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Distinct methane-dependent biogeochemical states
in Arctic seafloor gas hydrate mounds

Scott A. Klasek22, Wei-Li Hong® 342 Marta E. Torres®, Stella Ross®, Katelyn Hostetler!, Alexey Portnov®”,
Friederike Griindger® *8 & Frederick S. Colwell"®

Archaea mediating anaerobic methane oxidation are key in preventing methane produced in
marine sediments from reaching the hydrosphere; however, a complete understanding of how
microbial communities in natural settings respond to changes in the flux of methane remains
largely uncharacterized. We investigate microbial communities in gas hydrate-bearing sea-
floor mounds at Storfjordrenna, offshore Svalbard in the high Arctic, where we identify
distinct methane concentration profiles that include steady-state, recently-increasing sub-
surface diffusive flux, and active gas seepage. Populations of anaerobic methanotrophs and
sulfate-reducing bacteria were highest at the seep site, while decreased community diversity
was associated with a recent increase in methane influx. Despite high methane fluxes and
methanotroph doubling times estimated at 5-9 months, microbial community responses
were largely synchronous with the advancement of methane into shallower sediment hor-
izons. Together, these provide a framework for interpreting subseafloor microbial responses
to methane escape in a warming Arctic Ocean.
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icrobially generated methane in marine sediments has
M been estimated at 1013-10'%g per year!. Microbial

anaerobic methane oxidation (AOM) is responsible for
consuming the majority of this methane—up to 90%!—Dbefore it
can escape to the hydrosphere. This globally widespread?
microbial methane filter consists of very slow-growing®4, cur-
rently uncultured clades of anaerobic methanotrophic archaea
(ANME) and often-symbiotic sulfate-reducing bacteria (SRB).
These communities thrive at sulfate-methane transitions (SMTs),
sediment depths where methane is oxidized with sulfate (SR-
AOM)°. In contrast to the large areas where SMTs occur within
the sediment, at discrete locations of active methane gas release,
such as pockmarks and mud volcanoes, over 90% of the methane
can escape aerobic and anaerobic oxidation by benthic organisms
and end up in overlying waters®.

Methane release from the Arctic seafloor has received sig-
nificant attention over the past two decades’. Seafloor methane
venting to the hydrosphere has been documented along a wide
portion of the East Siberian Margin®, the South Kara Sea shelf?,
and the upper slope of the Beaufort Seal?. Extensive geophysical
surveys have characterized thousands of fault-associated seeps
below warming waters along the West Spitsbergen (Svalbard)
margin!"!% numerical modeling and U/Th dates from authigenic
carbonates revealed that seepage has persisted here for hundreds
to thousands of years!314,

The Storfjordrenna trough mouth fan, ~50 km south of Sval-
bard, hosts gas hydrate-bearing mounds (GHMs) on the seafloor
that are morphologically similar to submarine pingos described in
the Beaufort!> and Karal® Seas (Fig. 1). These GHMs lie below
water depths of 370-390 m, which approach the upper limit of
gas hydrate stability in this areal”. Gas hydrates within these
sediments are thus sensitive to changes in oceanographic condi-
tions and particularly susceptible to Arctic Ocean warming. Gas
leakage was observed above four of five GHMs, which are thought
to have formed from hydrate accumulation and methane gas
overpressure following glacial retreat!”. Microbial community
responses to subsurface methane release, whether driven by
tectonic!$, climate!, and/or oceanographic?® forcing, are
important to constrain because they support macrofaunal

'\"ga hydrate
ounds

communities?! of ecological and economic importance?2. How-
ever, how these microbial communities respond to changes in
methane release over time in Arctic cold seeps remains largely
uncharacterized. As environmental changes from either natural
or anthropogenic causes could potentially result in increased
methane flux, placing the responses of sediment microbial com-
munities in a temporal context is of immediate importance.

In the Arctic Ocean, abrupt release of methane from gas
hydrate dissolution in the central Barents Sea has been
hypothesized?3, while methane release from the Deepwater
Horizon oil spill into deep Gulf of Mexico waters was correlated
with the growth of aerobic methane-oxidizing Gammaproteo-
bacteria and oxygen drawdown??. Sediment microbial commu-
nity responses to fluctuating methane states have been
characterized at mud volcanoes?>2%, and methane has recently
been found to shape community structure at Storfjordrenna
GHMs?’. However, a dynamic understanding of how microbial
activity may mitigate methane release in methane-rich marine
sediments is currently poorly understood.

Changes in concentration gradients of porewater sulfate in
marine sediments have been used to constrain the timing of
submarine landslides®3, to infer rates and fluxes of sulfur through
sulfate-reducing bacterial communities?®, and to indicate irriga-
tion (through bioturbation or ascending gas bubbles?) or
migration of upwards-diffusing methane!. Under steady-state
conditions with a constant methane flux, sulfate concentrations
decrease linearly with depth until the SMT is reached3!, assuming
all SR is coupled to AOM. In contrast, sulfate profiles at locations
experiencing increases in methane flux change to a concave-up
shape, as sulfate concentrations decrease abruptly to <1 mM over
tens of cm (Fig. 2).

