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“The investigation of the truth is in one way hard, in another easy. An indication of this is found 

in the fact that no one is able to attain the truth adequately, while, on the other hand, no one 

fails entirely, but everyone says something true about the nature of things, and while 

individually they contribute little or nothing to the truth, by the union of all a considerable 

amount is amassed. Therefore, since the truth seems to be like the proverbial door, which no 

one can fail to hit, in this way it is easy, but the fact that we can have a whole truth and not the 

particular part we aim at shows the difficulty of it. Perhaps, as difficulties are of two kinds, the 

cause of the present difficulty is not in the facts but in us.” 

Aristotle-Metaphysics  

(384 B.C. - c. 322 B.C.) 
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Summary 

Selective autophagy is responsible for the lysosomal degradation of damaged and surplus 

cytoplasmic components, including misfolded proteins and dysfunctional organelles. Selective 

autophagy is required for protein and organelle quality control basally and upon stress. For the 

autophagic process to be precise, selective autophagy receptors (SARs) like SQSTM1/p62 are 

required.  

Autophagic substrates are often tagged with ubiquitin. Ubiquitinated substrates can be 

recognized by p62 and other p62-like SARs. SARs bind to lipidated ATG8 protein family 

members at the inner phagophore membrane and act as bridges that connect the substrate with 

the phagophore. Both SARs and their substrates are degraded after the fusion of the 

autophagosome with one or more lysosomes. Hence, p62 is both a substrate and a receptor for 

selective autophagy. p62 can polymerize into helical filaments via its N-terminal PB1 domain, 

bind to ATG8 proteins via its LIR (LC3 interacting region) motif and to the ubiquitin E3 ligase 

subunit KEAP1 via the adjacent KIR (KEAP1 interacting region) motif. The C-terminal UBA 

domain of p62 interacts with ubiquitinated substrates. The ability to form helical filaments and 

to bind to ubiquitin chains endows p62 with the property to form droplets in both the cytoplasm 

and nucleus of cells by liquid-liquid phase transition. The droplets have been called p62 bodies. 

They contain p62 and also other SARs like NBR1 and TAXBP as well as KEAP1 and 

ubiquitinated substrates. By recruiting ATG8 proteins and core autophagy components like 

FIP200 the droplets are degraded by selective autophagy. The p62 bodies can also function as 

signalosomes (signal transmitting, multimolecular protein complexes) which can also be 

degraded by selective autophagy to terminate their signaling.  

This thesis presents new studies of the roles of the PB1 domain, the LIR and KIR motifs and 

the UBA domain in the formation and degradation of p62 bodies. The first paper, a collaborative 

study led by the research group of Carsten Sachse, demonstrated the importance of the PB1-

mediated polymerization of p62 into filaments for the formation of p62 bodies and their 

degradation by autophagy. In the second paper, we explored if a specific LIR-mediated binding 

of LC3B is required for autophagic degradation of p62. In our third paper, we focused on the 

UBA domain of p62 and post-translational modifications that occur and their effects on p62 

droplet formation and degradation. It was clear from our findings that K435 plays a crucial role 

in the degradation of p62 by selective autophagy.  
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1. Introduction 

1.1  Introduction to autophagy 

Autophagy (Greek: self-eating) is a term coined by Christian de Duve for processes involving 

the lysosomal degradation of cytoplasmic components (Klionsky, 2008). Autophagy can be 

classified into three main pathways: Macroautophagy, microautophagy and chaperone-

mediated autophagy (CMA) (Figure 1) of which macroautophagy is the most studied from yeast 

to man (Ohsumi, 2014).  

CMA is a selective lysosomal degradation of single, unfolded, soluble cytosolic proteins that 

contain a redundant five amino acid motif (KFERQ-like) that is recognized by Hsc70/HSPA8. 

The HSPA8 complex helps to dock the unfolded protein to the LAMP2A transmembrane 

receptor for uptake into the lumen of the lysosome (Dice, 1982) (Kaushik and Cuervo, 2016; 

Kaushik and Cuervo, 2018; Park et al., 2015; Quintavalle et al., 2014) (Figure 1). Some of the 

main features of this pathway were discovered by the late Fred Dice and further elucidated 

mechanistically by the group of Ana Maria Cuervo. Similar to proteasomal degradation but 

distinct from macro- and microautophagy, CMA can only degrade one polypeptide at a time 

and does not involve membrane dynamics.   

Microautophagy is based on the direct engulfment of cytoplasmic substrates by lysosomes or 

late endosomes (Schuck, 2020). The process has been most studied in yeast and is here in one 

form mediated by ATP-dependent invaginations of the limiting membrane called autophagic 

tubes which form constrictions at their neck where scission occurs releasing vesicles into the 

lumen (Li et al., 2012) (Figure 1). Studies during the last decade have identified many different 

microautophagy processes both in animals and in plants (Nakamura et al., 2018). The term 

“microautophagy” is somewhat misleading since rather large structures (micrometer-size) can 

be targeted such as parts of the nucleus, parts of the ER, lipid droplets and peroxisomes (Schuck, 

2020). Because of the diversity in mechanisms, several ways to classify microautophagy have 

been suggested. One classification involves three types where one is dependent on lysosome 

membrane protrusions enwrapping parts of the cytoplasm, a second form is mediated via 

invagination of the lysosomal membrane, and a third by invagination of the endosomal 

membrane. The latter two are dependent on ESCRT (endosomal sorting complex required for 

transport) proteins (Oku and Sakai, 2018). The most recent type of classification is from Schuck 

who distinguishes fission-type and fusion-type microautophagy (Schuck, 2020). Fusion-type 
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needs ESCRT proteins to seal the invaginating membranes while the fusion type requires the 

core (macro) autophagy machinery to form a flat double membrane structure (a phagophore as 

seen in macroautophagy, see later) that helps seal the membrane invaginations.  

Interestingly, work by the Cuervo group suggests that a form of endosomal microautophagy 

may use Hsc70/HSPA8-mediated recognition of proteins with KFERQ-like motifs both to 

recognize cargo and to bend the limiting membrane to start invaginations and the ESCRT 

proteins, not core autophagy components, to seal the membrane (Sahu et al., 2011; Tekirdag 

and Cuervo, 2018). Our group has shown that amino acid starvation triggers the rapid 

degradation of selective autophagy receptors including SQSTM1/p62, NBR1, TAX1BP1 and 

NCOA4 by a form of endosomal microautophagy that does not involve Hsc70, only ESCRT III 

and VPS4, not the other ESCRT complexes. Some of the substrates also need ATG5, ATG7 

and lipidated LC3, but not all (Mejlvang et al., 2018).   

In macroautophagy (hereafter referred to as autophagy), cytoplasmic components to be 

degraded are isolated from the rest of the cell within a double-membraned structure known as 

an autophagosome (Xie and Klionsky, 2007). Autophagosomes can either fuse with a lysosome 

to create an autolysosome (Figure 1) or with a late endosome to give an amphisome (Sanchez-

Wandelmer and Reggiori, 2013) (Seglen et al., 1991). Autophagy can be selective and non- 

selective (Johansen and Lamark, 2011). Non-selective bulk autophagy is studied most in yeast 

and is induced during nutrient starvation to provide the cell with nutrients. In basal conditions, 

there is a need for damaged proteins and organelles to be degraded as important quality control 

of the cell. This kind of autophagy is cargo-induced selective autophagy (Kirkin and Rogov, 

2019; Lamark and Johansen, 2021). Selective autophagy can degrade a variety of cytoplasmic 

components including dysfunctional and aggregated proteins, lipid droplets, damaged or 

surplus organelles like mitochondria, ER, peroxisomes, and intracellular pathogens (Lamark 

and Johansen, 2021; Rogov et al., 2014). Under various stress conditions, both bulk- and 

selective autophagy pathways may be activated. In the cargo-induced selective autophagy, the 

cargo to be degraded is often tagged with ubiquitin which is recognized by selective autophagic 

receptors (SARs) needed for the process (Bjørkøy et al., 2005; Gatica et al., 2018; Grumati and 

Dikic, 2018; Johansen and Lamark, 2011; Johansen and Lamark, 2020; Thurston et al., 2009) 

Defects in the autophagic machinery can cause a variety of disease from neurodegenerative 

diseases, cardiovascular diseases, inflammatory diseases to cancer (Levine and Kroemer, 2019; 

Mizushima et al., 2008). Recently, deleterious genetic variants of the human core autophagy 
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gene ATG7 were shown to result in inherited neurodevelopmental disorders in five families 

analysed (Collier et al., 2021). Studies in worms, flies and mice have clearly shown the 

importance of autophagy during development, particularly so in stem cell function (Allen and 

Baehrecke, 2020; Mizushima and Levine, 2010)  

 

 

Figure 1. The different types of autophagy in mammalian cells. Macroautophagy is associated with the formation 

of cytosolic double membraned vesicles called autophagosomes. CMA transports unfolded proteins that carry the 

KFERQ-like motif recognized by HSPA8/Hsc70 to the LAMP2A receptor which carries the cargo across the 

lysosomal membrane into the lumen of the lysosome. Microautophagy is associated with the direct uptake of cargo 

by invagination of the lysosomal membrane. All three pathways lead to the degradation of the cargo by the 

lysosomes for the cell to reuse the released building blocks (Parzych and Klionsky, 2014). 

Autophagy has an essential role in counteracting organismal ageing. Studies in different 

organisms reported that there is the correlation between ageing and autophagic activity. 

Compromised autophagy is a hallmark of ageing (Aman et al., 2021). As an organism gets older 

the autophagic response either in normal conditions or under stress is reduced in parallel with 

increased risk of cancer and neurodegenerative diseases. On the other hand, studies in worms, 

flies and mice have shown that increased expression levels of core autophagy proteins like Atg8 

and treatment with autophagy inducing agents, like rapamycin, increases lifespan and health 

span (reviewed in  (Aman et al., 2021)). It has also been shown that SQSTM1/p62 improves 

lifespan and proteostasis both in C. elegans and Drosophila (Aparicio et al., 2020). 
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1.2 Autophagosome formation and degradation 

Autophagosome formation starts with the formation of a double membrane structure called the 

isolation membrane, also known as a phagophore. In yeast, the phagophore develops at a single 

phagophore assembly site (PAS) (Hollenstein and Kraft, 2020) (Figure 2). In mammalian cells, 

autophagosomes form at multiple sites and the origin of the phagophore has been an important 

question since the first morphological description of autophagosomes in the early 1960s. There 

are two suggested models for the origin membrane for autophagosome formation. Based on the 

first model, the autophagosomal membrane originates from a pre-existing organelle, while 

based on the second model there is a de novo formation of the isolation membrane by localized 

lipid synthesis (Simonsen and Tooze, 2009). Various organelles, such as the ER, the Golgi 

complex, recycling endosomes, and the plasma membrane, have been suggested as phagophore 

sources (Li et al., 2021; Puri et al., 2018; Tooze and Yoshimori, 2010; Wei et al., 2018). The 

phagophore membrane expands until the point that it can engulf the target cargo. When the 

phagophore closes upon itself, the target cargo is isolated inside a double membrane structure 

called the autophagosome (Glick et al., 2010; Mizushima et al., 2011; Ohsumi, 2014). The 

autophagosome together with the cargo will mature and undergo fusion with the lysosome(s). 

A fused autophagosome with a lysosome is called an autolysosome. In the autolysosome, the 

degradation of autophagosomal contents by lysosomal acid proteases occurs. Lysosomal 

proteases degrade the contents and transporters export the amino acids or other breakdown-

products of degradation back out to the cytoplasm, so the cell can re-use them for other 

metabolic processes metabolism (Glick et al., 2010; Mizushima et al., 2011).  

An evolutionarily conserved set of Atg (autophagy-related) proteins are involved in the 

different stages of autophagosome formation. The first set of 15 such Atg proteins were initially 

defined mutagenesis screens in yeast (Tsukada and Ohsumi, 1993), but orthologues have later 

been described in mammalian cells (Ohsumi, 2014)  

1.3 Induction of autophagy 

Autophagosome formation can be induced by different cellular stressors such as starvation, 

organelle damage, or protein aggregation. starvation-induced autophagy serves a survival 

purpose in case of lack of nutrients. The mechanism is different from cargo-induced selective 

autophagy and the aim is to recycle macromolecules and energy to the cell. In cargo-selective 



 

- 5 - 

 

degradation, the SARs are essential players, and this process can occur both under basal and 

stress-induced conditions. 

The pathway that is described in the following is the autophagic mechanism is the one most 

studied due to the pioneering studies in yeast of Ohsumi and colleagues who also moved their 

studies into mammalian cells. Starvation-induced autophagy in yeast and mammals is the best 

understood canonical autophagic response (Galluzzi and Green, 2019).  Under starvation, the 

levels of AMP in the cell are increased, which drives the activation of AMPK. Activation of 

AMPK causes inhibition of the target of rapamycin (TOR) signalling complex. TOR (mTOR 

in mammals) is working as a hub between different signal stimuli. Growth factors, cytokines 

and accumulation of nutrient levels can act as a stimulus for mTOR activation (Dunlop and 

Tee, 2014). In mammals, the result of AMPK-mediated phosphorylation of mTOR is the 

activation of multiple proteins that are involved in initiation complex like ULK1,ATG13, 

FIP200 and the class III PI3K complex 1 (Xie et al., 2015) A current model suggests that in 

multicellular organisms, like mammals, the ULK complex undergoes a liquid-liquid phase 

transition (LLPS) triggered by dephosphorylation of ATG13. The ULK1 complex droplet docks 

onto the ER and initiates the formation of multiple mammalian phagosomes assembly sites 

(mPAS)  (Noda et al., 2020) (Figure 2). The detailed mechanism remains to be revealed.  

 

 

 

Figure 2 Creation of PAS (phagophore assembly sites) in 
mammalian cells. The ULK complex with ATG13, FIP200 and 
ULK1 undergo liquid-liquid phase transition (LLPS) following 
dephosphorylation of ATG13. The complex moves as a droplet to 
ER and induces the formation of multiple PAS. Adopted from Noda 
et. al. (Noda et al., 2020). 
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1.4 The core autophagy molecular machinery needed for autophagosome formation 

1.4.1 ULK complex 

The yeast Atg1 kinase has an essential role in the induction of autophagy. It works downstream 

of the target of rapamycin (TOR) complex 1 (TORC1). A family of mammalian Atg1 proteins 

have been identified; ULK1, ULK 2, ULK3 (Young et al., 2009; Zachari and Ganley, 2017) 

and ULK4 (Eyers, 2020). In mammalian cells,  ULK1 or ULK2 forms part of a complex that 

includes ATG13, ATG101 and the scaffold protein FIP200/RB1CC1. ΑΤG101 was found to 

interact with ULK1 in an ATG13-dependent manner and is essential for autophagy (Mercer et 

al., 2009). The ULK complex is critical for the initiation of phagophore formation. ATG13 

interacts with ULK1, ULK2, and FIP200 independent of its phosphorylation state (Hosokawa 

et al., 2009), and FIP200 binds to ULK1 and ULK2 (Hara et al., 2008). Under starvation, 

mTORC1 is quickly detached from the ULK1 complex (Hosokawa et al., 2009). Several 

phosphorylation chain-events follows within this complex, including activating 

phosphorylations of ATG13 and FIP200 by ULK1 and ULK2 and inactivating 

phosphorylations of ULK1 and ULK2 by mTORC1 (Hosokawa et al., 2009; Jung et al., 2009). 

Under starvation conditions, phosphorylation and inactivation of mTORC1 lead to 

dephosphorylation of ULK1, ULK2, and ATG13. This activates ULK1 and ULK2 to 

phosphorylate ATG13 and FIP200 (Jung et al., 2009). 

1.4.2 PI3K Class III complex 1 (PI3KC3-C1)  

The initiation of phagophore formation requires the recruitment of phosphatidylinositol-3 

phosphate kinase (PI3K) class III complex 1 (PI3KC3-C1) consisting of the PI3K enzyme 

VPS34 and scaffold proteins VPS15, Beclin 1 AND ATG14L (Bento et al., 2016; Galluzzi et 

al., 2017). A fifth member called NRBF2 (Atg38 in yeast) helps form the complex and induce 

dimerization of PI3KC3-C1 (Nishimura and Tooze, 2020). PI3KC3-C1 associates with the ER 

membrane and activated ULK1 increases the kinase activity of VPS34 via phosphorylation of 

VPS34, Beclin1 and ATG14 (Dikic and Elazar, 2018; Russell et al., 2013). AMPK can also 

directly phosphorylate VPS34 and Beclin 1. PI3KC3-C1 phosphorylates phosphatidylinositol 

(PI) to produce phosphatidylinositol-3-phosphate (PI3P) which then is bound by WD repeat 

domain phosphoinositide- interacting proteins (WIPIs 1-4) and the zinc-finger FYVE domain-

containing protein 1 (DFCP1). DFCP1 serves as a marker for omegasomes which are PI3P-rich 

ER membrane areas acting as PAS where autophagosomes are born (Dikic and Elazar, 2018).    
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In mammals, PI3KC3-C1 is involved in autophagy whereas the second complex PI3KC3-C2 is 

involved in endocytosis and does not contain ATG4L, but UVRAG (Dikic and Elazar, 2018). 

 

1.4.3 Transmembrane proteins in mammalian autophagy 

ATG9A and the vacuole membrane protein 1 (VMP1) and its interacting partner in the ER 

membrane, TMEM41B, are three multispanning transmembrane proteins that are required for 

mammalian autophagy (Morita et al., 2018; Nishimura and Tooze, 2020). The ATG9A 

polypeptide chain crosses the membrane six times with both the N- and C- terminal end located 

in the cytosol. ATG9A forms a trimeric complex and acts as a lipid scramblase transferring 

lipids between the outer and inner membrane leaflets to allow expansion of the autophagosomal 

membrane (Matoba et al., 2020). ATG9A is found in the trans-Golgi network and on late 

endosomes, but under starvation small 50-60 nm diameter, single membrane ATG9A vesicles 

are transported to the mPAS where the phagophore expands on the ER and omegasomes form. 

The mechanism behind the transportation of ATG9A vesicles to mPAS is still unclear (Noda, 

2021). In mammals, the recruitment of ATG2 proteins is an essential step for the expansion of 

the phagophore membrane and the closure of it. ATG2A and ATG2B proteins can bind to the 

WIPI1 and WIPI4 proteins which are recruited to the PI3P-rich regions where omegasomes 

develop (Noda, 2021). On the expanding site of the phagophore membrane, ATG9 colocalizes 

with the ER-localized ATG2. This interaction allows ATG2 to channel phospholipids 

synthesized in the cytoplasmic leaflet of the ER membrane to the phagophore membrane where 

ATG9 ensures the localization of the lipids to the inner leaflet  (Noda, 2021). ATG2 is also 

acting as a tether keeping the ER and phagophore membrane together. Hence, ATG2 and ATG9 

drive phagophore membrane expansion (Maeda et al., 2019; Nishimura and Tooze, 2020; Noda, 

2021; Otomo et al., 2018). At the mPAS WIPI2B recruits ATG16L1 placing the ATG5-

ATG12:ATG16L1 E3 ligase complex in position for mediating lipid conjugation of ATG8 

proteins (Nishimura and Tooze, 2020).   

1.4.4 Conjugation systems 

Studies both in yeast and mammals have identified two ubiquitin-like proteins, Atg12/ATG12 

and Atg8/ATG8. ATG12 becomes covalently attached to ATG5 dependent on two proteins that 

function as E1 and E2-like enzymes, ATG7 and ATG10 respectively (Mizushima et al., 2011; 

Yang and Klionsky, 2010). The ATG12–ATG5 complex interacts with ATG16L, which 
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oligomerizes to form a larger complex acting as an E3 ligase for the conjugation of ATG8s to 

phosphatidylethanolamine (PE) enabling firm attachment in the phagophore membrane. Before 

this conjugation reaction mammalian ATG4A-D family proteases (yeast Atg4) cleave the 

ATG8s at their C-terminal exposing a Gly residue where the lipid is attached. The cleaved form 

is called form I, i.e., LC3-I, while the conjugated form is called form II, i.e., LC3-II.  The 

conjugation reaction requires ATG7 and ATG3 proteins as well as the mentioned ATG5-

ATG12:ATG16L E3 ligase (Mizushima et al., 2011). The lipidated II forms of ATG8s (i.e., 

LC3B-II) is located on both faces of the phagophore membrane.  Before or during fusion of the 

autophagosome with the lysosome(s) ATG4 proteases cleave ATG8s off the limiting outer 

membrane releasing form I ATG8s that can be lipidated and reused (Parzych and Klionsky, 

2014). The roles of the four different mammalian ATG4 proteases are not completely clarified. 

There is evidence that ATG4B is the dominant enzyme in the cleavage of full-length precursor 

ATG8s to form I while ATG4D has been suggested to be most important for the delipidation 

reaction (Tamargo-Gómez et al., 2021).  

