}. Let α ∈ R+, β ∈ N+

and

log(β) x :=

βtimes︷ ︸︸ ︷
log ... logx.

If we define the sequence {qk : k ∈N} by
{

q0 = 0, qk = log(β) kα : k ∈ N+

}
, then we get the class

of T means with non-decreasing coefficients:

Bα,β
n f :=

1
Qn

n

∑
k=1

log(β) kαSk f .

We note that Bα,β
n are well-defined for every n ∈ N

Bα,β
n f =

n

∑
k=1

log(β) kα

Qn
Sk f .

It is obvious that n
2 log(β) nα

2α 6 Qn 6 n log(β) nα. It follows that

qn−1

Qn
6 c log(β) nα

n log(β) nα
= O

(
1
n

)
→ 0, as n→ ∞. (2.6)

We also define the maximal operator T ∗ of T means by

T ∗ f := sup
n∈N
|Tn f | .
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6 G.Tutberidze

Some well-known examples of maximal operators of T means are the maximal operator of Fejσ∗
and Riesz R∗ logarithmic means, which are defined by:

σ∗ f := sup
n∈N
|σn f | , R∗ f := sup

n∈N
|Rn f | .

We also define some new maximal operators Uα,∗,V α,∗,Bα,β,∗, (α ∈ R+,β ∈ N+) by:

Uα,∗ f := sup
n∈N
|Uα

n f | , V α,∗ f := sup
n∈N
|V α

n f | , Bα,β,∗ f := sup
n∈N

∣∣∣Bα,β
n f

∣∣∣ .

3 The Main Results

First we state our main result concerning the maximal operator of the summation method (2.3), which
we also show is in a sense sharp.

Theorem 3.1. a) The maximal operator T ∗ of the summability method (2.3) with non-increasing
sequence {qk : k > 0}, is bounded from the Hardy space H1/2 to the space weak−L1/2.

The statement in a) is sharp in the following sense:

b) Let 0< p< 1/2 and {qk : k > 0} be a non-increasing sequence, satisfying the condition

qn+1

Qn+2
> c

n
, (c > 1) . (3.1)

Then there exists a martingale f ∈ Hp, such that

sup
n∈N
‖Tn f‖weak−Lp

= ∞.

A number of special cases of our results are of particular interest and give both well-known and
new information. We just give the following examples of such T means with non-increasing sequence
{qk : k > 0} :

Corollary 3.1. The maximal operators Uα,∗, V α,∗ and R∗ are bounded from the Hardy space H1/2 to
the space weak−L1/2 but are not bounded from Hp to the space weak−Lp, when 0< p< 1/2.

Corollary 3.2. Let f ∈ L1 and Tn be the T means with non-increasing sequence {qk : k > 0}. Then
Tn f → f , a.e., as n→ ∞.

Corollary 3.3. Let f ∈ L1. Then

Rn f → f , a.e., as n→ ∞,
Uα

n f → f , a.e., as n→ ∞,
V α

n f → f , a.e., as n→ ∞,

Our next main result reads:
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Theorem 3.2. a) The maximal operator T ∗ of the summability method (2.3) with non-decreasing
sequence {qk : k > 0} satisfying the condition

qn−1

Qn
= O

(
1
n

)
(3.2)

is bounded from the Hardy space H1/2 to the space weak−L1/2.
b) Let 0 < p < 1/2. For any non-decreasing sequence {qk : k > 0}, there exists a martingale

f ∈ Hp, such that
sup
n∈N
‖Tn f‖weak−Lp

= ∞.

A number of special cases of our results are of particular interest and give both well-known and
new information. We just give the following examples of such T means with non-decreasing sequence
{qk : k > 0} :

Corollary 3.4. The maximal operator Bα,β,∗ is bounded from the Hardy space H1/2 to the space
weak−L1/2 but is not bounded from Hp to the space weak−Lp, when 0< p< 1/2.

Corollary 3.5. Let f ∈ L1 and Tn be the T means with non-decreasing sequence {qk : k > 0} and
satisfying condition (3.2). Then

Tn f → f , a.e., as n→ ∞.

Corollary 3.6. Let f ∈ L1. Then Bα,β
n f → f , a.e., as n→ ∞.

4 Proofs

Proof of Theorem 3.1 a). Let the sequence {qk : k > 0} be non-increasing. By combining (2.4) with
(2.5) and using Abel transformation we get that

|Tn f | 6
∣∣∣∣∣

1
Qn

n−1

∑
j=1

q jS j f

∣∣∣∣∣

6 1
Qn

(
n−2

∑
j=1

∣∣q j−q j+1
∣∣ j
∣∣σ j f

∣∣+qn−1(n−1) |σn f |
)

6 1
Qn

(
n−2

∑
j=1

(q j−q j+1) j+qn−1(n−1)

)
σ∗ f 6 σ∗ f

so that
T ∗ f 6 σ∗ f . (4.1)

If we apply (4.1) and Theorem W1 we can conclude that the maximal operators T ∗ of all T means
with non-increasing sequence {qk : k > 0}, are bounded from the Hardy space H1/2 to the space
weak−L1/2. The proof of part a) of Theorem 1 is complete.

b) Let 0< p< 1/2 and {αk : k ∈ N} be an increasing sequence of positive integers such that:

∞

∑
k=0

1/αp
k < ∞, (4.2)
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λ
k−1

∑
η=0

M1/p
αη

αη
<

M1/p
αk

αk
, (4.3)

32λM1/p
αk−1

αk−1
<

M1/p−2
αk

αk
, (4.4)

where λ = supn mn.
We note that such an increasing sequence {αk : k ∈ N} which satisfies conditions (4.2)-(4.4) can

be constructed.
Let

f (A) = ∑
{k; λk<A}

λkak, (4.5)

where

λk =
λ
αk

and ak =
M1/p−1

αk

λ

(
DMαk+1−DMαk

)
.

By using Proposition 2.1, it is easy to show that the martingale f =
(

f (1), f (2)... f (A)...
)
∈ H1/2.

Moreover, it is easy to show that

f̂ ( j) =





M1/p−1
αk
αk

, if j ∈ {Mαk , ...,Mαk+1−1} , k = 0,1,2...,

0, if j /∈
∞⋃

k=1
{Mαk , ...,Mαk+1−1} .

(4.6)

We can write

TMαk+2 f =
1

QMαk+2

Mαk

∑
j=0

q jS j f +
qMαk+1

QMαk+2
SMαk+1 f := I + II. (4.7)

Let Mαs 6 j 6 Mαs+1, where s = 0, ...,k−1. Moreover,
∣∣∣D j−DMαs

∣∣∣6 j−Mαs
6 λMαs

, (s ∈ N)

so that, according to (2.1) and (4.6), we have that

∣∣S j f
∣∣=
∣∣∣∣∣

Mαs−1+1−1

∑
v=0

f̂ (v)ψv +
j−1

∑
v=Mαs

f̂ (v)ψv

∣∣∣∣∣ (4.8)

6

∣∣∣∣∣∣

s−1

∑
η=0

Mαη+1−1

∑
v=Mαη

M1/p−1
αη

αη
ψv

∣∣∣∣∣∣
+

M1/p−1
αs

αs

∣∣∣
(

D j−DMαs

)∣∣∣

=

∣∣∣∣∣
s−1

∑
η=0

M1/p−1
αη

αη

(
DMαη+1

−DMαη

)∣∣∣∣∣+
M1/p−1

αs

αs

∣∣∣
(

D j−DMαs

)∣∣∣

6 λ
s−1

∑
η=0

M1/p
αη

αη
+

λM1/p
αs

αs
6 2λM1/p

αs−1

αs−1
+

λM1/p
αs

αs
6 4λM1/p

αk−1

αk−1
.
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Let Mαs−1+1 +1 6 j 6 Mαs , where s = 1, ...,k. Analogously to (4.8) we can prove that

∣∣S j f
∣∣=
∣∣∣∣∣

Mαs−1+1−1

∑
v=0

f̂ (v)ψv

∣∣∣∣∣=

∣∣∣∣∣∣

s−1

∑
η=0

Mαη+1−1

∑
v=Mαη

M1/p−1
αη

αη
ψv

∣∣∣∣∣∣

=

∣∣∣∣∣
s−1

∑
η=0

M1/p−1
αη

αη

(
DMαη+1

−DMαη

)∣∣∣∣∣6
2λM1/p

αs−1

αs−1
6 4λM1/p

αk−1

αk−1
.

Hence

|I|6 1
QMαk+2

Mαk

∑
j=0

q j
∣∣S j f

∣∣6 4λM1/p
αk−1

αk−1

1
QMαk+2

Mαk

∑
j=0

q j 6
4λM1/p

αk−1

αk−1
. (4.9)

If we now apply (4.6) and (4.8) we get that

|II| =
qMαk+1

QMαk+2

∣∣∣∣∣
M1/p−1

αk

αk
ψMαk

+SMαk
f

∣∣∣∣∣ (4.10)

=
qMαk+1

QMαk+2

∣∣∣∣∣
M1/p−1

αk

αk
ψMαk

+SMαk−1+1 f

∣∣∣∣∣

>
qMαk+1

QMαk+2

(∣∣∣∣∣
M1/p−1

αk

αk
ψMαk

∣∣∣∣∣−
∣∣∣SMαk−1+2 f

∣∣∣
)

>
qMαk+1

QMαk+2

(
M1/p−1

αk

αk
− 4λM1/p

αk−1

αk−1

)

>
qMαk+1

QMαk+2

M1/p−1
αk

4αk
.

Without lost the generality we may assume that c = 1 in (3.1). By combining (4.9) and (4.10) we
get

∣∣∣TMαk+2 f
∣∣∣ > |II|− |I|>

qMαk+1

QMαk+2

M1/p−1
αk

4αk
− 4λM1/p

αk−1

αk−1
(4.11)

> M1/p−2
αk

4αk
− 4λM1/p

αk−1

αk−1
> M1/p−2

αk

16αk
.

On the other hand,

µ

{
x ∈ Gm :

∣∣∣TMαk+2 f (x)
∣∣∣> M1/p−2

αk

16αk

}
= µ(Gm) = 1. (4.12)

Let 0< p< 1/2. Then

M1/p−2
αk

16αk
·
(

µ

{
x ∈ Gm :

∣∣∣TMαk+2 f (x)
∣∣∣> M1/p−2

αk

16αk

})1/p

(4.13)

=
M1/p−2

αk

16αk
→ ∞, as k→ ∞.
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The proof is complete.

Proof of Corollary 3.1. Since Rn,Uα
n and V α

n are the T means with non-increasing sequence {qk : k >
0}, then the proof of this corollary is direct consequence of Theorem 3.1.

Proof of Corollary 3.2. According to Theorem 1 a) and Proposition 2.2 we also have weak (1,1)
type inequality and by well-known density argument due to Marcinkiewicz and Zygmund [7] we
have Tn f → f , a.e., for all f ∈ L1. Which follows proof of Corollary 3.2.

Proof of Corollary 3.3. Since Rn,Uα
n and V α

n are the T means with non-increasing sequence {qk : k >
0}, then the proof of this corollary is direct consequence of Corollary 3.2.

Proof of Theorem 3.2. Let the sequence {qk : k > 0} be non-decreasing. By combining (2.4) with
(2.5) and using Abel transformation we get that

|Tn f | 6
∣∣∣∣∣

1
Qn

n−1

∑
j=1

q jS j f

∣∣∣∣∣

6 1
Qn

(
n−2

∑
j=1

∣∣q j−q j+1
∣∣ j
∣∣σ j f

∣∣+qn−1(n−1) |σn f |
)

6 1
Qn

(
n−2

∑
j=1
− (q j−q j+1) j−qn−1(n−1)+2qn−1(n−1)

)
σ∗ f

6 1
Qn

(2qn−1(n−1)−Qn)σ∗ f 6 cσ∗ f

so that
T ∗ f 6 cσ∗ f . (4.14)

If we apply (4.14) and Theorem W1 we can conclude that the maximal operators T ∗ are bounded
from the Hardy space H1/2 to the space weak−L1/2. The proof of part a) is complete.

To prove part b) of Theorem 2 we use the martingale, defined by (4.5) where αk satisfy conditions
(4.2)-(4.4). It is easy to show that for every non-increasing sequence {qk : k > 0} it automatically
holds that

qMαk+1/QMαk+2 > c/Mαk .

According to (4.7)-(4.11) we can conclude that

∣∣∣TMαk+2 f
∣∣∣> |II|− |I|> M1/p−2

αk

8αk
.

Analogously to (4.12) and (4.13) we then get that

sup
k∈N

∥∥∥TMαk+2 f
∥∥∥

weak−Lp
= ∞.

The proof is complete.
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Proof of Corollary 3.4. Since Bα,β,∗ are the T means with non-decreasing sequence {qk : k > 0}, then
the proof of this corollary is direct consequence of Theorem 3.2.

Proof of Corollary 3.5. According to Proposition 2.2 we can conclude that T ∗ has weak type-(1,1)
and by well-known density argument due to Marcinkiewicz and Zygmund [7] we also have Tn f → f ,
a.e.. Which follows proof of Corollary 3.5.

