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Abstract:

Autonomous ship technology is developing at a rapid pace, with the aim of facilitating safe ship
operations. Collision avoidance is one of the most critical tasks that autonomous ships must
handle. To support the level of safety associated with collision avoidance, this study suggests to
provide autonomous ships with the ability to conduct proactive collision avoidance maneuvers.
Proactive collision avoidance entails predicting future encounter situations, such that they can
preemptively be avoided. However, any such actions must adhere to relevant navigation rules and
regulations. As such, it is suggested to predict encounter situations far in advance, i.e. prior to
risk of collision existing. Any actions can, therefore, be conducted prior to the applicability of the
COLREGS. As such, simple corrective measures, e.g. minor speed and/or heading alterations,
can prevent close encounter situations from arising, reducing the overall risk associated with
autonomous ship operations, as well as improving traffic flow. This study suggests to facilitate
this ability by emulating the development of situation awareness in ship navigators through
machine learning. By leveraging historical AIS data to serve as artificial navigational experience,
long-range trajectory predictions can be facilitated in a similar manner those conducted by
human navigators, where such predictions provide the basis for proactive collision avoidance
actions. The development of human situation awareness is, therefore, presented, and relevant
machine learning techniques are discussed to emulate the same mechanisms.
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1. INTRODUCTION

ogy. Without systems to facilitate collision avoidance,
autonomous ships can not be introduced into maritime
transportation systems. The majority of the literature
regarding collision avoidance for autonomous vessels e.g.
Hu et al. (2017); Zaccone et al. (2019); Lyu and Yin
(2019), addresses how to implement COLREGs compliant
actions with regards to path planning. This study, how-
ever, suggests enacting collision avoidance actions prior to
risk of collision arising, i.e. prior to the applicability of the
COLREGs. As such, the approach in this paper aims to
negate the necessity of previous approaches by preventing
encounter situations from occurring. In this manner, the
overall safety of maritime operations can be enhanced by
averting the risk associated with vessel encounters, as well
as improve traffic flow. Such actions may, for instance,
include minor speed and/or heading alterations that can
reduce the risk of a future encounter situation arising.

Autonomy (Krogmann, 1999) has long been the subject
of much research. Autonomous functions in cars (Chan,
2017), for instance, are already implemented in vehicles,
with increased levels of autonomy likely available within
the next years. Many of these developments can be at-
tributed to recent developments in machine learning that
facilitate situation awareness (Endsley and Jones, 2012).
Within the maritime domain, however, progress has been
slower. Nonetheless, work is progressing, with various com-
panies already planning to implement autonomous ship
technology.

One of the greatest challenges in realizing autonomous
ships is developing technology to replace the functions of
a human navigator. Many aspects of ship navigation can
be implemented via autopilot systems. This technology

U 1 There is currently limited research on applying such
has, however, been available for many years, with the

approaches to autonomous ships. Experienced naviga-

first automatic steering mechanisms available as early as
1911 (Fossen, 2000). Nonetheless, the primary barrier to
safe autonomous operations is likely adequate situation
awareness, which provides input to such systems.

Effective collision avoidance is one of the main challenges
that must be addressed by autonomous ship technol-

tors, however, likely leverage proactive collision avoidance,
where close encounter situations are predicted far in ad-
vance, and avoided via simple proactive measures e.g.
minor speed and/or heading alterations. This, however, is
dependent on the navigators ability to leverage their situ-
ation awareness to simulate future ship traffic accurately.
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If an autonomous vessel were able to conduct such proac-
tive collision avoidance measures, the overall safety of
autonomous ship operations would be increased. Conduct-
ing long-range ship trajectory predictions is, however, not
straight forward. In this study, the concept of proactive
collision avoidance is presented in light of relevant rules
and regulations. Further, the manner in which human
ship navigators likely leverage situation awareness to fa-
cilitate proactive collision avoidance is presented. Machine
learning techniques are then suggested to emulate hu-
man situation awareness. If successful, these techniques
can provide navigational experience to autonomous ships,
thereby facilitating proactive collision avoidance. Aspects
of this study have also been presented in Murray (2021),
and the reader is referred to Murray (2021) for further
details.