1.5 ATG8 family proteins and their roles in autophagy 

Yeast and other fungal species have only a single Atg8 gene while animals, plants and some 

protists have several (Shpilka et al., 2011). The mammalian ATG8 protein family contains six 

members distributed into two subfamilies. These are the GABARAPs which includes 

GABARAP, GABARAPL1 and GABARAPL2 and the LC3s including LC3A, LC3B and 

LC3C (Shpilka et al., 2011). Studies in HeLa cells where all six ATG8 genes were knocked out 

showed that lipidated ATG8s are not absolutely required for autophagosome formation but is 

required for the fusion of the autophagosomes with lysosomes (Nguyen et al., 2016). However, 

loss of ATG8s hampered the process profoundly as smaller autophagosomes were formed and 

the rate of their formation was delayed. These observations are also supported from data coming 

from studies in C. elegans which has only two ATG8 homologs. Loss of the LC3 homolog 

LGG-2 is associated with formation of smaller autophagosomes, while the GABARAB 

homolog LGG-1 is essential for autophagosome formation and maturation (Wu et al., 2015). 

ATG8 proteins belong to a group of proteins that share a ubiquitin-like structure or UBL. They 

follow the same UBL fold (Figure 3). Although, in comparison with ubiquitin, ATG8 proteins’ 

structure have two extra N-terminal α-helices (Johansen and Lamark, 2020).      
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 Figure 3 Structural similarities between ubiquitin and GABARAP proteins. Red denotes α-helices, yellow β-

sheets and green loops. Adopted from (Johansen and Lamark, 2020).  

The degradation of a selected cargo requires the specific interaction between cargo-binding 

selective autophagy receptors (SARs), such as p62, NBR1 and TAX1BP1, and ATG8 proteins 

lipidated to the inner membrane of the phagophore. As described below, the interaction with 

ATG8 proteins is mediated by a LIR motif in the SAR, and this motif is found in all 

characterized SARs. The ATG8 proteins are this way working as a bridge between the cargo 

and the inner membrane (Fracchiolla et al., 2017; Johansen and Lamark, 2011). Lipidated 

ATG8 proteins work as a hook for all LIR-containing proteins located on both sides of the 

growing phagophore (Birgisdottir Å et al., 2013; Johansen and Lamark, 2020). Particularly 

GABARAP family members act as platforms on the outer side of the phagophore membrane 

for LIR-containing proteins that are involved in the initiation complex (ULK1, WIPI-2, 

ATG13, FIP200)(Alemu et al., 2012), and the PI3KC3 complex 1 (VPS34, Beclin1, ATG14L) 

(Birgisdottir Å et al., 2019; Johansen and Lamark, 2020; Xie et al., 2015). On the other side, 

proteins that work as SARs are located at the inner membrane. The role of ATG8 proteins is 

also extended to tasks related to the closure of phagophore, fusion with lysosomes and transport 

of autophagosomes (Johansen and Lamark, 2020; Kriegenburg et al., 2018). 

In the last years, the number of proteins that can interact with ATG8s has been increased 

(Marshall et al., 2019). A lot of those are LIR-containing proteins involved in the autophagic 
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machinery. For example, GAPARAP binds to ULK1 and activates it via a LIR motif  (Bento et 

al., 2016; Johansen and Lamark, 2020). This step is important for the induction of the 

autophagic machinery. Moreover, FYCO1 interacts with LC3 via a LIR motif. FYCO1 

mediates the kinesin-dependent movement from autophagosomes and late endosomes 

(Johansen and Lamark, 2020; Pankiv et al., 2010). Furthermore, p62\SQSTM1, the first 

discovered autophagic receptor, binds via LIR to LC3B and delivers the cargo for degradation. 

Historically, the LIR motif was mapped on p62 (Johansen and Lamark, 2020; Pankiv et al., 

2007).  The amino acid sequence of the LIR-containing proteins that allows the interaction with 

ATG8s is quite short, but it constitutes an evolutionary well-conserved motif. Based on more 

than 100 LIR motifs the core motif is W\F\Y-X-X-L\I\V (Johansen and Lamark, 2020; Marshall 

et al., 2019) (Figure 4). The aromatic residue (W/F/Y) and hydrophobic residue (L/I/V) interact 

with the two hydrophobic pockets (HP1 and HP2) in the LIR docking site (LDS) of ATG8s, 

respectively (Ichimura et al., 2008; Johansen et al., 2017; Noda et al., 2008). This form of LIR 

is called canonical LIR. 

 

 Figure 4 Sequence logos based on 100 different LIR motifs (Johansen and Lamark, 2020). From the 100 that 

were screened 48 LIRs had F in the first position, 42 had W, and 10 had a Y. 

 

 

Further structure studies showed that there are more LIR–containing proteins, where their LIR 

motif does not follow the canonical LIR motif pattern. Some do not even have an aromatic or 

an aliphatic residue or their LIR binding region is extended. The first protein that was reported 

to have an atypical\non-canonical LIR was NDP52 (von Muhlinen et al., 2012). Later more 

proteins have been discovered (Figure 5). Another example of a different type of LIR is found 

in the giant Ankyrins, AnkB and AnkG. These neuronal proteins form an extremely strong bond 
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with ATG8s. The bond is based on canonical LIR interaction and an extension of it (Li et al., 

2018). The strength of LIR binding interaction between Ankyrins, FAM134B and FYCO1, 

seems to be organized in two parts, the LIR core and the C-helix extension (Li et al., 2018). 

 

Figure 5 Amino acid sequence of extended non-canonical LIRs. These LIRs containing the LIR core as it has 
been described above and they are followed by an amphipathic C-helix (Li et al., 2018). 

In these canonical-extended LIRs, the presence of the C-helix is needed for the strong binding 

to ATG8 proteins. Analysis of AnkB, AnkG, FAM134B and FYCO1 LIR motif patterns lead 

to uncovering a generally extended LIR motif, D/E2-3X0-2ΦXXΨΧΧΧΕΨρρΨρρρΨ, where 

Φ, Ψ, ρ and X stand for aromatic, aliphatic, polar and any residues respectively (Li et al., 2018) 

(Figure 5).  

 

1.6 SAR-induced autophagosome formation 

The evolutionary adaptation of the autophagosome to tackle specific cargos in selective 

autophagy is an evolutionary survival adaptation that allows the cells both in basal and under 

stress conditions to selectively degrade targeted cargo. This mechanism can be found from yeast 

to humans. To target the correct cargo, this process requires the presence of specific scaffold 

proteins which are called selective autophagy receptors (SARs) (Johansen and Lamark, 2011; 

Kirkin and Rogov, 2019). The SARs, have the ability to bind both the cargo and lipidated ATG8 

proteins (Johansen and Lamark, 2020). The binding to ATG8s occurs through LIR motif 

(Pankiv et al., 2007). For one protein to be classified as a SAR,  it has first to fulfil some basic 

criteria (Lamark et al., 2017): 

• It should contain at least one LIR motif in its sequence, so it can bind to the lipidated 

form of ATG8 

• It should be able to identify the selected cargo and bind directly to it. 
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• It should be degraded together with the cargo through autophagy. 

 

Other soluble SARs are NBR1, NDP52 (also known as CALCOCO2), Optineurin (OPTN), 

TAX1BP1, TRIM5α, NCOA4, STBD1 and NUFIP1  (Dowdle et al., 2014; Jiang et al., 2010; 

Johansen and Lamark, 2020; Kimura et al., 2015; Kirkin et al., 2009b; Mandell et al., 2014; 

Newman et al., 2012; Thurston et al., 2009; Wyant et al., 2018). Recently, CALCOCO1 that is 

evolutionary related to TAX1BP1 and NDP52 (CALCOCO2), was identified by our group as 

a soluble SAR that mediates both ER-phagy and Golgiphagy (Nthiga et al., 2020; Nthiga et al., 

2021) 

Common among most of the different soluble SARs is the ability to polymerize or oligomerize 

together with the ability to identify and bind ubiquitylated cargos. There are also membrane-

bound SARs that are involved in mitophagy, ERphagy and pexophagy (Kirkin and Rogov, 

2019; Lamark and Johansen, 2021). Most of these act in a ubiquitin-independent manner.  

A protein that works as SAR will deliver the cargo to the inner membrane of the phagophore 

allowing the cargo to be located inside the forming autophagosome (Lamark and Johansen, 

2021; Mijaljica et al., 2012).  

 

1.7 The role of p62/SQSTM1-like receptors (SLRs) in autophagy  

The most studied SLRs, apart from p62/SQSTM1, are NBR1, TAX1BP1, CALCOCO2\NDP52 

and OPTN (Mandell et al., 2014) (Figure 6). The name of this group containing the main 

autophagic receptors (p62, NBR1, NDP52, TAX1BP1 and OPTN) was given by Vojo Deretic 

(Deretic, 2012). The main role of SLRs in autophagy is to recognize ubiquitinated cargo and 

recruit the autophagic machinery for cargo degradation. 
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Figure 6 Domain architecture of SLRs. The most well-known and studied SLRs are p62, NBR1, NDP52, TAX1BP 

and OPTN (optineurin) in mammals. Functional LIR (LC3 interaction region) motifs, oligomerization domains 

PB1 (phox\Bem1p) and\or ZZ (ZZ-type zinc finger)  and ubiquitin-binding domains UBA (Ubiquitin-associated) 

or ZF (zinc finger)  are found in all of them (Birgisdottir Å et al., 2013). NDP52 and TAX1BP1 harbour a skeletal 

muscle and kidney-enriched inositol phosphatase (SKIP) carboxyl homology domain (SKICH). The linker 

sequence at the end of the SKICH domain contains a LIR responsible for interaction with the ATG8 family. NBR1 

in addition has a domain that contains four tryptophans, FW, which allows NBR1 to interact with MAP1B 

(Marchbank et al., 2012) 

Not all the SLRs work together at the same time or under the same conditions, but how they 

collaborate in selective autophagy is only partially understood. For example, NBR1 is not 

dependent on p62 for its degradation and vice versa. Stress stimuli, though, can drive NBR1 to 

interact with p62 and be a part of the p62 bodies via PB1 domain interactions. These proteins 

are then degraded together (Kirkin et al., 2009a). NBR1 and p62 have a similar overall domain 

architecture with an N-terminal PB1 domain followed by a ZZ-type zinc finger domain, a LIR 

domain and a C-terminal UBA domain (Figure 6). The most well-known autophagy receptor is 

p62\SQSTM1 (Bjørkøy et al., 2005; Pankiv et al., 2007). p62 is a 440 amino acid long protein, 

which can act both as a scaffold protein in signalling pathways and as a selective autophagy 

receptor.  NBR1 is conserved both in plants and in animals, while SQSTM1 is found only in 

animals (Svenning et al., 2011). Both NDP52 and TAX1BP1 contain a SKICH domain and a 

LIR motif in their N-terminal part, followed by a coiled-coil domain and a zinc finger domain 

that allows interaction with ubiquitin (Johansen and Lamark, 2020; Tumbarello et al., 2015; 

Yang et al., 2014) (Figure 6). These two proteins are related by evolution (Yang et al., 2014). 

OPTN consists of several domains: a LIR motif, multiple coiled-coil motifs, and a ubiquitin-

binding domain at the C-terminal, which is a Zinc finger same as NDP52 and TAX1BP1 (Ali 

et al., 2019) (Figure 6). OPTN interacts with itself to form homo-oligomers (Gao et al., 2014). 
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These three SLRs are mostly involved in mitophagy and xenophagy processes (Johansen and 

Lamark, 2020; Thurston et al., 2009; Wild et al., 2011).  

1.7.1 PB1 domain of p62 (amino acid residues 3-102) 

In general, there are 3 different types of PB1 domains. Type A is acidic and contains OPCA 

motif (Jakobi et al., 2020; Lamark et al., 2003). Type B is basic, and the third type is a mix of 

both types called type AB (Jakobi et al., 2020). Plant Nbr1, p62 and TGF PB1 domains are all 

type AB (Jakobi et al., 2020), while the PB1 in human NBR1 is of type A.   

 

Figure 7 Main structural p62 domains. The N-terminal PB1 domain is responsible for homo- and 
heterodimerization of p62, followed by a ZZ-type zinc finger domain. The C-terminal UBA domain binds to 
ubiquitin and is reported to be able to dimerize. The LIR and KIR motifs lie close to each other in a conserved 
region. The red circle indicates the domain that the text focuses on. 

The PB1 domain allows p62 to self-interact and to form polymeric filamentous assemblies 

(Jakobi et al., 2020; Lamark et al., 2003) (Figure 7). There are residues in the PB1 domain that 

play an essential role in this process because they play an important role in electrostatic 

interactions between the PB1 domain and the OPCA motif in another PB1 domain (Lamark et 

al., 2003). Single mutations of K7, R21 and D69 results in reduced ability or inability of p62 to 

self-interact (Lamark et al., 2003). The R21A mutant renders p62 monomeric (Jakobi et al., 

2020). The K7A mutation also prevents the binding of NBR1 to p62 (Lamark et al., 2003), 

since the PB1 domain also is responsible for the heterodimerization of p62 together with NBR1 

(Lamark et al., 2017). The role of their interaction is still not fully understood. Homologs of 

NBR1 are found through the whole eukaryotic kingdom while p62 appeared in early metazoans 

(Svenning et al., 2011).  

In mammalian cells, several proteins have PB1 domains with different functions and 

electrostatic potentials (Figure 8). 
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Figure 8 Electrostatic surface potentials of the mammalians PB1 domains (Lamark et al., 2003). Molecular 
surfaces and electrostatic potentials were calculated for 11 different proteins. TFG and p62 are quite similar in 
their electrostatic potentials. Blue are the proteins with the higher electrostatic potential e>5 kcal\electron units 
and red is with the lowest e<-5 kcal\electron units. The calculation method was REBEL. 

 

1.7.2 ZZ-type domain of p62 (amino acid residues 122-167) 

The ZZ-type zinc finger domain is a type of protein domain that was named because of its 

ability to bind two zinc ions (Ponting et al., 1996). These domains contain 4-6 Cys residues that 

participate in zinc binding (plus additional Ser/His residues), including a Cys-X2-Cys motif 

found in other zinc finger domains. These zinc fingers are thought to be involved in protein-

protein interactions. The structure of the ZZ domain shows that it belongs to the family of cross-

brace zinc finger motifs that include the PHD, RING, and FYVE domains (Legge et al., 2004).  

 

Figure 9 Main structural p62 domains. Cartoon of the 4 main domains on the p62 sequence. The red circle 
indicated where the focus is. 

The autophagic function of p62 is strictly dependent on the PB1 domain, the LIR motif and the 

UBA domain. Interestingly, recent studies showed that the formation and degradation of p62 

bodies may be induced by the binding of the ZZ domain with an N- terminal degradation signal, 

which is called N-degron (Varshavsky, 2011; Zhang et al., 2018). The ZZ-type zinc-finger of 

p62 is capable of recognizing the N-terminal arginine residue degron (Nt-R)(Zhang et al., 2019) 
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(Figure 9). The Nt-R signal can be produced either through proteolytic cleavage of the peptide 

bond or enzymatically added by Arg-tRNA transferases. Despite the significance of p62 for the 

degradation of arginylated substrates, the exact molecular mechanism underlying its interaction 

with Nt-R and how that affects autophagy remains uncertain (Zhang et al., 2019). It has been 

shown that loss of D169, D147 and D149 residue affects the interaction of p62 with N-degrons 

(Zhang et al., 2018).  

1.7.3 Conserved LIR-KIR region of p62 (amino acid residues 303-370) 

The FIR, LIR and KIR motifs in p62 are responsible for the interaction with FIP200, ATG8 

proteins and KEAP1, respectively. Here, the term conserved region is used to refer to FIR, LIR 

and KIR motifs together. It has been shown from different studies that the overlap between 

these motifs precludes p62 from interacting with more than one of these proteins at the time 

(Jain et al., 2010; Turco et al., 2019). However, p62 is often polymeric which could enable the 

engagement of several of these interactors on a p62 filament. Different mutations or deletions 

in the amino acid sequence in the conserved region result in loss of binding between p62 and\or 

ATG8s, KEAP1 and FIP200 protein (Jain et al., 2010; Omar et al., 2021). Phosphorylation of 

p62  on residues  S349, T350, S365, S366, S370 and T375 leads to the increase of the binding 

affinity between FIP200 and p62 (Turco et al., 2019). It is also known that phosphorylation of 

S439 increases the binding of p62 with KEAP1 (Ichimura et al., 2013). In another paper, they 

showed that L341V mutation of p62 blocks the binding between ATG8s and FIP200 (Omar et 

al., 2021).  

FIP200 is a FAK family–interacting protein of 200 kD (FIP200). It is also called RB1CC1 

(Hara et al., 2008). FIP200 is part of the ULK complex together with UKL1\ULK2, ATG13 

and ATG101. FIP200 has been found in the nucleus (Chano et al., 2002), the cytoplasm (Ueda 

et al., 2000) and at the cell periphery (Abbi et al., 2002). The role of FIP200 in autophagy was 

investigated when it was found that it is colocalized both with ATG16L and ULK1 after 

starvation (Hara et al., 2008). The role of FIP200 is downstream of the mTORC1 regulation 

and it is mostly associated with the ULK puncta formation and ULK1 phosphorylation (Hara 

et al., 2008). It has been shown that the FIP200-p62 interaction is crucial for the organization 

of the autophagic machinery (Turco E. , 2020). In a previous paper from the same group the 

propose a model of how the FIP200 Claw domain was binding to p62 and how this interaction 

between the p62 ubiquitin positive condensates and FIP200 promotes the formation of the 
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autophagosome (Turco et al., 2019). The FIP200-p62 interaction may be the signal for 

activation of ATG13 phase separation and localization of ULK1 at ubiquitin-positive 

condensates to initiate autophagosome formation (Fujioka et al., 2020; Turco et al., 2019). 

According to their model p62 binds first to the ubiquitinated cargo and creates p62 condensates. 

The p62- and ubiquitin-positive condensates bind to the autophagy machinery. This interaction 

is mediated by FIP200. In the next step, the conjugation of LC3B-II with the isolation 

membrane will cause the switch between a FIP200-p62 interaction to a LC3B-II-p62 

interaction. As a result, FIP200 together with the initiation autophagic machinery will be 

discarded and replaced by the LC3B conjugation system (Turco et al., 2019). 

Another important link between FIP200 and p62 involves TBK1. TBK1 is a well-studied kinase 

and it has been found to phosphorylate many autophagic receptors, such as p62 (Pilli et al., 

2012), OPTN (Richter et al., 2016), NDP52 and TAX1BP1 (Fu et al., 2018).  Depletion of 

FIP200 causes a TAX1BP1-dependent accumulation of activated TBK1 (phosho-S172) in 

aggregates/condensates containing p62 and TAX1BP1. FIP200 regulates the formation of these 

TBK1-p62 aggregates. However, this regulation occurs independently of the autophagy 

deficiency caused by knocking out FIP200 (Schlütermann et al., 2021). 

 The LIR-KIR box is corresponding to the sequence before the LIR motif (336-341residues) 

and after the KIR motif (347-352 residues), because it is conserved between different species 

(Figure 10).  
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Figure 10 Alignment between different species showing the LIR-KIR box. The alignment is made by using the 
FASTA format from Uniprot, for each p62 protein. The species are shown with their common names, 
while the Uniprot code for each of them is in parenthesis. A cladogram shows the evolution of p62 protein 
sequences between these species.  

It is a way to refer to both these two motifs together (Figure 11). The LIR motif on p62 was 

initially mapped to residues 321-349 (Pankiv et al., 2007). The structures of p62 bound to LC3B 

and yeast Atg19 bound to Atg8 revealed a common W-x-x-L motif (x = any amino acid) 

(Ichimura et al., 2008; Noda et al., 2008) and the importance of the acidic residues N-terminal 

to the core of the DDDWTHL LIR motif of p62 was verified by alanine substitutions (Ichimura 

et al., 2008; Pankiv et al., 2007). The LIR motif of p62 presents as an extended β-strand that 

creates a β-sheet with the β2 strand of LC3B (Birgisdottir Å et al., 2013). In this LIR docking 

site, two hydrophobic pockets HP1 and HP2 in the UBL domain of LC3 accommodate the side 

chains of the W and L residues. The two pockets are located on the opposite side of the 

hydrophobic patch (L8-I44-V70) of ubiquitin.  

 

Figure 11 Main structural p62 domains. Cartoon of the 4 main regions on p62 sequence. The red circle is showing 
which domain the focus is on. 
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Electrostatic interactions, which involve two of the three aspartic acid residues of the LIR motif 

and basic residues in the N-terminal arm and UBL domain of LC3 (R10, R11, K49 and K50), 

are also important for the interaction between p62 and LC3 (Birgisdottir Å et al., 2013; Ichimura 

et al., 2008). 

The KIR motif in p62 is located immediately after the LIR and was mapped to residues 347-

352 of p62 (Jain et al., 2010). Inhibition of the interaction between KEAP1 and NRF2 leads to 

nuclear translocation of NRF2 with the resulting transcription of genes activated by oxidative 

stress stimuli (Tonelli et al., 2018). KIR is required for p62 to stabilize NRF2, and inhibition of 

KEAP1 by p62 occurs from a cytoplasmic location within the cell. The LIR and KIR motifs 

cannot be engaged at the same time by LC3 and KEAP1 since there is an overlap in the p62 

sequence between these two motifs. However, p62 is forming polymers enabling different p62 

units in the polymer to interact with ATG8s or KEAP1. The interaction between KEAP1 and 

p62 can lead to accumulation of KEAP1 in p62 bodies, which is followed by autophagic 

degradation of KEAP1 mediated by p62-LC3B interaction (Jain et al., 2010).   