Reactive transport modeling of this transition from linearity
towards a concave up shape in porewater sulfate profiles (Fig. 2,
Fig. S1) can be used to estimate how long ago methane began to
diffuse into shallower sediment zones, provided that other phe-
nomena (advection, seawater irrigation, bioturbation, or mass
transport deposits) are minimized or constrained?$. This scenario
attributes the thinning of the sulfate reduction (SR) zone to
methane advancement into shallower sediment layers, which
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Fig. 1 Bathymetric map of Storfjordrenna gas hydrate mounds and core locations. Storfjordrenna is located south of the Svalbard Archipelago in the red
box on the regional map. GHM: gas hydrate mound, GC: gravity core, PC: push core, mbsl: meters below sea level. Black points show cores collected and
first described in this study, while white points indicate cores described in previous studies (see Table S3 for a summary of porewater data available from
Storfjordrenna). White polygons at GHMs indicate areas of seafloor gas release observed at the time of the cruise in 2016.
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Fig. 2 Time-progressing reactive-transport modeling of porewater geochemistry under three states of methane dynamics. States include a long-
standing steady-state methane supply (a-d), a transitional state (e-h), and a recent increase in methane flux (i-1). Porewater sulfate concentrations are
shown as black lines, methane concentrations as blue lines, and rates of AOM (RAOM) as red lines. Data from gravity cores (GCs) are shown for the upper
few meters below seafloor (mbsf). Porewater data from GHMs representing different methane states (GHMs 3 & 4, recent methane flux increase; GHM5,
steady state) were shown for comparison, with colored points representing cores first described in this study and gray points representing previously
described cores (see Fig. 1 for site locations). a-d With a long-standing methane supply, the porewater sulfate profile approaches a steady state after
40 kyr. The SMT gradually shoals with time (at a rate of 7E-3 cm/yr when comparing b and ¢) with a linear decrease in downcore sulfate concentration
resembling the profiles obtained from three gravity cores recovered at GHMDb5. e-h A transitional state occurs when the increase in methane supply is only
moderate. i-1 For a system experiencing a recent increase in methane supply, AOM stimulated by a recent pulse of methane rapidly changes sulfate
concentration gradients as observed in sediment cores recovered from GHMs 3 & 4.
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stimulates AOM within them. This framework has been used to
characterize Storfjordrenna GHMSs!4 in combination with
observations of free gas, gas hydrates, and other geochemical
signatures to support a model where episodic methane emission
occurs in pulses, with distinctive pre- and post-active stages32.
In this work, we constrain temporal responses of microbial com-
munities as methane migrates upwards towards shallow sediment
horizons. Using samples and data from Storfjordrenna GHMs, where
varying states of methane transport are evident, we employ geo-
chemical, numerical, and molecular approaches to report shifts in
rates of AOM, abundances of ANME and SRB, and microbial
community patterns concomitant with recent changes in methane
flux. These analyses reveal a tightly coupled microbial response to
intensifying subseafloor methane flux at a prime location in the
Arctic Ocean where gas hydrate is susceptible to ocean warming.

Results
Field descriptions and general patterns. Black-colored glacio-
marine sediments were recovered in all cores, reflecting the pre-
cipitation of iron sulfide minerals resulting from high rates of
sulfide production®>. Authigenic carbonate nodules were
retrieved in several cores, and chunks of gas hydrates several cm
in diameter were observed between 40-50 cm below seafloor in a
replicate of push core (PC) 1029. Cores PC1029 and GC1081
were taken from areas of gas seepage indicated by the white
polygons in Fig. 1. Core recovery lengths ranging from 102 to
335 cm captured SMTs in all cores except for PC1029 (Table S1).
All cores show downcore increases in alkalinity throughout
the sulfate reduction zone, providing further support of AOM as
the dominant sink for sulfate (Figs. 3a, 4a, and 5a). In situ
methane concentrations are probably higher than those reported,
as gas samples were taken from cores at atmospheric pressure. No
bubbles or frothy sediment texture was observed in the recovered
cores, limiting the possibility of degassing upon core retrieval.
Bacterial and archaeal 16S rRNA gene sequencing recovered
3.12 million sequences and 16,470 amplicon sequence variants
(ASVs) after contaminants were removed (see methods). Bubble
plots (Figs. 3b, 4b, and 5b, left panels) show the fifteen most
abundant taxonomic classes in the dataset, each of which
individually constitute 1% or more of the total sequences, and
combined account for 83.6% of reads in the dataset. The three
most common ASVs, which alone comprise 22.2% of all
sequences, belong to the class JS1 (phylum Atribacteria) which
are thought to ferment organic matter*. Two other dominant
classes, Deltaproteobacteria and Methanomicrobia, are subdivided
into families of anaerobic methanotrophs (ANME) and genera of
sulfate-reducing bacteria (SRB), respectively (Figs. 3b, 4b, and 5b,
right panels). Respectively, ANME and SRB make up 10 and 12%
of total sequences in this dataset, and ANME are most dominant
at or near SMTs. Two clades of sulfate-reducing bacteria that
commonly associate with ANME at seeps, SEEP-SRB1 and SEEP-
SRB23°36, share similar distribution patterns. Droplet digital PCR
counts of the methane-fixing methyl-coenzyme reductase gene
mcrA and dissimilatory sulfate reduction gene dsrAB span several
orders of magnitude across cores and depths (Figs. 3c, 4c, and 5c¢).

Identification of distinct states of methane transport. Porewater
sulfate profiles from the seven cores investigated in this study
suggest contrasting methane dynamics and AOM rates as
revealed by numerical reactive-transport modeling with a reduced
reaction network!* (Fig. 2). Thorough descriptions of the mod-
eling approach are available in the Methods section and Sup-
plemental Information. Briefly, we assumed AOM as the only
reaction responsible for consuming sulfate based on low pore-
water ammonium concentrations across several cores from

Storfjordrenna (Fig. S2, Table S3). Without fitting any porewater
data, cores were classified based on model runtime from an initial
condition after which the shape of the modeled sulfate profile
roughly matched the observed concentrations. After a runtime of
40 kya, the model approaches steady state with an SMT at ~1 m
below seafloor (Fig. 2c-d).

Three cores showing linearly decreasing sulfate concentrations
with depth (GC1068, GC1069, and GC1070) have profiles
consistent with a long-standing steady-state methane supply over
tens of thousands of years (Fig. 2a—d). We hereafter refer to these
three cores as “steady-state”, though the sparsity of sulfate
concentration data for these cores adds some uncertainty to this
interpretation. Porewater, microbial community, and functional
gene abundance data for these cores are shown in Fig. 3. In
addition to these three cores, GC1048 and GC1522 are offset
from GHMs and represent a special case. Linearly decreasing
sulfate concentrations above 2.5 mbsf suggest a weak but
persistent methane supply, but below, steeper decreases in sulfate
concentration appear to reflect a recent change in methane flux
consistent with moderate AOM rates and SMT shoaling speeds of
0.4 cm/yr (Fig. 2e-h). We consider these cores as belonging to a
separate transitional state. Data from GC1048 are shown in
Fig. S3.