Proof of Corollary 3.6. Since Bα,β,∗ are the T means with non-decreasing sequence {qk : k > 0}, then
the proof of this corollary is direct consequence of Corollary 3.5.
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SHARP (Hp, Lp) TYPE INEQUALITIES OF MAXIMAL OPERATORS OF

T MEANS WITH RESPECT TO VILENKIN SYSTEMS

G. TUTBERIDZE

Abstract. We prove and discuss some new (Hp, Lp) type inequalities of maximal operators
of T means with respect to the Vilenkin systems with monotone coe�cients. We also show
that these inequalities are the best possible in a special sense. Moreover, we apply these
inequalities to prove strong convergence theorems of such T means. We also show that these
results are the best possible in a special sense. As applications, both some well-known and
new results are pointed out.

2000 Mathematics Subject Classi�cation. 42C10, 42B25.

Key words and phrases: Vilenkin groups, Vilenkin systems, partial sums of Vilenkin-
Fourier series, T means, Vilenkin-Nörlund means, Fejér mean, Riesz means, martingale
Hardy spaces, Lp spaces, weak−Lp spaces, maximal operator, strong convergence, inequal-
ities.

1. Introduction

The de�nitions and notations used in this introduction can be found in our next Section.

It is well-known that Vilenkin systems do not form bases in the space L1. Moreover, there
is a function in the Hardy space Hp, such that the partial sums of f are not bounded in
Lp-norm, for 0 < p ≤ 1. Approximation properties of Vilenkin-Fourier series with respect to
one- and two-dimensional cases can be found in [17] and [32]. Simon [24] proved that there
exists an absolute constant cp, depending only on p, such that the inequality

1

log[p] n

n∑

k=1

‖Skf‖pp
k2−p

≤ cp ‖f‖pHp (0 < p ≤ 1)

holds for all f ∈ Hp and n ∈ N+, where [p] denotes the integer part of p. For p = 1 analogous
results with respect to more general systems were proved in Blahota [2] and Gát [4] and for
0 < p < 1 a simpler proof was given in Tephnadze [31]. Some new strong convergence results
for partial sums with respect to Vilenkin system were considered in Tutberidze [33].

In the one-dimensional case the weak (1,1)-type inequality for the maximal operator of
Fejér means σ∗f := supn∈N |σnf | can be found in Schipp [21] for Walsh series and in Pál,
Simon [15] for bounded Vilenkin series. Fujji [8] and Simon [23] veri�ed that σ∗ is bounded
from H1 to L1. Weisz [38] generalized this result and proved boundedness of σ∗ from the
martingale space Hp to the space Lp, for p > 1/2. Simon [22] gave a counterexample, which
shows that boundedness does not hold for 0 < p < 1/2. A counterexample for p = 1/2
was given by Goginava [6] (see also Tephnadze [25]). Moreover, Weisz [40] proved that the

The research was supported by Shota Rustaveli National Science Foundation grant no.FR-19-676.
1
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2 G. TUTBERIDZE

maximal operator of the Fejér means σ∗ is bounded from the Hardy space H1/2 to the space
weak − L1/2. In [26] and [27] the following result was proved:

Theorem T1: Let 0 < p ≤ 1/2. Then the weighted maximal operator of Fejér means σ̃∗p
de�ned by

σ̃∗pf := sup
n∈N+

|σnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the martingale Hardy space Hp to the Lebesgue space Lp.

Moreover, the rate of the weights
{
1/ (n+ 1)1/p−2 log2[p+1/2] (n+ 1)

}∞
n=1

in n-th Fejér mean

was given exactly.

Similar results with respect to Walsh-Kachmarz systems were obtained in [7] for p = 1/2
and in [28] for 0 < p < 1/2. Approximation properties of Fejér means with respect to
Vilenkin and Kaczmarz systems can be found in Tephnadze [29], Tutberidze [34], Persson,
Tephnadze and Tutberidze [19].

In [3] it was proved that there exists an absolute constant cp, depending only on p, such
that the inequality

(1)
1

log[1/2+p] n

n∑

k=1

‖σkf‖pp
k2−2p

≤ cp ‖f‖pHp (0 < p ≤ 1/2, n = 2, 3, . . . ) .

holds. Some new strong convergence results for Vilenkin-Fejér means were derived in [20].

Móricz and Siddiqi [11] investigated the approximation properties of some special Nör-
lund means of Walsh-Fourier series of Lp function in norm. In the two-dimensional case
approximation properties of Nörlund means were considered by Nagy [12, 13, 14]. In [16] it
was proved that the maximal operators of Nörlund means t∗ de�ned by t∗f := supn∈N |tnf | ,
either with non-decreasing coe�cients, or non-increasing coe�cients, satisfying the condition

(2)
1

Qn

= O

(
1

n

)
, as n→∞

are bounded from the Hardy space H1/2 to the space weak−L1/2 and are not bounded from
the Hardy space Hp to the space Lp, when 0 < p ≤ 1/2.

In [18] it was proved that for 0 < p < 1/2, f ∈ Hp and non-decreasing sequence {qk : k ≥ 0}
there exists an absolute constant cp, depending only on p, such that the inequality

∞∑

k=1

‖tkf‖pp
k2−2p

≤ cp ‖f‖pHp

holds.

Moreover, if f ∈ H1/2 and {qk : k ≥ 0} is a sequence of non-decreasing numbers, satisfying
the condition

(3)
qn−1
Qn

= O

(
1

n

)
, as n→∞,

then there exists an absolute constant c, such that the inequality

1

log n

n∑

k=1

‖tkf‖1/21/2

k
≤ c ‖f‖1/2H1/2

holds.
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In [35] was proved that the maximal operators T ∗ de�ned by T ∗f := supn∈N |Tnf | of T
means either with non-increasing coe�cients, or non-decreasing sequence satisfying condition
(3) are bounded from the Hardy space H1/2 to the space weak−L1/2. Moreover, there exists
a martingale and such T means for which boundedness from the Hardy space Hp to the space
Lp does not hold when 0 < p ≤ 1/2.

One of the most well-known mean of T means is the Riesz summability. In [30] it was
proved that the maximal operator R∗ of Riesz means is bounded from the Hardy space H1/2

to the space weak − L1/2 and is not bounded from Hp to the space Lp, for 0 < p ≤ 1/2.
There was also proved that Riesz summability has better properties than Fejér means. In
particular, the following weighted maximal operators

log n|Rnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

are bounded from Hp to the space Lp, for 0 < p ≤ 1/2 and the rate of weights are sharp.
Moreover, in [9] was also proved that if 0 < p < 1/2 and f ∈ Hp(Gm), then there exists an
absolute constant cp, depending only on p, such that the following inequality holds:

(4)
∞∑

n=1

logp n ‖Rnf‖pHp
n2−2p ≤ cp ‖f‖pHp

If we compare strong convergence results, given by (1) and (4), we obtain that Riesz means
has better properties then Fejér means, for 0 < p < 1/2, but in the case p = 1/2 is was not
possible to show even similar result for Riesz means as it was proved for Fejér means given
by inequality (1).

In this paper we prove and discuss some new (Hp, Lp) type inequalities of maximal operators
of T means with respect to the Vilenkin systems with monotone coe�cients. Moreover, we
apply these inequalities to prove strong convergence theorems of such T means. In particular,
we investigate strong convergence of T means with non-increasing sequences in the case
p = 1/2, but under the condition (2). For example, this condition is ful�lled for Fejér means
but does not hold for Riesz means. We also show that these inequalities are the best possible
in a special sense. As applications, both some well-known and new results are pointed out.

This paper is organized as follows: In order not to disturb our discussions later on some
de�nitions and notations are presented in Section 2. The main results and some of its
consequences can be found in Section 3. For the proofs of the main results we need some
auxiliary Lemmas, some of them are new and of independent interest. These results are
presented in Section 4. The detailed proofs of the main results are given in Section 5.

2. Definitions and Notation

Denote by N+ the set of the positive integers, N := N+ ∪ {0}. Let m := (m0, m1, ...) be a
sequence of the positive integers not less than 2. Denote by

Zmk := {0, 1, ...,mk − 1}
the additive group of integers modulo mk.

De�ne the group Gm as the complete direct product of the groups Zmi with the product
of the discrete topologies of Zmj ‘s.
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The direct product µ of the measures µk ({j}) := 1/mk (j ∈ Zmk) is the Haar measure
on Gm with µ (Gm) = 1.

In this paper we discuss bounded Vilenkin groups, i.e. the case when supnmn <∞.
The elements of Gm are represented by sequences

x := (x0, x1, ..., xj, ...) ,
(
xj ∈ Zmj

)
.

Set en := (0, ..., 0, 1, 0, ...) ∈ Gm, the n-th coordinate of which is 1 and the rest are zeros
(n ∈ N) . It is easy to give a basis for the neighborhoods of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, ..., yn−1 = xn−1},
where x ∈ Gm, n ∈ N.
If we de�ne In := In (0) , for n ∈ N and In := Gm \ In, then

(5) IN =

(
N−2⋃

k=0

N−1⋃

l=k+1

Ik,lN

)⋃(
N−1⋃

k=1

Ik,NN

)
,

where

Ik,lN :=

{
IN(0, ..., 0, xk 6= 0, 0, ..., 0, xl 6= 0, xl+1 , ..., xN−1 , ...), for k < l < N,
IN(0, ..., 0, xk 6= 0, 0, ..., , xN−1 = 0, xN , ...), for l = N.

If we de�ne the so-called generalized number system based on m in the following way :

M0 := 1, Mk+1 := mkMk (k ∈ N),
then every n ∈ N can be uniquely expressed as n =

∑∞
j=0 njMj, where nj ∈ Zmj (j ∈ N+)

and only a �nite number of nj‘s di�er from zero.

We introduce on Gm an orthonormal system which is called the Vilenkin system. At
�rst, we de�ne the complex-valued function rk (x) : Gm → C, the generalized Rademacher
functions, by

rk (x) := exp (2πixk/mk) ,
(
i2 = −1, x ∈ Gm, k ∈ N

)
.

Next, we de�ne the Vilenkin system ψ := (ψn : n ∈ N) on Gm by:

ψn(x) :=
∞∏

k=0

rnkk (x) , (n ∈ N) .

Speci�cally, we call this system the Walsh-Paley system when m ≡ 2.

The norms (or quasi-norms) of the spaces Lp(Gm) and weak − Lp (Gm) (0 < p <∞) are
respectively de�ned by

‖f‖pp :=
∫

Gm

|f |p dµ, ‖f‖pweak−Lp := sup
λ>0

λpµ (f > λ) < +∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [36]).

Now, we introduce analogues of the usual de�nitions in Fourier-analysis. If f ∈ L1 (Gm)
we can de�ne Fourier coe�cients, partial sums and Dirichlet kernels with respect to the
Vilenkin system in the usual manner:

f̂ (n) :=

∫

Gm

fψndµ, Snf :=
n−1∑

k=0

f̂ (k)ψk, Dn :=
n−1∑

k=0

ψk , (n ∈ N+) .
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Let us de�ne the Fejér means σn and Kernels Kn as follows:

σnf :=
1

n

n∑

k=1

Skf , Kn :=
1

n

n∑

k=1

Dk.

It is well known that if n ∈ N, then

(6) DMn (x) =

{
Mn, x ∈ In,
0, x /∈ In.

Moreover, if n =
∑∞

i=0 niMi, and 1 ≤ sn ≤ mn − 1, then we have the following identity:

(7) Dn = ψn



∞∑

j=0

DMj

mj−1∑

k=mj−nj
rkj


 ,

The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by zn (n ∈ N) .
Denote by f =

(
f (n), n ∈ N

)
a martingale with respect to zn (n ∈ N) . (for details see e.g.

[37]). The maximal function of a martingale f is de�ned by f ∗ := supn∈N
∣∣f (n)

∣∣ . For
0 < p <∞ the Hardy martingale spaces Hp consist of all martingales f for which

‖f‖Hp := ‖f
∗‖p <∞.

A bounded measurable function a is called a p-atom, if there exists an interval I, such that
∫

I

adµ = 0, ‖a‖∞ ≤ µ (I)−1/p , supp (a) ⊂ I.

If f =
(
f (n), n ∈ N

)
is a martingale, then the Vilenkin-Fourier coe�cients must be de�ned

in a slightly di�erent manner:

f̂ (i) := lim
k→∞

∫

Gm

f (k)ψidµ.

Let {qk : k ≥ 0} be a sequence of non-negative numbers. The n-th T means Tn for a
Fourier series of f are de�ned by

(8) Tnf :=
1

Qn

n−1∑

k=0

qkSkf, where Qn :=
n−1∑

k=0

qk.

It is obvious that Tnf (x) =
∫
Gm

f (t)Fn (x− t) dµ (t) , where Fn := 1
Qn

n−1∑
k=0

qkDk is called

the T kernel.