 

1.7.4 The UBA domain of p62 (amino acid residues 389-434) 

 In the known mechanism, the UBA domain, at the C-terminal, captures ubiquitinated proteins, 

and the PB1 domain at the N terminus of p62 induces the formation of p62 bodies through its 

self-oligomerizing nature (Figure 12). The p62 bodies subsequently recruit core autophagy 

components for phagophore formation on the ubiquitinated cargo facilitated strongly by the 

interaction between the LIR of p62 and LC3B at the phagophore membrane ensuring efficient 

encapsulation of the cargo into an autophagosome (Johansen and Lamark, 2020; Liu et al., 

2016).  

 

Figure 12 Main structural p62 domains. Cartoon of the main domains on p62 sequence. The red cycle indicates 
in which domain is the focus on. 
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Generally, p62 has a low affinity for ubiquitin. p62 UBA differs from other UBA domains 

because it allows dimerization between UBA domains and it is a unique dimerization mode 

among the different UBA domains (Isogai et al., 2011; Long et al., 2010). NMR data reveal 

that the binding mode between the p62 UBA domain and ubiquitin is the same as it was seen 

in canonical UBA domains (Isogai et al., 2011). However, only the monomeric p62 UBA 

domain is observed to bind ubiquitin. Dimerization of the p62 UBA domain inhibits the binding 

to ubiquitin. The C-terminal tail (435-440) is essential for dimer formation but dispensable for 

ubiquitin-binding (Isogai et al., 2011). It appears that this is a self-regulation mechanism. The 

affinity for ubiquitin can be changed when post translational modifications occur in the UBA 

domain, which prevent dimerization. At this point, it should be clear that UBA ubiquitin binding 

is different from ubiquitination of residues in the UBA domain. Based on the literature there 

are two Lysines located in and after the  p62 UBA domain that can be either ubiquitinated or 

acetylated and these residues are K420 and K435 (You et al., 2019b). Acetylation of these two 

residues increases the ability of p62 to bind to ubiquitin (Matsumoto et al., 2011; You et al., 

2019b). Moreover, ubiquitination of K420 residue in the UBA domain by KEAP1-Cul3 

promotes the formation of p62 condensates (Lee et al., 2017). Furthermore, deubiquitylation of 

K420 residue by USP8 modulates negatively the autophagic degradation of p62. 

Deubiquitylation of p62 K420 residue appears to prevent p62 to be degraded by selective 

autophagy (Peng et al., 2020). Phosphorylation of S403 residue is not increasing the ubiquitin-

binding of p62 but also promotes the phase separation but it is appeared to allow p62 to form 

gel-like structures (Kageyama et al., 2021; Matsumoto et al., 2011). See section 1.8.3 for the 

description of PTMs affecting the function of the UBA domain of p62.  

1.7.5 p62 and diseases associated with the UBA domain 

Autophagy is a cellular process associated with the lysosomal degradation of intracellular 

components and dysfunctional organelles (Dikic and Elazar, 2018). The last two decades have 

seen increased interest in identifying the roles of autophagy in ageing, neurodegenerative 

disorders and other pathophysiology’s. Autophagy mutants give a poor prognosis for the 

development of neurodegenerative diseases (Braak et al., 2011) such as Alzheimer’s disease, 

ALS (amyotrophic lateral sclerosis) and Parkinson’s disease. Mutations in p62 are linked to 

hereditary neurodegenerative diseases including frontotemporal lobar degeneration 3 (FTLD3), 

ALS and Paget’s bone disease 3 (PBD3).  
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Adult-onset Paget’s disease of bone (PD) has been reported as the second most widespread 

metabolic bone condition after osteoporosis. PD of bone has a strong genetic element with 

family history being noted in 10–20% of cases (Tuck et al., 2017). There is a strong genetic 

link between the condition and mutations affecting the p62/SQSTM1 gene. Recently SQSTM1 

mutations have also been reported in a small number of patients with amyotrophic lateral 

sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), neurodegenerative disorders. 

Although several SQSTM1 mutations are common to both ALS/FTLD and PDB, many are 

ALS/FTLD-specific (Foster et al., 2021). Frontotemporal lobar degeneration (FTLD) is the 

second most common form of dementia after Alzheimer's disease (Onyike and Diehl-Schmid, 

2013). Almost all the mutations that are associated with PDB are located in the UBA domain 

of p62. FTLD is associated with mutations that are located all over the p62 sequence. Some of 

them interfere with the ATG8 or KEAP1 binding (Omar et al., 2021). The mutations that occur 

in both diseases are affecting residues 387, 392 and 425 (Falchetti et al., 2004; Fecto et al., 

2011) and the common element between them is that all are located in the UBA domain, and 

the main effect is loss of ubiquitin-binding.  

Total loss of the SQSTM1 gene is associated with a rare, severe childhood- or adolescence-

onset neurodegenerative disorder (Haack et al., 2016). In the pioneer study, 9 individuals 

lacking the SQSTM1 gene with ages between 15 to 35, coming from different families all 

showed gait abnormalities, ataxia mostly of the upper limbs and dysarthria. Seven out of nine 

also showed dystonia, vertical gaze palsy and mild cognitive decline. Half of the patients shared 

cerebellar atrophy, while 25% shared signal abnormalities in basal ganglia with iron 

accumulation (Haack et al., 2016). Based on the role of SQSTM1/p62 as a crucial player in a 

variety of vital cellular processes, it was surprising that its loss can be compatible with the 

survival of people above age 40. However, their functionality and quality of life are 

dramatically impaired. p62 functions are of particular importance in the brain, where the 

removal of damaged organelles and misfolded proteins by selective autophagy is crucial for 

healthy ageing and avoidance of neurodegenerative disease. 

 

1.8 Liquid-liquid phase separation 

During the beginning of our studies in biology, we learned that cells are made up of different 

compartments surrounded by membranes. Later on, we learned about Cajal bodies, stress 
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granules, P bodies and perhaps promyelocytic leukemia (PML) bodies. All these different kinds 

of bodies are not membrane-bound (Sun et al., 2018) (Figure 13). These membraneless 

organelles, bodies, or condensates are created by liquid-liquid phase separation (LLPS) (Dao 

and Castañeda, 2020). 

 

Figure 13 Membraneless organelle formation. Membranelles organelles exist both in the nucleus and the cytosol. 
Proteins with intrinsically disordered region can form multivalent interactions and at a critical concentration they 
undergo LLPS. The main protein is in the interior of the membraneless organelles and acts as a platform for 
protein-protein interactions. The main protein is oligomerized to create the phase separation assembly. There is 
a selectivity between the protein interactors. Only the proteins from the cytosol that can interact with the proteins 
in the interior are allowed into the condensates (Crabtree and Nott, 2018).  

Membranelles organelles function as a house of reactions. They allow selective entry of 

enzymes and substrates to carry out various cellular functions such as i) allow cells to 

compartmentalize and bring compounds together to control reaction rates that would be less 

efficient or not possible at all in the cytoplasm. It also works as a mechanism to isolate toxic 

agents. The structures are highly dynamic and range in size from 0.1–3 micrometers in 

diameter, which is far bigger than ribosomes. They are usually round but can be found in all 

shapes, even as filaments (Sehgal et al., 2020). For one protein to be able to create membranelles 

organelles, it has to fulfil some criteria. The phase separation is driven by molecules which 

work as scaffold proteins (Alberti et al., 2019).  

LLPS is triggered by multivalent weak interactions created by intrinsically disordered regions 

(IDRs). LLPS is often a metastable state. Some proteins can continue further and go through 

gel-like phase separation and solid-like phase separation (Figure 14). Characteristics of these 

are the following: 
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In gel-like phase separation, the components of the complex are held together with strong 

interactions, but the condensates are still permeable to other proteins. There is limited mobility 

between the complex and the surrounding environment (Noda et al., 2020). They are formed 

by prion-like domains, proteins that  are prone to nucleation- heterotypic polymerization. Some 

examples of this category are nuclear pore complex, hnRNPA1 and  FUS protein (Noda et al., 

2020). Proteins that are in this stage can go back to the LLPS or forward and undergo solid-like 

phase separation.  

In solid-like phase separation, the interacting proteins are held together with very strong 

interactions and there is almost no interactional mobility with the surrounding environment 

(Noda et al., 2020). Proteins that are found in this stage can easily be miscalled aggregates.  

 

Figure 14 Morphological differences between condensates. Protein condensates formed by liquid-like phase-
separation can be very dynamic, more gel-like and less dynamic, like p62 condensates often are, and they can also 
transition into a more solid-like, aggregated state. The two first categories can reversibly interchange while when 
a solid-like stable state has occurred this situation is irreversible. The solid-like aggregate may represent a non-
degradable structure resulting in a pathological state (Noda et al., 2020).  

The term aggregate should be used only for misfolded proteins which aggregates into a dead-

end biological process (Wang and Zhang, 2019) 

1.8.1 Phase separation in autophagy 

As the knowledge about LLPS is increasing, more and more connections are discovered 

between LLPS and the regulation of autophagy. The connections can be direct and indirect. An 

example of a direct connection between LLPS and autophagy is the formation of the single PAS 

in yeast and mPAS in mammalian cells (Noda et al., 2020). In yeast, the TORC1 complex 

regulates the formation of the PAS. Under normal conditions, the formation of PAS is inhibited 

by the phosphorylated Atg13. TORC1 is responsible for Atg13 phosphorylation, but under 

starvation conditions when TORC1 is not anymore active, then Atg13 is dephosphorylated and 
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it can activate the Atg1 complex (Memisoglu et al., 2019). Dimerization of Atg13 with Atg17 

is the initiative signal for phase separation of the Atg1 complex (Fujioka et al., 2020). 

Interactions between Atg13 and vacuolar membrane protein 8 (Vac8) establish the position 

where PAS will be created (Fujioka et al., 2020). All yeast Atg proteins downstream of the 

Atg1 complex are employed to PAS for starting the induction of autophagosome formation 

(Suzuki et al., 2007).  

1.8.2 Liquid-liquid phase separation of p62 

Under basal conditions (full media) p62 is located both in the cytosol as a diffusely localized 

population and in p62 bodies. In physics, the state of materials with the higher entropy (lack of 

order or predictability) is the gas phase. In the cells, it is not possible to have a gas phase for 

the proteins, so this “lack of order” phase matches most closely with the diffuse protein fraction 

(Sehgal et al., 2020). For a diffuse fraction of the protein to undergo LLPS, it requires to reduce 

entropy (Hyman et al., 2014). So, the protein should be more stabilized. In the case of p62, this 

state can be achieved by two different procedures (Figure 15). From one side, NBR1 interacts 

with p62 via the PB1 domain, stabilizing the N-terminal of p62 by regulating the length of the 

p62 polymeric filaments (Wang and Zhang, 2019). On the other side, p62 binding to ubiquitin 

via the UBA domain may stabilize the C-terminal of p62. The formation of p62 bodies is 

promoted by post-translational modification that occurs in the UBA domain, for example, 

phosphorylation of S403 and S407, and ubiquitination of K420 (Wang and Zhang, 2019). Both 

these modifications result in increased affinity of the UBA domain towards ubiquitin, thus 

facilitating efficient cargo recognition. 

 

Figure 15 Phase 
separation of p62. The 
initiation step for phase 
separation of p62 to occur  
is binding to ubiquitin via 
the UBA domain. This 
event together with the 
oligomerization of p62 via 
the PB1 domain is the main 
event of the process. 

Ubiquitinated proteins act as cargo for degradation and they can be recognized and bound to p62 via the UBA 
domain. The binding of p62 with the cargo promotes the initiation of the phagophore formation. LC3B helps 
connect the p62 bodies to the phagophore. Lipidated LC3B works as a bridge. As a result, the phagophore forms 
on and enwraps p62 bodies allowing p62 bodies to be degraded by selective autophagy (Sun et al., 2020). 
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The LLPS have separated structures held together with weak interactions and most likely have 

a rounded shape (p62 bodies) and they perform slow fusion and fission but high rates of 

exchange with the surrounding environment. They are characterized by high mobility between 

the interacting proteins (Hyman et al., 2014; Sehgal et al., 2020). After p62 binds to LC3B and 

the formation of the double autophagic membrane is initiated, then the term p62 bodies cannot 

be used anymore. After that stage, we refer to them as phagophores or in later steps 

autophagosomes.  

1.8.3  post-translational modifications of p62 

Post-translational modifications (PTMs) of proteins tremendously increases the complexity of 

the proteome making the proteome much more complex than the transcriptome. PTMs are 

covalent chemical modifications often crucial for the function of the proteins. For example, the 

activity of most protein kinases is regulated by phosphorylations at the activation loop in their 

active sites. The subcellular localizations and protein-protein interaction capabilities of proteins 

may be regulated by PTMs, as well as their interaction with nucleic acids, lipids and cofactors. 

Proteins can be modified by PTMs anytime during their "life cycle". The most common PTMs 

are phosphorylations, ubiquitination, hydroxylation, lipidation, SUMOylation, NEDDylation, 

acetylation, methylation, glycosylation, disulfide bond formation and protein cleavage. Except 

for the latter, almost all PTMs are reversible. For many types of PTMs we have pairs of 

“writers” and “erasers” like kinases and phosphatases, acetylases and deacetylases, methylases 

and de-methylases, ubiquitin E3 ligases and de-ubiquitinases. A single protein may have 

multiple PTMs, and these may change over time. Many proteins are modified by PTMs 

following translation to stabilize their folding, to regulate the levels of the protein or to allow 

the protein to move to distinct cellular compartments (e.g., nucleus, membrane) (Walsh and 

Roberts, 2006). Other modifications that switch protein status from active to inactive, usually 

take place after the modifications that regulated the localization and the folding of a protein. 

Proteins that become tagged with ubiquitin chains are often destined to degradation, either via 

the proteasome or autophagy. Thus, proteins tagged with K48 ubiquitin chains will preferably 

be degraded by the proteasome (Grice and Nathan, 2016).  

Protein kinases and phosphatases target the specific amino acid residues Y, S or T. So far, 

researchers have found more than 400 different types of PTMs (Khoury et al., 2011; Ramazi 

and Zahiri, 2021) affecting a variety of protein functions. According to the dbPTM (Huang et 
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al., 2019) which is one of the most detailed PTM databases, 24 different  PTMs can occur. 

Moreover, this database has identified the 80 most modified sites. The most common 

modifications and the most likely modified amino acid residues are shown in Figure 16. 

 

Figure 16 The most common PTMs and the amino acids that are modified based on the dbPTM databank (October 
2020). All frequencies are shown on a log scale (Ramazi and Zahiri, 2021). 

For p62, phosphorylation, acetylation and ubiquitination have been reported affecting many 

sites of the protein (PhosphoSitePlus, 2003).  Several phosphorylation sites on p62 have already 

been studied: 

• Phosphorylation by CDK1 on S272 and T269 residues controls the timely transit of cells 

through mitosis and tumor cell proliferation (Linares et al., 2011). The p62 

phosphorylation by CDK1 in the stage of mitosis is essential for the stability of the 

cyclin B levels and maintenance of CDK1 activity during mitosis. Lack of CDK1-

mediated phosphorylation of p62 at S272 and T269 make the cells exit faster from 

mitosis. Upon transformation by Ras cell proliferation and the tumorigenic phenotype 

is enhanced when p62 is not phosphorylated by CDK1 (Linares et al., 2011).  

• Phosphorylation of the S349 residue promotes the binding of p62 to KEAP1 and 

recruitment of the associated E3 ligase Cullin-3 (Ichimura et al., 2013). This results in 

the activation of the NRF2 signaling pathway  (Jain et al., 2010; Komatsu et al., 2010). 

This leads to a strong increase in p62 transcription that facilitates the formation of p62 

bodies.  
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• Phosphorylation of S403 by TBK1 strongly increases the binding affinity of p62 for 

ubiquitin (Matsumoto et al., 2015; Pilli et al., 2012). Phosphorylation of S403 or S407 

by ULK1 has a similar effect (Lim et al., 2015; Ro et al., 2014). The phosphorylation 

of these sites is essential in p62 mediated selective autophagy of ubiquitinated cargos. 

The phosphorylation of S403 by TBK1 can also work as a link between p62 mediated 

selective autophagy and immune signaling, where p62 is shown to attenuate signaling 

by degrading signaling proteins like STING (Prabakaran et al., 2018).  

p62 contains 20 different K residues that can be either acetylated or ubiquitinated: 

• Ubiquitination of K7 by TRIM21 inhibits p62 oligomerization and thereby the 

formation of p62 bodies, and it also inhibits the interaction of p62 with NBR1 (Pan 

et al., 2016). 

• Ubiquitination of K91 and K189 by RNF166 catalyzes K29- and K33-linked 

polyubiquitination of p62 (Heath et al., 2016). 

• The UBA domain in p62 can dimerize, and this is shown to ubiquitin binding of 

p62 (Isogai et al., 2011; Long et al., 2010). Ubiquitination of K420 by recruited 

E2 ligases UBE2D2 and UBE2D3 (Peng et al., 2017), or by recruited KEAP1-

Cullin-3 complexes (Lee et al., 2017) prevents the formation of UBA dimers. This 

increases ubiquitin-binding and the formation of p62 bodies.   

• Acetylation of K420 and K435 by TIP60 similarly inhibits the formation of UBA 

dimers and promotes the binding of p62 to ubiquitin (You et al., 2019a). 
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2. Aim of the study 

Th a project aimed to investigate the structure of p62 bodies and the roles of different types of 

PTMs in regulating their formation and degradation under basal and stress conditions. In our 

study, we chose to focus on specific domains and motifs and the roles displayed by them in 

selective autophagy. The aim of the study was to find out if helical filaments formed in vitro 

by the PB1 domain are also formed in cells and to test whether these filamentous structures are 

essential for the formation of p62 bodies and p62 mediated selective autophagy. The aim of 

study II was to test if LC3B is required for the degradation of p62 by selective autophagy, or if 

other ATG8 family proteins can also be used. The aim of study III was to explore the roles of 

ubiquitination of specific K residues in p62. In particular, we focused on the effects on the 

interaction of p62 with ubiquitin, and how this is associated with the formation and turnover of 

p62 bodies. During this work, acetylation of K420 and K435 was reported to play an essential 

role in promoting ubiquitin-binding via the UBA domain, and we, therefore, extended our study 

to include acetylation of these two residues.  
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3.  Summary of the papers 

3.1 Paper I 

In this study, we investigated the role of the PB1 domain of p62 in the formation of filamentous 

p62 assemblies. Three PB1 containing proteins with the ability to polymerize were analyzed by 

cryo-electron microscopy, i. e. TFG-1, plant Nbr1 and p62. We found that the formation of 

filamentous oligomers or polymers of p62 is needed both for the creation of p62 bodies and for 

the degradation of p62 by selective autophagy. Chimera p62 constructs having the native PB1 

domain replaced by that of TFG-1 formed filaments, although these filaments displayed a 

different helical architecture than those formed by wt p62. The chimera constructs accumulated 

in bodies when expressed in cells, but the diffuse fraction was higher, and the bodies were 

smaller in size than seen for wt p62. The chimera constructs were also degraded by selective 

autophagy, but the p62 cargo KEAP1 was not degraded in cells expressing p62 chimera. 

KEAP1 was efficiently recruited to p62 bodies formed by either wt p62 or chimera constructs, 

but only wt p62 delivered KEAP1 for degradation by selective autophagy. This indicates that 

the native PB1 domain of p62 forms filamentous structures that are functionally adapted to the 

role p62 has in degrading cargo containing condensates by selective autophagy.  

3.2 Paper II 

In this study, we investigated the role of the LIR motif of p62. The LIR motif allows p62 to 

interact with ATG8 family proteins. This interaction is essential for the degradation of p62 or 

p62-cargo complexes by autophagy, because it is responsible for the docking of p62 to the inner 

membrane of the phagophore. The main interaction partner of p62 among the six mammalian 

ATG8 proteins is probably LC3B, but the potential use of other ATG8 proteins instead of LC3B 

has not been investigated. We created two chimera p62 proteins where the LIR motif of p62 

was replaced by the LIR motif from ULK1 or FYCO1, respectively. The LIR motif in ULK1 

has a binding preference for the GABARAP subfamily, while the motif in FYCO1 has a binding 

preference for LC3A and -B. An exchange of the p62 LIR sequence affected dramatically the 

ability of p62 to bind to KEAP1, even though the KIR motif was conserved in the chimera 

constructs. The LIR exchange did not prevent the formation of p62 bodies or the degradation 

of p62 by autophagy under basal conditions. Surprisingly, the only process that was disturbed 

by the p62 LIR exchange was the autophagic degradation in response to starvation. Chimera 

constructs were not degraded by starvation induced autophagy. To summarize, our findings 
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support that the interaction with LC3B is not crucial for p62 phase separation or degradation of 

p62 under basal conditions. However, our data seems to indicate that the specific interaction of 

p62 with LC3B may have a key role in starvation-induced autophagy of p62. 