2. COLLISION AVOIDANCE

In this section, the concept of proactive collision avoidance
is presented as a means to enhance the safety associated
with autonomous ships. First, conventional collision avoid-
ance is discussed in light of relevant rules and regulations.
Then, proactive collision avoidance measures are suggested
in adherence with relevant rules and regulations.

2.1 Conventional Collision Avoidance

When one ship departs from its planned trajectory to avoid
potentially coming into physical contact with another ves-
sel at some point in the future, it is said to have conducted
a collision avoidance maneuver (Huang et al., 2020). Such
maneuvers are common, and necessary to maintain the
safety of maritime transportation. In a collision avoidance
situation, the ship under control is often referred to as the
own ship, with other vessels the own ship may come into
contact referred to as target ships. An autonomous ship
must, therefore, have the capability of effectively avoiding
collision with relevant target ships.

On conventional vessels, such actions are the responsi-
bility of the Officers on Watch (OOW). However, any
collision avoidance actions must adhere to relevant rules
and regulations. These are outlined by the International
Maritime Organization (IMO) in the Convention on the
International Regulations for Preventing Collisions at Sea
(COLREGS) (Cockeroft and Lameijer, 2011), and govern
the permissible actions for vessels in encounter situations.
These regulations apply to all ocean-going vessels, but
local rules and regulations may come in addition.

Collision Risk  Rule 7 of the COLREGs addresses colli-
sion risk, where it is stated that any two vessels in sight of
one another, with no apparent alteration of compass bear-
ing, risk of collision is deemed to exist. Collision risk is is
commonly evaluated based on the estimated Closest Point
of Approach (CPA). The Distance at the Closest Point of
Approach (DCPA) and Time to Closest Point of Approach
(TCPA) are often used as indicators of the collision risk.
If these values are smaller than given thresholds, risk of
collision is deemed to exist (Huang et al., 2018). Studies
have also addressed utilizing a zone surrounding either the
own ship or target ship, known as the ship domain (Fujii

and Tanaka, 1971; Goodwin, 1975). In this approach, any
infringement of the ship domain entails a risk of collision.

The process of collision risk evaluation was presented in
Tam and Bucknall (2010). Initially, the planned trajectory
of the own ship is discretized at regular intervals. The
future trajectory of the target ship then estimated based
on a linear extrapolation of the target ship’s initial velocity
vector. The ship domain is then evaluated based on the
type of encounter, and the CPA evaluated. If the ship
domain is infringed upon, a risk of collision is deemed to
exist. This process then repeats for all relevant time steps.

Vessel Encounter Situation ~ When there is risk of col-
lision between two vessels, they are considered to be in
an encounter situation, triggering the applicability of the
COLREGsS. Depending on the type of encounter, the COL-
REGs define which vessel is the give-way vessel, and which
is the stand-on vessel. The give-way vessel is that which
much keep out of the way of another as far as possible.
Rule 16 of the COLREGSs governs the actions by the give-
way vessel. It is stated that early and substantial action
should be taken by the give-way vessel to avoid collision.
Such actions are, furthermore, addressed in Rule 8 of the
COLREGsS, where it is stated that any alteration of speed
or course must substantial enough to be readily apparent.
This implies that small alternations to the course or speed
of the vessel are not permissible, as the action to avoid
collision may not be observed by the stand-on vessel.

Rule 17 of the COLREGS outlines the actions of the stand-
on vessel. It is stated that when one vessel must keep out
of the way of the other, the other must maintain the course
and speed. This vessel is known as the stand-on vessel. Any
collision avoidance actions are, therefore, only permissible
by the give-way vessel once risk of collision is deemed to
exist. However, the stand-on vessel is required to take any
action necessary to avoid collision if it becomes apparent
that a collision can not be avoided by the give-way vessel’s
action alone.

Cockeroft and Lameijer (2011) summarized a general colli-
sion situation in the four stages outlined below. These are
illustrated for a crossing situation in Fig. 1.

