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Abstract

The classical Fourier Analysis has been developed in an almost unbelievable
way from the first fundamental discoveries by Fourier. Especially a number
of wonderful results have been proved and new directions of such research
has been developed e.g. concerning Wavelets Theory, Gabor Theory, Time-
Frequency Analysis, Fast Fourier Transform, Abstract Harmonic Analysis, etc.
One important reason for this is that this development is not only important
for improving the "State of the art", but also for its importance in other
areas of mathematics and also for several applications (e.g. theory of signal
transmission, multiplexing, filtering, image enhancement, coding theory, digital
signal processing and pattern recogni-tion).

The classical theory of Fourier series deals with decomposition of a function
into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) func-
tions are rectangular waves. The development of the theory of Vilenkin-Fourier
series has been strongly influenced by the classical theory of trigonometric se-
ries. Because of this itis inevitable to compare results of Vilenkin series to those
on trigonometric series. There are many similarities between these theories,
but there exist differences also. Much of these can be explained by modern
abstract harmonic analysis, which studies orthonormal systems from the point
of view of the structure of a topological group.

The aim of my thesis is to discuss, develop and apply the newest develop-
ments of this fascinating theory connected to modern harmonic analysis. In
particular, we investigate some strong convergence result of partial sums of
Vilenkin-Fourier series. Moreover, we derive necessary and sufficient condi-
tions for the modulus of continuity so that norm convergence of subsequences
of Fejér means is valid. Furthermore, we consider Riesz and Norlund logarith-
mic means. It is also proved that these results are the best possible in a spe-
cial sense. As applications both some well-known and new results are pointed
out. In addition, we investigate some 7" means, which are "inverse" summability
methods of Norlund, but only in the case when their coefficients are monotone.

The main body of the PhD thesis consists of seven papers (Papers A - G). We
now continue by describing the main content of each of the papers.

In Paper A we investigate some new strong convergence theorems for
partial sums with respect to Vilenkin system.

In Paper B we characterize subsequences of Fejér means with respect to
Vilenkin systems, which are bounded from the Hardy space H,, to the Lebesgue
space L, forall 0 < p < 1/2. We also proved that this result is in a sense sharp.

In Paper C we find necessary and sufficient condition for the modulus of
continuity for which subsequences of Fejér means with respect to Vilenkin
systems are bounded from the Hardy space H,, to the Lebesgue space L,, for
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allo<p<1/2.

In Paper D we prove and discuss some new (H,, weak — L,) type inequal-
ities of maximal operators of 7' means with respect to Vilenkin systems with
monotone coefficients. We also apply these results to prove a.e. convergence
of such T"means. It is also proved that these results are the best possible in
a special sense. As applications, both some well-known and new results are
pointed out.

In Paper E we prove and discuss some new (H,, L,) type inequalities of
weighted maximal operators of 7' means with respect to the Vilenkin systems
with monotone coefficients. We also show that these inequalities are the best
possible in a special sense. Moreover, we apply these inequalities to prove
strong convergence theorems of such 7" means. We also show that these
results are the best possible in a special sense. As applications, both some
well-known and new results are pointed out.

In Paper Fwe derive a new strong convergence theorem of Riesz logarithmic
means of the one-dimensional Vilenkin-Fourier (Walsh-Fourier) series. The
corresponding inequality is pointed out and it is also proved that the inequality
is in a sense sharp, at least for the case with Walsh-Fourier series.

In Paper G we investigate (H,, L, )- type inequalities for weighted maximal
operators of Norlund logaritmic means, for 0 < p < 1. Moreover, we apply
these inequalities to prove strong convergence theorems of such Norlund
logaritmic means.

These new results are put into a more general frame in an Introduction,
where, in particular, a comparison with some new international research and
broad view of such interplay between applied mathematics and engineering
problems is presented and discussed.
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This PhD thesis is composed of seven papers [A] - [G] and a matching Introduc-
tion. In the Introduction the papers [A] - [G] are discussed and put into a more
general frame. The Introduction is also of independent interest since it contains
a brief discussion on the important definitions and notations in the theory of
Fourier analysis and martingale Hardy spaces.

A very brief presentation of the main content of the seven papers can be
found in the Abstract above and in a more general context at the end of the
Introduction.
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Chapter 1
Introduction

1.1 Preliminaries

1.1.1 Vilenkin groups and functions

Denote by N the set of positive integers, N := N, U{0}. Let m := (mg, m1,...)
be a sequence of positive integers not less than 2. Denote by

T ={0,1,... my — 1}

the additive group of integers modulo my.

Define the group G, as the complete direct product of the groups Z,,,, with
the product of the discrete topologies of Z,,,, .

The direct product i of the measures

pr (7)== 1/my, (j € ka,)

is the Haar measure on G,,, with i (G,,,) = 1.

If sup,enmn < oo, then we call G,,, a bounded Vilenkin group. If the
generating sequence m is not bounded, then G,, is said to be an unbounded
Vilenkin group.

In this PhD thesis we discuss bounded Vilenkin groups, i.e. the case when
Sup,,en My < 00.

The elements of G,,, are represented by sequences

x = (To,T1,...,T5,...) (zj € Zm,) .

If we define the so-called generalized number system based on m in the
following way :
My :=1, Mk;+1 = mp M, (k’ S N),

then every n € N can be uniquely expressed as

where n; € Z,,; (j € Ny) and only a finite number of n’;s differ from zero.
Vilenkin group can be metrizable with the following metric:

— | Tk — yx|
T,y) = |z —y|:= E —_— r € Gp).
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Itis easy to give a base for the neighborhoods of G,,, :

IO (x) : :Gm,
I(z) : ={y€Gm |y =20y ,Yn—1=Tpn_1} (z € Gy, neN).

en:=(0,...,0,z, =1,0,...) € G, (neN).
If we define I, := I,, (0),forn e Nand I,, := G,, \ I,,, then
L N-—1 N—-2 N—1 N—-1
Iy = |J I\ = (U U 1]%1) U(UIJ’“VN> 7
5=0 k=01=k+1 k=1
where

I]\{((),...7(),£)L']€ 750,0,...,0,(& 7&0,.%“_1,...,%1\/_1,...),
for k<l<N,

IN<0,...70,.Tk 7507.’17;9+1 :0,...75(,‘]\7,1 :0,xN,...),
for l=N.

kb _
I =

The norm (or quasi-norm when 0 < p < 1) of the Lebesgue space L,(G,,)

(0 < p < o0) is defined by
1/p
i1, = ([ 1oran)
Gum

The space weak — L, (G,,,) consists of all measurable functions f, for which
Hf“weakap = Sup)\{u (f > )\)}1/[1 < +00.
A>0
The norm of the space of continuous functions C(G,,,) is defined by

[flle = sup [f(z)] < ¢ < oo
z€G

The best approximation of f € L,(G,) (1 < p < 00) is defined as
En (fv LP) = wlgg‘n ||f - 7#”p ’

where P, is set of all Vilenkin polynomials of order less than n € N.
The modulus of continuity of functions in Lebesgue spaces f € L, (G,,) and
continuous functions f € C (G,,) are defined by

op (1) = sup £ = 1) = £ (),

and

e (A;f) = swp If = B) = £ (Vs

hel,
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respectively.

Next, we introduce on G,, orthonormal systems, which are called Vilenkin
systems.

At first, we define the complex-valued function r4 (z) : G,, — C, the
generalized Rademacher functions, by

r (x) := exp (2mixy/my) , (i2 =-1, v€G,, ke N) )

Now, define Vilenkin systems ¢ := (¢,, : n € N) on G, as:

wn HT s REN)

The Vilenkin systems are orthonormal and complete in Ls (G,,) (for details

see e.g. [, [61] and [108]).
It is well-known that for all n € N,
[n ()] = 1,
Yo (x+y) = Yn(x) Yn(y),
Un (_‘r) = Yp= ( ) = @n (SU)
Un(x—y) = Pul@) ¥, (y),
nik(x) = wwn( ), (s,meN, z,yeGp).

Specifically, we call this system the Walsh-Paley system when m = 2.

1.1.2 Partial sums and Fejér means with respect to the Vilenkin
systems

Next, we introduce some analogues of the usual definitions in Fourier analysis.
If f € Li(G,,) we can define the Fourier coefficients, the partial sums of
Vilenkin-Fourier series, the Dirichlet kernels, Fejér means, Dirichlet and Fejér
kernels with respect to Vilenkin systems in the usual manner:

Fn) /G foudp,  (neN),

n—1
Suf = Zf(km, (n€Ny),

n—1
0nf : - Z Skf: (n € N-i-)a
Dn = Zwlm (n€N+)7
=0
K = lz_:D N
n : - ﬁ — k> (TL € +)'
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respectively.
Itis easy to see that

Snf (x)

| s nzlww—tdm

Gm

/ £ (t) Dy (2 — 1) du (1)
= f Dn)()-

It is well-known that (for details see e.g. [[], [61] and [108]]) that for any n € N
and 1 < s, < m, — 1 the following equalities holds:

Djim, = Dy, +Ym, Dj = Dy, + 10Dy, 5 < (my — 1) My,

Dy, —j(z) = D, (@) =y, 1 (—2)Dj(—x)
= Dy, (%) — ar,—1(x)Dj(x) j <M,
M, el
D, (z) ={ 0" wel (1.1
Spn—1 Sp—1
DsnMn = DMn Z wk?Mn = D]\/fn Z rfb (1.2)
k=0 k=0

and

o0 mjfl
D, = wn ZD]WJ- Z T;‘C .
=0 k=mj—n
By using we immediately get that
| Da, ll =1 < .

It is obvious that
ln—l
onf(z) = EZwk*f)(x)

- / F ) Ko (@~ du ()
— (f+EKa) (@),

where K, are the so called Fejér kernels.

4
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It is well-known that (for details see e.g. [42]) for every n > ¢, t,n € N we
have the following equality:

M
Trn@: T€ IAVAEN T — xier € In,
Ky, (x) =4 Motl' we1,,
0, otherwise.

Moreover,

sn—1 /1—1 Sp—1
s My K, M, = Z (Z TZ) MyDy, + (Z 7’5,,) MKy, .

=0 =0 =0

The next equality of Fejér kernels is very important for our further inves-
tigations (for details see Blahota and Tephnadze [26]). In particular, if n =
> S$n, My, where ny > ng > -+ >n, > 0and 1 < s,, < m,, forall
1<i<raswellasn® =n—Y" s, M, where0 <k <r,then

T k—1 r—1 [k—

1
K, = | S My KK i | n®D
ni, = Tn; SnpAVin,, snkJ\fnk + T'n; n S“'kM"k'

k=1 \j=1 k=1 \j=1

It is well-known that
I K] < e < 0.

We define the maximal operators S* and o* of partial sums and Féjer means
by

S*f = supl|Snf],
neN

o"f = suplo.f].
neN

Moreover, we define the restricted maximal operators §;§E and a7, of partial
sums and Féjer means by

Suf = sup|Su, fl,
neN

Fuf = suplow,fl.
neN

1.1.3  Character p (n) and Lebesgue constants with respect to
Vilenkin systems

Let us define
(n) :==min{j € N:n; # 0} and |n|:=max{j € N:n; # 0},
that is M|n‘ <n< M\n|+1~ Set

p(n):=|n|—(n), forall neN.
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For the natural numbers n = 327 n;M; and k = 372 | k; M; we define

ntk = Z (n; @ ki) M; 1
i=0
and o
n=k:= Z (n; © ki) Miqq,
i=0
where

a; B b; = (CLZ' + bi)modmi, a;,b; € qu',

and & is the inverse operation for &.
For the natural number n = 3~7° | n;M;, we define functions v and v* by

v(n) =3 0501 = 8|+ 80, v*(n)i= D07,
j=1

Jj=1

where
§; = sign (n;) = sign (©n;) and &7 = [on; — 1[4;.

The n-th Lebesgue constant is defined in the following way:
L, := ”DnHl

For the trigonometric system it is important to note that the results of Fejér
and Szego, latter on proved in gives an explicit formula for the Lebesgue
constants. The most properties of the Lebesgue constants with respect to the
Walsh-Paley system were obtained by Fine in [36]. In [108], p. 34, the two-
sided estimate is proved. In [76], Lukomskii presented the lower estimate with
sharp constant 1/4. Malykhin, Telyakovskii and Kholshchevnikova (see
also Astashkin and Semenov [8]) improved the estimation above and proved
sharp estimate with factor 1. A new and shorter proof which improved upper
bound and provide a similar lower bound can be found in [23]. In particular,
for X := sup,,cy and for any n = >~°°, n; M; and m,, we have the following two
sided estimate:

—v(n)+ —=v*(n) <L, <v(n)+0v*(n). (1.3)

Moreover, it yields that (see Memic, Simon and Tephnadze [79]):

1 My, —1

2
v ; v(k) > 13- (1.4)

From the inequality it immediately follows that for any n € N there
exists an absolute constant ¢, such that

| Drll; < clogn.
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For example, if we take ¢,,, = Ma,, + Moy, —2 + Ma + My, we have the
following two-sided inequality

ng
e L

< ANk,  A:=supmy,.
1 neN

1.1.4 Definition and examples of Norlund and T' means and its
maximal operators

Let {gx : k € N} be a sequence of nonnegative numbers. The n-th Nérlund
means for the Fourier series of f is defined by

1 n
tnf == ==Y G- kSkf, (1.5)
Qn =
where .
Qn = Z qk-
k=0
A representation
tuf (2) = [0 A (2 = ) du (1)
G

plays a central role in the sequel, where

1 n
An = 7ZQn7ka
Qn =1

is the so-called Norlund kernel.

In Moore (see also Tephnadze [130]) it was found necessary and suffi-
cient conditions for regularity of Norlund means. In particular, if {g; : £ > 0} is
a sequence of nonnegative numbers, ¢o > 0 and

lim @, = oo,
n—,oo

then the summability method generated by {q; : k > 0} is regular if and
only if
dn—1

n

lim =0.
n— oo

In addition, if the sequence {¢; : k& € N} is non-increasing, then the
summability method generated by {¢x : £ € N} is regular, but if the sequence
{qx : k € N} is non-decreasing, then the summability method generated by
{qx : k € N} is not always regular.

Let {¢x : kK > 0} be a sequence of non-negative numbers. The n-th T’ mean
T,, for a Fourier series of f is defined by

n—1
1
Tof === auSif,
Qn k=0



1. Introduction

where Q,, := ZZ;& qi. It is obvious that

ﬂf@%:/f@ﬂ%@—ﬂduw,
G

where F,, := i > qx Dy, is called the kernel of T"means.
k=1
We always assume that {g, : £ > 0} is a sequence of non-negative numbers
and ¢y > 0. Then the summability method generated by {q, : k > 0} is
regular if and only if lim,,—, oo @, = 0.
Let ¢,, be Norlund means with monotone and bounded sequence {¢; : k €
N}, such that

q:= lim ¢, >c>0.

n—oo
If the sequence {¢; : k € N} is non-decreasing, then we get that
ngo < Qn < ng.
In the case when the sequence {qg; : k € N} is non-increasing, we have that
ng < Qn < ngo.

In both cases we can conclude that

-1 _ o (1> , when n — oo.
Qn n

One of the most well-known summability methods which is an example
of Norlund and 7" means are the so called Fejér means, which is given when
{gx =1: k € N} as follows:

1 n
onf = ﬁZSkf.
k=1

The (C, «)-means (Cesaro means) of the Vilenkin-Fourier series are defined
by
1 o~ .
onf = m D ANTRSkS,
=1

where
(oz—l—l)...(a—i—n).

n!
It is well-known that (see e.g. Zygmund [186])

Ag =0, AN =

n

n

An =) AN

k=0

«@ « _ poa—1 el o
A% — A% = AT AS Lo,



Preliminaries

We also consider the "inverse" (C, a)-means U5, which is an example of a
T-mean:

n—1

« 1 o—
Uef = A—%kZ_OAk 1S.f, O<a<l.

Let V,* denote the T"mean, where {qo =0, ¢x = k*' : k € N}, that is

Vef =

n—1

1

3 Zkz‘”‘lskf, 0<a<l.
" =1

The n-th Nérlund logarithmic mean L,, and the Riesz logarithmic mean R,
are defined by

3
|
—

1 Skf
Ln = )
! ln n—=k
k=1
n— 1
1 Skf
Rn = 3
! ln k
k=1
respectively, where
n—1
!
n: e

S
Il

1

The kernels of the Norlund logarithmic mean P,, and the Riesz logarithmic
mean Y, are, respectively, defined by

< Dy
_k’

~

P’VI/ f

15
In

WM
e !

. l Dy f
nfo= oy

\ |
-

Up to now we have considered Noérlund and 7" means in the case when
the sequence {g, : k¥ € N} is bounded but now we consider Nérlund and T
summabilities with unbounded sequence {g; : k € N}.

Leta e Ry, €Ny and

Btimes

—
log(ﬁ) x :=log...logx.

If we define the sequence {q; : k € N} by

{qo =0 and g, = log(ﬁ) E* ke N+},
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then we get the class of Nérlund means x2-% with non-decreasing coefficients:

n

Z (/3) Skf

b k=

First we note that k27 are well-defined for every n € N,.. It is obvious that

2 og® < 0, < nlog® ne.
2 2
It follows that

n—1 < Clog(ﬁ) (’I’L — 1)06

Qn nlog®® na

1
O<> — 0, as n — oo.
n

If we define the sequence {¢; : k € N} by{qo =0, ¢x = log(ﬁ) k* k€ N+} ,
then we get the class of 7' means B2+# with non-decreasing coefficients:

n—1
BYPf .= — Zlog(ﬁ) kS f.
Q k=1
We note that B4 are well- deﬁned for everyn € N.
It is obvious that 2 log'® 22 < Q,, < nlog® n® — 0, as n — .
Let us define the maX|maI operators t* and 7™ of Noérlund and 7" means,
respectively, by

t*f = sup |t,f|,
neN

T f:=sup|T,f].
neN
The well-known examples of maximal operators of Nérlund and 7" means
are maximal operator of Cesaro means c“*, Norlund logarithmic mean L* and
Reisz logarithmic mean R* which are defined by:

o f = suplonf],
neN

L*f = sup|L,f],
neN

R'f = sup|R.f|.
neN

We also define some new maximal operators k*#* and g% * as follows:

ROPHF = sup |nf‘1’5f‘ ,
neN

pYrf = sup|Byfl.
neN

10
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1.1.5 Weak-type and strong-type inequalities and a.e convergence

The convolution of two functions f, g € L1(G,,) is defined by
(f*9)( / fla=t)gt)dt (ze€Gp).
It is easy to see that
(Fg)( / F)g@—t)dt (z€Cn).

It is well-known (for details see e.g. , and [108]) that if f € L, (Gpn),
g€ Li(Gp)and1l <p < oo, then fxge L, (G,,)and

I1f gl < I1F1, llglly s

In classical Fourier analysis (see e.g. [186]), a point z € (—o0, o) is called a
Lebesgue point of an integrable function f if it yields that

Jim / ()] dp(t) = 0.
On G,, we have the following definition of Lebesgue point: A point x on the
Vilenkin group is called Lebesgue point of f € Ly (G,,) , if

lim M, f@)dt=f(x) ae xeGy.

n—oo In(z)
It is well-known that if f € L; (G,,), then

ILm Sw, f(x) = f(z) a.e.on Gy,

where Sy, is the M, -th partial sum with respect to the Vilenkin system (for

details see e.g. [1], [61] and [108]).

We introduce the operator W, by

ms—1

Waf( ZM 3 /( 170 1 @)t
ro=1 ITa(x—rses
A pointz € G,, is a Vilenkin-Lebesgue point of f € L1(G.,), if
lim Wy f(x) =
A—o0
In most applications the a.e. convergence of {T,, : n € N} can be established

for fin some dense class of Ly (G,,,) . In particular, the following result plays an
important role for studying this type of questions (see e.g. the books [61], [108]

and [186]).

11
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Lemma 1.1.1. Let f € Ly and T}, : Ly — L1 be some sub-linear operators and

T :=sup|T,|.
neN

If
T.f — foae forevery feS,

where the set S is dense in the space L and the maximal operator T* is bounded
from the space L to the space weak — L1, that is

sup e {r € G [T ()] > A} < 1]
>

then
T.f — f, a.e. forevery f € Ly (Gp).

Remark 1.1.2. Since the Vilenkin function ,, is constant on I, (x) for every
x € G and 0 < m < M, itis clear that each Vilenkin function is a complex-
valued step function, that is, it is a finite linear combination of characteristic

functions
1, zek,
X(E)_{ 0, x¢E.

On the other hand, notice that, by (i.2), it yields that

) @)= 5 2 @ —1), L),

n

for each z,t € G,,, and n € N. Thus each step function is a Vilenkin polynomial.
Consequently, we obtain that the collection of step functions coincides with a
collection of Vilenkin polynomials P. Since the Lebesgue measure is regular
it follows from the Lusin theorem that given f € L, there exist Vilenkin
polynomials Py, Ps..., such that P, — f a.e. when n — oo. This means that
the Vilenkin polynomials are dense in the space L;.

1.1.6 Basic notations concerning Walsh groups and functions

Let us define by @2 the set of rational numbers of the form p2~", where
0<p<2"—1forsomepeNandn e N.
Any z € [0, 1] can be written in the form

0
xTr = Z $k2_(k+1),
k=0

where each z;, = 0 or 1. For each = € [0,1] \ Q2 there is only one expression
of this form. We shall call it the dyadic expansion of x. When =z € Q5 there
are two expressions of this form, one which terminates in 0's and one which
terminates in 1's. By the dyadic expansion of an x € Q)2 we shall mean the one

12



Preliminaries

which terminates in 0's. Notice that 1 ~ @5 so the dyadic expansion of z = 1
terminates in 1's.
If mi, = 2, forall £ € N, we have dyadic group

Gy = H Za,
i=0

which is called the Walsh group
Rademacher functions are defined by:

Pn(af) = (_1)1,1.

We define Walsh functions w,, by

(o)
e Nk
Wy, = H pLE-
k=0

Let LY represent the collection of a.e. finite, Lebesgue measurable functions
from G into [—oo, 0o]. For 0 < p < oo let LP represent the collection of f € L°

for which )
1/p
R p
17l = </G 1)

is finite. Moreover, let L*> represent the collection of f € LY for which
[[fllo :=inf{y € R: |f(x)] <yforae. xe€ Ga}

is finite. It is well known that L? is a Banach space for each 1 < p < cc.

If f € Li(G2), then we can establish the Fourier coefficients, the partial
sums of the Fourier series, the Fejér means, the Dirichlet and Fejér kernels with
respect to the Walsh system w in the usual manner:

o~

I (k) L= Jakdp, (kEN)v
G

n—1 N

Swf L= f(k)wkv (neN-l-a Sélﬂf: O)a
k=0
n—1

Dy : = Wi, (neNy).
k=0

We state well-known equalities for Dirichlet kernels (for details see e.g.

and [108]):

w o [ ifzel,
D2"(5”)_{0, if x¢lI,

13



1. Introduction

and

Dy = wn§ nkaD k= Wn g nk 2k+1 - Qk n= E 7%21

Next we sketch the graph of some Dirichlet kernels on G:

The most properties of Lebesgue constants with respect to the Walsh-Paley
system were obtained by Fine in [36]. Moreover, in [108], p. 34, the two-sided
estimate

Vin)
8

was proved, where n = 3772 n;27 and V' (n) is defined by

<L,<V(n)

o0
n) = Z Inji1 — nj| + ne.
j=1

If f € L1 (G2), then the Fejér means o and Fejér kernels K* with respect
to the Walsh system w are, respectively, defined by

1n71
:EZs;g’f, (neN,),

KY . == DY .
n ’I’LZ k> (TLGN+)

The n-th Norlund logarithmic mean L& and the Riesz logarithmic mean R%
with respect to the Walsh system 1 (Walsh system w) are defined by

w 1 Sy f
Lnf = 7 E b (TLGN+), (n€N+)7
n n—
k=1
respectively, where
n—1
LNt
k=1

The kernels of the Norlund logarithmic mean PS¢ and the Riesz logarithmic
mean Y,* are, respectively, defined by

1% pey
PYf = — £ N
nf lnzn_k_v (TLE +)7
k=1
n—1
w 1 Dy
Yn f = r Z (n (S N+) .
" k=1

14



Preliminaries

1.1.7 On martingale Hardy spaces for 0 < p <1
The o-algebra generated by the intervals
{I,(z):x € Gp}

will be denoted by F,, (n € N).

A sequence f = (f™ :n € N) of integrable functions f(™ is said to be
a martingale with respect to the o-algebras F,, (n € N) if (for details see e.g.
Weisz and Burkholder [31])

1) fn is F, measurable for all n € N,

2) Swr, fm = fn foralln < m.

The martingale f = (f(™,n € N) is said to be L,-bounded (0 < p < oo) if
f™ e r,and

fll,, :==sup||f < 00.
1£1l, neNII nllp

If f € Ly (Gy,) ,thenitis easy to show thatthe sequence F' = (Sy, f : n € N)
is a martingale. This type of martingales is called regular. If 1 < p < oo and
f€L,(Gy),then f = (f™ neN)is L,-bounded and

i [Sar, f — fll, =0

and consequently || ]|, = || f]], (see ). The converse of the latest statement
holds also if 1 < p < oo (see [90]): for an arbitrary L,-bounded martingale
f = (f™,n € N) there exists a function f € L, (G,,) for which f(") = S, f.
If p = 1, then there exists a function f € L, (G,,) of the preceding type if and
only if f is uniformly integrable (see [90]), namely, if

tiwsup [ 1 ()] du () =0
Y oneN J{| 2>y}

Thusthemap f — f := (S, f : n € N) is isometric from L, onto the space
of L,-bounded martingales when 1 < p < co. Consequently, these two spaces
can be identified with each other. Similarly, the space L; (G,,) can be identified
with the space of uniformly integrable martingales.

Analogously, the martingale f = (f("),n €N) is said to be weak — L,-
bounded (0 < p < o) if f(™ € L, and

Hf”weakrpr ‘= sup ||f77waeakrpr < 0.
neN
The maximal function f* of a martingale f is defined by

/¥ =sup ’f(")
neN

In the case f € L1(G,,), the maximal functions f* are also given by
7 (@) il @
) = 8sup —— u)ap\uw)| .
neN |In ()] I, (z)

15



1. Introduction

For 0 < p < oo the Hardy martingale spaces H,, consist of all martingales
for which

11, = 171, < oo

Vilenkin-Fourier coefficients of the martingale f = (f(") in € N) must be
defined in a slightly different manner:

]?(z) := lim /G FEY.dp.

k—o0

Investigation of the classical Fourier analysis, definition of several variable
Hardy spaces and real Hardy spaces and related theorems of atomic decompo-
sitions of these spaces can be found in Fefferman and Stein (see also Later

[73], Torchinsky [156], Wilson [175]).
A bounded measurable function « is a p-atom if there exist an interval
such that

J o =0, Jallg < ()77 suppa) € 1

Explicit constructions of p-atoms can be found in the papers and by
Blahota, Gat and Goginava.