3.3 Paper III 

In this study, we investigated the role of PTMs in regulating p62, and our main focus was on 

C-terminal PTMs affecting ubiquitin binding. Ubiquitin binding of p62 is inhibited by the 

formation of UBA dimers, and acetylation of K420 and K435 or ubiquitination of K420 is 

previously shown to prevent the formation of UBA dimers. In addition, phosphorylation of 

S403 or S407 is known to increase the affinity of the UBA domain for ubiquitin. To investigate 

the importance of PTMs on lysines, we expressed point mutants of p62 where lysine residues 

were replaced by arginine or glutamate residues. There are 19 lysines in p62. When mutating 

all these residues except for K7 that is required for PB1 mediated polymerization, p62 was still 

able to form p62 bodies, strongly indicating that ubiquitination or acetylation of p62 is not 

essential for the formation of p62 bodies. However, the bodies formed by p62 lacking all lysine 

residues except for K7 displayed a different and more clustered morphology, suggesting that 

there is a role of PTMs in regulating the morphology of the structures. The use of K420R or 

K435R mutated p62 constructs revealed that a modification of only one of these two residues 

dramatically affects the number and morphology of p62 bodies. There were a reduced number 

of p62 bodies in cells carrying the K435R mutation and more p62 bodies in cells carrying the 

K420R mutation. p62 constructs carrying both these mutations were surprisingly similar to wt 

p62, and this supports the conclusion that there must be some type of crosstalk between 

modifications affecting these two sites. Different stress conditions induced by TSA or 

sulforaphane were used to analyze the formation of the p62 bodies. The use of sulforaphane 

supported the importance of the K420 residue for the formation of p62 bodies upon oxidative 

stress. Our data also support previous data that acetylation plays an important role in regulating 

autophagy of p62 and that the acetylation of K435 is important for the degradation of the diffuse 

fraction of p62.  
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4.  Discussion 

The three manuscripts in this thesis focus on three domains that are all important for selective 

autophagy mediated by p62; II e. the N-terminal PB1 domain (paper I), the conserved region 

where the LIR, FIR and KIR motifs are located (paper II), and the C-terminal UBA domain 

(paper III). An important feature of p62 in selective autophagy is its ability to undergo liquid-

liquid phase separation. While other domains or motifs in p62 like the ZZ domain (Berkamp et 

al., 2020; Zhang et al., 2019) or the KIR motif (Omar et al., 2021) may in different ways 

facilitate phase separation, the only domains that are required for phase separation are the PB1 

domain and the UBA domain. Phase separation is triggered by the binding of p62 to ubiquitin 

(Berkamp et al., 2020; Noda et al., 2020), and the UBA domain is therefore absolutely required. 

In addition, monomeric p62 is unable to form condensates (paper I). PB1 mediated self-

interaction of p62 is therefore also required. The LIR motif is essential for the degradation of 

p62 droplets or gels by selective autophagy, but there is no evidence that the LIR motif 

participates in phase separation of p62.   

 

4.1 Phase separation of p62 may depend on  shortening of the length of p62 filaments  

The focus in the paper I is on the formation of helical filaments by the PB1 domain. The paper 

is a collaboration with the group of Carsten Sachse that initially discovered and analyzed the 

helical filaments formed by p62 (Ciuffa et al., 2015). They found that in vitro, p62 

spontaneously self-interacts into polymeric chains that fold into two different types of helical 

structures, one called type T with tubular morphology and another type F with filamentous 

appearance (Ciuffa et al., 2015).  

The PB1 domain is an evolutionarily conserved domain that is found in 13 mammalian proteins 

(Lamark 2003). However, p62 and TFG are the only mammalian proteins that contain a PB1 

domain which allows them to polymerize and create filamentous structures. The filamentous 

structures of p62 and TFG were analyzed in Paper I, and we also made chimeric constructs 

where the PB1 domain of p62 was replaced by that of TFG. We observed that the chimeric p62-

TFG1 constructs were more diffuse than corresponding p62 constructs, but the readily formed 

bodies that we propose are condensates. The chimeric constructs were efficiently degraded by 

selective autophagy. Their efficient degradation by autophagy gave one important conclusion; 
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p62 does not require its PB1 domain to be degraded, just a PB1 domain that can be polymerized. 

It is however unclear from our data if it is the diffuse fractions or the condensates that are 

degraded. It is experimentally challenging to answer this question, and condensates are dynamic 

structures that exist in equilibrium with diffuse fractions. We found in Paper I that KEAP1 was 

recruited to condensates formed by the chimera constructs as efficiently as it was recruited to 

normal p62, but the chimera constructs could not mediate selective autophagy of co-recruited 

KEAP1. The lack of degradation of KEAP1 is unexpected. It suggests that only the diffuse 

fractions are efficiently degraded by autophagy and that the condensates have to be solubilized 

before they can be degraded. Another possibility is that the condensates are degraded, but that 

overexpressed KEAP1 inhibits the degradation of condensates formed by chimera constructs.  

p62 associates into long polymeric chains in vitro. In previous in vitro experiments, Ciuffa et 

al., (Ciuffa et al., 2015) found that the binding of p62 to poly-ubiquitin resulted in a shortening 

of the filaments, and they proposed a model where the interaction of p62 to ubiquitin promotes 

a transition of the polymeric filaments into shorter oligomeric structures. The presence of 

oligomeric p62 structures in cells is supported by data in Paper I, where CLEM studies revealed 

that p62 filaments in p62 bodies are short oligomeric structures with an average size of 50 nm. 

The length of diffuse p62 filaments is not known, but the transition of p62 filaments into 

oligomeric structures is probably important for phase separation. since Such a model has later 

been supported by others (Wang and Zhang, 2019).  

The binding of p62 filaments to ubiquitin chains is the key for initiating the phase separation 

of p62 (Sun et al., 2018; Zaffagnini et al., 2018). As mentioned above, this interaction is 

involved in regulating the length of p62 filaments. Another interaction that may contribute to 

the shortening of p62 filaments is the p62-NBR1 interaction. The creation of the filaments 

depends on the polymerization of the PB1 domain and the K7 and R21-R22 residues in the PB1 

domain are required in addition to a functional OPCA motif. The K7 and R21-R22 residues are 

also important for the binding of p62 to NBR1, resulting in recruitment of NBR1 to p62 bodies 

(Lamark et al., 2003). This way, NBR1 competes with the self-interaction of p62, and in the 

paper I, we showed that the presence of NBR1 efficiently reduced the length of p62 filaments 

in vitro. There is strong evidence in the literature that NBR1 facilitates phase separation of p62, 

both in vitro and in cells (Sánchez-Martín et al., 2020; Zaffagnini et al., 2018).  As suggested 

in the discussion of paper I this may be due to a regulation of filament length by NBR1. The 
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protein level ratio between p62 and NBR1 inside the cells is largely in favor of p62 

(Schwanhäusser et al., 2013). This ratio is important for the function of p62. In case that the 

levels of NBR1 in a cell are degreased that can lead to the creation of more p62 polymeric 

filaments and reduce the number of the p62 molecules that can undergo phase separation. On 

the other side increase in the levels of NBR1 can lead to the creation of p62 oligomeric filaments 

only. So, more p62 molecules will undergo phase separation.  

 

4.2 Phase separation of p62 is regulated by post-translational modification of K420 and 

K435  

There is strong evidence in the literature that phase separation of p62 is regulated by post-

translational modifications. Post-translational modifications are required in the UBA domain to 

inhibit the dimerization of it and allow ubiquitin binding (Long et al., 2010; You et al., 2019b). 

Among the modifications affecting ubiquitin-binding are phosphorylation of S403 that 

increases the affinity of the p62-ubiquitin interaction (Matsumoto et al., 2011), ubiquitination 

of K420 that prevents the inhibitory dimerization of the UBA domain, and acetylation of K420 

and K435 that increases the dynamics of the condensates and degradation of p62 (You et al., 

2019b). In Paper III, our main focus was on the K420 and K435 residues, and we investigated 

the morphology of p62 bodies in MEF cells stably expressing selected GFP-tagged mutants of 

p62.  

Condensates formed by p62 are droplets of gel-like structures. p62 bodies induced by the S403 

phosphorylation are reported to be gel-like structures (Kageyama et al., 2021). Our data in Paper 

III also supports this finding. Gel-like condensates contain more dense protein concentrations, 

and the interchange between the gel structure and the surrounding environment is not as 

dynamic as in liquid-like condensates (droplets) (Noda et al., 2020). Since gel-like condensates 

are less dynamic than droplets, their formation may result in a stabilization of p62 in the 

cytoplasm if their degradation is inhibited or impaired (Kageyama et al., 2021). The 

morphology of condensates can be tested by FRAP experiments. We performed preliminary 

FRAP experiments in this study, but these experiments were not included in paper III. Instead, 

we propose that the presence of small GFP-p62 condensates combined with a high level of 

diffuse p62 indicates that the condensates are in the form of droplets (Figure 17). Likewise, we 
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propose that the presence of large condensates combined with an absence or low level of diffuse 

protein indicates that the condensates are gel-like structures (Figure 17).   

One of the mutants, K420R, showed the same phenotype when visualized by confocal 

microscopy as the S403E mutant. Our conclusion is therefore that the K420R mutation 

promotes the formation of gel-like p62 condensates (Figure 17). This was unexpected since a 

post-translational modification of the K420 residue has been shown to inhibit dimerization of 

the UBA domain, and this increases ubiquitin-binding and p62 condensate formation (Lee et 

al., 2017) (Peng et al., 2017). Similarly, USP8 is responsible for the deubiquitination of K420, 

and a knockdown of this enzyme increased the aggregation of p62 in response to proteasomal 

inhibition (Peng et al., 2020). Together, these data indicate that ubiquitination of K420 may 

play an essential role in regulating p62 condensation. The K420R mutation was therefore 

expected to have a negative effect on p62 condensate formation.  

One of the E3 ligases that are believed to ubiquitinate the K420 residue, and this way regulate 

p62 condensate formation is the KEAP1-Cullin3 ligase complex. The role of p62 in regulating 

the KEAP1-NRF2 pathway was initially demonstrated in several separate studies published in 

2010 (Fan et al., 2010; Komatsu et al., 2010; Lau et al., 2010; Zhang, 2010). Only one of these 

early studies focused on the effect KEAP1 has on p62 bodies (Fan et al., 2010). Later studies 

have confirmed that KEAP1 affects both the morphology and the degradation of p62 bodies 

(Omar et al., 2021). Our data in Paper I demonstrated that an increased level of KEAP1 

increases both the number and the size of p62 bodies, and this correlates with the ability of 

KEAP1 to facilitate the transition of p62 droplets into gels (Kageyama et al., 2021; Lee et al., 

2017).  

 

The data of Lee et al. (Lee et al., 2017) indicated that gel formation is induced by ubiquitination 

of the UBA domain in p62 by the KEAP1-Cullin3 E3 ligase complex. In their model, it is K420 

that is ubiquitinated, and this has a negative effect on UBA domain dimerization leading to 

increased binding of p62 to ubiquitin (Lee et al., 2017). Contrary to our results in Paper I, they 

found that p62 K420R makes p62 bodies that are more dynamic than those formed by WT p62. 

Both studies were performed with MEF cells. Our study was performed with stably transfected 

cells while Lee et al. (Lee et al., 2017) analyzed transiently transfected cells. They based their 
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conclusion that only K420 is ubiquitinated by the KEAP1-Cullin 3 E3 ligase complex on a lack 

of ubiquitination of K420R as found by immunoprecipitation experiments. However, our 

experience in Paper III is that immunoprecipitation of p62 K420R can be very difficult because 

of the aggregated morphology of p62 bodies formed by this mutant construct. Perhaps in the 

absence of K420, another K can compensate for the lack of K420 and become ubiquitinated in 

a KEAP1-dependent manner. In Paper III, we found that the wild-type K420 residue is needed 

for sulforaphane-induced condensate formation of p62. More studies are clearly needed to fully 

understand the role of KEAP1-Cullin 3 in regulating the ubiquitination of p62.  

Also, other ubiquitin ligases than KEAP1-Cullin3 may regulate p62 condensation. One 

example is the reported ubiquitination of K420 by the E2 ligases UBE2D2 and UBE2D3 (Peng 

et al., 2017). In this study, also other K residues in p62 were ubiquitinated, and their focus on 

the K420 residue was partially based on the assumption that there is a need to modify the K420 

residue to inhibit the reported UBA dimerization. A more recent study performed in our 

research group showed that the E3 ligase TRIM32 may play an important role in regulating p62 

condensation. TRIM32 was shown to ubiquitinate multiple K residues in p62 (Overå et al., 

2019). Future studies need to find out if the main role of ubiquitination is to inhibit UBA domain 

dimerization, or if the main role is instead to facilitate cross-linking of p62 filaments in the 

condensates. In the latter case, the modification of other K residues than K420 and K435 may 

perhaps be equally efficient.  

In Paper II we also tested the effect of the K435R mutation which appeared to be opposite to 

that of the K420R mutation. The K435R mutant inhibited p62 condensation, indicating that the 

modification of this residue has a positive effect on p62 condensation. Cells expressing the 

K435R mutant accumulated a high level of diffuse p62, and there were few and small p62 

bodies. Moreover, immunoprecipitation experiments indicated that this construct had a strongly 

reduced affinity for ubiquitin, although it could still interact with ubiquitin in vitro. 

The opposite phenotypes of the K420R and K435R mutants of p62 were interesting, suggesting 

that there may be a fine-tuned crosstalk between these two residues in regulating p62 

condensation. Another observation that made us believe that there is a regulatory balance 

between these two Ks came from the results with K420R and K435R double mutants. A general 

finding throughout Paper III was that p62 mutant constructs carrying both the K420R and the 

K435R mutations displayed a phenotype closer to wild type p62 than mutant constructs carrying 



 

- 36 - 

 

one of these mutations. Our data also indicated that the K435 residue may be more prone to 

acetylation than the K420 residue.  

The complexity of the phenotypes seen in Paper III clearly tells us that the UBA domain of p62 

is prone to regulation in several different ways. We, therefore, need to be aware that the effect 

of specific post-translational modifications may be context dependent. Hence, we should be 

careful not to make too many conclusions only based on the behavior of the K420R and K435R 

mutants. We also tested the effect of the NRF2 activator sulforaphane (SFN) on cellular 

condensation of p62, a compound that is known to induce the condensation of p62 (Darvekar 

et al., 2014). In this specific case, we found that the wild type K420 residue was required for 

the induction of p62 condensation by SFN, and our data support that the residue may be 

ubiquitinated.  

To simplify thing, we may argue that there are two different kinds of effects mediated by PTMs 

regulating the UBA domain of p62, the one that stabilizes p62, which we can observe in K420R 

and S403E mutants and the one that promotes degradation of p62 by selective autophagy, as is 

seen with the K420Q\K435Q construct (Figure 17). Acetylation increases the affinity of the 

UBA domain for ubiquitin (You et al., 2019b), while the modifications that occur on S403 and 

K435 may increase the ubiquitination of p62 itself. Unfortunately, we were unable to 

distinguish between these possibilities in the present study.  

 

Figure 17 Proposed model illustrating how the p62 localization pattern (size of bodies and amount of diffuse 

protein) can be used to distinguish between the formation of p62 droplets and p62 gels. Mallory bodies are keratin 

positive p62 aggregates induced in liver diseases (Lahiri et al., 2016). 
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4.3 Modification of the K435 residue is crucial for basal autophagy of p62 

The data in paper III clearly show that the K435R mutation prevents the degradation of p62 by 

selective autophagy under basal conditions. The K435R mutated p62 construct was efficiently 

degraded in response to starvation, meaning that the impaired autophagy of this construct was 

only seen under basal conditions. The impaired degradation is not easily explained since the 

mutation is in the UBA domain of p62. A p62 construct with the UBA domain deleted is 

efficiently degraded by autophagy (Pankiv et al., 2007). We have no evidence that the UBA 

domain is needed for the degradation of full-length p62. The only elements known to be needed 

are the PB1 domain and the LIR motif.  

How can the UBA domain with a K435R mutation inhibit the degradation of p62? One 

possibility is that a UBA domain that is not modified on K435 forms an intramolecular 

interaction inhibiting the PB1 domain or the LIR motif. Another possibility is that the effect is 

more indirect and caused by structural changes in the UBA domain. The rather dramatic 

phenotypes seen for p62 constructs containing single K420R or K435R mutations suggest that 

the K435R mutation may have a significant effect on the structure of the UBA domain. This 

may potentially inhibit autophagy either by increasing UBA dimer formation, or it may affect 

PB1 mediated polymerization or the binding of p62 to the phagophore. Another assumption 

would be that the K435R mutation affects the droplet dynamics of p62, but since the K435R 

construct is mainly diffuse and since degradation of diffuse p62 does not depend on p62 

condensation into droplets or gels, we consider this explanation as unlikely.        

Intriguingly, we found that a K420R/K435R double mutation rescued the autophagic 

degradation of p62 under basal conditions. This correlates with the idea that the lack of one of 

the critical K residues in the UBA domain may affect the structure of the UBA domain in ways 

that are not seen if both residues are mutated. Our interpretation is therefore that the defective 

degradation is the result of a post-translational modification of the K420 residue, that in the 

absence of a balancing modification of the K435 residue has this type of effect. Our data in 

Paper III supports that the acetylation of K435 residue specifically increases the selective 

degradation of the diffuse p62 fraction, but our data gives no mechanistic explanation to the 

observed inhibition of basal autophagy seen for the K435R construct. In the paper by You et 

al. (You et al. 2019) only double mutants of K420 and K435 were studied. However, their 

results clearly implicate that acetylation of these residues increases the dynamics of p62 body 
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formation and selective degradation of p62. This is consistent with our interpretation based on 

the K435R mutant.  

 

4.4 The complexity of the LIR-KIR region. 

In Paper II, we made p62 chimeras with the native LIR motif replaced by a LIR motif with a 

different specificity. When expressed in cells, these chimeras were efficiently degraded by 

selective autophagy under basal conditions, suggesting that the specificity of the LIR motif is 

not essential for the degradation of p62 by autophagy. However, the chimeras were not 

degraded like wild type p62 in response to starvation. 

The explanation may in part be due to the fact that there are mechanistic differences in how p62 

is degraded under basal conditions and in response to starvation. The degradation of p62 upon 

starvation occurs via two different degradation pathways, i. e. macroautophagy and endosomal 

microautophagy (Mejlvang et al., 2018). The endosomal microautophagy pathway is poorly 

understood mechanistically, but this pathway may be more dependent on the LC3B interaction 

than the macroautophagy pathway. In paper III, we observed a related type of discrepancy when 

analyzing the autophagy of the K435R mutated p62 construct. This construct was not degraded 

under basal conditions but was efficiently degraded in response to starvation. This supports our 

conclusion that there may be mechanistic differences in how p62 is degraded under basal and 

starvation conditions. Perhaps the K435R mutated p62 construct is degraded via the endosomal 

microautophagy pathway (Mejlvang et al., 2018). 

Alternatively, or in addition, the defective autophagy under starvation may be  because our p62 

LIR substituted constructs also are affected in their interactions with KEAP1 or FIP200. There 

is evidence that the binding of p62 to KEAP1 facilitates the degradation of p62 bodies (Fan et 

al., 2010), and a lack of interaction with FIP200 is also likely to affect the degradation of p62 

(Turco et al., 2019). It is nevertheless intriguing that basal autophagy is not inhibited by the 

substitutions. Our initial plan when making these constructs was to avoid destruction of the 

KIR motif, but our substitutions had a strong and unexpected effect on the affinity of p62 to 

bind to KEAP1. We tried to avoid this by keeping the core KIR motif (STGE) intact. However, 

despite the presence of an intact core KIR motif, p62-LIR(FYCO1) displayed a significantly 

reduced ability to bind to KEAP1 while p62-LIR(ULK1) was unable to bind. This means that 
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residues N-terminal to the KIR motif and extending into the LIR motif are critical for the 

binding of p62 to KEAP1. The LIR, KIR and FIR motifs overlap, and this entire region is 

conserved in the evolution of p62 suggesting a coregulation here that we have not yet 

elucidated. Our knowledge of residues critical for the ATG8 and KEAP1 interactions is 

incomplete. Further studies are required to identify all residues involved.  

In Paper III, immunostaining of p62 bodies with LC3B and KEAP1 antibodies showed that 

endogenous KEAP1 and LC3B co-localize in p62 bodies under basal conditions. Because of 

the sequence overlap between the LIR, KIR and FIR motifs, p62 cannot simultaneously bind to 

LC3B and KEAP1 (Jain et al., 2010), or LC3B and FIP200 (Turco et al., 2019). In a proposed 

model of selective autophagy mediated by p62 (Turco et al., 2019)(Figure 18), the binding of 

FIP200 is necessary to induce phagophore formation. However, the binding to FIP200 is 

inhibited by docking of p62 to ATG8 proteins on the phagophore. This way, FIP200 is excluded 

from being degraded by autophagy along with p62. In a similar model, we propose that KEAP1 

will be excluded from binding to p62 on the surface of a p62 condensate (Figure 18). Unlike 

FIP200 and many other interaction partners of p62, KEAP1 is also localized in the interior of 

p62 condensates. This is seen very clearly in our confocal images of co-localized p62 and 

KEAP1 in Paper I and III. Internal p62 is free to interact with KEAP1, and KEAP1 is therefore 

degraded by autophagy as a constituent of the p62 condensates. However, we propose that the 

diffuse filaments of p62 may not similarly interact with KEAP1, since they have no interior and 

the interaction with LC3B will in this case exclude KEAP1 from being degraded together with 

diffuse p62 (Figure 18). This may explain why the LIR and KIR motifs are localized together 

on the p62 molecule, since then KEAP1 can only be degraded as a part of p62 condensates, and 

the degradation of KEAP1 is then a specific response to the accumulation of p62 condensates.  
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Figure 18 Model of  p62 phase separation.  