In contrast, two cores with abrupt changes in sulfate
concentration gradients (GC1045 and GC1081) are experiencing
a recent increase in methane flux that was initiated less than three
centuries ago, agreeing with previously described observations of
cores GCI911 and GC1520!%. We thus consider these cores as
“non-steady-state”. The increase in methane supply shoals the
SMT by 10 cm/yr, and numerically derived AOM rates from these
two cores are an order of magnitude higher than the cores from
the former groups (Fig. 2a-h). Data from these non-steady-state
cores are shown in Fig. 4.

At a seep site atop GHM3, where persistent hydroacoustic gas
flares over multi-year surveys detail active methane seepage!’,
downcore changes from a remote-operated vehicle (ROV)-guided
push core (PC1029) capture biogeochemical signatures that reflect
high methane flux, gas bubble emission, and/or bioturbation (Fig. 5).
The likelihood of advective fluid movement here prohibits classifica-
tion with our diffusion-based modeling scheme, so we hereafter
consider this seep site as a distinct state of methane transport.

A steady-state pore fluid system. Three gravity cores from
GHMS5 showed approximately linear decreases in sulfate, with
methane present only below the SMT (Figs. 2a-d and 3a). Sulfide
profiles track the shape of the alkalinity curves, peaking at SMT
depths. In addition, macroscopic SMT-associated mucoid bio-
films consisting predominantly of ANME-137, were observed in a
split core at 63 and 68 cm in GC1070 (Fig. 3a). For these cores, we
estimate depth-integrated methane fluxes of 1.3 molm—2 yr—!
(Table S1) and peak rates of AOM at 10nmol cm™3 day~!
(Fig. 2d). Though ANME-1a and ANME-1b each comprise 4.5%
of reads across all samples from this study, ANME-1a are more
abundant than ANME-1b in steady-state cores (Fig. 3b). In
GC1068, mcrA counts above 10° copies per gram are seen just
above the SMT, though gene abundance profiles otherwise display
considerable variability and dsrAB counts are typically low, below
10° copies per gram bulk sediment (Fig. 3c).

Non-steady-state sites showing increasing methane flux.
GC1045 was sampled from the southern margin of GHM3, and
GC1081 from the center of GHM4 (Fig. 1). Sulfate profiles from
these cores show concave-up curvature, suggesting that the
methane-sulfate dynamics are not at steady state, but likely reflect
a recent increase in methane flux'# (Figs. 2i-1 and 4a). Porewater
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Fig. 3 Geochemical, microbial community, and gene abundance data from three cores at gas hydrate mound 5 showing steady-state sulfate-methane
dynamics. Sulfate-methane transition depths in centimeters below seafloor are indicated by dashed lines. a shows methane concentrations and porewater
sulfate, sulfide, and alkalinity, and b indicates percent abundances of dominant bacterial and archaeal classes, dominant anaerobic methanotrophic archaeal
(ANME) families, and sulfate-reducing bacterial (SRB) genera. € shows copy numbers of mcrA and dsrAB genes per gram bulk sediment, with values below
the detectable limit (103 g~") along the margin of the panel. Macroscopic translucent-to-yellow biofilms, shown as yellow symbols in panel (a), were
observed at 63 and 68 cm below seafloor in gravity core GC1070 (symbol size not to scale with depth axis).

sulfate profiles show a rapid decrease in concentration down core
and SMTs are well established. Our modeling estimates that total
methane fluxes throughout these two cores have increased over
the past two decades (Table S2). Modeling scenarios were con-
structed on a prior dataset of several porewater species from
Storfjordrenna in an attempt to account for other processes,
including advection, but only a scenario applying contrasts in
methane flux adequately fit the observed sulfate, ammonium, iron,
and calcium profiles!4. No fractures, mass transport deposits,
porosity changes, or evidence of bioturbation were found in the
gravity cores analyzed, and a buildup of ammonium to 60 uM in
the first 50 cm of GC1045 (Fig. S2a, Table S3) allows us to dis-
count the possibility of oxic bottom water intrusion. Fluxes are
integrated from all modeled AOM rates, assuming AOM as the
only sink for sulfate (see Supplementary Material and Fig. S2 for
justification). Following these constraints, our model estimates
peak AOM rates for an increasing methane flux scenario at
~200 nmol cm—3 d~! (Fig. 4d), over an order of magnitude higher
than those derived for steady-state cores (Fig. 2).

In GC1045 and GC1081, percent abundances of Deltaproteobac-
teria and Methanomicrobia are 12% and 5.9% higher than in steady-
state cores, respectively, and ANME-1b are the most abundant
ANME genus (Fig. 4b). Counts of mcrA reach maxima around 107
copies per gram at SMTs in both cores (Fig. 4c). Higher dsrAB
abundances at shallower depths in GC1045 likely reflect a larger or
more diverse sulfate-reducing community than in GC1081.