Next, we note that the Hardy martingale spaces H,, (G,,) for 0 < p < 1 have
atomic characterizations:

The following useful lemma was proved by Weisz (see also Persson,
Tephnadze and Weisz [105]):

Lemma 1.1.3. A martingale f = (f(") :n € N)isin H, (0 < p < 1) ifand only if
there exist a sequence (ay, k € N) of p-atoms and a sequence (. : k € N) of real
numbers such that, for every n € N,

o0
Z S, ar = f, ae,
k=0

where
oo
Dl < oo.
k=0

Moreover,
[e%) 1/17
117, < inf <Z |Mk|p) )
k=0
where the infimum is taken over all decomposition of f = (f™) :n € N) of the
form (.1.3).

Explicit constructions of H,, martingales can be found in the papers [104],
[105], [124], [125], [128], [131], [136], [138], [141], [142], [145], [149] and [150].

By using atomic characterization it can be easily proved that the following
Lemmas hold:

16
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Lemma 1.1.4. Suppose that an operator T' is sub-linear and for some 0 < py < 1

/|Ta|p°du§cp<oo
I

for every pg-atom a, where I denotes the support of the atom. If T is bounded from
L, toL,, (1<p <o0),then

1T fllpy < cpo 1 flla,, -
Moreover, if po < 1, then we have the weak (1,1) type estimate
Mi{z € Gy o |Tf (2)] > A} < |l

forall f € L.

A proof of Lemma can be found in Weisz (see also Persson,
Tephnadze and Weisz [105]).

Lemma 1.1.5. Suppose that an operator T is sub-linear and for some 0 < py < 1

SUpAPO {x er: |Tf| > )\} < ¢py < 400
A>0

for every pp-atom a, where I denote the support of the atom. If T is bounded from
L, toL,, (1<p <o0),then

1Tl wear—r,, < oo 11y, -
Moreover, if py < 1, then
Aufa € G |Tf ()] > A} < ||l
forall f € L.
The best approximation of f € L,(G,,) (1 < p < 00) is defined as

En (fa Lp) = wlg];ﬂ Hf - pra

where P, is set of all Vilenkin polynomials of order less than n € N.
The concept of modulus of continuity wy, in martingale Hardy space H,
(p > 0) is defined by

1
om, (3 F) = 1 = Su s,
We need to understand the meaning of the expression f — S, f, where
fis a martingale and Sy, f is function. Hence, we give an explanation in the

following remark:

17



1. Introduction

Remark 1.1.6. Let 0 < p < 1. Since
Sar f = f™, for f = (f<"> ‘ne N) € H,

and
(Saf "+ k€ N) = (Sas Sar, £k € N)

- (SMofa .. 'aSMV,L71f7 S]\/[,Lf7 SM”fa .. )

_ (f<o>7.wf(n—l)’f(n)’f(n),m)’

we obtain that
f=Su,f = (= S f: k€N)

is @ martingale, for which

& _ | 0, k=0,....,n,
=50 ={ Gor _por, km 0.6

We also pronounce that Watari [167] showed that there are strong connec-
tions between the concepts

1
Wp (M7f) ) E]\/[n (Lp7f) and Hf - S]an||p7 p Z 17 n € N.

In particular,

1 1 1
son (527) <17 = S0, 51, < o0 (1) 67

and )
3 If =S, fll, < Bt (L, £) < I f = Sar, f,, -

The next lemma gives a deception what happens when p > 1. The proof can
be found in Neveu (see also Weisz [174]).

Lemma 1.1.7. Letp > 1. Then
H,~ L,

Remark 1.1.8. Since

1 e, ~ L1,
when p > 1, by applying (1.7), we obtain that

1 1
WH, (M”7f> ~ Wp <Mn’f> .
A proof of the next lemma can be found in (see also book [108]).

18



Some results on partial sums and classical summability methods of
Vilenkin-Fourier series

Lemma 1.1.9. /f f € Ly, then the sequence F' := (Sy, f : n € N) is a martingale
and

P

Moreover, if F' := (Sy, f : n € N) is a regular martingale generated by f € Ly,
then

1 g, ~

sup [Sur, f
neN

Fo)= [ 1@ @due) =Fh),  keN

m

1.2  Some results on partial sums and classical summability
methods of Vilenkin-Fourier series

In this part we have described a selected part of the area where the results in
this PhD thesis belong to. We have also put these new results into this more
general frame.

According to the Riemann-Lebesgue lemma (for details see e.g. the book
[108]) we have that f(k) — 0, when k — oo, foreach fe L.

It is well-known (see e.g. the books and ) that if f € L; and the
Vilenkin series T'(z) = Z;’io ¢;1; (x) convergences to f in Ly-norm, then
¢ = fG fﬂjdu = f(j), i.e. in this case the approximation series must be
a Vilenkin-Fourier series. An analogous result is true also if the Vilenkin series
convergences uniformly on G,, to an integrable function f .

By using the Lebesgue constants we easily obtain that S,,, f convergence to
f in Ly-norm, for every integrable function f, if and only if sup,, L, < ¢ < oc.
There are various results when p > 1.

It is also well-known that (see e.g. and the books and [108])

”Sanp <6 ”pra when p > 1,

but it can be proved also a more stronger result (see e.g. [106] and the books
[105] and [108]):

1S*fll, < epllfll,, when f €L, p>1

Moreover, in the case p = 1 Watari [168] (see also Gosselin and Young
[180]]) proved that there exists an absolute constant ¢ such that, forn = 1,2, ...,

A ([Snfl>A) < cllflly, f€Li(Gm), A>0.

Uniform and point-wise convergence and some approximation properties
of the partial sums with respect to the Vilenkin (Walsh) and trigonometric sys-
tems in L, norms were investigated by Antonov [7], Avdispahi¢ and Memic [9],
[11], Goginava l49], Shneider [109], Sjélin [117], Onneweer and Waterman
l95]. Fine derived sufficient conditions for the uniform convergence,
which are in complete analogy with the Dini-Lipschitz conditions. Guli¢ev
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estimated the rate of uniform convergence of a Walsh-Fourier series by using
Lebesgue constants and modulus of continuity. Uniform convergence of sub-
sequences of partial sums was investigated also in Goginava and Tkebuchava
(53], Fridli and Gét [41]. Approximation properties of the two-dimensional
partial sums with respect to Vilenkin and trigonometric systems can be found
and [186].

Results on a.e. convergence of Vilenkin-Fourier series were proved in [106].
Important information concerning divergence of Vilenkin-Fourier series on the
sets of measure zero and a.e. convergence can be found in Bitsadze
5], Bugadze 30], Fejér Gosselin, Kahane [66], Katznelson [70],
Karagulian [67} [68], Kheladze [71] [72], Lebesgue Stechkin Young
and Zhizhiashvili [183].

Some estimates of Fourier coefficients and absolute convergence and di-
vergence of Fourier Series with respect to complete orthonormal systems were
studied in Bochkarev [28], Gogoladze and Tsagareishvili [55} 56, 57} [91], Kashin
and Saakyan [69], Oniani [92} [93]l, Tsagareishvili and Tutberidze [157} 158| 159],
Tetunashvili h53], Tevzadze [154], Tkebuchava and Zhizhiashvili
. Approximation of functions on locally compact Abelian

groups was investigate by Ugulava [165, (see also [32]).
Since H, C L,, according to Riemann-Lebesgue theorem, it yields that

f(k) — Owhen k — oo, for every f € H;. The classical inequality of Hardy type
is well known in the trigonometric as well as in the Vilenkin-Fourier analysis
and was proved in the trigonometric case by Hardy and Littlewood (see
also the book [33]) and for the Walsh system it was proved in the book [108].
Some inequalities relative to Vilenkin-Fourier coefficients were considered in

[07], o], [14], [15], [122], [169], [172] and [173].

It is known (for details see e.g. the books and [173]) that the
subsequence Sy, of the partial sums is bounded from the martingale Hardy
space H, to the Lebesgue space L,, for all p > 0. However, (see Tephnadze
[139]) there exists a martingale f € H, (0 < p < 1), such that

Sup 51, +1F | year s, = -
neN

The reason of the divergence of Sy, +1f is that when 0 < p < 1 the Fourier
coefficients of f € H), are not uniformly bounded (see Tephnadze [123]). On the
other hand, there exists an absolute constant ¢,,, depending only on p, such that

”SMnf”pSCp ||f||Hp7 p >0, TLEN+.

Tephnadze [139] (see also [126] and [130]) proved that for every 0 < p < 1,
the maximal operator
S f|

neN (n + 1)1/1)_1

is bounded from the Hardy space H), to the Lebesgue space L,. Moreover, the
rate of the sequence (n + 1)1/”_1 is in the sense sharp.
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Itfollow thatforany0 < p < 1and f € H,, there exists an absolute constant
¢p, depending only on p, such that

1/p—1
1Snfll, < cp (4 DYP7H £l . €Ny

Blahota, Persson, Nagy and Tephnadze ([147]) proved that forany 0 < p <1
and a sub-sequence of positive numbers {«y, : k € N}, satisfying the condition

sup p () = » < o0, (1.8)
keN

the maximal operator $*: f := SUpgen |Say f]is bounded from the Hardy space
H, to the space L,. Moreover, for every 0 < p < 1 and any sub-sequence of
positive numbers {«y, : k£ € N} satisfying the condition

sup p (a) = oo, (1.9)
keN

there exists amartingale f € H,, (0 < p < 1) suchthatsup,cy ||Sakf||weak7Lp =
Q0.
It follows that for any p > 0 and f € H,, the maximal operator S’ defined

by N
Sy f = sup|Su, f|
neN

is bounded from the Hardy space H, to the space L,. We also obtain that if
p > 0and f € H,, then the maximal operator defined by

sup [Sar,,+1f]
neNy

is not bounded from the Hardy space H, to the space L,.
It is well-known that (for details see [130])

156, f = fllg, =0, feH, (p>0).

Tephnadze [139] (see also [126] and [130]) proved that forany 0 < p < 1 and
| € Hp there exists an absolute constant ¢, depending only on p such that

150 fller, < conP 7 I, -

In the some paper [139] Tephnadze proved that forany 0 < p < 1, f € H,
and M, < n < My, there is an absolute constant ¢, depending only on p such
that

_ 1
||Snf - f”Hp S Cpnl/p 1pr (J\Jk’f> .

From this estimate it immediately follows thatif 0 < p < 1, f € H, and

AN 1 ]
(JJHP M,f =0 W , wnenn — oo,
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then
1Skf = fllg, =0, as &k — oo.

Moreover, for every 0 < p < 1 there exists a martingale f € H,,, for which
1 0 1 N
OJHP m7 f = W , when n — oo

1Sk = fllwear—z, =+ 0. when k — oco.

and

Tephadze [140] proved that for any 0 < p < 1 and f € H, there exists an
absolute constant ¢, depending only on p, such that

1/p—1
Cp ¥
1Snflly, < —7-— Ifllu, -
P /p—1 Hy
M.y

Moreover, forevery 0 < p < 1 and any increasing sequence of nonnegative
integers {nj : k € N} such that condition is satisfied and for any non-
decreasing sequence {®,, : n € N}, satisfying the condition

1/p—1
Tim 7k |

k—»rlgo Ml/r—1g

(ng) Tk

= 00,

there exists a martingale f € H,, such that

Sny f
D,

sup
keN

= Q.
Ly oo

Moreover, if 0 < p < 1, f € H, and {n; : k € N} is an increasing sequence
of nonnegative integers, then [|Sy, fll;; < cp/flly, holds true if and only if
condition (1.8) is satisfied.

In [132] (see also [140]) it was proved thatif 0 < p < 1, f € H, and
My, < n < My, then there exists an absolute constant c,, depending only
on p, such that

CpM|mp71 1
||Snf*f||Hp§Wpr maf , (0<p<1).
(n)

It follows that if {n;, : k € N} is an increasing sequence of nonnegative integers
such that

1 (k)
wH, ,f>—0 — ,as k— oo,
<M|”k

then [|Sn, f — fllz, — 0, as k — oc. Moreover, if {ny : k € N} is an increasing
sequence of nonnegative integers such that condition is satisfied, then
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there exists a martingale f € H, and a subsequence {«j, : k € N} C {ny :
k € N}, for which

1/p—1

1 (an)
H, ,f> =0 — |,as k=
<M04k-| Ml/p !

lak]

and llm SUP ||Sa;‘ f f”weak’—

In Tephnadze 9l (see also [130]) it was proved that for every f € Hy, then
the maximal operator defined by

L >c¢>0, as k— oo.
P

S
S*f = su
f TLEN+ log (n+ 1)

is bounded from the Hardy space H; to the space L;. Moreover, the rate of the
sequence log (n + 1) is in the sense sharp. Hence, for any f € H;, there exists
an absolute constant ¢, such that

[Snfll; < clog(n+1) Hf||H1 ; neNg.

From this estimate it immediately follows that if f € H; and M < n <
Mj.41, then there is an absolute constant ¢ such that

1
||Snf_f||H1 < Clganl (va) .

By using this estimate we obtain thatif f € H; and

1 1
WH, (Ml,f> =0 (n> , whenn — oo,

then ||Sxf — flly, — 0, when k& — oo. Moreover (for details see [139]), there
exists a martingale f € H; for which

1
WH (MgM ,f) (Mn>’ when n — oo

and [|Sp.f — f|l; - 0, when £k — oc.

In [132] (see also [140]) it was proved that if f € Hy and My, < n < Mg,
then there exists an absolute constant ¢ such that

180 flla, < ¢(v(n) +v* () 1 fllg, -

Moreover, if {®,, : n € N} isany non-decreasing and non-negative sequence
satisfying lim ®,, = co and {n; > 2: k € N} is a subsequence such that
n—oo

lim Y (ng) +v* (ng)

k—oc0 (I)nk ’
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then there exists a martingale f € H; such that

S f

ng

— 00, as k — oo.
1

sup
keN

In [132] (see also [140]) it was also proved thatif f € Hyand My, < n < M1,
then there exists an absolute constant ¢ such that

10 = Tl < (o) 4" () om, (7))

It follows that if f € H; and {n; : k € N} is a sequence of non-negative
integers such that

“ <Mnk|’f> (W) sk e,

then |5y, f — fllg, — 0, when k — oo. Moreover, if {n) : k > 1} is a sequence
of non-negative integers such that sup,cy (v (ng) + v* (nx)) = oo, then there
exists a martingale f € H; and a sequence {«y, : k € N} C {ny, :€ N} for which

WE(M;WOO(N%Hiw%Q

and hmbupHSakf fll; > ¢>0whenk — occ.

S|mon 1] proved that for any f € H,, there exists an absolute constant ¢,
depending onIy on p, such that

1Skl

k2—p
k=1

<olflly,, (O<p<l).

In Tephnadze [122]) it was proved sharpness of this result in a special sense.
In particular, if 0 < p < 1 and {®,, : n € N} is any non-decreasing sequence
satisfying the condition lim ®,, = 400, there exists a martingale f € Hy, such
n—oo
that
Sk flwear 1, Pr

Z k2—p - = 0.

k=1

In Gat the following strong convergence result was obtained for all
f € H:

. Znskf i

n%mlogn

For the trigonometric analogue see Smith (see also [54]]) and for the Walsh-
Paley system see Simon [113], for Vilenkin-like systems see Blahota and
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for the two-dimentional diagonal partial sums by Goginava and Gogoladze [51].
Moreover, for all f € Hy, there exists an absolute constant ¢, such that

S 1 S
Z” kSl <c|flly, and Z” kflly =[fllg, (n=2,3...).

n—>oo]0gn

log ne

In [160] (see paper A) was investigated some new Hardy type inequalities for
partial sums of Vilenkin-Fourier series.
In the one-dimensional case Yano [177] proved that

IK.|l <2 (neN).
Consequently,
lonf —fll, =0, when n—oo, (f€Ly 1<p<oc0).

However (see and [108]) the rate of convergence can not be better then
O (n™!) (n — oo) for non-constant functions. a.e, if f € L,, 1 < p < oo and

1
loa, f—fll, =0 (Mn) , when n — oo,

then f is a constant function.

Fridli used dyadic modulus of continuity to characterize the set of
functions in the space L,, whose Vilenkin-Fejér means converge at a given rate.
It is also known that (see e.g books [1] and [108]))

lonf = I,

Cpw ! f +C§Msw L f (1<p<oo, neN)
< cpwp My’ P e\t ) <p < oo, .
s=0 s

By applying this estimate we immediately obtain that if f € lip (o, p) , i.e

1 1
WP(M,f>:O(W>7 n — 0o,

then
0] ﬁ , ifa>1,
lonf — f||p =< O MLN , ifa=1,
O ﬁ , ifa<l.

On the other hand, if 1 <p < oo, f € L, and
loa, f— fll, = o(1/M,), asn — oo,

then f is a constant function.
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Weisz [170] considered the norm convergence of Fejér means of Vilenkin-
Fourier series and proved that

lowfll, <cpllfllg, . p>1/2 and [ € Hp.
This result implies that

1 Klowfly

nQp— 1 k2—2p
k=1

If (1.10) holds for 0 < p < 1/2, then we have that

1 llow £l »
10g[1/2+p] n 1 k2—2p < Cp ”f”Hp ’ (O <p § 1/2) . (1'11)

<cplfllf,, (1/2<p<o0). (1.10)

Furthermore, in Tephnadze it was shown that the assumption p > 1/2
in is essential. In particular, is was proved that there exists a martingale
f € Hyjp such that

sup [[on fl, /, = +o0.
neN

For Vilenkin systems in [143] it was proved that holds, though inequality

is not true for 0 < p < 1/2.
Some new strong convergence result for Fejer means was considered in

and [164].

In the one-dimensional case the weak type inequality
« C
,u(O‘f>)\)§7||fH1, (feLl’ )‘>O)
can be found in Zygmund [186] for the trigonometric series, in Schipp [107] for
Walsh series and in Pal, Simon for bounded Vilenkin series. Fujji and
Simon verified that o* is bounded from H; to L;. Weisz [170] generalized
this result and proved the boundedness of ¢* from the martingale space H,
to the Lebesgue space L, for p > 1/2. Simon gave a counterexample,
which shows that boundedness does not hold for 0 < p < 1/2. A corresponding

counterexample for p = 1/2 is due to Goginava (see also [18] and [19]). In
[129] Tephnadze proved that there exist a martingale f € H,, such that

sup [on fly 5 = +00.
neN
Moreover, there exists a martingale f € H), for 0 < p < 1/2, such that
Sup ||Unf||weak—Lp = +OO
neN

It follows that there exist a martingale f € H, , such that
lo* £ll1 /2 = +oc.
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Furthermore, there exists a martingale f € H, for 0 < p < 1/2, such that

||O-*f||weak7Lp = to0.

Weisz [172] proved that o* is bounded from the Hardy space H,, to the
space weak — Ly /2. In [135] it was proved that the maximal operator o, with
respect to Vilenkin systems defined by

'O_V* — Sllp |Jn|
neN (n 4+ 1)1/”72 ’

where 0 < p < 1/2,is bounded from the Hardy space H,, to the Lebesgue space
L,. Moreover, the order of deviant behavior of the n-th Fejér mean was given
exactly. That is, for any non-decreasing sequence {®,, : n € N} satisfying the
condition

__(n+ 1)1/;0—2
lim = +00,
n— oo n

sup
keN 1 ficll e,

we have that
OMy,,, +1 fr

D
2n,, +1
"k weak—Ly,

As a consequence of this we immediately get that
lowfll, < cp (n+ 1P 72 (0 + 1) |,

but also a stronger result is known (for details see e.g. [130]). In particular, if
0 <p<1/2and f € Hy, there exists an absolute constant ¢, depending only
on p, such that

lowf e, < com™ P2 £, -

In [134] (for Walsh system see [46])) it was proved that the maximal operator
o* with respect to Vilenkin systems, defined by
g* J— sup |JT7«|
nen log? (n + 1)
is bounded from the Hardy space H, /, to the Lebesgue space L, ;.
Moreover, for any non-decreasing sequence {®,, : n € N} satisfying the
condition

log? (n +1
mmoe (vt _ o
n— 00 n
we have that
Tany, Ik
ang 11/2
Sup ———— = 0

keN N fella,,
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It follows from this that
||Unf||1/2 < clog® (n+1) ||fHH1/2 .

but an even stronger result is known (for details see e.g. [130]). In particular, if
f € Hy s, then there exists an absolute constant ¢, such that

loatlla, , < clog® (n+ 1) | fl, ,

Some analogical theorems for the Walsh-Kaczmarz system were proved in

and [122].
For the one-dimensional Vilenkin-Fourier series Weisz [170] proved that the

maximal operator o#, defined by
U#f = sup |onr, f1,
neN

is bounded from the martingale Hardy space H, to the Lebesgue space L,, for
p > 0. He also proved that

loae, f = flly, =0, feH, (p>0).

On the other hand, the operator |0, f| is not bounded from the space H,
to the space H,, for 0 < p < 1. This result for the Walsh system can be found
in Goginava and for bounded Vilenkin systems in Persson and Tephnadze

Approximation properties of subsequences of Fejér means with respect to
the one-dimensional Walsh-Fourier series was considered in Persson, Teph-
nadze and Tutberidze (see paper B) and Tutberidze (see paper Q).

Tephnadze proved that if 0 < p < 1/2 and {«aj : k € N} is a subse-
quence of positive numbers such that

sup p (ag) = 2 < ¢ < o0,
keN

then the maximal operator o*#, defined by
gt f = suplog, f],
keN

is bounded from the Hardy space H, to the Lebesgue space L,,.
Moreover, if 0 < p < 1/2 and {«y : k € N} is a subsequence of positive
numbers satisfying the condition

sup p () = o,
keN

then there exists a martingale f € H,, such that

sup [|oa, fllyear—r, =00 (0<p<1/2).
kEN
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It immediately follows that for 0 < p < 1/2, and f € H,, there exists an
absolute constant ¢, depending only on p, such that

lon fll, < eollfllg,, keN,
if and only if

sup p (ng) < ¢ < 0.
keN

As a consequence, if p > 0 and f € H,, then there exists an absolute
constant ¢,, depending only on p, such that

loar, fll, < el fllp,, (>0).

In it was proved thatif 0 < p < 1/2, f € H, and
1 B 1 N
wp E’f =0 W wnen 77,4)00,

lowf = fllg, = 0, whenn — oo.

then

Moreover, there exists a martingale f € H, (0 < p < 1/2) for which

1 1
W(Ml7f)H :O(W) When n — o0

p

and
lonf = fllwear—z, = 0. when n — co.

When p = 1/2 we have the following results: If f € H;,, and
1 1
WH, M—,f =0 o , when n — oo,

lonf = fll,,, — 0, whenn — oo.

then

Moreover, there exists a martingale f € H, /, for which

1 1
WHy (anf) =0 <n2> , when n — co
and

lowf = flly)2 = 0, when n — oo.

We state some consequences of this result investigated in for the
Walsh system to clearly see the difference of divergence rates for various
subsequences: Let0 < p < 1/2, f € H,.Thenthere exists an absolute constant
¢p. depending only on p, such that

lont, 1 £, < cpMYP 2| flly,  meN (112
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and
HO—MnJrM[n/z]fHHp = CPM$/2P_1 HfHHp , neN. (1.13)

1/p—2 1/2p—1 . . "
Moreover, the rates M,/*~* and M)/*"~" in inequalities and ( are
sharp in the same sense.

Blahota and Tephnadze proved thatif 0 < p < 1/2 and f € H,, then
there exists an absolute constant ¢,, depending only on p, such that

/
Sl < s,

k=1

Moreover, if 0 < p < 1/2 and {®}, : k € N} be any non-decreasing sequence
satisfying the conditions ®,, 1 oo and
k‘2 2p

Tim
k—oo Dy

= 007
then there exists a martingale f € H,, such that

i ||O.k’f||fueak—[,p o
k=1 L

As a corollary we also get thatif 0 < p < 1/2 and f € H,, then there exists
an absolute constant ¢,, depending only on p, such that

> Jlox I,

T <cpllfli,
k=1

low £11%,
fZ s < lfl,

" Nowf — fll, Ly
E f1—2p ’
k=1
and ,
I HokaHp o P
Nl -2 ||fHHp
k=1
Blahota and Tephnadze also considered the endpoint case p = 1/2 and
they proved thatif f € H, 5, then there exists an absolute constant ¢ such that

n 1/2
1 &lo kfnlfz i
lognz —C||f||H1/2

It follows from this that if f € H, /5, then

1/2
1 « Hgkf“H 1/2
3 2 <l flly

logn k Hiyz”

k=1
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1/2
1 Klowf = fllx
li /2
nso0 lognkzz1 k 0
and ,
1/2
X I HakaHl/Q 1/2
’th—>H;o logn]; k = Hf||H1/2.

Approximation properties and strong convergence results of Marcinkiewicz-
Fejer means with respect to Walsh and Kaczmarz systems were studied by Nagy
and Tephnadze [85) 86} [87, 88, [89].
It is well-known that the so-called 7" means are generalizations of the
Fejér, Reisz and logarithmic means. The 7' summation is a general summability
method. Therefore it is of prior interest to study the behavior of operators re-
lated to N6rlund means of Fourier series with respect to orthonormal systems.

Since T'means are inverse of Norlund means we first state some interesting
results concerning Nérlund summability, which has high influence on the new
results for T"means of Vilenkin-Fourier series.

In Goginava investigated the behavior of Cesaro means of Walsh-
Fourier series in detail. In the one-dimentional case approximation properties
of Cesaro means was studied by Akhonadze (see also [6]) and
two-dimensional case approximation properties of Nérlund and Cesaro means
were considered by Nagy (see [82], and [83]). The maximal operator o**
(0 < a < 1) of the (C, a) means of Vilenkin systems was investigated by Weisz
[169]. In this paper Weisz proved that ¢®* is bounded from the martingale
space H, to the Lebesgue space L, forp > 1/(1 + «). Goginava gave a
counterexample which shows that boundedness does not hold for 0 < p <
1/ (14 ). Weisz and Simon showed that the maximal operator o®* is
bounded from the Hardy space H; /(14 to the space weak — L1 /(14q).

Strong convergence theorems and boundedness of weighted maximal op-
erators of the (C,a) means of Vilenkin systems on the Hardy spaces when
0 < p < 1/(1 + a) were considered by Blahota and Tephnadze and Bla-
hota, Tephnadze and Toledo [27]. Summability of some general methods were
considered by Blahota, Nagy and Tephnadze [21].

In (see also [137]) the maximal operator of the Norlund summation
method (see (1.5)) was investigated. In particular, it was proved that the
maximal operator t* of the summability method with non-decreasing
sequence {gy : k € N} is bounded from the Hardy space H,, to the space
weak — Ly 3.

Moreover, for any 0 < p < 1/2 and non-decreasing sequence {¢; : k € N}

satisfying the condition

qi>f7 (c>0),

Qn —n

there exists a martingale f € H,, such that

sup ||tnf||weak—Lp = .
neN

31



1. Introduction

In it was proved that if 0 < p < 1/2 and the sequence {g;, : k € N} is

non-decreasing, then the maximal operator tN;;,l, defined by
|t f]
tyf :=sup
P neN (n + 1)1/p_2

is bounded from the Hardy martingale space H,, to the Lebesgue space L,.