P62 can interact with FIP200, ATG8s and 

KEAP1 by binding to them via the 

corresponding interaction regions. P62 can 

bind one protein at the time. LC3B and FIP200 

will be always located at the outside part of the 

condensates. Keap1 is located inside. P62-

LC3B interaction is responsible for the 

degradation of diffused p62 fraction. When 

condensate is formed KEAP1 will be always found together with p62. For the degradation of condensate, the 

initiation complex needs to bind to p62 via FIP200 .mediated interaction so the formation of mPAS will start. At 

the elongation step, the initiation complex is not needed anymore so there is a switch in binding to p62 from 

FIP200 back to LC3B. When the isolation membrane is closed the autophagosome is formed. 

A pre-print paper was shown that K344E mutation increases the affinity of p62 to bind to 

KEAP1 because it promotes the phosphorylation of S349 residue of p62 (Omar et al., 2021). 

Perhaps the preference of p62 for ATG8s or KEAP1 is regulated by the K344, which is located 

between the LIR and the KIR sequence. It is possible that a modification on K344 residue or 

another residue of this region could regulate the binding preference for KEAP1 or ATG8s. In 

the abovementioned paper (Omar et al., 2021), several different point mutants were tested, some 

belonging to the LIR region including D336N or L341V and some belonging to the KIR region, 

like P348L or G351A. In both cases, there were variations in binding affinity between ATG8s 

and\or KEAP1. This supports the notion that these two motifs actually work as a co-regulated 

domain.  

 

4.5  KEAP1 is degraded by autophagy in response to starvation, and this depends on p62 

Previous studies have shown that KEAP1 is degraded by selective autophagy and that this 

strongly depends on p62 and its ability to bind to KEAP1 via its KIR motif (Jain et al., 2010). 

In paper III, we observed that endogenous KEAP1 is efficiently degraded by selective 

autophagy under starvation, and this was only seen in cells expressing p62. We hypothesise 

that p62 droplets or gels are degraded by macroautophagy and that KEAP1 is degraded as a 

part of these structures. We further propose that the diffuse fractions of p62 may perhaps be 
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more efficiently degraded by endosomal microautophagy, and that KEAP1 is not degraded via 

this pathway. However, this hypothesis remains to be rigorously tested.  

 

4.6 The p62 filament is evolutionary conserved  

p62 and NBR1 are evolutionarily related, and the current proteins resulted from a gene 

duplication that occurred early in the metazoan development (Svenning et al., 2011). It seems 

that NBR1 lost its ability to polymerize shortly after this duplication event, while the polymeric 

PB1 domain was kept in p62. The p62/Nbr1 orthologue is evolutionary conserved and found in 

all eukaryotic species except for fungi (Svenning et al., 2011). Based on higher sequence 

similarity to metazoan Nbr1 than to metazoan p62, non-metazoan p62/Nbr1 orthologues have 

been named Nbr1, but they contain features from both the two metazoan proteins. The first non-

metazoan orthologue to be studied was the protein from the plant Arabidopsis thaliana 

(AtNbr1), and this protein contained several features characteristic for p62, including a 

polymeric PB1 domain, a LIR motif, and C-terminal UBA domains with a low intrinsic affinity 

for ubiquitin (Svenning et al., 2011) It also formed ubiquitin-positive condensates when 

expressed in cells and was degraded by LIR dependent selective autophagy. In Paper I, we 

confirmed that the PB1 domain of AtNbr1 formed filaments that resemble those formed by 

mammalian p62. Our conclusion is therefore that p62/Nbr1 is responsible for the formation of 

a distinct type of condensate that is crucial in selective autophagy and conserved in all 

eukaryotic species except for fungi. When analyzing p62/Nbr1 genes in different species, a 

surprising finding was that virtually all species contained only a single p62/Nbr1 gene, 

suggesting a selective pressure against the presence of two different polymeric variants.  

 

 

5. Methodological consideration 

5.1 Construction of Stable Cell Lines 

We used a retroviral terminal repeat (LTR) promoter fused to EGFP to reconstitute MEF 

(mouse embryonic fibroblasts) p62 K0 cells. MEF cells are ideal for microscopy and the 

expression level of p62 is not as high as in HeLa cells. HeLa cells have different p62 body 
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formation and create more p62 bodies. HeLa cells allows p62 to aggregate a lot, so some of the 

p62 variant cell lines from paper III would probably cluster even more. We avoided HEK293 

cells mostly because of technical reasons. We used a lot of different cell lines and HEK cells 

are more sensitive, detached easily and not ideal for confocal microscopy. Also, they tend to 

form fewer p62 dots than HeLa or MEF cells. 

 Unfortunately, we cannot be sure that the expression levels that we observed are similar to the 

endogenous.  

One of the biggest challenges that this project had to overcome was the limited available market 

for reliable antibodies generated for MEF cells. Many of the antibodies that we have validated 

and used in the lab are mouse anti-human antibodies. A lot of experiments were not presented 

in the thesis and a lot we had to avoid, because of the antibody limitation. 

5.2 Cell growth and cell culture 

For this study, we used 10 different cell lines. Taking care of so many cell lines can be 

challenging especially if they have very dissimilar growth rates and show different sensitivity 

to environmental parameters. One problem, that appeared quite early, was the sensitivity of the 

cell lines. We had to transfer the cells to an incubator, separate from the rest of the research 

group. Temperature changes promoted the detachment of the cells and cell death. Though, not 

all the cell lines were affected. The second problem was that all the cell lines did not have the 

same growth rate. K420R\K435R, K420Q\K435Q, (K\R), (K\R) R7K\R420K\R435K and 

(K\R) R7K\R420Q\R435Q cell lines were growing at a slow rate, and it was easy to lose the 

cell line if the cells were split too thin. For that reason, we could not split them more than 1:4. 

On the other hand, the K420R and K435R cell lines were growing extremely fast, but again if 

you split them too thin, it was possible to lose the cell line. The third problem was focused on 

the K420R\K435R cell line. This cell line had a slow growth rate and had to be kept in 

Blasticidin all the time to avoid losing the expression of the GFP-p62 construct. For some of 

the GST-p62 constructs, treatments with TSA and sulforaphane were very difficult to perform 

because the cells would either die or stop growing. Last but not least, the (K\R) 

R7K\R420K\R435K cell line had a high death rate, which created problems for comparative 

analyses where different cell lines were compared. 
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5.3 Western blotting assay 

Western blotting is a well-established method for measuring protein levels, and it is really 

sensitive when the protein or proteins of interest are in low concentrations. In this technique, a 

mixture of proteins is separated based on molecular weight, through SDS PAGE gel 

electrophoresis. The separated proteins are transferred to a membrane and the membrane is 

incubated with antibodies specific to the protein of interest (Mahmood and Yang, 2012). In 

order to be able to compare different samples, the loading of the samples needs to be equal. 

Proteins that are constitutively expressed are commonly used as loading controls. Examples are 

actin, tubulin, GAPDH (glyceraldehyde 3-phosphate dehydrogenase). However, often we 

cannot be completely sure about their actual levels since these proteins exist in high levels 

inside the cells, and it may be difficult to detect differences due to potential overexposure. 

Another issue is the quantification of the results. Western blotting is a semi-quantitative method 

since it provides a relative comparison of protein levels, not an absolute measure of quantity.  

The quantification problem is most challenging when using the chemiluminescence system to 

develop the membranes since the linear range is very limited and hard to control. We used this 

method when we wanted to detect a pattern of increase or decrease or binding or not. When 

there was a need for more accurate quantifications, we used the LICOR near-infrared (NIR) 

detection system to develop our membranes. In this method the primary antibodies used are 

linked to fluorescence residues. Moreover, instead of using a housekeeper protein as a loading 

control, the LICOR system gives the option to measure the total amount of the proteins from 

the lysate (Revert™ Total protein stain). In more simplified words, it allows you to measure 

the total amount of proteins similarly as done when using a Ponceau S staining of the 

membrane. 

In our studies in Paper III, we compared p62 levels in 10 different cell lines. Among those, 

some created very largely, gel-like p62 bodies like K420R, some clusters of bodies like (K\R) 

R7K and (K\R) R7K\R420K. Solubilization of the different aggregates poses difficulties not 

easily resolved. Normally we use 1-2% boiling SDS buffer to solubilize proteins. This was not 

sufficiently effectively extracting the most aggregated p62 constructs. At the end, we concluded 

that the best lysis buffer to harvest the cells was containing 5% SDS, but that should be followed 

with 10-sec sonication of the lysates after boiling them first.  
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5.4 GST pull-down assay 

GST pull-down assay is an in vitro assay, which allows us to detect direct interactions between 

proteins. As all assays, it has its limitations. Since proteins are in vitro translated,  post-

translational modifications are only partially present. This may lead to false-negative results; in 

case a specific modification is required for the interaction between the in vitro translated protein 

and the one that is fused to the GST beads. On the other hand, usage of phosphomimic or acetyl-

mimic mutants can partly overcome this problem and give reliable results, if the missing 

modifications are specific phosphorylations or acetylations. However, mimicry is still an 

artificial approximation. Furthermore, during this assay we create an artificial environment as 

inside the cells the two proteins being studied are not colocalized and do not meet. Also, there 

is a possibility that during the in vitro translation the protein may misfold and as a result one 

may experience loss or gain of binding. Despite the mentioned putative issues, GST-pull down 

assay is a very useful assay that usually can be trusted keeping in mind the importance of always 

using the proper controls, both negative and positive for binding with the GST-fused protein. 

Moreover, always our observations made using an in vitro assay should be compared with 

observations made by assays that are conducted in cells. 

5.5 Ubiquitin-binding assay (Paper III) 

In order to test the ubiquitin-binding of the different p62 constructs in cells, we performed a 

GST-pull down assay using lysates from the p62 mutant stable cell lines. An obstacle here was 

the buffer used for this assay. Normally, in a pulldown from cell lysates, the protocols use RIPA 

buffer in order to harvest the cells. As we already discuss in the western blotting part, some of 

our cell lines express p62 variants that are clustered, which is making them difficult to dissolve. 

Moreover, we could not use sonication to dissolve the lysate. For that reason, we used two 

different buffers to lyse the cells, one containing 1M UREA and one with 8M UREA. 1M 

UREA buffer is a medium-strength buffer, harsher than RIPA, which was perfect for p62 wt 

and constructs that have diffused background like K435R or K420R\K435R. Unfortunately, it 

was not strong enough for the ones that cluster, like (K\R) R7K and (K\R) R420K.  So, we used 

8M UREA buffer for lysing the cells. The next problem was that the 8M UREA buffer denatures 

p62 and unfolds the protein. For p62 to bind and the UBA domain to be functional, p62 needs 

to be folded. We solved this problem by diluting the 8M UREA lysates into 1M UREA before 

adding them to the GST-beads. 8M UREA will also inhibit the binding to the beads so this 
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dilution had a double positive effect. In a normal pull-down from cell lysates, 2 hours are 

enough for incubating the lysate together with the beads. In this case, we did it overnight in 

order to ensure that p62 will be able to fold back and then bind to ubiquitin. Fortunately, after 

all these optimizations of the protocol, we created a new trustworthy assay for pull-down of 

p62 from cell lysates. 

5.6 Transient Transfection 

Transient transfection of plasmids including the protein of interest usually fused to a fluorescent 

tag is a common fast and quite informative method to investigate if proteins are colocalized or 

where proteins are located. In this study, we used this method extensively, especially when we 

needed to overcome the problem of lacking good antibodies for staining of MEF cells. Most of 

the times though, we used it to perform the double-tag assay. Double-tag assay allows us to 

separate p62 protein which is located in the cytosol in p62 bodies from p62 protein that has 

been delivered to autolysosomes for degradation. Same applies if we want to detect an 

autophagic substrate, such as KEAP1. The assay is based on the stability of fluorescent proteins. 

In a double-tag system, there are two tags fused together with the protein of interest an mCherry 

and an EYFP tag. mCherry (red color) is stable in an acidic environment like an autolysosome, 

while the EYFP tag (green color) is not. So, when we observe red puncta under the confocal 

microscope, we know that they are autolysosomes, while the yellow puncta are p62 bodies or 

condensates that are located in the cytosol. The ratio between red and yellow puncta can be a 

significantly useful marker to measure the ability of different protein variants to be degraded 

by autophagy by quantifying red and yellow dots.  

Unfortunately, using transient transfections is connected with overexpression of the proteins. 

Moreover, tags can interfere with the protein function and mobility in comparison to 

endogenous one and can lead to protein aggregation. Another issue is that transfection of 

extracellular DNA itself is a stress stimulus for the cells, which again can cause accumulation 

and disturbance of the proteins inside the cell-that can lead again to unwanted aggregation. In 

order to solve this problem, we observed the cells 48h after  transfection, so the cells can be 

adjusted.  
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Structural basis of p62/SQSTM1 helical filaments
and their role in cellular cargo uptake
Arjen J. Jakobi 1,2,3,8, Stefan T. Huber 1,8,9, Simon A. Mortensen1,4,5,9, Sebastian W. Schultz6,

Anthimi Palara7, Tanja Kuhm1,8, Birendra Kumar Shrestha7, Trond Lamark 7, Wim J.H. Hagen1,

Matthias Wilmanns 2,3, Terje Johansen 7, Andreas Brech6 & Carsten Sachse 1,4,5*

p62/SQSTM1 is an autophagy receptor and signaling adaptor with an N-terminal PB1 domain

that forms the scaffold of phase-separated p62 bodies in the cell. The molecular determinants

that govern PB1 domain filament formation in vitro remain to be determined and the role of

p62 filaments inside the cell is currently unclear. We here determine four high-resolution

cryo-EM structures of different human and Arabidopsis PB1 domain assemblies and observed

a filamentous ultrastructure of p62/SQSTM1 bodies using correlative cellular EM. We show

that oligomerization or polymerization, driven by a double arginine finger in the PB1 domain,

is a general requirement for lysosomal targeting of p62. Furthermore, the filamentous

assembly state of p62 is required for autophagosomal processing of the p62-specific cargo

KEAP1. Our results show that using such mechanisms, p62 filaments can be critical for cargo

uptake in autophagy and are an integral part of phase-separated p62 bodies.
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p62/SQSTM1 (from hereon p62) is a multifunctional adaptor
protein that acts as a central scaffold protein in different
cellular processes, such as autophagy and signaling1. p62

has a tendency to cluster, and in human cells, is often observed in
discrete punctae known as p62 bodies2. The formation of these
bodies is dependent on the amino-terminal PB1 domain of p622.
PB1 domains are protein interaction modules with critical roles in
the assembly of protein complexes involved in autophagy, sig-
naling, cell division, and redox processes3, as well as the auxin-
response pathway in plants4. PB1 domains form homotypic
interactions via conserved electrostatic motifs molded by basic or
acidic surface patches on opposite faces of their ubiquitin-like β-
grasp fold2,5. According to their interaction profile, PB1 domains
are classified into type A (acidic, OPCA motif), type B (basic), or
mixed-type AB members5. While type A and type B PB1 domains
can form heterodimeric protein complexes, type AB members can
mediate interactions with either PB1 domain type or engage in
homotypic interactions to form homo-oligomers or hetero-
oligomers2,6. More recently, PB1-mediated self-interaction of
p62/SQSTM1 was found to result in the formation of filamentous
polymers7 with helical symmetry in vitro8.

p62 has been shown to function in autophagy and cellular sig-
naling. Autophagy is a degradative cellular housekeeping pathway
by which cytoplasmic materials are engulfed in a double-membrane
vesicle termed the autophagosome and delivered to the lysosomal
compartment9. Substrates for autophagy are not limited by mole-
cular size and include large protein aggregates, intracellular
pathogens, and cellular organelles. Selective autophagy has been
characterized as the process that specifically directs cytosolic sub-
strates to the formation site of autophagosomal membranes10,11. As
an autophagy receptor, p62 links cargo proteins with the autop-
hagosome membrane. PB1-mediated oligomerization of p62 is
essential for its function as a selective autophagy receptor12 and
thought to facilitate co-aggregation of ubiquitylated cargo13. The C-
terminal UBA domain of p62 captures ubiquitinated cargo, and the
LIR motif guides the cargo–receptor complex to Atg8/LC3, which is
anchored to the surface of the autophagosomal membrane14,15.
Importantly, in addition to the selective autophagy degradation of
ubiquitinated cargo, p62 is also involved in the degradation of other
substrates such as KEAP1 known as a regulator of the antioxidative
stress response transcription factor NRF2. KEAP1 binds directly to
a specific motif in p62, i.e., the KEAP1-interacting region (KIR)16,17.
In signaling, p62 bodies constitute an interaction hub for the
kinases MEKK3, MEK5, and aPKCs, which also contain PB1
domains2, in addition to triggering the NF-κB pathway through the
polyubiquitination of tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6)18.

Due to p62’s involvement in protein homeostasis, the impair-
ment of autophagy or oxidative stress results in aggregation or
upregulation of p62, including increased body formation19,20.
Recently, we and others independently found that p62 recon-
stituted with other components of the autophagy pathway, such
as ubiquitinated model cargo, and the selective autophagy
receptor NBR1, spontaneously coalesces into p62 bodies in vitro21

and shows the characteristics of liquid–liquid-phase separation
in vivo22. These studies established that oligomerization by the N-
terminal PB1 domain of p62 is an essential requirement for
recapitulating phase separation in vitro, as well as for cargo
uptake in vivo12,22.

The exact structural requirements and physiological condi-
tions under which p62-PB1 domains self-assemble or engage in
hetero-PB1 complexes are currently unclear. Furthermore, it is
not known what assembly state of p62 is required for biological
functions such as cargo uptake in autophagy or the formation of
phase-separated compartments in vivo. Based on high-

resolution electron cryo-microscopy (cryo-EM) and crystal
structures, cellular EM, biochemical, and cellular characteriza-
tion, we here revealed the structural basis for polymeric PB1
self-assembly and defined the relevance of symmetry and spatial
arrangement of the polymeric assembly state for p62 autophagy
function in vivo.

Results
p62, TFG1, and AtNBR1–PB1 domains form filamentous
polymers. Based on our previous finding that p62 is capable of
forming homo-oligomeric filamentous assemblies8, we set out to
understand whether related AB-type PB1 domains possess a
similar property to self-assemble. With reference to sequence
alignments (Fig. 1a), we expressed and purified PB1 domains
from human p621–102, p621–122, TFG11–95 (Trk-fused gene 1),
the atypical protein kinase PKCζ11–101, as well as the
evolutionary-related PB1 domain of the NBR11–94 autophagy
receptor from Arabidopsis thaliana (AtNBR1)23. p62, TFG1,
PKCζ, and AtNBR1 are multi-domain proteins that share the N-
terminal PB1 domain with additional functional C-terminal
domains (Fig. 1b). In order to assess whether these PB1 domain-
containing proteins are capable of forming high-molecular-
weight assemblies, we performed sedimentation assays by
ultracentrifugation. The PB1 domains of TFG11–95, AtNBR11–94,
p621–102, and p621–122 were found in the pellet fraction, whereas
PB1 domains from PKCζ remained soluble (Fig. 1c), which is in
agreement with our previous study, showing that both p621–102

and p621–122 form filamentous structures8. Furthermore, we
visualized the pelleted fractions by using negative staining elec-
tron microscopy (EM) and observed elongated filamentous or
tubular assemblies for the PB1 domains of p621–122, TFG1, and
AtNBR1 that measure 145 ± 5, 900 ± 52, and 120 ± 4 Å in dia-
meter, respectively (Fig. 1d). Closer inspection of the sequence
alignments revealed that all three of these PB1 domains share
the tandem arginine motif close to the canonical lysine residue of
the basic motif in B-type PB1 domains. By contrast, this tandem
arginine motif is absent in AB-type PB1 sequences of PKCζ that
does not form filamentous or tubular structures, suggesting a
critical role for self-assembly.