(1) Prior to risk of collision, both vessels are free to take
any action (long-range).

(2) Risk of collision exists. The give-way vessel must take
early and substantial action to pass at a safe distance.
The stand-on vessel must maintain their heading and
speed.

(3) In the case that the give-way vessel does not take
timely and substantial action, the stand-on vessel
may take action to avoid collision by their maneuver
alone. However, such a maneuver should not alter
their course to port, and their intention to take action
should be signaled.

(4) When it becomes apparent that collision cannot be
avoided by the give-way vessel’s actions alone, the
stand-on vessel is required to take any action neces-
sary such as to best avoid collision.

2.2 Proactive Collision Avoidance

Conventionally, collision avoidance actions are not enacted
until risk of collision is deemed to exist, triggering the
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Fig. 1. Collision situation stages, adapted from Cockcroft
and Lameijer (2011). The permissible actions by the
stand-on vessel are illustrated.

applicability of the COLREGs. Proactive collision avoid-
ance, however, employs actions prior to risk of collision
arising. Such actions may, for instance, include minor
speed and/or heading alterations that reduce the risk of
a future encounter situation arising. As such, the overall
safety of maritime operations can be improved by reducing
the risk associated with vessel encounters. Furthermore,
the need for significant evasive maneuvers should improve
traffic flow.

Rule 8 of the COLREGS states that any collision avoidance
actions taken by the give-way vessel must be substantial,
such as to be easily observed by the stand-on vessel.
Furthermore, the stand-on vessel is required to maintain
their speed and heading once risk of collision is deemed
to exist. Minor speed and/or heading alterations are,
therefore, not permissible with respect to the COLREGs
once risk of collision is deemed to exist. Stage 1 in Fig. 1,
however, relates to the permissible actions by vessels at
long-range (i.e. before risk of collision is deemed to exist).
In this stage, both the give-way and stand-on vessels
are free to take any action. Proactive collision avoidance
actions must, therefore, take place during stage 1 of an
encounter situation.

As discussed in Sec. 2.1.1, collision risk is traditionally
evaluated using a linear extrapolation of the initial velocity
vector of the target ship. Despite having intersecting
trajectories at long-range, however, collision risk is not
deemed to exist until the vessels are within a given range.
This range will vary considerably depending on the speed,
size and maneuverability of the respective vessels, as well
as local environmental conditions e.g. metocean conditions
and fairway geometry (Cockeroft and Lameijer, 2011).

It is suggested in Cockcroft and Lameijer (2011) that
stage 1 of a collision situation lasts until a range of
approximately 5-8 nautical miles in the open sea (i.e.
vessels will likely have near linear trajectories). Using a
conservative estimate of 15 kn as the average speed for
ships on the open sea, this distance corresponds to a TCPA
of 20-32 minutes. In more complex waterways, this value
will likely be lower. As a result, the relevant COLREGs are
generally not considered applicable before 20-32 minutes

prior to the CPA. Vessels are, therefore, free to take any
proactive collision avoidance actions in stage 1, including
minor speed or heading alterations that can possibly avoid
any close encounter situations.

To identify potential vessel encounter situations, however,
vessels must be able to conduct long-range trajectory
predictions of both the own ship, as well as potential
target ships, up to 30 minutes into the future. If successful,
such predictions can facilitate proactive collision avoidance
actions. Applications of such predictions include estimat-
ing future traffic congestion, such that the own ship can
minimize the risk of close-range encounter situations, and
maximize the room to maneuver. Furthermore, crossing
situations, as illustrated in Fig. 1, can be predicted and
avoided. Potential overtaking and head-on situations can
also be predicted, and optimal routes planned to minimize
the future collision risk.

The future 30 minute trajectories of target ships are,
however, generally unknown. Furthermore, they may be
complex, and not conducive with linear extrapolations of
the initial velocity vector used for short-range predictions
in traditional collision risk evaluation. It is theorized
that ship navigators leverage what is known as situation
awareness (Endsley and Jones, 2012) to facilitate long-
term predictions of ship dynamics (Sharma et al., 2019),
that likely aid in reducing the risk of future encounter
situations. These mechanisms are, therefore, investigated
in the next section, such that they may be emulated by an
autonomous vessel.