Moreover, according to the fact that the Fejér means are examples of
Nérlund means with non-decreasing sequence {g¢; : k € N} we immediately
obtain that the asymptotic behaviour of the sequence of weights

{1/(k+ DY e N}

in Norlund means can not be improved.
Let the sequence {gy. : k € N} be non-decreasing. Then the maximal opera-
tor t7, defined by
~* tnf
t,f :=sup 2‘7|,
nen log” (n+ 1)
is bounded from the Hardy space H, , to the Lebesgue space L, ,. Further-
more, in view of the fact that the Fejér means are examples of Nérlund means
with non-decreasing sequence {qx : k € N} we immediately obtain that the
asymptotic behaviour of the sequence of weights

{1/1og® (n+1) : n € N}

in Norlund means can not be improved.
In it was proved that for all Nérlund means with non-increasing se-
quence {q : k € N} there exists a martingale f € H, such that

sup Ht”Lwaeakap = .
neN

It follows that for any 0 < p < 1/2 and Norlund means ¢, with non-
increasing sequence {qy : k € N}, the maximal operator ¢* is not bounded from
the martingale Hardy space H, to the space weak — L,, that is there exists a
martingale f € Hp, such that

Sup [[° fll.yean -1, = -
neN
In the same paper it was also derived a corresponding necessary
condition for the Norlund means with non-increasing sequence {q : k € N},
when 1/2 < p < 1. In particular, if 0 < p < 1/(14+«a),0 < a < 1, and non-
increasing sequence {g : k € N} satisfying the condition

[e3

lim =c>0,0<a<l, (1.14)
n— oo n
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then there exists a martingale f € H, such that

sup ||tnf||weakap = 0.
neN

Moreover, for any non-increasing sequence {¢; : k € N} satisfying the
condition

(03

m =00, (0<a<l), (1.15)

n—00Qy,

there exists a martingale f € Hy/(144), Such that
iléllgf thwaeakal/(l_'_a) =

It follows that forany 0 < p < 1/(14+«), 0 < o < 1 and non-increasing
sequence {q; : k € N} satisfying the condition there exists a martingale
f € Hp such that

||t*f||weak7Lp = o0.

Furthermore, if {gx : k € N} is a non-increasing sequence satisfying the
condition , then there exists a martingale f € Hj /(114) such that

" _
||t waeak—Ll/(1+a) B

In it was proved that the maximal operator ¢* of the Nérlund summabil-
ity method with non-increasing sequence {g. : k € N}, satisfying the condition

1 16) 1 , when n — o (1.16)
Qn ne
and .
Gn — Gn1 = O <n2a> ., when n — oo, (1.17)

is bounded from the Hardy space H;(144) to the space weak — Ly (144, for
O0<a<l.

Moreover, for 0 < a < 1 and non-increasing sequence {¢q; : k € N}
satisfying the conditions

[e3

. n
i _— >
nl;rrgo 0. = Co >0 (1.18)
and
lgn — qnt1] > can®" 2, neN. (1.19)

there exists a martingale f € Hy /(144) such that
iléll\)l ”tnf”l/(lJra) = <.

In (see also [24]) it was proved that if f € H,,where0 <p <1/ (1+ «)
forsome 0 < a < 1,and {¢; : &k € N} is a sequence of non-increasing
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numbers satisfying the conditions and (1.17), then the maximal operator
t. . defined by

p,a

T tn f]

P T e

is bounded from the martingale Hardy space H, to the Lebesgue space L,,.
Moreover, if {®,, : n € N} is any non-decreasing sequence, satisfying the
condition

1 1/p—1—«
lim % = +o0, (1.20)
n— o0 n

then there exists Norlund means with non-increasing sequence {¢g; : k € N}
satisfying the conditions and such that

tay,, +1fk

D
Many 1 weal—Ly,
sup = oo0.

keN 1 fell

Let0 < p < 1/(l+4 «)and f € H,. Then there exists an absolute constant
¢p.a, depending only on p and ¢, such that

1/p—1—«
tnfll, < oo (n+DYP7 I f ]y, n€ N

On the other hand, if {®,, : n € N} is any non-decreasing sequence satisfy-
ing the condition (1.20), then there exists a martingale f € H, such that

tnf

sup T
n

neN

= Q.

weak—L,

Moreover, let {®,, : n € N} is any non-decreasing sequence satisfying the
condition (1.20). Then the maximal operator

aup It
neN (I)n

is not bounded from the Hardy space H, to the space weak — L.

In (see also [24])) it was proved thatif f € Hy/(11q), where0 < o < land
{qx : k € N} be asequence of non-increasing numbers satisfying the conditions
and (1.17), then there exists an absolute constant ¢, depending only on «
such that the maximal operator

v |t f]

t, = —F/——
7 logtt Y (n+ 1)

is bounded from the martingale Hardy space H;/(14q) to the Lebesgue space
Lija+a)-

34



Some results on partial sums and classical summability methods of
Vilenkin-Fourier series

Moreover, if {®,, : n € N} is any non-decreasing sequence satisfying the
condition

1+«
T log"™* (n+1)
n—o0 P,

then there exists Nérlund means with non-increasing sequence {¢; : k¥ € N}
satisfying the conditions and such that

= —|—C)O7

tnfr

2%

Jswen |2
sup 1/(14«) _

keN ||f||H1/(1+a)

In it was proved that if 0 < p < 1/2, f € H, and the sequence
{qr : k € N} is non-decreasing, then there exists an absolute constant ¢, de-
pending only on p such that

f p
ZLS W < 6, 1,

On the other hand, according the fact that Fejér means are examples of
Norlund means with non-decreasing sequence {qi : k € N} we immediately
obtain that the asymptotic behaviour of the sequence of weights

{1/k*7?" . k € N}

in Norlund means can not be improved.

In it was proved that if f € H,/, and the sequence {¢; : k € N} is
non-decreasing satisfying condition below, then there exists an absolute
constant ¢, such that

n 1/2
1 ||tkf||1/2 1/2
< .
g <Ml

In Blahota and Tephnadze was investigated Norlund means with non-
increasing sequence {qx : k € N}inthecase 0 < p < 1/(1+ «) where
0 < a < 1. In particular, if f € H,,where0 <p <1/(14+a),0 <« <1and
{qx : k € N}, is asequence of non-increasing numbers satisfying the conditions
and (1.17), then there exists an absolute constant ¢, ,,, depending only on
« and p such that

[t f 1%,

p
Zkg (1+o¢)p e 4 ”fH

In Blahota, Persson and Tephnadze it was proved that if f € Hy/(144),
where 0 < a < 1 and {qk k € N} is a sequence of non-increasing numbers
satisfying the conditions (1.16) and (1.17), then there exists an absolute constant
co depending only on « such that

1 1+o¢
| Z [ £11 37
1ognm:1

H o 1/(1+
A > Ca Hf”lv‘l/l(/(lfm)
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In [161] (see paper D) we investigated the maximal operator 7% of the
summability method with non-increasing sequence {qx : k > 0}. In
particular, we proved that T* is bounded from the Hardy space H,, to the
space weak — Ly 5.

Moreover, for any 0 < p < 1/2 and non-increasing sequence {qx : k£ > 0}
satisfying the condition

QnJrl (&

—_— > ) c 2 ]- 9

Qs "n (c=1)
then there exists a martingale f € H),, such that

sup ||Tnf||weak:—Lp = o0
neN

We also proved that the maximal operator T* of the summability method
with non-decreasing sequence {¢;, : k > 0} satisfying the condition

%_1_0<1>, as n — oo (1.21)
Qn n

is bounded from the Hardy space H, s, to the space weak — Ly 5.
Moreover, for any 0 < p < 1/2 and non-decreasing sequence {¢; : k > 0},
there exists a martingale f € H,, such that

sup ||T7Lf||weak:—Lp = 0.
neN

Similar problems for Walsh-Kaczmarz system were proved by Gogolashvili

and Tephnadze [59}[60].
In [163] (see paper E) we proved thatif 0 < p < 1/2, f € H, and a sequence

{qx : k > 0} is either non-decreasing numbers (without any restrictions) or
non-increasing numbers, satisfying the condition

1 1
0. 0] <n> , as n — oo, (1.22)

then the maximal operator f;, defined by

_ T,
T f:= sup 771

(1.23)
b neNy (n+ 1)YP7210g?/247] (n 4 1)

is bounded from the Hardy space H, to the space L,,.
Since the maximal operator o, defined by

oXf = sup o f]
P neNy (n + 1)1/1’72 log?t /2Pl (n 4 1)

is bounded from the martingale Hardy space H, to the space L, and the rate
of denominator (n + 1)*/7~?10g?"/?*#] is in a sense sharp and Fejer means is
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example of T' means, for a non-decreasing and non-increasing sequence we
obtain that these weights are also sharp in {1.23).

In we also investigated strong convergence of 7" means with respect
to Vilenkin systems. In particular, if 0 < p < 1/2, f € H,and {q; : k > 0} isa
sequence of non-increasing or non-decreasing numbers, then there exists an
absolute constant ¢, depending only on p, such that the inequality

oo

1Tt

S < allfl,
k=1

holds.

Moreover, if f € Hy/; and {qx : k > 0} is a sequence of non-increasing
numbers, satisfying the condition {.22), then there exists an absolute constant
¢, such that the inequality

n 1/2
1 ||ka||1§2

1/2
) D L 8 (124)

holds.

If the sequence {q; : kK > 0} is non-decreasing and satisfying condition, then
the inequality is true also for any f € H; 5.

Well-known examples of Norlund and 7" means are Riesz and Noérlund
logarithmic means.

Riesz logarithmic means with respect to the trigonometric system was
studied by many authors. We mention, for instance, the papers by Szasz
and Yabuta [176]. These means with respect to the Walsh and Vilenkin systems
were investigated by Baramidze, Gogolashvili, Nadirashvili (see also [13])),
Gat and Simon [111]. Blahota and Gét [17] considered norm summability of
Norlund logarithmic means and showed that Riesz logarithmic means R,, have
better approximation properties on some unbounded Vilenkin groups than the
Fejér means. Moreover, in it was proved that the maximal operator of
Riesz means is bounded from the Hardy space H, to the Lebesgue space L,
for p > 1/2 but not when 0 < p < 1/2. Strong convergence theorems and
boundedness of weighted maximal operators of Riesz logarithmic means were
considered in Lukkassen, Persson, Tutberidze, Tephnadze (see paper F)
and Tephnadze [133].

In Tephnadze proved that the maximal operator of Riesz logarithmic
means R* is bounded from the Hardy space H,,, to the space weak — Ly 5.
Moreover, there exists a martingale f € H,, where 0 < p < 1/2 such that

IR f, = +oc.

In [133] Tephnadze proved that for any 0 < p < 1/2, the maximal operator

R,, defined by
~* logn |R,

R, := sup dogn |Bnf| 1/,,{'27

neN (n + 1)
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is bounded from the Hardy space H, to the space L,,.
Moreover, for 0 < p < 1/2 and non-decreasing function ¢ : N. — [1,0)
satisfying the condition
(n+1)72
log(n+1)¢(n)
the maximal operator

Ry f|
sup
neN ¥ (n)
is not bounded from the Hardy space H, to the space weak — L.
In the case p = 1/2 he also proved that the maximal operator R*, defined
by
Dx £ |Rnf‘
e neh log (n+ 1)’
is bounded from the Hardy space H, /, to the space L, /,.
Moreover, for any non-decreasing function ¢ : N — [1,00) satisfying the
condition

1 1
i k) SN
n—oo @ (n)
the maximal operator
| R f|
sup
neN ¥ (n)

is not bounded from the Hardy space H, / to the space L; /5.

In (see paper F) we also proved thatif 0 < p < 1/2 and f € H,(Gp,),
then there exists an absolute constant ¢,, depending only on p, such that the
inequality

> log? n | RofI[%;
ZWP < i,

n=1
holds, where R,, f denotes the n-th Reisz logarithmic mean with respect to the
Vilenkin-Fourier series of f.

Moéricz and Siddiqi investigated the approximation properties of some
special Norlund means of Walsh-Fourier series of L, functions in norm. The
case when {q, = 1/k : k € N} was excluded, since the methods of Méricz and
Siddigi are not applicable to Nérlund logarithmic means. Fridli, Manchanda
and Siddiqi improved and extended the results of Méricz and Siddiqi
to dyadic homogeneous Banach spaces and martingale Hardy spaces. In
Gat and Goginava proved some convergence and divergence properties of the
Norlund logarithmic means of functions in the class of continuous functions
and in the Lebesgue space L;. In particular, they gave a negative answer to the
question of Méricz and Siddiqi [81]. Gat and Goginava proved that for each

measurable function satisfying ¢ (u) = o (u log!/? u) , as u — oo, there exists
an integrable function f such that

/ b(If @) ds (x) < o0
Gm
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and that there exists a set with positive measure such that the Walsh-
logarithmic means of the function diverges on this set. It follows that weak-(1,1)
type inequality does not hold for the maximal operator of Norlund logarithmic
means L*, defined by

L'f = supl|Lufl.
neN

On the other hand, there exists an absolute constant ¢, such that
||L*‘f||p <6 Hf”p’ when fe L, p>1
If we consider the following restricted maximal operator L*,, defined by
~*#f = Zlég |La, fl, (Mg :=mg...mp—1, k=0,1...)

then
Mi{Lyf > 2} <elflly, f€ LG, A>0.
Hence, if f € L1(G.,), then
Ly, f— f, a.e.on Gy,.

In [10] (see also [13])) it was proved that if f € Li(G,,), then Ly, f(z) — f(x)
for all Lebesgue points.

In (see also ) it was proved that there exists a martingale f € H,,
(0 < p < 1), such that the maximal operator of Norlund logarithmic means L*
is not bounded in the Lebesgue space L,. In particular, it was proved that there
exists a martingale f € H), such that

1L £1l, = +o.

Boundedness of weighted maximal operators of No&rlund logarithmic
means was considered in [103]. In particular, it was proved that the maximal
LS

operator L , defined by

~* L,
L f:=sup 7| S| ,
neN log (7’L + 1)

is bounded from the Hardy space H; (G,,) to the space L, (G,,) .
Moreover, if ¢ : N} — [1,00) is a non-decreasing function satisfying the
condition

1 1
lim M = 400, (1.25)
then there exists a martingale f € H; (G,,), such that the maximal operator
L f]
sup
neN ¢ (n)
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is not bounded from the Hardy space H; (G,,) to the Lebesgue space L, (G,,) .
In Tephnadze and Tutberidze [146] (see paper G) it was proved that the

maximal operator L,, defined by

is bounded from the Hardy space H,, (G,,) to the space L, (G,,) .
We also proved that for 0 < p < 1 and a non-decreasing function ¢ : N, —
[1, 00) satisfying the condition

nl/pfl
lim —— = 400,
1 Tog np ()

then there exists a martingale f € H, (G,,), such that the maximal operator

L
neN @ (n + 1)

is not bounded from the Hardy space H,, (G,,) to the space L, (G,,) .
In the same paper we also state the following problem:
Open Problem. For any 0 < p < 1 and non-decreasing function © : N, —

[1,00) is it true or not that the following maximal operator L,, defined by

7 |Ln f|
L, f:= —
CAR TrEsy
is bounded from the Hardy space H), (G,,) to the Lebesgue space L,, (G,,) and
the rate of © : N — [1,00) is sharp, that is, for any non-decreasing function
¢ : Ny — [1, 00) satisfying the condition

lim ©(n) = 400,
n—o0 (p (n)

then there exists a martingale f € H, (G,,), such that the maximal operator

sup 7]
neN P (n + 1)

is not bounded from the Hardy space H,, (G,,) to the space L, (G,,) .

According to the Theorems above we can conclude that there exist absolute
constants 7 and (5 such that

Cyint/r=1 L
1 < < /p=1
log(n+1) — ©(n) < Con
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Later on, Memic generalized result of Tephnadze and Tutberidze [146] (see
paper G) and proved that the maximal operator
logn | Ly f|
up —m————+
neN (n + 1)1/’)_1

is bounded from the Hardy space H,, (G,,) to the space L, (G,,) .
Sharpness of this result immediately follows by using the negative result of

Tephnadze and Tutberidze [146] (see paper G), which is already stated above.
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1. INTRODUCTION

It is well-known that the Vilenkin system does not form a basis in the space L; (G,,) (for details see
[8] and [14]). Moreover, there is a function in the Hardy space H; (G,,) such that the partial sums of f
are not bounded in Li-norm (for details see [12, 13, 21, 22]) . However, a subsequence Sy, of partial
sums are bounded from the Hardy space H; (Gy,) to the Lebesgue space L1 (Gy,) (see [2, 23]):

ISat gz, < clifller, (K €N). (1.1)

Moreover, in Gat[7](see also Simon [18, 19]), it was proved the following strong convergence result: for
all f € Hy

where Sy f denotes the k-th partial sum of the Vilenkin-Fourier series of f.
It follows that there exists an absolute constant ¢ such that

1 Skfl
—— < =23.. .
logn; <l (=23 (1.2)
and forall f € H;
||Ska1_

A similar result for trigonometric system was proved by Smith [20], and for Walsh-Paley system by
Simon [17]. Observe that if the partial sums of Vilenkin-Fourier series will be bounded from H; to Ly,
then we also would have

sup — Z 1Smflly < el fllm, » (1.3)

neNy 1 m=1

3The research is supported by Shota Rustaveli National Science Foundation grant no. PHDF-18-476
"E-mail: giorgi.tutberidze1991@gmail . com
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but, as it was mentioned above, the boundedness of the partial sums does not hold from H; to Lj.
However, we have the inequality (1.2).

On the other hand, in the one-dimensional case, Fujii [6] and Simon [16] have proved that the
maximal operator Fejér mean is bounded from Hj to Ly, that is,

1 n
ﬁmZ:lSmf

So, anatural question that arises is that if the inequality (1.3) holds true, which would be a generalization
of the inequality (1.4), or do we have a negative answer to this problem?

In this paper, we prove that there exists a function f € H; such that

sup
neNy

<cllfllg, - (1.4)
1

1 n
sup = Y [|Smfll; = oo

neNy =)

The paper is organized as follows: In Section 2 we present some necessary notation and definitions. In
Section 3 we state the main results of the paper. The detailed proofs of the main results are given in
Section 4.

2. DEFINITIONS AND NOTATION

Let N denote the set of the positive integers, N = N, U {0}, and let m = (mg,my,...) denote a
sequence of positive integers not less than 2. Denote by Z,,,, = {0,1,...,my — 1} the additive group of
integers modulo myg, and define the group Gy, to be the complete direct product of the group Z,,; with
the product of the discrete topologies of Zy,; »s. The direct product y of the measures i ({j}) = 1/ma,
J € Zp, is the Haar measure on Gy, with 1 (G,,) = 1.

I sup,,cy mn < 00, then we call Gy, a bounded Vilenkin group. If the generating sequence m is not
bounded, then Gy, is said to be an unbounded Vilenkin group.

The elements of Gy, are represented by sequences of the form « = (zo, 1,..., %k, ... ), T € Zpm, . It
is easy to give a base for the neighborhood of G,,, namely we have

[()(f):Gm, In(x):{yecm|y0:107~~-ayn—1 :xn—l}v Zeva n €N,

Denote I, = I,(0) for n € N and I, = G,,\I,. Let e, = (0,...,0,2, = 1,0,...) € Gy, n € N. If we
define the so-called generalized number system based on m in the following way: My =1, My, =
my My, k € N, then every n € N can be uniquely expressed as n =Y, n;jM;, where nj € Zim, (e
N), and only a finite number of n;‘s differ from zero. Define |n| = max {j € N; n; # 0}.

Next, on the group G,,, we introduce an orthonormal system, which is called the Vilenkin system.
To this end, we first define the complex-valued functions ri(x) : G, — C, the generalized Rademacher
functions:

ri(x) = exp (2muxy /my) (*=-1, 2 € Gp, kEN).
Now define the Vilenkin system ¢ = (¢, : n € N) on G, as follows:

Un(z) = H ref(x), neN.
k=0

Note that in the special case where m = 2, the above defined system is called the Walsh-Paley system.
The norm (or quasi norm) in the space L,(G,) is defined by

1/p
= ([ rera) " o<p<w.
Note that the Vilenkin system is orthonormal and complete in Lo (G,,) (see[1, 25]).
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For f € L1 (G,,) we define the Fourier coefficients, the partial sums of the Fourier series, the Fejér
means, and the Dirichlet kernels with respect to the Vilenkin system in the usual manner:

Fk) - = /G fodp, keN,

n—1
Snf L= Z,]?(k)i/)k. ne N+7 Sof = O’
k=0

n—1 n—1

. 1 .
onf © == Sif. Dn=3) wr neN.
k=0 k=0
Recall that
M, 1,
D, (x) = mo e (2.1)
0, x ¢ I.
and
Spn—1 Spn—1
D, = Dyt Y Wens, = Dag, > 7h, 1<sp<mp—1 (2.2)
k=0 k=0

The n-th Lebesgue constant is defined by L,, = || Dy, . It is well-known that (see [25]):
L, = O(logn), n— oo. (2.3)

Moreover, there exist absolute constant ¢y and ¢y such that

1 n
cilogn < =% L(k)<cglogn, n=2.3,... (2.4)
n}; (k)
(For unbounded Vilenkin systems this result can be found in [5], while for bounded Vilenkin systems in
[9]and [11, 24]).

The concept of the Hardy space (see [4]) can be defined in various manners, for instance, by a maximal
function f* = sup,ey |Sm, fl, f € Gm, saying that f belongs to the Hardy space if f* € L (G,).
This definition is suitable if the sequence m is bounded. In this case a good property of the space
{f el ' (Gp): frelt! (Gm)} is the atomic structure (see [4]). To define the Hardy type space for
an arbitrary m, we first introduce the concept of the atoms (see[16]). A set I C Gy, is called an interval if

forsome z € G, andn € N, I'isoftheform I = J I, (z, k), where U is obtained from Z,,, by dyadic
keU
partition.

The sets Uy, Us, ... C Zpy,,, are obtained by means of such a partition as follows:

1= {0 2] ) 5= (2] coma 1)
e fo [0 . [ ).

where [a] denotes the integral part of a number a. We define the atoms as follows: a function a €
L% (G,y) is called an atom if either a = 1 or there exists an interval I to satisfy supa C I, |a| < [I|7*
and [; a = 0, where |I| denotes the Haar measure of I .

o0
Now we define the space Hy (G,,,) to be the set of all functions f = > A;a;, where ;s are atoms and
i=0

for the coefficients A; we have Y |\;| < oo (for details see [26, 27]). Observe that Hy (G,,) is a Banach
i=0
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space with respect to the norm

11z, = inf ) [Me] < oo, (2.5)

k=0

where the infimum is taken over all decompositions f = >_ Aa;. 1t is known (see [7]) that || f||, is
i=0

equivalent to || f**||, (f € L' (Gy)), where f** () = sup; [1] 7| [, f],

Since by (2.1)

(z € G,z € I and I is an interval).

*(x) = su o (u) e (u
F(@) = sp s ‘/I”(m)f( Vi (),

we have f* < f** and, thus, H (G,) C {f € L' (Gm) : f* € L* (Gm)} . Moreover, these spaces coin-
cide if the sequence m is bounded.

3. THE MAIN RESULT
Our main result is the following theorem.

Theorem 3.1. a) Let f € Hy. Then there exists an absolute constant ¢ such that

Z Sk Sy < 1My -

nE nl

b) Let ¢ : N. — [1,00) be a nondecreasing funcz‘ton satisfying the condition:

logn

lim

n—00 (1071

= +00. (3.1)

Then there exists a function f € Hy such that

Corollary 3.1 (see[10, 16, 18]). There exists a furzction f € Hy such that

1 n
sup — Sef|l; = 0.
23150,

4. PROOF OF THEOREM 3.1
To prove assertion (a) of the theorem, we use (2.3) to conclude that

anH
mognZn Sefllh < — 121 k<elflg, .

and the result follows.
Now we proceed to prove assertion (b). To this end, observe first that under the condition (3.1) there
exists an increasing sequence of positive integers {ay, : & € N} such that

lim 10g Moy, = +o00
k—o0 WM%
and
. 1/2
)
> Mok oo, (4.1)

o log;l/2 M,
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o
Let f = Z Akak, where ap = TakDMak = DQM% — D]uak and
k=1 ’

1/2
P2Ma,

B logl/2 M., '

Taking into account the definition of H; and (2.5) and applying (4.1) we can conclude that f € H;.
Moreover, we have

ks je{My,,....2M,, —1}, ke N

10=9,. 5 U Moy, 2Mo, —1). (42)
Next, taking into account that Dj 4 ar,, = D, +¢Ma Dj,when j < M,,, we can apply (4.2) to obtain
that
j—1 j-1
Sif = S f+ D FOWo=Su f+M D W (4.3)
'U:Mak v:]ﬂak

g

Sita,, [+ Mk <D — D, ) = Sia, [+ Mra, Dj—m, = 11 + Lo
In view of (1.1) we obtain
12l < || S, £, < e, - (4.4)
By combining (2.4) and (4.4) we get
1Snflly = [H2lly = 1l = Akl (n = May ) = ¢|[fll g, -

Therefore, we can write

e X lsul,
neN. T T { Moy <I<2May }
1/2
N 1 Z <L(l]\4ak)902Mak clIfl )
= oM, , 1/2 =
0 P2Ma,, (Mo, <2200, } log™/* M,,,
ol Moy, —1
Tt S L) - el fll

= 2M,, log'/? Ma, o201, 1=

wéﬁak log Mo, N clog'/? M,

172

> 2 > — 00, as k — oo.
10g j\/[ak <p21\,jak SO?J\IQ,C

This completes the proof of assertion (b). Theorem 3.1 is proved.

Acknowledgments. The author would like to thank the referee for helpful suggestions, which
improved the final version of the paper.
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ON THE BOUNDEDNESS OF SUBSEQUENCES OF
VILENKIN-FEJER MEANS ON THE MARTINGALE HARDY SPACES

LARS-ERIK PERSSON, GEORGE TEPHNADZE AND GEORGI TUTBERIDZE

(Communicated by I. M. Spitkovsky)

Abstract. In this paper we characterize subsequences of Fejér means with respect to Vilenkin
systems, which are bounded from the Hardy space H, to the Lebesgue space L,, for all 0 <
p < 1/2. The result is in a sense sharp.

1. Introduction

In the one-dimensional case the weak (1,1)-type inequality for the maximal oper-
ator of Fejér means

o' f:=sup|o,f]|
neN

can be found in Schipp [12] for Walsh series and in Pal, Simon [10] for bounded
Vilenkin series. Here, as usual, the symbol o, denotes the Fejér mean with respect
to the Vilenkin system (and thus also called the Vilenkin-Fejér means, see Section 2).

Fujji [6] and Simon [14] verified that * is bounded from H; to L;. Weisz [23]
generalized this result and proved boundedness of ¢* from the martingale space H),
to the Lebesgue space L, for p > 1/2. Simon [13] gave a counterexample, which
shows that boundedness does not hold for 0 < p < 1/2. A counterexample for p =1/2
was given by Goginava [8] (see also [2] and [3]). Weisz [24] proved that the maximal
operator of the Fejér means ¢* is bounded from the Hardy space Hj, to the space
weak — Ly ;. The boundedness of weighted maximal operators are considered in [9],
[16] and [17].

Weisz [22] (see also [21]) also proved that the following theorem is true:

THEOREM W:(WEISZ). Let p > 0. Then the maximal operator

oV f = sup|ou, f] (1
neN

Mathematics subject classification (2010): 42C10, 42B25.