We always assume that {qk : k ≥ 0} is a sequence of non-negative numbers and q0 > 0.
Then the summability method (8) generated by {qk : k ≥ 0} is regular if and only if
limn→∞Qn =∞.
It is easy to show that, for any real numbers a1, . . . , am, b1, . . . , bm and ak = Ak − Ak−1,

k = n, . . . ,m, we have so called Abel transformation:
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n∑

k=m

akbk =
n∑

k=m

(Ak − Ak−1)bk =
n∑

k=m

Akbk −
n∑

k=m

Ak−1bk

=
n∑

k=m

Akbk −
m−1∑

k=n−1
Akbk+1 =

n−1∑

k=m

Akbk + Anbn −
n−1∑

k=m

Akbk+1 − Am−1bm

= Anbn − Am−1bm +
n−1∑

k=m

Ak(bk − bk+1).

For aj = Aj − Aj−1, j = 1, ..., n, if we invoke Abel transformations

n−1∑

j=1

ajbj = An−1bn−1 − A0b1 +
n−2∑

j=1

Aj(bj − bj+1),(9)

n−1∑

j=MN

ajbj = An−1bn−1 − AMN−1bMN
+

n−2∑

j=MN

Aj(bj − bj+1),(10)

for bj = qj, aj = 1 and Aj = j for any j = 0, 1, ..., n we get the following identity:

Qn :=
n−1∑

j=0

qj = q0 +
n−1∑

j=1

qj = q0 +
n−2∑

j=1

(qj − qj+1) j + qn−1(n− 1),(11)

n−1∑

j=MN

qj =
n−2∑

j=MN

(qj − qj+1) j + qn−1(n− 1)− (MN − 1)qMN
,(12)

Moreover, if use D0 = K0 = 0 for any x ∈ Gm and invoke Abel transformations (9) and (10)
for bj = qj, aj = Dj and Aj = jKj for any j = 0, 1, ..., n− 1 we get identities:

Fn =
1

Qn

n−1∑

j=1

qjDj =
1

Qn

(
n−2∑

j=1

(qj − qj+1) jKj + qn−1(n− 1)Kn−1

)
,(13)

1

Qn

n−1∑

j=MN

qjDj(14)

=
1

Qn

(
n−2∑

j=MN

(qj − qj+1) jKj + qn−1(n− 1)Kn−1 − qMN
(MN − 1)KMN−1

)
.

Analogously, if use S0f = σ0f = 0, for any x ∈ Gm and invoke Abel transformations (9)
and (10) for bj = qj, aj = Sj and Aj = jσj for any j = 0, 1, ..., n− 1 we get identities:

Tnf =
1

Qn

n−1∑

j=1

qjSjf =
1

Qn

(
n−2∑

j=1

(qj − qj+1) jσjf + qn−1(n− 1)σn−1f

)
,(15)

1

Qn

n−1∑

j=MN

qjSjf(16)

=
1

Qn

(
n−2∑

j=MN

(qj − qj+1) jσjf + qn−1(n− 1)σn−1f − qMN
(MN − 1)σMN−1f

)
.
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Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The n-th Nörlund mean tn for a
Fourier series of f is de�ned by

(17) tnf =
1

Qn

n∑

k=1

qn−kSkf,

where Qn :=
∑n−1

k=0 qk.

If qk ≡ 1 in (8) and (17) we respectively de�ne the Fejér means σn and Kernels Kn as
follows:

σnf :=
1

n

n∑

k=1

Skf , Kn :=
1

n

n∑

k=1

Dk.

It is well-known that (for details see [1])

(18) n |Kn| ≤ c

|n|∑

l=0

Ml |KMl
|

and

(19) ‖Kn‖1 ≤ c <∞.

The well-known example of Nörlund summability is the so-called (C, α) mean (Cesàro
means) for 0 < α < 1, which are de�ned by

σαnf :=
1

Aαn

n∑

k=1

Aα−1n−kSkf,

where

Aα0 := 0, Aαn :=
(α + 1) ... (α + n)

n!
.

We also consider the "inverse" (C, α) means, which is an example of T means:

Uα
n f :=

1

Aαn

n−1∑

k=0

Aα−1k Skf, 0 < α < 1.

Let V α
n denote the T mean, where {q0 = 0, qk = kα−1 : k ∈ N+} , that is

V α
n f :=

1

Qn

n−1∑

k=1

kα−1Skf, 0 < α < 1.

The n-th Riesz logarithmic mean Rn and the Nörlund logarithmic mean Ln are de�ned by

Rnf :=
1

ln

n−1∑

k=1

Skf

k
and Lnf :=

1

ln

n−1∑

k=1

Skf

n− k ,

respectively, where ln :=
∑n−1

k=1 1/k.

Up to now we have considered T means in the case when the sequence {qk : k ∈ N} is
bounded but now we consider T summabilities with unbounded sequence {qk : k ∈ N}.
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Let α ∈ R+, β ∈ N+ and log(β) x :=

β−times︷ ︸︸ ︷
log ... logx. If we de�ne the sequence {qk : k ∈ N} by{

q0 = 0, qk = log(β) kα : k ∈ N+

}
, then we get the classBα,β

n of T means with non-decreasing

coe�cients:

Bα,β
n f :=

1

Qn

n−1∑

k=1

log(β) kαSkf.

We note that Bα,β
n are well-de�ned for every n ∈ N

Bα,β
n f =

n−1∑

k=1

log(β) kα

Qn

Skf.

It is obvious that n
2
log(β) n

α

2α
≤ Qn ≤ n log(β) nα. It follows that

qn−1
Qn

≤ c log(β) nα

n log(β) nα
= O

(
1

n

)
→ 0, as n→∞.(20)

We also de�ne the maximal operator T ∗ of T and Nörlund means by

T ∗f := sup
n∈N
|Tnf | , t∗f := sup

n∈N
|tnf | .

Some well-known examples of maximal operators of T means are the maximal operator of
Fejér σ∗ and Riesz R∗ logarithmic means, which are respectively de�ned by:

σ∗f := sup
n∈N
|σnf | , R∗f := sup

n∈N
|Rnf | .

3. The Main Results and Applications

Our �rst main result reads:

Theorem 1. Let 0 < p ≤ 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-increasing

numbers. Then the maximal operator T̃ ∗p de�ned by

(21) T̃ ∗p f := sup
n∈N+

|Tnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the Hardy space Hp to the space Lp.

Corollary 1. Let 0 < p ≤ 1/2 and f ∈ Hp. Then the maximal operator R̃∗p de�ned by

R̃∗pf := sup
n∈N+

|Rnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the Hardy space Hp to the space Lp.

Corollary 2. Let 0 < p ≤ 1/2 and f ∈ Hp. Then the maximal operator Ũα,∗
p de�ned by

Ũα,∗
p f := sup

n∈N+

|Uα
n f |

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the Hardy space Hp to the space Lp.
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Corollary 3. Let 0 < p ≤ 1/2 and f ∈ Hp. Then the maximal operator Ṽ α,∗
p de�ned by

Ṽ α,∗
p f := sup

n∈N+

|V α
n f |

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the Hardy space Hp to the space Lp.

Next, we consider maximal operators of T means with non-decreasing sequence:

Theorem 2. Let 0 < p ≤ 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers, satisfying the condition

(22)
qn−1
Qn

= O

(
1

n

)
, as n→∞.

Then the maximal operator T̃ ∗p de�ned by

(23) T̃ ∗p f := sup
n∈N+

|Tnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the martingale Hardy space Hp to the space Lp.

Corollary 4. Let 0 < p ≤ 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers, such that

(24) sup
n∈N

qn < c <∞.

Then
qn−1
Qn

≤ c

Qn

≤ c

q0n
=
c1
n

= O

(
1

n

)
, as n→ 0,

and weighted maximal operators of such T means, given by (23), T̃ ∗p are bounded from the
Hardy space Hp to the space Lp.

Corollary 5. Let 0 < p ≤ 1/2 and f ∈ Hp. Then the maximal operator T̃ ∗p de�ned by

T̃ ∗p f := sup
n∈N+

∣∣Bα,β
n f

∣∣
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the martingale Hardy space Hp to the space Lp.

Remark 1. According to Theorem T1 we obtain that the weights in (21) and (23) are sharp.

Theorem 3. a) Let 0 < p < 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-increasing
numbers. Then there exists an absolute constant cp, depending only on p, such that the
following inequality holds:

∞∑

k=1

‖Tkf‖pp
k2−2p

≤ cp ‖f‖pHp

b)Let f ∈ H1/2 and {qk : k ≥ 0} be a sequence of non-increasing numbers, satisfying the
condition

(25)
1

Qn

= O

(
1

n

)
, as n→∞.

Then there exists an absolute constant c, such that the following inequality holds:
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(26)
1

log n

n∑

k=1

‖Tkf‖1/21/2

k
≤ c ‖f‖1/2H1/2

Corollary 6. Let 0 < p ≤ 1/2 and f ∈ Hp. Then there exists absolute constant cp, depending
only on p, such that the following inequality holds:

1

log[1/2+p] n

n∑

k=1

‖σkf‖pp
k2−2p

≤ cp ‖f‖pHp .

Corollary 7. Let 0 < p ≤ 1/2 and f ∈ Hp. Then there exists an absolute constant cp,
depending only on p, such that the following inequalities hold:

∞∑

k=1

‖Uα
k f‖pp

k2−2p
≤ cp ‖f‖pHp ,

∞∑

k=1

‖V α
k f‖pp
k2−2p

≤ cp ‖f‖pHp ,
∞∑

k=1

‖Rkf‖pp
k2−2p

≤ cp ‖f‖pHp .

Theorem 4. a) Let 0 < p < 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers. Then there exists an absolute constant cp, depending only on p, such that the
following inequality holds:

∞∑

k=1

‖Tkf‖pp
k2−2p

≤ cp ‖f‖pHp

b)Let f ∈ H1/2 and {qk : k ≥ 0} be a sequence of non-increasing numbers, satisfying the
condition (22). Then there exists an absolute constant c, such that the inequality holds:

(27)
1

log n

n∑

k=1

‖Tkf‖1/21/2

k
≤ c ‖f‖1/2H1/2

.

Corollary 8. Let 0 < p ≤ 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers, such that supn∈N qn < c < ∞. Then condition (22) is satis�ed and for all such T
means there exists an absolute constant c, such that the inequality (27) holds.

We have already considered the case when the sequence {qk : k ≥ 0} is bounded. Now, we
consider some Nörlund means, which are generated by a unbounded sequence {qk : k ≥ 0}.
Corollary 9. Let 0 < p ≤ 1/2 and f ∈ Hp. Then there exists an absolute constant cp,
depending only on p, such that the following inequality holds:

1

log[1/2+p] n

n∑

k=1

∥∥∥Bα,β
k f

∥∥∥
p

p

k2−2p
≤ cp ‖f‖pHp .

4. Auxiliary lemmas

We need the following auxiliary Lemmas:

Lemma 1 (see e.g. [39]). A martingale f =
(
f (n), n ∈ N

)
is in Hp (0 < p ≤ 1) if and only

if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence (µk, k ∈ N) of real numbers
such that, for every n ∈ N,

(28)
∞∑

k=0

µkSMnak = f (n), a.e., where
∞∑

k=0

|µk|p <∞.
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Moreover, ‖f‖Hp v inf (
∑∞

k=0 |µk|
p)

1/p
, where the in�mum is taken over all decompositions

of f of the form (28).

Lemma 2 (see e.g. [39]). Suppose that an operator T is σ-sublinear and for some 0 < p ≤ 1
∫

−
I

|Ta|p dµ ≤ cp <∞,

for every p-atom a, where I denotes the support of the atom. If T is bounded from L∞ to
L∞, then

‖Tf‖p ≤ cp ‖f‖Hp , 0 < p ≤ 1.

Lemma 3 (see [5]). Let n > t, t, n ∈ N. Then

KMn (x) =





Mt

1−rt(x) , x ∈ It\It+1, x− xtet ∈ In,
Mn−1

2
, x ∈ In,

0, otherwise.

For the proof of our main results we also need the following new Lemmas:

Lemma 4. Let n ∈ N and {qk : k ∈ N} be a sequence either of non-increasing numbers, or
non-decreasing numbers satisfying condition (22). Then

(29) ‖Tnf‖1 < c.

Proof: Let n ∈ N and {qk : k ∈ N} be a sequence of non-increasing numbers. By
combining (11) and (15) with (19) we can conclude that

‖Tnf‖1 ≤
1

Qn

(
n−2∑

j=1

|qj − qj+1| j‖σjf‖1 + qn−1(n− 1)‖σn−1f‖1
)

≤ c

Qn

(
n−2∑

j=1

(qj − qj+1) j + qn−1(n− 1)

)
≤ c <∞.