3. SITUATION AWARENESS IN SHIP NAVIGATION

Endsley (1988) defined situation awareness as “The percep-
tion of the elements in the environment, within a volume of
time and space, the comprehension of their meaning, and
the projection of their status in the near future”. Endsley
(1995) also defined three levels of situation awareness as:

(1) Perception of elements in the environment
(2) Comprehension of the current situation
(3) Projection of the future status

The term situation awareness can be traced back to World
War I, where it was used in reference to aircraft pilots.
Since then, the term has been applied to a wide variety of
domains ranging from driving to power plant operations
(Endsley and Garland, 2000). Within the maritime do-
main, situation awareness has been found to be essential
in facilitating safe ship operations. Sharma et al. (2019)
investigated the situation awareness requirements of ship
navigators, and found that they actively leverage all three
levels of situation awareness. One of the most important
tasks ship navigators are respomsible for is conducting
effective collision avoidance. Such actions are dependent
upon adequate situation awareness of the navigator, and
will be discussed further in this context in this section.

Level 1 Situation Awareness The first level of situation
awareness in the case of ship navigation largely relates to
acquiring relevant information e.g. metocean conditions,
under-keel clearance and fairway geometry. Furthermore,
perceiving relevant obstacles e.g. target ships is conducted
at this level. Sharma et al. (2019) found that ship naviga-
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tors identified information relating to ship traffic and ob-
stacles as necessary to achieve level 1 situation awareness.
Collision avoidance actions, for instance, will be dependent
on the successful observation of target ships.

Level 2 Situation Awareness  The second level of situa-
tion awareness relates to the navigator’s ability to com-
prehend the current situation, and the implications with
respect to the safety of the ship. In a collision avoidance
setting, this can be considered collision risk evaluation.
This is supported by the findings in Sharma et al. (2019),
where the current separation between the own ship and
target ships, as well as the distance to relevant obstacles
were identified as relevant information necessary for level
2 situation awareness.

Level 8 Situation Awareness The highest level of situa-
tion awareness involves predicting the future dynamics of
a situation. However, such predictions are more long-term
than those involved in level 2 situation awareness with
respect to collision risk evaluation. In an interview con-
ducted in Sharma et al. (2019), a navigator described level
3 situation awareness as “If there is any traffic nearby. If
somebody’s going to come, or if I'm going to meet someone
at some point”. Further, the projected position of the own
ship as well as the projected movement of target vessels
were outlined as relevant. This indicates a more long-range
prediction of ship trajectories, beyond what is possible via
linear predictions using the initial velocity vector of target
ships. Such predictions likely facilitate proactive collision
avoidance actions by ship navigators. These predictions,
however, rely on the level 3 situation awareness of the ship
navigator.

3.1 Long-Range Ship Trajectory Prediction

As discussed, ship navigators likely leverage long-range
trajectory predictions to facilitate level 3 situation aware-
ness. It is theorized that mental models are the key
enablers of high level situation awareness (Endsley and
Jones, 2012). Mental models were defined in Rouse and
Morris (1985) as “Mechanisms whereby humans are able to
generate descriptions of system purpose and form, expla-
nations of system functioning and observed system states,
and predictions of future states”. As such, ship navigators
likely leverage such mental models to facilitate long-range
trajectory predictions.

Mental models, however, are not innate to ship naviga-
tors. They must be developed through experience. Holland
et al. (1986) outlined the development of mental models,
where it was argued that the first step in model develop-
ment is learning to categorize input. As individuals are
exposed to recurrent situations, they begin to identify
patterns, and group situations into categories with similar
characteristics. These may, for instance, constitute ship
routes. Furthermore, it is theorized that individuals de-
velop transition functions that model how situations vary
over time. For the case of ship behavior, these can be
viewed as ship behavior models that predict the future
behavior of a vessel along a given route. As such, for each
category, a specific transition, i.e. behavior, model will be
developed to facilitate prediction. These models are refined
by comparing predictions to observations over time, and

Experience

D Category with corresponding behavior model

Fig. 2. Categorization functions.
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Fig. 3. Application of mental models in situation aware-
ness, adapted from Endsley and Garland (2000).

are, therefore, dependent on the level of knowledge and
experience of the individual.