Keywords and phrases: Vilenkin system, Vilenkin group, Vilenkin-Fejér means, martingale Hardy
space, maximal operator, Vilenkin-Fourier series.
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2 L.-E. PERSSON, G. TEPHNADZE AND G. TUTBERIDZE

where My := 1, Myy1 :=m,M, (n € N) and m := (mp,my,...) be a sequences of the
positive integers not less than 2, which generate Vilenkin systems, is bounded from the
Hardy space H), to the space L.

In [11] the result of Weisz was generalized and it was found the maximal subspace
S C N of positive numbers, for which the restricted maximal operator on this subspace

sup |0, f| of Fejér means is bounded from the Hardy space H), to the space L, for
neSCN
all 0 < p < 1/2. The new theorem (Theorem 1) in this paper show in particular that

this result is in a sense sharp. In particular, for every natural number n = Y;” , niM;,
where ny € Z,,, (k € N) we define numbers

(n):=min{j €eN:n; #0}, |n|:=max{jeN:n;#0}, p(n)=|n—(n)

and prove that
S={neN:p(n)<c<e.}

Since p(M,) =0 for all n € N we obtain that {M, : n € N} C S and that follows
i.e. that result of Weisz [22] (see also [21]) that restricted maximal operator (1) is
bounded from the Hardy space H), to the space L,.

The main aim of this paper is to generalize Theorem W and find the maximal
subspace of positive numbers, for which the restricted maximal operator of Fejér means
in this subspace is bounded from the Hardy space H), to the space L, forall 0 < p <
1/2. As applications, both some well-known and new results are pointed out.

This paper is organized as follows: In order not to disturb our discussions later on
some preliminaries (definitions, notations and lemmas) are presented in Section 2. The
main result (Theorem 1) and some of its consequences can be found in Section 3. The
detailed proof of Theorem 1 is given in Section 4.

2. Preliminaries

Denote by N the set of the positive integers, N := N, U{0}. Let m:= (mg,my,...)
be a sequence of the positive integers not less than 2. Denote by Z,, :={0,1,...,m, —
1} the additive group of integers modulo m,. Define the group G,, as the complete
direct product of the groups Z,,, with the product of the discrete topologies of Z,,, ‘s.
In this paper we discuss bounded Vilenkin groups, i.e. the case when sup,,.y 71, < oo.

The direct product p of the measures u, ({j}) := 1/my, (j € Zy,) is the Haar
measure on G, with 1 (G,,) = 1.

The elements of G,, are represented by sequences

X = (X0,X1, s Xny ) (Xn € Zy,)-

It is easy to give a base for the neighbourhood of G, :

Ip (x) := G, Li(x) :={y € G | Yo = %05+, Yn—1 =%n—1} (x € Gy, n€N).

Set I, :=1,(0), for n€ N, and
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en:=(0,...,0,x,=1,0,...) € Gy, (neN).

Denote

Ik,l L IN(O,...,O,Xk #0707"'707)61 #07-XI+1,...7 XN—1 )a k<l <Na
N = Iv(0,...,0,5 #0,0,...,0),  [=N.

It is easy to show that
N-2 N-1 N-1
E(U UI,V)U(UI,@N), n=2.3,.. 2)
i=0 j=i+1 i=0

If we define the so-called generalized number system based on m in the following
way :
My:=1, My :=m,M, (neN),

then every n € N can be uniquely expressed as n =Y ;7 omMy, where ny € Z,,, (k€
N, ) and only a finite number of n; s differ from zero. Let

(n):=min{j €N:n; #0} and |n|:=max{jeN:n;#0},
thatis M), <n< My, ;. Set p(n) = |n|—(n), for all neN.
Next, we introduce on G, an orthonormal system, which is called the Vilenkin
system. At first, we define the complex-valued function ry (x) : G,, — C, the general-
ized Rademacher functions, by

1 (x) :=exp (2mixg/my) , (i2 =—1,x€ Gy, kEN).

Now, define the Vilenkin system v := (y, :n € N) on G, as:
vl =T () (nem).
k=0

Specifically, we call this system the Walsh-Paley system, when m = 2.
The norms (or quasi-norms) of the spaces L,(G,,) and weak—L, (G,,) (0 < p < o0)
are respectively defined by

||f||p = / \f\”du, ||f||€veak—L = sup)Lp[J (f > ;L) < oo,
p G P
m A>0

The Vilenkin system is orthonormal and complete in L, (G,,) (see [20]).
If fe€L;(Gy) we can define Fourier coefficients, partial sums, Dirichlet kernels,
Fejér means, Fejér kernels with respect to the Vilenkin system in the usual manner:

F:= [ fwap (kew),
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4 L.-E. PERSSON, G. TEPHNADZE AND G. TUTBERIDZE

n—1 n—1
Snf:Zf(k)‘//h Dn::ZWk (n€N+)a
k=0 k=0

1 n—1 lnfl
onf ==Y Sif; Ky:==Y Dy (neN;).
=0 =0
Recall that (see e.g. [1])
| My, if xely,
DMn (x) - { 0, if x ¢ Ina (3)
and
sp—1 sp—1
Dy,m, = D, Y, Wim, =Du, Y 74, 4)
k=0 k=0

where n€e N and 1 <s, <m,— 1.
The o -algebra generated by the intervals {I, (x) : x € G,,} will be denoted by F

(n € N). Denote by f = (f("),n € N) a martingale with respect to f, (n € N) (for
details see e.g. [21]). The maximal function of a martingale f is defined by

Fl

f*=sup

neN

In the case f € L1(G,), the maximal functions are just also given by

Aywmw.

For 0 < p < oo the Hardy martingale spaces H), (G,,) consist of all martingales f,
for which

A TAE]

1 e, == (LI, < oo
P

If f € Li(Gp), then it is easy to show that the sequence (Sy, (f):n€N) is a
martingale. If f= ( f " ne N) is a martingale, then the Vilenkin-Fourier coefficients
must be defined in a slightly different manner:

~

Fliy:=tim [ O (@), ()i ().

k=0 ) Gy

The Vilenkin-Fourier coefficients of f € L; (G,,) are the same as those of the
martingale (Sy;,f : n € N) obtained from f.

A bounded measurable function a is said to be a p-atom if there exists an interval
I, such that

/zadﬂ=0> lall.. < w()~"7, supp(a) C I.

For the proof of the main result (Theorem 1) we need the following Lemmas:
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LEMMA 1. (see e.g. [22]) A martingale f = <f<”>,n € N) isin Hy(0<p<1)

if and only if there exist a sequence (ar,k € N) of p-atoms and a sequence (U, k € N)
of real numbers such that for every n € N :

Y weSu,ar = )
k=0
and
Z i ]” < oo,
k=0
Moreover, f”H,, ~inf (Y7, |/.Lk\P)1/p, where the infimum is taken over all decompo-

sition of f of the form (5).

LEMMA 2. (see e.g. [22]) Suppose that an operator T is © -linear and for some
0<p<l1

/|Ta|pdu < cp < oo,
1

for every p-atom a, where 1 denotes the support of the atom. If T is bounded from
Lo t0 L, then

ITA1, < cpllflls, -

LEMMA 3. (see [7]) Let n>1t, t,n €N, x €I\ L. Then

0, l.fx*xtet ¢ I,

K = X
wy (%) { —1711;1,[(;()7 if x —xie; € I.

LEMMA 4. (see [17]) Letxely/, i=0,...,N—1, j=i+1,...,N. Then

MM ;
/|K,,(x—t)\du(t)<c—‘2f, for n>My.
Iy My,

LEMMA 5. (see [11]) Let n € N. Then

. ] ||
Ka )< L MK < 3 [ ©)
I=(n) I=(n)
and
MG,
|nKi’l‘ = A’ xXe I{n)+1 (e(n>fl +€(n>) ) (7

where A := supm,,.
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3. The main result and applications
Our main result reads:

THEOREM 1. a)Let 0 < p <1/2, f € Hy. Then there exists an absolute constant
¢p, depending only on p, such that

c M‘I/IIJ 2
g
||GnkaHp M<1n/kl; 2 HfHH,,

b) (sharpness) Let 0 < p < 1/2 and ®(n) be any nondecreasing function, such

that Up2
—
||
supp (ng) = o0, lim ——%—— = co, 8)
keN (m) H“’M:/’; *® (ny)

Then there exists a martingale f € H,,, such that

onf
D (ny)

sup
keN

— oo,

weak—L ),

COROLLARY 1. Let 0 < p < 1/2, and f € H,. Then there exists an absolute
constant ¢, depending only on p, such that

||G”kf||H CP”fHHp keN

if and only if
supp (ng) < ¢ < oo.
keN
As an application we also obtain the previous mentioned result by Weisz [21], [22]
(Theorem W).

COROLLARY 2. Let 0<p<1/2, f¢&H,. Thenthere exists an absolute constant
¢p, depending only on p, such that

lw, Flly, < oI Flly, . meEN.

On the other hand, the following unexpected result is true:

COROLLARY 3. a) Let 0 < p < 1/2, f € H,. Then there exists an absolute con-
stant c,, depending only on p, such that

VL2
lows 411, < epMa” 21| flly,» nEN,
b) Let 0 < p < 1/2 and ®(n) be any nondecreasing function, such that

1/p—2
M

e

72



FEJER MEANS 7

Then there exists a martingale f € H),, such that

GMk+1f
@ (k)

— 09,

keN weak—Lp

REMARK 1. From Corollary 2 we obtain that oy, are bounded from H, to H),
but from Corollary 3 we conclude that oy, are not bounded from H), to H),. The
main reason is that Fourier coefficients of martingales f € H), are not uniformly bounded
(for details see e.g. [18]).

In the next corollary we state some estimates for the Walsh system only to clearly see
the difference of divergence rates for the various subsequences:

COROLLARY 4. a)Let 0 < p<1/2, f & H),. Then there exists an absolute con-
stant cp, depending only on p, such that

low1fll, <2772 flly, . neN ©)

and
(1/p=2)n
oy amaflly, <ep2 T Iflly,. neEN, (10)

where [n/2] denotes an integer part of n/2.

b) The rates 2(1/P=2n gnd QW inequalities (9) and (10) are sharp in the

same sense as in Theorem 1.

4. Proof of Theorem 1

Proof. a) Since

sup [ [Kn ()] dp (x) < ¢ < oo, (1)
neN Gm
we obtain that )
1/p—2
MWI; |G,,ka(x)|
Ml/p—2
||

is bounded from L., to L. According to Lemma 2 we find that the proof of Theorem
1 will be complete, if we show that

_ p
Mgr{k’; 2G,,ka(x)
/,— — 2| 6™
N M,

for every p-atom a, with support 7 and p (I) = MIQI. We may assume that [ = Iy. Itis
easy to see that o, (a) =0 when n; < My. Therefore, we can suppose that 7, > My .
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Since ||a]|., <M]{/p we find that

Ml/p 2‘6@ ]/p 2
M\ln/j 2 1/p 2/ ja ()] | K, (x—1)|dp (1) (12)
Myt Nl My
<W/ | K (x—1)|dp (1) W/ | K, (x—1)| dpa (1)
\"k\ \nkl

1/p=2, 2
<My [ Ky (o)l du )

Without loss the generality we may assume that i < j. Let x € I;;’,j and j < (ng).
Then x—1 € I/ for 1 € Iy and, according to Lemma 3, we obtain that

|KM1 ()C—l‘)‘ =0, forall (m) < [ < |-

By applying (12) and (6) in Lemma 5, for x € I;;’,j, 0 <i<j<(n) we get that

M oga®)| ""‘
S M) MW‘ /|KM,(x—t)‘d;,L(t):O. (13)
M\"k\ =) I

Let x € I;;}j , where (ng) < j < N. Then, in the view of Lemma 4, we have that

CM,'MJ'
/IN | Ky (x—1)| dp (1) < M

By using again (12) we find that
Ml/p 2

1 2 1
lowa(x)| M MyT
1/p2 M / | Koy (x—=1)|dp (1) (14)
M, M,
1/p=2,3,1/p
MMy
(ng) MMJ 1/p—2 )
PRI <M P MM;.
\nk\

By combining (2) and (12)-(14) we get that

1/p—2 P
M/p ’Gnk )| ;
E l/p 2 u
\nk\
1/p—2 P
N2 / oy |Gea (x)| du—i—l\il/ M)\ |Oea (x)] a
i=0 j=ir17 IV Mlln/kffz =" M‘ln/kf*z
()1 N-1 M2 Gpa ()| N2 Nt | MY ea(n)] |
(i) "k (ng) i
SIS o TS S o T
=R B 7 e i Y Ve

\"kl
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l/p fc )’ P
nk nk
+Z /IN l/p 2 d‘ll
\"AI
(ng)—1 N—1 1/p 5 N—2 N-—1 l/p s
<Y Y/ MM’du+Z y M MM‘d;,L
=0 =) W=t
N
+;) 1N (ng) iVIN u
1= N
(ng)—1 N—1 N—2 N-—1
1-2p (M;M;)P 1 2p (MiM;)" M- N (MiMy)
<M"Y Y +epMy, " Y Z +CP
i =0 j=(m) M; i=(ng)j=i+1 M; () i= My
. 2p<"k> ) N—1 1 . pzv (I p
< oMy, YMY —— > M, Z MY, —— +CPZMP
i=0 J=(n)+17 i=(ny) J=i+1M
1-2pq 0 1-2p N
S oMy My 3 p T oM FepSep e

(ng) i=(ng)

The proof of the a) part is complete.
b) Let {n; : k >0} be a sequence of positive numbers, satisfying condition (8).
Then

Sup ——— = oo, (15)

Under condition (15) there exists a sequence {o : k> 0} C {ng: k> 0} such
that o > 3 and

M(lle’)/zq)p/Z ((Xk)

kg(’) <ak>]‘/1|(;k2p)/2 < ¢ < oo, (16)
Let
=Y k.
{k; log|<n}
where
o MM ()
T
and
M/

o]

=" (DM\ak\+n ’DMlak\) :

Here A = sup,cym,. By applying Lemma 1 we can conclude that f € H,,.
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It is evident that

M‘ZjPMgl/f 2/2CI>1/2( )
R if je{Mg.... Mg s1—1}, k=0,1,2...,
) =10 ‘ ‘ (17)

)

if j¢k!0{M\ak\"”’ Mlak\+1_1}'

Moreover,
M
o, f 1 || 1 O
e Sif+——— Sifi=I+1LI
Do)  ouP (o) /g’l @ (o) ,-M|Z|+1 !
J=Mig,

Let M)y, | < j < 0. Then, by applying (17) we get that
F 1/2py «(1/p=2)/251/2 ( o )
S1f = S [+ Mg Mgy~ @77 (04) (D — Dy ) - (18)

By using (18) we can rewrite /I as

12py,(1/p=2)/2 ¢

O — Miay el o)
I=—""g L ST R (D»—D )
o (o) Ml T o @172 () jﬂzf: o e
L
=1L+ 1.
Since (for details see e.g. [S] and [19])
<
HSM|“k|f weak—Lp = CprHHP
we obtain that
O = Mjgy \”

1, < [59100 s, = 59100 oy, < 0115, <=
1 - Ly = (ozk@(ak) Mg weak—L, S,/ weak—L, < &£l

By using part a) of Theorem 1 (see also Corollary 2) we find that

M, P
11z, = (i ) [loma, ]
P (XkCD((Zk) ‘U‘k|

Let x € I<<""<>>:11’<"‘k>. Under condition (8) we can conclude that (o) # || and
O
<O£k _M\ak\> = <Otk> . Since

p
weak—Lj, S r ||fHHP <

Dj+Mn = DM,, + WM,,Dj = DMn + rnDj, when j < M, (19)
if we apply estimate (7) in Lemma 5 for /I, we obtain that
1/2p (1/p=2)/2 | =My, |

Mg Moy ( . _ )
E] = oD/ (o) ]:Zl Djimg,) =D
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M1/2P (1/p=2)/2 =M |
_ o] o) v Z D,
akCI>l/2 ((Xk) [o| =1 J
1/2p—15(1/p=2)/2 1/2p—14 ((1/p+2)/2
s Mal May gy )| Mo Mg,
z D1/2 (o) k ol ) | Bou—Mg, ) | Z /2 (¢
It follows that
HIIZ”fveakap
Mg Mg\ (1/p-2)/2y,1/p+2)/
[0/ oy . 1/p=2)/2 1/p+2)/2
> ¢, e € Gt 11Vl = My 7MY
1/2=pa1/24p [ Hog)—1,(o, >} o A2-p
R U Mg,
P Dr/2 (o) M<1ék2>—pq)p/2 (o)
Hence, if we apply (16) for large £,
P
||o-akaweak7L,, 2 HIIZHfzeakap B HIIlHﬁ'eakap - HIvaeakap
1/2—p
C”M\akl

1
> 5 1L ear1, > —5 o0, as k — oo.

1/2-
oM, ék> Pr/2 (o)
The proofis complete.
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MODULUS OF CONTINUITY AND CONVERGENCE OF
SUBSEQUENCES OF VILENKIN-FEJER MEANS IN THE
MARTINGALE HARDY SPACES

G. TUTBERIDZE

ABSTRACT. In this paper we find necessary and sufficient condition for
the modulus of continuity for which subsequences of Fejér means with
respect to Vilenkin systems are bounded from the Hardy space H, to
the Lebesgue space Ly, for all 0 < p < 1/2.

2000 Mathematics Subject Classification. 42C10, 42B25.
Key words and phrases: Vilenkin system, Vilenkin group, Fejér means,
martingale Hardy space, maximal operator, Vilenkin-Fourier series.

1. INTRODUCTION

It is known (for details see e.g. and [12] and the books [16] and [31,
34]) that the subsequence Sy, of the partial sums are bounded from the
martingale Hardy space H, to the Lebesgue space L, for all p > 0. It
follows that for any F' € Hp,

|Sa, F— Fllp =0, as k— oo
and
(1) 1Sa, F = Fllp, 0 =0, as k— oo,

However, (see Tephnadze [12, 27]) there exists a martingale F € H,
(0 <p<1),such that

sup Sy, 41F |, = oo,
neN ’
The reason of the divergence of Sy, +1f is that when 0 < p < 1 the Fourier

coefficients of f € H, are not uniformly bounded (see Tephnadze [26, 27]).
In particular, for f € H,(Gy,) where 0 < p <1,

IS f = fll, =0, as k — o0
holds if and only if

(2) supd (ny) < ¢ < 00,
keN

The research was supported by Shota Rustaveli National Science Foundation grant
PHDF-18-476.
1
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where d (ny) is defined by (6).

In the one-dimensional case the weak-(1, 1)-type inequality for the maxi-
mal operator of Fejér means o* f := sup,,cy |0y f| can be found in Schipp [15]
for Walsh series and in Pal, Simon [9] for bounded Vilenkin series. Fujji [5]
and Simon [18] verified that o* is bounded from H; to L. Weisz [33] gen-
eralized this result and proved boundedness of o* from the martingale space
H, to the Lebesgue space Ly, for p > 1/2. Simon [17] gave a counterexample,
which shows that boundedness does not hold for 0 < p < 1/2. A counterex-
ample for p = 1/2 was given by Goginava [7] (see also [2, 3] and [14]). Weisz
[34] (see also [11] and [29]) proved that the maximal operator of the Fejér
means o* is bounded from the Hardy space H/; to the space weak — Ly 5.
The boundedness of weighted maximal operators are considered in [20, 21],
[28]. Similar problems for Walsh-Kaczmarz-Fejér means were considered in
[8], [22, 23].

Weisz [32] (see also [31]) also proved that for any p > 0 the maximal
operator

oV f = sup|oas, f]
neN
is bounded from the Hardy space H), to the space L,. It follows that for
F € Hy, we get
loam F — Fll, =0, as k— o0
and
(3) loag, F — FHLWQ — 0, as k— oo,
Moreover, Weisz [32] (see also [31]) also proved that for any f € H,,

(4) loasf = fllg, =0, as k— oo

In [10] was generalized result of Weisz (see Theorem W) and was proved
that if 0 < p < 1/2 and {ny : k > 0} be a sequence of positive numbers, such
that condition (6) is fulfilled. Then the maximal operator

5"V f = sup |on, f]|
keN

is bounded from the Hardy space H), to the space L,. Moreover, under
condition (2) there exists an absolute constant c¢,, depending only on p, such
that

||Unk-fHH,, <o ”f”Hp :

It was also proved that these results are sharp.

In [13] was considered case when supcy d (k) = 0o and was proved that
the following is true:

Theorem PTT: (Persson, Tephnadze, Tutberidze)
a) Let 0 < p < 1/2, f € H,. Then there exists an absolute constant ¢,
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depending only on p, such that
oM
lonefIlp, < = 11, -
(ng)
b) (sharpness) Let 0 < p < 1/2 and ® (n) be any nondecreasing function,
such that

B
- ng
(5) ilégd(nk) = 00, kl;rgom = 0.
Then there exists a martingale f € Hp, such that
sup I f =00
ken (|2 () [[ 1, '

Similar problems for Walsh system when 0 < p < 1/2 was proved in [24].
Moreover, it was found necessary and sufficient condition for the modulus
of continuity for which subsequences of Fejér means with respect to Walsh
system are bounded from the Hardy space H), to the Lebesgue space Ly, for
all0 <p<1/2.

The main aim of this paper is to generalized results considered in [24] for
bounded Vilenkin systems when 0 < p < 1/2. As applications, both some
well-known and new results are pointed out.

We note that analogical results for Vilenkin systems when p = 1/2 are
open problems.

This paper is organized as follows: in order not to disturb our discussions
later on some definitions and notations are presented in Section 2. The main
results and some of its consequences can be found in Section 3. For the
proofs of the main results we need some auxiliary Lemmas. These results
are presented in Section 4. The detailed proof of the mine result is given in
Section 5.

2. DEFINITIONS AND NOTATIONS

Denote by Ny the set of the positive integers, N := N1 U {0}. Let m :=
(mo, m1,...) be a sequence of the positive integers not less than 2. Denote
by Zm, = {0,1,...,m, — 1} the additive group of integers modulo my,.
Define the group G, as the complete direct product of the groups Z,,, with
the product of the discrete topologies of Z,,, ‘s.

In this paper we discuss bounded Vilenkin groups, i.e. the case when
SUpP, e M < 00.

The direct product u of the measures p, ({j}) := 1/my, (j € Zy,,) is the
Haar measure on Gy, with p(Gp,) = 1.

The elements of Gy, are represented by sequences

= (20, T1y- -y Tny-en)y (T € Zimy) -

It is easy to give a base for the neighbourhood of G, :
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Ip(x) == G, In(z) :=={y € G | yo = %0, .- - ,Yn—1 = ¥n-1} (¥ € G, n €N).
Set I, :=I,, (0), for n € N; and

en:=(0,...,0,2, =1,0,...) € G, (neN).
Denote

TRl In(0,...,0,21 #0,0,...,0,2y #0, 2141, TN-1 ), k<IlI<N,
N In(0,...,0,2; #0,0,...,0), [ = N.

It is easy to show that
N—2 N—-1 N-1
_ . N
= U U(UI}’,).
i=0 j=i+1 i=0

If we define the so-called generalized number system based on m in the
following way :
My := 1, Mn+1 = m, M, (n < N),

then every n € N can be uniquely expressed as n = Y7 niMj, where
ng € Zm, (k€ N,) and only a finite number of ny‘s differ from zero. Let

(n) :=min{j € N:n; #0} and |n|:=max{j € N:n; #0},

that is My, <n < M.
Set

(6) d(n) =|n| —(n) forall neN.

Next, we introduce on G,, an orthonormal system, which is called the
Vilenkin system. At first, we define the complex-valued function ry (z) :
G, — C, the generalized Rademacher functions, by

r (z) := exp (2mixy/my) , (i2 =-1,z€Gn, kEN).
Now, define the Vilenkin system 1 := (¢, : n € N) on G, as:

%(I) = H TZk ($) (TL c N) .
k=0

Specifically, we call this system the Walsh-Paley system, when m = 2.
The norms (or quasi-norms) of the spaces L,(Gp,) and weak — Ly, (Gp,)
(0 < p < o0) are respectively defined by

I£1Ip = 1P dp, fI, . = sup W (| f] > X) < o
p P
Gm ’ A>0

The Vilenkin system is orthonormal and complete in Lo (G,) (see [30]).
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If fe€ L (Gy) we can define Fourier coefficients, partial sums, Dirichlet
kernels, Fejér means, Fejér kernels with respect to the Vilenkin system in
the usual manner:

Fk) :=/G foudn (keN),

n—1 n—1
Snf = f(k)¢k7 Dn :Zwk (TLGN+),
k=0 k=0
1 n-1 171,71
onf = =D Sif, Kni=—-> Dp (n€N;).
k=0 k=0
Recall that (see e.g. [1])
M,, if z€l,,
Da, (@) = { 0, if x¢Iy

The o-algebra generated by the intervals {I,, () : * € Gy, } will be denoted
by F, (n € N). Denote by F = (F<"), n € N) a martingale with respect to
Fpn (n € N) (for details see e.g. [31]). The maximal function of a martingale
F' is defined by

F* = sup ’F(")
neN

In the case f € L1(G,,), the maximal functions are also be given by

/ () g ()
In(z)

For 0 < p < oo the Hardy martingale spaces Hj, (Gy,) consist of all mar-
tingales F', for which

* P — 1
J* @) =sup )

IFlly, = 1F], < oo.

If f € Li(Gn), then it is easy to show that the sequence (Sy, f : n € N) is
a martingale. If I’ = (F(”), ne N) is martingale, then the Vilenkin-Fourier
coefficients must be defined in a slightly different manner:

F(i):= lim F®g.dp.

k—o00 Gm

The Vilenkin-Fourier coefficients of f € L1 (G,) are the same as those of
the martingale (Syz, f : n € N) obtained from f.

A bounded measurable function a is said to be a p-atom if there exists an
interval I, such that

Jadu=0. falo <n @7 swp@cr.

The modulus of continuity of the function f € L, (Gy,), is defined by

wp (1/Mp, f) := sup | f (- +h) = £ (), -
hel,
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The concept of modulus of continuity in Hy(Gp,) (p > 0) is defined in the
following way

pr (1/]VIH,F) = HF - SA{nF”Hp .

We need to understand the meaning of the expression F' — Sy, F' where
F is a martingale and Sy, F' is function. Since

Sy, F=F", for F= (F(”) ‘ne N) €H,
and
(S]y[kS]y[nF,k S N)
= (SmF,.... Smp  F Su Fy S F, .. )
(£O,c gt g g0
we obtain that F'— Sy, F' is a martingale, for which

0, k=0,....,n,
Q R R

Since [|[F|[g, ~ [|F]],, for p > 1, we obtain that
wr, (1/My, F) ~ |F' = Sp, Fll, o p > 1.