Let n ∈ N and {qk : k ∈ N} be a sequence non-decreasing satisfying condition (22). Then,
by using again (11) and (15) combined with (19) we �nd that

‖Tnf‖1 ≤
1

Qn

(
n−2∑

j=1

|qj − qj+1| j‖σjf‖1 + qn−1(n− 1)‖σn−1f‖1
)

≤ c

Qn

(
n−2∑

j=1

(qj+1 − qj) j + qn−1(n− 1)

)

=
c

Qn

(
2qn−1(n− 1)−

(
n−2∑

j=1

(qj − qj+1) j + qn−1(n− 1) + q0

))
+
cq0
Qn

=
c

Qn

(2qn−1(n− 1)−Qn) +
cq0
Qn

< c.

The proof is complete.
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Lemma 5. Let {qk : k ∈ N} be a sequence of non-increasing numbers and n > MN . Then
∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x)

∣∣∣∣∣ ≤
c

MN

|n|∑

j=0

Mj

∣∣KMj

∣∣ ,

Proof. Since the sequence is non-increasing we get that

1

Qn

(
qMN

+
n−2∑

j=MN

|qj − qj+1|+ qn−1

)
(30)

≤ 1

Qn

(
qMN

+
n−2∑

j=MN

(qj − qj+1) + qn−1

)
=

2qMN

Qn

≤ 2qMN

QMN+1

≤ c

MN

.

If we apply Abel transformation (14) combine with (18) and (30) we get that
∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj

∣∣∣∣∣

=
1

Qn

(
n−2∑

j=MN

(qj − qj+1) jKj + qn−1(n− 1)Kn−1 − qMN
(MN − 1)KMN−1

)

≤ c

Qn

(
qMn +

n−2∑

j=MN

|qj − qj+1|+ qn−1

) |n|∑

i=0

Mi |KMi
| ≤ c

MN

|n|∑

i=0

Mi |KMi
| .

The proof is complete. �

Lemma 6. Let x ∈ Ik,lN , k = 0, . . . , N −1, l = k+1, . . . , N and {qk : k ∈ N} be a sequence
of non-increasing numbers. Then there exists an absolute constant c, such that

∫

IN

∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x− t)
∣∣∣∣∣ dµ (t) ≤

cMlMk

M2
N

.

Proof: Let x ∈ Ik,lN , for 0 ≤ k < l ≤ N − 1 and t ∈ IN . First, we observe that x− t ∈ Ik,lN .
Next, we apply Lemmas 3 and 5 to obtain that

∫

IN

∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x− t)
∣∣∣∣∣ dµ (t)(31)

≤ c

MN

|n|∑

i=0

Mi

∫

IN

|KMi
(x− t)| dµ (t)

≤ c

MN

∫

IN

l∑

i=0

MiMkdµ (t) ≤
cMkMl

M2
N

and the �rst estimate is proved.

Now, let x ∈ Ik,NN . Since x− t ∈ Ik,NN for t ∈ IN , by combining (6) and (7) we have that

|Di (x− t)| ≤Mk
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and
∫

IN

∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x− t)
∣∣∣∣∣ dµ (t)(32)

≤ c

Qn

|n|∑

i=0

qi

∫

IN

|Di (x− t)| dµ (t)

≤ c

Qn

|n|−1∑

i=0

qi

∫

IN

Mkdµ (t) ≤
cMk

MN

.

According to (31) and (32) the proof is complete.

Lemma 7. Let n > MN and {qk : k ∈ N} be a sequence of non-increasing numbers, satisfying
condition (25). Then ∣∣∣∣∣

1

Qn

n−1∑

j=MN

qjDj

∣∣∣∣∣ ≤
c

n

|n|∑

j=0

Mj

∣∣KMj

∣∣ ,

where c is an absolute constant.

Proof. Since the sequence is non-increasing and satisfying condition (25), we get that

1

Qn

(
qMn +

n−2∑

j=MN

|qj − qj+1|+ qn−1

)

=
1

Qn

(
qMn +

n−2∑

j=MN

(qj − qj+1) + qn−1

)

≤ 2qMN

Qn

≤ 2q0
Qn

≤ c

Qn

≤ c

n
.

Hence, if we apply Abel transformation (14) and estimate (18) we �nd that
∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj

∣∣∣∣∣

≤
(

c

Qn

(
qMn +

n−2∑

j=MN

|qj − qj+1|+ qn−1

)) |n|∑

i=0

Mi |KMi
|

≤ c

n

|n|∑

i=0

Mi |KMi
| .

The proof is complete. �

Lemma 8. Let x ∈ Ik,lN , k = 0, . . . , N − 2, l = k + 1, . . . , N − 1 and {qk : k ∈ N} be a
sequence of non-increasing numbers, satisfying condition (25). Then, for some c > 0

∫

IN

∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x− t)
∣∣∣∣∣ dµ (t) ≤

cMlMk

nMN

.
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Let x ∈ Ik,NN , k = 0, . . . , N − 1. Then

∫

IN

∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x− t)
∣∣∣∣∣ dµ (t) ≤

cMk

MN

.

Proof: Let x ∈ Ik,lN , for 0 ≤ k < l ≤ N − 1 and t ∈ IN . First, we observe that x− t ∈ Ik,lN .
Next, we apply Lemmas 3 and 7 to obtain that

∫

IN

∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x− t)
∣∣∣∣∣ dµ (t)(33)

≤ c

n

|n|∑

i=0

Mi

∫

IN

|KMi
(x− t)| dµ (t)

≤ c

n

∫

IN

l∑

i=0

MiMkdµ (t) ≤
cMkMl

nMN

and the �rst estimate is proved.

Now, let x ∈ Ik,NN . Since x− t ∈ Ik,NN for t ∈ IN , by combining again Lemmas 3 and 7 we
have that

∫

IN

∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x− t)
∣∣∣∣∣ dµ (t)(34)

≤ c

n

|n|∑

i=0

Mi

∫

IN

|KMi
(x− t)| dµ (t)

≤ c

n

|n|−1∑

i=0

Mi

∫

IN

Mkdµ (t) ≤
cMk

MN

.

By combining (33) and (34) we complete the proof.

Lemma 9. Let n ≥ MN , x ∈ Ik,lN , k = 0, . . . , N − 1, l = k + 1, . . . , N and {qk : k ∈ N}
be a sequence of non-increasing numbers, satisfying condition (25). Then

∫

IN

∣∣∣∣∣
1

Qn

n−1∑

j=MN

qjDj (x− t)
∣∣∣∣∣ dµ (t) ≤

cMlMk

M2
N

,

where c is an absolute constant.

Proof: Since n ≥MN if we apply Lemma 8 we immediately get the proof.

Lemma 10. Let {qk : k ∈ N} be a sequence of non-decreasing numbers satisfying (22). Then

|Fn| ≤
c

n

|n|∑

j=0

Mj

∣∣KMj

∣∣ ,

where c is an absolute constant.
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Proof. Since the sequence {qk : k ∈ N} is non-decreasing if we apply condition (22) we can
conclude that

1

Qn

(
n−2∑

j=1

|qj − qj+1|+ qn−1 + q0

)

≤ 1

Qn

(
n−2∑

j=1

(qj+1 − qj) + qn−1 + q0

)

≤ 2qn−1 + q0
Qn

≤ 3qn−1
Qn

≤ c

n
.

Therefore, if we apply Abel transformation (13) and (18) we get that

|Fn| ≤
(

c

Qn

(
n−2∑

j=1

|qj − qj+1|+ qn−1 + q0

)) |n|∑

i=0

Mi |KMi
|

≤ c

n

|n|∑

i=0

Mi |KMi
| .

The proof is complete. �

Lemma 11. Let x ∈ Ik,lN , k = 0, . . . , N − 2, l = k + 1, . . . , N − 1 and {qk : k ∈ N} be a
sequence of non-decreasing numbers satisfying condition (22). Then

∫

IN

|Fn (x− t)| dµ (t) ≤
cMlMk

nMN

.

Let x ∈ Ik,NN , k = 0, . . . , N − 1. Then

∫

IN

|Fn (x− t)| dµ (t) ≤
cMk

MN

.

Here c is an absolute constant.

Proof: The proof is quite analogously to the proof of Lemma 8, so we leave out the details.

Lemma 12. Let n ≥MN , x ∈ Ik,lN , k = 0, . . . , N − 1, l = k + 1, . . . , N and {qk : k ∈ N}
be a sequence of non-decreasing numbers, satisfying condition (22). Then

∫

IN

|Fn (x− t)| dµ (t) ≤
cMlMk

M2
N

.

Proof: Since n ≥MN if we apply Lemma 11 we immediately get the proof.
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5. Proofs of the main result

Proof of Theorem 1. Let 0 < p ≤ 1/2 and the sequence {qk : k ≥ 0} be non-increasing. By
using (11) and (15) we get that

|Tnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

≤ 1

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

∣∣∣∣∣
1

Qn

n−1∑

j=1

qjSjf

∣∣∣∣∣

≤ 1

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

1

Qn

(
n−2∑

j=1

|qj − qj+1| j |σjf |+ qn−1(n− 1) |σnf |
)

≤ 1

Qn

(
n−2∑

j=1

|qj − qj+1| j |σjf |
(j + 1)1/p−2 log2[1/2+p] (j + 1)

+
qn−1(n− 1) |σnf |

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

)

≤ 1

Qn

(
n−2∑

j=1

(qj − qj+1) j + qn−1(n− 1)

)
sup
n∈N+

|σnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

≤ sup
n∈N+

|σnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

= σ̃∗pf,

so that T̃ ∗p f ≤ σ̃∗pf. Hence, if we apply Theorem T1 we can conclude that the maximal

operators T̃ ∗p of T means with non-increasing sequence {qk : k ≥ 0} are bounded from the
Hardy space Hp to the space Lp for 0 < p ≤ 1/2. The proof is complete. �

Proof of Theorem 2. Let 0 < p ≤ 1/2 and the sequence {qk : k ≥ 0} be non-decreasing
satisfying the condition (22). By applying (11) and (15) we �nd that

|Tnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

≤ 1

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

∣∣∣∣∣
1

Qn

n−1∑

j=1

qjSjf

∣∣∣∣∣

≤ 1

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

1

Qn

(
n−2∑

j=1

|qj − qj+1| j |σjf |+ qn−1(n− 1) |σnf |
)

≤ 1

Qn

(
n−2∑

j=1

|qj − qj+1| j |σjf |
(j + 1)1/p−2 log2[1/2+p] (j + 1)

+
qn−1(n− 1) |σnf |

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

)

≤ 1

Qn

(
n−2∑

j=1

(qj+1 − qj) j + qn−1(n− 1)

)
sup
n∈N+

|σnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

≤ 2qn−1(n− 1)−Qn + q0
Qn

sup
n∈N+

|σnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

≤ c sup
n∈N+

|σnf |
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

= cσ̃∗pf.
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so that

(35) T̃ ∗p f ≤ cσ̃∗pf

If we apply (35) and Theorem T1 we can conclude that the maximal operators T̃ ∗p of T
means with non-decreasing sequence {qk : k ≥ 0}, are bounded from the Hardy space Hp to
the space Lp for 0 < p ≤ 1/2. The proof is complete. �

Proof of Theorem 3. Let 0 < p < 1/2 and the sequence {qk : k ≥ 0} be non-increasing. By
Lemma 1, the proof of part a) will be complete, if we show that

(36)
∞∑

k=1

‖Tka‖pHp
k2−2p

≤ cp,

for every p-atom a, with support I, µ (I) =M−1
N . We may assume that I = IN . It is easy to

see that Sk (a) = Tk (a) = 0, when k ≤MN . Therefore, we can suppose that k > MN .

Let x ∈ IN . Since Tk is bounded from L∞ to L∞ (boundedness follows Lemma 4) and

‖a‖∞ ≤M
1/p
N we obtain that

∫

IN

|Tka|p dµ ≤
‖a‖p∞
MN

≤ c <∞.

Hence,

(37)
∞∑

k=1

∫
IN
|Tka|p dµ
k2−2p

≤
∞∑

k=1

c

k2−2p
≤ c <∞, 0 < p < 1/2.

It is easy to see that

|Tka (x)|(38)

=

∣∣∣∣
∫

IN

a (t)Fk (x− t) dµ (t)
∣∣∣∣ =

∣∣∣∣∣

∫

IN

a (t)
1

Qk

k∑

l=MN

qlDl (x− t) dµ (t)
∣∣∣∣∣

≤ ‖a‖∞
∫

IN

∣∣∣∣∣
1

Qk

k∑

l=MN

qlDl (x− t)
∣∣∣∣∣ dµ (t) ≤ cM

1/p
N

∫

IN

∣∣∣∣∣
1

Qk

k∑

l=MN

qlDl (x− t)
∣∣∣∣∣ dµ (t) .

Let Tk be T means, with non-decreasing coe�cients {qk : k ≥ 0} and x ∈ I i,jN , 0 ≤ i < j ≤
N. Then, in the view of Lemma 6 we get that

(39) |Tka (x)| ≤ cMiMjM
1/p−2
N , for 0 < p < 1/2.