With more experience, it is theorized that individuals are
able to identify categories of more specific behavior. This
entails a higher number of categories, illustrated in Fig. 2.
Smaller categories imply more specific behavior models,
enhancing the accuracy of the predictions. As such, more
experienced ship navigators likely have a higher number
of behavior models available to predict future ship traffic
than inexperienced navigators. This is natural, as with
experience, navigators will be exposed to a greater number
of situations that provide the basis for model development.
Experienced navigators will, therefore, likely be able to
predict more complex behavior. These predictions provide
the basis for level 3 situation awareness, as ship navigators
are able to predict long-term ship traffic.

When applying mental models to facilitate high level sit-
uation awareness, ship navigators likely apply the follow-
ing approach, illustrated in Fig. 3. First, the navigator
perceives the state of the environment, e.g. the current
trajectory of a target ship. Based on the the behavior
of the ship, the navigator then applies pattern matching
between the observed behavior, and the historical behavior
stored in each category in their mental model. Once the
pattern is matched, the relevant category is selected. This
is then used for comprehension of the situation, and the
corresponding behavior model is applied to project the
future trajectory of the target ship. In this manner, human
navigators are capable of long-range trajectory predic-
tions that aid in proactive collision avoidance actions. In
essence, ship navigators predict future ship traffic based
on their knowledge and past experience of ship behavior
in the region.
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4. MACHINE LEARNING FOR PROACTIVE
COLLISION AVOIDANCE

To facilitate proactive collision avoidance, future au-
tonomous ships will need to be able to conduct long-
range ship trajectory predictions. Such predictions can
be utilized in conjunction with short-range predictors to
facilitate an advanced ship predictor (Perera and Mur-
ray, 2019) for collision avoidance. As such, methods to
provide level 3 situation awareness to autonomous ships
must be developed. One approach to achieve this is to
artificially represent navigational experience, and emulate
human mental models that facilitate such functions. It is
suggested in this study to leverage machine learning to
emulate the development of mental models.

Machine learning has gained widespread attention across a
variety of domains in recent years. A sub-field of machine
learning, known as deep learning, has gained particular
popularity due to its state-of-the-art performance in appli-
cations e.g. computer vision (Voulodimos et al., 2018) and
natural language processing (Cho et al., 2014). Machine
learning models are powerful in that they are able to learn
from data without being explicitly programmed. In this
manner, machine learning techniques facilitate data-driven
models that learn to model the underlying data.

It can be argued that humans also are data-driven. Based
on observation, humans generate models to describe their
surroundings. This is particularly relevant with respect
to situation awareness, where the development of mental
models is dependent on data. With more data, i.e. experi-
ence, the models will improve. In the case of autonomous
ships, however, navigational experience will need to be
artificially represented. If available, such data can provide
the basis for machine learning models to emulate high level
human situation awareness. Deep learning, for instance,
has been suggested as a method to capture the behav-
ior of the ship navigator, and facilitate effective collision
avoidance actions (Perera, 2020).

4.1 Historical AIS Data

It is suggested in this study to leverage historical AIS
(Automatic Identification System) data to serve as an
artificial form of navigational experience. The AIS relays
information relevant to ship behavior e.g. position, course
over ground, speed over ground and ship type. These
ATS messages are, furthermore, stored in historical AIS
databases. By investigating historical AIS data, one can
gain insight into historical ship behavior. This can be
thought of as analogous to a navigator’s experience of the
historical ship behavior for a given geographical region.