(Su,F™ - k €N)

On the other hand, there are strong connection among this definitions:
Wp (I/an .f) /2 S ”f - SMnf”p S Wp (1/M7La f) )

and

If = Sar, fll, /2 < B, (F, L) < A1f = Sar fl, -

3. THE MAIN RESULT AND APPLICATIONS
Our main result reads:

Theorem 1. a) Let 0 < p < 1/2, F € H,(Gp,), supgen d (ng) = 0o and

1/p—2

(8) wr, (1/My,,, F) = o %’;)72 , as k — oo.
[ |

Then

9) lon F = Fllg, —0, as k— oo.

b) Let suppcnd(ng) = co. Then there exists a martingale F' € Hp(Gy,)
(0<p<1/2), for which
1/p—2
(10) wi, (1/M,, F) = O {r) , as k— o0
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and
(11) ||UnkF7FHLp,oo -0, as k — oo.
Corollary 1. Let 0 < p < 1/2, and F € Hp(Gy,). Then there exists an
absolute constant c,, depending only on p, such that
”Un;cF”Hp <6 HFHH], , keN
if and only if when supyeyd(ng) < ¢ < oo.
As a application we also obtain the previous mentioned result by Weisz
131], [32]:
Corollary 2. Let 0 < p < 1/2, F € Hy(Gy,). Then there exists an absolute
constant c,, depending only on p, such that
loas, Fllg, < cpllFllg, . neN.
On the other hand, the following unexpected new result is also obtained:

Corollary 3. a)Let 0 < p < 1/2, F € H,. Then there exists an absolute
constant cp, depending only on p, such that

loat,+1F g, < cpMp/P 2 |Flly, . neN.
b) Let 0 < p < 1/2 and ® (n) be any nondecreasing function, such that
M

lim —*— =

Then there exists a martingale F' € H,, such that

O'Mk#»lF

ren || @ (k)

keN

= OQ.

Lp,oo

Remark 1. From Corollary 2 we obtain that oy, are bounded from Hy(Gp)
to Hy(Gy,), but from Corollary 3 we conclude that opr, 41 are not bounded
from Hy(Gp) to Hy(Gp,). The main reason is that Fourier coefficients of
martingale [ € H,(Gy), (0 < p < 1) are not uniformly bounded (for
details see e.g. [25]).

In the next corollary we state theorem for Walsh system only to clearly
see difference of divergence rates for the various subsequences:

Corollary 4. a) Let 0 < p < 1/2, F € H,(Gy,). Then there exists an
absolute constant c,, depending only on p, such that

(12) HO—T"*lFHHP < Cp2n(1/P—2) HF”Hp , neN
and
(13) log2n 42n Fll gy < 2" P72 [Pl neN

Here ognq1 and og2n on are Fejér means of Walsh-Fourier series.
b) The rates 271/P=2) gnd 2n(/20=1) i inequalities (12) and (13) are
sharp in the same sense as in Theorem 1.
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4. AUXILIARY LEMMAS

For the proof of Theorem 1 we need the following Lemmas:

Lemma 1 (see e.g. [32]). A martingale F = (F"),n € N) is in Hy(Gp) (0 < p < 1)

if and only if there exist a sequence (ag,k € N) of p-atoms and a sequence
(g, k € N) of real numbers such that for everyn € N :

(14) Z #kSMnak = F(")
k=0
and
[ee)
D lkl” < oo
k=0

Moreover, ||Fly .., ~ inf (3252 |uk|p)1/z¢, where the infimum is taken
over all decomposition of f of the form (14).

Lemma 2 (see e.g. [32]). Suppose that an operator T is o-linear and for
some 0 <p<1

/\Ta|pd,u§cp < o0

I

for every p-atom a, where I denote the support of the atom. If T is bounded
from Lo to Lso, then

ITE[, < cp 1 Flg, -
Lemma 3 (see [6]). Letn >t, t,n € N, x € [[\I;11. Then

if v — xpep & Iy,

K .
M, (z) = M, if x — xpey € Iy

1—r¢(x)?

Lemma 4 (see [21]). Let:cé]j{,j,i:O,...,N—l,j:i+1,,..,N, Then
CMZ']\/[]‘
M3

for n> My.

/1 1K (2 — )] dpe (1) <

Lemma 5 (see [10]). Let n € N. Then exists an absolute constant ¢, such
that the following upper estimation holds true

In| i
c
(15) |Kn (@)l < > MKl <e ) Kl
I=(n) I=(n)
Moreover, we have the following lower estimation:
2

M,

(n)
16) |[nk,| > , 2 € Lyt (e 1 +em), wh = Sup M.
(16) |n |_27r/\ Jor € Iy (ey—1+emy), where A :ggm
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5. PROOF

Proof of Theorem 1. Let 0 < p < 1/2, f € Hy(Gp,) and M}, < n <
Mj.11. By applying part a) of Theorem PTT we can conclude that

lonF — F,
< llonF = onSu, Fliy, + lonSu F = Sa Flly, + 1Su,F = Flly,
= llow (Sa, F = Pl + S0, F = Fliy, + llonSa F — Su, Flyy,

1-2p
<c ( n| + 1) prp (1/My, F) + ||onSa, F — SMkF”ZI){p .

]\41_21)
(n)
By simple calculation we get that
Mj, My,
O'nSMkF - SMkF = T (SM;CO'I\JkF - SMkF) = TSMRI' ((TMk.F — F) .
Let p > 0. Then (see inequality (4))
(17) lonSas F' = San P,

M,
< F HSMk (O'MkaF)”];Ip < Cp HO’MkaF”IIiIP — 0, as k — oo.

On the other hand, under the condition (8) we also get that

1-2p
(18) e (Ml"Zp 4 1) Wiy (1/Mp, F) =0
(n)
by combining (17) and (18) we complete the proof of part a).
Now, prove second part of theorem. Since supycyd(ny) = 0o, we obtain
that, for 0 < p < 1/2 there exists a subsequence {sy : k > 1} C {ny : k> 1}
such that limy_,o d(sx) = oo and

1/p—2

M 1 § L,
1p—2 Ur—2 = 5d(sn)(1/p—2) :
o (mpey g ) P 2R

It follows that there exists {ay : k > 1} C {sg : k > 1} such that |ag| # (o),
d () is an increasing sequence satisfying limg oo d (o) = oo and
2

A{S/P;2 ]\4(1/19—2)
(19) S < — for all k€ N.
/p—2 1/p—2
]\/[\ak\ ]\4‘016—1‘
By using (19) we get that
_ 2 k+1
W (Y 1
K k1 < < (@) <
A2 T\ a2 I WYV = 2(k+1)(lao]—{a0))(1/p—2)
Jovk| [og—1] o
and
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1/P2 P o]

o0
(o) 1
(20) Z T7rE | S D e < ¢ < o
=0 \ak\ k=0
For A\ = supyey my we set F' = (F("),n € N) where
/\Al(l/P*Z) All/P*1
) — (@) PO (DM — Dy )
(1/p=2) 7% 7 k Jog[+1 Jeg|
{i- jai<n) Moy’ A ' '

Since a (CL’) is p-atom if we use equality (7) we find that

_ 07 k:()v""7‘an|7
(F* SA{\an\F>k = { F(k) _F(‘an‘)’ k > |Oé"‘ + 1’
and
n+s |\, 1/1’ 2
F— 8y, F= OZ 1‘;‘1) o], seN;
|04:|

is martingale. On the other hand, accordlng that d(«,) is increasing and
d(ap) # 0 we obtain that d(ay) # 0, for all n € Ni. Hence, by combining
(19) and Lemma 1 we get that

wit,(1/Ma,,, F) = |[F = Sm, \ Fllm,

o <1/P>*2 [eS) <1/P>*2 i ]\4(1/19) 2
< D < on =0 o , as n — oo.
Z n Ml ; M M

It is easy to show that

1/p=2 —
My M"2, je {M‘ak,,...,M‘%|+1 - 1}, k=0,1,..

21) F(j) = BN
@) F@ =1, j¢U{M M 71}.
=0 [kl
Let M|,,| < j < oy By using (21) we get that
j—1
_ I _ 1/p—2
SiF = Smy,, | F+ Z Flojw, = Suj B+ Moy Mg, (DJ' - DM\%O'
v:]\l‘{JK ‘
Hence,
‘“k‘ oy
]:J\I‘lei»l
_ M, (ak Mlak-\) SM| \F
a lok| Qg
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M, : Ml/P*Z) ay
Dol o) ) (DJ,fDMla ‘):unun.
R j=M,_ 41 '

[erg|

SinceDjinr, = Dy, + ¥, Dj, when j < M, 1 we obtain that

1/p—2 |ax—M),
Mo, M,/ o |

B e i TV . _
(23) [ = g Zl (DJJrMM-,I DM|%\>
=

1/p—2 |ok—M),
_ ]\/[|ak\]\{< o Z‘ le-
Qp = J
M, MY~
k|

<ak)
(= Mioy) ‘K‘” M, k\‘

Y

1/p—2 -
M) ("‘k M ‘K”k*M\akl"

By combining (22) and (23) we can conclude that
loaF —FIf, = |I+1I+111—F|f

_ Mia, | 7 (o = Mia) Sy, F FI?
= ]\/Ila | ag Lp,oo
_ ok B k—M\ak|< ) »
- < M \F F>+ ay S \ \F F) L,
> g~ (MY oy o
= L,,oc Qg |k Ly,
akiM\%l ! P
R G IS0, F = FIIE, .
> W, ~ o F=FI%, . ~15u, F=FI3, .

o]
By combining (1) and (3) we find that

ISy F— F||PMO 0, ”UM‘ |F7F||7£pmﬁ0, as k — oo,
o :

agl

ek

and

low F ~ FIf > |111],

—o(l), as k— oc.

Lp,co

Let © € I1g,)41 (e@k),l + e<ak)) . By using Lemma 5 we have that

1% {T ceGpy: (Ozk — M|ozk\) ‘Kak—Mm\‘ > CM(Qak,)}

C
2 1 (T (Son) -1 + €a))) = M
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I (ke = Miay ) Kaye-ng, 117,

2
> CM<£IC>/L {ZC eEGpy: (ak — Af‘akl) ’Kak,]\/jlak" > CM<20%>}

Vv

1 .
2p _ 2p—1
Mo ar,, = Mow -

Y

It follows that

1-2
VELE, > M2 (o~ Miay)) Koy, I, > ¢ >0,

Hence, for sufficiently large k, we can write that

1 c
loa, F — FH]‘}proo > ||III||"PY& —o(l) > §||III||’£PM > 3™ 0, as k — o

and

proof is complete. O
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Abstract. In this paper we prove and discuss some new (H,, weak — L) type inequalities of maximal
operators of 7 means with respect to Vilenkin systems with monotone coefficients. We also apply
these results to prove a.e. convergence of such 7" means. It is also proved that these results are the
best possible in a special sense. As applications, both some well-known and new results are pointed

out.

1 Introduction
For the notation used in this introduction see Section 2.

Weisz [20] proved boundedness of 6* from the martingale space H), to the space L,, for p > 1/2.
Simon [13] gave a counterexample, which shows that boundedness does not hold for 0 < p < 1/2. A
counterexample for p = 1/2 was given by Goginava [6] (see also [15, 16] and [12]). Moreover, Weisz
[22] proved that the following is true:

Theorem W1. The maximal operator of the Fejeans 6* is bounded from the Hardy space Hj s, to the
space weak-Li /5.

Riesz‘s logarithmic means with respect to the Walsh and Vilenkin systems were investigated by
Simon [13], Blahota and Gbg. For the Vilenkin systems in [17] and for the Walsh system in [14]
it were proved that the maximal operator of Riesz‘s means R* is bounded from the Hardy space
H,; to the space weak — Ly 5, but is not bounded from the Hardy space H), to the space L, when

2010 pMathematics Subject Classification: 42C10, 42B25.
* The research was supported by Shota Rustaveli National Science Foundation grant FR-19-676.
Keywords: Vilenkin system, Vilenkin group, T means, martingale Hardy space, weak — L, spaces, maximal operator,
Vilenkin-Fourier series.
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2 G.Tutberidze

0 < p < 1/2. Since the set of Vilenkin polynomials are dense in L;, by well-known density argument
due to Marcinkiewicz and Zygmund [7] we have that R, f — f, a.e. for all f & L;.

Mz and Siddiqi [8] investigated the approximation properties of some special Nrlund means of
Walsh-Fourier series of L, function in norm. In the two-dimensional case similar problems was stud-
ied by Nagy [9, 10]. In [11] (see also [1, 5]) it was proved some (H),,L,)-type inequalities for the
maximal operators of Nrlund means, when 0 < p < 1.

In [3] and [4] were investigated 7" means and studied some approximation properties of these
summability methods in the Lebesgue spaces for L, 1 < p < co. In this paper we prove analogous
theorems considered in [11] and derive some new (H),, L,)-type inequalities for the maximal operators
of T means, when 0 < p < 1. We also apply these results to prove a.e. convergence of such 7" means.
It is also proved that these results are the best possible in a special sense. As applications, both some
well-known and new results are pointed out.

The paper is organized as follows: In Section 3 we present and discuss the main results and in
Section 4 the proofs can be found. Moreover, in order not to disturb our discussions in these Sections
some preliminaries are given in Section 2.

2 Preliminaries

Denote by N, the set of the positive integers, N := N, U{0}. Let m := (mo, my,...) be a sequence of
the positive integers not less than 2. Denote by

Zony =40, 1,...,m — 1}

the additive group of integers modulo .

Define the group G,, as the complete direct product of the groups Z,, with the product of the
discrete topologies of Zy,; °s.

The direct product u of the measures

e ({}) == 1/mi (j € Zm,)

is the Haar measure on G, with u(G,,) = 1.
In this paper we discuss bounded Vilenkin groups, i.e. the case when sup, m,, < co.
The elements of G,, are represented by sequences

Xi= (X(),Xl, sy Xy ) ) (xj € ij) .
It is easy to give a base for the neighborhood of G, :

Iy (x) = Gm7 In(x) = {y € Gy |)’0 = X0y -5 Yn—1 :xn—l}7

where x € G,,, n € N.
Denote I, := 1, (0) forn € Ny, and I, := Gy, \ L.

If we define the so-called generalized number system based on m in the following way :
Mo =1, My :=mMy (k (S N),

then every n € N can be uniquely expressed as n = }.7_on;M;, where nj € Zy, (j € N,) and only a
finite number of n;‘s differ from zero.
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Maximal operators of 7 means with respect to the Vilenkin system 3

Next, we introduce on Gy, an orthonormal system which is called the Vilenkin system. At first, we
define the complex-valued function ¢ (x) : G,, — C, the generalized Rademacher functions, by

ri (x) == exp (2mixg /my.) (i2 =—1,xeGy, ke N) .

Now, define the Vilenkin system y := (y, : n € N) on G, as:
va(x) =[]t ), (neN).
k=0

Specifically, we call this system the Walsh-Paley system when m = 2.
The norms (or quasi-norms) of the spaces L,(Gy) and weak — L, (G,,) (0 < p < oo) are respec-
tively defined by

e A
m >

The Vilenkin system is orthonormal and complete in L, (G,,) (see [18]).

Now, we introduce analogues of the usual definitions in Fourier-analysis. If f € L; (G,,) we can
define the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet kernels with respect
to the Vilenkin system in the usual manner:

Foe=[ e @men),

n—1 n—1

Suf =Y F)We, Du:=Y Wi, (neN)
k=0 k=0

respectively. Recall that
My, if x ey,
DMn ()C) - {07 1fx¢1n (21)

The c-algebra generated by the intervals {1, (x) : x € G,,} will be denoted by [, (n € N). Denote
by f = (f(”>,n € N) a martingale with respect to £, (n € N) (for details see e.g. [19]).
For 0 < p < o the Hardy martingale spaces H), (G,,) consist of all martingales for which

1, = 1771l <o, where f*:=sup|£®)].

neN

A bounded measurable function a is called a p-atom, if there exists an interval /, such that

/"dﬂ =0, |lall, <u()"". supp(a)C 1.
1

Weisz [21] proved that the Hardy spaces H), have atomic characterizations. In particular the fol-
lowing is true:

Proposition 2.1. A martingale f = (f",n € N) is in H, (0 < p < 1) if and only if there exists a
sequence (a,k € N) of p-atoms and a sequence (u,k € N), of real numbers, such that, for every
neN,
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4 G.Tutberidze

Y wSu,ac =", Y ]’ < oo 22)
k=0 k=0
Moreover,
o 1/p
o p
1l i (z 1l ) 7

where the infimum is taken over all decomposition of f of the form (2.2). We also need the following
result of Weisz [21]:

Proposition 2.2. Suppose that the operator 7' is 6-linear and for some 0 < p < 1

T fwear—z, < €pllfllm,

then 7 is of weak type-(1,1) i.e.
IT flveat—r, < €A1l -

If f= ( f®one N) is a martingale, then the Vilenkin-Fourier coefficients must be defined in a
slightly d1fferent manner:

Fli) = lim / FOdu.

Let {gx : kK > 0} be a sequence of non-negative numbers. The n-th Nrlund and 7 means for a
Fourier series of f are respectively defined by

1 n
n) = 57 n—kSkf s
tnf Q'w;q Skf
and 1
1 &
Tof = — Y aSef (2.3)
On i

where Q,, := Y (l)qk It is obvious that

)= [ £ -1 dut).
G

where F, := Q Z qiDy is called the T kernel.

We always assume that {¢ : k > 0} is a sequence of non-negative numbers and g > 0. Then the
summability method (2.3) generated by {gy : k > 0} is regular if and only if lim,_,e Q,, = oo.

If we invoke Abel transformation we get the following identities, which are very important for the
investigations of 7' summability:

n—2
0y = Zq, Y (gi—qj1)j+an-1(n—1) 2.4)
Jj=0
and
n—2
Fn= o (Z 61j+1)J'Kj+qn—1(n—1)Kn-1>4 (2.5)
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Maximal operators of 7 means with respect to the Vilenkin system 5

The well-known example of Norlund summability is the so-called (C,o)-mean (Cesaro means),
which are defined by

‘l n
cYf: A—Z “Skfs O<o<l,

where
(+1)...(c+n)

AZ:=0, A%:= -

’ (X7£—17—2,

We also consider the "inverse” (C, ®)-means, which is an example of a T-means:
ULf = — Y A 'Sif, 0O<a<l.
Let V¥ denote the T mean, where {qo =1L, q=k""":ke N+} , that is

1
V,f‘f:_Q Zk"‘ ISf,  O<a<l.
nk=

The n-th Riesz ‘s logarithmic mean R, and the Nrlund logarithmic mean L, are defined by

1=l 1=
R.f: —7 %f and Lnf:—r
"k:l

respectively, where [, := ZZ;} 1/k.
Up to now we have considered T means in the case when the sequence {gy : k € N} is bounded
but now we consider 7 summabilities with unbounded sequence {g; : k € N}. Leta e Ry, B e N,

and
Btimes

—
log(B>x :=log...logx.

If we define the sequence {gy : k € N} by {qo =0, gr=log®r*: ke N+} , then we get the class
of T means with non-decreasing coefficients:

B&Py = 1 Z log® k%S f.
On 5

We note that B,?"B are well-defined for every n € N

" Jog® i
BYPr=Yy gQ Sif-
k=1 n

It is obvious that 2 log(B) < Qn < nlog® n®. Tt follows that

-1 _ clogm) n®

1
0, S nlog@) o0 =0 (;) — 0, as n— oo, (2.6)

We also define the maximal operator 7* of T means by

T f = sup|Tuf.
neN
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6 G.Tutberidze

Some well-known examples of maximal operators of 7 means are the maximal operator of Fejc*
and Riesz R* logarithmic means, which are defined by:

6" f:=sup|o.f|, R'f:=sup|R.f|.
neN neN
We also define some new maximal operators U%*, V%* B*B* (o€ Ry,B € N, ) by:

U fimsup ULS, VO fi=suplVif], B*Pf = sup|[BXP|.
neN neN neN

3 The Main Results

First we state our main result concerning the maximal operator of the summation method (2.3), which
we also show is in a sense sharp.

Theorem 3.1. a) The maximal operator 7* of the summability method (2.3) with non-increasing
sequence {gx : k > 0}, is bounded from the Hardy space H| , to the space weak — L 5.
The statement in a) is sharp in the following sense:

b) Let 0 < p < 1/2 and {gx : k > 0} be a non-increasing sequence, satisfying the condition

qn+1 c
—2=2-, (cz2]). (3.1
Oni2 0 ( )

Then there exists a martingale f € H,, such that
sup HT"f”weaka,, = e
neN

A number of special cases of our results are of particular interest and give both well-known and
new information. We just give the following examples of such 7" means with non-increasing sequence
{qr :k>0}:

Corollary 3.1. The maximal operators U%*, V** and R* are bounded from the Hardy space H, / to
the space weak — L, , but are not bounded from H), to the space weak — L,, when 0 < p < 1/2.

Corollary 3.2. Let f € L; and T, be the T means with non-increasing sequence {g : k > 0}. Then
T.f — f, ae., as n— oo

Corollary 3.3. Let f € L;. Then

R,f — f, ae., as n— oo
Uf— f, ae., as n-—»oo,
VIf— f, ae., as n-—»oo,

Our next main result reads:
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Theorem 3.2. a) The maximal operator 7* of the summability method (2.3) with non-decreasing
sequence {gi : k > 0} satisfying the condition

qg‘ -0 (%) (3.2)

is bounded from the Hardy space Hj ; to the space weak — Ly 5.
b) Let 0 < p < 1/2. For any non-decreasing sequence {gx : k > 0}, there exists a martingale
f € Hyp, such that

sup HTnf”weuka,, = o
neN

A number of special cases of our results are of particular interest and give both well-known and
new information. We just give the following examples of such 7 means with non-decreasing sequence
{qx:k>0}:

Corollary 3.4. The maximal operator B*P* is bounded from the Hardy space H, /2 to the space
weak — Ly /5 but is not bounded from H,, to the space weak — L, when 0 < p < 1 /2.

Corollary 3.5. Let f € L; and T, be the T means with non-decreasing sequence {qy : k > 0} and
satisfying condition (3.2). Then

T.f— f, ae., as n— oo

Corollary 3.6. Let f € L;. Then Bg"ﬁf — f, ae., as n—oo.

4 Proofs

Proof of Theorem 3.1 a). Let the sequence {gy : k > 0} be non-increasing. By combining (2.4) with
(2.5) and using Abel transformation we get that

IT.f <

1 n—1
@;%ij
1 n—2
< o, <Z laj—aj1]i|0if|+@n1(n—1) |an|>
n j=1

g _
2 \j3

1 n—2
<Z (9j—qj+1) i+ aqn1(n— 1)) c'f<c'f
so that
T f<o*f. 4.1)

If we apply (4.1) and Theorem W1 we can conclude that the maximal operators 7™ of all 7’ means
with non-increasing sequence {gx : k > 0}, are bounded from the Hardy space H,, to the space
weak — L1 5. The proof of part a) of Theorem 1 is complete.

b) Let 0 < p < 1/2 and {oy : k € N} be an increasing sequence of positive integers such that:

Y 1/of <o 4.2)
k=0
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8 G.Tutberidze

—1 pg\/P Ml/p
xz °‘“ % 4.3)

Ol

327»Mé{f’, B MY

, 4.4
Ol—1 O 4

where A = sup, m,,.
We note that such an increasing sequence {oy : k € N} which satisfies conditions (4.2)-(4.4) can
be constructed.
Let
A=Y hay (4.5)

{k; <A}

where

1/p—1

A
)\'k = — and ap = <DMock+1 _DMuk> .

Ol

By using Proposition 2.1, it is easy to show that the martingale f = (f(V, f®..fW_ ) € H, 5.
Moreover, it is easy to show that

1/p—1

-~ . alf JE{M ,,~--7M +l_1}7k:071a2'“7
fy=4 @ T e .6)
0, if ]¢k!1{qu7"'7MaA+17]}'

We can write

Mo‘k
My, +1
TM“k+2f QM = Z qu f —+ QM/‘+ SM“k+]f =1+1I. (47)
G e j= O

Let My, < j < Mg +1, where s =0, ...,k — 1. Moreover,

D~ Du,

<j-M, <AM,, (seN)

so that, according to (2.1) and (4.6), we have that

Mut 11 1
|S;f| = Z o)+ Z F) (4.8)
v=Mey,
s—1 Moy +1— 1M1/I7 1 Ml/p—l
|+ == D;—D
TIZ’O v %I"ecn Ol ’( ! M‘x‘)’
s— IMI/P 1 1/p—1

= |(pi-ow )|

'S

Z 7( Mg o1 _DM“">

s 1/17 1 1/ 1 1/
“x Zl MY Wu{ P . 20M” N amy? . M,
(o Ols—1 (o Olg—1
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Let My, ,+1+1< j< My, where s =1,...,k. Analogously to (4.8) we can prove that

M, +1-1 R s—1 Man+1-1 Mé,/”p_l
ISifl=1 Y fow =Y ¥ v,
v=0 =0 v=Ma, On
sl pml/P! IMYP My
= n (DM — Dy ) < % < e
n=0 % ot “n Os—1 O—1

Hence
Mg,

1
< — 1S fl <
d Oy, +2 _,-)::Oq’} /f‘

If we now apply (4.6) and (4.8) we get that

amyr 1 M 4xM;{”l

Z q; < (4.9)

Ol—1

Ok—1 OMg, +2 15

1/p—1
AMy, +1 | M,
)= 5 a& Wity +Sutg f (4.10)
O
1/p—1
Mg+ My,
C Omg 2| O Wit + Sty
O
1/p—1
Mo, +1 [ | M,
S (e
o Mgt M(I,{’FI _4)»Mé{f’l
T Omg2 \ o Olk—1
D1 My

Omy 12 404

Without lost the generality we may assume that ¢ = 1 in (3.1). By combining (4.9) and (4.10) we
get

a1 MeLP' M

T, ’> -1 @.11)
[ as] > 011 > Gt M T
1/p—2 1 1/p—2
N L |
- 4oy Olg—1 - 1604
On the other hand,
l/p 2
G ‘T ‘ —u(G) = 1. 4.12
{xe o 2/ () ]wk} #(Gn) “.12)
Let0 < p < 1/2. Then
1/p-2 1/p-2Y\ /7
MY MY
: G :}T ‘> i 413
1605 <“ {xe m [T 42/ 9| 2 o “13)
1/p—2
MY
_ oo, as k — oo.
160, —y o0, ask —
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The proof is complete.

Proof of Corollary 3.1. Since R,, U2 and V> are the T means with non-increasing sequence {¢y : k >
0}, then the proof of this corollary is direct consequence of Theorem 3.1.

Proof of Corollary 3.2. According to Theorem 1 a) and Proposition 2.2 we also have weak (1,1)
type inequality and by well-known density argument due to Marcinkiewicz and Zygmund [7] we
have T,,f — f, a.e., for all f € L;. Which follows proof of Corollary 3.2.

Proof of Corollary 3.3. Since R,, U and V* are the T means with non-increasing sequence {¢y : k >
0}, then the proof of this corollary is direct consequence of Corollary 3.2.

Proof of Theorem 3.2. Let the sequence {g; : k > 0} be non-decreasing. By combining (2.4) with
(2.5) and using Abel transformation we get that

1 n—1
IT.f| < o q;S;if
nj=1
1 n—2
< o (Zl \g;—aj1] |0 f] +an1(n— 1)|<5an>
=

n—2
] (Z —(qj—qj+1) = qn-1(n—1)+2q,1(n— 1)) c'f

< JE—
Qn j=1
1
Qn

< = (2gn-1(n—1) = Qn)0" f < o™ f
so that
T*f < co*f. 4.14)

If we apply (4.14) and Theorem W1 we can conclude that the maximal operators 7* are bounded
from the Hardy space H| ; to the space weak — Ly . The proof of part a) is complete.