Active methane seepage. PC1029 was recovered from an estab-
lished patch of frenulate siboglinid tubeworms (Oligobrachia sp.
CPL clade, Fig. S4) whose chemosynthetic lifestyles are supported
by sulfide generated from SR-AOM at sites with high methane
discharge?!-3839. Observations of vigorous gas bubbling and
recovery of gas hydrate support the inference that the site was
experiencing high methane seepage at the time of sampling.
Sulfate concentrations at near-seawater values up to 10 cm below
seafloor at PC1029 (Fig. 5a) may be attributed to seawater infil-
tration (siboglinid bioirrigation or bubble-driven convection)
and/or sulfide oxidation from bacterial symbionts*® . Further
downcore, the incomplete drawdown of sulfate and high methane
concentrations suggest that sulfate-coupled AOM is an ongoing
process, pointing towards a high methane flux at the center of
GHMS3. As processes other than sulfate diffusion from seawater
are not accounted for in our model parameterization, we are
unable to precisely calculate AOM rates from PC1029. Our rough
estimation of the AOM rate based on the part of the sulfate
profile with the greatest concentration gradient (10-15 cmbsf)
yields a peak AOM rate on the order of 10> nmol m—3d—1. This
rate estimate would be increased significantly by accounting for
siboglinid-driven pumping of bottom seawater sulfate, or sulfide
reoxidation mediated by their endosymbionts. Nevertheless, this
estimated AOM rate is an order of magnitude higher than the
rates calculated for cores experiencing increases in methane flux
shown in Fig. 2e-h.
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Microbial communities from PC1029 show higher percent
abundances of several classes, notably Bacteroidia and Gamma-
proteobacteria (at 5.4 and 3.4%, respectively), than in cores
representing other states of methane dynamics (Fig. 5b). ANME-
2 are the dominant ANME type at 1-3cm in PC1029, but
ANME-1b predominate at depths with lower sulfate concentra-
tions (Fig. 5b). ANME-1a are nearly absent, agreeing with recent
observations from this seep location?” and contrasting with the
two other states. Near-equal abundances of SEEP-SRB1 and
SEEP-SRB2 at PC1029 are reminiscent of GC1081, the other core
from a seep site (Figs. 4b and 5b). The highest mcrA
concentrations, exceeding 108 copies per gram bulk sediment,
were recovered in PC1029, even in depths with high sulfate, low
methane, and low alkalinity (Fig. 5¢); these values are comparable
to ANME cell counts reported from other seep sites?>*!. Counts
of dsrAB were over an order of magnitude lower than mcrA
throughout the core, but still higher than those in nearly all other
samples from different methane states.

Response times of ANME and SRB to methane pulses as
inferred from porewater modeling. In non-steady-state cores,
modeled AOM peaks migrate upward with time (Fig. 4d). Run-
ning the model backwards or forward in time reveals an upward
migration of SMT at a linear rate of 10 cm per year given the
bottom methane flux we assigned (Fig. 4d, Table S2). Different
depths, and thus microbial communities therein, can be assigned
by the time they experienced (or are expected to experience) this
upward-migrating AOM peak. GC1045 communities from 66, 76,
86, and 110 cm depths, respectively, correspond to AOM peaks at
the time of collection, and one, two, and over four years before.
The highest concentrations of mcrA and relative abundances of
SEEP-SRBI1 and total ANME are seen in the community sampled
at 76 cm (Fig. 4c, d), suggesting these taxa dominate microbial
communities after about a year following methane migration into
this sediment horizon. In contrast, relative abundances of
ANME-1b are highest in the community from 66 cm, which may
reflect a quicker growth or a preference for lower methane con-
centrations compared to ANME-1a. In the timespan from one to
four years after the AOM pulse has passed through, mcrA
abundances decreased by nearly three orders of magnitude, but
dsrAB by less than one. After four years, the AOM pulse moves
onward and microbial communities are starved of sulfate, ANME
and SRB populations respectively decrease from 46% to 1.1 and
22% to 1.8% of the total community.

GC1081 communities from 56.5, 69, and 86 cm correspond to
maximum AOM rates from the time of sampling, one and a half,
and three years ago, respectively, while the community at 49 cm is
associated with high (but not yet peaking) AOM rates (Fig. 4b, d).
In contrast to communities from GC1045, ANME percent
abundances do not decrease as quickly, and SEEP-SRBI increases
with depth (Fig. 4b). A similar trend of ANME-1b growth
preceding ANME-1a is noticed, but surprisingly ANME-1b are
present in high relative abundance at 24 cm, where AOM rates
are not expected to be significant until two years after sampling.
Concentrations of mcrA and dsrAB both roughly correspond to
the present-day AOM pulse, showing no lag time with respect to
methane influx (Fig. 4¢). In communities from both steady-state
and non-steady-state cores, mcrA gene abundances correlate
positively with rates when plotted on a log-log scale (Fig. S5).

Microbial community diversity and analysis. The three most
abundant classes in our dataset, the Methanomicrobia, Delta-
proteobacteria, and JS1, a class of Atribacteria, are especially
dominant in communities from cores experiencing recent
methane influx (Fig. 4b). Besides these major groups, other poorly

understood taxa include the Aminicenantes, Anaerolineae, and
Phycisphaerae, all thought to be fermentative saccharolytic
heterotrophs#2-44,  Dehalococcoidia, also abundant, contain
members capable of reductive dehalogenation®®. We identified 76
ASVs in our dataset whose relative abundances were significantly
different across communities when grouped according to states of
methane dynamics (Fig. S6). These ASVs on average comprise
17.4% of the sequences in communities associated with active
seepage, 1.6% of communities experiencing methane flux, and
6.9% of steady-state communities. When compared to the other
two states, communities from sites displaying steady-state sulfate-
methane dynamics contained higher abundances of several ASV's
belonging to Aminicenantia, Dehalococcoidia, and Woesearch-
aeota (Fig. S6). In addition, one ANME-1a ASV was higher in this
group, though only four of the 41 ANME ASVs in the entire
dataset were differentially abundant across methane states. Sev-
eral ASVs belonging to SEEP-SRBI1 and Desulfatiglans also dis-
played variation among states (Fig. S6).

In communities from cores experiencing high methane flux
(seep and non-steady-state cores), Shannon-Weiner alpha
diversity indices decrease as depths approach peak model-
derived AOM rates (Fig. 6a). Linear regressions show no such
decrease in diversity across AOM peaks from steady-state areas
(Fig. 6b). Interestingly, in samples from core GC1069, the highest
diversity is seen at depths of peak AOM, while the opposite is
apparent in GC1070 (Fig. 6b).