Cryo-EM structures of AtNBR1 and p62-PB1 filaments. Of the
three PB1 assemblies studied, AtNBR11–94 (AtNBR1–PB1) and
p621–122 (p62-PB1) formed homogeneous filaments of constant
diameter that appeared best suited for high-resolution structure
investigation by cryo-EM. Therefore, we vitrified filaments of
purified AtNBR1–PB1 and p62-PB1 domains and imaged the
samples by cryo-EM (Fig. 2a, b). Image classification of seg-
mented PB1 helices revealed that both AtNBR1–PB1 and p62-
PB1 polymerize in two different tubular morphologies: a pro-
jection class with a ladder-like pattern, we term L-type, and a
projection class with a serpent-like one, we term S-type (Fig. 2c;
Supplementary Fig. 1A–C). L-type and S-type helices partition
approximately evenly, i.e., 40–60% and 55–45% for p62-PB1 and
AtNBR1–PB1 samples, respectively. Further analysis revealed that
the occurrence of L-type or S-type assemblies is persistent along
the individual helices in micrographs of AtNBR1–PB1, whereas
for p62-PB1 filaments regularly displayed transitions from L-type
to S-type symmetry (Supplementary Fig. 1D). In an effort to
understand the underlying structures of L-type and S-type pro-
jections, we analyzed the averaged power spectra from in-plane
rotated segments and from class averages. The best Fourier
spectra of AtNBR1–PB1 and p62-PB1 showed discrete layer-line
reflections up to 5.9 and 4.7 Å, suggesting a helical organization
and preservation of structural order up to high resolution (Sup-
plementary Fig. 1E, F). The comparison of the Fourier spectra
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confirmed that L-type and S-type structures are differently
organized in their helical lattice. By indexing the layer lines in the
Fourier spectra of AtNBR1–PB1 filaments, we concluded that L-
type is a two-stranded helix with a pitch of 77.2 Å and
11.47 subunits/turn, whereas S-type is a single double-stranded
helix with a pitch of 68.2 Å and 11.55 subunits/turn. For p62-PB1,
we observed a four-stranded L-type assembly and a three-
stranded S-type assembly. In the latter S-type, one of the three
helical rungs is propagating in an antiparallel orientation, related
to the central rung by local dihedral symmetry. The L-type here
has a pitch of 135.9 Å with 14.16 subunits/turn, and S-type has a
pitch of 138.6 Å with 13.60 subunits/turn. Using the derived
symmetries, we determined the 3.5/3.9- (L-type, p62/AtNBR1)
and 4.0/4.4 Å- (S-type, p62/AtNBR1) resolution structures
(Fig. 2c, Tables 1, 2; Supplementary Fig. 1G, H). All four struc-
tures form tubules of ~120 Å and 150-Å width with an inner
diameter of 45 Å and 70 Å for AtNBR1–PB1 and p62-PB1,
respectively. In all reconstructions, the main chain of the PB1
domain could be resolved with α-helical pitch features and
individual β-strands separated. The overall fold of the asymmetric
unit was found compatible with the NMR structure of the p62-
PB1 monomer24,25 (Fig. 3a, b). In the absence of prior structural
information, we traced the AtNBR1–PB1 de novo. This de
novo-built model is in close agreement with the 1.6-Å crystal
structure of a polymerization-deficient AtNBR1–PB1 mutant,
which we solved in parallel (Table 3; Supplementary Fig. 2A). The
relative orientation between adjacent subunits is very similar in
the respective S-type and L-type assemblies of AtNBR1–PB1 and
p62-PB1 (Supplementary Fig. 2B). The β1–α1 loop in p62 is

flexible and only visible in the L-type assembly density (Supple-
mentary Fig. 2C). Expanding the asymmetric unit by using the
helical parameters of the L-type and S-type structures allowed
analysis of the interface between repeating units. Despite overall
similar interaction modes, the AtNBR1 and p62 assemblies
showed differences in relative domain rotation between adjacent
subunits and with respect to the helical axis (Fig. 3c). In agree-
ment with sequence analysis (see Fig. 1a), the electrostatic
potential mapped onto the molecular surface of the structures
revealed that opposing charged surfaces mediate the PB1–PB1
interactions in the helical repeat (Fig. 3d). In addition, we more
closely examined the interface of homomeric interactions in the
helical assemblies. The main interactions are formed between a
double arginine finger formed by two neighboring arginine resi-
dues in strand β2 (R19–R20AtNBR1/R21–22p62) stabilizing strong
salt bridges to acidic residues (D60/D62/D64/D73AtNBR1 or D69/
D71/D73/E82p62) in the OPCA motif located in the β2–β3 loop
and the α2 helix (Fig. 3e). These interactions are assisted by the
canonical-type B lysine (K11AtNBR1 and K7p62) in strand β1.
Free-energy calculations using the PDBePISA server26 suggest
that a large part of the interface free energy is contributed by the
double arginine finger. In addition to the canonical transverse
interactions, the helices are further stabilized by longitudinal
interactions Y14AtNBR1/N28AtNBR1 or K102p62/D92p62 and
R59p62/D93p62 to subunits of neighboring strands along the
helical axis (Supplementary Fig. 2D, E). The importance of
electrostatic interactions on filament stability is further supported
by the observation that increased ionic strength impedes stable
filament formation and is sensitive to pH (Supplementary
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Fig. 3A–H). To validate our structural interpretation, we per-
formed pull-down experiments using MBP-tagged wild-type
AtNBR1–PB1 as a prey and a series of AtNBR1–PB1 interface
mutants as bait (Fig. 3f). All interface mutants decrease binding
significantly compared with the wild type, and binding is com-
pletely abrogated in mutants lacking the double arginine finger, in
agreement with observations in cellular assays2,23. Together, the
cryo-EM structures of two PB1 domain assemblies reveal that in
addition to the canonical-type electrostatic AB interactions, the
self-polymerization property is linked to the presence of a double
arginine finger.

PB1 domain interactions in the context of filamentous p62.
After establishing the molecular basis of PB1 domain homo-
polymerization, we wanted to understand how these assemblies
interact with other PB1 domains of the A and B types that have
been shown to co-localize with p62 punctae2. We therefore
expressed and purified A-type human PB1 domains of

MEK55–108 and NBR11–85, the B-type PB1 domain of
MEKK343–127, and the AB-type PB1 domain of PKCζ11–101 and
determined their binding affinities for polymerization-deficient
p621–102 (D69A/D73A)5 by isothermal titration calorimetry
(ITC). These PB1 domains show 2–10-fold lower binding affinity
to p62 compared with its self-interaction dissociation constant
(KD) of 6 nM27, with KD of 8.9 ± 0.9 nM, 12.6 ± 0.4 nM, 26.8 ±
0.5 nM, and 105 ± 1.3 nM determined for PKCζ27, NBR1,
MEKK3, and MEK5, respectively (Fig. 4a). Moreover, other PB1
interactions, such as binding of NBR1–PB1 to MEKK3, have also
been measured and have even lower affinity (KD of 13.3 µM). We
therefore hypothesized that binding of p62-interacting PB1
domains could compete with p62 self-polymerization and affect
the assembly structures of p62-PB1 filaments. We found that
NBR1–PB1 strongly interacts with p62-PB1 filaments and
shortens p62-PB1 filaments on average to less than half the
starting length (Fig. 4b, c). Surprisingly, MEKK3, MEK5, and
PKCζ–PB1 showed no effect on the pelletation behavior of p62
assemblies, although having only marginally lower affinities than
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Fig. 2 Cryo-EM structures of AtNBR11–94 and p621–122. a Electron cryo-micrograph of AtNBR1–PB11–94 and (b) p62-PB11–122 assemblies. c Side and top
views for determined cryo-EM structures of L-type AtNBR1–PB1 (far left), p62-PB1 (left), and S-type assembly of AtNbr–PB1 (right), p62-PB1 (far right).
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NBR1 (Fig. 4d). To further analyze the interactions, we turned to
negative staining EM. In agreement with the co-sedimentation data,
for PB1 domains other than NBR1 we did not observe any effect on
the morphology of p62-PB1 filaments and the measured filament
lengths. In order to increase the sensitivity of detecting interactions
with p62-PB1 filaments, we also imaged p62-PB1 filaments incu-
bated with nanogold-labeled NBR1, MEKK3, MEK5, and PKCζ
PB1 domains using negative staining EM (Fig. 4e). For all PB1
domains, the micrographs confirmed end-on binding of the PB1

domains to p62-PB1 polymers or to oligomeric, ring-like structures.
Interestingly, NBR1, MEK5, and PKCζ PB1 domains preferably
bind to one end of the filament (Fig. 4f), consistent with an overall
polar assembly observed in the 3D reconstructions of p62-PB1
filaments (see Fig. 2). MEKK3–PB1 (type B) was not observed at
p62-PB1 filament ends, but occasionally found at oligomeric ring-
like structures. Biochemical interaction studies suggest that assem-
bled filamentous p62 can display significantly lower apparent
binding affinities for interacting PB1 domains than when present in
the monomeric form.

Cellular p62 bodies consist of filamentous structures. Although
self-oligomerization of p62 has been shown to be essential for tar-
geting of p62 to the autophagosome12, it is unclear whether the
filamentous assemblies observed in vitro are involved in this process
or even occur inside of cells. We used correlative light and electron
microscopy (CLEM) to study the ultrastructure of p62 bodies in a
targeted manner. In order to enrich endogenous p62 bodies in
RPE1 cells, we overexpressed a human NBR1-D50R mutant that
abolishes the interaction with p622. Co-sedimentation experiments,
in which the relative amount of p62 in the monomeric and poly-
meric state are determined, indeed showed that wild-type
NBR1 solubilizes filamentous p62-PB1, whereas the D50R mutant
does not (Fig. 5a). In RPE1 cells, the NBR1-D50R mutant con-
sistently produced larger p62 clusters possibly by promoting self-
polymerization as observed in vitro (Supplementary Fig. 4A). In
such cells, we localized p62 to punctate areas of 0.5 ± 0.1-μm dia-
meter by fluorescence microscopy and visualized their ultra-
structure by electron tomography (Fig. 5b, Supplementary Fig. 4B,
C). The electron micrographs revealed that p62 bodies have a dis-
tinct appearance that is well differentiable from the cytosol with an
electron-dense boundary of ~60-nm thickness surrounding the
body (Fig. 5c, d). We thresholded the interior density and found
that the p62 bodies are composed of a dense meshwork of fila-
mentous assemblies (Fig. 5e). Quantitative analysis of thresholded
images confirmed the presence of elongated filament-like structures
with an average diameter of 15 nm compatible in dimensions with
the helical p62 structures observed in vitro8. We estimated the
length of these structures by tracing individual filaments in

Table 2 Model refinement statistics.

AtNBR1–PB11–94 (S-type: PDB ID 6TGP, L-type: PDB
ID 6TGN)

p62-PB11–122 (S-type: PDB ID 6TH3, L-type: PDB
IC 6TGY)

Model refinement
Initial model used (PDB code) PDB-6TGS (X-ray model) PDB ID 2KKC#

Model resolution (Å,
FSC= 0.5)

S-type: 5.5 S-type: 4.0
L-type: 4.3 L-type: 3.6

Map-sharpening B-factor (Å2) S-type: −300 S-type: −193
L-type: −200 L-type: −139

Model composition
Non-hydrogen atoms 669 (S-/L-type) 808 (S-/L-type)
Protein residues 88 (S-/L-type) 104 (S-/L-type)

R.m.s. deviations
Bond lengths (Å) 0.009/0.008 (S-/L-type) 0.006/0.007 (S-/L-type)
Bond angles (˚) 1.16/1.161 (S-/L-type) 1.22/1.24 (S-/L-type)

Validation
MolProbity score 2.41/2.29 (S-/L-type) 1.94/1.64 (S-/L-type)
Clashscore* 7.59/6.41 (S-/L-type) 4.89/1.88/ (S-/L-type)
Rotamer outliers (%) 1.41/1.41 (S-L-type) 0.00/0.63 (S-/L-type)
Ramachandran plot

Favored (%) 93.21/94.19 (S-/L-type) 83.33/83.33 (S-/L-type)
Allowed (%) 6.79/5.81 (S-/L-type) 16.67/16.67 (S-/L-type)
Disallowed (%) 0.00 (S-/L-type) 0.00 (S-/L-type)

*Computed for 9-mer
#Saio et al.24

Table 1 Cryo-EM data collection and helical reconstruction.

AtNBR1–PB11–94 (S-type:
EMD-10500, L-type:
EMD-10499)

p62-PB11–122 (S-
type: EMD-10502,
L-type: EMD-
10501)

Data collection and processing
Magnification 105kx 130kx
Voltage (kV) 300 300
Electron exposure
(e−/Å)

17 40

Defocus range (µm) 1.0–4.0 0.5–2.5
Pixel size (Å) 1.386 1.040
Symmetry imposed S-type: C1 S-type: C1

L-type: C2 L-type: C2
Final no. of
segments

S-type: 18,021 S-type: 51,679
L-type: 25,387 L-type: 51,853

Helical rise (Å) S-type: 5.905 S-type: 9.78
L-type: 6.721 L-type: 4.787

(9.574)*
Helical twist (˚) S-type: −31.17 S-type: −26.48

L-type: −31.44 L-type: 77.29
(−25.42)*

Global map
resolution (Å, FSC=
0.143)

S-type: 4.4 S-type: 4.0
L-type: 3.9 L-type: 3.5

Local map resolution
range (Å)

S-type: 4.0–4.7 S-type: 3.7–4.4
L-type: 3.4–4.1 L-type: 3.3–4.4

*Equivalent notation for asymmetric unit of two monomers as described in the main text
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sequential tomogram slices (Fig. 5f). CLEM visualization of p62
bodies in cells under endogenous p62 levels confirms the presence
of filamentous assemblies.

The effect of different p62 assemblies on autophagy clearance.
We next set out to assess the relevance of symmetry and assembly

state of PB1-mediated filaments for biological function within
cellular p62 bodies and lysosomal targeting through the autop-
hagy pathway. In the comparison of PB1 assemblies visualized by
negative staining EM, TFG1 showed the most striking difference
to p62 assemblies both in size and apparent symmetry (see
Fig. 1d). Therefore, we reasoned that a p62 chimera, in which
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we exchange the native PB1 domain for TFG1–PB1, could clarify
the role of the helical PB1 scaffold in autophagy clearance. We
generated two p62 chimeras by fusing the TFG1–PB1 domain to
either p62 (123–408) or p62Δ123–319 (mini-p62), containing
only the p62 LIR motif and UBA domain (Fig. 6a) and visualized
the resulting assemblies by negative staining EM (Fig. 6b). The

TFG1:p62 chimera forms 48-nm wide filaments, which is
approximately three times the diameter of WT-p62 filaments and
possesses a helical architecture clearly different from that of WT-
p62 filaments. The TFG1-mini-p62 chimera forms defined, ring-
shaped oligomers with ~12 nm in diameter. To test whether the
TFG1-p62 fusion constructs are able to form p62 bodies in cells,
we expressed the chimeras fused to an N-terminal GFP tag in
HeLa cells deficient of endogenous p62. As controls, we also
expressed GFP-tagged WT-p62 and the mini-p62 construct
(p62Δ123–319) (Fig. 6c). The transfected cells were analyzed by
confocal fluorescence microscopy 24 h and 48 h post transfection.
All constructs formed p62 bodies, with the majority of dots
having a diameter in the range of 0.1–0.5 μm. We further clas-
sified GFP-positive punctae according to frequency of occurrence,
the tendency to cluster, and the morphological appearance
(Fig. 6c, d; Supplementary Fig. 5A).

We next asked whether TFG1-p62 could perform the biological
function of p62. We first assessed whether TFG1-p62 can be turned
over by autophagy and targeted to acidified cellular compartments
by using the “traffic light” reporter. Here, the mCherry-YFP tandem
tag is fused to the target protein, and the acidification of the
construct in lysosomes is monitored by appearance of red punctae.
Although both TFG1-p62 chimeras displayed a diffuse yellow
fraction, they were almost as efficiently degraded by autophagy as
the WT and mini-p62 constructs (Fig. 6e, f; Supplementary
Fig. 5B–F). We then asked if the TFG1-p62 chimera was able to
act as a cargo receptor for a p62-specific substrate, KEAP1, and
mediate autophagy degradation. KEAP1 was shown to be entirely
diffusely localized when expressed in cells lacking p6216. We first
verified that purified KEAP1–DC domain still binds to the
p62–TFG1 chimeras by using a pull-down assay (Supplementary
Fig. 5G). Next, we monitored co-localization in cells and found that
in analogy to biochemical binding data, the TFG1-p62 chimera, WT,
and mini-p62 constructs co-aggregated with KEAP1 in cells, but
only the WT and mini-p62 constructs could mediate acidification of
tandem tagged KEAP1 when co-expressed as Myc-tagged constructs
in the p62 KO HeLa cells. At the same time, no autophagic turnover
of mCherry-YFP-KEAP1, however, was observed upon co-
expression with chimera Myc-TFG1-p62 or Myc-TFG1-mini-p62
(Fig. 6g, h; Supplementary Fig. 6A–D). When we compromised the
formation of PB1 domain-mediated filament assemblies by mutating
p62’s double arginine finger (R21A/R22A), p62 was completely
diffusely localized and not degraded by autophagy (Supplementary
Fig. 7A, B, Supplementary Fig. 8, Supplementary Movies 1, 2). This
mutant also failed to mediate aggregation and autophagic degrada-
tion of KEAP1 in co-transfected cells (Supplementary Fig. 7C). In
conclusion, although TFG1-p62 chimera can be degraded by
autophagy despite their assembly into nonnative polymers, these
assemblies are evidently unable to mediate degradation of the p62-
specific substrate KEAP1 in analogy to the polymerization-deficient
double arginine finger mutant of p62.

Fig. 3 Structural basis of PB1 polymer formation. a Cryo-EM structures of AtNBR1–PB1 (left) and p62-PB1 filaments are shown with atomic ribbon models
(α-helix: blue and β-strands: yellow) superposed on the density. Close-ups show that both PB1 domains display the canonical ubiquitin-like fold (center left
and center right). The arrow indicates the rotation of the p62-PB1 subunit relative to the AtNBR1–PB1 subunit in their respective assemblies. b, c Differences
in the PB1–PB1 interface give rise to different helical architectures. (Left) Monomer i of AtNBR1 (blue) and monomer i of p62 (yellow) were superposed to
visualize the degree of domain rotation toward the next monomer along the helical rung (monomer i+ 1). (Right) Adjacent subunits along the helical rung
for AtNBR1 display a 25° inward rotation compared with adjacent subunits of p62, explaining the observed differences in helical symmetry and diameter of
AtNBR1–PB1 and p62-PB1 filaments, respectively (c). d Electrostatic potential surface of the determined AtNBR1–PB1 and p62-PB1 structures. For both
structures, the propagation of the helical structure is mediated and stabilized by positively (blue) and negatively charged (red) surfaces on opposite faces
of the PB1 fold. e Schematic illustration and detailed interactions of the PB1–PB1 interface as determined from the AtNBR1–PB1 and p62-PB1 cryo-EM
structures, respectively. The structures are shown in cartoon representation highlighting key electrostatic residue contacts shown as sticks. f In vitro
pulldown with maltose-binding protein (MBP)-tagged wild-type AtNBR1–PB1 of structure-based AtNBR1–PB1 domain mutants. Error bars represent
standard deviation (SD) of three independent experiments. Source data are provided as a Source Data file.

Table 3 X-ray crystallography data collection and
refinement statistics.

Data collection statistics
Wavelength
Resolution range 37.9–1.53 (1.59–1.53)
Space group P 21 21 2
Unit cell 43.13 79.44 24.14 90 90 90
Total reflections 25,830 (2499)
Unique reflections 13,035 (1271)
Multiplicity 2.0 (2.0)
Completeness (%) 99.22 (99.30)
Mean I/sigma(I) 10.45 (1.42)
Wilson B-factor 20.99
R-merge 0.02799 (0.4132)
R-meas 0.03958 (0.5844)
R-pim 0.02799 (0.4132)
CC1/2 0.999 (0.655)
CC* 1.00 (0.89)
Model refinement
Reflections used in refinement 13,030 (1271)
Reflections used for R-free 669 (53)
R-work 0.2456 (0.3525)
R-free 0.2776 (0.4166)
CC (work) 0.927 (0.750)
CC (free) 0.902 (0.462)
Model refinement
Number of non-hydrogen atoms 816

Macromolecules 723
Ligands 52
Solvent 41

Protein residues 88
RMS (bonds) 0.007
RMS (angles) 0.79
Ramachandran

Favored (%) 100.00
Allowed (%) 0.00
Outliers (%) 0.00

Rotamer outliers (%) 6.49
Clashscore 2.97
Average B-factor 32.42

Macromolecules 30.25
Ligands 51.32
Solvent 46.80

*Statistics for the highest-resolution shell are shown in parentheses
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Discussion
The PB1 domain is a common interaction module present in all
kingdoms of life and found in various proteins involved in
membrane trafficking, redox regulation, cell division, as well as in
signaling. In this study, we focused on the structure in addition to
the biological and functional relevance of the p62-PB1 domain in

the context of polymeric assemblies. The overall ubiquitin-like
fold of the PB1 domain has been determined, and different
interface types through acidic and basic patches have been
identified in earlier studies2,5. Our cryo-EM structures of fila-
mentous p62 and AtNBR1–PB1 assemblies revealed that the
presence of a tandem arginine sequence in the basic motif of type
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AB interfaces is required to stabilize a polymeric assembly.
Although the exact composition of the interface between opposed
and electrostatically complementary surfaces is distinctly different
for the two PB1 assemblies, the main functional acidic and basic
residues including the essential double arginine finger are con-
served (Fig. 3). Furthermore, we observed that the propagation of

the helical rung is also distinctly different in p62 and AtNBR1
assemblies, with small changes in primary structure giving rise to
large differences in quaternary structure. This property has been
characterized in other sequence-related helical systems28. Inter-
estingly, we also found that the polymeric PB1 domain structures
of human p62 and AtNBR1 are assembled from a common helical

Fig. 4 Interactions of p62-PB1 with other PB1 domain proteins. a Quantitative determination of PB1-binding affinities by isothermal titration calorimetry.
Data represent mean and standard deviations from three independent experiments. b Representative electron micrographs of negatively stained p62-
PB11–122 (left) incubated with human NBR1–PB1 (right). c Quantification of lengths of P62-PB11–122 filaments before and after incubation with NBR1–PB1.
Source data are provided as a Source Data file. d Co-sedimentation assays of p62-PB11–122 with NBR1–PB1, PKCζ–PB1, MEK5–PB1, and MEKK3–PB1 (S=
supernatant; P= pellet). Control experiments of p62-PB11–122 and the respective PB1 interactor alone are also shown. Source data are provided as a Source
Data file. e Representative electron micrographs of negatively stained p62-PB11–122 with nanogold-labeled NBR1–PB1, PKCζ–PB1, MEK5–PB1, or MEKK3–PB1.
f Quantification of p62-PB11–122 filaments displaying one or two nanogold-labeled PB1 interaction domains. Source data are provided as a Source Data file.
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rung into two morphologically distinct organization types, i.e., in
the form of differently organized helical rungs. We speculate that
this observed plasticity of assembling a common helical rung is a
consequence of flexibility in forming the longitudinal PB1–PB1
interactions in the loop regions. As the constructs used here for
structure determination and cellular assays were limited to PB1
domains of AtNBR1 and p62, the relevance and functional con-
sequences of these different morphological arrangements within

cellular polymeric assemblies remain open. Full-length p62 was
shown to be flexible, and at this stage too disordered to be amenable
to 3D reconstructions8. In line with our previous analysis, the PB1
domain directs the C-terminus either to the outside or the inside of
the helical assembly, depending on the exact helical arrangement. It
is possible to envision that different morphological arrangements
affect the availability of critical interaction motifs outside the PB1
domain, i.e., LIR and KIR motifs as well as the UBA domain.
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Previous studies showed that purified full-length p62 can also
form helical filaments7,8. The existence of these assembly struc-
tures inside of cells, however, had not been demonstrated.
Therefore, we used the CLEM technique to identify and visualize
the ultrastructural organization of p62 found in large clusters
known as p62 bodies. Image analysis confirmed that p62 bodies
consist of a meshwork of short filamentous structures. The prin-
cipal dimension of the observed structures is consistent in width
and length with previous measurements in vitro8. The structures
are compatible with recently observed aggregates of p62 in brain
neurons and neuroepithelial cells20. Due to the limited length and
flexibility, p62 filaments pack loosely into a spheroid-shaped,
meshwork-like superstructure. The observed bodies with average
dimensions below micrometers in size aggregate in structures that
appear morphologically separated from the cytosol (Fig. 5), sug-
gestive of phase separation as observed previously in reconstitu-
tion experiments21,22. The observed body structures of hundreds
of nanometers are also significantly larger than individual fila-
ments with on average 30 nm length. When organized in such
large superstructures, p62 bodies are more similar in dimension to
typical molecular cargo, such as protein aggregates, viruses, and
organelles when compared with receptor oligomers or filament
assemblies alone.