To prove part b) of Theorem 2 we use the martingale, defined by (4.5) where oy satisfy conditions
(4.2)-(4.4). Tt is easy to show that for every non-increasing sequence {gi : k > 0} it automatically
holds that

AMey 1 /QerkAz > ¢/Mo,.

According to (4.7)-(4.11) we can conclude that

Ml/pr
T ); -1 > 2%
[Tt | 2 01l = 111> =5
Analogously to (4.12) and (4.13) we then get that
T ’ = o,
i:g” qu+2f weak—L,,

The proof is complete.
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Maximal operators of 7 means with respect to the Vilenkin system 11

Proof of Corollary 3.4. Since B“P* are the T means with non-decreasing sequence {gy : k > 0}, then
the proof of this corollary is direct consequence of Theorem 3.2.

Proof of Corollary 3.5. According to Proposition 2.2 we can conclude that 7* has weak type-(1,1)
and by well-known density argument due to Marcinkiewicz and Zygmund [7] we also have T, f — f,

a.c..

Which follows proof of Corollary 3.5.

Proof of Corollary 3.6. Since B“P* are the T means with non-decreasing sequence {gj : k > 0}, then
the proof of this corollary is direct consequence of Corollary 3.5.
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SHARP (H,,L,) TYPE INEQUALITIES OF MAXIMAL OPERATORS OF
T MEANS WITH RESPECT TO VILENKIN SYSTEMS

G. TUTBERIDZE

ABSTRACT. We prove and discuss some new (H,, L,) type inequalities of maximal operators
of 7" means with respect to the Vilenkin systems with monotone coefficients. We also show
that these inequalities are the best possible in a special sense. Moreover, we apply these
inequalities to prove strong convergence theorems of such 7" means. We also show that these
results are the best possible in a special sense. As applications, both some well-known and
new results are pointed out.

2000 Mathematics Subject Classification. 42C10, 42B25.

Key words and phrases: Vilenkin groups, Vilenkin systems, partial sums of Vilenkin-
Fourier series, T" means, Vilenkin-Norlund means, Fejér mean, Riesz means, martingale
Hardy spaces, L, spaces, weak — L,, spaces, maximal operator, strong convergence, inequal-
ities.

1. INTRODUCTION

The definitions and notations used in this introduction can be found in our next Section.

It is well-known that Vilenkin systems do not form bases in the space L;. Moreover, there
is a function in the Hardy space H), such that the partial sums of f are not bounded in
Ly-norm, for 0 < p < 1. Approximation properties of Vilenkin-Fourier series with respect to
one- and two-dimensional cases can be found in [17] and [32]. Simon [24] proved that there
exists an absolute constant c,, depending only on p, such that the inequality

1 RISl
log[p]nkzl k2-p

<Gllflly, (O<p<1)

holds for all f € H, and n € N, where [p] denotes the integer part of p. For p = 1 analogous
results with respect to more general systems were proved in Blahota [2] and Gat [4] and for
0 < p < 1 asimpler proof was given in Tephnadze [31]. Some new strong convergence results
for partial sums with respect to Vilenkin system were considered in Tutberidze [33].

In the one-dimensional case the weak (1,1)-type inequality for the maximal operator of
Fejér means o* f := sup, oy |onf| can be found in Schipp [21] for Walsh series and in P4l
Simon [15] for bounded Vilenkin series. Fujji [8] and Simon [23] verified that ¢* is bounded
from H; to L;. Weisz [38] generalized this result and proved boundedness of ¢* from the
martingale space H), to the space L,, for p > 1/2. Simon [22] gave a counterexample, which
shows that boundedness does not hold for 0 < p < 1/2. A counterexample for p = 1/2
was given by Goginava [6] (see also Tephnadze [25]). Moreover, Weisz [40] proved that the

The research was supported by Shota Rustaveli National Science Foundation grant no.FR-19-676.
1
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2 G. TUTBERIDZE

maximal operator of the Fejér means ¢* is bounded from the Hardy space H/, to the space
weak — Ly . In [26] and [27] the following result was proved:

Theorem T1: Let 0 < p < 1/2. Then the weighted maximal operator of Fejér means 7,
defined by

5*.]0 o Sup |O"l1,f‘
P nevy (n + 1)YP 2 1og?M/247) (n 4 1)

is bounded from the martingale Hardy space H), to the Lebesgue space L,,.
Moreover, the rate of the weights {1/ (n + 1) 2 10g?P+1/2 (n 4 1)}

n=

in n-th Fejér mean
1
was given exactly.

Similar results with respect to Walsh-Kachmarz systems were obtained in [7] for p = 1/2
and in [28] for 0 < p < 1/2. Approximation properties of Fejér means with respect to
Vilenkin and Kaczmarz systems can be found in Tephnadze [29], Tutberidze [34], Persson,
Tephnadze and Tutberidze [19].

In [3] it was proved that there exists an absolute constant ¢,, depending only on p, such
that the inequality

1 oS,

P
(1) 1/2+ 2-2 5 = &
log[/ p]nk:I k2-2p

Iy, (0<p<1/2,m=23,.).

holds. Some new strong convergence results for Vilenkin-Fejér means were derived in [20)].

Moricz and Siddiqi [11] investigated the approximation properties of some special Nor-
lund means of Walsh-Fourier series of L, function in norm. In the two-dimensional case
approximation properties of Norlund means were considered by Nagy [12, 13, 14]. In [16] it
was proved that the maximal operators of Norlund means ¢* defined by t*f := sup,cy [tn f]
either with non-decreasing coefficients, or non-increasing coefficients, satisfying the condition

1 1
(2) —=0(—-), as n— o0
@n n
are bounded from the Hardy space H, /, to the space weak — L; /5 and are not bounded from
the Hardy space H, to the space L,, when 0 < p < 1/2.
In [18] it was proved that for 0 < p < 1/2, f € H, and non-decreasing sequence {g, : & > 0}
there exists an absolute constant c,, depending only on p, such that the inequality
e flly

L2—2p <6 Hf”ilp
k=1

holds.
Moreover, if f € Hy/; and {qgx : k > 0} is a sequence of non-decreasing numbers, satisfying
the condition
n— 1
(3) anl =0 (ﬁ) , as  n — oo,

then there exists an absolute constant ¢, such that the inequality

N )
S —2 <clifly

L Hy)o

logn poet

holds.
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T MEANS 3

In [35] was proved that the maximal operators T* defined by T*f := sup,cy |1, f| of T
means either with non-increasing coefficients, or non-decreasing sequence satisfying condition
(3) are bounded from the Hardy space H,y )5 to the space weak — Ly /5. Moreover, there exists
a martingale and such 7" means for which boundedness from the Hardy space H, to the space
L, does not hold when 0 < p < 1/2.

One of the most well-known mean of 7' means is the Riesz summability. In [30] it was
proved that the maximal operator 2* of Riesz means is bounded from the Hardy space H;
to the space weak — Ly, and is not bounded from H, to the space L,, for 0 < p < 1/2.
There was also proved that Riesz summability has better properties than Fejér means. In
particular, the following weighted maximal operators

logn| Ry, f|
(n+1)"/P7210g?1/%+7] (1 4 1)

are bounded from H, to the space L, for 0 < p < 1/2 and the rate of weights are sharp.
Moreover, in [9] was also proved that if 0 < p < 1/2 and f € H,(G,,), then there exists an
absolute constant c,, depending only on p, such that the following inequality holds:

= log" n || R, f|l
(4) ZTP <l fl%,

n=1

If we compare strong convergence results, given by (1) and (4), we obtain that Riesz means
has better properties then Fejér means, for 0 < p < 1/2, but in the case p = 1/2 is was not
possible to show even similar result for Riesz means as it was proved for Fejér means given
by inequality (1).

In this paper we prove and discuss some new (H,,, L,,) type inequalities of maximal operators
of T means with respect to the Vilenkin systems with monotone coefficients. Moreover, we
apply these inequalities to prove strong convergence theorems of such 7" means. In particular,
we investigate strong convergence of 7' means with non-increasing sequences in the case
p = 1/2, but under the condition (2). For example, this condition is fulfilled for Fejér means
but does not hold for Riesz means. We also show that these inequalities are the best possible
in a special sense. As applications, both some well-known and new results are pointed out.

This paper is organized as follows: In order not to disturb our discussions later on some
definitions and notations are presented in Section 2. The main results and some of its
consequences can be found in Section 3. For the proofs of the main results we need some
auxiliary Lemmas, some of them are new and of independent interest. These results are
presented in Section 4. The detailed proofs of the main results are given in Section 5.

2. DEFINITIONS AND NOTATION

Denote by N, the set of the positive integers, N := N, U {0}. Let m := (mq, my, ...) be a
sequence of the positive integers not less than 2. Denote by
Zp, =10,1,...,my, — 1}
the additive group of integers modulo my.

Define the group G,, as the complete direct product of the groups Z,,, with the product
of the discrete topologies of Z,,,.‘s.
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4 G. TUTBERIDZE

The direct product p of the measures puy ({j}) :== 1/my  (j € Zp,) is the Haar measure
on Gy, with p (G,) = 1.

In this paper we discuss bounded Vilenkin groups, i.e. the case when sup, m,, < co.

The elements of GG, are represented by sequences

T = (T0, T, oy Ty o) (wj € ZmJ) .

Set e, := (0,...,0,1,0,...) € G, the n-th coordinate of which is 1 and the rest are zeros

(n € N). It is easy to give a basis for the neighborhoods of G,, :
[0 (.’I}) = Grm In(x) = {Z/ € Gm | Yo = X0y -5 Yn—1 = $n71}7

where z € G,,,, n € N.

If we define I, := I,, (0), for n € Nand I, :=G,, \ I,, then

(5) IN:(U UIJ%Z)U(UL’%N>>

k=01=k+1
where
Ik,l — -[N(O7 "'70733/6 7é 0,07...7071'1 7é Ou‘rl+1 ey TN—1 7"')7 for k<1< N7
N In(0, ..., 0,25 #0,0,...,,2n_1 =0, Ty ,...), for I = N.

If we define the so-called generalized number system based on m in the following way :
MO = 17 Mk+l = mkMk (k S N),

then every n € N can be uniquely expressed as n = Z;’io n;M;, where n; € Z,,, (j € Ny)
and only a finite number of n;s differ from zero.

We introduce on G,, an orthonormal system which is called the Vilenkin system. At
first, we define the complex-valued function ry (z) : G,, — C, the generalized Rademacher
functions, by

i, (x) := exp 2mizy/mi), (*=—1,2 € Gp, k€EN).

Next, we define the Vilenkin system ¢ := (¢, : n € N) on G, by:
Un(@) = []ri* (@), (neN).
k=0

Specifically, we call this system the Walsh-Paley system when m = 2.

The norms (or quasi-norms) of the spaces L,(G,,) and weak — L, (G,,) (0 < p < c0) are
respectively defined by

= / P ity [y, = SUDN (f > N) < 40,
Gm A>0

The Vilenkin system is orthonormal and complete in Ly (G,,) (see [36]).

Now, we introduce analogues of the usual definitions in Fourier-analysis. If f € L (Gp,)
we can define Fourier coefficients, partial sums and Dirichlet kernels with respect to the
Vilenkin system in the usual manner:

n—1 n—1
f(n) = o fﬂnduv Snf = Z .)?(k) wka D, = Zl/)k 5 (n S N+) .
m k=0 k=0
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T MEANS 5

Let us define the Fejér means o,, and Kernels K, as follows:

onf ::%ZSkf, K, ::%ZD;C.
k=1 k=1

1t is well known that if n € N, then

M,, xe€l,,
(6) Dy, (z) = { 0, z ¢ I,

Moreover, if n = Z;’io n;M;, and 1 < s, < m, — 1, then we have the following identity:

00 mj—1
(7) Dy =y, ZDM]- Z Tf )
7=0 k=mj;—n;

The o-algebra generated by the intervals {I,, (x) : « € G,,,} will be denoted by f,, (n € N).
Denote by f = (f(">7n € N) a martingale with respect to f,, (n € N). (for details see e.g.
[37]). The maximal function of a martingale f is defined by f* := sup,cy ’f(")|. For
0 < p < oo the Hardy martingale spaces H,, consist of all martingales f for which

111, == 177, < oo

A bounded measurable function a is called a p-atom, if there exists an interval I, such that
Jadu=0. Jal <un . swp@c1.
I

If f= (f(")., ne N) is a martingale, then the Vilenkin-Fourier coefficients must be defined
in a slightly different manner:

mn/ F 9.

k—o0

Let {gy : k > 0} be a sequence of non-negative numbers. The n-th 7" means 7,, for a
Fourier series of f are defined by

n—1 n—1
1
(8) Yﬁ:aZmeme%=Z%
" k=0 k=0
n—1
It is obvious that T, f (x f f@) F,(x—1t)du(t), where F, := Qi > qpDy s called
" k=0

the T" kernel.

We always assume that {q; : & > 0} is a sequence of non-negative numbers and ¢o > 0.
Then the summability method (8) generated by {¢qx : k& > 0} is regular if and only if
lim,, ;0 @, = .

It is easy to show that, for any real numbers aq, ..., Gy, b1,...,by and ap = Ap — Ax_1,
k=mn,...,m, we have so called Abel transformation:
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6 G. TUTBERIDZE

Z agbp, = Z(Ak - Ak—l)bk = Z Aby — Z Ap_1by
k=m k=m k=m k=m
n—1 n—1
= Z Arbi — Z Arbiar =) Arbi+ Ay — Y Aibir — Anibi,
k=n—1 k=m k=m
n—1
= Anby = Apibn + Y Ap(b — brpa).
k=m

Fora; =A; —A;_y, j=1,..,n, if we invoke Abel transformations

n—1 n—2
9) Yoaiby = Aoy — Agby+ YAy — bi),
=1 =1
n—1 n—2
(10) Z ajbj = Ap-1bo1 — Apy-1buy + Z Aj(bj — bjya),
J=Mn j=My

for b; = ¢j, a; =1 and A; :j for any j =0,1,...,n we get the following identity:

n—2
(11) Qn = ZQJ —q0+z% —Q(H-Z QJ+1 J+ Gua(n— 1)
n—1 n—2
(12) g = D (@ —a) i+ guoa(n—1) = (My = 1)quy,
Jj=Mn Jj=Mn

Moreover, if use Dy = Ky = 0 for any x € G,, and invoke Abel transformations (9) and (10)
for b; = qj, a; = Dj and A; = jK; for any j = 0,1,...,n — 1 we get identities:

n—1 n—2
1 1 .
(13) Fn = anij =0, <Z (¢ — 4j1) JK; + qna(n — 1)Kn—1) ;
n= n \j=1
(14) Z ¢;D
"j=My
1 n—2
= o ( Z (45 — 451) I K5 + gna(n — 1) Ky — qury (My — 1)KMN1> .
" \j=My

Analogously, if use Sof = oof = 0, for any z € Gy, and invoke Abel transformations (9)
and (10) for b; = ¢;, a; = S; and A; = jo; for any j =0,1,...,n — 1 we get identities:

(15) qus f= (Z( — 441) JO,f + G (n — 1)0n1f> ,

j=1

(16) Q Z 45, f

" j=My
1 n—2

= . ( Z (95 = ¢j+1) Joi f + @u-1(n — Vo1 f — quy (My — 1)UMN—1f> .
" \j=My
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T MEANS 7

Let {qx : kK > 0} be a sequence of nonnegative numbers. The n-th Norlund mean ¢, for a
Fourier series of f is defined by

(17) tnf = QLZQn—kSkfv
=1

where Q,, 1= Zz;é Q-
If g = 1 in (8) and (17) we respectively define the Fejér means o,, and Kernels K, as

follows:
1 « 1 &
Unf = E Z‘Skf7 Kn, = 5 ZDk
k=1 k=1

It is well-known that (for details see [1])

In|

(18) n|K,| < e M|Ky,
1=0

and

(19) | K., < e < oo

The well-known example of Nérlund summability is the so-called (C,«) mean (Cesaro
means) for 0 < o < 1, which are defined by

(o3 1 - a—
oo f = A—%ZAn_iSk f
k=1
where

T T C ) R C )]
a0, A= = .

We also consider the "inverse" (C, ) means, which is an example of 7" means:

n—1

e . 1 a—1
Unf.:A—%kz:%Ak S.f,  0<a<l.

Let V. denote the 7" mean, where {go =0, ¢, = k*~' : k € N, }, that is

n—1

1
Vef = Q—Zk“”&f, 0<a<l.
" =1

The n-th Riesz logarithmic mean R,, and the Norlund logarithmic mean L,, are defined by

n—1 n—1
Rnf::l % and Lnf::iz Sk

’
ln pt Iy —n-— k

respectively, where [, := 2;11 1/k.
Up to now we have considered 7" means in the case when the sequence {q; : k € N} is

bounded but now we consider 7' summabilities with unbounded sequence {¢; : k € N}.
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8 G. TUTBERIDZE
[—times
——
Let « € Ry, (€N, and log? 2 :=1log...logz. If we define the sequence {g; : k € N} by
{qo =0, ¢ = log(ﬁ) kY ke N+} , then we get the class B of T means with non-decreasing
coefficients:

n—1
1
By f === "log!? kS f.
Qn k=1
We note that B2# are well-defined for every n € N
n—1
lo (8) ke
Bylf =3 b St
e~ O
It is obvious that glog(ﬁ) ’2‘—2 <Q,< nlog(ﬂ) n®. It follows that

-1 _ clog? ne

20 _—
(20) Qn ~ nlog® ne

1
=O(f)%0, as n — 00.
n

We also define the maximal operator 7% of T" and Nérlund means by
T*f = sup|Tf], ¢f == suplt.f].
neN neN
Some well-known examples of maximal operators of T" means are the maximal operator of
Fejér o* and Riesz R* logarithmic means, which are respectively defined by:

o f :=suplo.f|, R*f :=sup|R.f].
neN neN

3. THE MAIN RESULTS AND APPLICATIONS

Our first main result reads:
Theorem 1. Let 0 < p < 1/2, f € H, and {q; : k > 0} be a sequence of non-increasing

numbers. Then the mazximal operator Tp* defined by

21 T:f = sup
(21) P neNy (n + 1)1/1772 logZWHP] (n+1)

1s bounded from the Hardy space H, to the space L.

Corollary 1. Let 0 <p <1/2 and f € H,. Then the mazimal operator E;; defined by

R'f := sup
r nely (n + 1)YP 2 1og?M/247) (4 1)

1s bounded from the Hardy space H, to the space L.

Corollary 2. Let 0 < p <1/2 and f € H,. Then the mazimal operator Uﬁ‘* defined by

7 Unfl
Ua,*f = Sup n
r neNs (n—+ 1)7210g?/2+) (4 1)

1s bounded from the Hardy space H, to the space L,.
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Corollary 3. Let 0 < p <1/2 and f € H,. Then the mazimal operator 17;3“'* defined by

> Vi /|
Vs f = sup L
P neNy (n+ 1)YP 2 10g?2V/247] (n 4+ 1)

is bounded from the Hardy space H, to the space L.

Next, we consider maximal operators of T means with non-decreasing sequence:

Theorem 2. Let 0 < p < 1/2, f € H, and {q; : k > 0} be a sequence of non-decreasing
numbers, satisfying the condition

An—1 o l
(22) o, —O<n), as n— oo.

Then the mazimal operator f; defined by

23 Trf:= sup
(23) r nely (n + 1)YP7210g?V/247) (n 4 1)

is bounded from the martingale Hardy space H, to the space L.

Corollary 4. Let 0 < p < 1/2, f € H, and {q, : k > 0} be a sequence of non-decreasing
numbers, such that

(24) sup ¢, < ¢ < 0.
neN

- 1
I ISLSL:2:0(7>, asn — 0,
Qn = Qn ™ q@n n n

and weighted mazimal operators of such T means, given by (23), T; are bounded from the
Hardy space H, to the space L.

Then

Corollary 5. Let 0 < p < 1/2 and f € H,. Then the mazimal operator T; defined by

f*f ‘= sup ]B,‘f"’f!
v neNy (n 4 1)77210g?V/2+) (n 4+ 1)

1s bounded from the martingale Hardy space H, to the space L,.

Remark 1. According to Theorem T1 we obtain that the weights in (21) and (23) are sharp.

Theorem 3. a) Let 0 <p < 1/2, f € H, and {qx : k > 0} be a sequence of non-increasing
numbers. Then there exists an absolute constant c,, depending only on p, such that the
following inequality holds:
oo
1T f1I,
k272pp S CP Hf“z;ip
k=1

b)Let f € Hyjp and {q; : k > 0} be a sequence of non-increasing numbers, satisfying the
condition

(25) &:O(%>7 as  n— oo.

Then there exists an absolute constant c, such that the following inequality holds:
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10 G. TUTBERIDZE

(26)

ZH Tif s _ <l
logn ~ k /2

Corollary 6. Let 0 < p < 1/2 and f € H,. Then there exists absolute constant c,, depending
only on p, such that the following inequality holds:

1 “low fIl,

p
10g[1/2+p] nk:l k2-2p — Cp Hf”Hp

Corollary 7. Let 0 < p < 1/2 and f € H,. Then there ezists an absolute constant c,,
depending only on p, such that the following inequalities hold:
o) p o] (e p
UL/ Vil 2= £l
ot <ol S <ol et <6,
k=1 k=1 k=1
Theorem 4. a) Let 0 < p < 1/2, f € H, and {q;, : k > 0} be a sequence of non-decreasing
numbers. Then there exists an absolute constant c,, depending only on p, such that the
following inequality holds:

TSl

k,z 2p — PHpr
k=1

b)Let [ € Hyjp and {q, : k > 0} be a sequence of non-increasing numbers, satisfying the
condition (22). Then there exists an absolute constant ¢, such that the inequality holds:

) 1 &l kf“%i 1/2
(27) e <e I

Corollary 8. Let 0 < p < 1/2, f € H, and {q, : k > 0} be a sequence of non-decreasing
numbers, such that sup,cy g, < ¢ < 0o. Then condition (22) is satisfied and for all such T'
means there exists an absolute constant ¢, such that the inequality (27) holds.

We have already considered the case when the sequence {¢; : ¥ > 0} is bounded. Now, we
consider some Norlund means, which are generated by a unbounded sequence {gy. : k > 0}.

Corollary 9. Let 0 < p < 1/2 and f € H,. Then there exists an absolute constant c,,
depending only on p, such that the following inequality holds:

TR ’B“Bf
g1 Z et < I, -

4. AUXILIARY LEMMAS

We need the following auxiliary Lemmas:

Lemma 1 (see e.g. [39]). A martingale f = (f<"),n €N) is in H, (0 < p<1) if and only
if there exists a sequence (ag, k € N) of p-atoms and a sequence (ug, k € N) of real numbers
such that, for every n € N,

(28) ZukSMnak =f" e, where Z || < o0.
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Moreover, || f|l, - inf (O |uk\p)1/p7 where the infimum is taken over all decompositions
of [ of the form (28).

Lemma 2 (see e.g. [39]). Suppose that an operator T is o-sublinear and for some 0 < p <1

/|Ta\p dp < ¢, < 00,
7

for every p-atom a, where I denotes the support of the atom. If T is bounded from Lo, to
Lo, then

1T, < cllflly,, 0<p<1.

Lemma 3 (see [5]). Let n >t, t,n € N. Then

17]:{‘?(1.)7 S ]t\[t+17 T — T¢€t S I’ru
K, (x) = ¢ M=t z €Iy,
0, otherwise.

For the proof of our main results we also need the following new Lemmas:

Lemma 4. Let n € N and {q; : k € N} be a sequence either of non-increasing numbers, or
non-decreasing numbers satisfying condition (22). Then

(29) 1Tl < c.

Proof: Let n € N and {¢ : k¥ € N} be a sequence of non-increasing numbers. By
combining (11) and (15) with (19) we can conclude that

n—2
1 .
IT.fl < 0. (Z lg; — ajr1lillosfll + gua(n — 1)||0'n1f|1>
n \G=1
c n—2
< o (Z (@5 — ¢j+1) J + qua(n — 1)) <c < oo.

Let n € N and {q : k € N} be a sequence non-decreasing satisfying condition (22). Then,
by using again (11) and (15) combined with (19) we find that

1 n—2
1T fllh < 0. (Z l7; — @i+l dllojflls + gn-1(n — 1)|0n1f|1>
n—2
< Qi (Z (¢j+1 — @) T+ Gn(n — 1))
n—2
= é <2qn1(n -1) - <; (¢ — ¢j+1) J + Gna(n — 1) + %)) + %

- é@qn_l(n —1) - Q)+ % <e

The proof is complete.

121



12 G. TUTBERIDZE

Lemma 5. Let {q; : k € N} be a sequence of non-increasing numbers and n > My. Then

In|

<7

&Z 4;D; (x)

]0

Proof. Since the sequence is non-increasing we get that

n—2
1
(30) . (QMN + Z g; — gj+1] + Qn1>

Jj=Mn
n—2 2(] 2q c
My My
< Iuy + E = Gj+1) T qn—1 | = < <.
Qn ( D AT RIS T

If we apply Abel transformation (14) combine with (18) and (30) we get that

Q Z"]

"j=My

n—2

1 .

= 0. ( Z (95 — ¢j+1) 3K + qn-1(n — 1) K1 — gy (M — 1)KMN1)
" \j=My

¢
< Q<QA[n+ Z |9; — gj+1] + Gn— 1>ZM|KM|<Z]W | Kar, -

Jj=Mn i=0

The proof is complete. O

Lemma 6. Let x EI]]f;l, E=0,...,N=1, l=k+1,...,N and {q. : k € N} be a sequence
of non-increasing numbers. Then there exists an absolute constant c, such that

/ an%

Jj=Mn
Proof: Let z € [,kv’l, for0<k<IlI< N —1andte€ Iy. First, we observe that x —t € [ﬁ,’l.
Next, we apply Lemmas 3 and 5 to obtain that

(31 )l .Z b
Inl
MNZM/ | K, (z— )| dps ()

C]\/kol
< M;M,
</ S MM 1) < 7

IN =0

CA{[]\/[]C
) d(t) < .
p(t) < M

t)| dp(t)

IN

and the first estimate is proved.

Now, let z € I, Since 2 —t € Iy for ¢ € Iy, by combining (6) and (7) we have that
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t)| du (t)

(32) /

Qn .Z 4D

||

< 52 [ 1Dl

- M,
< | M .
< Qn;q/ k(1) < 37

According to (31) and (32) the proof is complete.

Lemma 7. Let n > My and {qx. : k € N} be a sequence of non-increasing numbers, satisfying
condition (25). Then

In|

%ZMj }KJMJ" )
7=0

Qn Zqﬂ

Jj=Mn

where ¢ is an absolute constant.