Let 0 < p < 1/2. By using (5), (38) and (39) we �nd that
∫

IN

|Tka|p dµ =
N−2∑

i=0

N−1∑

j=i+1

mj−1∑

xj=0, j∈{i+1,...,N−1}

∫

Ii,jN

|Tka|p dµ+
N−1∑

i=0

∫

Ii,NN

|Tka|p dµ(40)

≤ c

N−2∑

i=0

N−1∑

j=i+1

mj+1 · · ·mN−1
MN

(MiMj)
pM1−2p

N + c

N−1∑

i=0

1

MN

Mp
iM

1−p
N

≤ cM1−2p
N

N−2∑

i=0

N−1∑

j=i+1

(MjMk)
p

Mj

+ c

N−1∑

i=0

Mp
i

Mp
N

≤ cM1−2p
N .
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Moreover, according to (40) we get that

(41)
∞∑

k=MN+1

∫
IN
|Tka|p dµ
k2−2p

≤
∞∑

k=MN+1

cM1−2p
N

k2−2p
< c, (0 < p < 1/2) .

The proof of (36), and thus of part a), is complete by just combining (37) and (41).

Let p = 1/2 and Tk be T means, with non-increasing coe�cients {qk : k ≥ 0}, satisfying
condition (25). By Lemma 1, the proof of part b) will be complete, if we show that

(42)
1

log n

n∑

k=1

‖Tka‖1/2H1/2

k
≤ c,

for every 1/2-atom a, with support I, µ (I) =M−1
N . We may assume that I = IN . It is easy

to see that Sk (a) = Tk (a) = 0, when k ≤MN . Therefore, we can suppose that k > MN .

Let x ∈ IN . Since Tn is bounded from L∞ to L∞ (boundedness follows from Lemma 4) and
‖a‖∞ ≤M2

N we obtain that

∫

IN

|Tka|1/2 dµ ≤
‖a‖1/2∞
MN

≤ c <∞.

Hence,

(43)
1

log n

n∑

k=1

∫
IN
|Tka|1/2 dµ
k

≤ c

log n

n∑

k=1

1

k
≤ c <∞.

Analogously to (38) we �nd that

|Tka (x)| =

∣∣∣∣∣

∫

IN

a (t)
1

Qk

k∑

l=MN

qlDl (x− t) dµ (t)
∣∣∣∣∣(44)

≤ ‖a‖∞
∫

IN

∣∣∣∣∣
1

Qk

k∑

l=MN

qlDl (x− t)
∣∣∣∣∣ dµ (t)

≤ M2
N

∫

IN

∣∣∣∣∣
1

Qk

k∑

l=MN

qlDl (x− t)
∣∣∣∣∣ dµ (t) .

Let x ∈ I i,jN , 0 ≤ i < j < N. Then, in the view of Lemma 8 we get that

(45) |Tka (x)| ≤
cMiMjMN

k
.

Let x ∈ I i,NN . Then, according to Lemma 8 we obtain that

(46) |Tka (x)| ≤ cMiMN .
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By combining (5), (44), (45) and (46) we obtain that
∫

IN

|Tka (x)|1/2 dµ (x)

≤ c

N−2∑

i=0

N−1∑

j=i+1

mj+1 · · ·mN−1
MN

(MiMj)
1/2M

1/2
N

k1/2
+ c

N−1∑

i=0

1

MN

M
1/2
i M

1/2
N

≤ cM
1/2
N

N−2∑

i=0

N−1∑

j=i+1

(MiMj)
1/2

k1/2Mj

+ c

N−1∑

i=0

M
1/2
i

M
1/2
N

≤ cM
1/2
N N

k1/2
+ c.

It follows that

1

log n

n∑

k=MN+1

∫
IN
|Tka (x)|1/2 dµ (x)

k
≤ 1

log n

n∑

k=MN+1

(
cM

1/2
N N

k3/2
+
c

k

)
< c <∞.(47)

The proof of (42), and thus of part b), is completed by just combining (43) and (47). �

Proof of Theorem 4. If we use Lemmas 11 and 12 and follow analogical steps as in the proof
of Theorem 3 we get the proof of Theorem 4. Hence, we leave out the details. �
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Abstract
In this paper we derive a new strong convergence theorem of Riesz logarithmic
means of the one-dimensional Vilenkin–Fourier (Walsh–Fourier) series. The
corresponding inequality is pointed out and it is also proved that the inequality is in a
sense sharp, at least for the case with Walsh–Fourier series.
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1 Introduction
Concerning definitions used in this introduction we refer to Sect. 2. Weisz [47] proved
the boundedness of the maximal operator of Fejér means σψ ,∗ with respect to bounded
Vilenkin systems from the martingale Hardy space Hp(Gm) to the space Lp(Gm), for p > 1/2.
Simon [31] gave a counterexample, which shows that boundedness does not hold for 0 <
p < 1/2. The corresponding counterexample for p = 1/2 is due to Goginava [14]. Moreover,
Weisz [50] proved the following result.

Theorem W The maximal operator of Fejér means σψ ,∗ is bounded from the Hardy space
H1/2(Gm) to the space weak-L1/2(Gm).

In [35] and [36] it was proved that the maximal operator σ̃
ψ ,∗
p defined by

σ̃ ψ ,∗
p := sup

n∈N

|σψ
n |

(n + 1)1/p–2 log2[1/2+p](n + 1)
,

where 0 < p ≤ 1/2 and [1/2 + p] denotes the integer part of 1/2 + p, is bounded from the
Hardy space Hp(Gm) to the space Lp(Gm). Moreover, for any nondecreasing function ϕ :
N+ → [1,∞) satisfying the condition

lim
n→∞

(n + 1)1/p–2 log2[1/2+p](n + 1)
ϕ(n)

= +∞, (1.1)
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there exists a martingale f ∈ Hp(Gm), such that

sup
n∈N

∥

∥

∥

∥

σ
ψ
n f

ϕ(n)

∥

∥

∥

∥

p
= ∞.

For Walsh–Kaczmarzi system some analogical results were proved in [16] and [37].
Weisz [47] considered the norm convergence of the Fejér means of a Vilenkin–Fourier

series and proved the following result.

Theorem W1 (Weisz) Let p > 1/2 and f ∈ Hp(Gm). Then there exists an absolute constant
cp, depending only on p, such that for all k = 1, 2, . . . and f ∈ Hp(Gm) the following inequality
holds:

∥

∥σ
ψ

k f
∥

∥

p ≤ cp‖f ‖Hp(Gm).

Moreover, in [34] it was proved that the assumption p > 1/2 in Theorem W1 is essential.
In fact, the following is true.

Theorem T1 There exists a martingale f ∈ H1/2(Gm) such that

sup
n∈N

∥

∥σψ
n f

∥

∥

1/2 = +∞.

Theorem W1 implies that

1
n2p–1

n
∑

k=1

‖σψ

k f ‖p
p

k2–2p ≤ cp‖f ‖p
Hp(Gm), 1/2 < p < ∞, n = 1, 2, . . . .

If Theorem W1 holds for 0 < p ≤ 1/2, then we would have

1
log[1/2+p] n

n
∑

k=1

‖σψ

k f ‖p
p

k2–2p ≤ cp‖f ‖p
Hp(Gm), 0 < p ≤ 1/2, n = 2, 3, . . . . (1.2)

For the Walsh system in [38] and for the bounded Vilenkin systems in [37] were proved
that (1.2) holds, though Theorem T1 is not true for 0 < p < 1/2.

Some results concerning summability of the Fejér means of a Vilenkin–Fourier series
can be found in [10, 12, 16, 25, 28, 30].

The Riesz logarithmic means with respect to the Walsh system was studied by Simon
[31], Goginava [15], Gát, Nagy [13] and for Vilenkin systems by Gát [11] and Blahota, Gát
[3], Persson, Ragusa, Samko, Wall [26]. Moreover, in [27] it was proved that the maximal
operator of the Riesz logarithmic means of a Vilenkin–Fourier series is bounded from the
martingale Hardy space Hp(Gm) to the space Lp(Gm) when p > 1/2 and is not bounded
from the martingale Hardy space Hp(Gm) to the space Lp(Gm) when 0 < p ≤ 1/2.

In [35] and [36] it was proved that the Riesz logarithmic means has better properties
than the Fejér means. In particular, one considered the maximal operator ˜Rψ ,∗

p of a Riesz
logarithmic means ˜Rψ ,∗

p defined by

˜Rψ ,∗
p := sup

n∈N

|Rψ
n | log(n + 1)

(n + 1)1/p–2 log2[1/2+p](n + 1)
,
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where 0 < p ≤ 1/2 and [1/2 + p] denotes the integer part of 1/2 + p, which is bounded from
the Hardy space Hp(Gm) to the space Lp(Gm).

Moreover, this result is sharp in the following sense: For any nondecreasing function
ϕ : N+ → [1,∞) satisfying the condition

lim
n→∞

(n + 1)1/p–2 log2[1/2+p](n + 1)
ϕ(n) log(n + 1)

= ∞, (1.3)

there exists a martingale f ∈ Hp(Gm), such that

sup
n∈N

∥

∥

∥

∥

Rψ
n f

ϕ(n)

∥

∥

∥

∥

p
= ∞.

The main aim of this paper is to derive a new strong convergence theorem of the Riesz
logarithmic means of one-dimensional Vilenkin–Fourier (Walsh–Fourier) series (see The-
orem 1). The corresponding inequality is pointed out. The sharpness is proved in Theo-
rem 2, at least for the case with Walsh–Fourier series.

The paper is organized as follows: In Sect. 2 some definitions and notations are pre-
sented. The main results are presented and proved in Sect. 3. Section 4 is reserved for
some concluding remarks and open problems.

2 Definitions and notations
Let N+ denote the set of positive integers, N := N+ ∪ {0}.

Let m := (m0, m1, . . .) denote a sequence of positive integers not less than 2.
Denote by

Zmk := {0, 1, . . . mk – 1}

the additive group of integers modulo mk .
Define the group Gm as the complete direct product of the group Zmj with the product

of the discrete topologies of the Zmj .
The direct product μ of the measures

μk
({j}) := 1/mk (j ∈ Zmk )

is a Haar measure on Gm with μ(Gm) = 1.
If supn∈N mn < ∞, then we call Gm a bounded Vilenkin group. If the generating sequence

m is not bounded, then Gm is said to be an unbounded Vilenkin group. In this paper we
discuss only bounded Vilenkin groups.

The elements of Gm are represented by the sequences

x := (x0, x1, . . . , xj, . . .) (xk ∈ Zmk ).

It is easy to give a base for the neighborhood of Gm, namely

I0(x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . yn–1 = xn–1} (x ∈ Gm, n ∈ N).
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Denote In := In(0) for n ∈ N and In := Gm\In.
Let

en := (0, 0, . . . , xn = 1, 0, . . .) ∈ Gm (n ∈ N).

It is evident that

IM =

(M–2
⋃

k=0

mk –1
⋃

xk =1

M–1
⋃

l=k+1

ml–1
⋃

xl=1

Il+1(xkek + xlel)

)

∪
(M–1

⋃

k=1

mk –1
⋃

xk =1

IM(xkek)

)

. (2.1)

If we define the so-called generalized number system based on m in the following way:

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as n =
∑∞

k=0 njMj, where nj ∈ Zmj (j ∈ N) and
only a finite number of the nj differ from zero. Let |n| := max{j ∈ N; nj 	= 0}.

The norm (or quasi-norm when p < 1) of the space Lp(Gm) is defined by

‖f ‖p :=
(∫

Gm

|f |p dμ

)1/p

(0 < p < ∞).

The space weak-Lp(Gm) consists of all measurable functions f for which

‖f ‖weak-Lp(Gm) := sup
λ>0

λpμ(f > λ) < +∞.

Next, we introduce on Gm an orthonormal system which is called the Vilenkin system.
Let us define complex valued function rk(x) : Gm → C, the generalized Rademacher

functions, as

rk(x) := exp(2π ixk/mk)
(

i2 = –1, x ∈ Gm, k ∈ N
)

.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as

ψn(x) :=
∞
∏

k=0

rnk
k (x) (n ∈ N).

The Vilenkin systems are orthonormal and complete in L2(Gm) (for details see e.g. [1]).
Specifically, we call this system Walsh–Paley if mk = 2, for all k ∈ N. In this case we have

the dyadic group G2 =
∏∞

j=0 Z2, which is called the Walsh group and the Vilenkin system
coincides with the Walsh functions defined by (for details see e.g. [17] and [29])

wn(x) :=
∞
∏

k=0

rnk
k (x) = r|n|(x)(–1)

∑|n|–1
k=0 nk xk (n ∈ N),

where nk = 0 ∨ 1 and xk = 0 ∨ 1.
Now, we introduce analogues of the usual definitions in Fourier analysis.
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If f ∈ L1(Gm), then we can establish the Fourier coefficients, the partial sums of the
Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the Vilenkin
system ψ (Walsh system w) in the usual manner:

̂f α(k) :=
∫

Gm

f αk dμ (αk = wk or ψk) (k ∈ N),

Sα
n f :=

n–1
∑

k=0

̂f (k)αk (αk = wk or ψk)
(

n ∈ N+, Sα
0 f := 0

)

,

σα
n f :=

1
n

n–1
∑

k=0

Sα
k f (α = w or ψ) (n ∈ N+),

Dα
n :=

n–1
∑

k=0

αk (α = w or ψ) (n ∈ N+),

Kα
n :=

1
n

n–1
∑

k=0

Dα
k (α = w or ψ) (n ∈ N+).