Differences in community structure are evident across states of
methane dynamics, with communities from PC1029 showing
particularly clear separation from those in steady-state cores
(weighted Unifrac, Fig. 7a). These distinctions were still observed
even when seep samples were omitted (PERMANOVA
R?2=10.087, p<0.001), and when samples from above or below
the SMT were considered separately (R?2=0.29, p=0.001;
R2=0.18, p=0.004, respectively). In addition, we classify
samples according to three geochemical zones they inhabit based
on the shapes of porewater sulfate profiles: the linear sulfate
reduction (SR) zone, the nonlinear SR zone impacted by recent
methane influx, and below-SMT. Community structure also
varied significantly across these redox zones, though PERMA-
NOVA tests revealed only 11.6% of the variance among
communities could be explained by redox zone (Fig. 7b) in
contrast to 25% by methane state. Though containing high
relative abundances of ANME, communities in nonlinear SR
regions of non-steady-state cores were more similar to below-
SMT communities than those in linear SR zones, suggestive of
recent adaptations to methane influx (Fig. S7). Aside from
methane states and redox zones, communities also varied
significantly by the GHM and core they were sampled
from (37.2% and 24.1% of variance), suggesting these Arctic
GHM communities contain a high degree of biogeographic
heterogeneity?’ that remains unconstrained.

Discussion

The presence of distinct states of methane flux at Storfjordrenna
GHMs allows us to examine concomitant changes in inferred
AOM activity and microbial community composition. We con-
ceptually summarize results from integrated geochemical,
numerical, and microbiological analyses that characterize three
distinct biogeochemical states corresponding to changes in
methane supply across six cores (Fig. 8).

In Fig. 8a, steady-state sulfate and methane profiles are
observed when methane consumption is balanced by sulfate
diffusion from seawater. Abundances of ANME and SRB often do
not peak around the SMT, and these populations are accom-
panied by several other microbial groups (Fig. S6), many of which
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may be slow-growing anaerobic fermenters of organic matter.
Growth of biofilms at SMTs may also be supported over long
timescales, if given steady supplies of methane and sulfate. In
Fig. 8b, recent methane influx into shallower sediment horizons
stimulates AOM and consumes sulfate, shoaling the SMT, and the
diffusion of sulfate from seawater cannot balance the upward flux

of methane. Rates of AOM are approximately an order of mag-
nitude higher than the steady-state cores (Fig. 2), supporting the
growth of ANME/SRB and decreasing microbial community
diversity. In Fig. 8¢, gas seepage and the presence of hydrates at
PC1029 indicate methane is at or above saturation in porewaters
throughout the core. Sulfate is delivered into the sediment
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microbial community changes indicated by blowup circles. ANME and SRB represent red and green ovals, with other bacteria and archaea in gray (shapes
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increase redox gradients in underlying sediments, and further ANME/SRB growth.

column through seawater infiltration driven by bubble-driven
convection, bioirrigation by frenulate siboglinids, or reoxidation
of sulfide by their endosymbionts. High sulfate concentrations
predict high (though unconstrained) AOM rates, supporting large
populations of ANME and SRB based on respective counts of
mcrA and dsrAB. The presence of several other abundant bac-
terial and archaeal classes suggests these shallow sediments sup-
port high cell densities overall. Though gas advects during
seepage, solute transport in surrounding porewaters may remain
governed by diffusion, as this decoupling of fluid transport
mechanisms has been described at Storfjordrenna methane
seeps>2.

Model-derived methane fluxes from Storfjordrenna non-
steady-state cores GC1045 and 1081 are an order of magnitude
higher than those from seeps associated with pockmark features
at Vestnessa Ridge, west of Svalbard#0. When compared to other
estimates across continental margins worldwide, the magnitudes
of methane flux we report for these two cores are high but well
within reported ranges, while fluxes from steady-state cores are
average?”. At the seep site, PC1029, our methane flux estimate on
the order of 102molm—2yr—! is several times the maximum of
other modeled AOM rates at seep sites?’, but less than the highest
empirically measured AOM rate®. We acknowledge that the rate
estimated from PC1029 is associated with large uncertainties, as
we were not able to satisfactorily fit the modeled curve to
empirically derived sulfate data under the current setup of the
model. The model currently does not consider gaseous phase
transport or bioturbation, which would enhance gaseous methane
transport from deeper sediments, nor does it include sulfate
infiltration from the bottom water or sulfide oxidation, which
may provide additional substrates for SR-AOM. Though the
timing of seepage at the center of GHM3 is unconstrained,
the large populations of anaerobic methanotrophs and sulfate

reducers supported by high methane fluxes may indicate stable
conditions over timescales of years*3.

We now consider ANME doubling times at sites experiencing
an increase in methane flux. Though we do not have direct
measures of cell activities, if we interpret the downcore increases
in mcrA concentrations approaching the SMT (Fig. 4c) as
methane-fueled ANME growth, doubling times of 147 days
(GC1081, 23 to 56.5 cm) to 261 days (GC1045, 66 to 76 cm) can
be derived by assuming one copy of mcrA per ANME genome*°.
These values complement the only other published estimate of
in situ ANME doubling time, at approximately 100-200 days*S.
We can then estimate per-cell AOM rates across SMTs at an
average of 0.65 pmol CH, d~!, within range of the 0.5-1.8
reported in a bioreactor where AOM was stimulated®®. The
observation that AOM rates and mcrA abundances in areas
experiencing increasing methane flux peak at nearly the same
depths suggests that the notoriously slow ANME doubling times
may not present a significant lag in the response of the
benthic biogeochemical methane filter. (Considering a shoaling of
10 cm/yr in the AOM rate profile as seen in Fig. 4d, a peak mcrA
concentration 10cm below the concurrent AOM peak in
GC1045 suggests a methanotrophic community lag time of
approximately 1 year, while no lag is seen in GC1081.) These
estimates contrast with the 2-5 years for ANME to become
dominant and active in recently extruded subseafloor mud flows
from Héakon Mosby Mud Volcano®. To our knowledge, this
portrayal of microbial dynamics within a reactive transport
modeling context is a novel approach for the methane seep lit-
erature that could be applied to other systems.