Proof. Since the sequence is non-increasing and satisfying condition (25), we get that

n—2
qnm, + Z |g; — qj+1] + gn-1
Qn

JMN

= (QM,HF Z = @js1) + Gu- 1)

Jj=Mn

Hence, if we apply Abel transformation (14) and estimate (18) we find that

Q qu

" j=My
n—2 [n|
< <Q <QM + Z | — 1] + o 1>>ZM~LKM,¢|

n j=Mpn i=0

‘ n|

= M| Ky

n <
=0

The proof is complete. O

Lemma 8. Let x € I]]i,’l, E=0,....N—=2 Il=k+1,....N—1and {qx : k € N} be a
sequence of non-increasing numbers, satisfying condition (25). Then, for some ¢ > 0

/IN Qn qu

" j=My

CMlj\fk
) dp(t) < .
nit) <=3

123



14 G. TUTBERIDZE

Letxe]]’i;N, k=0,...,N—1. Then
1 n—1
a. 2 uP
N j=My

Proof: Let x € I]’f,’l, for0<k<l<N—1andte Iy. First, we observe that x — ¢ € I]]i;l.
Next, we apply Lemmas 3 and 7 to obtain that

(33) /IN o qu

"j=My
[n|

—ZM/ | K, (z— )| dp (1)

< / ZMiMkdu(t)SCMkM’

In 2o TL]\/IN

)| dp (t)

IN

and the first estimate is proved.

Now, let z € IJI%’N. Since z — t € [Zlf;N for t € I, by combining again Lemmas 3 and 7 we
have that

it

In|

C
*ZMi [ K, (2 —t)| dpu (2)
n =« In

t)| du(t)

Qn, Z 4D

IN

\nl !

M,
< —ZM/ My (1) < 5+

By combining (33) and (34) we complete the proof.

Lemma 9. Letn > My, ze It k=0,...,N—1, I=k+1,...,N and {q : k € N}
be a sequence of non-increasing numbers, satisfying condition (25). Then

Lla. qu

Jj=Mn

(’Mle

)| du(t) < AVERE
N

where ¢ is an absolute constant.

Proof: Since n > My if we apply Lemma 8 we immediately get the proof.

Lemma 10. Let {qx : k € N} be a sequence of non-decreasing numbers satisfying (22). Then

In|

|Fn| S %ZMJ,KMJ”

L =0

where ¢ is an absolute constant.
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Proof. Since the sequence {g : k € N} is non-decreasing if we apply condition (22) we can
conclude that

n—2
< Q (Z Q1 — @) + Qo 1+CJ0>

Jj=1

n—2
1
Q <Z|q]_QJ+]+Qn 1+q0>

zqnfl + qo < 3qn71 < £
Qv — Qn T n

IN

Therefore, if we apply Abel transformation (13) and (18) we get that

n—2 In|
|Fal < (Q (Z|% gj+1] + G- 1+CIO>>Z]W¢|KMI|
" o\j=1 i=0
In]
c
< - ; )
< LD MilK.
i=0
The proof is complete. O

Lemma 11. Letz € I, k=0,...,.N—2, Il=Fk+1,....,N—1and {q : k € N} be a
sequence of non-decreasing numbers satisfying condition (22). Then

CMle

| Fn (@ =Dl dpet) < = 7=

In

Letz € IVN, k=0,...,N —1. Then

Here ¢ is an absolute constant.

Proof: The proof is quite analogously to the proof of Lemma 8, so we leave out the details.

Lemma 12. Letn > My, z eIy, k=0,...,N—1, l=k+1,...,N and {g, : k € N}
be a sequence of non-decreasing numbers, satisfying condition (22). Then

CMle
My

[Fn (= )] dp(t) <

In

Proof: Since n > My if we apply Lemma 11 we immediately get the proof.
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16 G. TUTBERIDZE
5. PROOFS OF THE MAIN RESULT

Proof of Theorem 1. Let 0 < p < 1/2 and the sequence {g : k¥ > 0} be non-increasing. By
using (11) and (15) we get that

T,.f|
(n + 1)YP210g?1/ 247 (n 4 1)
n—1
1 1
< =D _4iS;if
(n+ 1)/P7 210821247 (n 4 1) Qn; o
1 1 (&2
< — 4 — @i+l lojfl + gn-1(n — 1) |on
0t DV T 1o (1 1) @ (D j = 41310501+ duea(n = 1) ouf]
n—2 .
< L Z 9 — qj+1l o f] Gn1(n — 1) |o, f]
T \GG+D (G 1) (0 1) 102 (04 1)
n—2
1 . |0 f|
< 4G — Gj+1) J + gna(n —1) | sup
Qn (;( J J+1) 1( ) el (n+ 1)1/p—2 10g2[1/2+p] (TL+ 1)
< swp o f] =5,

neNy (n + 1)YP7210g?V/2+7] (4 1)

so that T;j‘ [ < o, f Hence, if we apply Theorem T1 we can conclude that the maximal

operators T; of T" means with non-increasing sequence {qx : k > 0} are bounded from the
Hardy space H), to the space L, for 0 < p < 1/2. The proof is complete. (|

Proof of Theorem 2. Let 0 < p < 1/2 and the sequence {gx : k > 0} be non-decreasing
satisfying the condition (22). By applying (11) and (15) we find that

|Tf|
(n + 1)YP 210621247 (n 4 1)
n—1
1 1

< — > 4;Sif

(n+ 1)1/p—2 log?/2+#) (p 4+ 1) | Qn ~ 77
< : 1 <n2| 710301+ (= )| f|>
= - 45 — 4j+117J |0j An—1\10 — 1) |0y

1/p—2 2[1/2 J J J
(n+1)YP 2 1og? /27 (n 4 1) Qn =1
n—2 .
< 1 Z 9 — g1l J oy f] n Gn1(n —1) |0, f]
= O P G+ 1)1/1)—2 1Og2[1/2+zo] G+1) (n+ 1)1/17—2 1Og2[1/2+zo] (n+1)
n—2

1 . o f]
< (¢j+1 = ¢;) j + @u—1(n — 1) | sup

Qn (; o ! ( ) neNy (n + 1)YP 2 1og?M/247] (n 4 1)

2qnfl(n - 1) — Qn+ |Unf|
< Sup 1p—2, _2[1/2+)

Q@n neNy (n+1)7" " log Pin+1)

< ¢ sup 271 =co, f.

neNy (TL + 1)1/p—2 10g2[1/2+p] (n + ].)
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so that
(35) T, f <co,f

If we apply (35) and Theorem T1 we can conclude that the maximal operators T; of T
means with non-decreasing sequence {g; : £ > 0}, are bounded from the Hardy space H, to
the space L, for 0 < p < 1/2. The proof is complete.

Proof of Theorem 3. Let 0 < p < 1/2 and the sequence {gi : k¥ > 0} be non-increasing. By
Lemma 1, the proof of part a) will be complete, if we show that
= Tally,

k2-2p — ps
k=1

(36)

for every p-atom a, with support I, (1) = Mﬁl. We may assume that I = Iy. It is easy to
see that Sy (a) = Ty (a) = 0, when k& < My. Therefore, we can suppose that k > My.

Let x € Iy. Since T} is bounded from L., to Ly (boundedness follows Lemma 4) and
all. < MY? we obtain that
[e] N

|Ty.al? dp < °°<c<oo
In
Hence,
0 f] |Tka‘17 d//, [e%s) ¢
(37) ;41\’ E=n < k E=n <ec<oo, 0<p<1/2
—1 =1

It is easy to see that
(38) |Ta (z)|

/INa(t)Fk(z—t)du(t)’_

ZQZDZ (v —1t)dpu(t)

le My
k
1
< ol [ |5 S aDi(e =0 du) < e [ kaqm,xw ).
N "I=My N

Let Ty be T means, with non-decreasing coefficients {q;, : k > 0} and = € ]]i\",j, 0<i<j<
N. Then, in the view of Lemma 6 we get that

(39) Tha ()| < eM;M;MyP™%, for 0 < p < 1/2.
Let 0 < p < 1/2. By using (5), (38) and (39) we find that

N—-2 N—-1 mj—1
(40) /7\Tka,|p du

> > / ITkaI”du+Z / Thal” dp

In i=0 j=i+12,;=0, je{i+1,...N-1}

N-2N-1
szmﬁ—l TN — 1(M le 4 ZiMle P
=0 j=i+1

N—-2 N-1 N—

CMl 2PZZ MMk Z d 12p

=0 j=i+1 i=

IN

IA

2
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18 G. TUTBERIDZE

Moreover, according to (40) we get that

* [ |Thal” du X M
(41) > kaTg > kg?p <e¢, (0<p<1/2).
k=Mpy+1 k=My+1
The proof of (36), and thus of part a), is complete by just combining (37) and (41).

Let p = 1/2 and T}, be T means, with non-increasing coefficients {g, : & > 0}, satisfying
condition (25). By Lemma 1, the proof of part b) will be complete, if we show that

1/2

1 &I Tallz,,
(42) Y

logn pet k -

for every 1/2-atom a, with support I, u (I) = My"'. We may assume that [ = Iy. It is easy
to see that Sy (a) = T (a) = 0, when k& < My. Therefore, we can suppose that k > My.

Let 2 € Iy. Since T, is bounded from L, to Ls (boundedness follows from Lemma 4) and
al| . < M? we obtain that
o] N

1/2

Teal? du < llallss << oo,
/IN ITial = My — ¢
Hence,
n 1/2 n
1 &S Tkl Pdpe e N1
43 - < —<c< oo
(43) logn; k *logn;k*c o

Analogously to (38) we find that

(44) Tha ()] = / a(f)QiquDm—f)du(f)
In LyNyy.
k
< lally / ézqml(w—t) dye (1)
2 1 :
< My /IN le:%;quDl (z —1)|dp(t)

Let z € I]i\’,j, 0 <i < j < N. Then, in the view of Lemma 8 we get that
M; M; M
(45) [Tha (@)] < =2
Let € Iy". Then, according to Lemma 8 we obtain that

(46) |Tha (x)| < cM;My.
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By combining (5), (44), (45) and (46) we obtain that

/ Tya ()2 dp (2)

In
N-2 N-1 1/2 4 71/2 N-1
M1 -my—1 (M M;) '~ My Loyy2, /2
= CZ Z My k1/2 +szMi MN
i=0 j=i+1 i=0
N-2 N-1 1/2 N-1,.1/2 1/2
1/2 (MLMJ) . M,L CMN N
< cMy Z Z K20\ + CZ Ml/z < L1/2 +c
i=0 j=i+1 7 i=0 YN

It follows that

n | Ta ()] dp (z n 1/2
1 3 Sz [ Tra ()] u()S 1 5 MVN e\ o
logn, k logn k3/2 k

(47)
=Mn+1 k=Mpn+1
The proof of (42), and thus of part b), is completed by just combining (43) and (47). O

Proof of Theorem 4. If we use Lemmas 11 and 12 and follow analogical steps as in the proof
of Theorem 3 we get the proof of Theorem 4. Hence, we leave out the details. O
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1 Introduction

Concerning definitions used in this introduction we refer to Sect. 2. Weisz [47] proved
the boundedness of the maximal operator of Fejér means o¥** with respect to bounded
Vilenkin systems from the martingale Hardy space H,(G,,) to the space L,(G,,), for p > 1/2.
Simon [31] gave a counterexample, which shows that boundedness does not hold for 0 <
p < 1/2. The corresponding counterexample for p = 1/2 is due to Goginava [14]. Moreover,

Weisz [50] proved the following result.

Theorem W The maximal operator of Fejér means oV'* is bounded from the Hardy space
H,5(G,,) to the space weak-L1/(G,y,).
In [35] and [36] it was proved that the maximal operator G, ™ defined by

12

~Y low |
o)™ = sup ,
r el (1 + 1)VP-210g212+7) (57 4 1)

where 0 < p < 1/2 and [1/2 + p] denotes the integer part of 1/2 + p, is bounded from the
Hardy space Hy(G,,) to the space Ly(G,,). Moreover, for any nondecreasing function ¢ :
N, — [1, 00) satisfying the condition

1 1/p—21 2(1/2+p) 1
lim (n+1) o(g ) (n+1) = +00, (1.1)
n—00 @(n

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by

.
@ SPrlnger statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

135



Lukkassen et al. Journal of Inequalities and Applications (2020) 2020:79

there exists a martingale f € Hy(G,y), such that

o,;pf
@(n)

sup
neN

»

For Walsh—Kaczmarzi system some analogical results were proved in [16] and [37].
Weisz [47] considered the norm convergence of the Fejér means of a Vilenkin—Fourier

series and proved the following result.

Theorem W1 (Weisz) Letp >1/2 and f € H,(G,,). Then there exists an absolute constant
¢y, depending only on p, such that forallk = 1,2,... and f € H,(G,,) the following inequality
holds:

lo£1, < ol G-

Moreover, in [34] it was proved that the assumption p > 1/2 in Theorem W1 is essential.
In fact, the following is true.

Theorem T1 There exists a martingale f € Hy/2(G,,) such that
sup“cr,f’f”l/2 = +00.
neN
Theorem W1 implies that

no W
1 llog f1lp
n2r-1 k2-2p

< cpufu’;,ﬂcm), 12<p<oo,n=1,2,....

If Theorem W1 holds for 0 < p < 1/2, then we would have

n L
! Z“ka”’”qw" 0<p<1/2,n=2,3 12)
10g[1/2+p]}1 2w = p Hy(Grm)’ pP= M =2,0,.... .

For the Walsh system in [38] and for the bounded Vilenkin systems in [37] were proved
that (1.2) holds, though Theorem T1 is not true for 0 < p < 1/2.

Some results concerning summability of the Fejér means of a Vilenkin—Fourier series
can be found in [10, 12, 16, 25, 28, 30].

The Riesz logarithmic means with respect to the Walsh system was studied by Simon
[31], Goginava [15], Gét, Nagy [13] and for Vilenkin systems by Gat [11] and Blahota, Gat
[3], Persson, Ragusa, Samko, Wall [26]. Moreover, in [27] it was proved that the maximal
operator of the Riesz logarithmic means of a Vilenkin—Fourier series is bounded from the
martingale Hardy space H,(G,,) to the space L,(G,,) when p > 1/2 and is not bounded
from the martingale Hardy space H,(G,,) to the space L,(G,,) when 0 <p < 1/2.

In [35] and [36] it was proved that the Riesz logarithmic means has better properties
than the Fejér means. In particular, one considered the maximal operator EZ”* of a Riesz
logarithmic means 13;3/* defined by

B IRY |log(n +1)
p = SUP Up—2 |0g 217241 ’
neN (1 + 1)VP-2log (m+1)
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where 0 < p < 1/2 and [1/2 + p] denotes the integer part of 1/2 + p, which is bounded from
the Hardy space H,(G,,) to the space L,(G,).

Moreover, this result is sharp in the following sense: For any nondecreasing function
¢ : N, — [1, 00) satisfying the condition

1 l/ple 2(1/2+p] 1
lim (n+1) o8 (n+1) =00, (1.3)
o0 @(n)log(n +1)

there exists a martingale f € H,(G,,), such that

RYf
@(n)

neN »

The main aim of this paper is to derive a new strong convergence theorem of the Riesz
logarithmic means of one-dimensional Vilenkin—Fourier (Walsh—Fourier) series (see The-
orem 1). The corresponding inequality is pointed out. The sharpness is proved in Theo-
rem 2, at least for the case with Walsh—Fourier series.

The paper is organized as follows: In Sect. 2 some definitions and notations are pre-
sented. The main results are presented and proved in Sect. 3. Section 4 is reserved for
some concluding remarks and open problems.

2 Definitions and notations

Let N, denote the set of positive integers, N := N, U {0}.
Let m := (mg, my, ...) denote a sequence of positive integers not less than 2.
Denote by

Zo = 10,1,y — 1)

the additive group of integers modulo 1.
Define the group G, as the complete direct product of the group Z,,, with the product
of the discrete topologies of the Z,,,.

The direct product p of the measures
wk({(}) =Vmg (€ Zy,)

is a Haar measure on G,,, with (G,,) = 1.

If sup, .y 71, < 00, then we call G,, a bounded Vilenkin group. If the generating sequence
m is not bounded, then G,, is said to be an unbounded Vilenkin group. In this paper we
discuss only bounded Vilenkin groups.

The elements of G,, are represented by the sequences
x:= (%0, X155 %)) (%k € Zyy).

It is easy to give a base for the neighborhood of G,,, namely
Iy(x) := Gy,

I,(x):={y € Gpu | yo = %05 ... Y1 = %u-1} (¥ € Gpyn eN).
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Denote I, := 1,,(0) for n € N and I, := G,,\I,,.
Let

e, :=(0,0,...,x,=1,0,...) € G,, (meN).

It is evident that

M-2mp=1 M—1 my-1 M1 my-1
Iy = (U U U U I (xkex +x/€l)> U (U U IM(xkek)). (2.1)

k=0 xp=1 I=k+1 x/=1 k=1 x=1

If we define the so-called generalized number system based on m in the following way:
My :=1, Mpsr = My (k €N),

then every # € N can be uniquely expressed as n = Y- n;M;, where n; € Zy; (jeN) and
only a finite number of the #; differ from zero. Let || := max{j € N; n; #0}.

The norm (or quasi-norm when p < 1) of the space L,(G,,) is defined by

1/p
Ifllp = (/G If1¥ d,u.) (0 < p<o0).

The space weak-L,(G,,) consists of all measurable functions f for which
IIf llweak-L,y(Gym) 2= SUP AP iu(f > A) < +00.
1>0

Next, we introduce on G,, an orthonormal system which is called the Vilenkin system.
Let us define complex valued function rx(x) : G,, — C, the generalized Rademacher

functions, as
1) = exp@rixi/my) (¥ =-Lx € G,k €N).

Now, define the Vilenkin system ¥ := (,,: n € N) on G,, as
V@) =] @) (neN).

The Vilenkin systems are orthonormal and complete in L,(G,,) (for details see e.g. [1]).
Specifically, we call this system Walsh—Paley if m1; = 2, for all k € N. In this case we have
the dyadic group G, = ]_[;’fo Z,, which is called the Walsh group and the Vilenkin system
coincides with the Walsh functions defined by (for details see e.g. [17] and [29])
o0
o) = [ e) = rg (DT "% (ne N,

k=0

where ny =0V 1landx =0V 1.
Now, we introduce analogues of the usual definitions in Fourier analysis.
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If f € L1(G,,), then we can establish the Fourier coefficients, the partial sums of the
Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the Vilenkin
system ¥ (Walsh system w) in the usual manner:

P [ fadu (ow=worii) ke,
Gm
n-1
Saf =Y ke (o =wicor ) (n € N, S§f :=0),
k=0

n-1
olf = %ngf (@=wory) (neN,),
k=0

n—-1

D := Zak (x=wory) (meN,),
k=0
1 n-1

K= kX_;Dz (a=wory) (neN,).

It is well known that (see e.g. [1])

neN

sup/ |K;f‘ di <c<oo, wherea=wory. (2.2)

The o -algebra generated by the intervals {I,,(x) : x € G,,} will be denoted by F,, (n € N).
Denote by f = (f*),n € N) a martingale with respect to /, (n € N) (for details see e.g.
[5, 23, 46]). The maximal function of a martingale f is defend by

fr= supo(”)\.

neN

In the case f € L1(G,,), the maximal functions are also given by

ST =

)f ()p(a)|.

1
sup ——
neN |In(x)| Iy (x;

For 0 < p < oo the Hardy martingale spaces H,(G,,) consist of all martingales for which
Wty = 1], < 00

If f € L1(Gy), then it is easy to show that Sy, f is F, measurable and the sequence
(Sm,f : n € N) is a martingale. If f = (f*), n € N) is a martingale, then the Vilenkin—Fourier
(Walsh—Fourier) coefficients must be defined in a slightly different manner, namely

f(i) ;= lim / f(k) (x)ar;(x) du(x), wherea =wor .
Gm

k— o0

The Vilenkin—Fourier coefficients of f € L(G,,) are the same as those of the martingale
(Sm,f : n € N) obtained from f.
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In the literature, there is the notion of the Riesz logarithmic means of a Fourier series.
The nth Riesz logarithmic means of the Fourier series of an integrable function f is defined
by

1 S
RQJ:ZTZ%’ where o = wor ¥,

k=

_

The kernels of Riesz’s logarithmic means are defined by

n

1 o
Ly = T ; Tk’ where (@ = w or V).

For the martingale f we consider the following maximal operators:
o®*f :suplolf| (a=wory),
neN
R*f := sup|Ref| (e =wor ),
neN

= IR

RY*f := —r
T togln+ )

~ 1 o

R%*f := sup log(n + DIR,/| (@ =wor ).

P2 en (m U2

(¢ =wor ),

A bounded measurable function « is a p-atom, if there exists an interval /, such that
/ adp=0, lallo<pd)™,  supp(a)C 1.
I

In order to prove our main results we need the following lemma of Weisz (for details see
e.g. Weisz [49]).

Proposition 1 A martingale f = (f™,n € N) is in H,(G,,) (0 < p < 1) if and only if there

exist a sequence (ay, k € N) of p-atoms and a sequence (jui, k € N) of a real numbers such
that for every n € N

o0
> wSm,ax = £ (23)

k=0

and

o0
Dl < oo
k=0

Moreover, |f |1,G,) -~ inf(Y"poo |1k P)VP, where the infimum is taken over all decomposi-
tions of f of the form (2.3).
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By using atomic characterization (see Proposition 1) it can be easily proved that the
following statement holds (see e.g. Weisz [50]).

Proposition 2 Suppose that an operator T is sub-linear and for some 0 < py < 1
/IT&:I“’0 dp <c, <00
1

for every po-atom a, where I denotes the support of the atom. If T is bounded from Ly, to
Ly, (1< p; <00), then

1 TF lpo < Cpo If ety (G- (24)

Let us define classical Hardy spaces (see e.g. [44]). Let H,(D), p > 0 be the one-
dimensional complex quasi-Banach space of analytic functions f on the unit disc D :=
(z:z| < 1) for which

1 i 1/p
it
Ilf“HP(D) = sup g < [-7,7] lf(re ) ‘ dt) '

r<l

Now, we define real Hardy spaces. A real-valued distributions f(¢) € D'(T) belongs to
H,(T) where T = (-, 7] if and only if there exists a function F(z) € H,(D) with the prop-
erties Im(F(0)) = 0 and f(¢) = lim,_,; Re F(re®) in the sense of distributions. Equipped with
quasi-norm ||f(z)]| Hy(T) = IF)| Hy(D) the class obviously becomes a real quasi-Banach
space with quite the same properties as H,(D). Atomic decomposition of classical Hardy
spaces and real Hardy spaces can be found e.g. in Fefferman and Stein [6] (see also Later
[19], Torchinsky [44], Wilson [51]).

3 Main results

Our first main result reads as follows.

Theorem 1 Let 0<p < 1/2 and f € Hy(G,,). Then there exists an absolute constant c,,
depending only on p, such that the inequality

> log” nl|RYfI%, )
Y =alfl6 (3.1)

n=1

holds, where RZ’f denotes the nth Riesz logarithmic mean with respect to the Vilenkin—

Fourier series of f.
For the proof of Theorem 1 we will use the following lemmas.

Lemma 1 (see [38]) Letx € In(xrex+xi€;), 1 <ap <my—1,1<x;<m-1,k=0,...,N-2,
l=k+1,...,N—1.Then

cM My

———, whenn> My.
HMN

[ 1K= o] dut <
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Let x € In(xxex), 1 <% <myp—1,k=0,...,N - 1. Then
cM,
/ |KY (- 8)| dpu(e) < S==~,  when n> My.
In MN

Lemma 2 (see [39]) Letx € In(xrex+xse), 1 <xp <my—-1,1<x;,<m;—-1,k=0,...,N-2,
I=k+1,...,N—1.Then

K (- 1) MM
1 nit) < fye
INjhgsr 7 N

Let x € In(xrex), 1 <xp <my—-1,k=0,...,N - 1. Then

du(t) < —1,.

/ K (- 1) My
In j+1 T My

Jj=Mn+1

Proof By using an Abel transformation, the kernels of the Riesz logarithmic means can be
rewritten as (see also [39])

-1 y
1 K K
-y 3.2
ZZ T (62)

Hence, according to (2.2) we get

sup[ |LZ}dp,§c<oo, where o =wor ¢

neN m

and it follows that R'f,’ isbounded from Ly, to L. By Proposition 2, the proof of Theorem 1
will be complete, if we show that

i log’ n [; IRYal? dp

= <c¢,<00, for0<p<1/2, (3.3)

n=1

for every p-atom a, where I denotes the support of the atom.
Let a be an arbitrary p—atom with support  and p(I) = My}. We may assume that [ = Iy.
It is easy to see that RYa=0)(a) =0, when 11 < My. Therefore we suppose that n > My.
Since ||alloc < cM% if we apply (3.2), then we can conclude that

R} a(x)|

- [ Jato)i - 0] anco

< lalle [ [£4:- )] du()
In
Vo8 1K -0l

< - du(t)
b Jiy Py Al 1

1/p
+ N K e ) ). (3.4)
L)y

n
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Letx € In(xrex +xie)), 1 <xp <my—-1,1<x;,<m-1,k=0,...,N-2,l=k+1,...,N-1.
From Lemmas 1 and 2 it follows that

MMM

W
|RY a(x)| < gt s 1) (3.5)

Let x € In(xxex), 1 <ax <myi -1, k=0,...,N — 1. Applying Lemmas 1 and 2 we can
conclude that

|RY a(x)| < MyP™ M.

(3.6)
By combining (2.1) and (3.4)—(3.6) we obtain
/ |Rfa(x)|p du(x)
N
N-2 N-1 mj—1 N-1
53 > [ Rafaus Y [ Rl du
k=0 I=k+12x;=0je(l+1,...N-1* N k=0 VIN
N-2 N-1 _ N-1
- Moy (MiMP M . Z 1 P AP
— p kN
k=0 I=k+1 My log(n +1) 1o M
b ?
log”( +1) k=0 I=k+1 M k=0 My
1-2p
cMy,
<—5 _4¢,. 3.7
“log’(n+1) v 37)
It is easy to see that
o0
1 c
Z —— <——-, forO<p<1/2. (3.8)
2-2 12
n=tin+1 " T My
By combining (3.7) and (3.8) we get
o0 log"nfmana\" du
2-2
n=Mpn+1 e
oo 1-2p
My 2
= Z ( pr +n2_*l’ +¢p
n=Mp+1
=1 =1
1-2p
<c,My Z prari Z nz—_p+c,,§C,,<oo.
n=Mp+1 n=Mn+1
It means that (3.3) holds true and the proof is complete. O

Our next main result shows in particular that the inequality in Theorem 1 is in a special

sense sharp at least in the case of Walsh—Fourier series (cf. also Problem 2 in the next
section).
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Theorem 2 Let0<p<1/2and ® :N — [1,00) be any nondecreasing function, satisfying
the condition

lim @ (n) = +o0. (3.9)

n—00

Then there exists a martingale f € H,(Go) such that

o wenP
3 log? | Ruf Iy @ () o, (3.10)

2-2
n=1 nep

where R)f denotes the nth Riesz logarithmic means with respect to Walsh—Fourier series

of f.

Proof 1t is evident that if we assume that @ (n) > cn, where ¢ is some positive constant

then

log? n®(n)

1-2p P
> — —
2 n log n o0, asn 00,

and also (3.10) holds. So, without loss of generality we may assume that there exists an
increasing sequence of positive integers {a; : k € N} such that

®(og) =o(eg), ask— oo. (3.11)

Let {oy : k € N} C {a} : k € N} be an increasing sequence of positive integers such that

g >2 and
> 1
Z @ 12(22) <00, (3.12)
k=0
k-1 220(,7/;7 22ak_1/p+1
- i (3.13)
s @1/2}9(22{1,,) - ¢1/2p(22ak_1)
n=
22ak_l/p+1 1 22ak(1/p—2)
(3.14)

q)l/2p(22ak_,) = 128y qjl/Zp(zzak)'

We note that under condition (3.11) we can conclude that

2201,, Ip < 2201,7

1/2p
>
451/21?(22%) > <p(22%)) — 00, asn—> o0

and it immediately follows that such an increasing sequence {04 : kK € N}, which satisfies
conditions (3.12)—(3.14), can be constructed.
Let

fO) = Z Ak,

{k2ay <A}

where

1

M= @12 (22
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and
ay = 22ak(1/p71)(D22ak+1 — Dy ).