It is well known that (see e.g. [1])

sup
n∈N

∫

Gm

∣

∣Kα
n
∣

∣dμ ≤ c < ∞, where α = w or ψ . (2.2)

The σ -algebra generated by the intervals {In(x) : x ∈ Gm} will be denoted by �n (n ∈ N).
Denote by f = (f (n), n ∈ N) a martingale with respect to �n (n ∈ N) (for details see e.g.
[5, 23, 46]). The maximal function of a martingale f is defend by

f ∗ = sup
n∈N

∣

∣f (n)∣
∣.

In the case f ∈ L1(Gm), the maximal functions are also given by

f ∗(x) = sup
n∈N

1
|In(x)|

∣

∣

∣

∣

∫

In(x)
f (u)μ(u)

∣

∣

∣

∣

.

For 0 < p < ∞ the Hardy martingale spaces Hp(Gm) consist of all martingales for which

‖f ‖Hp(Gm) :=
∥

∥f ∗∥
∥

p < ∞.

If f ∈ L1(Gm), then it is easy to show that SMn f is �n measurable and the sequence
(SMn f : n ∈ N) is a martingale. If f = (f (n), n ∈ N) is a martingale, then the Vilenkin–Fourier
(Walsh–Fourier) coefficients must be defined in a slightly different manner, namely

̂f (i) := lim
k→∞

∫

Gm

f (k)(x)αi(x) dμ(x), where α = w or ψ .

The Vilenkin–Fourier coefficients of f ∈ L1(Gm) are the same as those of the martingale
(SMn f : n ∈ N) obtained from f .
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In the literature, there is the notion of the Riesz logarithmic means of a Fourier series.
The nth Riesz logarithmic means of the Fourier series of an integrable function f is defined
by

Rα
nf :=

1
ln

n
∑

k=1

Sα
k f
k

, where α = w or ψ ,

with

ln :=
n

∑

k=1

1
k

.

The kernels of Riesz‘s logarithmic means are defined by

Lα
n :=

1
ln

n
∑

k=1

Dα
k

k
, where (α = w or ψ).

For the martingale f we consider the following maximal operators:

σα,∗f : sup
n∈N

∣

∣σα
n f

∣

∣ (α = w or ψ),

R∗f := sup
n∈N

∣

∣Rα
nf

∣

∣ (α = w or ψ),

˜Rα,∗f := sup
n∈N

|Rα
nf |

log(n + 1)
(α = w or ψ),

˜Rα,∗
p f := sup

n∈N

log(n + 1)|Rα
nf |

(n + 1)1/p–2 (α = w or ψ).

A bounded measurable function a is a p-atom, if there exists an interval I , such that
∫

I
a dμ = 0, ‖a‖∞ ≤ μ(I)–1/p, supp(a) ⊂ I.

In order to prove our main results we need the following lemma of Weisz (for details see
e.g. Weisz [49]).

Proposition 1 A martingale f = (f (n), n ∈ N) is in Hp(Gm) (0 < p ≤ 1) if and only if there
exist a sequence (ak , k ∈ N) of p-atoms and a sequence (μk , k ∈ N) of a real numbers such
that for every n ∈ N

∞
∑

k=0

μkSMn ak = f (n) (2.3)

and

∞
∑

k=0

|μk|p < ∞.

Moreover, ‖f ‖Hp(Gm) � inf(
∑∞

k=0 |μk|p)1/p, where the infimum is taken over all decomposi-
tions of f of the form (2.3).

140



Lukkassen et al. Journal of Inequalities and Applications         (2020) 2020:79 Page 7 of 17

By using atomic characterization (see Proposition 1) it can be easily proved that the
following statement holds (see e.g. Weisz [50]).

Proposition 2 Suppose that an operator T is sub-linear and for some 0 < p0 ≤ 1

∫

Ī
|Ta|p0 dμ ≤ cp < ∞

for every p0-atom a, where I denotes the support of the atom. If T is bounded from Lp1 to
Lp1 (1 < p1 ≤ ∞), then

‖Tf ‖p0 ≤ cp0‖f ‖Hp0 (Gm). (2.4)

Let us define classical Hardy spaces (see e.g. [44]). Let Hp(D), p > 0 be the one-
dimensional complex quasi-Banach space of analytic functions f on the unit disc D :=
(z : |z| < 1) for which

‖f ‖Hp(D) = sup
r<1

1
2π

(∫

[–π ,π ]

∣

∣f
(

reit)∣
∣

p dt
)1/p

.

Now, we define real Hardy spaces. A real-valued distributions f (t) ∈ D′(T) belongs to
Hp(T) where T = (–π ,π ] if and only if there exists a function F(z) ∈ Hp(D) with the prop-
erties Im(F(0)) = 0 and f (t) = limr→1 Re F(reit) in the sense of distributions. Equipped with
quasi-norm ‖f (z)‖Hp(T) = ‖F(z)‖Hp(D) the class obviously becomes a real quasi-Banach
space with quite the same properties as Hp(D). Atomic decomposition of classical Hardy
spaces and real Hardy spaces can be found e.g. in Fefferman and Stein [6] (see also Later
[19], Torchinsky [44], Wilson [51]).

3 Main results
Our first main result reads as follows.

Theorem 1 Let 0 < p < 1/2 and f ∈ Hp(Gm). Then there exists an absolute constant cp,
depending only on p, such that the inequality

∞
∑

n=1

logp n‖Rψ
n f ‖p

Hp(Gm)

n2–2p ≤ cp‖f ‖p
Hp(Gm) (3.1)

holds, where Rψ
n f denotes the nth Riesz logarithmic mean with respect to the Vilenkin–

Fourier series of f .

For the proof of Theorem 1 we will use the following lemmas.

Lemma 1 (see [38]) Let x ∈ IN (xkek +xlel), 1 ≤ xk ≤ mk –1, 1 ≤ xl ≤ ml –1, k = 0, . . . , N –2,
l = k + 1, . . . , N – 1. Then

∫

IN

∣

∣Kψ
n (x – t)

∣

∣dμ(t) ≤ cMlMk

nMN
, when n ≥ MN .
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Let x ∈ IN (xkek), 1 ≤ xk ≤ mk – 1, k = 0, . . . , N – 1. Then
∫

IN

∣

∣Kψ
n (x – t)

∣

∣dμ(t) ≤ cMk

MN
, when n ≥ MN .

Lemma 2 (see [39]) Let x ∈ IN (xkek +xlel), 1 ≤ xk ≤ mk –1, 1 ≤ xl ≤ ml –1, k = 0, . . . , N –2,
l = k + 1, . . . , N – 1. Then

∫

IN

n
∑

j=MN +1

|Kψ

j (x – t)|
j + 1

dμ(t) ≤ cMkMl

M2
N

.

Let x ∈ IN (xkek), 1 ≤ xk ≤ mk – 1, k = 0, . . . , N – 1. Then

∫

IN

n
∑

j=MN +1

|Kψ

j (x – t)|
j + 1

dμ(t) ≤ cMk

MN
ln.

Proof By using an Abel transformation, the kernels of the Riesz logarithmic means can be
rewritten as (see also [39])

Lψ
n =

1
ln

n–1
∑

j=1

Kψ

j

j + 1
+

Kψ
n

ln
. (3.2)

Hence, according to (2.2) we get

sup
n∈N

∫

Gm

∣

∣Lα
n
∣

∣dμ ≤ c < ∞, where α = w or ψ

and it follows that Rψ
n is bounded from L∞ to L∞. By Proposition 2, the proof of Theorem 1

will be complete, if we show that

∞
∑

n=1

logp n
∫

Ī |Rψ
n a|p dμ

n2–2p ≤ cp < ∞, for 0 < p < 1/2, (3.3)

for every p-atom a, where I denotes the support of the atom.
Let a be an arbitrary p-atom with support I and μ(I) = M–1

N . We may assume that I = IN .
It is easy to see that Rψ

n a = σ
ψ
n (a) = 0, when n ≤ MN . Therefore we suppose that n > MN .

Since ‖a‖∞ ≤ cM2
N if we apply (3.2), then we can conclude that

∣

∣Rψ
n a(x)

∣

∣

=
∫

IN

∣

∣a(t)
∣

∣

∣

∣Lψ
n (x – t)

∣

∣dμ(t)

≤ ‖a‖∞
∫

IN

∣

∣Lψ
n (x – t)

∣

∣dμ(t)

≤ cM1/p
N

ln

∫

IN

n–1
∑

j=MN +1

|Kψ

j (x – t)|
j + 1

dμ(t)

+
cM1/p

N
ln

∫

IN

∣

∣Kψ
n (x – t)

∣

∣dμ(t). (3.4)
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Let x ∈ IN (xkek +xlel), 1 ≤ xk ≤ mk –1, 1 ≤ xl ≤ ml –1, k = 0, . . . , N –2, l = k +1, . . . , N –1.
From Lemmas 1 and 2 it follows that

∣

∣Rψ
n a(x)

∣

∣ ≤ cMlMkM1/p–2
N

log(n + 1)
. (3.5)

Let x ∈ IN (xkek), 1 ≤ xk ≤ mk – 1, k = 0, . . . , N – 1. Applying Lemmas 1 and 2 we can
conclude that

∣

∣Rψ
n a(x)

∣

∣ ≤ M1/p–1
N Mk . (3.6)

By combining (2.1) and (3.4)–(3.6) we obtain

∫

IN

∣

∣Rψ
n a(x)

∣

∣

p dμ(x)

=
N–2
∑

k=0

N–1
∑

l=k+1

mj–1
∑

xj=0,j∈{l+1,...,N–1

∫

Ik,l
N

∣

∣Rψ
n a

∣

∣

p dμ +
N–1
∑

k=0

∫

Ik,N
N

∣

∣Rψ
n a

∣

∣

p dμ

≤ c
N–2
∑

k=0

N–1
∑

l=k+1

ml+1 . . . mN–1

MN

(MlMk)pM1–2p
N

logp(n + 1)
+

N–1
∑

k=0

1
MN

Mp
k M1–p

N

≤ cM1–2p
N

logp(n + 1)

N–2
∑

k=0

N–1
∑

l=k+1

(MlMk)p

Ml
+

N–1
∑

k=0

Mp
k

Mp
N

≤ cM1–2p
N

logp(n + 1)
+ cp. (3.7)

It is easy to see that

∞
∑

n=MN +1

1
n2–2p ≤ c

M1–2p
N

, for 0 < p < 1/2. (3.8)

By combining (3.7) and (3.8) we get

∞
∑

n=MN +1

logp n
∫

IN
|Rna|p dμ

n2–2p

≤
∞

∑

n=MN +1

(

cpM1–2p
N

n2–p +
cp

n2–p

)

+ cp

≤ cpM1–2p
N

∞
∑

n=MN +1

1
n2–2p +

∞
∑

n=MN +1

1
n2–p + cp ≤ Cp < ∞.

It means that (3.3) holds true and the proof is complete. �

Our next main result shows in particular that the inequality in Theorem 1 is in a special
sense sharp at least in the case of Walsh–Fourier series (cf. also Problem 2 in the next
section).
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Theorem 2 Let 0 < p < 1/2 and Φ : N → [1,∞) be any nondecreasing function, satisfying
the condition

lim
n→∞Φ(n) = +∞. (3.9)

Then there exists a martingale f ∈ Hp(G2) such that

∞
∑

n=1

logp n‖Rw
n f ‖p

pΦ(n)
n2–2p = ∞, (3.10)

where Rw
n f denotes the nth Riesz logarithmic means with respect to Walsh–Fourier series

of f .

Proof It is evident that if we assume that Φ(n) ≥ cn, where c is some positive constant
then

logp nΦ(n)
n2–2p ≥ n1–2p logp n → ∞, as n → ∞,

and also (3.10) holds. So, without loss of generality we may assume that there exists an
increasing sequence of positive integers {α′

k : k ∈ N} such that

Φ
(

α′
k
)

= o
(

α′
k
)

, as k → ∞. (3.11)

Let {αk : k ∈ N} ⊆ {α′
k : k ∈ N} be an increasing sequence of positive integers such that

α0 ≥ 2 and

∞
∑

k=0

1
Φ1/2(22αk )

< ∞, (3.12)

k–1
∑

η=0

22αη/p

Φ1/2p(22αη )
≤ 22αk–1/p+1

Φ1/2p(22αk–1 )
, (3.13)

22αk–1/p+1

Φ1/2p(22αk–1 )
≤ 1

128αk

22αk (1/p–2)

Φ1/2p(22αk )
. (3.14)

We note that under condition (3.11) we can conclude that

22αη/p

Φ1/2p(22αη )
≥

(

22αη

Φ(22αη )

)1/2p

→ ∞, as η → ∞

and it immediately follows that such an increasing sequence {αk : k ∈ N}, which satisfies
conditions (3.12)–(3.14), can be constructed.