The organization of p62 in filamentous assemblies has direct
functional consequences for the interaction with a series of
binding partners in the context of autophagy as well as signaling.
It has been demonstrated that a polymeric organization of p62
can enhance low-affinity interactions to highly avid interac-
tions13. In addition, using p62-interacting PB1 domains from
MEK5, PKCζ, and MEKK3 kinases, we show that p62 polymeric
assemblies can be capped on one end or dissociate into smaller,
ring-like structures. The intact p62 filaments occlude the bulk of
PB1 interaction sites that are accessible in its monomeric state5

(Fig. 4). Conversely, we show that end binding of NBR1 to p62
filaments leads to disassembly and shortening, which can thereby
modulate the length of the filamentous structure. As NBR1
binding has been shown to promote p62 body formation
in vitro21,22 to co-localize with p62 bodies in vivo29, we hypo-
thesize that this filament-end interaction by NBR1 cross-links
shorter filaments more effectively into larger structures and
thereby also affects the size of p62 bodies in cells. We speculate
that other interactors have similar effects on the size and
dynamics of p62 bodies as they may occur in phase separation
processes. The size of bodies will also control the availability of
interaction sites. The here presented structures and interaction
studies of PB1–p62 filaments reveal a series of regulation
mechanisms that are critical in the functional context of p62’s
action in autophagy and signaling.

In order to understand how the assembly state, the specific
symmetry, and subunit arrangement of this state affect p62’s
biological function, we tested a series of chimera variants of p62
for their efficiency with regard to cargo uptake and autophagic
degradation in the cell. The experiments showed that polymeric

as well as oligomeric ring-like scaffolds from related PB1 domains
fused to the C-terminal functional domains of p62 can be taken
up by the autophagy machinery almost as efficiently as WT-p62.
Interestingly, this is not the case for variants of p62 that are
monomeric and diffuse in the cytosol12. Our results suggest that
structures organized in larger oligomeric clusters are sufficient to
mediate self-disposal of p62 (Fig. 6), presumably due to increased
avidity of accessible LIR motifs and UBA domains. The specific
uptake of the model cargo KEAP1, however, could only be
accomplished by WT-p62 and mini-p62 retaining the structural
context of native p62 assemblies. Other TFG1-PB1-p62 chimera
polymers were not capable of transferring KEAP1 to the lyso-
some. The dependency of the native p62-PB1 domain for filament
assemblies and KEAP1 degradation was further illustrated by the
monomeric double arginine finger (R21A/R22A) mutant of p62.
This mutant was completely diffusely localized, not degraded by
autophagy, and unable to mediate degradation of KEAP1 by
autophagy. In conclusion, larger p62 assemblies, including ring-
like structures and filaments, are essential for disposal of autop-
hagy cargo. Moreover, the precise structural context of the fila-
ment assembly is affecting the ability to degrade KEAP1-
containing aggregates, and possibly other p62-specific cargoes.

Methods
Protein purification. AtNBR1 residues 1–94 (NBR1–PB1), p62 residues 1–122
(p62-PB1), and TFG1 residues 1–95 (TFG1–PB1) were cloned into a pETM44
expression vector containing a N-terminal His6 tag, followed by a maltose-binding
protein (MBP) tag and a recognition sequence for 3C protease. Proteins were
expressed in E. coli BL21 (DE3) (obtained from Protein Expression and Purifica-
tion Core Facility EMBL) using auto-induction in lactose-containing media30.
After 18 h, cells were harvested by centrifugation, resuspended in lysis buffer
(50 mM HEPES, pH 8.0, 0.5 M NaCl, 0.05 mM TCEP, and 0.1% (v/v) Triton X-
100), and lysed by three cycles of rapid freeze–thawing in liquid nitrogen. After
removal of cell debris by centrifugation, recombinant proteins were purified by Ni-
NTA affinity chromatography, and diafiltrated into 50 mM HEPES, pH 7.5, 0.1 M
NaCl, and 0.05 mM TCEP followed by proteolytic cleavage of the His6/MBP by
incubation with 1:200 mol/mol 3 C protease at ambient temperature. After 1 h, the
cleavage solution was incubated with Talon resin (Clontech) for 15 min, and the
resin subsequently sedimented by centrifugation. The supernatant contained the
respective PB1 domains in high purity. p62 residues 1–122 (p62-PB1) were cloned
into pOPTM and expressed as an MBP fusion protein in E. coli BL21 (DE3) using
auto-induction (Studier 2005). NBR1 residues 1–85 (NBR1–PB1), pKCζ residues
11–101 (pKCζ–PB1), MEK5 residues 5–108 (MEK5–PB1), and MEKK3 residues
43–127 (MEKK3–PB1) were cloned into the pETM11 containing an N-terminal
His6 tag followed by a recognition sequence for TEV protease. Proteins were
expressed in E. coli BL21 (DE3) using auto-induction (Studier 2005). For the gold-
labeling experiments, the His6 tag was not removed to allow binding of 5 nm Ni-
NTA-Nanogold® (Nanoprobes). For consistency, the His6 tag was also kept on the
proteins for the co-pelletation assay.

Thermal unfolding assays. Thermal denaturation assays were performed essen-
tially as described previously31. Briefly, protein was dialyzed into 15 mM HEPES
(pH 7.5), 150 mM NaCl for pH screening, or 100 mM HEPES (pH 7.5) for ionic
strength screening. All additives were dissolved in 50 mM HEPES (pH 7.5). A
volume of 12.5 μl of a solution containing 500 ng of protein was diluted in H2O
with 5x Sypro Orange (Sigma-Aldrich) and immediately mixed with an equal
volume of assay condition. All conditions were assessed in triplicate. Fluorescence
increase was monitored on a MyiQ real-time PCR instrument (BioRad). Assays
were performed over a temperature range of 15–90 °C using a ramp rate of 1 °C

Fig. 6 Cellular assays of p62 polymeric state. a Schematic illustration of used p62 constructs and chimeras with p62-PB1 (green) and TFG1–PB1 (blue).
b Representative, negatively stained electron micrographs of purified p62 constructs and chimeras from (a), including illustration of polymeric and
oligomeric forms observed by negative staining electron microscopy. c Confocal fluorescent images of HeLa p62 (KO) cells expressing GFP-tagged
constructs and chimeras. All examined constructs form punctate structures. d Quantification of the number of p62 bodies forming dots of various sizes.
e Quantification of cells displaying yellow and red dots in (f). f Representative confocal fluorescence images of HeLa p62 (KO) cells expressing mCherry-
YFP-tagged (dt-tagged) p62 constructs and chimeras. The appearance of red puncta (as an indicator of lysosomal localization) for all constructs indicates
that all constructs and chimeras can be processed by autophagy. Punctae were counted and classified based on more than 100 cells in each condition in
three independent experiments. g Representative confocal fluorescence images of HeLa p62 (KO) cells expressing the respective p62 constructs and
chimeras, as well as mCherry-YFP-tagged KEAP1. h Statistics of appearance of lysosome-localized and cytosolic dots for mCherry-YFP-tagged KEAP1. The
error bars in d, e, and h represent standard deviations of the mean.
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min−1 in steps of 0.5 °C. Fluorescence data from triplicate measurements were
baseline corrected individually, and unfolding curves were normalized to max-
imum fluorescence to give fractional denaturation curves. The apparent Tm was
determined as the inflection point of a sigmoidal fit to the normalized fluorescence
signal using a customized routine in R.

Quantification of PB1-binding affinities. Isothermal titration calorimetry (ITC)
experiments were carried out with a VP-ITC system (MicroCal). Experiments were
performed at 25 °C in 10 mM HEPES (pH 7.5), 150 mM NaCl. Purified p621–122

D69A/D73A was placed in the reaction cell at a concentration of 5–20 μM with
either MEK5 or NBR1 at a concentration of 25–100 μM in the injection syringe.
Injections of 10 μl of syringe solution were performed at 4-min intervals. Inte-
gration of the raw thermogram data, baseline correction, and data processing were
performed with the NITPIC32 and SEDPHAT33 software packages. The data were
corrected by the heat of injection calculated from the basal heat remaining after
saturation. A one-site binding mode was used to fit the data using a nonlinear least-
squares algorithm34. The values reported are the mean of three independent
measurements, and errors represent the corresponding standard deviation.

Co-pelleting assay. Co-pelleting assay was performed according to the F-actin
binding co-sedimentation assay from Cytoskeleton Inc. In brief, p62-PB11–122,
potential binding partner, or p62-PB11–122 together with potential binding partner,
were incubated for 1 h on ice followed by centrifugation at 49,000 g, 4 °C for 30 min
in a TLA-100 rotor. The pellet and supernatant were assayed by SDS-PAGE and
stained with Coomassie.

Negative staining EM and filament-length measurements. p62-PB11–122 was
incubated with different binding partners for 1 h on ice followed by 30 min of
incubation with 5 nm Ni-NTA-Nanogold® (diluted 1:25). Excess nanogold was
removed through pelletation of filaments by ultracentrifugation at 49,000 g, 4 °C for
30 min in a TLA-100 rotor, and the pellet fraction was resuspended in 20 mM
HEPES, pH 8, 50 mM NaCl. The sample (3.6 μl) was applied to a glow-discharged
carbon-coated EM grid and blotted according to the side-blotting method35. Grids
were imaged using a Morgagni 268 transmission electron microscope (FEI)
operated at 100 kV with a side-mounted 1 K CCD camera. Filament lengths for
p62-PB11–122 and p62-PB11–122/HsNBR11–85 were measured using Fiji36, and
statistical analysis was done using a two-tailed unpaired t test with Welch’s cor-
rection in GraphPad Prism 6.0.

Pull-down assay. MBP-tagged AtNBR1–PB11–94 and mutant AtNBR1 residues
1–94 (AtNBR1–PB1) were expressed as described above and buffer-exchanged into
15 mM Tris (pH 7.5), 150 mM NaCl. For the AtNBR1 pull-down experiments,
50 μl of amylose resin (NEB) was incubated for 10 min with MBP–AtNBR1–PB1,
followed by 5-min incubations with a 4:1 molar excess of mutant AtNBR1–PB1.
Beads were washed with 15 mM HEPES (pH 7.5), 500 mM NaCl, eluted with
15 mM HEPES (pH 7.5), 150 mM NaCl, and 30 mM maltose, and fractions were
analyzed by SDS-PAGE. p62, TFG1-mini-p62, and TFG1-p62 were purified as
described and applied to size-exclusion chromatography on a Superdex 75 16/60 in
20 mM Tris (pH 8), 100 mM NaCl. Human KEAP1–DC309–624 was cloned into
pET-28a(+) with a N-terminal 6×His tag, purified on Ni-NTA resin, and buffer-
exchanged into 20 mM Tris (pH 8), 100 mM NaCl. Approximately 100 μl of
amylose resin (NEB) was incubated for 30 min with either of the MBP-containing
proteins at room temperature, followed by 30-min incubations with a 3:1 molar
excess of KEAP1–DC309–624. Beads were washed with 20 mM Tris (pH 8), 1 M
NaCl, and eluted with 20 mM Tris (pH 8), 100 mM NaCl, and 20 mM maltose.
Fractions were analyzed by SDS-PAGE.

Electron cryo-microscopy. For AtNBR11–94, a total of 3.0 μl of 0.4 mg ml−1

AtNBR1–PB1 was applied to glow-discharged C-flat grids (CF-1.2/1.3–2 C, 400-
mesh holey carbon on copper; Protochips) on a Leica GP2 vitrification robot
(Leica, Germany) at 95% humidity and 25 °C. The sample was incubated for 10 s
on the grid before blotting for 2 s from the back side of the grid and immediately
flash-frozen in liquid ethane. Micrographs were acquired at 300 kV using an FEI
Titan Krios (Thermo Fisher Scientific) equipped with a Falcon II direct detector at
a magnification of 59,000, corresponding to a pixel size of 1.386 Å at the specimen
level. Image acquisition was performed with EPU Software (Thermo Fisher Sci-
entific), and micrographs were collected at an underfocus varying between 0.5 and
4.5 μm. We collected a total of seven frames accumulating to a dose of 14 e− Å−2

over 0.82 s. In total, 742 micrographs were acquired, of which we selected 684 for
further processing after discarding micrographs that did not show Thon rings
exceeding 6 Å.

For p621–122, L-type filaments were enriched by the following procedure: 0.2 mg
of p62-PB1 (100 μl) was ammonium sulfate precipitated (25% v/v) and incubated
o/n at 4 °C. The sample was spun at 17,000 g for 15 min at 4 °C, and the pellet was
resuspended in 50 mM TRIS (pH 7.5), 100 mM NaCl, and 4 mM DTT. This
ammonium sulfate precipitation was repeated a second time. In the final step, the
sample was centrifuged at 49,000 g for 45 min at 4 °C, and the pellet resuspended in
25 μl. A total of 3.6 μl of the resulting p62-PB11–122 solution was applied to glow-
discharged Quantifoil R2/1 Cu 400-mesh grids on a Vitrobot Mark IV (Thermo

Fisher Scientific) at 10 °C and 100% humidity. The sample was blotted for 5 s from
both sides, and flash-frozen in liquid ethane after a drain time of 1 s. Micrographs
were acquired at 300 kV using a FEI Titan Krios (Thermo Fisher Scientific) with a
K2 Summit detector (Gatan, Inc.), a pixel size of 1.04 Å, and an underfocus ranging
from 0.5 to 2.5 μm. In total, 40 frames were collected in counting mode with a dose
rate of 4.5 e− Å−2 s and a total dose of 40 e− Å−2. In total, 2277 micrographs were
automatically collected, and 856 micrographs without ice contamination or carbon
chosen for further processing.

Image processing. For the AtNBR1 dataset, movie frames were aligned using
MOTIONCORR37. The resulting frame stacks and integrated images (total frame
sums) were used for further processing. The contrast-transfer function of the
micrographs was determined with CTFFIND438 using the integrated images. Helix
coordinates were picked using e2helixboxer.py from the EMAN2 package39.
Initially a subset of 100 images was selected for preliminary processing in
SPRING40. Briefly, overlapping helix segments of 350 × 350 Å dimensions were
excised from the frame-aligned images with a mean step size of 60 Å using the
SEGMENT module in SPRING. In-plane rotated, phase-flipped segments were
subjected to 2D classification by k-means clustering as implemented in SPARX41.
During a total of five iterations, the segments were classified and iteratively aligned
against a subset of class averages chosen based on the quality of their power
spectra. Class averages revealed two distinct helix types referred to as S-type and L-
type. We determined the helical symmetry for the L-type helices by indexing of the
power spectra obtained from the 2D classification. The final symmetry parameters
were determined with a symmetry search grid using SEGMENTREFINE3DGRID.
For 3D refinement and reconstruction, the excised segments were convolved with
the CTF and no in-plane rotation was applied prior to reconstruction. Starting
from the symmetry parameters obtained for the L-type helix, symmetry parameters
of the S-type helix were refined. The maximum of the mean cross-correlation peak
between computed and experimental power spectra was found at a pitch of 70 Å,
11.55 units per turn for the two-start L-type helix, and a pitch of 68.2 Å, 11.55 units
per turn for the one-start S-type helix. Using the refined symmetry parameters, we
performed a competitive high-resolution multi-model structure refinement using
all 684 images with a final resolution of 4.5/3.9 Å and 5.0/4.4 Å (FSC 0.5/0.143)42

for the two-start (L-type) and one-start (S-type) helix reconstructions (Table 2).
For the p621–122 data set, movie frames were aligned in RELION343 using 5 × 5

patches. The contrast-transfer function of the micrographs was determined with
Gctf44. Helix coordinates were automatically picked in RELION3 and segments
extracted with a step of 22.5 Å, binning 2, and an unbinned box size of 256 pixels.
2D classification with 100 classes was performed and classes were selected that
showed secondary structure features. Two separate subsequent 2D classifications
were performed with two distinct groups of 2D classes belonging to an S-type and
L-type pattern. Using SEGCLASSRECONSTRUCT from the SPRING package40 a
series of putative helical symmetry solutions could be obtained. In addition to
running a series of refinements with these symmetry solutions, a C1 reconstruction
provided additional hints for symmetry parameters. Imposition of wrong
symmetry parameters led to smeared density features, whereas only the correct
symmetries for both filament types led to recognizable high-resolution side-chain
features. Helical symmetry was automatically refined in RELION to 77.3º helical
rotation and 4.8 Å rise for the S-type and 26.5º rotation and 9.8 Å rise for the L-
type, respectively (Table 2). Focussed refinement was performed using a mask
covering the central 25% of the filament along the helical axis. This approach
improved the resulting resolution for the L-type, but not for the S-type. The final
resolution was estimated at 3.5 Å and 4.0 Å using the FSC and the 0.143 criterion
cutoff42, for the L- and S-types, respectively.

Atomic model building and refinement. For visual display and model building,
the AtNBR1 EM density map of the individual reconstructions was initially filtered
to 3.9 Å and 4.4 Å, respectively, and sharpened using a B-factor of −200 Å2. The
AtNBR1–PB1 subunit model was built into the 3.9 Å density map of the L-type
arrangement de novo in COOT45. Residues 81–85 could not be built de novo due
to weak density, but were added based on the high-resolution crystal structure
obtained in this study, which showed good agreement with the weak density. For
the p62-PB1 (3–102) map, the NMR structure from rattus norvegicus (PDB ID
2kkc [https://doi.org/10.2210/pdb2kkc/pdb]) was rigid-body fitted into the
RELION-postprocessed density of the L-type filament and then manually adjusted
to the human sequence in COOT45. The models were expanded using helical
symmetry, and a nine-subunit segment was excised to serve as a refinement target,
taking into account interactions along the azimuthal propagation and lateral
interactions along the helical axis. Following real-space refinement in PHENIX46,
we used model-based density scaling47 to generate locally sharpened maps and
completed the model in COOT followed by further iterations of real-space
refinement. The final monomer atomic model from the L-type arrangement was
rigid-body fitted into the S-type density, and refinement of the model was per-
formed as described above (Table 3).

X-ray crystallography. Crystals of AtNBR11–94 carrying a D60A/D62A mutation
were grown using hanging drop vapor diffusion at 292 K by mixing equal volumes
of 11 mgml−1 protein and reservoir solution. Within 10 h, crystals appeared as
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needle clusters in 0.085 M MES (pH 6.5), 18.2% (w/v) PEG20000. Isolated needles
(10 × 2 × 4 μm) were obtained by streak seeding with a cat whisker into 0.1 M MES
(pH 6.5), 18–20% (w/v) PEG20000, or 0.1 M sodium cacodylate (pH 6.5), 0.2 M
(NH4)2SO4, and 30–33% PEG8000. For cryo-protection, crystals were soaked in
the crystallization condition supplemented with 15% (v/v) glycerol. Diffraction
data were collected on the ID23-2 microfocus beamline at the European Syn-
chrotron Radiation Facility (ESRF) and processed with XDS48 and AIMLESS49.
Initial attempts to solve the crystal structure using the cryo-EM atomic model
were unsuccessful. The crystal structure was solved using molecular replacement
using the monomer density from the L-type cryo-EM reconstruction as the search
model. Briefly, the monomer density was obtained by cutting out density
extending 4.5 Å beyond the atomic coordinates. The extracted map segment was
centered in a P1 unit cell extending over three times the maximum map
dimension, converted to structure factors using a in-house, customized CCTBX50

routine, and used for automated molecular replacement in PHASER51. The top-
scoring solution had a translation function Z score of 16.5. Henderson–Lattmann
coefficients were generated from the figure of merit (FOM) obtained from the
PHASER solution and employed for phase extension using the high-resolution X-
ray crystallographic data by density modification in RESOLVE52, yielding excel-
lent electron density. Using the 1.9 Å data, the model was built using Arp/Warp53

and completed manually in COOT. Table 1 summarizes data collection and
refinement statistics.