From (3.12) and Lemma 1 we can conclude that f = (f*,n e N) e H,(Gy).
It is easy to show that

2D i e g2 92441 _ 1) ke N,

TG = erre (3.15)
0, ifj & Upop (2%, ..., 2%+ — 1},
Forn= Zle 2", ny < ny < -+ < ng we denote
Mgy = neN:n:2°+22+ZZ”f
i=3
Let 22 <j <22%*l _ 1 andj e Agy. Then
2 @k 1
S, Suf
RY, =7 — =1+l 3.16
v f Z P Z p (3.16)
n=1 n=02%k
Let 1 < 2%, Then from (3.13), (3.14) and (3.15) we have
. k=1 2%+l ” k=1 2%+l 920t (1/p-1)
srel=Y T POl X grg
1=0 ,_o2wy y=22tn
k-1 2201,7/1) 22ak_1/p+1 1 22ak(1/p—2)
ZO 1/2p 22(177 ¢ll2p(22ak_1) = 128y @1/2p(22ak)'
Consequently,
ISnf(x
=y Z
n=1
11 2mpd 2 pmap) (317)

< - e
T Ly 1280 @12 (220k) ~ n T 128y P2 (22ek)

Let 22% < n < 22%+1 _ 1, Then we have the following:

k-1 2%m+1_1 n-1
SiF=Y" Y Frew+ Y Frw,
n=0 ,,_o2an v=22e
k-1 920ty (Lp-1) 92ex(Lip-1)
w W w w
¢1/2p(22a,,) (Dzzanﬂ 7D22D'n) + B2 (220) D; D22ak)
n=0
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This gives

22"1(*1 k-1
1 1 220(,7(1/p—1) » "
I = l— Z Z (Z —qjllzp(zz‘xn) (Dzza,,A - Dzzun)
/ =22k n=0
1 22up-1) (Dy _D;/Mk)

+ =
-l a,
l, @120 (22ek) o n

=11 + II5. (3.18)

Letx € I (eo + €1) € Iy\I;. We use well-known equalities for Dirichlet kernels (for details
see e.g. [17] and [29]): recall that

2", ifxel,
DY, (x) = (3.19)
0, ifxéel,
and
o0 o0 o0
Dy =w, anrkD;Vk =W, an (D;’,“l - D;’k), forn = ZniZZ, (3.20)
k=0 k=0 i=0

so we can conclude that

" Wy, if nis odd number,
Dy (x) = o
0, if nis even number.

Since ap > 2, k € N we obtain 2oy > 4, for all k € N and if we apply (3.19) we get
I, =0 (3.21)

and

1 22ak(1/p—1) (-Dr2 Wons1 122ak(1/p—1)r1

112 _ - Z - Won

Pl o A3t o, ’
Iy @12p(22ex) 2+ 1 L @12r(22) el

(i-1)/2

Let x € Ir(ep + e1). Then, by the definition of Walsh functions, we get
Wana = MWan = —Way

and

1 22ak(1/p—1) (-Dr2

l_, &L/ (22e)

Won

11| =
M| m+l
k’l

n=2%

(-1)/4

Wj-1 Wan—4 Wap—2
Wit Wina | Wina
Y ()

n=22k=211

1 22ak(1/p—1)
= I @120 (22)
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W (-1)/4 w w
1T1 + Z <4 4;47?3 - 4«n—21)
n— n—
/ n=22k=211

c 924 (1/p-1) ( Wi

1 22ak(1/p—1)
= 7/@1/217(2201;()

(j-1)/4

S ol 1 1
N\ -3 an-1

n=22%"241

el S B =G | 1
> (- - : 3.22
T oy PV (2%%) \ j Z (4n—3 4n — 1) (322)

n=22%k"241

> [REA
- 10g(22"‘“1) ¢1/2p(22ak) }

By a simple calculation we can conclude that

(i-1)/4

Z ( 1 1 )
et dn-3 4dn-1
I (4n-3)(4n-1)
(j-1)/4 (j-1)/4
2 1 1

< —_— = - [
- Z (4n—-4)4n-2) 2 Z 2n-2)2n-1)

=222 41 n=22%241

(i-1)/4 (j-1)/4

1 1 1 1

<3 X Giy@D s X GheD
n=22k241 n=22%"241
(i-1)/4 (-1)/4

1 1 1 1 1

55 Z (n—l)(n—Z)zg Z (n—Z_n—1>
n=2%k"241 1=220%-2 4]

1 1 4 1 1 4
<-|1-—— - — < - ———.
“s\om2-1 7 j-5) "8\ 2m2-1

Since 22% < j < 22%*1 _ 1, where o > 2, we obtain
2 - 2 B 1
2% _4 = 244 6
and
1 22— /1] 1 4
> ———— (=S —— - - 3.23
L] = day ®1P2(220)\j 8 (22ak—2_ 1 1)) (323)

1 220(1((1/;1—1) 3 1
r.tk @ 1/2(220) 2_] T2+l _ 8)

P

1 2%p-b /11 11 1 1
> |- e —
- 4‘ak ¢1/2p(22ak) 4, Q2ak 2 220y 2 22 _ 4)

1 22ak(1/p—1)

11 2
= 4'ak ¢ll2p(22ak) Zﬁ - 22ak(22ak _4))

1 22ak(llp—1)

1 22D /3 1 1 1
bd I‘lk ¢1/2p(22ak) (1% - i 220k _ 4)

>
~ day ¢l/2p(22ak)
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1 22ak(1/p72) 1 22ak(l/p—2)
> — _—
~ 480 @1/219(220(/() 64ory ¢l/2p(22ak)

By combining (3.14), (3.16)—(3.23) for € (e + 1) and 0 < p < 1/2 we find that
|RYf ()| = || = |11, | - 1|

220{/((1/;172) 1 22011((1/;772) 1 22ak(1/p—2)

1
> — = .
6day D12(220k)  128ay D12(224k) ~ 1280y PV (22)

Hence,

H /waeak Ly(Ga)
1 220y (1-2p)

1 22k(1/p-2) 1/p
> @@
- 1280:5(’ @1/2(22°‘k) )}

= 1280y V(22
1 22ak(l/p—2) }

{x G |RY| =

1 220 (1-2p)

> R —
12807 @1/2(22)

e e e 712 o

1 220y (1-2p) 1 220k (1-2p)
> —_— el + —_— 3.24
= 1280[5? @1/2(22ak)(/1«(x 2 (eo 61))) > 516015: 12 (2% ( )
Moreover,
R W1 G 1027 ()P ()
> FE7
j=1
- IR F I e 1, 102" NP ()
- ]2 2p
(jeho 2% oj<2®k+1_1)
_ o 20w log” ()&()
= of or2(22%) 2-2p
wf ( (jeho:2%% <j<2?k*1_1) /
¢(22ak) logp (22ak) 22ak(1—2p) 1
= p D1/2(20k 2-2p
A ( ) U€A0’2:22“k<j522“k+1—1)}
> @12(2%*) > 00, ask — oo.
The proof is complete. O

4 Final remarks and open problems
In this section we present some final remarks and open problems, which might be inter-
esting for further research. The first problem reads as follows.

Problem 1 For any f € Hy, is it possible to find strong convergence theorems for Riesz
means R}, wherea =wora =1?

Remark 1 Similar problems for Fejér means with respect to Walsh and Vilenkin systems
can be found in [2, 4, 40] (see also [45] and [48]). Our method and estimations of Riesz
and Fejér kernels (see Lemmas 1 and 2) do not give an opportunity to prove even similar
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strong convergence result as for the case of Fejer means. In particular, for any f € Hy is
it possible to prove the following inequality:

1 GRS "
_ <
> =l

= =Y?
I Hy» Wherea=woro=1y?
ogn

It is interesting to generalize Theorem 2 for Vilenkin systems.

Problem 2 For 0 < p < 1/2 and any nondecreasing function @ : N — [1, 00) satisfying the
conditions lim,,_, ., @ (1) = +00, is it possible to find a martingale f € H,(G,,) such that

i log? nl| R} £l (1)

—_— =00,
n2-2p

n=1

where R f denotes the nth Riesz logarithmic means with respect to the Vilenkin—Fourier
series of f?

Problem 3 Is it possible to find a martingale /' € Hy/y, such that
supHRfoH 12 =09
neN

where o =wora =y?

Remark 2 For 0 < p < 1/2, divergence in the space L, of Riesz logarithmic means with
respect to Walsh and Vilenkin systems of martingale f € H,, was already proved in [27].

Problem 4 For any f € H, (0 < p < 1/2), is it possible to find necessary and sufficient
conditions for the indices k; for which

Rif - 0, j )
[ if f||Hp—> asj— oo
wherex =wora =y?

Remark 3 Similar problem for partial sums and Fejer means with respect to Walsh and
Vilenkin systems can be found in Tephnadze [41, 42] and [43].

Problem 5 Is it possible to find necessary and sufficient conditions in terms of the one-
dimensional modulus of continuity of martingale f € H,, (0 < p < 1/2), for which

|R:f —fHHp —0, asj— oo,
where o = wor ¥?
Remark 4 Approximation properties of some summability methods in the classical and
real Hardy spaces were considered by Oswald [24], Kryakin and Trebels [18], Storoienko

[32, 33] and for martingale Hardy spaces in Fridli, Manchanda and Siddigi [9] (see also
[7, 8]), Nagy [20-22], Tephnadze [41-43].
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A NOTE ON THE MAXIMAL OPERATORS OF THE NORLUND LOGARITMIC
MEANS OF VILENKIN-FOURIER SERIES

GEORGE TEPHNADZE! AND GIORGI TUTBERIDZE!2

Abstract. The main aim of this paper is to investigate the (Hp, Lp)- type inequalities for the
maximal operators of Norlund logarithmic means for 0 < p < 1.

1. INTRODUCTION

It is well-known that (see e.g., [1], [8] and [16]) Vilenkin systems do not form bases in the Lebesgue
space L1 (G,,). Moreover, there exists a function in the Hardy space H; such that the partial sums
of f are not bounded in Li-norm.

In [19] (see also [21]), it was proved that the following is true:

Theorem T1. Let 0 < p < 1. Then the maximal operator

~* ‘S’Ilf‘
S, fi=sup—"7—
P neN (nJrl)l/IF1
is bounded from the Hardy space H, (G,) to the space L, (G,,) . Here, S,, denotes the n-th partial sum
with respect to the Vilenkin system. Moreover, it was proved that the rate of the factor (n + 1)1/ p—1
is in a sense sharp.

In the case p = 1, it was proved that the maximal operator S* defined by

Sk o |SW|

§hi= Zlég log (n+1)
is bounded from the Hardy space H; (G,,) to the space Li (G,,). Moreover, the rate of the factor
log(n +1) is in a sense sharp. Similar problems for the Nérlund logarithmic means in the case, where
p =1, was considered in [15].

Moricz and Siddiqi [9] investigated the approximation properties of some special Norlund means of
Walsh-Fourier series of L, (Gy,) functions in L,-norm. Fridli, Manchanda and Siddigi [5] improved
and extended the results of Méricz and Siddiqi [9] to the Martingale Hardy spaces. However, the case
for {qx = 1/k : k € N4} was excluded, since the methods are not applicable to the Norlund logarithmic
means. In [6], Gt and Goginava proved some convergence and divergence properties of Walsh-Fourier
series of the Norlund logarithmic means of functions in the Lebesgue space Ly (G,). In particular,
they proved that there exists a function in the space L; (G,,) such that

sup || L f]|; = oo.
neN

In [2] (see also [15,17]), it was proved that there exists a martingale f € H, (Gn), (0<p<1)
such that

sup | Lo, = oc.
neN

Analogous problems for the Nérlund means with respect to Walsh, Kaczmarz and unbounded
Vilenkin systems were considered in Blahota, and Tephnadze, [3,4], Goginava and Nagy [7], Nagy and
Tephnadze [10-12], Persson, Tephnadze and Wall [13,14], Tephnadze [18,20,21], Tutberidze [22].

2010 Mathematics Subject Classification. 42C10.
Key words and phrases. Vilenkin system; Partial sums; Logarithmic means; Martingale Hardy space.
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108 G. TEPHNADZE AND G. TUTBERIDZE

In this paper, we discuss the boundedness of the weighted maximal operators from the Hardy space
H, (Gy,) to the Lebesgue space Ly, (Gy,) for 0 < p < 1.

2. DEFINITIONS AND NOTATION

Let Ny denote the set of the positive integers, N := N, U {0}.
Let m := (mg, my,...) denote a sequence of the positive integers, not less than 2.
Denote by

Zm, :=1{0,1,...,my — 1}

the additive group of integers modulo my.

Define the group G, as the complete direct product of the group Z,,; with the product of the
discrete topologies of Zy,;.

The direct product p of the measures

pe({G}) = 1/mi (G € Zmy)

is the Haar measure on G, with u (G,,) = 1.

If supm,, < oo, then we call G, a bounded Vilenkin group. If the generating sequence m is not
neN
bounded, then G,, is said to be an unbounded one. In this paper we discuss the bounded

Vilenkin groups only.
The elements of G,,, are represented by the sequences

= (20, %15, Tj,..-) (zk € Zmy,) -
It is easy to give a base for the neighborhood of G,,,
Iy (z) := Gy,
I(z) ={y € Gm | yo =20, ,Yn-1=Tn-1} (x € G, n €N)

Denote I, :=I,, (0), for n € N and T,, := G, \ I,
If we define the so-called generalized number system based on m in the following way :

My = 1, ]\/[kJrl = my My, (’C € N)

then every n € N can be uniquely expressed as n = ) n;M;, where nj € Z,,, (j € N) and only a
=0
finite number of n;‘s differs from zero. Let |n| := max{j € N; n; #0}.
The norm (or quasi-norm) of the space L,(Gp,) is defined by
171 = [ 1P dn 0 <p<oo),
Gm

The space weak — L, (G,,,) consists of all measurable functions f for which
N1 ear—r (Gm) "= sup N (¢ |f ()] > A) < +o0.
v A>0

Next, we introduce on G, an orthonormal system which is called the Vilenkin system. First we
define the complex-valued function ry (z) : Gy, — C, the generalized Rademacher functions as
ri (x) := exp (2mizy/my) (7,'2 =-1, z€Gn, k€ N) .
Now, define the Vilenkin system v := (¢, : n € N) on G, as:

Uy = HTZ’“, (neN).
k=0

Specifically, we call this system the Walsh-Paley one if m=2.
The Vilenkin system is orthonormal and complete in Ly (Gy,) [1,23].
Now we introduce analogues of the usual definitions in the Fourier analysis.
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NORLUND LOGARITMIC MEANS 109

If f € L1 (Gy) , we can establish the Fourier coefficients, the partial sums of the Fourier series, the
Dirichlet kernels with respect to the Vilenkin system v in the usual manner:

Fiky - = / [hudp,  (kEN),
Gm

n—1
Snf::ZJ?(k)Wk, (n €Ny, Sof:=0),
k=0

n—1

DnC:Z’lzjk7 (TLEN+).

k=0
Recall that (for details see e.g. [1])

M, z€l,

0 ¢l W

DIVI,L (I) = {

The o-algebra generated by the intervals {I,, (z) : © € G,,,} will be denoted by F ,, (n € N). Denote
by f = (fn : n € N) a martingale with respect to f,, (n € N) (for details see e.g. [24,25]). The maximal
function of a martingale f is defined by

f* =Sup|fn|'

neN

In the case, where f € L;, the maximal function is also given by

/ £ () o ()
I, (x)

For 0 < p < oo, the Hardy martingale spaces H,, (G,,) consist of all martingales for which
111z, = ILF*Il, < oo

If f € Ly, then it is easy to show that the sequence (Sy,f:n € N) is a martingale. If f =
(fn :n €N) is a martingale, then the Vilenkin-Fourier coefficients should be defined in a slightly
different manner:

* o — 17
1" @) =sup

P = i [ $bdn
k—o0
Gm
The Vilenkin-Fourier coeflicients of f € L;(G,,) are the same as those of the martingale
(Sar, f : n € N) obtained from f .
Let {gx : k > 0} be a sequence of non-negative numbers. The n-th Noérlund means for the Fourier
series of f is defined by

n

1 n
= Gn-kSkf, where @, := Z(Ik‘
Qn k=1 k=1

If g, = 1/k, then we get the Norlund logarithmic means
n—1 n

ln—l Sf 1
L7Lf::72nik7 where l":Zn_k:Z“

" k=0 k=0 j=1

| =

~

A bounded measurable function a is p-atom, if there exists a dyadic interval I such that

/ad#:()» lallo < p(1)"", supp(a) C I.
I
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110 G. TEPHNADZE AND G. TUTBERIDZE

3. FORMULATION OF MAIN RESULTS

Theorem 1. a) Let 0 < p < 1. Then the mazimal operator

¥ | L0 f]
L, f:=sup——"—
r neN (’n,+ 1)1/1771

is bounded from the Hardy space Hy, (Gy,) to the space L, (Gy,) -

b) Let 0 <p <1 and ¢ : Ny — [1,00) be a non-decreasing function satisfying the condition

nl/p—l
lim ———— = +o0.
n—oolog ne (n)
Then there exists a martingale f € Hy (G,,) such that the mazimal operator

|LTLf|

sup —————
neN ¢ (Tl + 1)

is not bounded from the Hardy space H, (Gy,) to the space Ly, (Gy,) .

4. PROOF OF THE THEOREM

Proof. Since

L,f 1 S S,
| "{‘ - < 1 sup |Sef| < sup | k{‘ - <su | "{l T
(n+1D)Y770T (4 )YP ks 1<k<n (k 4+ 1)YP71 T neN(n 4+ 1)V/PT
if we use Theorem T1, we obtain
|Zn f] |Sn £
sup 1/p—1 <su 1/p—1
neN(n+1) neN(n+1)
and
|Znf] [ S f]

sup—————— — <cplfllg, -

nEN(Tl"l‘l)l/p ! » neN (n + 1)1/p ! » Py
Now, prove part b) of the Theorem. Let

foy, = DM211}C+1 - DM?n;c'
It is evident that
J? (Z) _ 1, if 1= ]\/Ian7 ceey A[2nk+1 -1,
' 0, otherwise.
Then we can write that
D; — D, if i= My, +1,..., Map, 11 —1,
Sifnk = f’nky if > AIan-f—lv
0, otherwise.
From (1), we get
I frills, = ||sup Su, fui|| = HDM%,W — Dy,
neN p kllp

< HDMznk+1

+ HDM‘ H < eMVP <o < 0.
p 20 || 2ny,

Let 0 < p <1and {\; : k € N.} be an increasing sequence of the positive integers such that

)\1‘/[)—1
lim ~&

k—o0 ()\k)

= Q.
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NORLUND LOGARITMIC MEANS 111
Let {ng : k € N.} C {\ : k € N1} such that

( 1/p—1 /

M, + 2) NP1

lim * >c lim 22— = .
k—oolog (Man, + 2)p (Man,4+2) —  k—oo @ (Ag)

According to (2), we can conclude that

‘Djwznk +17 DMQ,%

‘ Lty +2.n,
@ (Map, +2)

Y )

N UMy, +20 (Mapy+1) B It 419 (Mo, 12)”

D419 (Mzny 41)

2ny,

Hence,

1
> OO
T Uy +200 (Mapy42)

1w {:1; cGp: ‘LM2nk+2fnk } =pn(Gn) =1. (4)

By combining (3) and (4), we get

1/p
1 1
Y z€Gny: ‘L >
11\42nk+24P(JV12n,€+2) <'u{ m MQ"'k+2fm” - lMQ,Lk+24P(1W2nk+2)

Il fre I,

1/p—1
M/p=1 c (A/jm + 2)

any,

> >
T Wty 120 (Mant2) — log (Man, +2)¢ (Man,+2)

— o0, as k— oo. O

Open Problem. For any 0 < p < 1, let us find a non-decreasing function © : Ny — [1,00) such
that the following maximal operator

e |L f]
L f:= —_—
b = S )

is bounded from the Hardy space H), (G,,) to the Lebesgue space L, (G,,) and the rate of © : N —
[1,00) is sharp, that is, for any non-decreasing function ¢ : Ny — [1, c0) satisfying the condition

lim = 400,

there exists a martingale f € Hp, (G,,) such that the maximal operator

|Ln f]
nen @ (n+1)

is not bounded from the Hardy space H), (G,) to the space L, (Gy,) .

Remark 1. According to Theorem 1, we can conclude that there exist absolute constants Cy and Co
such that

Cynt/p-t )

1 <9 < Cynt/P1,

log(n+1) — (n) < Con
ACKNOWLEDGEMENT

The research was supported by grant of Shota Rustaveli National Science Foundation of Georgia,
no. YS-18-043.

159



112 G. TEPHNADZE AND G. TUTBERIDZE

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

REFERENCES

. G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarly, A. I. Rubinstein, Multiplicative Systems of Functions and Harmonic
Analysis on Zero-Dimensional Groups. (Russian) Elm, Baku, 1981.

. L. Blahota, G. Gat, Norm summability of Nérlund logarithmic means on unbounded Vilenkin groups. Anal. Theory
Appl. 24 (2008), no. 1, 1-17.

. 1. Blahota, G. Tephnadze, On the (C, a)-means with respect to the Walsh system. Anal. Math. 40 (2014), no. 3,
161-174.

. 1. Blahota, G. Tephnadze, Strong convergence theorem for Vilenkin-Fejér means. Publ. Math. Debrecen 85 (2014),
no. 1-2, 181-196.

. S. Fridli, P. Manchanda, A. H. Siddiqi, Approximation by Walsh-Norlund means. Acta Sci. Math. (Szeged) 74 (2008),
no. 3-4, 593-608.

. G. Gét, U. Goginava, Uniform and L-convergence of logarithmic means of Walsh-Fourier series. Acta Math. Sin.
(Engl. Ser.) 22 (2006), no. 2, 497-506.

. U. Goginava, K. Nagy, On the maximal operator of Walsh-Kaczmarz-Fejér means. Czechoslovak Math. J. 61 (136)
(2011), no. 3, 673-686.

. B. L. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh Series and Transforms. Theory and applications. Translated
from the 1987 Russian original by W. R. Wade. Mathematics and its Applications (Soviet Series), 64. Kluwer
Academic Publishers Group, Dordrecht, 1991.

. F. Mricz, A. Siddiqi, Approximation by Norlund means of Walsh-Fourier series. J. Approz. Theory 70 (1992), no. 3,

375-389.

K. Nagy, G. Tephnadze, Walsh-Marcinkiewicz means and Hardy spaces. Cent. Eur. J. Math. 12 (2014), no. 8,

1214-1228.

K. Nagy, G. Tephnadze, Approximation by Walsh-Marcinkiewicz means on the Hardy space Hy 3. Kyoto J. Math.

54 (2014), no. 3, 641-652.

K. Nagy, G. Tephnadze, The Walsh-Kaczmarz-Marcinkiewicz means and Hardy spaces. Acta Math. Hungar. 149

(2016), no. 2, 346-374.

L. E. Persson, G. Tephnadze, P. Wall, Maximal operators of Vilenkin-Norlund means. J. Fourier Anal. Appl. 21

(2015), no. 1, 76-94.

L. E. Persson, G. Tephnadze, P. Wall, Some new (Hy, L;) type inequalities of maximal operators of Vilenkin-Nérlund

means with non-decreasing coefficients. J. Math. Inequal. 9 (2015), no. 4, 1055-1069.

L. E. Persson, G. Tephnadze, P. Wall, On the Norlund logarithmic means with respect to Vilenkin system in the

martingale Hardy space Hy. Acta math. Hungar. 154 (2018), no. 2, 289-301.

F. Schipp, W. R. Wade, P. Simon, J. P4l, Walsh Series, an Introduction to Dyadic Harmonic Analysis. Bristol and

New York, Adam Hilger, 1990.

G. Tephnadze, The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series. Acta Math.

Acad. Paedagog. Nyhdzi. (N.S.) 27 (2011), no. 2, 245-256.

G. Tephnadze, On the maximal operators of Walsh-Kaczmarz-Fejér means. Period. Math. Hungar. 67 (2013), no. 1,

33-45.

G. Tephnadze, On the partial sums of Vilenkin-Fourier series. translated from Izv. Nats. Akad. Nauk Armenii Mat.

49 (2014), no. 1, 60-72 J. Contemp. Math. Anal. 49 (2014), no. 1, 23-32.

G. Tephnadze, Approximation by Walsh-Kaczmarz-Fejér means on the Hardy space. Acta Math. Sci. Ser. B (Engl.

Ed.) 34 (2014), no. 5, 1593-1602.

G. Tephnadze, Martingale Hardy Spaces and Summability of the One Dimensional Vilenkin-Fourier Series. PhD

diss., Luleatekniska universitet, 2015.

G. Tutberidze, A note on the strong convergence of partial sums with respect to Vilenkin system. arXiv preprint

arXiv: 1802.00341, 2018.

N. Ya. Vilenkin, On a class of complete orthonormal systems. (Russian) Izvestia Akad. Nauk SSSR 11 (1947),

363-400.

F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics,

1568. Springer-Verlag, Berlin, 1994.

F. Weisz, Hardy spaces and Cesaro means of two-dimensional Fourier series. Approzimation theory and function

series (Budapest, 1995), 353-367, Bolyai Soc. Math. Stud., 5, Jdnos Bolyai Math. Soc., Budapest, 1996.

(Received 19.09.2019)

ITHE UNIVERSITY OF GEORGIA, SCHOOL OF SCIENCE AND TECHNOLOGY, 77A MERAB KosTava ST, TBILISI, 0128,

GEORGIA

2DEPARTMENT OF COMPUTER SCIENCE AND COMPUTATIONAL ENGINEERING, UIT -THE ARCTIC UNIVERSITY OF NOR-

wAy, P.O. Box 385, N-8505, NARVIK, NORWAY

E-mail address: g.tephnadzeQug.edu.ge
E-mail address: giorgi.tutberidze1991@gmail.com

160






	PhD_forside_engelsk.pdf
	A_study_of_bounded_operators_on_Martingale_Hardy_spaces.pdf
	Abstract
	Preface
	Acknowledgements
	Introduction
	Preliminaries
	 Some results on partial sums and classical summability methods of Vilenkin-Fourier series

	Bibliography
	Papers
	A note on the strong convergence of partial sums with respect to Vilenkin system
	On the boundedness of subsequences of Vilenkin-Fejér means on the martingale Hardy spaces
	Modulus of continuity and boundedness of subsequences of Vilenkin- Fejér means in the martingale Hardy spaces
	Maximal operators of T means with respect to the Vilenkin system
	Sharp ( Hp,Lp)  type inequalities of maximal operators of T means with respect to Vilenkin systems with monotone coefficients
	Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series
	A note on the maximal operators of the Nörlund logaritmic means of Vilenkin-Fourier series

	1.pdf