At Storfiordrenna GHMs, ANME-1 is the most abundant
anaerobic methanotroph in nearly all communities (Figs. 3b, 4b,
and 5b). However, our observations of ANME-2 at sulfate-rich
surface sediments in PC1029 (Fig. 5b) agree with previous
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findings®. At all other depths and locations, the reasons for
ANME-1 dominance at Storfjordrenna GHMs is unclear. Geno-
mic explanations may include the lack of an energetically
expensive nifDHK nitrogenase in ANME-1°1, and fewer multi-
heme cytochromes thought to be involved in direct intercellular
electron transfer’2. In non-steady-state cores, ANME-la and
ANME-1b were present at near-equal abundances, with ANME-
1b sequences more abundant at shallower depths. In contrast, the
la subclade was more dominant in three of four steady-state cores
(Figs. 3b and 4b). Higher ANME percent abundances and mcrA
concentrations in non-steady-state cores (Figs. 3-5) may point
towards a boom-and-bust cycle where methane influx into shal-
lower sediment layers quickly stimulates a large but ultimately
unsustainable methanotrophic population, which may decline as
sulfate is drawn down or as other community members establish.

In several instances, high abundances of ANME or con-
centrations of mcrA are seen at depths above those where
methane is expected in GC1081 and GC1048 (Fig. 4 and Fig. S3)
or below the SMT (GC1069, Fig. 3). These may reflect the limited
resolution of our alkalinity and sulfate measurements. At GC1068
and GC1069, any cessation in the methane supply would allow
sulfate to diffuse into a deeper depth without affecting the line-
arity of the sulfate profile. Alternatively, this may indicate inactive
relic communities, though ANME-1 may still be capable of
AOM?>3 or even methanogenesis®* when starved of sulfate.

Co-occurrences between ANME-1b and SEEP-SRB2 have been
reported>°°, and their relative abundances appear to mirror each
other in GHM4 samples (Fig. 4b). Both clades of SEEP-SRB, as
well as Desulfatiglans, are presumed to oxidize a wide variety of
reduced hydrocarbons3®. The presence of several potentially fer-
mentative and saccharolytic clades like the Atribacteria, Amini-
cenantes, Anaerolineae, and Phycisphaerae may reflect alternate
organic matter-dependent metabolic strategies that are inter-
rupted by ANME and SRB when methane enters sulfate-rich
porewaters. Macroscopic ANME-dominated biofilms found at
two SMTs in GC1048 and GC1070%7 contained mcrA in con-
centrations of up to 7.6 x 1010 g~1. These biofilms may reflect
sediment habitats experiencing steady methane and sulfate supply
over many years (as in GC1070), or a slightly increasing methane
supply (GC1048). ANME biofilms have been described at SMTs
in other subseafloor locations, often in fracture-dominated
cores’®.

Microbial communities inhabiting Storfjordrenna GHMs show
lower richness and evenness than most other reported commu-
nities from methane seeps, sulfate-methane transition zones, and
marine subsurface environments2. Broadly, diversity decreases
with depth, but only significantly across depths corresponding to
peak AOM rates in high methane flux areas (Fig. 6). In com-
munities recently impacted by methane flux, this decrease in
diversity and convergence towards a community type found
below SMTs may be associated with certain taxa being out-
competed by ANME/SRB on timescales of years as the methane
front progresses. Cell generation times can decrease by several
orders of magnitude across the SMT, below which community
assembly can be influenced more by the slow growth of a few taxa
(such as Atribacteria) capable of thriving in an energy-limited
environment as opposed to evolutionary adaptation during
burial®’.

Below-SMT communities are dominated by Atribacteria of the
JS1 class (Figs. 4b and 5b), while similar observations have been
reported in methane-rich deep Antarctic marine sediments®® and
in a submarine mud volcano offshore Japan®®. Three JS1 ASVs
were identified across different states of methane flux and posi-
tions above or below the SMT (Fig. S6), though interestingly, one
of them (ASV91) was preferentially abundant in above-SMT
steady-state and below-SMT increasing-flux communities,

evidence towards its persistence during methane migration into
shallower sediment horizons. Despite steady-state communities
showing higher numbers of differentially abundant ASVs, two
Calditrichia (genus Caldithrix) were more abundant in commu-
nities experiencing increased methane flux, while four Campylo-
bacteria from the genera Sulfurimonas and Sulfurovum and seven
Gammaproteobacteria were associated with active methane see-
page (Fig. S6). Sulfurovum is capable of oxidizing elemental sulfur
or thiosulfate using oxygen or nitrate as electron acceptors60.

The presence of differentially abundant ASVs at distinct states
may reflect the sampling of comparatively shallow sediments at
PC1029, and an influence from macrofauna. Sulfur-oxidizing
gammaproteobacterial symbionts of the siboglinid frenulate Oli-
gobrachia have previously been reported in cold seeps®!. Notably,
there is an absence of Oligobrachia and a decreased prevalence of
seafloor bacterial mats at GHMS5, where steady-state cores were
collected?!. Despite the short (several km) distances between
individual GHMs, many interdependent factors, such as physical
disturbances, differences in fluid flow states, and colonization of
foundation species provide heterogeneity across seep ecosystems®2.

In summary, our integrated approach allows us to detail states
of methane transport where (A) steady-state sulfate-methane
dynamics supports moderate rates of AOM at SMTs, low ANME/
SRB populations, and a diverse community of organic matter
degraders; (B) as methane flux increases, diffusion of methane
into shallower sediment horizons stimulates ANME growth
therein with lag times of a year or less, reducing community
diversity overall; (C) seepage and sulfate transport into shallow
sediments support high populations of ANME and SRB. Cold
seeps are dynamic systems that undergo temporal perturbations
in methane flux. These results highlight the importance of
framing microbial community data and estimates of their meta-
bolic processes within a spatially and temporally constrained
geochemical context to more thoroughly understand microbial
contributions in structuring habitats and mediating biogeo-
chemical cycles.