Fig. 4 illustrates one year of historical AIS position data
surrounding the city of Tromsg, Norway. It is evident
that there are clear patterns of ship behavior e.g. traffic
routes. Such historical data can, therefore, serve as the
memory of an autonomous ship with respect to ship
behavior for this region. To facilitate long-range trajectory
predictions, it is desirable to develop methods to emulate
the development of mental models. As such, methods
must first be developed to categorize the data in Fig. 4
into categories of specific ship behavior. Next, methods
to facilitate pattern matching of trajectory segments to a

Fig. 5. Subset of clusters of historical ship behavior.

category of ship behavior should be investigated. Finally,
methods to model the dynamics within each category of
ship behavior must be developed. In this manner, a novel
trajectory can be assigned a given category, and its future
trajectory predicted with respect to the unique behavior
for that category.

4.2 Clustering

The first step in emulating the development of mental
models is to facilitate categorization functions. With re-
spect to predicting future ship trajectories, this entails
decomposing historical ship behavior into groups of spe-
cific behavior. This is analogous to clustering, a form of
machine learning where similar data are grouped together
to form clusters.

In the case of this study, it is desirable to cluster historical
AIS trajectories as illustrated in Fig. 5. Fig. 5 illustrates
a subset of trajectory clusters from the data in Fig. 4.
These clusters were discovered by applying the approach
in Murray and Perera (2021b). This technique leverages
a Variational Recurrent Autoencoder (Fabius and van
Amersfoort, 2015) to generate fixed size vector represen-
tations of historical AIS trajectories, and subsequently
clusters the representations using the Hierarchical Density-
Based Clustering of Applications with Noise (HDBSCAN)
algorithm (Campello et al., 2013). However, clustering can
also be facilitated via other methods e.g. those in Pallotta
et al. (2013) and Murray and Perera (2021c).
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Fig. 6. Deep learning-based classification architecture,
adapted from Murray and Perera (2021a).

4.8 Classification

The second step is to facilitate pattern matching of a novel
trajectory to one of the existing clusters of ship behavior.
As illustrated in Fig. 3, pattern matching facilitates the
selection of the appropriate category used to comprehend
the situation as well as employ the corresponding behavior
model to project future dynamics.

In machine learning, pattern matching is referred to as
classification, and can be facilitated via a myriad of tech-
niques e.g. k-NN classification, support vector machines
and neural networks. AIS data contain multiple param-
eters in addition to the dynamic position data. These
include information pertaining to the ship type, MMSI
number and length of the vessel. Such static data can also
be incorporated into the trajectory to improve classifica-
tion accuracy.

As suggested in Murray and Perera (2021a), one method
to combine the dynamic and static data is to encode the
dynamic data, x = {xg,X1,...,X5,}, using a Recurrent
Neural Network (RNN), and concatenate this vector with
any continuous data, dcon:, as well as an embedding
(Mikolov et al., 2013) of any categorical data, d.q, as
illustrated in Fig. 6. This vector can then be input to a
fully connected network with a softmax output layer, and
trained end-to-end using the cross-entropy loss. In this
manner, a novel AIS trajectory can be classified to one
of the existing clusters of behavior.

4.4 Prediction

To facilitate a long-range trajectory prediction, each clus-
ter must have a behavior model. This reflects the same
functionality of mental models, where each category has
a transition model that is capable of predicting future
dynamics. Machine learning is also capable of facilitating
such regression functions. As such, a machine learning
model can be applied to the data in each cluster of specific
behavior, e.g. the routes illustrated in Fig. 5. In this
manner, each model will be trained on an enhanced subset
of data that relates to specific ship behavior. The greater
the number of categories discovered, the more specific the
behavior will be. This in turn yields higher accuracy, as
found in Murray and Perera (2021a). Similarly, as argued
in Sec. 3.1, more experienced individuals develop mental
models with a higher number of categories as illustrated
in Fig. 2.