Let

f (A)(x) :=
∑

{k;2αk <A}
λkak ,

where

λk =
1

Φ1/2p(22αk )
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and

ak = 22αk (1/p–1)(D22αk +1 – D22αk ).

From (3.12) and Lemma 1 we can conclude that f = (f (n), n ∈ N) ∈ Hp(G2).
It is easy to show that

̂f w(j) =

⎧

⎨

⎩

22αk (1/p–1)

Φ1/2p(22αk )
, if j ∈ {22αk , . . . , 22αk +1 – 1}, k ∈ N,

0, if j /∈ ⋃∞
k=1{22αk , . . . , 22αk +1 – 1}.

(3.15)

For n =
∑s

i=1 2ni , n1 < n2 < · · · < ns we denote

A0,2 :=

{

n ∈ N : n = 20 + 22 +
sn

∑

i=3

2ni

}

.

Let 22αk ≤ j ≤ 22αk +1 – 1 and j ∈ A0,2. Then

Rw
j f =

1
lj

22αk –1
∑

n=1

Snf
n

+
1
lj

j
∑

n=22αk

Snf
n

:= I + II. (3.16)

Let n < 22αk . Then from (3.13), (3.14) and (3.15) we have

∣

∣Sw
n f (x)

∣

∣ ≤
k–1
∑

η=0

22αη+1–1
∑

v=22αη

∣

∣̂f w(v)
∣

∣ ≤
k–1
∑

η=0

22αη+1–1
∑

v=22αη

22αη(1/p–1)

Φ1/2p(22αη )

≤
k–1
∑

η=0

22αη/p

Φ1/2p(22αη )
≤ 22αk–1/p+1

Φ1/2p(22αk–1 )
≤ 1

128αk

22αk (1/p–2)

Φ1/2p(22αk )
.

Consequently,

|I| ≤ 1
lj

22αk –1
∑

n=1

|Sw
n f (x)|

n

≤ 1
l22αk

1
128αk

22αk (1/p–2)

Φ1/2p(22αk )

22αk –1
∑

n=1

1
n

≤ 1
128αk

22αk (1/p–2)

Φ1/2p(22αk )
. (3.17)

Let 22αk ≤ n ≤ 22αk +1 – 1. Then we have the following:

Sw
n f =

k–1
∑

η=0

22αη+1–1
∑

v=22αη

̂f w(v)wv +
n–1
∑

v=22αk

̂f w(v)wv

=
k–1
∑

η=0

22αη(1/p–1)

Φ1/2p(22αη )
(

Dw
22αη+1 – Dw

22αη

)

+
22αk (1/p–1)

Φ1/2p(22αk )
(

Dw
n – Dw

22αk

)

.
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This gives

II =
1
lj

22αk +1
∑

n=22αk

1
n

( k–1
∑

η=0

22αη(1/p–1)

Φ1/2p(22αη )
(

Dw
22αη+1 – Dw

22αη

)

)

+
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

j
∑

n=22αk

(Dw
n – Dw

22αk )
n

:= II1 + II2. (3.18)

Let x ∈ I2(e0 + e1) ∈ I0\I1. We use well-known equalities for Dirichlet kernels (for details
see e.g. [17] and [29]): recall that

Dw
2n (x) =

⎧

⎨

⎩

2n, if x ∈ In,

0, if x /∈ In,
(3.19)

and

Dw
n = wn

∞
∑

k=0

nkrkDw
2k = wn

∞
∑

k=0

nk
(

Dw
2k+1 – Dw

2k

)

, for n =
∞

∑

i=0

ni2i, (3.20)

so we can conclude that

Dw
n (x) =

⎧

⎨

⎩

wn, if n is odd number,

0, if n is even number.

Since α0 ≥ 2, k ∈ N we obtain 2αk ≥ 4, for all k ∈ N and if we apply (3.19) we get

II1 = 0 (3.21)

and

II2 =
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

(j–1)/2
∑

n=22αk –1

w2n+1

2n + 1
=

1
lj

22αk (1/p–1)r1

Φ1/2p(22αk )

(j–1)/2
∑

n=22αk –1

w2n

2n + 1
.

Let x ∈ I2(e0 + e1). Then, by the definition of Walsh functions, we get

w4n+2 = r1w4n = –w4n

and

|II2| =
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

∣

∣

∣

∣

∣

(j–1)/2
∑

n=22αk –1

w2n

2n + 1

∣

∣

∣

∣

∣

=
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

∣

∣

∣

∣

∣

wj–1

j
+

(j–1)/4
∑

n=22αk –2+1

(

w4n–4

4n – 3
+

w4n–2

4n – 1

)

∣

∣

∣

∣

∣
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=
1
lj

22αk (1/p–1)

Φ1/2p(22αk )

∣

∣

∣

∣

∣

wj–1

j
+

(j–1)/4
∑

n=22αk –2+1

(

w4n–4

4n – 3
–

w4n–2

4n – 1

)

∣

∣

∣

∣

∣

≥ c
log(22αk +1)

22αk (1/p–1)

Φ1/2p(22αk )

(

∣

∣

∣

∣

wj–1

j

∣

∣

∣

∣

–
(j–1)/4
∑

n=22αk –2+1

|w4n–4|
(

1
4n – 3

–
1

4n – 1

)

)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
j

–
(j–1)/4
∑

n=22αk –2+1

(

1
4n – 3

–
1

4n – 1

)

)

. (3.22)

By a simple calculation we can conclude that

(j–1)/4
∑

n=22αk –2+1

(

1
4n – 3

–
1

4n – 1

)

=
(j–1)/4
∑

n=22αk –2+1

2
(4n – 3)(4n – 1)

≤
(j–1)/4
∑

n=22αk –2+1

2
(4n – 4)(4n – 2)

=
1
2

(j–1)/4
∑

n=22αk –2+1

1
(2n – 2)(2n – 1)

≤ 1
2

(j–1)/4
∑

n=22αk –2+1

1
(2n – 2)(2n – 2)

=
1
8

(j–1)/4
∑

n=22αk –2+1

1
(n – 1)(n – 1)

≤ 1
8

(j–1)/4
∑

n=22αk –2+1

1
(n – 1)(n – 2)

=
1
8

(j–1)/4
∑

l=22αk –2+1

(

1
n – 2

–
1

n – 1

)

≤ 1
8

(

1
22αk –2 – 1

–
4

j – 5

)

≤ 1
8

(

1
22αk –2 – 1

–
4
j

)

.

Since 22αk ≤ j ≤ 22αk +1 – 1, where αk ≥ 2, we obtain

2
22αk – 4

≤ 2
24 – 4

=
1
6

and

|II2| ≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
j

–
1
8

(

1
22αk –2 – 1

–
4
j

))

(3.23)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

3
2j

–
1

22αk +1 – 8

)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

3
4

1
22αk

–
1
2

1
22αk – 4

)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
4

1
22αk

+
1
2

1
22αk

–
1
2

1
22αk – 4

)

=
1

4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
4

1
22αk

–
2

22αk (22αk – 4)

)

≥ 1
4αk

22αk (1/p–1)

Φ1/2p(22αk )

(

1
4

1
22αk

–
1
6

1
22αk

)
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≥ 1
48αk

22αk (1/p–2)

Φ1/2p(22αk )
≥ 1

64αk

22αk (1/p–2)

Φ1/2p(22αk )
.

By combining (3.14), (3.16)–(3.23) for ∈ I2(e0 + e1) and 0 < p < 1/2 we find that

∣

∣Rw
j f (x)

∣

∣ ≥ |II2| – |II1| – |I|

≥ 1
64αk

22αk (1/p–2)

Φ1/2p(22αk )
–

1
128αk

22αk (1/p–2)

Φ1/2p(22αk )
=

1
128αk

22αk (1/p–2)

Φ1/2p(22αk )
.

Hence,

∥

∥Rw
j f

∥

∥

p
weak-Lp(G2)

≥ 1
128α

p
k

22αk (1–2p)

Φ1/2(22αk )
μ

{

x ∈ G2 :
∣

∣Rw
j f

∣

∣ ≥ 1
128αk

22αk (1/p–2)

Φ1/2p(22αk )

}1/p

≥ 1
128α

p
k

22αk (1–2p)

Φ1/2(22αk )
μ

{

x ∈ I2(e0 + e1) :
∣

∣Rw
j f

∣

∣ ≥ 1
128αk

22αk (1/p–2)

Φ1/2p(22αk )

}

≥ 1
128α

p
k

22αk (1–2p)

Φ1/2(22αk )
(

μ
(

x ∈ I2(e0 + e1)
))

>
1

516α
p
k

22αk (1–2p)

Φ1/2(22αk )
. (3.24)

Moreover,

∞
∑

j=1

‖Rw
j f ‖p

weak-Lp(G2) logp (j)Φ(j)

j2–2p

≥
∑

{j∈A0,2:22αk <j≤22αk +1–1}

‖Rw
j f ‖p

weak-Lp
logp (j)Φ(j)

j2–2p

≥ c
α

p
k

22αk (1–2p)

Φp/2(22αk )

∑

{j∈A0,2:22αk <j≤22αk +1–1}

logp (j)Φ(j)
j2–2p

≥ cΦ(22αk ) logp (22αk )
α

p
k

22αk (1–2p)

Φ1/2(22αk )
∑

{j∈A0,2:22αk <j≤22αk +1–1}

1
j2–2p

≥ Φ1/2(22αk
) → ∞, as k → ∞.

The proof is complete. �

4 Final remarks and open problems
In this section we present some final remarks and open problems, which might be inter-
esting for further research. The first problem reads as follows.

Problem 1 For any f ∈ H1/2, is it possible to find strong convergence theorems for Riesz
means Rw

m, where α = w or α = ψ?

Remark 1 Similar problems for Fejér means with respect to Walsh and Vilenkin systems
can be found in [2, 4, 40] (see also [45] and [48]). Our method and estimations of Riesz
and Fejér kernels (see Lemmas 1 and 2) do not give an opportunity to prove even similar
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strong convergence result as for the case of Fejer means. In particular, for any f ∈ H1/2 is
it possible to prove the following inequality:

1
log n

n
∑

k=1

‖Rα
k f ‖1/2

1/2
k

≤ c‖f ‖1/2
H1/2

, where α = w or α = ψ?

It is interesting to generalize Theorem 2 for Vilenkin systems.

Problem 2 For 0 < p < 1/2 and any nondecreasing function Φ : N → [1,∞) satisfying the
conditions limn→∞ Φ(n) = +∞, is it possible to find a martingale f ∈ Hp(Gm) such that

∞
∑

n=1

logp n‖Rψ
n f ‖p

pΦ(n)
n2–2p = ∞,

where Rψ
n f denotes the nth Riesz logarithmic means with respect to the Vilenkin–Fourier

series of f ?

Problem 3 Is it possible to find a martingale f ∈ H1/2, such that

sup
n∈N

∥

∥Rα
nf

∥

∥

1/2 = ∞,

where α = w or α = ψ?

Remark 2 For 0 < p < 1/2, divergence in the space Lp of Riesz logarithmic means with
respect to Walsh and Vilenkin systems of martingale f ∈ Hp was already proved in [27].

Problem 4 For any f ∈ Hp (0 < p ≤ 1/2), is it possible to find necessary and sufficient
conditions for the indices kj for which

∥

∥Rα
kj

f – f
∥

∥

Hp
→ 0, as j → ∞,

where α = w or α = ψ?

Remark 3 Similar problem for partial sums and Fejer means with respect to Walsh and
Vilenkin systems can be found in Tephnadze [41, 42] and [43].

Problem 5 Is it possible to find necessary and sufficient conditions in terms of the one-
dimensional modulus of continuity of martingale f ∈ Hp (0 < p ≤ 1/2), for which

∥

∥Rα
j f – f

∥

∥

Hp
→ 0, as j → ∞,

where α = w or ψ?

Remark 4 Approximation properties of some summability methods in the classical and
real Hardy spaces were considered by Oswald [24], Kryakin and Trebels [18], Storoienko
[32, 33] and for martingale Hardy spaces in Fridli, Manchanda and Siddiqi [9] (see also
[7, 8]), Nagy [20–22], Tephnadze [41–43].
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A NOTE ON THE MAXIMAL OPERATORS OF THE NÖRLUND LOGARITMIC

MEANS OF VILENKIN-FOURIER SERIES

GEORGE TEPHNADZE1 AND GIORGI TUTBERIDZE1,2

Abstract. The main aim of this paper is to investigate the (Hp, Lp)- type inequalities for the

maximal operators of Nörlund logarithmic means for 0 < p < 1.

1. Introduction

It is well-known that (see e.g., [1], [8] and [16]) Vilenkin systems do not form bases in the Lebesgue
space L1 (Gm) . Moreover, there exists a function in the Hardy space H1 such that the partial sums
of f are not bounded in L1-norm.