The incorporation of genomic data into reactive transport
models describing other microbially mediated processes has
demonstrated utility in predicting subsurface microbial
responses®. A modeling scenario that considers the dynamics of
ANME growth may be of use in constraining estimates of marine
subsurface methane flux into the hydrosphere. Global microbial
methane filter efficiencies of 50-60% have been used in modeling
studies'”, but seep sites display wide heterogeneity®. Our finding
that mcrA gene copy numbers correlate positively with modeled
AOM rates provides some justification for coupling these popu-
lations and their associated activities (Fig. S5), mirroring the
coupling of methane fluxes and transcripts of methane cyclers in
peat soils®*. Though microbial community data can provide
explanatory power for predicting ecosystem processes, commu-
nity changes do not always coincide with processes being
measured®. At higher resolutions, -omics strategies capable of
characterizing functional genes, transcripts, pathways, and draft
genomes can link sequence data with processes and characterize
ecosystem changes®®, or even apply these data into biogeo-
chemical models to infer the presence of cryptic cycles®’. Further
studies could apply the framework discussed here towards
interpreting the biogeochemistry of seep ecosystems at other
locations, or to other microbially mediated cycles constrained by
distinct mechanisms of solute transport.

Methods

Fieldwork and sample collection. Samples and data were collected aboard the RV
Helmer Hanssen on CAGE cruise 16-5, from June 16t to July 4th; 2016, offshore
Svalbard (Norway) in accordance with local laws. Bathymetric data were acquired
with the RV Helmer Hanssen’s shipboard Kongsberg Simrad EM 302 multibeam
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echo sounder using a maximum frequency of 34 KHz and a maximum swath as a
function of depth of 5.5. Gas flares were detected with single (split)-beam EK60 and
multibeam EM302 echosounders using 18 and 38 KHz transducers.

Gravity core (GC) 1045 was recovered from the south slope of GHM3, and GCs
1068-1070 from three locations at GHMS5. GC1081 was collected near a gas
seepage area at GHM4. Data from previously reported gravity cores were included
in Fig. 2 and mentioned in the text (see Table s3 in Supplementary Material). Once
recovered, the plastic liner containing the core was removed from the barrel,
sectioned into 1 m segments, labeled, and split in half with a table saw to obtain
working and archive halves. Core halves were stored horizontally at 4 °C. Following
sectioning, Rhizons were used to sample porewater on archive halves. Sediment
headspace gas samples for methane measurements were collected from
depressurized cores, and thus should be considered underestimates for in situ
concentrations. 5 ml bulk sediment was collected with cutoff plastic syringes from
the working half of the core, transferred to 20 ml headspace glass vials with 5 ml
1M NaOH and 2 glass beads, capped with rubber septa and aluminum crimpers,
and stored at 2 °C. Total alkalinity (TA) was titrated onboard less than a few hours
after the syringes were detached from the Rhizons. Depending on the expected TA,
we used 0.1 to 0.5 ml of porewater for titration in an open beaker with constant
stirring. pH was manually recorded with every addition of 0.0012 M HCL 7-10
measurements were performed for every sample. TA was calculated from the
recorded pH and amount of acid added using the Gran function®. Increases in
porewater alkalinity determined by onboard titrations were used to roughly
constrain the SMT depths (within 30 cm) for sampling purposes.

Sediment microbiology samples of 2 cm depth were then taken every 5-10 cm
near the SMT and every 20-50 cm above and below it. Less than 12 h after cores
were collected, ethanol-sanitized spatulas were used to scrape away the outer
several mm of sediment from the working core half, and ~100 g from the interior of
each sample was placed into a sterile Whirlpak bag (VWR) and immediately frozen
at —80 °C.

Replicate PVC push cores for geochemical and microbiological sampling were
collected ~30 cm from the seep at GHM3 using a Sperre Subfighter 30k remotely
operated vehicle (ROV) equipped with a raptor arm from the Centre for
Autonomous Marine Operations and Systems (AMOS). Recovery ranged from 23
to 50 cm. Rhizons were used to extract porewater from one core, and microbiology
samples were extruded on deck from the other in 2-cm sections using an ethanol-
sanitized spatula. These were placed into sterile bags and frozen immediately at
—80 °C. Deep-frozen sediment samples were shipped from UiT-Tromse to Oregon
State University (OSU) in a Cryo Solutions MVE Doble 47 dry shipper and were
subsequently stored at —80 °C.

Geochemistry. Sulfate content in porewater was analyzed by a Dionex ICS1100 ion
chromatography (IC) at the Geological Survey of Norway (NGU). An IonPac AS23
column was equipped on the IC with the eluent (4.5 mM NaCO; and 0.8 mM
NaHCO;) flow set to be 1 mL/min. Due to a dilution issue when analyzing sulfate
concentrations with IC, measured values were corrected by assuming a constant
chloride concentration of 556 mM across the samples. From our previous knowl-
edge of chloride concentration in the region, the concentration can be at most 10%
apart from the concentration we assigned for correction (this translates to a few mM
uncertainty in the sulfate concentration). However, this correction does not affect
our interpretation of methane dynamics based on sulfate profiles, as we observed
concomitant increases in alkalinity from TA measurements.

Total sulfide (ZHS) concentrations were measured spectrophotometrically
following the Cline method®®. Samples were preserved onboard with 23.8 mM
Zn(OAc); solution onboard <30 min after the syringes were disconnected from the
Rhizons. The samples were then kept frozen until shore-based analysis. Details of
the analyses were also given in Hong et al.%8. Depending on the factor of dilution,
the detection limit is around tens of uM. To determine the concentration of
dissolved methane in the porewater of the sediment matrix, a conventional
headspace method was applied!”.

Gas measurements were performed using a Thermo Scientific Trace 1310 gas
chromatograph equipped with a flame ionization detector (GC-FID) and a Thermo
Scientific TG-BOND alumina (Na,SO,4) column (30 m x 0.53 mm x 10 um).