Multiple machine learning techniques can be applied to
facilitate such predictions. For instance, Rong et al. (2019)
applied a Gaussian process model to facilitate a probabilis-
tic prediction of the future trajectory of a vessel using AIS
data. By applying the approach to a cluster of behavior,
the performance can likely be further enhanced. Deep
learning models, e.g. sequence-to-sequence models, can
also be applied to facilitate prediction. Forti et al. (2020),
for instance, applied sequence-to-sequence models to a
route of historical AIS data. The results were successful,
and on a scale relevant for proactive collision avoidance.
Murray and Perera (2020) also presented a dual linear au-
toencoder approach based on locally extracted trajectory
clusters. The approach yielded successful predictions on a
scale applicable for proactive collision avoidance. However,
the prediction models are not limited to these techniques,
and alternative regression models may also be applied.

4.5 Leveraging Deep Learning to Emulate High Level
Situation Awareness

Murray and Perera (2021a) developed an AIS-based deep
learning framework for ship trajectory prediction that
leveraged many of the aforementioned functions. How-
ever, the focus of the article was to facilitate effective
trajectory predictions, and did not discuss the context
and regulations relevant when utilizing such predictions for
proactive collision avoidance. Murray and Perera (2021a),
therefore, provides an example of how machine learning
can be leveraged to emulate situation awareness in the
context of this study.

In Murray and Perera (2021a), historical AIS data for a
given region were clustered to reflect specific historical
behavior, where a prediction model was trained for each
cluster. A novel ship trajectory was then classified to
one of the clusters of historical behavior, and the corre-
sponding prediction model applied to predict the future 30
minute trajectory of the selected vessel. Such an approach
matches that outlined in this study, where human situation
awareness is emulated by clustering historical behavior
into specific categories with corresponding behavior (i.e.
prediction) models, and the appropriate model is selected
via pattern matching (i.e. classification).

The results of Murray and Perera (2021a) indicate the
potential of utilizing machine learning to facilitate accu-
rate 30 minute trajectory predictions. Via the outlined
approach, a mean error of approximately 500 m for the
predicted 30 minute position of a selected vessel could
be achieved. Furthermore, Forti et al. (2020) found that
leveraging deep learning to facilitate trajectory predictions
outperformed previously investigated techniques using
the Ornstein-Uhlenbeck stochastic process. The approach
in Forti et al. (2020) investigated utilizing sequence-to-
sequence models, which Murray and Perera (2021a) ex-
panded upon by introducing an attention mechanism that
was found to improve the results.

Furthermore, Murray and Perera (2021a) found that the
decomposition of historical behavior into clusters with lo-
cal behavior models reduced the 30 minute prediction error
by 64 % compared to a model trained on all underlying
data. As such, the findings indicate that by leveraging ma-
chine learning to emulate human situation awareness, one
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can attain more accurate long-range trajectory predictions
on a scale applicable for proactive collision avoidance.

5. CONCLUSION

In this study, proactive collision avoidance has been dis-
cussed as a method to enhance the safety of autonomous
ship operations. It was found that such proactive collision
avoidance actions may need to be taken as early as 30
minutes prior to the closest point of approach. Further-
more, ship navigators likely leverage high level situation
awareness to facilitate such predictions. As such, the mech-
anisms involved in developing such prediction models were
investigated, where it was found that individuals likely
leverage mental models to predict future situation dynam-
ics. These models are developed via categorization of ship
behavior, where each category has a specific transition
function that models future dynamics. Via pattern match-
ing, a novel trajectory is classified to one of the existing
categories, and the appropriate model applied to predict
the future behavior of a given vessel.

Such prediction models are, however, dependent on the ex-
perience of the navigator. This study suggests to leverage
historical AIS data to artificially represent navigational ex-
perience. Further, it was found that machine learning tech-
niques mirror the mechanisms involved in the development
of mental models utilized for situation awareness. Catego-
rization is facilitated by clustering historical AIS trajecto-
ries, and transition models via relevant machine learning-
based regression techniques. Pattern matching can also be
facilitated via machine learning through relevant classifi-
cation methods. As such, by leveraging machine learning
to emulate the mechanisms utilized by humans to develop
high level situation awareness, autonomous ships may be
capable of predicting long-range ship trajectories, facili-
tating proactive collision avoidance.
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