In [19] (see also [21]), it was proved that the following is true:

Theorem T1. Let 0 < p < 1. Then the maximal operator

∼
S
∗
pf := sup

n∈N

|Snf |
(n+ 1)

1/p−1

is bounded from the Hardy space Hp (Gm) to the space Lp (Gm) . Here, Sn denotes the n-th partial sum

with respect to the Vilenkin system. Moreover, it was proved that the rate of the factor (n+ 1)1/p−1

is in a sense sharp.

In the case p = 1, it was proved that the maximal operator S̃∗ defined by

S̃∗ := sup
n∈N

|Sn|
log (n+ 1)

is bounded from the Hardy space H1 (Gm) to the space L1 (Gm) . Moreover, the rate of the factor
log(n+ 1) is in a sense sharp. Similar problems for the Nörlund logarithmic means in the case, where
p = 1, was considered in [15].

Móricz and Siddiqi [9] investigated the approximation properties of some special Nörlund means of
Walsh-Fourier series of Lp (Gm) functions in Lp-norm. Fridli, Manchanda and Siddiqi [5] improved
and extended the results of Móricz and Siddiqi [9] to the Martingale Hardy spaces. However, the case
for {qk = 1/k : k ∈ N+} was excluded, since the methods are not applicable to the Nörlund logarithmic
means. In [6], Gt and Goginava proved some convergence and divergence properties of Walsh-Fourier
series of the Nörlund logarithmic means of functions in the Lebesgue space L1 (Gm) . In particular,
they proved that there exists a function in the space L1 (Gm) such that

sup
n∈N
‖Lnf‖1 =∞.

In [2] (see also [15, 17]), it was proved that there exists a martingale f ∈ Hp (Gm) , (0 < p < 1)
such that

sup
n∈N
‖Lnf‖p =∞.

Analogous problems for the Nörlund means with respect to Walsh, Kaczmarz and unbounded
Vilenkin systems were considered in Blahota, and Tephnadze, [3,4], Goginava and Nagy [7], Nagy and
Tephnadze [10–12], Persson, Tephnadze and Wall [13,14], Tephnadze [18,20,21], Tutberidze [22].

2010 Mathematics Subject Classification. 42C10.
Key words and phrases. Vilenkin system; Partial sums; Logarithmic means; Martingale Hardy space.
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In this paper, we discuss the boundedness of the weighted maximal operators from the Hardy space
Hp (Gm) to the Lebesgue space Lp (Gm) for 0 < p < 1.

2. Definitions and Notation

Let N+ denote the set of the positive integers, N := N+ ∪ {0}.
Let m := (m0,m1, . . . ) denote a sequence of the positive integers, not less than 2.
Denote by

Zmk
:= {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.
Define the group Gm as the complete direct product of the group Zmj

with the product of the
discrete topologies of Zmj

.
The direct product µ of the measures

µk ({j}) := 1/mk (j ∈ Zmk
)

is the Haar measure on Gm with µ (Gm) = 1.
If sup
n∈N

mn < ∞, then we call Gm a bounded Vilenkin group. If the generating sequence m is not

bounded, then Gm is said to be an unbounded one. In this paper we discuss the bounded
Vilenkin groups only.

The elements of Gm are represented by the sequences

x := (x0, x1, . . . , xj , . . .) (xk ∈ Zmk
) .

It is easy to give a base for the neighborhood of Gm,

I0 (x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ N)

Denote In := In (0) , for n ∈ N and In := Gm\In.
If we define the so-called generalized number system based on m in the following way :

M0 := 1, Mk+1 := mkMk (k ∈ N)

then every n ∈ N can be uniquely expressed as n =
∞∑
k=0

njMj , where nj ∈ Zmj
(j ∈ N) and only a

finite number of nj ‘s differs from zero. Let |n| := max{j ∈ N; nj 6= 0}.
The norm (or quasi-norm) of the space Lp(Gm) is defined by

‖f‖pp :=

∫

Gm

|f |p dµ (0 < p <∞) .

The space weak − Lp (Gm) consists of all measurable functions f for which

‖f‖pweak−Lp(Gm) := sup
λ>0

λpµ (x : |f (x)| > λ) < +∞.

Next, we introduce on Gm an orthonormal system which is called the Vilenkin system. First we
define the complex-valued function rk (x) : Gm → C, the generalized Rademacher functions as

rk (x) := exp (2πixk/mk)
(
i2 = −1, x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn :=

∞∏

k=0

rnk

k , (n ∈ N) .

Specifically, we call this system the Walsh-Paley one if m=2.
The Vilenkin system is orthonormal and complete in L2 (Gm) [1, 23].
Now we introduce analogues of the usual definitions in the Fourier analysis.
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If f ∈ L1 (Gm) , we can establish the Fourier coefficients, the partial sums of the Fourier series, the
Dirichlet kernels with respect to the Vilenkin system ψ in the usual manner:

f̂(k) : =

∫

Gm

fψkdµ, (k ∈ N) ,

Snf : =

n−1∑

k=0

f̂ (k)ψk, (n ∈ N+, S0f := 0) ,

Dn : =

n−1∑

k=0

ψk, (n ∈ N+) .

Recall that (for details see e.g. [1])

DMn
(x) =

{
Mn x ∈ In
0 x /∈ In.

(1)

The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by zn (n ∈ N) . Denote
by f = (fn : n ∈ N) a martingale with respect to zn (n ∈ N) (for details see e.g. [24,25]). The maximal
function of a martingale f is defined by

f∗ = sup
n∈N
|fn| .

In the case, where f ∈ L1, the maximal function is also given by

f∗ (x) = sup
n∈N

1

|In (x)|

∣∣∣∣
∫

In(x)

f (u)µ (u)

∣∣∣∣.

For 0 < p <∞, the Hardy martingale spaces Hp (Gm) consist of all martingales for which

‖f‖Hp
:= ‖f∗‖p <∞.

If f ∈ L1, then it is easy to show that the sequence (SMn
f : n ∈ N) is a martingale. If f =

(fn : n ∈ N) is a martingale, then the Vilenkin-Fourier coefficients should be defined in a slightly
different manner:

f̂ (i) := lim
k→∞

∫

Gm

fkψidµ.

The Vilenkin-Fourier coefficients of f ∈ L1 (Gm) are the same as those of the martingale
(SMnf : n ∈ N) obtained from f .

Let {qk : k > 0} be a sequence of non-negative numbers. The n-th Nörlund means for the Fourier
series of f is defined by

1

Qn

n∑

k=1

qn−kSkf, where Qn :=

n∑

k=1

qk.

If qk = 1/k, then we get the Nörlund logarithmic means

Lnf :=
1

ln

n−1∑

k=0

Skf

n− k , where ln =

n−1∑

k=0

1

n− k =

n∑

j=1

1

j
.

A bounded measurable function a is p-atom, if there exists a dyadic interval I such that
∫

I

adµ = 0, ‖a‖∞ ≤ µ (I)
−1/p

, supp (a) ⊂ I.
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3. Formulation of Main Results

Theorem 1. a) Let 0 < p < 1. Then the maximal operator

∼
L
∗
pf := sup

n∈N

|Lnf |
(n+ 1)

1/p−1

is bounded from the Hardy space Hp (Gm) to the space Lp (Gm) .
b) Let 0 < p < 1 and ϕ : N+ → [1,∞) be a non-decreasing function satisfying the condition

lim
n→∞

n1/p−1

log nϕ (n)
= +∞.

Then there exists a martingale f ∈ Hp (Gm) such that the maximal operator

sup
n∈N

|Lnf |
ϕ (n+ 1)

is not bounded from the Hardy space Hp (Gm) to the space Lp (Gm) .

4. Proof of the Theorem

Proof. Since

|Lnf |
(n+ 1)

1/p−1 ≤
1

(n+ 1)
1/p−1 sup

1≤k≤n
|Skf | ≤ sup

1≤k≤n

|Skf |
(k + 1)

1/p−1 ≤ sup
n∈N

|Snf |
(n+ 1)

1/p−1 ,

if we use Theorem T1, we obtain

sup
n∈N

|Lnf |
(n+ 1)

1/p−1 ≤ sup
n∈N

|Snf |
(n+ 1)

1/p−1

and ∥∥∥∥∥sup
n∈N

|Lnf |
(n+ 1)

1/p−1

∥∥∥∥∥
p

≤
∥∥∥∥∥sup
n∈N

|Snf |
(n+ 1)

1/p−1

∥∥∥∥∥
p

≤ cp ‖f‖Hp
.

Now, prove part b) of the Theorem. Let

fnk
= DM2nk+1 −DM2nk

.

It is evident that

f̂nk
(i) =

{
1, if i = M2nk

, . . . ,M2nk+1 − 1,

0, otherwise.

Then we can write that

Sifnk
=





Di −DM2nk
, if i = M2nk

+ 1, . . . ,M2nk+1 − 1,

fnk
, if i ≥M2nk+1,

0, otherwise.

(2)

From (1), we get

‖fnk
‖Hp

=

∥∥∥∥sup
n∈N

SMn
fnk

∥∥∥∥
p

=
∥∥∥DM2nk+1

−DM2nk

∥∥∥
p

(3)

≤
∥∥∥DM2nk+1

∥∥∥
p

+
∥∥∥DM2nk

∥∥∥
p
≤ cM1−1/p

2nk
< c <∞.

Let 0 < p < 1 and {λk : k ∈ N+} be an increasing sequence of the positive integers such that

lim
k→∞

λ
1/p−1
k

ϕ (λk)
=∞.
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Let {nk : k ∈ N+} ⊂ {λk : k ∈ N+} such that

lim
k→∞

(
M

2nk
+ 2
)1/p−1

log (M2nk
+ 2)ϕ (M2nk+2)

≥ c lim
k→∞

λ
1/p−1
k

ϕ (λk)
=∞.

According to (2), we can conclude that

∣∣∣∣
LM2nk

+2fnk

ϕ (M2nk+2)

∣∣∣∣ =

∣∣∣DM
2nk

+1 −DM
2nk

∣∣∣
lM2nk

+1ϕ (M2nk+1)

=

∣∣∣ψM2nk

∣∣∣
lM2nk

+2ϕ (M2nk+1)
=

1

lM2nk
+1ϕ (M2nk+2)

.

Hence,

µ

{
x ∈ Gm :

∣∣∣LM2nk
+2fnk

∣∣∣ ≥ 1

lM2nk
+2ϕ (M2nk+2)

}
= µ (Gm) = 1. (4)

By combining (3) and (4), we get

1

lM2nk
+2ϕ(M2nk+2)

(
µ

{
x ∈ Gm :

∣∣∣LM2nk
+2fnk

∣∣∣ ≥ 1

lM2nk
+2ϕ(M2nk+2)

})1/p

‖fnk
‖p

≥
M1/p−1

2nk

lM2nk
+2ϕ (M2nk+2)

≥
c
(
M2nk

+ 2
)1/p−1

log (M2nk
+ 2)ϕ (M2nk+2)

→∞, as k →∞. �

Open Problem. For any 0 < p < 1, let us find a non-decreasing function Θ : N+ → [1,∞) such
that the following maximal operator

∼
L
∗
pf := sup

n∈N

|Lnf |
Θ (n+ 1)

is bounded from the Hardy space Hp (Gm) to the Lebesgue space Lp (Gm) and the rate of Θ : N+ →
[1,∞) is sharp, that is, for any non-decreasing function ϕ : N+ → [1,∞) satisfying the condition

lim
n→∞

Θ (n)

ϕ (n)
= +∞,

there exists a martingale f ∈ Hp (Gm) such that the maximal operator

sup
n∈N

|Lnf |
ϕ (n+ 1)

is not bounded from the Hardy space Hp (Gm) to the space Lp (Gm) .

Remark 1. According to Theorem 1, we can conclude that there exist absolute constants C1 and C2

such that

C1n
1/p−1

log(n+ 1)
≤ Θ (n) ≤ C2n

1/p−1.
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Acad. Paedagog. Nyházi. (N.S.) 27 (2011), no. 2, 245–256.
18. G. Tephnadze, On the maximal operators of Walsh-Kaczmarz-Fejér means. Period. Math. Hungar. 67 (2013), no. 1,

33–45.
19. G. Tephnadze, On the partial sums of Vilenkin-Fourier series. translated from Izv. Nats. Akad. Nauk Armenii Mat.

49 (2014), no. 1, 60–72 J. Contemp. Math. Anal. 49 (2014), no. 1, 23–32.

20. G. Tephnadze, Approximation by Walsh-Kaczmarz-Fejér means on the Hardy space. Acta Math. Sci. Ser. B (Engl.
Ed.) 34 (2014), no. 5, 1593–1602.

21. G. Tephnadze, Martingale Hardy Spaces and Summability of the One Dimensional Vilenkin-Fourier Series. PhD

diss., Lule̊atekniska universitet, 2015.
22. G. Tutberidze, A note on the strong convergence of partial sums with respect to Vilenkin system. arXiv preprint

arXiv: 1802.00341, 2018.

23. N. Ya. Vilenkin, On a class of complete orthonormal systems. (Russian) Izvestia Akad. Nauk SSSR 11 (1947),
363–400.

24. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics,

1568. Springer-Verlag, Berlin, 1994.
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