Modeling. We applied a transport-reaction model with a reduced reaction network
considering only sulfate and methane, and AOM as the only reaction consuming
both constituents. We simulated a 60-meter sediment column, which is the bottom
of the gas hydrate stability zone in the area. AOM rates were controlled by the lower
boundary condition of methane. We assigned seawater sulfate and methane con-
centrations for the initial and upper boundary conditions; a no-flux lower boundary
condition was used for sulfate. Three different lower boundary conditions of
methane were assigned to simulate the contrast states of methane dynamics as
shown in Fig. 2. A higher concentration of methane for the lower boundary con-
dition results in a more abrupt change in the sulfate concentration gradient, and
thus the concave up sulfate profiles as observed from cores experiencing increased
methane fluxes. On the other hand, a lower concentration of methane for the lower
boundary condition in the model results in a linear decrease of sulfate concentration
downcore, which resembles the profiles observed from the cores at a steady state.
Additional details and assumptions are provided in Supplementary Information.

DNA extraction, amplification, sequencing, and analysis. DNA was extracted
from sediments in a clean laminar flow hood using a Qiagen DNeasy PowerSoil kit
following the manufacturer’s protocol. The Earth Microbiome Project 16S Illumina
Protocol was used to prepare amplicons for sequencing. Briefly, V4 regions of
bacterial and archaeal 16 s IRNA genes were amplified in triplicate 25 ul reactions
using universal 515-forward and 806-reverse primers’? modified with dual-indexed
Illumina sequencing adapters’!. The thermal cycling protocol of Caporaso et al.”®
was followed without modifications. After confirming amplification with agarose
gel electrophoresis, triplicate PCR products were pooled and purified with a Qiagen
QIAquick PCR purification kit. Amplicon concentrations were quantified with a
Qubit fluorometer using the Qubit dsDNA high sensitivity assay kit and pooled in
equimolar amounts. Illumina Miseq V2 paired-end 250 bp sequencing was per-
formed by technicians at Oregon State University’s Center for Genome Research
and Biocomputing (CGRB). Two sediment-free DNA extraction blanks were
amplified and included in the sequencing run.

Working in R version 3.6.1, 16S rRNA amplicon data was processed with
DADA272 (version 1.12.1) following an established pipeline’3. Reads were
denoised, chimeras removed, and taxonomies classified using version 132 of the
SILVA nonredundant 16S reference database’4. Sequences were aligned with
DECIPHER”® (version 2.12), and a phylogenetic tree was constructed using
phangorn’® (version 2.5.5). Phyloseq”” (version 1.28.0) was used to combine read
count data with sample and taxonomy information. Sequences identified as
Eukaryotes, Chloroplasts, or Mitochondria were removed, and the “combined”
method of decontam’8 (version 1.4.0) was then used to identify and remove 81
contaminant ASVs. In addition, after noticing the presence of Micrococcus in one
blank sample, all four ASVs from this genus were manually removed. In total, the
removed ASVs comprised 1.05% of the reads in the dataset.

Blanks and other samples with less than 8931 reads were removed, and alpha
diversity metrics (ASV richness, Chaol, Shannon, and Simpson indices) were then
determined. Using vegan”? (version 2.5-6), weighted Unifrac® distances calculated
from a Hellinger-transformed ASV count table, and PERMANOVA tests were run
to assess differences in community structure among groups. DESeq28! (version
1.24.0) was used to identify differentially abundant ASVs among three discrete
states of methane dynamics. Each above-SMT methane state was compared against
the other two combined. Below-SMT samples only included two states, because all
active seepage samples from PC1029 had sulfate concentrations above 1 mM. In
this core, where AOM rates could only be roughly estimated, we used a peak AOM
rate depth of 13 cm, which corresponded to the steepest decline in porewater
sulfate.

Droplet digital PCR. Droplet digital PCR (ddPCR) was used to quantify abun-
dances of functional genes dsrAB and mcrA using primer pairs described by
Kondo®2 and Luton®3, respectively. Reactions of 22 ul volume were prepared in a
clean PCR hood in 96-well plates using 1x Bio-Rad QX200 ddPCR EvaGreen
Supermix, 200 nM primers, and 0.88 ul of tenfold-diluted genomic DNA. Droplets
were generated on a QX200 AutoDG Droplet Generator using automated droplet
generation oil for EvaGreen Supermix (Bio-Rad). Thermal cycling was performed
immediately afterwards on a Veriti 96-well thermal cycler. Protocols began with a
single initialization step at 95 °C for 5 min and then proceeded to 40 cycles of
denaturation at 95 °C for 30 s, annealing for 1 min (at a temperature of 53 for mcrA
and 58 for dsrAB), and for mcrA only, an extension at 72 °C for 75 s. Signal
stabilization steps (4 °C for 5 min, then 90 °C for 5 min) were then performed
before maintaining a 4 °C hold. To ensure uniform heating of all droplets, the ramp
rate for all amplification cycles was set to 2 °C/minute. Reactions were kept at 4 °C
overnight and read with the Bio-Rad QX200 Droplet Reader the following
morning. Droplet generation and reading were performed by the lead author at
OSU’s CGRB core facility. Normalization was performed by inspecting fluores-
cence distributions using Quantasoft software (Bio-Rad). Threshold fluorescence
values were manually imposed by visually inspecting distributions of DNA
extraction blank and no-template-added control samples. Amplicon copy numbers
per well were then converted to copies per gram wet sediment.

Data availability

Raw 16S rRNA sequence data generated in this study have been deposited to the freely
and publicly available NCBI Sequence Read Archive under BioProject accession code
PRJNA533183. Geochemical, numerical modeling, and ddPCR gene count data are freely
and publicly available at https://github.com/sklasek/svalflux/tree/master/data.

Code availability

Codes used for analysis generated in this study (including phyloseq objects) are freely
and publicly available at https://sklasek.github.io/svalflux/ and are archived under the
DOI here: https://doi.org/10.5281/zenodo.5347747.
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