Correlative light and electron microscopy. For CLEM, RPE1 cells (ATCC CRL-
4000) were transiently transfected with pDest-EGFP-NBR1(D50R)29 and grown on
photo-etched coverslips (Electron Microscopy Sciences, Hatfield, USA). Cells were
fixed in 4% formaldehyde, 0.1% glutaraldehyde/0.1 M PHEM (80 mM PIPES,
25 mM HEPES, 2 mM MgCl2, and 10 mM EGTA, pH 6.9), for 1 h. The coverslips
were then washed in PBS containing 0.005% saponin and stained with the indi-
cated primary antibodies for 1 h (rabbit anti-p62 (MBL, PM045), mouse anti-NBR1
(Santa Cruz, #sc-130380)), washed three times in PBS/saponin, stained with sec-
ondary antibodies (from Jackson ImmunoResearch Laboratories) for 1 h, washed
three times in PBS, and shortly rinsed in water. The cells were mounted with
Mowiol containing 2 µg ml−1 Hoechst 33342 (Sigma-Aldrich). Mounted coverslips
were examined with a Zeiss LSM780 confocal microscope (Carl Zeiss MicroIma-
ging GmbH, Jena, Germany) utilizing a Laser diode 405–30 CW (405 nm), an Ar-
Laser Multiline (458/488/514 nm), a DPSS-561 10 (561 nm), and a HeNe laser
(633 nm). The objective used for confocal microscopy was a Zeiss plan-
Apochromat 63×/1.4 Oil DIC III. Cells of interest were identified by fluorescence
microscopy and a Z stack was acquired. The relative positioning of the cells on the
photo-etched coverslips was determined by taking a DIC image. The coverslips
were removed from the object glass, washed with 0.1 M PHEM buffer, and fixed in
2% glutaraldehyde/0.1 M PHEM for 1 h. Cells were postfixed in osmium tetroxide,
stained with tannic acid, dehydrated stepwise to 100% ethanol, and flat-embedded
in Epon. Serial sections (~100–200 nm) were cut on an Ultracut UCT ultra-
microtome (Leica, Germany), collected on formvar-coated mesh grids, and post-
stained with lead citrate.

Electron tomography from cellular sections. Samples were observed using a FEI
Talos F200C electron microscope (Thermo Fisher Scientific). Image series were
taken between −60° and 60° with 2° increment. Single-tilt or double-tilt series (as
indicated in the text above) were recorded with a Ceta 16 M camera. Single-axis
tomograms were computed using weighted back projection, and when applicable,
merged into a dual-axis tomogram using the IMOD54 package. Display and ani-
mation of segmentation of tomograms were performed using a scripted workflow
in ImageJ36 and IMARIS.

Autophagy and p62 turnover assays. The following antibodies were used: mouse
anti-Myc antibody (Cell Signaling, Cat. #2276#, 1:8000 for western blots and 1:5000
for confocal imaging); rabbit anti-GFP antibody (Abcam, ab290, 1:5000); guinea
pig anti-p62 antibody (Progen, Cat. #Gp62-C#, 1:5000); rabbit anti-actin antibody
(Sigma, Cat. #A2066#, 1:1000); Alexa Fluor® 647-conjugated goat anti-mouse IgG
(A21236, 1:1000); HRP-conjugated goat anti-mouse IgG (1:5000); goat anti-rabbit
IgG (1:5000); goat anti-guinea pig IgG (1:5000).

Generation of HeLa cells KO for p62 and stable cell lines. To generate CRISPR/
Cas9 p62 gRNA plasmid, sense and antisense p62 gRNA was annealed and then
inserted into plasmid pX330 (Ref PMID: 23287718). For generation of CRISPR/
Cas9 p62 KO cells, ~30,000 HeLa cells (ATCC CCL2) were seeded per well into 24-
well plates and transfected with plasmid pX330 p62 gRNA using Metafectene Pro
(Biontex T040). For clonal selection, cells were treated with 500 ng ml−1 of pur-
omycin 24 h after transfection for 48–72 h. Later, single cells were sorted into a 96-
well plate using FACS (fluorescence-activated cell sorting). These clones were
allowed to grow for 7–10 days before screening for KO using immunoblotting. The
following sense 5′-CACCGTCATCCTTCACGTAGGACA-3′ and antisense 5′-
AAACTGTCCTACGTGAAGGATGAC-3′ gRNAs were used.

HeLa FlpIn T-Rex p62 KO cells55 were used to make stable cell lines expressing
GFP-p62 or GFP-p62 R21A/R22A. First, p62 and p62 R21A/R22A were transferred

into the destination vector pDest-FRT/TO-GFP-C156 by Gateway LR
recombination reactions. Then stable cell lines were made using the manufacturer’s
instructions (Invitrogen, V6520-20). Briefly, the HeLa FlpIn T-Rex p62 KO cell line
was transfected with pDest-FRT/TO-EGFP-p62 or pDest-FRT/TO-EGFP-p62
R21A/R22A. Forty-eight hours post transfection, colonies of cells with the gene of
interest integrated into FRT site were selected using 200 µg/ml of Hygromycin
(Calbiochem, 400051). To induce expression of the gene of interest, 1 µg/ml of
tetracycline was added for 24 h. Analyses of degradation of EGFP-p62 or EGFP-
p62 R21A/R22A by flow cytometry were done as previously described57.

Construction of plasmids. The gateway entry clones pENTR-p62, pENTR-p62
R21A/R22A, and pENTR-p62 Δ123–319 (mini-p62) have been described previously2.
pENTR-p62 Δ123–319 was made by deletion of pENTR-p62. TFG1-p62 fusion
constructs were produced by InFusion PCR. To subclone the TFG1-p62 fusion
constructs into an ENTRY vector, a NcoI site was inserted into the start codon of p62
in pENTR-p62, creating pENTR-p62CCATGG. The start codons in TFG1-p62
(AJD152) and TFG1-mini-p62 (AJD157) already have NcoI sites, and there is an
additional NcoI site close to the end of the p62 cDNA sequence in pENTR-p62,
TFG1-p62, and TFG1-mini-p62. To replace wild-type p62 of pENTR-p62CCATGG,
TFG1-p62 and TFG1-mini-p62 (AJD152 and AJD157) were subcloned as NcoI
fragments into pENTR-p62CCATGG cut with NcoI, creating pENTR-TFG1-p62 and
pENTR-TFG1-mini-p62, respectively. Gateway LR recombination reactions were
performed as described in the Gateway cloning technology instruction manual
(Thermo Fisher Scientific, 11791020). Gateway expression clones pDest-Myc-p62,
pDest-EGFP-p62, and pDest-mCherry-EGFP-KEAP1 have been described
previously2,16. pDest-TFG1-Myc-p62 Δ123–319, pDest-Myc-TFG1-p62, and pDest-
Myc-TFG1-mini-p62 were made by Gateway LR reactions using destination vector
pDest-Myc (mammalian expression of N-terminal Myc-tagged proteins2). pDest-
EGFP-p62 Δ123–319, pDest-EGFP-TFG1-p62, and pDest-EGFP-TFG1-mini-p62
were made using destination vector pDest-EGFP-C1 (mammalian expression of N-
terminal EGFP-tagged proteins2). pDest-mCherry-EYFP-p62, pDest-mCherry-EYFP-
p62 Δ123–319, pDest-mCherry-EYFP-TFG1-p62, and pDest-mCherry-EYFP-TFG1-
mini-p62 were made using destination vector pDest-mCherry-EYFP58 (mammalian
expression of N-terminal mCherry-EYFP double-tagged proteins).

Cell culture and transfections. HeLa p62 KO cells were cultured in Eagle’s mini-
mum essential medium with 10% fetal bovine serum (Biochrom AG, S0615), non-
essential amino acids, 2 mM L-glutamine, and 1% streptomycin–penicillin (Sigma,
P4333). For transfection the same media was used but without 1%
streptomycin–penicillin. Cells were fixed in 4% PFA for 20min at room temperature.
For immunostaining, cells were permeabilized with cold methanol for 5 min at room
temperature, blocked in 3% goat serum/PBS, and incubated at room temperature with
antibodies. For DNA staining 1:4000 dilution was used in PBS of DAPI (Thermo
Fisher Scientific; pr.66248). Samples were mounted using Mowiol 4-88 (Calbiochem
475904). Cells were examined using a Zeiss LSM780 or LSM800 microscope with a
63 × 1.4 oil objective or a Leica TCS SP8 confocal microscope, 40 × 1.3 oil objective.

Western blot analyses. Transfected HeLa p62 KO cells were harvested in 50 mM
Tris, pH 7.4, 2% SDS, and 1% glycerol. Cell lysates were cleared by centrifugation,
and supernatants resolved by SDS-PAGE and transferred to Hybond-ECL nitro-
cellulose membrane (GE Healthcare). The membrane was blocked with 5% nonfat
dry milk in PBS-T, incubated with primary antibody overnight, and HRP-
conjugated secondary antibody for 1 h at room temperature. Proteins were detected
by immunoblotting with a chemiluminescence Luminol kit (SC-2048, Santa Cruz
Biotechnology) using a LumiAnalyst Imager (Roche Applied Sciences).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The PDB accession number for the atomic coordinates and structure factors of the
reported AtNBR1–PB1 X-ray crystal structure is PDB ID 6TGS. Raw X-ray diffraction
images of the AtNBR1–PB1 crystal structure (PDB ID 6TGS [https://doi.org/10.2210/
pdb6tgs/pdb]) have been deposited under https://doi.org/10.5281/zenodo.3556558. The
EMDB accession numbers for the L- and S-type AtNBR1–PB1 cryo-EM maps and
models are EMD-10499/EMD-10500 and the corresponding PDB IDs 6TGN [https://doi.
org/10.2210/pdb6tgn/pdb]/6TGP [https://doi.org/10.2210/pdb6tgp/pdb]. For the L- and
S-type p62-PB1 cryo-EM maps and atomic coordinate models EMD-10501/EMD-10502
and PDB IDs 6TGY [https://doi.org/10.2210/pdb6tgy/pdb]/6TH3 [https://doi.org/
10.2210/pdb6th3/pdb] have been assigned, respectively. The source data underlying
Figs. 1C, 3F, 4C, 4D, 4F, 5A, 5E, and Supplementary Figs. 5F, 7D, 7E, and 7F are
provided as a Source Data file. All relevant data are available from the corresponding
author upon reasonable request.
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Supplementary Tables 

Supplementary Table 1. Primer sequences used in this manuscript. 
 
Primer name  sequence (5' -> 3') 
AtNBR1 M1 fw     gcttccatgggcatggagtctactgctaacgcactcg           
AtNBR1 K11a fw      gctaacgcactcgtcgtcgccgtgagctatggaggtgtg         
AtNBR1 K11A rv      cacacctccatagctcacggcgacgacgagtgcgttagc         
AtNBR1 R19A_R20A fw gtgagctatggaggtgtgcttgcggccttcagggtgcctgttaaagc 
AtNBR1 R19A_R20A rv gctttaacaggcaccctgaaggccgcaagcacacctccatagctcac 
AtNBR1 D60A fw      gagtctgacttactctgctgaggatggggatgtgg             
AtNBR1 D60A rv      ccacatccccatcctcagcagagtaagtcagactc             
AtNBR1 E61A fw      gtctgacttactctgatgcggatggggatgtgg               
AtNBR1 E61A rv      ccacatccccatccgcatcagagtaagtcagac               
AtNBR1 D60A_D62A fw gagtctgacttactctgctgaggctggggatgtggttgcccttgt   
AtNBR1 D60A_D62A rv acaagggcaaccacatccccagcctcagcagagtaagtcagactc   
AtNBR1 D64A fw     ctgatgaggatggggctgtggttgcccttgt                 
AtNBR1 D64A rv     acaagggcaaccacaGccccatcctcatcag                 
AtNBR1 S94 rv    gcttgcggccgcttattaggacacgccagcgttcacattg        
TFG M1 fw gcttccatgggcaacggacagttggatctaagtggg 
TFG R95 rv gcttgcggccgcttattatcttggctggccattaacaaataatg 
PKCz G11 fw gcttccatgggcagcggcggccgcgtccgcc 
PKCz E101 rv gcttgcggccgcttattactcaggggtgctcgggaaaac 
NBR1 D50R fw gatggatacctcttcattttcctcacgcaggtattttatttgaatagtattc 
NBR1 D50R rv gaatactattcaaataaaatacctgcgtgaggaaaatgaagaggtatccatc 
p62 M1 fw gcttccatgggcgcgtcgctcaccgtgaaggc 
p62 K102 rv gcttgcggccgcttattatttctctttaatgtagattcgg 
p62 V122 rv gcttgcggccgcttattacaccatgttgcggggcgcctcc 
TFG-P62 fw tctgttccaggggcccatggccatgaacggacagttggatctaa 
TFG-P62 rv gcagccatcgcagatcacattgggattaacaaataatgtcagtttcagt 
TFG-CC-min-pP62 fw tctgttccaggggcccatggccatgaacggacagttggatctaa 
TFG-CC-min-pP62 rv actccatctgttcctcagggcgtccaggtggttccaagct 
MEK5 A5 fw tttcagggcgccatgggcgcccttggcccctttcct 
MEK5 A108 rv gctcgagtgcggccgctcaggctcttggaaatatctgcag 
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Supplementary Figures 

 

Supplementary Figure 1. Electron cryo-microscopy of AtNBR1-PB1 and p62-
PB1.  
(A) Representative micrographs of AtNBR1-PB1 with helix traces of segment centers 
classified as L-type (green) or S-type (blue) superposed. (B) Representative 
micrographs of p62-PB1 with center traces of segments classified as L-type (green) or 
S-type (blue) superposed. (C) Low-pass filtered class averages of L-type (top) and S-
type (bottom) AtNBR1-PB1 and p62-PB1 assemblies. (D) Representative image 
showing transitions between L and S-type assemblies for p62-PB1 (E) Side-by-side 
power spectra of L-type (top) and S-type (bottom) AtNBR1-PB1 assemblies with the 
power of sum of segments (left) and that simulated from re-projection of the 3D 
structure (right). Arrows indicate high-resolution meridional layer lines. (F) Power 
spectra of L-type (top) and S-type (bottom) p62-PB1 assemblies with the summed 
power spectra of the 2D classes. (G) Fourier shell correlation for 3D reconstruction of 
L-type (left) and S-type (right) AtNBR1-PB1 assemblies. (H) Fourier shell correlation 
for 3D reconstruction of L-type (left) and S-type (right) p62-PB1 assemblies. (I) Model 
vs. map Fourier shell correlation for L-type (left) and S-type (right) AtNBR1-PB1 
assemblies. (J) Model vs. map Fourier shell correlation for L-type (left) and S-type 
(right) p62-PB1 assemblies. 
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Supplementary Figure 2. Atomic models from crystal and cryo-EM structures of 
AtNBR1-PB11-94 and p62-PB11-122.  
(A) Superposition of cartoon representation of atomic models from the 1.6 Å crystal 
structure of AtNBR1-PB1 and the de novo-built model based on the 3.9 Å cryo-EM 
AtNBR1-PB1 density map (α-helix: blue, β-strands: yellow). Marked differences are 
observed in loop regions mediating lateral contacts. (B) Superposition of atomic 
models for L-type (blue) and S-type (yellow) assemblies for AtNBR1-PB1 (left) and 
p62-PB1 (right). Monomer i for each assembly is superposed and the difference in 
rotation of adjacent subunit i+1 are indicated. Only minor differences are observed. (C) 
LocScale map for L-type p62-PB1 cropped around one monomer. (D) Lateral contacts 
formed along the helical axis shown for AtNBR1-PB1 (left) and p62-PB1 (right). 
Subunits are shown in cartoon representation and relevant residue contacts are 
highlighted with side-chains shown as stick.  (E) Schematic representation of common 
longitudinal contacts formed in AtNBR1-PB1 and p62-PB1 helices. 
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Supplementary Figure 3. Electrostatic interactions drive type PB1 filament 
formation.  
(A-F) Negative-stain electron micrographs of AtNBR1-PB1 at increasing NaCl 
concentrations (A, 0 mM; B, 50 mM; C, 100 mM; D, 150 mM; E, 250 mM; F, 500 mM) 
illustrate how ionic strength weakens PB1 homo-oligomerization and affects filament 
length. (G/H) Thermofluor protein unfolding curves demonstrate that high ionic 
strength, as well as low and high pH destabilize a thermodynamically favorable 
(filamentous) state of AtNBR1-PB1. 
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Supplementary Figure 4. Fluorescence images of RPE1 cells.  
(A) Representative confocal fluorescence image of RPE1 cells expressing or not 
expressing NBR1(D50R): DNA (blue), NBR1 (D50R) (green) and endogeneous p62 
(red). Note the difference in average dot size of mCherry-p62 observed for both cases. 
(B) Overview fluorescence image showing the cells used for tomogram acquisition. 
Cells are outlined and the tomogram number is indicated. (C) Close-up view of cells in 
(B) indicating the subcellular position for tomogram acquisition.  
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Supplementary Figure 5. Chimera variants of p62 with the PB1 domain 
exchanged with a related domain from TFG is efficiently degraded by autophagy.  
(A) Graphic presentation of phenotypes observed by confocal imaging of cells 
transfected with p62 constructs fused to GFP (number of dots, morphology of dots, 
and amount of diffuse protein). Cells were analyzed 24h and 48h after transfection. (B-
E) Representative confocal images of HeLa p62 KO cells transiently transfected with 
the indicated p62 constructs fused to the mCherry-YFP double tag. Efficient 
degradation by autophagy is indicated by the accumulation of red-only dots. Scale 
bars, 10 µm. (F) Representative western blots using extracts from HeLa cells 
transiently transfected with the indicated p62 constructs fused to Myc (top), GFP 
(middle) or mCherry-YFP (bottom). p62, GFP or actin antibodies were used as 
indicated. Source data are provided as a Source Data file. (G) SDS-PAGE of pull-down 
fractions for KEAP1-DC using MBP-tagged TFG1-P62 chimera constructs. Source 
data are provided as a Source Data file.  
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Supplementary Figure 6. p62-mediated degradation of co-expressed KEAP1 
depends on the native PB1 domain of p62. 
(A-D) Representative confocal images of HeLa p62 KO cells transiently co-transfected 
with mCherry-YFP tagged KEAP1 and the indicated p62 constructs fused to Myc. 
Degradation of KEAP1 by autophagy (accumulation of red-only dots) is seen in cells 
co-transfected with full-length p62 or a mini-p62 deleted for residues 123-319, but not 
in cells co-transfected with chimera constructs containing the PB1 domain of TFG1. 
Scale bars, 10 µm. 
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Supplementary Figure 7. The double arginine finger in the PB1 domain is 
essential for aggregation and autophagy degradation of p62 and its substrate 
KEAP1. 
(A-C) Representative confocal fluorescence images of HeLa p62 (KO) cells expressing 
GFP only (left), GFP-tagged p62 WT (center) or p62 R21A/R22A (right) (A), and of 
HeLa p62 (KO) cells expressing mCherry-GFP tagged p62 WT, p62 R21A/R22A or 
mCherry-GFP alone (B). As seen in (A) the R21A/R22A mutant is unable to form 
punctate structures and the lack of red dots (B) indicates that this construct is not 
turned over by autophagy. (C) Representative confocal fluorescence images of HeLa 
p62 (KO) cells expressing the corresponding myc-tagged p62 WT and p62 R21A/R22A 
as well as mCherry-YFP-KEAP1. The R21A/R22A mutant does not form aggregates 
with KEAP1 and is unable to induce lysosomal-localization of mCherry-YFP-KEAP1. 
Scale bars, 10 µm. (D-F) Western blots of extracts from HeLa cells expressing GFP-
tagged (D), mCherry-GFP-tagged (dt) (E) or Myc-tagged (F) p62 WT or p62 
R21A/R22A constructs. GFP (D and E) and MYC antibodies (F) were used. Source 
data are provided as a Source Data file. 
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Supplementary Figure 8. The double arginine finger in the PB1 domain is 
required for autophagy degradation of p62. 
(A) Representative still images from movies of HeLa FlpIn T-Rex p62 KO cell lines 
stably expressing either GFP, GFP-p62 WT or GFP-p62 R21A/R22A at 0 h, 6h and 
12h incubation in starvation medium (HBSS). Expression was turned on with 
tetracycline for 24h before the experiment. Scale bars, 50 µm. Flow cytometry data 
showing the GFP fluorescence intensity of (B) GFP-p62 WT and (C) GFP-p62 
R21A/R22A after 3h or 12h incubation in full medium (FM), FM + Bafilomycin A1 (Baf), 
HBSS or HBSS + Baf. Cells were untreated (Off) or treated with tetracycline for 24h 
(On) before the experiment in order to induce the expression of the GFP proteins.  
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